GLI2 ACCELERATES CARDIAC PROGENITOR GENE
EXPRESSION DURING MOUSE EMBRYONIC STEM
CELL DIFFERENTIATION

By

Joel Vincent Fair

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
in partial fulfillment of the requirements for the
MSc degree in Biochemistry

Department of Biochemistry, Microbiology, & Immunology
Faculty of Medicine
University of Ottawa

© Joel Vincent Fair, Ottawa, Canada, 2014
Abstract

The Hedgehog (HH) signalling pathway and its primary transducer, GLI2, regulate cardiomyogenesis in vivo and in differentiating P19 embryonal carcinoma (EC) cells. To further assess the role of HH signalling during mouse embryonic stem (mES) cell differentiation, we studied the effects of GLI2 overexpression during mES cell differentiation. GLI2 overexpression resulted in temporal enhancement of cardiac progenitor genes, *Mef2c* and *Nkx2-5*, along with enhancement of *Tbx5, Myhc6*, and *Myhc7* in day 6 differentiating mES cells. Mass spectrometric analysis of proteins that immunoprecipitate with GLI2 determined that GLI2 forms a complex with BRG1 during mES cell differentiation. Furthermore, modulation of HH signalling during P19 EC cell differentiation followed by chromatin immunoprecipitation with an anti-BRG1 antibody determined that HH signalling regulates BRG1 enrichment on *Mef2c*. Therefore, HH signalling accelerates cardiac progenitor gene expression during mES cell differentiation potentially by recruiting a chromatin remodelling factor to at least one cardiac progenitor gene.
Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Ilona Skerjanc, for her guidance and support. I would also like to thank the current and past members of Dr. Skerjanc’s lab for their insight, fruitful discussions, and technical support. This includes, but is certainly not limited to, Drs. Anastassia Voronova, Ashraf Al Madhoun, and Tammy Ryan, as well as Neven Bosiljcic, Michael Shelton, Avitek Kocharyan, Abeer Zakariyah, Jennifer MacDonald, Rashida Rajgara, Erin Coyne, Donna Clary, Jun Liu, and Jacob Wong. I would especially like to thank my mentor, Dr. Anastassia Voronova who has provided an abundance of advice and support, for which I am truly grateful. I would also like to thank Dr. Alexandre Blais and Imane Chakroun for their assistance with chromatin immunoprecipitation techniques and analyses.

I am very thankful to Drs. Valerie Wallace and David Lohnes for their advice and guidance as members of my thesis advisory committee. I also owe a great amount of thanks to Drs. Alexandre Blais and Anastassia Voronova for going out of their way to help me review my thesis.

Finally, I would like to thank the University of Ottawa, the Government of Ontario, and the Canadian Institutes of Health Research for their financial support throughout my Master’s degree.
Dedication

To my mom and dad.

Thank you for your endless support.
Table of Contents

Abstract ... ii
Acknowledgements .. iii
Dedication .. iv
Table of Contents ... v
List of Abbreviations ... viii
List of Figures .. xii
List of Tables ... xiii
List of Appendices .. xiv

1 Introduction .. 1
 1.1 Heart disease .. 1
 1.2 Embryonic Stem Cells .. 2
 1.3 Cardiogenesis .. 3
 1.4 In vitro cardiomyogenesis .. 8
 1.5 Hedgehog signalling ... 12
 1.6 HH signalling agonists and antagonists ... 19
 1.7 HH signalling during cardiomyogenesis ... 20
 1.8 Mef2c .. 22
 1.9 SWI/SNF chromatin remodelling complexes ... 26
 1.10 Rationale ... 30
 1.11 Hypothesis .. 31
 1.12 Objectives ... 31

2 Materials and Methods .. 32
 2.1 Expression vectors .. 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>mES cell culture</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>P19 EC cell culture</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Immunoblot analysis</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Quantitative PCR (qPCR) analysis</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Immunofluorescence</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Mass spectrometric analysis</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>Bioinformatics analysis</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Chromatin immunoprecipitation (ChIP) assays</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Overexpression of FLAG-GLI2<sup>S662A</sup> results in increased levels of GLI2 in mES cells</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Overexpression of GLI2 results in accelerated cardiac progenitor and cardiomyocyte specific gene expression</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>GLI2 does not significantly regulate skeletal myogenesis but may regulate neurogenesis in mES cells</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>GLI2 interacts with BRG1 and shares a subset of target genes</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>GLI2 overexpression results in enriched BRG1 association on Mef2c regulatory elements</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Inhibition of HH signalling results in reduced BRG1 association on Mef2c site C</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Discussion</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>HH signalling regulates acceleration of cardiac progenitor genes during mES cell differentiation</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>GLI2-mediated acceleration of cardiac progenitor gene expression does not enhance the number of cardiomyocytes during mES cell cardiomyogenesis</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>BRG1 enrichment on Mef2c positively correlates with the expression of HH-mediated Mef2c expression in vitro</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>GLI2 mediates the enrichment of BRG1 on Mef2c site C</td>
<td>80</td>
</tr>
</tbody>
</table>
4.5 HH signalling may regulate BRG1 association on other cardiac progenitor genes expressed in the SHF .. 81

4.6 *Gata*-4 expression is not regulated by GLI2 overexpression in differentiating mES cells like in differentiating P19 EC cells .. 82

4.7 Conclusions .. 86

References ... 91

Contributions of Collaborators .. 113

Appendices ... 114

Curriculum Vitae .. 116
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-TrCP</td>
<td>β-transducin repeat-containing protein</td>
</tr>
<tr>
<td>ASCL</td>
<td>achaete-scute homolog 1</td>
</tr>
<tr>
<td>ASD</td>
<td>atrial septal defects</td>
</tr>
<tr>
<td>BAF</td>
<td>brahma-associated factor</td>
</tr>
<tr>
<td>bHLH</td>
<td>basic helix-loop-helix</td>
</tr>
<tr>
<td>BMP</td>
<td>bone morphogenic protein</td>
</tr>
<tr>
<td>BRG1</td>
<td>brahma-related gene 1/SMARCA4)</td>
</tr>
<tr>
<td>BRG1-ChIP</td>
<td>chromatin immunoprecipitation with an anti-BRG1 antibody</td>
</tr>
<tr>
<td>BRM</td>
<td>brahma/SMARCA2</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin Immunoprecipitation</td>
</tr>
<tr>
<td>Chr</td>
<td>chromosome</td>
</tr>
<tr>
<td>Ci</td>
<td>cubitus interruptus</td>
</tr>
<tr>
<td>Cre</td>
<td>cre recombinase</td>
</tr>
<tr>
<td>Ctrl</td>
<td>control</td>
</tr>
<tr>
<td>DHH</td>
<td>desert hedgehog</td>
</tr>
<tr>
<td>DISP</td>
<td>dispatch</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>E</td>
<td>embryonic day</td>
</tr>
<tr>
<td>EB</td>
<td>embryoid body</td>
</tr>
<tr>
<td>EC</td>
<td>embryonal carcinoma</td>
</tr>
<tr>
<td>EnR</td>
<td>engrailed repression domain</td>
</tr>
</tbody>
</table>
ES: embryonic stem
FBS: fetal bovine serum
Fgf8: fibroblast growth factor 8
FHF: first heart field
FLAG-IP: immunoprecipitation with anti-FLAG beads
FLAG: flag-tag peptide
FOXH1: forkhead box protein H1
GATA-4: GATA-binding protein 4
GLI: glioma-associated
GLI1: glioma-associated protein 1
GLI2: glioma-associated protein 2
GLI2/3: GLI2 and GLI3
GLI2A: full-length, transcriptional activator form of GLI2
GLI2R: proteolytically processed, transcriptional repressor form of GLI2
GLI3: glioma-associated protein 3
GLI3A: full-length, transcriptional activator form of GLI3
GLI3R: proteolytically processed, transcriptional repressor form of GLI3
GO: gene ontology
hES: human embryonic stem
HH: hedgehog
HH-C: carboxy-terminal peptide of hedgehog protein in hedgehog producing cell
HH-N: amino-terminal peptide of hedgehog protein in hedgehog producing cell
IF: immunofluorescence
IHH: Indian hedgehog
IP: immunoprecipitation
ISL-1: Insulin gene enhancer protein
KAAD-cyclopamine: 3-Keto-N-(aminoethyl-aminocaproyl-dihydrocinnamoyl)-cyclopamine
LIF: leukemia inhibitory factor
MEF: mouse embryonic fibroblast
MEF2C: myocyte-specific enhancer factor 2C
MEM: minimum essential medium
mES: mouse embryonic stem
mm10: *Mus musculus* genome assembly (version 10)
MyHC: myosin heavy chain
MyHC6: myosin heavy chain 6 (α-MyHC)
MyHC7: myosin heavy chain 7 (β-MyHC)
Mylc: myosin light chain
NKX2-5: NK2 homeobox 5 protein
Pax3: paired box 3
PBAF complex: polybromo-containing BAF complex
PBS: phosphate buffered saline
PDD: processing determinant domain
PTA: persistent truncus arteriosus
PTCH1: patched homolog 1
qPCR: quantitative polymerase chain reaction
RA: retinoic acid

SAG: smoothened agonist

SCUBE2: signal peptide, CUB, and EGF-like domain-containing protein 2

SEM: standard error of the mean

SHF: second heart field

SHF I: ISL-1-dependent SHF enhancer

SHF II: Nkx2-5/FoxH1-dependent SHF enhancer

SHH: sonic hedgehog

SKI: skinny hedgehog

SMO: smoothened

sPBS: Stockholm’s phosphate buffered saline

SSEA-1: stage-specific embryonic antigen-1

SUFU: suppressor of fu

SWI/SNF: switch/sucrose non-fermentable

TBX5: T-box protein 5

TC: tissue culture grade

WT: wild type

YY1: Yin Yang 1
List of Figures

Figure 1. *In vitro* cardiomyogenesis during mES cell and P19 EC cell differentiation 9

Figure 2. The HH signalling pathway in the absence and presence of HH ligand 15

Figure 3. A schematic representation of the *Mef2c* gene 24

Figure 4. Overexpression of GLI2 protein in mES[GLI2] cultures was maintained during differentiation ... 43

Figure 5. Overexpression of GLI2 enhances transcript expression of a GLI2 target gene and of cardiomyogenesis-specific genes .. 48

Figure 6. Cardiac progenitor transcript levels in mES[Ctrl] cultures reach the level of those in mES[GLI2] cultures by day 7 of a 7-day differentiation protocol 51

Figure 7. Overexpression of GLI2 resulted in a marginal trend towards an increase in MyHC$^{\text{+ve}}$ cells ... 55

Figure 8. GLI2 may regulate early neurogenesis during mES cell differentiation 58

Figure 9. BRG1 immunoprecipitates with GLI2 in day 3 differentiating mES[GLI2] cells. 61

Figure 10. GLI2 recruits the chromatin remodelling protein, BRG1, to a GLI2 binding site in the *Mef2c* gene ... 65

Figure 11. HH signalling contributes to the recruitment of BRG1 to *Mef2c* 69

Figure 12. A model summarizing the role of the HH signalling pathway and its primary transducer, GLI2, during mES cell cardiomyogenesis 87
List of Tables

Table 1. Sequences of primers used for real time qPCR analyses. .. 37
Table 2. Sequences of primers used for ChIP-qPCR analyses.. 41
List of Appendices

Appendix A - Detailed \textit{Mef2c} Binding Site Information ... 114
Appendix B - Unique Reagent Recipes ... 115
1 Introduction

1.1 Heart disease

The heart is the first functional organ during mammalian development and is essential for survival in utero and after birth. Undoubtedly, congenital heart disease or injury to the heart during adulthood poses serious health risks. Heart disease is one of the three leading causes of death in Canada (1) and, in many cases, leads to myocardial infarction (2). If severe, myocardial infarction can lead to a loss of approximately one billion cardiomyocytes, subsequent fibrosis, major contractile dysfunction, and ultimately the risk of heart failure (3, 4).

Heart transplantation has been the primary means for treating severe heart damage (5) and, fortunately, the one-year post-transplantation survival rate has increased from ~30% in the 1970’s to ~80% in the 2000’s (6, 7). However, finding a compatible deceased heart donor with matching blood type, human leukocyte antigen type, and body size can be difficult. Many patients die before they can find an available matching deceased donor. Since 2000, the number of recorded heart transplants performed annually has held close to 4,000 worldwide (6). In the United States alone, there are ~2,500 adult patients on a waiting list for a heart transplant on any given day (8). Therefore, alternatives to heart transplantation, including cell-based alternatives are being investigated (7).

Recent studies have shown that a fraction of cells (between 0.45% and 22%, depending on the study) regenerate in an adult human heart, annually (9, 10). Nevertheless, these levels are insufficient for replenishing the number of cells needed to restore function in an infarcted heart in a timely manner (4). Intriguingly, murine hearts have substantial regenerative capacity prior to birth and grow primarily through hyperplasia (11, 12). This
regenerative function diminishes until it is effectively lost 7 days after birth when myocardial injury results in more fibrosis and contractile dysfunction (12, 13). If injury occurs before this critical time point, endogenous cues can rescue cardiac function within 3 weeks through global proliferation of cardiomyocytes in the heart (4). Shortly after birth, approximately 90% of the cardiomyocytes in the mouse heart become binucleated and thereafter mediate heart growth primarily through hypertrophy (12, 14). It is believed that neonatal hearts have more regenerative potential because they have mononucleated cells and less complex sarcomeres. This phenotype is similar to zebrafish cardiomyocytes, which can undergo cytokinesis more readily when required (15, 16). In both zebrafish and neonatal mice, the dominant method for regenerating injured myocardium is the proliferation of pre-existing cardiomyocytes (13, 15). Adult mouse cardiomyocytes also seem to repopulate primarily through pre-existing cardiomyocytes (16, 17). Therefore, given an insufficient supply of transplantable hearts worldwide and the limited regenerative capacity of cardiomyocytes in the mammalian adult heart, new therapies that can regenerate damaged myocardium are in high demand.

1.2 Embryonic Stem Cells

Cell-based therapies could provide an alternative to patients who have had a severe heart attack, who have lost a critical number cardiomyocytes, and who are unlikely to find a compatible heart donor. Embryonic stem (ES) cells are a cell type of interest in the field of regenerative medicine because, by providing the necessary differentiation cues in vitro, ES cells can theoretically be propagated and differentiated into large numbers of any specific
cell type for intended transplantation and functional integration into a damaged tissue (3, 18, 19).

By recapitulating the endogenous signals during cardiomyogenesis, many directed differentiation protocols have been able to generate large numbers of ES cell-derived cardiomyocytes in vitro (20, 21). Although, transplantation of human ES (hES) cell-derived cardiomyocytes into infarcted mouse hearts has not generated long-term functional improvements (16), mice have smaller and faster beating hearts, so it is possible that the hES cell-derived cardiomyocytes in these studies were unable to contribute efficiently to the mouse heart environment (16, 22). Notably, transplantation into infarcted guinea-pig hearts has proven to be more efficient (23) and more recently, hES cell-derived cardiomyocytes successfully remuscularized portions of an infarcted monkey heart (24). This regeneration in non-human primate hearts was not met without complications, as the hearts developed arrhythmias, but the successful transplantation still suggests that efficient transplantation of hES cell-derived cardiomyocytes into diseased or damaged human hearts remains promising (24). To ensure a more fluid incorporation into the host myocardium, the population of hES cell-derived cardiomyocytes could be better refined in vitro. By further elucidating the molecular mechanisms that influence cardiomyocyte development, it may be possible to identify additional parameters to screen for the most efficient population of hES cell-derived cardiomyocytes or hES cell-derived cardiac progenitors for transplantation.

1.3 Cardiogenesis

Cardiogenesis in mice requires a series of migratory, fusion, signalling and proliferative events to progress from a pool of cardiac precursors into the heart fields that
eventually develop into a four-chambered, functional heart (4, 25). Mouse cardiogenesis initiates at approximately embryonic day 7.5 (E7.5) and requires ~3 days to establish the basic structure of the chambers, then ~5 days to coordinate heart remodelling through valve development, chamber septation, and outflow tract septation (4). Although these stages occur over a ~3 week period in humans, the major events of mouse heart morphogenesis resemble those in human heart morphogenesis, making the mouse model a useful tool for studying cardiogenesis (22).

In the mouse model, the earliest heart precursors are found flanking the primitive streak within the mesoderm layer, shortly after gastrulation initiates, at approximately E6.0 (26). These cells express the mesoderm marker, Brachury, and another T-box transcription factor, Eomesodermin (27). These bilateral populations of cells migrate cranially from either side of the primitive streak towards the anterior of the embryo, near the extra-embryonic edge, and below the developing head fold (26, 28). At this stage the cells begin to express the early precardiac mesoderm gene, Mesp1 (29, 30). Grafting experiments have shown that these early mesodermal cells are still plastic and only later become committed to the cardiac lineage through temporal patterning and dynamic cell migration within the destined niche (25).

At E7.5, prior to somite formation, the mesoderm layer splits at the lateral edges of the embryo to form a series of cavities that eventually join to form the pericardial coelom (31). This separation leads to splanchnic and somatic mesoderm layers on the ventral and dorsal edge of each coelom, respectively (26). The cardiac precursors remain in the splanchnic mesoderm layer (26) where they populate two morphoregulatory fields that establish the cardiac crescent (32). The first heart field (FHF) lies ventral, eventually giving
rise to the left ventricle and contributing partially to the atria. The second heart field (SHF) lies dorsal to the first heart field during the cardiac crescent stage, eventually giving rise to the right ventricle, the outflow tract, the sinus venosus, and the atria (4, 22).

In the cardiac crescent a complex transcriptional network regulates cardiac progenitor differentiation in a spatiotemporal manner through a crosstalk of inductive signals - including bone morphogenic protein (BMP), notch, Wnt/β-catenin, and hedgehog (HH) - from the surrounding tissues (4, 28, 33). The NK2 homeobox 5 protein (NKX2-5), myocyte-specific enhancer factor 2C (MEF2C), T-box protein 5 (TBX5), and GATA-binding protein 4 (GATA-4) are important transcription factors within this network, as their individual expression is essential for proper heart morphogenesis (28). Gata-4^{−/−} mice, Nkx2-5^{−/−} mice, Mef2c^{−/−} mice, and mice heterozygous for both Gata-4 and Tbx5 all have severe heart deformities and are embryonic lethal (34-38).

Of these factors, GATA-4 is one of the first to be expressed in the mouse embryo (39) and proceeds to activate Nkx2-5 expression (28, 40-42). These transcription factors are both common to the FHF and SHF (4). GATA-4 is also known to interact with TBX5 (43) in the FHF and, in conjunction with insulin gene enhancer protein (ISL-1) and forkhead box protein H1 (FOXH1), regulates the expression of Mef2c in the SHF (4, 28, 43-45).

Furthermore, GATA-4 interacts with NKX2-5 and MEF2C proteins to synergistically activate downstream cardiac muscle genes (46-49).

Through additional migration, the bilateral populations of cardiac progenitor cells in the cardiac crescent move ventrally and medially, causing a fusion of endothelial cells at the midline enveloped by a layer of myocardium (4, 25). This fusion gradually progresses caudally and leads to a developing linear heart tube that is initially tethered to the embryo
along the dorsal edge of the tube through the dorsal mesocardium (4, 25). At this time, the cardiomyocytes in the myocardium begin to express myosin heavy chain (Myhc) and myosin light chain (Mylc), which encode proteins that are involved in cardiomyocyte contraction (50, 51). Both alpha and beta isoforms of Myhc ($\text{Myhc6/} \alpha$-Myhc and $\text{Myhc7/} \beta$-Myhc, respectively) are expressed during development, however Myhc7 is more abundant during embryogenesis and Myhc6 becomes the predominant form after birth (52). By E8.0, the myocardium of the linear heart tube begins to beat and blood flows through its caudal inflow portion (venous pole) and out the cranial outflow tract (atrial pole) (25). The initial role of this contraction is unclear, as it precedes the need for a movement of nutrients and waste by blood circulation, but it is believed to have a role in promoting cardiomyogenesis and angiogenesis (53, 54).

The dorsal mesoderm, which is originally tethered to the linear heart tube, eventually degrades along the dorsal edge of the heart tube between the two heart poles (55). With the heart only attached at its poles, proliferation of the cells in the beating heart tube leads to a non-symmetrical bulging and sweeping of the heart to the right by E8.5 (4, 55). This stage, known as cardiac looping, moves the outflow segment of the heart ventrally and caudally, which establishes the general position of the right ventricle and the outflow tract. The inflow segment of the heart moves dorsally and cranially, causing the common atrium to rise to a position above the developing ventricles and later protrude around the outflow tract (25). The bulging junction that links these two moving segments contorts to the left of the right ventricle and establishes the position of the developing left ventricle. By E10.5, the relative positions of the four chambers are established (4).
Most of the processes after heart looping involve tissue remodelling (25). For instance, trabecular cardiomyocytes establish the inner muscular layer of the ventricles by forming organized projections in the heart lumen through trabeculation (4, 25). These projections, known as trabeculae, increase the surface area in the ventricles and provide much of the heart’s contractile force (25). In addition, the chambers need to be properly partitioned to ensure unidirectional blood flow (56). The junctions between the chambers are initially positioned through the looping and proliferation of the heart tube, however efficient division of the chambers still requires a series of tightly regulated septation- and valve-developing events, including atrioventricular, outflow tract, and ventricular septation (56).

Outflow tract septation is required to divide the common outflow of blood from the ventricles into two unique arteries, the pulmonary trunk and the aorta, which eventually transport deoxygenated blood from the right ventricle to the lungs and oxygenated blood from the left ventricle to the circulatory system, respectively (56). Prior to septation, neural crest cells delaminate from the hindbrain, migrate through the pharyngeal arches, and then through the SHF to reach the distal portion of the outflow tract (57, 58). From there these cells populate mesenchymal truncal cushions that spiral down the inside of the tract on opposite edges. Eventually, the cushions from either edge protrude to the point that they fuse to form a spiral septation (56). A similar septation occurs at the proximal edge of the outflow tract with endocardium-derived mesenchyme conal cushions and connects the distal septum arteries to their respective ventricles through the pulmonary and aortic semilunar valves (59).

Heart malformations leading up to, and during, this remodelling stage account for ~30% of prenatal deaths (60). Similar congenital heart defects may have less detrimental affects during fetal development but approximately 0.4% to 5% of live births show signs of
congenital heart disease that can cause complications later in life (61). For instance, TBX5 induces Myhc6 transcription through DNA binding (62, 63) and, like in Tbx5+/− mice (46, 64), mutations in Myhc6 cause septation defects (63). Mutations in Tbx5 have been shown to be the primary source of Holt-Oram syndrome in humans (65).

With many spatiotemporal events occurring throughout the elaborate development of the heart, subtle deformities can lead to major dysfunctions. Therefore, a thorough understanding of the physiological and molecular mechanisms throughout development is necessary for also identifying and treating congenital heart diseases.

1.4 In vitro cardiomyogenesis

The cardiac gene expression profile observed during cardiomyogenesis in differentiating mES cells is similar to that seen during cardiomyogenesis in the embryo (66). Therefore, mES cells are a useful model system for studying the gene modifications during cardiomyogenesis in vitro. Following aggregation of mES cells in hanging drops (67, 68), day 3 and 4 differentiating mES cells express the mesoderm marker, Brachyury, and the precardiac mesoderm marker, Mesp1, respectively (66) (Figure 1). The cardiac progenitor genes Nkx2-5, Gata-4, Tbx5, and Mef2c are expressed by day 6 of mES cell differentiation (66, 69, 70). Upon terminal differentiation, cardiomyocytes express MyHC6 and MyHC7 (71).

In addition to mES cells, P19 embryonal carcinoma (EC) cells have been used to study cardiomyogenesis in vitro because they express signalling pathways during differentiation that are common to those expressed during embryonic heart development (72), they are relatively easy to maintain, and their differentiation can be modulated with
Brachyury, Mesp1, Gata-4, Mef2c, Nkx2-5, Tbx5, Myhc6, Myhc7

Day of Differentiation

mES cells
0 1 2 3 4 5 6 7 8 9
P19 EC cells
0 1 2 3 4 5 6 7 8 9

Cardiac progenitor cells

Cardiac myocytes

Mesoderm cells

Mesp1

Brachyury

Enriched Gene Expression
Cell Type

Day of Differentiation

mES cells
0 1 2 3 4 5 6 7 8 9
P19 EC cells
0 1 2 3 4 5 6 7 8 9

Cardiac progenitor cells

Cardiac myocytes

Mesoderm cells

Mesp1

Brachyury

Enriched Gene Expression
Cell Type
Figure 1. **In vitro cardiomyogenesis during mES cell and P19 EC cell differentiation.** During differentiation, mES and P19 EC cell cultures give rise to cell types from the cardiac lineage. The genes enriched in these cell types are listed relative to the day when they are expressed during differentiation (66, 69-71, 73).
dimethylsulphoxide (DMSO) +/- retinoic acid (RA) to enrich for cells in the mesodermal lineage (74). P19 EC cells were first derived from teratomas in mouse testes, which were induced by grafting the testes to 7.5-day, post-copulating female mouse egg cylinders (75). The P19 EC cells were one cell type cultured directly from the tumour that had a normal 40:XY karyotype and gave rise to early mesodermal and endodermal cell types (72).

Upon DMSO treatment and aggregation, pluripotent P19 EC cells become more restricted to the mesoderm and endoderm lineages (76), express mesoderm marker Brachyury (77) and can differentiate into cardiomyocytes (78). P19CL6 EC cells, a derivative of P19 EC cells that have been cultured for approximately 6 months under mesoderm enhancing conditions, differentiate in a similar manner but are believed to be of a closer developmental stage to cardiomyocytes because they do not express the stage-specific embryonic antigen-1 (SSEA-1) (79-81). In addition to mesoderm-directed differentiation, P19 EC cell differentiation can be shifted towards the neuroectoderm lineage with modulated RA treatment (74).

P19 EC cells can also be genetically mutated with relative ease and exemplify phenotypes displayed by similar in vivo genetic mutations. For instance, dominant-negative fusion protein assays with an engrailed repression domain (EnR) fused to NKX2-5 (NKX2-5/EnR) or fused to MEF2C with an Nkx2-5 enhancer driving its expression (Nkx2-5-MEF2C/EnR) result in disrupted cardiomyogenesis, both in vivo (82, 83) and in P19 EC cells (73, 82, 84).

The HH signalling pathway has become a major developmental pathway of interest after genetic mutation analyses in developing embryos revealed that many components of the pathway are essential for proper heart tube looping and outflow tract development (85-
Thus, many studies have since modulated HH signalling during P19 and P19CL6 EC cell differentiation to further elucidate the molecular mechanisms behind HH-mediated cardiomyogenesis (73, 81, 88-90).

1.5 Hedgehog signalling

HH signalling is an integral component of many developmental processes including craniofacial development, retinal pigment epithelium development (91), limb digit patterning, ventral neural tube patterning (92), pancreas development (93), gut development (94, 95), erythroid differentiation (96), cardiomyogenesis (87, 89, 90), skeletal myogenesis (97-99), and hair follicle development (100). It is able to modulate these processes through a series of different functions, including pattern formation, cell proliferation, homeostasis, and tissue repair (101, 102).

The hh gene was discovered in Drosophila melanogaster and was named after the densely packed, disorganized, hair-like bristles on hh−/− embryos, which resembled hedgehog spines (103). A dozen years after its discovery, HH was identified as a secreted protein that patterns gene expression in adjacent cells of developing D. melanogaster (104-106). Further study in mammals identified three evolutionarily conserved mammalian homologues of the D. melanogaster protein: Indian hedgehog (IHH), shown to regulate bone and cartilage development (107, 108); desert hedgehog (DHH), shown to be essential for nerve sheath formation and germ cell development (109, 110), and sonic hedgehog (SHH), shown to regulate polarity in the notochord, floor plate, and limb buds (111-114). Once secreted, the HH ligands can travel long distances to activate HH signalling in HH-responsive cells (101).
In preparation for secretion of HH from a HH-producing cell, cholesterol is recruited to the carboxy-terminal domain of a HH protein which initiates an autoproteolytic cleavage of the carboxy-terminal peptide (HH-C) and leaves the cholesterol covalently bound to the carboxy-terminal end of the amino-terminal peptide (HH-N) (115). Further processing by skinny hedgehog (SKI) adds a palmitic acid group to the Cys residue closest to the amino-terminal end of HH-N before HH-N is presented on the surface of the HH-producing cell (101, 116). From there the protein is released via the transmembrane protein, dispatch (DISP), and signal peptide, CUB and EGF-like domain-containing protein 2 (SCUBE2) (117, 118). Alternatively, the HH-N lipoprotein may be packaged and released from the cell as a soluble multimer, a HH-N-associated lipoprotein particle, or on an exovesicle that may sequentially release the HH-N further from the cell (101). These different secretion methods are believed to mediate the varying ranges of HH signalling gradients observed in the adjacent cells of a given developing tissue (119).

In D. melanogaster, the zinc-finger protein, cubitus interruptus (Ci) mediates the transcriptional effects of the HH signalling pathway in the HH-responsive cells (119). This single transcriptional mediator has evolved into three separate zinc-finger, glioma-associated (GLI) proteins - GLI1, GLI2, and GLI3 - in vertebrates (120). All three GLI transcription factors have a common zinc-finger binding domain which binds to a common consensus sequence, 5’-GACCACCCA-3’ (121). Once bound, these factors can mediate different transcriptional responses depending on their activator or repressor domains (119).

GLI1 has only a minor role in amplifying the transcriptional response of the HH signal through a C-terminal activator domain (122). Notably, during early embryonic development, GLI2 and GLI3 expression are essential for activating the Gli1 promoter (119,
As such, GLI1 has been determined to be non-essential for ectopic HH signalling in mammalian cells (124).

The function and mechanism of GLI2 and GLI3 more closely resemble that of Ci, which each have a C-terminal activator domain, an N-terminal repressor domain, and a processing determinant domain (PDD) (119). When the proteins are full-length, they contain both an activator and a repressor domain and act primarily as transcriptional activators (GLI2A and GLI3A). After proteolytic processing, they contain only the repressor domain and act primarily as transcriptional repressors (GLI2R and GLI3R) (125, 126). The PDD in the GLI proteins is believed to support their partial cleavage in the absence of HH signalling (127) like it does for Ci (128). GLI3 has a relatively potent PDD and, thus, is often partially cleaved, while GLI2 has a less potent PDD and is more prone to complete degradation (127). GLI1, for which no truncated GLI1R has been observed, does not have a PDD (119).

Although GLI2 and GLI3 are structurally similar and can act as either activators or repressors, they predominantly have different roles. This may be in part due to the potency of their respective PDD domains (119, 127). GLI2 is primarily involved in transducing the activator response of HH signalling and GLI3 generally mediates the repressor response (119, 129, 130). Altogether, the GLI family of proteins modulates the culminated effect of the HH signalling pathway (119).

Given the pleiotropic functions of HH signalling, research efforts in many fields have sought to elucidate the mechanisms behind the signalling pathway in hopes of identifying key factors driving HH-related development and diseases (101, 119). In vertebrates, the active or repressive fate of the GLI2 and GLI3 (GLI2/3) proteins is determined within the primary cilia of cells (Figure 2). Independent of HH signalling, suppressor of fu (SUFU) can...
Figure 2. The HH signalling pathway in the absence and presence of HH ligand.

(A) In the absence of HH, PTCH1 inhibits SMO, which allows SUFU to transit GLI2/3 into the primary cilium and out past the basal body where kinases phosphorylate the GLI2/3 proteins. This phosphorylation triggers proteolytic cleavage of GLI2/3 to become repressor GLIs (GLI2/3R) (orange truncated ellipses) and enter the nucleus to repress downstream GLI target genes. (B) In the presence of HH, HH binds to PTCH1 allowing SMO to mediate GLI2/3’s dissociation from SUFU in the primary cilium. This allows GLI2/3 to bypass phosphorylation and proteolytic cleavage, and enter the nucleus as a transcriptional activator (GLI2/3A) (green ellipses) (reviewed in 101, 119). (C) Inhibition of the HH signalling pathway can be achieved independent of HH ligand by treating cells with KAAD-cyclopamine, which binds to SMO and inhibits downstream activation of the pathway.
be found bound to GLI2 and GLI3 while moving through the primary cilium via the microtubule motor protein, KIF7 (131-134). Processing within the primary cilium has been shown to be essential for both transducing the active HH signal and maintaining an inactive HH signal (101).

In the absence of HH ligand, the transmembrane protein, patched homolog 1 (PTCH1) is enriched on the plasma membrane near the primary cilium of the HH-responsive cell and prevents another transmembrane protein, smoothened (SMO), from presenting itself on the plasma membrane of the primary cilium through a poorly characterized mechanism (Figure 2A) (101). In the absence of SMO, the SUFU-GLI2/3 complex associates with the basal body of the primary cilium where PKA, CKI, and GSK3β phosphorylate the GLI proteins (135). Another transmembrane protein, GPR161, found on the primary cilium near the basal body in the absence of HH signalling, is presumed to activate PKA through cAMP signalling (136), and thus assist in negatively regulating HH signalling. Upon phosphorylation of the GLI2/3 proteins, the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP) binds to the GLI2/3 proteins and mediates their proteolytic cleavage through proteasomes that are enriched near the basal body (137). This transforms the full-length GLI2/3 proteins into transcriptional repressors as they exit the cilium (101) (Figure 2A). From there they move into the nucleus where they can repress HH target genes.

The HH pathway is activated when HH ligand binds to PTCH1 (Figure 2B) (138, 139). This triggers the removal of PTCH1 from the cell’s surface (140) and the removal of GPR161 from the surface of the primary cilium (136). BOC, CDO and GAS1, which each form a distinct HH-receptor complex with PTCH1, are required during this initial signal transduction step (141). With PTCH1 removed, SMO can translocate to the primary cilium
of the cell either through lateral transport on the plasma membrane or direct transport from an intracellular vesicle (142-146). SMO then accumulates around the basal body of the primary cilium through interactions with the ciliary proteins EVC and EVC2 (147, 148) which leads the SMO C-terminal tails to oligomerize (135). The mechanisms through which GLI2 and GLI3 dissociate from SUFU are still unclear, but when more SMO is near the primary cilium, the SUFU-GLI2/3 complex passes more slowly through the primary cilium and their individual protein concentrations increase especially at the cilium tip (131, 133, 149). Following dissociation from SUFU in the primary cilium (150), full length GLI2 and GLI3 bypass the proteolytic machinery into the nucleus and replace their repressor counterparts on HH target genes to enable activation (119) (Figure 2B).

As the HH ligand levels fluctuate around HH-responsive cells, the profile of active and repressive GLI transcription factors bound to HH target genes varies within the nucleus and mediates differential expression of HH target genes in a concentration dependent manner (119). This concentration-dependent response permits a gradient of HH signalling within a tissue, which influences tissue patterning (119).

In addition to unidirectional signalling, the pathway is mediated through a set of positive and negative feedback loops. *Ptch1* and *Gli1* are induced by HH signalling in all types of cells (92, 151-153) through direct binding of GLI1 and GLI2 (154, 155) in overlapping manners (156). These mechanisms further regulate the signal initiated by the initial dose of HH ligand and throttle the pathway as the concentration of the ligand fluctuates around the HH-responsive cell (119).

The stability of GLI2 was the focus of one prostate cancer research study because prostate cancer cells have higher levels of GLI2 protein than non-cancerous cells, but the
Gli2 transcript levels in both cells remained relatively similar (157). By making an in vitro model system with a mutant GLI2, researchers were able to recapitulate this GLI2 phenotype. The GLI2 mutant was prepared by mutating a potentially phosphorylated Ser at the 662nd residue to an Ala. As a result, the mutant GLI2S622A could no longer bind β-TrCP nor be subject to β-TrCP-mediated ubiquitination (157). Therefore, without changing the level of Gli2 expression, the amount of GLI2 protein remained high in the studied fibroblast cells due to less protein turnover.

1.6 HH signalling agonists and antagonists

To assess the effects of HH signalling on developmental processes through loss-of-function experiments many studies use the HH signalling antagonist, cyclopamine. Cyclopamine is a steroidal alkaloid common to plants of the Veratrum genus and was discovered after an investigation into an endemic of cyclopia in newborn lambs (158). In the 1950’s, abnormal levels of fetal cyclopia in lambs from south-central Idaho caught the attention of researchers at the U.S. Department of Agriculture. This lead to the discovery of cyclopia-inducing alkaloid steroids in corn lilies, Veratrum californicum, on which pregnant ewes grazed at higher altitudes during droughts (159-161). The most potent of these was alkaloid V, which was subsequently named cyclopamine (162).

Decades passed before researchers elucidated the mechanism behind the cyclopic phenotype that linked cyclopamine to the HH signalling pathway (158, 163, 164). In 1998, cyclopamine and other Veratrum alkaloids were shown to disrupt HH dependent patterning in developing embryos, independent of cholesterol metabolism (158, 163). Later analysis showed that cyclopamine binds directly to SMO and inhibits its ability to activate GLI
proteins (165) without inhibiting its ability to translocate to the primary cilium (166) (Figure 2C).

Since the discovery of cyclopamine, other chemically synthesized derivatives have been produced. KAAD-cyclopamine, for example is roughly 10-20 times more potent than cyclopamine without being more toxic (167) and has been used to study the in vitro effects of HH signalling (90, 91, 168).

Smoothened agonist (SAG) is another synthetic compound that modulates HH signalling, but as its name infers, it targets Smoothened to enhance the pathway (169). This small molecule enhancer has been used to modulate HH signalling both in vivo and in vitro experiments (170, 171).

1.7 HH signalling during cardiomyogenesis

HH signalling and its primary transducer, GLI2, play an important role during cardiomyogenesis in vivo and in vitro (87, 89, 90). Shh−/− mice have considerably altered heart looping (172) and have a single outflow tract (173). The size of the embryos, including the size of the heart, is also smaller than wild type (WT) embryos. Further analysis with tissue-specific, SHF Shh−/− mouse embryos using Nkx2-5-Cre has revealed that HH signalling is required for mediating cardiac neural crest cells to the outflow tract cushions and is required for signalling of myocardial cells to establish proper septation (174).

Shh−/−/Ihh−/− mouse embryos resemble Smo−/− embryos and, in addition to showing no embryonic turning, both knockout embryos have only a small linear heart tube (87). This phenotype is attributed to delayed heart tube formation that correlates with delayed Nkx2-5 expression, compared to WT embryos (87). Ptch1−/− embryos on the other hand, which
exhibit higher levels of HH independent signalling than WT embryos, express higher levels of Nkx2-5 in the cardiac crescent. Thus, HH signalling has a role in timely regulation of heart development.

Similar to the upstream transducers of the HH signal, the downstream transcriptional mediators are also essential for efficient heart septation. Gli2\(^{-/-}\)Gli3\(^{+/-}\) mouse embryos have persistent truncus arteriosus (PTA) and a single outflow tract (85, 86). Together these knockout models demonstrate that functional HH signalling is essential for proper heart development in mammals.

Intriguingly, HH signalling can rescue atrial septal defects (ASD) in SHF Tbx5\(^{+/-}\) mutant mouse embryos by potentially normalizing the proliferation of the atrial septum progenitors (175). In zebrafish, downregulation of SHH reduces Nkx2-5 expression during embryogenesis and the number of cardiomyocytes in the developing cardiac chambers (176). Alternatively, Shh-injection into zebrafish embryos has the opposite effect. Another study has also shown that the number of proliferating cardiomyocytes in zebrafish treated with SAG increase by 60\% (177). Meanwhile, treatment with cycloamine, decreases proliferation by 27\%. Therefore, HH signalling can modulate cardiomyocytes and atrial progenitors in vertebrates.

Members of the HH signalling pathway are expressed during cardiomyogenesis in P19 EC (73, 89, 90), P19CL6 EC (81), and mES cells (73). These HH signalling members can also regulate cardiomyogenesis induction in P19 EC cells, as overexpression of SHH or GLI2 is sufficient for inducing cardiomyogenesis through the expression of cardiac progenitor factors like Mef2c, Nkx2-5, and Gata-4 in P19 EC cells without DMSO treatment.
Alternatively, inhibition of HH signalling by cyclopamine results in delayed expression of Gata-4 (90).

Further study of GLI2’s role during cardiomyogenesis in vitro has revealed that GLI2 and MEF2C can regulate one another’s transcriptional expression during P19 EC cell differentiation, possibly by directly binding to each other’s promoter regions (73). Both proteins can form a complex as well, which can synergistically activate a luciferase reporter gene driven by an Nkx2-5 promoter. This multifaceted relationship between GLI2 and MEF2C in vitro, along with them both being essential for proper heart looping and outflow tract formation in vivo, suggests that HH signalling and MEF2C mediate important stages of cardiomyogenesis together, in vivo (37, 38).

1.8 **Mef2c**

MEF2C belongs to the myocyte enhancer factor 2 (MEF2) family of MADS-box binding transcription factors in mammals. The four factors, MEF2A-D, have redundant roles and are expressed in various cell types, but are more commonly known for their ability to regulate muscle regulatory genes (178). As seen in knockout studies, mammalian MEF2 proteins can compensate for the loss of one another (178), whereas mutations in *D. melanogaster*’s single Mef2 gene inhibits myogenesis in all muscle cell types (179). *Mef2c*−/− mice are able to undergo limited cardiomyogenesis in the absence of *Mef2c* likely because MEF2B is enriched 7-fold in these knockout mice and can compensate for the loss of *Mef2c* (37). Nevertheless, these mice have heart looping, right ventricle, and outflow tract defects, which culminate in embryonic lethality by E9.5. A more recent study with conditional knockout of *Mef2c*, through either *Myhc6-Cre* or *Mlc2v-Cre*, in the myocardium also show
that, although \textit{Mef2c} is required for early heart morphogenesis, it is not required for heart
morphogenesis after heart looping, as the conditional \textit{Mef2c}-/- embryos live to term with no
significant deficiencies (38).

\textit{Mef2c} is found on chromosome 13 (Figure 3). As previously mentioned, it is
expressed during cardiomyogenesis, but it is also expressed in skeletal muscle and
endothelial tissue (180). The \textit{Mef2c} gene is composed of at least 14 exons - 4 untranslated
exons and 10 coding exons - which can be alternatively spliced prior to translation
depending on the tissue in which it is expressed (180). Amongst these exons, it contains four
known tissue-specific enhancer regions, which flank three known transcription start sites
(Figure 3) (180). A skeletal muscle (SkM) specific enhancer region lies upstream of exon 1
(181) and overlaps with known MEF2C, MyoD, and E12 binding sites (182). Most of the
intronic region between exons 2 and 3 is an ISL-1-dependent SHF (SHF I) enhancer region
with two sets of two known binding sites for ISL-1 and GATA-4 \(~1\text{kb}\) inwards of the 3’-end
of the enhancer (44). An NKX2-5/FOXH1-dependent SHF (SHF II) enhancer region is
immediately downstream of exon 3 (45), while an endothelial (Endo) specific enhancer
region flanks exon 4 (183). There is a triplet of known SOX10 binding sites \(~5\text{ kb}\) upstream
of the 5’ end of the endothelial enhancer (184). ETS1 and ETV2 bind to non-consensus
binding domains that overlap with FOXC1, FOXC2, and FOXO1 binding sites \(~7.2\text{ kb}\)
downstream of the 3’- end of the endothelial enhancer (183, 185).

There are nine conserved GLI consensus binding motifs situated throughout the
\textit{Mef2c} gene (Figure 3) (73). GLI2 has been shown to bind to eight of them in P19 EC cells
(\textit{Mef2c} sites B-I) (73). One of these GLI2 binding sites is situated upstream of the open
Transcription Factors
Mef2c
mm10 chr13
83,417,148 83,739,715 bp
83.5 83.6 83.7 Mb
Transcription Factor Binding Profile

Sites of Interest
MEF2C MyoD E12 GATA-4 ISL-1 SOX10
ETS1 ETV2 FOXC1 FOXC2 FOXO1
GLI consensus binding motif
Promoter region
Untranscribed region
Enhancer region
(GLI2 binding site)
(Green and Cripps, 2010)
Exon numbers
1-6
Direction of transcription
Exon 24
Untranslated exon
Translated exon
GLI2 binding site
Untranscribed region
Gene

Figure 3. A schematic representation of the Mef2c gene.
The first layer outlines the location of Mef2c-associating transcription factors. The second layer depicts major sites of interest in this study. The third layer marks Mef2c’s position in the *Mus musculus* genome (mm10 genome assembly). Sites of interest include the GLI consensus binding motifs, which were originally outlined in (73) and enhancer regions reviewed in (180). This schematic was constructed using the UCSC Genome Browser (http://genome.ucsc.edu), data collected through TRANSFAC, and data from previous publications (44, 45, 73, 180-186). A detailed description of the binding sites can be found in Appendix A. *Chr*: Chromosome. *SHF I*: ISL-1-dependent SHF enhancer. *SHF II*: NKX2-5/FOXH1-dependent SHF enhancer.
reading frame and another is downstream of it. Of the six within the \textit{Mef2c} gene, two sites are proximal to the SHF enhancer regions. \textit{Mef2c} site \textit{C} is \(~2.4\text{kb}\) upstream of the known SHF I enhancer region’s 5’-end \((44)\). \textit{Mef2c} site \textit{D} is roughly \(~300\text{ bp}\) downstream of the known SHF I enhancer region’s 3’-end and \(~100\text{ bp}\) upstream of the SHF II enhancer region’s 5’-end \((44, 45)\). These many regulatory regions illustrate the complexity of \textit{Mef2c}’s expression throughout various tissues.

1.9 SWI/SNF chromatin remodelling complexes

A combinatorial binding of transcription factors and co-activators are commonly necessary to facilitate transcriptional regulation during development \((187)\). These combinations can be dynamic and modulate subsets of genes specific to cell lineages in a spatiotemporal manner. However, when DNA is packaged as nucleosomes around histone octamers, transcription factors have limited access to the target genes \((188)\). Chromatin remodelling factors moderate chromatin accessibility to activate or repress genes through DNA methylation, post-translational histone modifications, or ATP-dependent translocation of nucleosomes \((189-192)\). The switch/sucrose non-fermentable (SWI/SNF) complexes constitute one family of factors that mediate nucleosome shifting on chromatin in an ATP-dependent manner \((193)\).

The SWI/SNF complexes belong to a family of chromatin remodelling complexes whose function is highly conserved throughout evolution \((193, 194)\). In mammals, these complexes are commonly referred to as brahma-associated factor (BAF) complexes because brahma \((\text{BRM/SMARCA2})\) or its analogue, brahma-related gene 1 \((\text{BRG1/SMARCA4})\), are the predominant active ATPase enzymes found in mammalian SWI/SNF complexes.
ATPase enzymes associate with nucleosomes approximately 40 bp into the DNA that is wrapped around the histone octamer and then drive the DNA out from the nucleosome (194, 195). Once uncoiled from the nucleosome, the open chromatin is accessible to transcriptional machinery including RNA Polymerase II (192). A combination of the histone modification states on a given nucleosome and the selectivity of the other non-ATPase subunits determine the nucleosomes that the ATPase will associate with and displace (195).

Although similar, the functions of BRM and BRG1 are not completely redundant. *Brg1* knockout mice indicate that BRG1 is essential for early embryonic development because they die sometime during the periimplantation stage (E3.0-6.5) as a result of the mutation (196). *Brm*, however, is dispensable during development given that BRM knockout mice live to term and only display increased body mass (197). These ATPase subunits are the key enzymatic components, however BAF complexes also require additional non-ATPase subunits for proper function.

In total, the BAF complex is composed of 10-12 BAF subunits and each non-ATPase subunit has an associated number, which is defined by its molecular mass (193). Variations of these subunits in the complex enable biological specificity of the BAF complex through interactions with an assortment of transcription factors in multiple developmental lineages (193). During skeletal muscle specification, BRG1 is recruited by myogenin and MEF2D to the regulatory sequences of the skeletal myogenic genes, *MCK* and *Desmin*, and promotes terminal differentiation of skeletal myocytes (198). Similar mechanisms involving cardiac progenitor SWI/SNF complexes have been proposed to regulate cardiac progenitor differentiation as well (199).
Many conditional mutant studies outline the importance of BRG1 during cardiomyogenesis. A conditional mutation of \textit{Brg1} in cardiac progenitor cells with \textit{Nkx2.5-Cre;Brg1f/f} mice predominantly results in irregular ventricle morphology and embryonic lethality by E10.5 \cite{200}. Although some pups have been seen to develop to term, these pups still display severe ventricle deformities \cite{200}. Results from another study have shown, through conditional mutation of \textit{Brg1} in the heart myocardium using \textit{Sm22a-Cre}, that BRG1 regulates hypertrophy and \textit{Myhc6} and \textit{Myhc7} expression \cite{201}. This mutation results in a much thinner myocardium than normally observed on E10.5, no interventricular septation, and eventual embryonic lethality by E11.5 \cite{201}. Furthermore, when \textit{Brg1} is conditionally knocked out of the endocardium with \textit{Tie2-Cre}, it leads to derepression of \textit{Adams1}, which results in inefficient trabeculation. \cite{202}. Therefore, \textit{Brg1} expression in the mammalian adult heart is important during many stages of cardiomyogenesis.

Given that SWI/SNF-dependent chromatin remodelling requires a complex of subunits and that their combination regulates specificity in other lineages \cite{193}, it is not surprising that a number of BAF subunits are also essential for proper heart formation. For instance, knockdown of \textit{Baf60c} expression by RNA interference results in abnormal cardiac formation through reduced expansion of the SHF and inefficient outflow tract remodelling \cite{42}. After this observation, it was determined that BAF60C interacts with cardiac progenitor transcription factors, GATA-4, NKX2-5, and TBX5 in a dose-dependent manner to regulate cardiac genes \cite{42}. Furthermore, when ectopically expressed with GATA-4 and TBX5, BAF60C prepares target loci for GATA-4 binding and supports differentiation of non-cardiac mesoderm cells into cardiomyocytes \cite{40}.
BAF180, also known as polybromo, is another subunit expressed in the epicardium during cardiogenesis and is associated with heart chamber maturation (203). It belongs to a subset of mouse SWI/SNF complexes suitably termed the polybromo-containing BAF (PBAF) complexes. These complexes are important for proper heart development but, unlike other BAFs, are non-essential during early gastrulation (193, 203). BAF180 deletion impedes epicardium maturation and coronary development (204).

Recent studies have shown that BAF250A is a major regulatory subunit for cardiac progenitor cell proliferation and differentiation (199). Baf250a knockout mice are embryonic lethal by E6.5 and lack a mesoderm layer (205). Additionally, when the ES cells from this line are grown in culture, they are less pluripotent and differentiate less into mesoderm-derived cells, including cardiomyocytes. Conditional knockout of Baf250a in the SHF, using Mef2c-Cre; Rosa-YFP+/-; Baf250a f/f embryos, further demonstrates the regulatory role of Baf250a during cardiac progenitor cell differentiation, in vivo and in vitro (199). Consistent with the expected SHF patterning, Baf250a−/− hearts have normal left ventricle growth, but have increased compact myocardium and minimal trabeculae development in the right ventricle. They also do not undergo ventricle septation (199). RNA analysis of the SHF cells in E9.5 conditional Baf250a−/− mice show that Nkx2-5 and Mef2c are significantly downregulated compared to wild-type (WT) cells, while Gata-4 and Isl1 are not significantly different (199). Researchers further investigated these observations on a molecular level with day 6 differentiated Baf250a−/− ES cell-derived cardiac progenitor cells and determined by chromatin immunoprecipitation with an anti-BRG1 antibody (BRG1-ChIP) that less BRG1 associates with the Mef2c and Nkx2-5 promoter regions than in similar WT cells (199). Furthermore, DNase I hypersensitivity assays showed that the Nkx2-5 and
Mef2c promoters in these day 6 cultures are more resistant to DNase treatment when Baf250a is knocked out, suggesting that BAF20A is needed for enabling Nkx2-5 and Mef2c promoter accessibility. Together, these results suggest that BAF250A recruits BRG1 and its chromatin remodelling functions to the Nkx2-5 and Mef2c promoters to regulate their expression in the SHF.

1.10 Rationale

Cell-based therapies using hES cell-derived cardiomyocytes are an attractive alternative to heart transplantation, however further research is required to refine the ideal population of cardiomyocytes or cardiac progenitors needed for efficient remuscularization of infarcted hearts. Thus, additional mechanisms that regulate cardiomyogenesis in vitro should be investigated.

Considering the significant roles of HH signalling and its primary transducer, GLI2, during cardiomyogenesis in vivo and its ability to induce cardiomyogenesis in P19 EC cells in vitro, HH signalling likely enhances cardiomyogenesis in mES cells.

To further elucidate this enhancement, the mechanisms regulating it must also be investigated. As previously mentioned, embryos deficient for certain BAF subunits share similar heart tube looping and outflow tract deformities as embryos that are deficient for HH signalling members. Given this and the observations that BRG1 can immunoprecipitate with GLI2 protein in mouse embryonic fibroblast (MEF) cells and can associate with GLI target genes (206), HH signalling may recruit BRG1 to GLI target cardiac genes to mediate enhanced cardiomyogenesis in vitro.
1.11 Hypothesis

HH signalling enhances cardiomyogenesis in mES cells through its primary transducer GLI2 and mediates cardiomyogenesis in vitro through GLI2’s recruitment of BRG1 to GLI target cardiac genes.

1.12 Objectives

To test these hypotheses the following aims were established: 1) compare the expression levels of cardiac progenitor and cardiomyocyte genes during differentiation of mES cells that overexpress GLI2 to those in control mES cells; 2) determine if GLI2 can interact with BRG1 in mES cells; and 3) determine if HH signalling regulates BRG1 association with a GLI target cardiac gene in P19 EC cells.
2 Materials and Methods

2.1 Expression vectors

A pcDNA3.1+ vector containing Flag-Gli2S662A was graciously provided by Dr. Spiegelman and is described in detail in (157). In brief, the Flag-Gli2S662A sequence consists of a Flag tag at the 5’ end of a full-length mouse Gli2 coding sequence. The Gli2 sequence has a mutation that changes the Ser residue at site 662 in the translated protein to an Ala residue. This point mutation results in a GLI2 protein that is more stable intracellularly, due to lower susceptibility to ubiquitination and degradation (157).

A control pcDNA3.1+ vector, containing the Flag element alone, was constructed from the Flag-Gli2S662A vector by excising the Gli2S662A sequence using the EcoRI restriction enzyme (New England BioLabs). The resultant plasmid was verified by sequencing on a 3730 DNA Analyzer (Applied Biosystems).

2.2 mES cell culture

D3 mES cells (ATCC, #CRL-1934) were cultured at 37°C and 5% CO\textsubscript{2} on tissue culture grade (TC) adherent plates (Corning) in Dulbecco’s Modified Eagle, high glucose medium (DMEM-Hi) (GIBCO) supplemented with 10% fetal bovine serum (FBS) (Wisent Inc.), 1X Minimum Essential Medium (MEM) non-essential amino acids (GIBCO), 50 μM Gentamicin (Invitrogen), 8 mg/L β-Mercaptoethanol (J.T.Baker) and 1000 U/ml leukemia inhibitory factor (LIF) (Millipore) - altogether termed mES cell medium. Cultures were fed every two days and subcultured using Trypsin-EDTA (GIBCO and Bio-Rad, respectively).

To create stable mES[FLAG-GLI2S662A] cells - termed mES[GLI2] cells - 1.8x106 trypsinized mES cells were electroporated with 19.2 μg of linearized FLAG-GLI2S662A
construct using a single pulse of 950 μF and 250 V from a Gene Pulser Xcell Electroporation System (Bio-Rad Laboratories). To create mES[Control] cells - termed mES[Ctrl] cells - 2x10^5 mES cells were transfected with 2 μg of circular FLAG construct using Lipofectamine as per the manufacturer’s protocol (Invitrogen). Transfected colonies were selected by culturing in mES cell medium supplemented with 0.8 mg/ml Geneticin (GIBCO) two days post-transfection. After 8 to 10 days of culturing the Geneticin-resistant colonies in selection medium, clonal populations were picked. Transcription and protein expression levels of FLAG-GLI2^{S662A} were measured by quantitative PCR (qPCR) and western blot analysis, respectively.

mES cells were differentiated as previously described (207). In brief, mES cells were divided into hanging drops at 4x10^4 cells/ml (8x10^3 cells per drop) and allowed to form aggregates for two days in mES cell medium without LIF. The aggregated cells, also referred to as embryoid bodies (EBs), were then pooled and left in suspension for three days on non-TC dishes (Fisher Scientific) coated with 1% w/v agarose (Mandel Scientific) before transferring to TC plates (Corning) or 0.1% gelatin-coated (Fisher Scientific) coverslips (Thermo Scientific, Fisher Scientific) to culture until day 7, 10, or 15 for the analysis of cardiomyogenesis, neurogenesis, or skeletal myogenesis, respectively. Medium was changed every two days.

2.3 P19 EC cell culture

Parental P19 EC cells (ATCC, #CRL-1825) or P19 EC cells transfected with pcDNA3-GLI2 or an empty vector control, termed P19[GLI2] and P19[Ctrl], respectively, were previously described in (208) and (73). These cells were cultured and differentiated as
per (209). Briefly, cultures were maintained at 37°C and 5% CO2 in MEM Alpha-Medium (GIBCO) supplemented with 10% FBS (Wisent Inc.) - together termed P19 medium. For P19[GLI2] and P19[Ctrl] cell lines, puromycin (Sigma-Aldrich) was added as a selection agent at 2 g/ml.

P19 EC cell differentiation was initiated by plating 5x10⁴ cells/ml in P19 EC cell medium supplemented with 1% v/v DMSO (Sigma-Aldrich) on non-TC dishes (Fisher Scientific) pre-coated with 1% w/v Agarose (Mandel Scientific). After 4 days, the newly aggregated EBs were transferred to TC plates or 0.1% gelatin-coated (Fisher Scientific) coverslips (Thermo Scientific, Fisher Scientific) without DMSO for an additional 2 days of the 6-day protocol. Throughout the differentiation process the EB’s were fed fresh medium with or without DMSO at least every two days.

To inhibit HH signalling in P19 EC cells, differentiating P19 EC cultures were treated with 5 µM KAAD-cyclopamine (Toronto Research Chemicals), as previously described (90), or with the MeOH (Fisher Scientific) vehicle alone, every second day throughout the entire 6-day protocol.

2.4 Immunoblot analysis

Total protein from differentiating mES[GLI2] and mES[Ctrl] cells was collected on days 2, 3, 4, and 5 of differentiation from a minimum of 2x10⁵ mES[GLI2] or mES[Ctrl] cells using radioimmunoprecipitation assay (RIPA) buffer (recipe in Appendix B). The lysate was clarified by centrifugation at 14,000 g for 10 min.

To analyze the presence of FLAG-GLI2S662A in the stable cell lines, 300 µg of total protein extract was subjected to immunoprecipitation with 20 µl of FLAG-beads (FLAG-IP),
as per Sigma-Aldrich’s protocol. Bound proteins were eluted from the beads by boiling in sample buffer for 10 min.

The resulting eluate and the original input samples were separated using a 4-12% denaturing polyacrylamide gel (NuPAGE, Invitrogen) with MOPS running buffer according to the manufacturer’s protocol (Invitrogen). The resolved proteins were then transferred to a polyvinylidene fluoride (PVDF) membrane (Bio-Rad), blocked using non-fat dry milk (Carnation) reconstituted with Tris-buffered saline (TBS), and incubated with GLI2 (210) or alpha-tubulin (DM1A, Sigma-Aldrich) specific antibodies. The signal was detected using horseradish peroxidase (HRP)-conjugated secondary anti-mouse (Cell Signalling) or anti-rabbit (Santa Cruz) antibodies, followed by a chemiluminescence reaction using Pierce ECL substrate (Fisher Scientific).

Densitometry was performed on the GLI2-specific bands with the ImageJ program (National Institutes of Health, USA) (211). The densities of the GLI2 protein in the FLAG-IP samples were presented as a percentage of the highest band density. The densities of the GLI2 protein in the total protein samples were normalized to the loading control, α-tubulin, before presenting them as a percentage of the highest band density.

2.5 Quantitative PCR (qPCR) analysis

For each time-point during mES cell differentiation, a minimum of 1x10^5 mES cells were collected for total RNA extraction using an RNeasy Micro Kit (Qiagen). Total RNA from P19 EC cells was collected from at least 5x10^5 cells using an E.Z.N.A. Total RNA Kit (OMEGA Bio-tek). All purified extracts were reverse transcribed into cDNA using at least 500 ng of starting material and a QuantiTect Reverse Transcription Kit as per the
manufacturer’s protocol (Qiagen). A negative control (no RT) was prepared alongside each experiment for every cell line to control against genomic DNA contamination. For each qPCR reaction, 1/40th of the resultant cDNA reaction product, a final concentration of 200 nM transcript-specific primers, and either a GoTaq qPCR Master Mix (Promega) or a KAPA SYBR® FAST qPCR kit (KAPA Biosystems) were used to detect transcripts of interest in a given sample with an Eppendorf realplex² Mastercycler. The primer sequences are listed in Table 1.

Threshold amplification cycles (Ct) values were determined for each sample, and normalized to the β-actin control (in parallel reactions) using the $2^{\Delta\Delta Ct}$ method (212). The relative fold changes from each biological replicate were calculated as a percentage of the highest transcriptional expression for each respective gene (percent maximum) and presented as an average from three or more independent biological replicates, as described in (73, 99, 213). All error bars represent ± standard error of the mean (SEM). All statistical analyses were done using Student’s T-tests.

2.6 Immunofluorescence

Day 7 differentiated mES cells were fixed in -20°C MeOH (Fisher), rehydrated, and washed in Stockholm’s phosphate buffered saline (sPBS) (recipe in Appendix B). Pan-MyHC expression was detected by incubating monoclonal MF20 antibody supernatant (214) 1:1 with sPBS overnight at 4°C. After washing 3 times with sPBS, samples were incubated with Cy3-conjugated goat anti-mouse IgG (Jackson Immuno Research) 1:100 in sPBS for 1 hour at room temperature. Coverslips were mounted in 50 parts sPBS, 50 parts glycerol (Fisher), and 1 part Hoechst 33258 dye for staining nuclei. Indirect immunofluorescence of
<table>
<thead>
<tr>
<th>Target</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actin</td>
<td>AAATCGTGCGTGACATCAA</td>
<td>AAGGAAGGCTGGAAAAAGAGC</td>
</tr>
<tr>
<td>Ascl1</td>
<td>ACTTGAACCTCTATGGCGGGTT</td>
<td>CCAGTTGGTAAAGTCCAGCAG</td>
</tr>
<tr>
<td>Brachyury</td>
<td>CTGGACCTCTGTGACGGGCTG</td>
<td>TGACTTTTGCTGAAAGACACAGG</td>
</tr>
<tr>
<td>Brg1</td>
<td>CAAAGACAAGCGATATCTAGGCA</td>
<td>CACGTAAGTGTTGTTAAGGACC</td>
</tr>
<tr>
<td>Gata-4</td>
<td>AAAACGGGAAGCCGAAGAAGCT</td>
<td>TGCTAGTGGCGATTGCCTGGAG</td>
</tr>
<tr>
<td>Gli1</td>
<td>CCAAGCCCACTTATGTGCAAGG</td>
<td>TCTCAAAAGGGCGCTACTGTA</td>
</tr>
<tr>
<td>Gli2</td>
<td>CAACGCCTACTCTCCAGAC</td>
<td>GAGCCTATGATGTACCTGGAG</td>
</tr>
<tr>
<td>Gli2 S662A</td>
<td>GGACTACAAGGAGGGCCATGGAG</td>
<td>TGGTGTTACGGTCTCTAGGA</td>
</tr>
<tr>
<td>Mef2c</td>
<td>TCTGTCTGGCTTCAACACTG</td>
<td>TCTCAAAAGGGCGCTACTGTA</td>
</tr>
<tr>
<td>Mesp1</td>
<td>CATCGTTCTGTACGCAAGA</td>
<td>TCTAGAAGAGGGCCACAGCTG</td>
</tr>
<tr>
<td>Nkx2-5</td>
<td>AAGCAACAGCGTACTGTCG</td>
<td>TCTGAGGTGGTCCTGCACAGTT</td>
</tr>
<tr>
<td>Pax3</td>
<td>TTTACACCTCAGTAATGGGACT</td>
<td>GAACGGTCAAAGGCTTACTGGTT</td>
</tr>
<tr>
<td>Ptch1</td>
<td>AAAGAAGCTGGCGCAAGTATTGT</td>
<td>CTTCACCTATCTCTGACGGGT</td>
</tr>
<tr>
<td>Tbx5</td>
<td>CTTCGGGAGCAGTGATG</td>
<td>TGGGATGAGGTGGAGGAGG</td>
</tr>
</tbody>
</table>
MyHC was visualized using a Leica DMI6000B inverted fluorescent microscope (Leica Microsystems GmbH, Germany) and captured with a Hamamatsu Orca AG camera (Hamamatsu Photonics, Germany). Pictures were processed with the Volocity 4.3.2 software (Perkin Elmer, Canada). Cells were counted based on the number of nuclei and identified as MyHC$^{+ve}$ or MyHC$^{-ve}$ using the Volocity imaging program with automated cell-identification parameters.

2.7 Mass spectrometric analysis

FLAG-IPs were performed on 5 mg of nuclear protein extracts from day 3 differentiating mES[GLI2] and mES[Ctrl] cells to identify candidate proteins that may form a complex with GLI2. A 10% fraction of the eluted proteins was retained and subjected to immunoblot analysis using anti-GLI2 or anti-SNF2β/BRG1 (07-478, Millipore) antibodies, as outlined above. The remaining 90% fraction of the eluted proteins was resolved on a 4-12% denaturing polyacrylamide gel (NuPAGE, Invitrogen) and silver-stained. The staining identified a unique band profile in the 170-250 kDa range of the mES[GLI2] sample compared to the mES[Ctrl] sample (data not shown). Resolved proteins from both cell lines, within the 170-250 kDa range, were extracted from the gel using in-gel digestion, as per (215). The extracted samples were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a Thermo LTQ Orbitrap XL hybrid mass spectrometer with a nanospray ion source. The MS/MS ion spectra were matched against the SwissProt database (version 2013_05) using the MASCOT software (Matrix Science, UK) with a peptide mass tolerance of 10 ppm and a fragment mass tolerance of 0.6 Da (216).
2.8 Bioinformatics analysis

BRG1 genome-wide ChIP-sequencing peaks identified in undifferentiated mES cells (217) were screened for genes that contained conserved GLI consensus binding motifs, which were identified with the Multiple Sequence Local Alignment and Visualization tool (Mulan) as described in (218). Candidate genes were categorized by gene ontogolgy (GO) analysis using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) bioinformatics system, as described in (219, 220).

2.9 Chromatin immunoprecipitation (ChIP) assays

ChIP assays were performed as previously described (221) using 20-25 µg of chromatin from day 4 differentiating P19[GLI2] or P19[Ctrl] cells and anti-SNF2β/BRG1 (07-478, Millipore) antibodies or normal rabbit serum (Calbiochem) at a final concentration of 1:500.

Briefly, EBs from 10 plates (15 cm) were fixed with 1% formaldehyde (BP531-500, Fisher Scientific) for 60 minutes at room temperature. The cross-linked cells were passed through a Dounce homogenizer (Bellco Glass Inc., USA) with a tight pestle for 2 sets of 30 reps and lysed with three sequential lysis buffers as described in (221). Isolated nuclei were then sonicated for 20 sets of 15 seconds at setting #10 on a Sonic Dismembrator (Model F60, Fisher Scientific) to shear chromatin to ~1,000-10,000 bp.

All immunoprecipitation (IP) steps were performed at 4°C. In preparation for each IP, 25 µg of chromatin was first pre-cleared for 2 hours with 30 µl of BSA-blocked rec-Protein G-Sepharose 4B Conjugated beads (Invitrogen). A 10% fraction was kept aside at -20°C as an input sample before incubating the remainder overnight with either antibody
listed above. The chromatin-antibody complexes were captured with 30 µl of blocked protein G beads for 2 hours. After washing the beads as described in (221), the chromatin was eluted in TE buffer containing 1% SDS and was reverse crosslinked overnight at 65°C. Contaminating RNA and proteins were removed by treatment with 20 µg of RNase A (Sigma-Aldrich) for 1 hour at 37°C and 40 µg of Proteinase K (Roche) for 2 hours at 65°C, per sample, respectively. DNA was purified using a QIAquick PCR Purification Kit (QIAGEN). To detect eluted DNA fragments, qPCR analysis was performed using 1/40th of each eluted sample, per reaction, with sequence-specific primers listed in Table 2, as mentioned above.

Chromatin from KAAD-cyclopamine- or MeOH-treated P19 EC cells was prepared as above but under different fixing and sonication conditions. Cells from 4 plates of day 4 P19 EC EBs - treated with KAAD-cyclopamine or MeOH - were fixed with 1.5 mM Ethylene glycol bis[succinimidylsuccinate] (EGS) (Thermo Scientific) for 30 min alone, then with 1% formaldehyde (Sigma-Aldrich) for an additional 30 min. Cells were passed through the Dounce homogenizer for only 1 set of 30 reps and sonicated in 1 mL, 12x12 AFA tubes (Covaris) for 30 min with an S220 Focused-ultrasonicator (Covaris) as per manufacturer’s recommended operating conditions for a 200-700 bp fragment range. The IP was performed with 20 µg of chromatin. The qPCR analysis was performed, as above, but with 1/50th of each eluted sample, per reaction.
<table>
<thead>
<tr>
<th>Target</th>
<th>Location (mm10)</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actin</td>
<td>Chr 5: 142,906,954 - 142,907,148</td>
<td>GATGCTGACCCTCATCCACT</td>
<td>ATGAAGAGTTTTGCGATGG</td>
</tr>
<tr>
<td>Gene Desert</td>
<td>Chr 15: 70,644,478 - 70,644,564</td>
<td>TCCTCCCCATCTGTGTCATC</td>
<td>GGATCCATCACCATCAATAAC</td>
</tr>
<tr>
<td>Mef2c site A</td>
<td>Chr 13: 83,417,148 - 83,417,378</td>
<td>TGAAAAAGGAAATATCCCACTTAGA</td>
<td>TTGCATGGGTTCACACCTAA</td>
</tr>
<tr>
<td>Mef2c site B</td>
<td>Chr 13: 83,450,400 - 83,450,695</td>
<td>AGTTGCTGAGCCCTTTCTTC</td>
<td>TTTTCGGCAATGATTTTC</td>
</tr>
<tr>
<td>Mef2c site C</td>
<td>Chr 13: 83,517,957 - 83,518,157</td>
<td>CTTCGCTGGAGGAGCTTTGG</td>
<td>TCTCCAGTTTTCGGAAGAA</td>
</tr>
<tr>
<td>Mef2c site D</td>
<td>Chr 13: 83,524,812 - 83,524,937</td>
<td>ACACACGACACTTCTGTCCT</td>
<td>GACCCACACAGAACCTTCAAA</td>
</tr>
<tr>
<td>Mef2c site E</td>
<td>Chr 13: 83,595,419 - 83,595,594</td>
<td>TTCCCCATTTGGAACCATTACC</td>
<td>ACCCACGCACCTGAGACTTTC</td>
</tr>
<tr>
<td>Mef2c site F</td>
<td>Chr 13: 83,633,148 - 83,633,305</td>
<td>AACCCCAATCTTCTGCACT</td>
<td>AAGCTTTGCTAGAGCTTGA</td>
</tr>
<tr>
<td>Mef2c site G</td>
<td>Chr 13: 83,660,831 - 83,661,075</td>
<td>GAGCCCCCTCTCTAATGTCCT</td>
<td>TGTGGGCAAGTGTCTTTTCTG</td>
</tr>
<tr>
<td>Mef2c site H</td>
<td>Chr 13: 83,664,180 - 83,664,382</td>
<td>AAGTGACATTTGGGGTGCTCT</td>
<td>CGACCGACCTGCTTTAATTG</td>
</tr>
<tr>
<td>Mef2c site I</td>
<td>Chr 13: 83,739,543 - 83,739,715</td>
<td>CCTAATTATTTCAGTTTGGGATGC</td>
<td>CCTCCCTCTTTGTCAAAATGCT</td>
</tr>
</tbody>
</table>

*Chr: Chromosome
3 Results

3.1 Overexpression of FLAG-GLI2S662A results in increased levels of GLI2 in mES cells

mES cells were stably transfected with a Flag-Gli2S662A vector to investigate the role of GLI2 during mES cell cardiomyogenesis. The pcDNA3.1 vector that contained the Flag-Gli2S662A sequence also contained a neomycin resistance gene for use as a selectable marker when treated with aminoglycoside antibiotics, such as Geneticin. Flag-Gli2S662A transcript levels were used as an initial screen for efficient exogenous Gli2 expression within each line. The clones that survived Geneticin treatment and expressed the highest Flag-Gli2S662A transcript levels, as determined by qPCR were subjected to western blot and qPCR analysis to assess the level of total GLI2 protein and total Gli2 transcripts during differentiation, respectively. The cell line with the highest and most stable GLI2 expression during differentiation, from here on referred to as the mES[GLI2] cell line, was used for the following studies and compared against a control mES cell line transfected with only a Flag peptide tag-containing vector, from here on referred to as the mES[Ctrl] cell line.

mES[GLI2] and mES[Ctrl] cell lysates were tested for exogenous FLAG-GLI2S662A protein by immunoprecipitation with anti-FLAG beads (FLAG-IP) and subsequent western blot analysis with GLI2 antibodies (Figure 4A, first row of blots). Only the mES[GLI2] cell line contained exogenous GLI2. The size of the upper band in the total protein blots (Figure 4A, second row of blots), ~180kDa, is consistent with other studies (73, 222) and equivalent to the single GLI2 band that was pulled down by FLAG-IP. The non-specific binding seen below the GLI2 band is typical of this antibody (73, 210, 222). Previous analysis of samples
A

Day: 2 3 4 5

<table>
<thead>
<tr>
<th></th>
<th>mES[Ctl]</th>
<th>mES[GLI2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAG-IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>mES[Ctl]</th>
<th>mES[GLI2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>66</td>
</tr>
</tbody>
</table>

B

- **Flag-Gli2^{S662A}**
 - n=3

- **Total Gli2**
 - n=3/4

Relative mRNA expression

Day: 0 2 4 6

- **mES[Ctl]**
- **mES[GLI2]**

Total protein

GLI2

α-tubulin

kDa

0 50 100 150 250
Figure 4. Overexpression of GLI2 protein in mES[GLI2] cultures was maintained during differentiation. (A) Total protein extracts from corresponding differentiating cells were analyzed by immunoblot with GLI2 antibodies, with or without prior FLAG-IP. α-tubulin was used as a loading control. (*) Non-specific binding of GLI2 antibody (73, 210, 222). Band densities were quantified by densitometry with ImageJ, normalized to α-tubulin and presented as a percentage of the highest expression for each set of samples. (B) Transcription levels of the indicated genes in differentiating cells were quantified using qPCR. Expression levels were normalized to β-actin, calibrated to day 0 mES[Ctrl] culture expression levels, and presented as a percentage of the highest expression level recorded, per gene. Error bars represent +/-SEM. The number of biological replicates analyzed (n) is indicated beside each graph. (†) n=4 for total GLI2 days 0 and 4. One-tailed Student’s T-tests were used for statistical analyses. Grey lines represent paired T-tests; black lines represent unpaired T-tests; (*) p <0.05.
from Gli2^{−/−} and Gli2^{+/+} mice showed that the upper band is specific to GLI2 and the lower band is non-specific, as only the upper band is absent in the Gli2^{−/−} sample (73).

Densitometry was performed on the GLI2-specific bands in the total protein samples to compare them quantitatively (Figure 4A, values below the second row of blots). In the mES[Ctrl] cell line, endogenous GLI2 protein was detectable on days 2 and 3 of differentiation. In the mES[GLI2] cell line, endogenous GLI2 protein levels could not be distinguished from the exogenous GLI2 protein with available antibodies. Nevertheless, it was apparent that the combined endogenous and exogenous GLI2 protein in the mES[GLI2] cultures was ∼8-fold and ∼13-fold higher than that of the endogenous GLI2 in the mES[Ctrl] cultures on days 2 and 3 of differentiation, respectively (Figure 4A, second row of blots). Also, total GLI2 protein was apparent in the mES[GLI2] cell line on days 4 and 5, when no GLI2 protein was detectable in the mES[Ctrl] cell line.

In addition to the total GLI2 levels observed during differentiation, both mES[Ctrl] and mES[GLI2] cell lines contained similarly higher levels of total GLI2 protein in an undifferentiated state (data not shown). The lower level of GLI2 protein upon differentiation in these cell lines has been observed in previous studies (73). Overall, these results show that the GLI2 protein was overexpressed in mES[GLI2] cells during early stages of mES cell differentiation compared to the control.

Comparable results were also observed at the transcriptional level. Flag-Gli2^{S662A} transcripts were only expressed in mES[GLI2] cells and were highly expressed in the mES[GLI2] undifferentiated cells (Figure 4B). Differentiation of the mES[GLI2] cells resulted in a 93.4±0.7% reduction in expression. This trend of exogenous Gli2 levels
mirrored that of total Gli2 transcript levels in both mES[Ctrl] and mES[GLI2] cultures during differentiation, suggesting that these two pools of transcripts could be repressed by a common post-transcriptional regulatory mechanism (Figure 4B). This downward trend of transcript levels also correlates with trends seen in other published work on differentiating mES cells (73).

Total Gli2 transcript levels were significantly higher in the mES[GLI2] undifferentiated cultures compared to the mES[Ctrl] cultures as a result of stably transfecting the exogenous Flag-Gli2S662A gene (Figure 4B). Nevertheless, this enhancement was not observed during differentiation. Considering that the pool of exogenous Gli2 transcripts increased the total level of Gli2 transcripts by 1.2±0.1 fold in undifferentiated cells, in a variable biological setting this relative difference may be less distinguishable when the expression levels are lower in differentiating cells.

For this reason, the stability of the exogenous GLI2S662A protein is a key element in this model. Even though the exogenous Gli2 transcripts were lower in their respective differentiating cultures, the exogenous GLI2S662A protein was relatively stable during differentiation (Figure 4A). A GLI2wt overexpression model would have likely been unable to significantly increase GLI2 during differentiation due to the regulatory mechanisms that appear to be at play at least at the post-transcriptional level. This disconnect between GLI2 protein and Gli2 transcripts is common to prostate cancer cells, where GLI2 protein is upregulated despite relatively stable Gli2 mRNA compared to normal prostate cells (157). Bhatia et al. were able to model this effect in 293T cells with the same GLI2S662A employed in the current study (157). The downstream deregulation of β-TrCP-mediated GLI2-ubiquitination through GLI2S662A provides the necessary modulation for overexpressing GLI2
in mES cells during differentiation, in light of unknown transcriptional- or translational-repressive mechanisms.

3.2 Overexpression of GLI2 results in accelerated cardiac progenitor and cardiomyocyte specific gene expression

To assess the efficacy of the GLI2 overexpression model, we monitored the expression of the GLI2 direct target gene, *Ptch1* (154). Overexpression of GLI2 resulted in a significant 2.9±0.7 fold increase of *Ptch1* transcripts in undifferentiated cells and a significant 1.4±0.2 fold increase in day 2 differentiating cells (Figure 5, panel *Ptch1*). Therefore, this implies that the overexpression of GLI2 in this mES cell system can increase GLI2 target gene expression.

During differentiation, both the mES[Ctrl] and the mES[GLI2] cell lines showed a similar transition through the mesoderm stage of differentiation, based on the levels of *Brachyury* transcripts by day 4 (Figure 5, panel *Brachyury*). On the same day, *Mesp1* levels were significantly higher in the mES[GLI2] cultures than in the control cultures, but neither of the levels in either culture were significantly higher than their respective day 0 basal levels (Figure 5, panel *Mesp1*). The *Mesp1* transcripts were only more highly expressed, as compared to day 0 values, in day 6 differentiating cultures, at which point there was no significant difference between their expressions in either line. Based on this analysis, the mesoderm and precardiac mesoderm stages of cardiomyogenesis during mES cell differentiation did not appear to be significantly regulated by GLI2 overexpression. These results are supported by previous reports, which showed that modulation of HH signalling in mouse P19 EC cells do not significantly regulate mesoderm induction (73, 89, 90).
Relative mRNA expression

- **Ptch1**
 - n=3
- **Brachyury**
 - n=4
- **Nkx2-5**
 - n=3
- **Tbx5**
 - n=3
- **Myhc6**
 - n=4
- **Mesp1**
 - n=4
- **Mef2c**
 - n=3
- **Gata-4**
 - n=4
- **Myhc7**
 - n=4

GLI2 target gene

Mesoderm / Cardiac mesoderm markers

Cardiac progenitor markers

Cardiomyocyte markers

- **mES[Ctl]**
- **mES[GLI2]**

Day: 0, 2, 4, 6
Figure 5. Overexpression of GLI2 enhances transcript expression of a GLI2 target gene and of cardiomyogenesis-specific genes.

RNA isolated from differentiating mES[GLI2] and mES[Ctrl] cultures on the days indicated was analyzed using qPCR for the expression of indicated genes known to be active in HH-responsive cells, mesoderm/cardiac mesoderm cells, cardiac progenitors, and cardiomyocytes. Expression levels were normalized to β-actin, calibrated to day 0 mES[Ctrl] culture expression levels, and presented as a percentage of the highest expression level recorded, per gene. Error bars represent +/- SEM. The number of biological replicates analyzed (n) is indicated on each graph. One-tailed Student’s T-tests were used for statistical analyses. Grey lines represent paired T-tests; black lines represent unpaired T-tests; (*) p <0.05.
The cardiac progenitor transcripts *Nkx2-5*, *Mef2c*, and *Tbx5* were expressed by day 6 in the mES[GLI2] cultures, when these genes are usually expressed during mES cell
differentiation (66, 70, 73), and were also significantly higher than the mES[Ctrl] culture
levels (Figure 5; panels *Nkx2-5*, *Mef2c*, and *Tbx5*). Since mES[Ctrl] cultures did not express
these transcripts significantly over readings in the undifferentiated cultures, a new set of
three independent differentiated samples was analyzed for expression of these factors once
again on day 6 and additionally on day 7, to ensure that the mES[Ctrl] cell line could indeed
express significant levels of cardiac progenitor genes compared to day 0 basal levels (Figure
6). Previous studies have shown that *Nkx2-5*, *Mef2c*, and other cardiac progenitor genes have
yet to meet their maximum expression level by day 6 (66). Therefore, potentially higher
Nkx2-5 and *Mef2c* expression levels on day 7 were expected to provide more consistent
readings of *Nkx2-5* and *Mef2c* expression levels in the mES[Ctrl] replicates.

After differentiating a new set of samples we observed that, like in the previous set of
differentiated samples, *Nkx2-5* and *Mef2c* transcript levels were higher on day 6 in the
mES[GLI2] cell line than the mES[Ctrl] cell line (Figure 6). However, likely due to higher
Nkx2-5 expression in the mES[Ctrl] cell line relative to that in the mES[GLI2] cell line on
day 6 of differentiation, the difference in the level of the transcripts between the two lines on
day 6 was not significant in these newly differentiated samples (Figure 6, panel *Nkx2-5* n=3).
Notably, averaging the day 6 expression levels from all six differentiated samples indicated
that, in a larger sample size, *Nkx2-5* transcript levels were significantly higher in the
mES[GLI2] cultures than the mES[Ctrl] cultures on day 6 of differentiation (Figure 6, panel
Nkx2-5 n=6). Alternatively, the levels of *Mef2c* transcripts on day 6 in the mES[GLI2] cell
line were still significantly higher in the new set of differentiated samples, even with
The graph shows the relative mRNA expression of Nkx2-5 and Mef2c over time in mES[Ctrl] and mES[GLI2] conditions. The data is presented for three replicates (n=3) for Nkx2-5 and six replicates (n=6) for Mef2c.

- **Nkx2-5**
 - Day 0: Low expression in both conditions.
 - Day 6: Increased expression in mES[GLI2] compared to mES[Ctrl].
 - Day 7: Consistent increase in mES[GLI2] with a significant difference indicated by an asterisk.

- **Mef2c**
 - Day 0: Low expression in both conditions.
 - Day 6: Increased expression in mES[GLI2] compared to mES[Ctrl], with a significant difference indicated by an asterisk.
 - Day 7: Consistent increase in mES[GLI2] with a significant difference indicated by an asterisk.
Figure 6. Cardiac progenitor transcript levels in mES[Ctrl] cultures reach the level of those in mES[GLI2] cultures by day 7 of a 7-day differentiation protocol.
RNA was isolated from an additional set of differentiating mES[GLI2] and mES[Ctrl] cultures on the days indicated and analyzed using qPCR for the expression of indicated genes. Expression levels were normalized to β-actin, calibrated to day 0 mES[Ctrl] culture expression levels, and presented as a percentage of the highest expression level recorded, per gene. Error bars represent +/- SEM. The number of biological replicates analyzed (n) is indicated on each graph. One-tailed Student’s T-tests were used for statistical analyses. Grey lines represent paired T-tests; black lines represent unpaired T-tests; (*) p <0.05.
significant levels of Meff2c transcripts in the mES[Ctrl] cultures over the undifferentiated basal levels (Figure 6, panel Meff2c).

Day 7 Nkx2-5 and Meff2c transcript levels were originally sought during the second set of differentiation experiments in case the respective day 6 mES[Ctrl] culture levels were still not significant over undifferentiated levels. But since the Nkx2-5 and Meff2c transcript levels in the day 6 mES[Ctrl] cultures were in fact significant over the day 0 baseline, a day 7 reading was no longer necessary. Nevertheless, analysis of day 7 Nkx2-5 and Meff2c transcript levels determined that, despite being lower on day 6 in the mES[Ctrl] cell line relative to the mES[GLI2] cell line, these transcript levels in the mES[Ctrl] cell line reached the same level of expression as those in the mES[GLI2] cell line by day 7 (Figure 6). This suggested that rather than continuously enhancing genes that are typical of cardiac progenitor cells, GLI2 overexpression was accelerating the expression levels of at least Nkx2-5 and Meff2c.

Interestingly, overexpression of GLI2 had no visible effect on day 6 Gata-4 transcript levels, as Gata-4 was significantly expressed, compared to day 0, in both lines at comparable levels on this day (Figure 5, panel Gata-4).

Like many of the progenitor cell markers, the expression levels of differentiated cardiomyocyte specific genes, Myh6 and Myh7, were also higher on day 6 in mES[GLI2] cultures than in mES[Ctrl] cultures, which had only begun to express low levels of Myh6 and Myh7 transcripts (Figure 5, panels Myh6 and Myh7). Since there were limited levels of cardiomyocyte-specific genes expressed in the day 6 mES[Ctrl] cultures, this suggested that GLI2 overexpression had also accelerated the expression of cardiomyocyte contractile protein transcripts.
To determine if the acceleration of cardiac progenitor cell and cardiomyocyte specific transcripts led to an overall enhancement of cardiomyocytes in mES[GLI2] cultures, we counted MyHC$^\text{+ve}$ cells in day 7 mES[Crl] and mES[GLI2] cultures. On average, 8.3±2.6% and 12.4±5.9% of the total cells counted were MyHC$^\text{+ve}$ in the mES[Crl] and mES[GLI2] cultures, respectively (Figure 7B). Similar percentages of approximately 5% mES cell-derived cardiomyocytes have been shown before by analysis of MyHC and Mlc2v on day 7 of differentiation (207) as well as MyHC and tropomyosin on day 8 of differentiation, using the hanging drop method (223). Although there was a trend towards an increase in cardiomyocytes in the mES[GLI2] cultures compared to the control, the variability between the samples across three biological replicates (Figure 7B) and another four additional replicates (data not shown) resulted in no significant difference in the percentage of MyHC$^\text{+ve}$ cells on day 7.

Since the upregulation of some cardiac progenitor transcripts was only observed on day 6 in the mES[GLI2] cultures compared to the mES[Crl] cultures and then non-apparent by day 7, it is possible that a similar temporal acceleration of cells expressing MyHC$^\text{+ve}$ cells was occurring only on day 6 and not on day 7, when MyHC$^\text{+ve}$ cells were originally assessed. Immunostaining of MyHC was performed on day 6 to test this hypothesis, however very few cells extended far enough from the EBs on the coverslips to efficiently quantify the MyHC$^\text{+ve}$ cells. Given these limitations, we could only confirm that GLI2 overexpression resulted in an accelerated cardiac progenitor transcriptional profile and an enhanced cardiomyocyte transcriptional profile with no apparent enrichment of MyHC$^\text{+ve}$ cardiomyocytes by day 7 of differentiation.
A

Hoechst MyHC Merged

mES[Ctrl]

mES[GLI2]

B

MyHC^{+ve} cells (% of total cells counted)

mES[Ctrl] mES[GLI2]
Figure 7. Overexpression of GLI2 resulted in a marginal trend towards an increase in MyHC$^{+/ve}$ cells.

(A) MyHC$^{+/ve}$ cells (red) were visualized and (B) counted in corresponding day 7 differentiating cells by indirect immunofluorescence. Hoechst (blue) was used to visualize nuclei. Representative images of the cardiomyocyte-enriched areas on the periphery of an EB are shown. Scale bar represents 100 µm. At least 2,500 nuclei were counted across 20 random fields of view, per biological replicate; n=3. One-tailed, unpaired Student’s T-tests were used for statistical analyses.
3.3 GLI2 does not significantly regulate skeletal myogenesis but may regulate neurogenesis in mES cells

In the absence of leukemia inhibitory factor (LIF), mES cells spontaneously differentiate into cells from the three germ layers (224). Therefore, considering other lineages are developing alongside cells of the cardiomyocyte lineage (68) and that HH signalling regulates many different lineages throughout development (91, 93-96, 100, 101), it is possible that the GLI2 overexpression in the mES[GLI2] cultures was modulating the expression of other genes expressed in other non-cardiomyogenic cell types. As a result of this, the development of other cell types might have been enhanced within the culture at the expense of enhancing cells in the cardiac lineage. In particular, GLI2 and HH signalling have been shown to regulate skeletal myogenesis and neurogenesis in P19 EC cells (99, 208, 222).

The paired box 3 protein (PAX3) is expressed during early embryogenesis (225) and plays a role in both skeletal myogenesis (226, 227) and neurogenesis (228). WT mES cells have been shown to express Pax3 transcripts by day 6 of differentiation (229). Since GLI2 regulates cardiac transcript levels on this day and GLI2 can regulate skeletal myogenesis in P19 EC cells, Pax3 transcripts were also assessed on day 6 (Figure 8, panel Pax3). These results showed that early expression of Pax3 transcripts in mES cells was not significantly affected by GLI2 overexpression, as comparable levels were observed in both the mES[GLI2] and mES[Ctrl] cell lines. In addition, both lines had equivalent levels of MyHC^{+ve} skeletal myocytes by day 15 of differentiation (data not shown), further suggesting that the overexpression of GLI2 did not have a significant effect on skeletal myogenesis in the mES cell system.
Pax3
n=3

Ascl1
n=3

Relative mRNA expression

Day:
0 6

mES[Ctrl] mES[GLI2]

Ascl1
n=3

Relative mRNA expression

Day:
0 6

mES[Ctrl] mES[GLI2]
Figure 8. GLI2 may regulate early neurogenesis during mES cell differentiation. Total RNA was isolated from differentiating mES[GLI2] and mES[Ctrl] cultures on days indicated and analyzed using qPCR for the expression of the skeletal myogenesis and neurogenesis gene Pax3 and neurogenesis marker Ascl1. Expression levels were normalized to β-actin, calibrated to day 0 mES[Ctrl] culture expression levels, and presented as a percentage of the highest expression level recorded, per gene. Error bars represent +/- SEM; n=3. One-tailed Student’s T-tests were used for statistical analyses. Grey lines represent paired T-tests; black lines represent unpaired T-tests; (*) p <0.05.
Previous studies have shown that achaete-scute homolog 1 (ASCL1), a basic helix-loop-helix (bHLH) transcription factor also known as MASH-1, is a major component of successful neural progenitor differentiation, both in vitro and in vivo (230-233). Studies have also determined that the *Ascl1* gene is a downstream target of HH signalling in adult neural progenitor cells (234) and a direct target of GLI2 during early neurogenesis in P19 EC cells (222).

Ascl1 transcripts in the mES[GLI2] cell line were expressed by day 6 (Figure 8, panel *Ascl1*). Meanwhile, no *Ascl1* expression was apparent in the mES[Ctrl] cell line over basal day 0 levels. The two fold increase of *Ascl1* transcripts over basal levels in the mES[GLI2] cells did not amount to an increase in neurons during the first ten days of differentiation as there were no 68kDa neurofilament (NF68/NFL)-positive cells in either culture on day 7 or day 10 (data not shown). Therefore, GLI2 may regulate *Ascl1* in mES cells, but this preliminary data suggests that there are no obvious downstream effects on neurogenesis in the first ten days of mES cell differentiation.

3.4 GLI2 interacts with BRG1 and shares a subset of target genes

Given that GLI2 overexpression regulated several cardiac progenitor transcription factors and cardiac muscle structural proteins, we sought to elucidate the mechanisms behind this enhancement. To identify potential GLI2-interacting proteins, we performed a FLAG-IP on day 3 mES[GLI2] and mES[Ctrl] cell nuclear extracts. Mass spectrometric analysis of the FLAG-IP eluates identified peptides from RNA processing proteins and filament-related proteins that were immunoprecipitated more from the mES[GLI2] nuclear extracts than the mES[Ctrl] extracts (Figure 9A).
Identified Proteins	Swiss-Prot Accession	mES[GLI2]	mES[Ctrl]	Score
Myosin-10 | MYH10_MOUSE | 1741 | 3869 | 2.32E-09
Myosin-9 | MYH9_MOUSE | 1437 | 4814 | 2.56E-09
Probable helicase senataxin | SETX_MOUSE | 1624 | 1222 | 1.77E-05
Pre-mRNA-processing-splicing factor 8 | PRP8_MOUSE | 1333 | 823 | 1.09E-07
U5 small nuclear ribonucleoprotein 200 kDa helicase | U520_MOUSE | 1009 | 822 | 1.30E-07
Transcription activator BRG1 | SMCA4_MOUSE | 259 | 138 | 7.56E-03
Small subunit processome component 20 homolog | UTP20_MOUSE | 214 | 56 | 2.64E-03
Filamin-A | FLNA_MOUSE | 159 | 131 | 2.91E-07
Unconventional myosin-Va | MYO5A_MOUSE | 144 | 208 | 9.75E-09

A

B

FLAG-IP: mES[GLI2] mES[Ctrl]

BRG1

GLI2

C

<table>
<thead>
<tr>
<th>Category</th>
<th>Targets</th>
<th>P-value</th>
<th>Identified Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chordate embryonic development</td>
<td>12</td>
<td>2.32E-09</td>
<td>Dlc1, Smo, Hif1a, Pkd2, Hopx, Smad3, Smad2, Ttn, Tpm1, Ncor2, Myhc10</td>
</tr>
<tr>
<td>Embryonic development</td>
<td>12</td>
<td>2.56E-09</td>
<td>Dlc1, Smo, Hif1a, Pkd2, Hopx, Smad3, Smad2, Ttn, Tpm1, Ncor2, Myhc10</td>
</tr>
<tr>
<td>In utero embryonic development</td>
<td>10</td>
<td>9.75E-09</td>
<td>Hif1a, Pkd2, Hopx, Smad3, Smad2, Ttn, Tpm1, Ncor2, Myhc10, Cited2</td>
</tr>
<tr>
<td>Pattern specification process</td>
<td>9</td>
<td>2.91E-07</td>
<td>Foxh1, Smo, Tbx20, Pkd2, Smad3, Smad2, Ttn, Rbm15, Cited2</td>
</tr>
<tr>
<td>Cardiac muscle tissue development</td>
<td>6</td>
<td>2.36E-07</td>
<td>Tbx2, Rara, Cxadr, Ttn, Tpm1, Myhc10</td>
</tr>
<tr>
<td>Striated muscle tissue development</td>
<td>6</td>
<td>1.27E-05</td>
<td>Tbx2, Rara, Cxadr, Ttn, Tpm1, Myhc10</td>
</tr>
<tr>
<td>Muscle tissue development</td>
<td>6</td>
<td>1.77E-05</td>
<td>Tbx2, Rara, Cxadr, Ttn, Tpm1, Myhc10</td>
</tr>
<tr>
<td>Muscle organ development</td>
<td>6</td>
<td>6.09E-05</td>
<td>Tbx2, Rara, Cxadr, Ttn, Tpm1, Myhc10</td>
</tr>
<tr>
<td>Muscle cell differentiation</td>
<td>5</td>
<td>1.76E-04</td>
<td>Tbx2, Rara, Cxadr, Ttn, Myhc10</td>
</tr>
<tr>
<td>Embryonic organ development</td>
<td>5</td>
<td>2.64E-03</td>
<td>Hif1a, Pkd2, Smad3, Smad2, Cited2</td>
</tr>
<tr>
<td>Striated muscle cell differentiation</td>
<td>4</td>
<td>1.29E-03</td>
<td>Rara, Cxadr, Ttn, Myhc10</td>
</tr>
<tr>
<td>Positive reg of cell differentiation</td>
<td>4</td>
<td>8.63E-03</td>
<td>Smo, Hif1a, Hopx, Smad2</td>
</tr>
<tr>
<td>Positive reg of dev process</td>
<td>4</td>
<td>1.48E-02</td>
<td>Smo, Hif1a, Hopx, Smad2</td>
</tr>
<tr>
<td>Skeletal system development</td>
<td>4</td>
<td>3.13E-02</td>
<td>Smo, Hif1a, Smad3, Smad2</td>
</tr>
<tr>
<td>Cardiac muscle cell differentiation</td>
<td>3</td>
<td>2.08E-03</td>
<td>Rara, Ttn, Myhc10</td>
</tr>
<tr>
<td>Cardiac cell differentiation</td>
<td>3</td>
<td>2.88E-03</td>
<td>Rara, Ttn, Myhc10</td>
</tr>
<tr>
<td>Striated muscle cell development</td>
<td>3</td>
<td>7.56E-03</td>
<td>Cxadr, Ttn, Myhc10</td>
</tr>
<tr>
<td>Muscle cell development</td>
<td>3</td>
<td>9.57E-03</td>
<td>Cxadr, Ttn, Myhc10</td>
</tr>
<tr>
<td>Developmental growth</td>
<td>3</td>
<td>2.44E-02</td>
<td>Smo, Smad3, Smad2</td>
</tr>
</tbody>
</table>
Figure 9. BRG1 immunoprecipitates with GLI2 in day 3 differentiating mES[GLI2] cells.

(A) Mascot scores of proteins (corresponding to range 170-250 kDa) submitted to mass spectrometric analysis, following immunoprecipitation by FLAG-IP from day 3 mES[GLI2] or mES[Ctrl] nuclear extracts. Only proteins with mascot scores >100 are shown. Proteins that have higher mascot scores in the mES[GLI2] sample than the mES[Ctrl] sample are highlighted in grey and have bolded scores. (B) An immunoblot analysis probed with either anti-BRG1 or anti-GLI2 antibodies performed on 10% of the FLAG-IP eluates from (A). Results from a BRG1-band densitometry analysis are shown as a percentage of the highest expression. (C) Selected gene ontology biological processes significantly enriched among genes containing BRG1-associating sites (217) and GLI consensus binding motifs in the UTR, promoter, intron, or coding sequence regions. A total of 38 potential gene targets were analyzed.
Interestingly, BRG1, an active member of the BAF chromatin remodelling complex was also identified and had a higher mascot score in the mES[GLI2] sample (Figure 9A). Sequential western blot analysis of the remaining FLAG-IP samples with anti-BRG1 and anti-GLI2 antibodies confirmed co-immunoprecipitation of BRG1 with FLAG-GLI2S662A in mES[GLI2] cells as the BRG1 band in the mES[GLI2] sample was 2.8-fold over the background band in the mES[Ctrl] sample, based on densitometry analysis (Figure 9B). Like in the mass spectrometric analysis, there was similar background detected in the mES[Ctrl] sample when analyzed by western blot. Despite the background in these experiments, BRG1’s ability to precipitate with GLI2 is supported by experiments in NIH 3T3 cells, where BRG1 was found to interact with HA-tagged GLI2 protein (206).

The observed co-immunoprecipitation of GLI2 and BRG1 during mES cell differentiation led to our hypothesis that GLI2 could recruit BRG1 to regulatory regions of genes to modulate their expression. This hypothesis was supported by a gene ontology (GO) analysis of genes that immunoprecipitated with BRG1 in undifferentiated mES cells (217) and had conserved GLI consensus binding motifs. In total, 38 BRG1-associated, cardiac-related gene targets that contained GLI consensus binding motifs in the UTR, promoter, intron, or coding sequence regions were identified (Figure 9C). The genes identified were significantly related to embryonic development, pattern specification, and skeletal and cardiac muscle tissue development GO biological processes.

Although this analysis included only genes that associated with BRG1 in undifferentiated mES cells (217), given the results and the known roles of BRG1 and GLI2 in heart development (85, 86, 200), we were interested in knowing if GLI2 and BRG1 could co-regulate genes of some key transcription factors implicated in cardiomyogenesis. Mef2c
was recently identified as a direct target of GLI2 during P19 EC cardiomyogenesis (73). In particular, MEF2 factors are critical during heart development *in vivo* and *in vitro* (37, 38, 82). The results in Figure 5 and Figure 6, which show an acceleration of *Mef2c* transcripts in differentiating mES[GLI2] cells, further support these results. Thus, we set out to determine if BRG1 associates with *Mef2c* regulatory elements in a HH dependent manner.

3.5 GLI2 overexpression results in enriched BRG1 association on *Mef2c* regulatory elements

First, we sought to determine if GLI2 regulates *Brg1* expression by analyzing *Brg1* transcripts in both the mES[GLI2] and the mES[Ctrl] cells. *Brg1* mRNA expression increased slightly upon differentiation in both mES[Ctrl] and mES[GLI2] cell lines (Figure 10A). However, it reached statistical significance (p<0.05) only on day 4 of mES[GLI2] cell differentiation (Figure 10A). Notably, on day 6 of mES[GLI2] cell differentiation, *Brg1* transcript levels were lower than in mES[Ctrl] differentiating cells.

Considering mES cells spontaneously differentiate into lineages of all three germ layers (224) and BRG1 is expressed in many different mammalian cell types (193), it is difficult to make definitive conclusions about its pattern of expression during mES cell cardiomyogenesis and its regulation by GLI2 during mES cell differentiation. For these reasons, we analyzed the expression of *Brg1* transcripts in P19 EC cells, which differentiate into a culture of predominantly endodermal- and mesodermal-derived cells upon aggregation and treatment with DMSO (74, 76) and express cardiomyocytes by day 6 of differentiation (235). Moreover, other studies have also shown that P19 EC cells express stable levels of BRG1 protein during aggregated differentiation (236).
A

Relative mRNA expression

- **Brg1**
 - n=3

<table>
<thead>
<tr>
<th>Day</th>
<th>mES[Ctrl]</th>
<th>mES[GLI2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

B

Relative mRNA expression

- **Brg1**
 - n=3

<table>
<thead>
<tr>
<th>Day</th>
<th>P19[Ctrl]</th>
<th>P19[GLI2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

C

Anti-BRG1 ChIP: Day 4 (% input)

<table>
<thead>
<tr>
<th>Mef2c site</th>
<th>Anti-BRG1 (n=3)</th>
<th>Rabbit Serum</th>
<th>Anti-BRG1 (n=3)</th>
<th>Rabbit Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>B</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>D</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 10. GLI2 recruits the chromatin remodelling protein, BRG1, to a GLI2 binding site in the Mef2c gene.

Brg1 mRNA expression levels were analyzed in (A) mES[GLI2] and mES[Ctrl], and (B) P19[GLI2] and P19[Ctrl] cultures. Expression levels were normalized to β-actin, calibrated to day 0 mES[Ctrl] or P19[Ctrl] culture expression levels, and presented as a percentage of the highest expression level recorded, per gene; n=3. Two-tailed Student’s T-tests were used for statistical analyses. Grey lines represent paired T-tests; black lines represent unpaired T-tests; (*) p <0.05. (C) An anti-BRG1 ChIP was performed on day 4 differentiating P19[GLI2] and P19[Ctrl] cultures with subsequent qPCR analyses of all nine GLI consensus binding motifs in Mef2c (Mef2c sites A-I), depicted in Figure 3; n=3. All error bars represent +/- SEM. One-tailed Student’s T-tests were used for statistical analyses. (*) p <0.05.
By day 6 of P19 EC cell DMSO-induced differentiation, ~10% of our cultures had a cardiomyocyte phenotype and the remaining cells had a fibroblast-like morphology (data not shown), as seen in previous studies (73, 78, 235). During P19 EC cell differentiation, Brg1 transcript expression decreased slightly after day 2 of differentiation in the P19[Ctrl] cell line (Figure 10B). In the P19[GLI2] cell line, the expression of Brg1 grossly followed the same pattern, however, there was a significant decrease in Brg1 transcripts on day 2 in P19[GLI2] cells, as compared to levels in P19[Ctrl] cells. Importantly, there was no significant change in Brg1 expression on day 4 in P19[GLI2] versus P19[Ctrl] cultures (Figure 10B).

Our lab has previously shown that GLI2 binds eight of the nine conserved GLI consensus binding motifs found in Mef2c gene on day 4 of P19[GLI2] cell differentiation (Mef2c sites B-I) (73). Given that BRG1 immunoprecipitates with GLI2, we performed an anti-BRG1 ChIP on day 4 of P19[Ctrl] and P19[GLI2] cell differentiation, to determine if BRG1 associates with Mef2c genomic elements during differentiation, and also if GLI2 can modulate the potential association.

Results from the BRG1-ChIP showed an association of BRG1 with Mef2c sites C, D, and G-I in P19[Ctrl] cells as compared to non-specific rabbit serum values (Figure 10C). Notably, although there was a similar trend in the P19[GLI2] cells, we did not observe statistical significance for sites D and G-I when compared to their respective non-specific rabbit serum values (Figure 10C). Mef2c site A, which lacked GLI2 association under the same experimental conditions (73), showed no significant signs of being bound by BRG1 in either cell line. However, the association of BRG1 with the Mef2c site C was significantly (p<0.05) higher in P19[GLI2] cells as compared to P19[Ctrl] cells. Mef2c site C is of significant interest as it is located proximally to the ISL-1-dependent SHF enhancer region.
and upstream of a known transcription start site in the developing heart (Figure 3) (44, 180). Thus, we chose Mef2c site C to further investigate if BRG1 association is dependent on HH signalling during P19 EC cell cardiomyogenesis.

3.6 Inhibition of HH signalling results in reduced BRG1 association on Mef2c site C

Following these results from gain-of-function experiments, we proceeded to investigate the GLI2 and BRG1 relationship on Mef2c gene through loss-of-function experiments. For this, the HH signalling inhibitor, KAAD-cyclopamine, was used to repress the activity of downstream HH signalling transducers, such as GLI2. Our lab has previously used KAAD-cyclopamine to successfully inhibit HH signalling in a variety of cells, such as P19 EC cells, C3H10T1/2 fibroblasts, and adult skeletal muscle satellite cells (90, 99). Gli1, a direct target of GLI2 (155), was used as an indicator of HH inhibition, like in previous reports (99).

KAAD-cyclopamine treatment resulted in a 71.7±17.0% and 60.5±25.0% decrease in Gli1 expression on days 4 and 6 of P19 EC cell differentiation, respectively, compared to treatment with a vehicle control (Figure 11A). Similar cyclopamine-mediated reductions of Gli1 expression have been seen before in P19 EC cells (90), P19CL6 EC cells (81), mES cells (237), freshly isolated mouse satellite cells cultured in vitro (99), mouse embryonic fibroblasts (99, 206), zebrafish (238), and Xenopus retina (91).

By day 6, differentiating P19 EC cells treated with KAAD-cyclopamine expressed 45.9±16.7%, 74.8±12.2%, and 65.4±5.9% significantly lower Mef2c, Gata-4, and Tbx5 transcript levels, respectively, compared to differentiating cells treated with the vehicle
A

Relative mRNA expression of Gli1 in Vehicle and KAAD-cyclopamine treatment groups.

B

Relative mRNA expression of Mef2c, Gata-4, and Tbx5 at Day 0 and Day 6, showing significant changes at Day 6.

C

Anti-BRG1 ChIP results showing increased enrichment in KAAD-cyclopamine treatment groups compared to Vehicle.

* indicates statistical significance.
Figure 11. HH signalling contributes to the recruitment of BRG1 to Mef2c.

(A) A decrease in HH target gene expression, *Gli1*, was assessed by qPCR in differentiating P19 EC cultures, treated with MeOH vehicle or KAAD-cyclopamine. *Gli1* mRNA expression levels were normalized to \(\beta\)-actin and presented as a fold-change over MeOH-treated culture expression levels from the same day; \(n=3\). (B) The effect of KAAD-cyclopamine treatment on the expression level of cardiomyogenesis-specific genes was assessed using qPCR analysis. Expression levels were normalized to \(\beta\)-actin, calibrated to day 0 untreated culture expression levels, and presented as a percentage of the highest expression level recorded, per gene; \(n=3\). (C) An anti-BRG1 ChIP was performed on day 4 differentiating P19 EC cultures that were treated with either MeOH vehicle or KAAD-cyclopamine, \(n=3\). Each ChIP was followed by qPCR analyses on a gene desert region (*negative control*), \(\beta\)-actin (*positive control*), and *Mef2C* site C. All error bars represent +/- SEM. Two-tailed Student’s T-tests were used for statistical analyses. Grey lines represent paired T-tests; black lines represent unpaired T-tests; (*) \(p < 0.05\).
These lower levels of cardiac progenitor cell-specific transcripts were expected as P19 EC cells treated with cyclopamine show repressed
Gata-4 expression (90) and P19CL6 EC cells treated with cyclopamine show lower levels of
Gata-4 and *Nkx2-5* (81). Importantly, our data indicated that neither the level of contractile protein transcripts in the day 6 EBs (Figure 11B, panels *Myhc6* and *Myhc7*) nor the number of *MyHC*⁺ cardiomyocytes (data not shown) significantly differed between KAAD-cyclopamine and vehicle treatments. This is supported by previous reports, where P19 EC cells treated with cyclopamine during differentiation did not show any difference in the number of *MyHC*⁺ cardiomyocytes either (90). Thus, inhibition of HH signalling downregulated, but did not abolish, normal expression of cardiac progenitor specific transcripts and, overall, did not repress the formation of cardiomyocytes.

To test if inhibition of HH signalling attenuated the ability of BRG1 to associate with *Mef2c* site C, we performed a BRG1-ChIP in day 4 differentiating P19 EC cells treated with vehicle or KAAD-cyclopamine. The results indicated an association of BRG1 with *β-actin*, a known BRG1 target in mES cells (217) (*positive control*) when compared to a gene desert region located on chromosome 15, which is at least 560 kb from any known open reading frame (*negative control*) (Figure 11C). This demonstrated the specificity of the BRG1-ChIP assay. BRG1 also associated with *Mef2c* site C (Figure 11C), in accordance with Figure 10C.

KAAD-cyclopamine treatment had no significant effect on BRG1’s association with the gene desert or *β-actin*. However, inhibition of HH signalling with KAAD-cyclopamine significantly (p<0.05) reduced the enrichment of BRG1 on *Mef2c* site C. Therefore, HH signalling is required, at least to some extent, for the efficient expression of *Mef2c* mRNA and the efficient association of BRG1 to the *Mef2c* gene.
4 Discussion

4.1 HH signalling regulates acceleration of cardiac progenitor genes during mES cell differentiation

Using a stabilized GLI2 mutant, we observed that GLI2 regulates early expression of cardiac progenitor transcripts (Figure 5). Overall, the effects of GLI2 overexpression resulted in an acceleration of cardiomyogenesis during the cardiac progenitor stage (Figure 6). This effect is not believed to be due to an increase in mesoderm formation because GLI2 overexpression did not have any significant effect on the levels of *Brachyury* or *Mesp1* compared to the levels in the control cultures on days that had significant expression over basal day 0 levels (Figure 5). Previous studies have observed similar results when HH signalling is modulated in P19 EC cells (73, 89, 90).

When GLI2 is overexpressed, *Mef2c, Nkx2-5*, and *Tbx5* are significantly enhanced on day 6 of differentiation in mES cells (Figure 5), similar to how GLI2 overexpression affects cardiac progenitor cell enriched genes in P19[GLI2] cultures (73). *Mef2c* and *Nkx2-5* both had accelerated expression in mES[GLI2] cultures on day 6 of differentiation relative to control cultures (Figure 6). This accelerated expression *in vitro* correlates with the HH-mediated expression of *Nkx2-5* *in vivo* (4). In *Ptch1*−/− embryos, HH independent activation of the HH signalling pathway is present and results in enhanced *Nkx2-5* expression in the cardiac crescent. Alternatively, *Smo*−/− and *Shh*−/−/Ihh−/− embryos have reduced *Nkx2-5* expression in the cardiac crescent at the 2-3 somite stage (~E7.5) and delayed heart tube formation (87), which normally occurs around E8.0 (4). In the *Smo*−/− embryos, the reduced *Nkx2-5* expression is only temporary as *Nkx2-5* expression returns to normal levels found in WT embryos by E9.0. These loss-of-function observations in the embryo are consistent with
our gain-of-function experiments in mES[GLI2] cells and further suggest that HH signalling regulates *Nkx2-5* expression during early cardiomyogenesis through a mechanism that is independent from the mechanism that regulates *Nkx2-5*, post-heart looping (87). Therefore, the acceleration of the cardiac progenitor transcripts in mES cells is in line with what is seen *in vivo* during heart development.

In mES[GLI2] cultures, *Tbx5* expression levels were upregulated compared to the control cultures on day 6 of differentiation (Figure 5). This follows the same general expression pattern seen in the P19[GLI2] cell model on day 6 of differentiation as well (73). When HH signalling is inhibited in P19 EC cells by KAAD-cyclopamine, day 6 expression levels of *Tbx5* are reduced compared to vehicle-treated cells (Figure 11). Furthermore, expression of a GLI/EnR fusion repressor protein during P19 EC cell differentiation reduces day 6 expression of *Tbx5* (73). Therefore, given these observations, *Tbx5* expression is regulated by HH signalling *in vitro*, during P19 EC and mES cell differentiation.

The expression of *Tbx5* in the heart has been studied throughout cardiogenesis because mutations in *Tbx5* lead to Holt-Oram syndrome (239, 240). *Tbx5* is more commonly expressed in the FHF (4) and has not been studied extensively in the SHF (175). A recent study has shown that *Tbx5* expression in the SHF, but not expression in the myocardium or the endocardium, is essential for atrial septation and mediates this process through a regulatory network with HH signalling (175). However, in this molecular network, TBX5 functions upstream and parallel to HH signalling *in vivo*. HH signalling upstream of *Tbx5* expression is less understood. Therefore, although HH signalling has been shown to regulate *Tbx5* expression in the current study, further investigation is required to elucidate the mechanisms behind its observed HH-mediated regulation.
4.2 GLI2-mediated acceleration of cardiac progenitor gene expression does not enhance the number of cardiomyocytes during mES cell cardiomyogenesis

Although GLI2 enhances many cardiac progenitor and Myhc gene expression levels at the onset of cardiomyogenesis (Figure 5), the system does not result in an increased percentage of cardiomyocytes by day 7 of mES cell differentiation (Figure 7). There is possibly a higher percentage of cardiomyocytes in the mES[GLI2] cultures on day 6 of mES cell differentiation when the cardiac progenitor genes are enhanced, but as mentioned before, it is difficult to quantitatively assess the number of cardiomyocytes in day 6 EBs. To circumvent this issue EBs could theoretically be dissociated into single cells and either analyzed by IF or by flow cytometry.

If there happen to be more cardiomyocytes in day 6 differentiating mES cells, this could suggest that HH signalling accelerates cardiomyocyte differentiation similar to how it accelerates the expression of cardiac progenitor genes (Figure 6). However, proper quantitative analysis would have to be performed on day 6 and day 7 differentiating mES[GLI2] and mES[Ctrl] cells to effectively confirm this. Given that Myhc6 and Myhc7 transcript levels are enhanced in day 6 differentiating mES[GLI2] cells compared to control cells (Figure 5), it is plausible that the number of cardiomyocytes may also be enhanced on day 6 of differentiation. By day 7 of differentiation, Myhc6 and Myhc7 gene expression in mES[Ctrl] cultures may also catch up to the level of expression in mES[GLI2] cultures given the trend that Nkx2-5 and Mef2c show on these days (Figure 6). If the Myhc6 and Myhc7 gene expressions were to do this, it would align with the observation that there is no significant difference in the percentage of MyHC^+ve cells on day 7 in the mES[GLI2] and
mES[Ctrl] cultures (Figure 7). In summary, quantification of cardiomyocytes in day 6 differentiating mES[GLI2] and mES[Ctrl] cultures and an analysis of transcriptional *Myhc* isoforms in day 7 differentiating mES[GLI2] and mES[Ctrl] cells are further required for assessing if GLI2 overexpression also results in the acceleration of cardiomyocyte formation and *Myhc* isoform expression, respectively.

Alternatively, overexpression of GLI2 may accelerate the absolute number of cardiomyocytes but not increase the actual percentage of cardiomyocytes in mES[GLI2] cells compared to control cells. HH signalling gain-of-function experiments in P19 EC cells, both induced cardiomyogenesis (89) and enhanced it (73). However, these cells may be more susceptible to differentiate into cardiomyocytes because they are more prone to differentiate into cells of the mesodermal lineage (74). mES cells, though, can give rise to cell types from each of the endoderm, mesoderm, and ectoderm germ layers that develop in parallel during mES cell differentiation (224, 241, 242). Therefore, mES cells may not have as many mesoderm cells that are susceptible to HH-mediated regulation. Since HH signalling regulates many other lineages from the endoderm and ectoderm during early development (91-95), GLI2 overexpression in mES cells may increase the number of cells from other lineages while increasing the number of cardiomyocytes, leading to similar percentages of cardiomyocytes in the mES[GLI2] and mES[Ctrl] cultures. Even if HH signalling does not enhance the number of non-cardiomyocytes, HH signalling may still enhance mechanisms in the neighbouring lineages that in turn negatively regulate cardiomyocyte differentiation and keep the percentage of cardiomyocytes in the culture at levels comparable to those in the control cultures.
HH signalling may also upregulate the level of *Nkx2-5, Mef2c*, and *Tbx5* transcripts per cardiac progenitor, rather than increase the cardiac progenitor pool by activating *Nkx2-5, Mef2c*, and *Tbx5* in precardiac mesoderm cells (243). This increase per cell, could then also lead to an increase in *Myhc6* and *Myhc7* transcript levels per cell, which could explain the enhanced transcript levels of *Myhc6* and *Myhc7* in the mES[GLI2] cultures compared to the control cultures on day 6 of differentiation (Figure 5). In this model, the number of cardiac progenitors that become cardiomyocytes would still remain the same but there would be potentially more MyHC per cell.

Still, although possible, this model seems less probable because it does not align with the observation that ectopic expression of SHH or GLI2 can induce *Nkx2-5* and *Mef2c* expression by day 6 of P19 EC cell differentiation (89). Also, HH signalling not only regulates the level of *Nkx2-5* expression in zebrafish, but it also increases the number of cardiomyocytes (176). Therefore, HH likely regulates the number of cells that once expressed these transcripts rather than the amount of transcripts per cell. If a suitable method for dissociating day 6 mES cell EBs can be realized, NKX2-5 positive cells could be quantified by indirect immunofluorescence or flow cytometry to see if this is the case.

Since HH signalling regulates both the expression of *Nkx2-5* and the number of cardiomyocytes in zebrafish (176), HH signalling may enhance the number of cardiac progenitors that express *Nkx2-5* in the mES[GLI2] cultures compared to the control, rather than the number of MyHC⁺ve cardiomyocytes. In zebrafish and P19 EC cells, a larger pool of cardiac progenitor cells appears to lead directly to an increase in cardiomyocytes (89, 176).
An essential factor that enables this direct transition may be lacking during mES cell cardiomyogenesis. The pool of progenitor cells that are poised to become MyHC⁺ cardiomyocytes may accelerate on day 6 in the mES[GLI2] cultures but not immediately differentiate into cardiomyocytes thereafter. A regulatory mechanism may be in place that prevents too many poised cardiac progenitors from becoming cardiomyocytes. If this were the case, this HH independent mechanism would likely act downstream of Myhc6 and Myhc7 transcription because both of these transcripts are still enhanced when GLI2 is overexpressed (Figure 5).

Assuming that the cardiac progenitor transcripts reflect the size of the cardiac progenitor pool, the day 7 transcript results suggest that this initial acceleration of cardiac progenitor cell numbers in mES[GLI2] cultures is limited to early stages of cardiomyogenesis (Figure 6). Without other essential signals during mES cell differentiation, it appears that this acceleration does not amount to enhanced cardiomyogenesis overall. Nevertheless, this brief acceleration effect observed during mES cell differentiation does not diminish by any means the importance of HH signalling during <i>in vivo</i> embryogenesis. Shh^{−/−} /Ihh^{−/−} and Smo^{−/−} embryos demonstrate that a delay of cardiomyogenesis, as a result of inhibited HH signalling, dramatically hinders heart looping to the point that only a linear heart tube remains (87). Therefore, these observations of accelerated cardiac progenitor transcripts in mES[GLI2] cultures provide preliminary evidence that HH signalling has a major role in establishing a pool of cardiac progenitor cells <i>in vitro</i> in a timely manner and provide further support that HH signalling is required for timely cardiomyogenesis <i>in vivo</i>.
4.3 BRG1 enrichment on *Mef2c* positively correlates with the expression of HH-mediated *Mef2c* expression *in vitro*

To gain insight into how HH signalling regulates certain cardiac progenitor genes *in vitro* but may not enhance the number of cardiomyocytes in differentiating mES[GLI2] cultures, we investigated which proteins GLI2 forms a complex with during differentiation. Results from mass spectrometry and subsequent western blotting identified BRG1 as a candidate protein (Figure 9).

Further investigation by BRG1-ChIP in differentiating P19[GLI2] EC cells (Figure 10) and P19 EC cells treated with KAAD-cyclopamine (Figure 11) demonstrated that BRG1 is recruited to *Mef2c* site C, ~2.4kb upstream of the SHF I enhancer (44), in a HH dependent manner on day 4 of P19 EC cell differentiation. When GLI2 is overexpressed in these cultures, BRG1 is enriched at *Mef2c* site C (Figure 10). Notably, in this same system, overexpression of GLI2 in P19 EC cells was previously shown to enhance *Mef2c* expression by day 4 of differentiation (73). mES[GLI2] cultures also showed a comparable enhancement of *Mef2c* expression on day 6 of differentiation (Figure 5). Alternatively, when HH signalling is inhibited by KAAD-cyclopamine during P19 EC cell differentiation, BRG1 association is reduced at *Mef2c* site C on day 4 of differentiation and *Mef2c* transcript levels are significantly reduced on day 6 (Figure 11). The combination of these gain-of-function and loss-of-function results provides thorough evidence that HH signalling regulates BRG1 enrichment on *Mef2c* and could indicate, with further investigation, that this mechanism has a role in regulating *Mef2c* expression.

A recent study in mES cells supports our observations that BRG1 associates with *Mef2c* *in vitro* and even further suggests that BRG1 enrichment on *Mef2c* could result in
increased chromatin accessibility in our P19 EC cultures. This study investigated BAF250A’s ability to recruit BRG1 to the \textit{Mef2c} promoter region in WT mES cells or in mES cells derived from SHF-specific \textit{Baf250a}−/− mice (199). It demonstrated that BRG1 bound less to \textit{Mef2c} in day 6 mES cells when \textit{Baf250a} was not expressed. Since BRG1’s association could be modulated by \textit{Baf250a} expression, and \textit{Baf250a}−/− mice have significantly less \textit{Mef2c} expression in SHF cells on day E9.5 compared to WT mice, Lei et al. sought to determine if this reduction in BRG1 recruitment resulted in reduced chromatin accessibility. As hypothesized, the reduction did result in less accessible DNA on the \textit{Mef2c} promoter that could only be fully digested by DNase I at high doses (199). This BAF250A-mediated reduction of BRG1 on \textit{Mef2c} is comparable to the reduction observed during HH signalling inhibition (Figure 11). Therefore, it is likely that HH-mediated reduction of BRG1 on \textit{Mef2c} site C in differentiating P19 EC cells could result in reduced chromatin accessibility as well.

BAF complexes require a collection of transcription factors and non-ATPase subunits to associate with specific targets and facilitate chromatin remodelling (193). For instance, transcription factors like GATA-4 and TBX5 mediate BAF complex association along with BAF60C (40, 200). Therefore, it seems feasible that GLI2 may mediate BRG1 association, along with BAF250A, during P19 EC and mES cell cardiomyogenesis. Since BAF60C is highly expressed in the cardiac crescent at E8.25 and is essential for chromatin remodelling in the heart (42), it would be worth determining if this factor is potentially involved in a GLI2-BRG1 complex that associates with \textit{Mef2c} site C.
4.4 GLI2 mediates the enrichment of BRG1 on \textit{Mef2c} site C

GLI2 is likely the downstream effector involved in HH-mediated BRG1 association on \textit{Mef2c}, given its predominant role in activating downstream HH targets (119). Like BRG1, GLI2 is enriched on \textit{Mef2c} site C, in day 4 differentiating P19[GLI2] cells (73).

Also, FLAG-IP in mES[GLI2] cells followed by mass spectrometry and western blotting with BRG1-specific antibodies showed that GLI2 forms a complex with BRG1 in day 3 differentiating mES[GLI2] cells (Figure 9). Another source has shown that HA-tagged GLI2 immunoprecipitates with BRG1 in mouse embryonic fibroblasts by reciprocal IP with antibodies against the HA-tag or BRG1 (206). Together, the results from these analyses demonstrate that GLI2 is at least involved in the HH-mediated BRG1 association on \textit{Mef2c}, if not the primary effector of the HH-mediated recruitment.

It is important to note that the inhibition of HH signalling by KAAD-cyclopamine showed that HH signalling regulates BRG1 association, but it does not distinguish which GLI proteins are needed for BRG1 recruitment. Although GLI2 is the primary effector of the HH signalling pathway (119), other GLI proteins could still be involved as well. GLI1 and GLI2 have been shown to have overlapping transcriptional activator roles on other HH target genes (156) and the GLI factors share a common DNA binding motif (121). Inhibition of HH signalling results in inhibition of all activator forms of GLI proteins, not GLI2A alone (193). GLI2 overexpression also upregulates GLI1 activity, through positive feedback loops (155), thus indicating that the gain-of-function experiment may not have only enhanced GLI2A activity but possibly GLI1 as well. Notably, ectopic GLI1 and GLI3A can also immunoprecipitate with BRG1 in mouse embryonic fibroblasts (206). Therefore other
activating GLI proteins, such as GLI1 or GLI3A, cannot be ruled out for being involved in recruiting BRG1 to Mef2c site C. A specific knockout or shRNA knockdown of Gli2 would have to be conducted to determine if a loss of GLI2 alone results in reduced BRG1 recruitment. With the current results we can only say that GLI2 is involved in the process.

4.5 HH signalling may regulate BRG1 association on other cardiac progenitor genes expressed in the SHF

Previous studies have shown that BRG1 associates with other HH target genes, including Gli1 and Ptc1 in undifferentiated mES cells and in developing telencephalons (206, 217). Therefore, it is possible that HH signalling regulates BRG1 association with some of these other genes like it does on Mef2c. Nevertheless, there are many non-ATPase BAF subunits in the BAF complex that also mediate BRG1’s interaction with chromatin (193). These subunits vary between tissues and are sometimes tissue-specific (193). Therefore, it is difficult to speculate how HH signalling enriches BRG1 on other BRG1- and HH-target genes, especially in varying tissues, without ChIP analyses.

Interestingly, like with Mef2c, BRG1 association and BRG1-mediated chromatin remodelling is also Baf250a-dependent on the Nkx2-5 promoter in day 6 differentiating mES cells (199). In addition, Baf250a−/− mice have reduced Nkx2-5 expression (199). Considering this, the ability of HH signalling to modulate Nkx2-5 expression in day 6 differentiating mES cells (Figure 5), the ability of HH signalling to regulate Nkx2-5 expression in P19 EC cells (73, 89), and GLI2’s ability to activate the Nkx2-5 promoter in vitro (73), it is likely that BRG1 association on the Nkx2-5 promoter is dependent on HH signalling like it is dependent on Baf250a expression.
Given that BAF250A has been shown to regulate BRG1’s association with SHF genes like Mef2c and Nkx2-5 (199), HH signalling may regulate BRG1 enrichment on other cardiac HH target genes in cells from the SHF in a similar fashion. Therefore, if additional genes were to be tested to see if they too support HH-mediated BRG1 enrichment, genes expressed in the developing SHF, such as Nkx2-5, Foxh1, and Tbx20 (28), would be an ideal starting point. Foxh1 and Tbx20 are interesting because they too were identified as a potential BRG1 and GLI2 target genes in our bioinformatics screen (Figure 9C).

4.6 Gata-4 expression is not regulated by GLI2 overexpression in differentiating mES cells like in differentiating P19 EC cells

In this study we have been able to show that GLI2 overexpression results in an accelerated expression of key cardiac progenitor genes and that the acceleration of Mef2c could be in part due to BRG1 recruitment by GLI2. However, not all of the studied cardiac progenitor genes were enhanced on day 6 of mES[GLI2] cell differentiation compared to control levels. Based on our results, it appears that the HH-mediated regulation of Gata-4 observed during P19 EC cell differentiation (73) does not occur during mES cell differentiation (Figure 5). Possible reasons for this discrepancy include: 1) Gata-4 expression may be enhanced by HH signalling earlier than day 6 during mES cell differentiation; 2) the mechanisms that regulate Mef2c, Nkx2-5, and Tbx5 expression are upstream of these factors but downstream of Gata-4 expression; or 3) other molecular mechanisms may counter any HH-mediated enhancement of Gata-4 expression.
Gata-4 expression in mES cells can be detected as early as day 3 and peaks in expression by day 5 (66, 69). Since HH signalling accelerates the expression of other cardiac progenitor genes early in their expression time course (Figure 6), HH signalling might do the same for *Gata-4* expression early in its time course, before it peaks on day 5 (66, 69). In the P19 EC cell system, *Gata-4* expression can be detected prior to day 5 of differentiation (90) but tends to be significantly expressed on days 5 and 6 when the other cardiac progenitor genes are also significantly expressed (73). Therefore, during mES cell differentiation there is a longer delay between the *Gata-4* expression peaks and the other cardiac progenitor gene expression peaks than during P19 EC cell differentiation (66, 69). The delay during mES cell differentiation is also consistent with the hierarchy of cardiac progenitor transcription factors *in vivo* because GATA-4 acts upstream of MEF2C, NKX2-5, and TBX5 during cardiomyogenesis (4). If the role of HH signalling involves accelerating cardiac progenitor gene expression rather than simply enhancing it, the acceleration of *Gata-4* expression would likely occur earlier than the other cardiac progenitor genes during mES cell differentiation.

Since *Gata-4* is expressed earlier during mES cell differentiation compared to the other cardiac progenitor genes and functions upstream *in vivo*, it is also possible that HH signalling regulates downstream of *Gata-4* expression during cardiomyogenesis in mES cells. Studies *in vivo* and in mES cells have shown that *Gata-4* expression is independently regulated from the expression of other cardiac transcription factor genes, which further supports this rationale. For instance, mice with conditional SHF *Baf250a*−/− have significantly decreased levels of *Mef2c* and *Nkx2-5* expression compared to WT mice, while *Gata-4* levels
remain unaffected (199). Also, chromatin on the \textit{Gata-4} promoter is accessible in day 6 differentiating mES cells derived from both \textit{Baf250a}−/− embryos and WT embryos alike. This indicates that chromatin accessibility on the \textit{Gata-4} promoter is independent of \textit{Baf250a} expression (199). As previously mentioned, chromatin accessibility on the \textit{Mef2c} and \textit{Nkx2-5} promoter are dependent on BAF250A’s recruitment of BRG1. Thus, the chromatin remodelling on these cardiac progenitor genes is just one mechanism through which the regulation of these genes differ.

During \textit{in vivo} avian heart development, the induction and maintenance of \textit{Nkx2-5} and \textit{Mef2c} were found to be dependent on signals from the neighbouring anterior endoderm (244). In a loss of function experiment, the adjacent endoderm was removed from the side of a developing avian heart, resulting in a decrease in \textit{Nkx2-5} and \textit{Mef2c}, but no observable change in \textit{Gata-4} expression. The active component from the neighbouring endoderm that signals \textit{Nkx2-5} and \textit{Mef2c} in the precardiac mesoderm was determined to be fibroblast growth factor 8 (\textit{Fgf8}) because ectopic \textit{Fgf8} expression could rescue the expression of these two cardiac genes in the absence of the anterior endoderm (244). Although \textit{Fgf8} expression may not be directly linked to HH signalling or chromatin remodelling in this context, it still provides an example of how \textit{Gata-4} expression is regulated independently from \textit{Nkx2-5} and \textit{Mef2c} expression during heart development \textit{in vivo}.

Another study observed enhanced \textit{Nkx2-5} and \textit{Tbx5} expression on day 6 of mES cell differentiation without significant enhancement of \textit{Gata-4} expression. This enhancement occurred when Yin Yang 1 (YY1), a novel regulator of cardiac progenitor genes, was overexpressed through a doxycycline-inducible system \textit{in vitro} (245). In this study, YY1 was shown to be essential for regulating cardiomyogenesis in differentiating mES cells and could
directly bind and enhance Nkx2-5 expression in a GATA-4 dependent manner. Western blotting with antibodies against GATA-4 on protein lysates from Yy1p-transfected H9C2 cells showed that YY1 did not affect GATA-4 protein expression either (245). When overexpressed in mES cell-derived mesoderm cells, YY1 induced the expression of Nkx2-5 and Tbx5. Furthermore, their genome wide analysis indicated that YY1 might also regulate Mef2c (245). Given the different modulation between Gata-4 and other cardiac progenitor genes in vitro in this study as well, it is quite possible that HH signalling regulates cardiac progenitor genes downstream of Gata-4 in mES cell-derived cardiac progenitors.

Although the above studies provide good support for differential regulation of Gata-4 expression during mES cell differentiation, HH signalling could still initially enhance Gata-4 expression but an opposing signal may counter the overall expression of Gata-4. These countering regulatory mechanisms could lead to an overall non-significant difference in Gata-4 expression on day 6 of differentiation between mES[GLI2] and mES[Ctrl] cultures while still facilitating enhanced expression of other cardiac progenitor enriched genes (Figure 5).

The Wnt/β-catenin pathway has been shown to have a biphasic role during cardiomyogenesis in zebrafish and mES cells (246). In zebrafish, if Wnt/β-catenin signalling is induced prior to gastrulation, cardiomyogenesis is enhanced as the pathway induces mesoderm differentiation (246, 247). However, if Wnt/β-catenin signalling is induced during gastrulation, complete heart formation is inhibited (246). A similar biphasic role was observed in mES cells that were treated with Wnt-3A between days 2 and 5 of differentiation. These mES cells expressed higher levels of cardiac transcripts, but also
expressed significantly higher transcript levels of the Wnt/β-catenin signalling inhibitor, dickkopf-1 (Dkk1), than the control cells by day 5 (246). This shows that, in vivo and in vitro, Wnt/β-catenin signalling needs to be enhanced early and repressed later to ensure proper cardiomyogenesis.

There is some evidence that HH signalling can regulate Wnt signalling in neural progenitor cells (248) and canonical Wnt/β-catenin signalling can restrict cardiomyogenesis by inhibiting Gata-4 expression (249). Given this, any HH-mediated enhancement of Gata-4 expression may be attenuated by countering Wnt/β-catenin signalling that is also enhanced by HH signalling. To test this possibility it would be worth differentiating mES[GLI2] cells and mES[Ctrl] cells in the presence of recombinant DKK1 (69) following day 4 of differentiation to see if Gata-4 levels would be higher when GLI2 is overexpressed and Wnt/β-catenin signalling is inhibited. At the same time, cardiomyocyte numbers on day 7 could be quantified to see if Wnt/β-catenin needs to be inhibited to observe HH-mediated enhancement of cardiomyocyte percentages in mES[GLI2] cultures, as well.

Based on the results in this study, it is hard to determine if Gata-4 expression is independent of HH signalling throughout differentiation, but certainly GLI2 overexpression alone is not enough to enhance Gata-4 expression in day 6 differentiating mES cells above control cell levels.

4.7 Conclusions

The results from this study in combination with observations from other in vivo and in vitro studies, demonstrate that GLI2 accelerates the expression of cardiac progenitor enriched genes during mES cell cardiomyogenesis (Figure 12A). ChIP analyses further
A

mES cells → Mesoderm cells → Precardiac mesoderm cells

Brachyury
Mesp1

Pre cardiac mesoderm cells → Cardiac progenitor cells → Cardiomyocytes

Gata-4 Mef2c Nkx2-5 Tbx5

Myhc6 Myhc7

B

HH

SUFU GLI2/3

PTCH1

GLI2/3A

SUFU

Primary cilium

Mesoderm cells

Mesoderm cells

Mesoderm cells

Mesoderm cells

Nucleus

Basal body

Microtubules

Prim
ary cilium

Site C Site C

BRG1 BRG1

87

C

KAAD-cyclopamine

GLI2/3R

BAF

BRG1

GLI2/3A

PTCH1

SUFU

SUFU

Nucleus

Basal body

Microtubules

Primary cilium

Site C Site C

BRG1 BRG1

87
Figure 12. A model summarizing the role of the HH signalling pathway and its primary transducer, GLI2, during mES cell cardiomyogenesis. (A) In this study, GLI2 expression was observed to positively regulate cardiomyogenesis-specific transcription factors in mES cells (highlighted in green). The hollow arrows indicate the transition towards a more differentiated cell type found in the cardiomyogenic lineage. The hollow green arrow marks the transition enhanced by GLI2. The solid black arrows indicate HH/GLI2’s proposed direct regulation. (B, C) GLI2’s acceleration of cardiac transcripts may be explained in part by the ability of the transcriptional activator form of GLI2 (GLI2A) (included in the green ellipses, B) - mediated via a functional HH signalling pathway (light blue ellipses) - to enrich BRG1 association at Mef2c site C. This enrichment site is proximal to known SHF enhancer regions (I, II). Therefore, other cofactors (dash-outlined ellipses), including the remaining BAF complex members and other unidentified SHF-related transcription factors (?) may support this GLI2-mediated association. When KAAD-cyclopamine inhibits HH signalling, GLI2 may be processed into GLI2R (included in the orange truncated ellipses, C). Also, GLI3R (included in the orange truncated ellipses, C) may contribute to the repression of Mef2c expression. The downstream binding of either GLI2R or GLI3R to Mef2c has yet to be assessed (*).
indicated that this acceleration, at least in the case of \textit{Mef2c}, could be due to HH-mediated recruitment of BRG1 via GLI2 (Figure 12B, C).

Additional investigation is still required to fully understand why GLI2 overexpression does not enhance cardiomyocyte formation when the cardiac transcriptional profile is accelerated. Based on previous studies, quantification of cardiac progenitor cells on day 6 of mES[GLI2] cell differentiation should be assessed first to see if the cardiac progenitor pool is at least enriched compared to control cultures. Also, as mentioned before, the crosstalk between HH and Wnt/β-catenin signalling should be investigated to see if Wnt/β-catenin signalling is limiting the enrichment of \textit{Gata-4} and possibly the enrichment of cardiomyocyte numbers by day 7 in mES[GLI2] cells compared to the control cells.

To extend our understanding of the molecular mechanism behind HH-mediated \textit{Mef2c} expression, further analysis using chromatin remodelling assays and reporter assays is required. These analyses would determine if BRG1 recruitment enhances chromatin accessibility at \textit{Mef2c} site C and if GLI2 and BRG1 can synergistically activate \textit{Mef2c} by associating with a reporter construct containing the \textit{Mef2c} site C and SHF enhancer regions. Given the common mechanisms that regulate \textit{Mef2c} and \textit{Nkx2-5} in other studies, BRG1-ChIP assays should also be performed on \textit{Nkx2-5}. If BRG1 is also enriched at the \textit{Nkx2-5} promoter in a HH dependent manner, then similar chromatin accessibility and reporter assays should be investigated on the \textit{Nkx2-5} promoter as well. If successfully elucidated in P19 EC cells, the molecular mechanisms that regulate \textit{Mef2c} and \textit{Nkx2-5} expression should also be assessed in the mES and eventually in the hES cell model.

By elucidating the mechanisms of HH-mediated acceleration of cardiomyogenesis in mES cells and cardiomyogenesis enhancement in P19 EC cells, the intricate network of
signalling pathways driving heart development \textit{in vitro} and \textit{in vivo} will hopefully become clearer. Since cardiac progenitor cells have been shown to contribute in part to endogenous heart regeneration in mice (16, 17), mechanisms that enhance differentiation of ES cells into cardiac progenitor cells \textit{in vitro} may be useful for refining current directed differentiation approaches to generate hES cell-derived cardiac progenitors that may be more efficient at remuscularizing infarcted hearts.
References

64. **Bruneau BG.** 2008. The developmental genetics of congenital heart disease. Nature **451:**943-948.

67. **Wobus AM, Wallukat G, Hescheler J.** 1991. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation **48:**173-182.

158. **Cooper MK.** 1998. Teratogen-Mediated Inhibition of Target Tissue Response to Shh Signaling. Science **280:**1603-1607.

160. **Keeler RF, Binns W.** 1966. Teratogenic compounds of Veratrum californicum (Durand). II. Production of ovine fetal cyclopia by fractions and alkaloid preparations. Canadian journal of biochemistry **44:**829-838.

162. **Keeler RF, Binns W.** 1968. Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related compounds from other sources. Teratology **1:**5-10.

221. **Savage J, Conley AJ, Blais A, Skerjanc IS.** 2009. SOX15 and SOX7 differentially regulate the myogenic program in P19 cells. Stem cells (Dayton, Ohio) **27:**1231-1243.

238. **Karlstrom RO.** 2003. Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development **130:**1549-1564.

Contributions of Collaborators

In addition to her mentorship and training, Dr. Anastassia Voronova performed the exogenous and endogenous GLI2 protein time-course in Figure 4, the FLAG-IP in Figure 9, and prepared the samples that were used for the mass spectrometric analysis in Figure 9. Neven Bosiljcic assisted me with the differentiation of additional mES[GLI2] samples used to make Figure 6.
Appendix A - Detailed Mef2c Binding Site Information

<table>
<thead>
<tr>
<th>Protein</th>
<th>Mef2c domain</th>
<th>Target Sequence</th>
<th>Location (mm10: Chromosome 13)</th>
<th>Source of Protein</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEF2C</td>
<td>MADS-box</td>
<td>acctttacagCTAAATTACGcagatgg</td>
<td>83,504,087 - 83,504,115</td>
<td>Mouse</td>
<td>(182)</td>
</tr>
<tr>
<td>MyoD</td>
<td>E-box</td>
<td>gagtagccactgaaCAGGTGcaccctggtc</td>
<td>83,504,111 - 83,504,139</td>
<td>Mouse</td>
<td>(182)</td>
</tr>
<tr>
<td>E12</td>
<td>E-box</td>
<td>gagtagccactgaaCAGGTGcaccctggtc</td>
<td>83,504,111 - 83,504,139</td>
<td>Mouse</td>
<td>(182)</td>
</tr>
<tr>
<td>GATA-4</td>
<td>GATA-d</td>
<td>taagagttcTTATCAgtgctgtcacccectgATATCGGtctaccag</td>
<td>83,523,287 - 83,523,306</td>
<td>Rat</td>
<td>(44)</td>
</tr>
<tr>
<td></td>
<td>GATA-p</td>
<td>gctcactgacctgaaCTAAATTACGcagatgg</td>
<td>83,523,351 - 83,523,374</td>
<td>Mouse</td>
<td>(182)</td>
</tr>
<tr>
<td>ISL-1</td>
<td>ISL-d</td>
<td>gtcagggggagcCTAATGcatttgggaagttactcgTTATCAgtgctgtcacccectgATATCGGtctaccag</td>
<td>83,523,369 - 83,523,395</td>
<td>Hamster</td>
<td>(44)</td>
</tr>
<tr>
<td></td>
<td>ISL-p</td>
<td>ggttacttcgGATA-4</td>
<td>83,523,405 - 83,523,430</td>
<td>Rat</td>
<td>(44)</td>
</tr>
<tr>
<td>SOX10</td>
<td>SOX10</td>
<td>ggttacttc TCATGcagatgg</td>
<td>83,565,883 - 83,565,913</td>
<td>Mouse</td>
<td>(184)</td>
</tr>
<tr>
<td>ETS1/C-ETS-1</td>
<td>ETS-A</td>
<td>ggttacttcgTCTTCCTGtattgaca</td>
<td>83,582,754 - 83,582,777</td>
<td>Mammalian</td>
<td>(183), (185)</td>
</tr>
<tr>
<td>ETV2/ER71</td>
<td>ETS-A</td>
<td>ggttacttcgTCTTCCTGtattgaca</td>
<td>83,582,754 - 83,582,777</td>
<td>Mammalian</td>
<td>(185)</td>
</tr>
<tr>
<td>FOXC1</td>
<td>FOXC1</td>
<td>ggttacttcectcTGTTATGcagagaggaaagctggtcaccagctgtgctgggtcatacagac</td>
<td>83,582,752 - 83,582,791</td>
<td>Mouse</td>
<td>(185)</td>
</tr>
<tr>
<td>FOXC2/FKHL14</td>
<td>FOXC2/FKHL14</td>
<td>ggttacttcectcTGTTATGcagagaggaaagctggtcaccagctgtgctgggtcatacagac</td>
<td>83,582,752 - 83,582,791</td>
<td>Mouse</td>
<td>(185)</td>
</tr>
<tr>
<td>FOXO1</td>
<td>FOXO1</td>
<td>ggttacttcectcTGTTATGcagagaggaaagctggtcaccagctgtgctgggtcatacagac</td>
<td>83,582,752 - 83,582,791</td>
<td>Mouse</td>
<td>(185)</td>
</tr>
</tbody>
</table>

1 Uppercase nucleotides in the target sequence represent non-consensus binding domains.

2 All binding site information for proteins, except SOX10, were compiled with information gathered through TRANSFAC.
Appendix B - Unique Reagent Recipes

B.1 Radioimmunoprecipitation Assay (RIPA) Buffer

50 mM Tris pH 7.5

150 mM NaCl

1% NP-40

0.5% sodium deoxycholate

1x protease inhibitor cocktail (Roche, Canada)

0.5 mM phenylmethanesulfonyl fluoride (PMSF)

B.2 Stockholm’s Phosphate Buffered Saline (sPBS)

4.6 g Na$_2$HPO$_4$ (anhydrous)

1.04 g NaH$_2$PO$_4$·H$_2$O

32.0 g NaCl

0.8 g KCl

Adjust to pH 7.2, if needed

Dissolve in 4L of ddH$_2$O
Curriculum Vitae

Awards and Achievements

- Graduate Studies Leadership Award, 2013
- Canadian Institutes of Health Research Master’s Award, 2012
- Ontario Graduate Scholarship, 2011
- University of Ottawa Excellence Scholarship, 2011, 2012
- Science Students Association Award for Research Excellence, 2011
- Canadian Institutes of Health Research Undergraduate Grant, Summer 2010 & 2011
- Bruker BioSpin Award, 2010
- University of Ottawa Faculty of Science Co-op Student of the Year, 2009
- Canada Millennium Excellence Laureate - National Award, 2006-2010
- Canadian Merit Scholarship Foundation, Friesens-Lifetouch Provincial Award, 2006
- Ottawa-Carleton District School Board Outstanding Leadership Award, 2006
- Senior Male Athlete of the Year, 2006
- Cairine Wilson Secondary School Valedictorian, Class of 2006

Education

Master of Science
Biochemistry
University of Ottawa

Bachelor of Science
Honours with a Specialization in Biochemistry (Co-op);
Minor in Economics
Magna Cum Laude
University of Ottawa

Ontario Secondary School Diploma
Cairine Wilson Secondary School

Work Experience

Research Assistant
Dr. Ilona Skerjanc’s Lab
University of Ottawa - Ottawa, Ontario

Investigated heart and skeletal muscle development using mouse embryonic stem cells as a model. This work continued into my honours project and master’s degree.

Junior Research Technician
Dr. Michael Rosu-Myles' Lab
Health Canada - Ottawa, Ontario

January 2009 - December 2009

Technical Lab Assistant
Bwafwano Community Centre and
Acute Care Clinic - Lusaka, Zambia

July 2008 - August 2008

Organized meetings with pediatric officers from Zambia’s Ministry of Health.
Assisted a technician with screening patients for malaria, tuberculosis, and syphilis.
Languages

Bilingual in both written and spoken English and French

Extracurricular Activities

High School Volleyball, Coach

November 2010 - March 2014

- Head coach of the Lisgar Collegiate Institute senior girls volleyball team for four seasons.
- Coached players through weekly practices, games and bi-annual tournaments from November to February, 6-8 hours a week.

Biochemistry, Microbiology and Immunology Graduate Student Association, Executive Member

May 2012 – May 2013

- Led the planning and organization of 24 events for graduate students in our department as the Vice-President of Social Activities, including a Faculty of Medicine Dodgeball tournament and the council’s executive elections.
- Convened with council members at monthly meetings to assist with other faculty initiatives and to address fellow students’ concerns.

Ottawa Impact Volleyball, Manager

May 2010 – September 2012

- Founded Impact Volleyball Tournaments for university and community players.
- Spearheaded two ten-team tournaments, raising $950 for Cystic Fibrosis Research.
- Organized drop-in beach volleyball for 10-20 students on a weekly basis between May and August 2010 at Mooney’s Bay beach.

Science Students Association, Executive Member

September 2006 - April 2011

- Efficiently directed a thirty-member council that provided academic, mentoring, and extra-curricular services to 3,000+ students as President and Vice-President.
- Pioneered University of Ottawa's annual inter-university Ottawa Science Olympiad.
- Executed a 7-day University of Ottawa Science Orientation Week for 600+ students as Vice-President of Social Activities.

SFUO Board of Administration, Board Member

May 2008 - May 2009

- Elected by peers in the Faculty of Science to represent students at the Student Federation of the University of Ottawa's Board of Administration.

Shared World Initiative, Student

January 2008 - November 2008

- Instilled global citizenship principles in collaboration with scientific and health related practices on a two-month international development placement in Zambia.
- Participated in training before placement and led student workshops after placement.
Publications

