A Novel Thiolated Hyaluronic acid Hydrogel for Spinal Cord Injury Repair

Ruifu Li

A thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements
For the MASc degree in Chemical Engineering

Department of Chemical and Biological Engineering
Faculty of Engineering

University of Ottawa,
© Ruifu Li, Ottawa, Canada, 2014
Acknowledgments

I would like to extend my sincerest thanks and appreciation to my supervisor Dr. Xudong Cao, for his patience, background knowledge, guidance and support over the course of this research. He was a constant inspiration, and his assistance and suggestions were invaluable towards the completion of this work.

I would also like to thank Dr. Erik Suuronen and Donna Padavan for granting access to the rheometer, and the help in rheological experiment. To the other members of my group, especially Yan Du, Chunyu Lu and Jian Tang, thank you for the assistance when I needed it.

Finally, I would like to express my deepest gratitude to my parents, for their support, patience and encouragement during my pursuit of the Master’s degree.
Table of contents

Acknowledgments.. ii
Table of contents ... iii
List of Figures .. v
List of Schemes and Tables ... vi
Abstract .. vii
Résumé ... viii
Nomenclature .. ix
1. Introduction ... 1
 1.1 A short history of biomaterials ... 2
 1.2 Biodegradable polymeric materials .. 3
2. Literature survey .. 6
 2.1 Spinal cord injury .. 6
 2.1.1 Overview of SCI ... 6
 2.1.2 Inhibitory factors ... 7
 2.1.3 Nerve growth factor ... 9
 2.1.4 Development of neurotrophic factors therapeutic methods 10
 2.2 Hydrogels .. 12
 2.2.1 Properties of hydrogels .. 12
 2.2.2 Preparation of hydrogel ... 15
 2.3 Naturally derived materials ... 17
 2.3.1 Collagen .. 17
 2.3.2 Hyaluronic acid (HA) .. 17
 2.3.3 Alginate .. 19
 2.3.4 Chitosan .. 20
 2.4 Cell adhesion .. 22
 2.4.1 Cell adhesive proteins and peptides .. 22
 2.4.2 Most commonly used cell adhesive peptides ... 23
3 Hypothesis and Objectives .. 25
 3.1 Project goals ... 25
 3.2 Hypothesis ... 25
 3.3 Objectives ... 25
4. Experimental Methods ... 27
 4.1 Materials ... 27
 4.2 Synthesis of thiolated-hyaluronic acid (HA-SH) ... 27
4.3 Determination of thiol groups .. 30
 4.3.1 Fourier transform infrared (FT-IR) spectroscopy of HA-SH 30
 4.3.2 Ellman’s test .. 31
 4.3.3 Stability of thiol groups in the lyophilized product 32
4.4 Differential scanning calorimetry (DSC) analysis 32

4.5 Cross-linking of hydrogel .. 32

4.6 Rheological analysis ... 33

4.7 Water content of hydrogel ... 33

4.8 In vitro enzymatic degradation assay .. 34

4.9 Statistics ... 35

5. Results and Discussion ... 36
 5.1 Synthesis of Thiolated HA ... 36
 5.2 FT-IR characterization ... 38
 5.3 Experiment design ... 39
 5.3.1 Fractional factorial design ... 39
 5.3.2 Solubility of lyophilized HA-SH samples 42
 5.3 Ellman’s test ... 43
 5.4 Oxidation of thiol groups .. 45

4.5 DSC analysis .. 46

5.6 BM(PEG)₂ cross-linked HA-SH hydrogels ... 48
 5.6.1 Attempted crosslinking ... 49
 5.6.2 Transparency of hydrogels .. 50
 5.7 Rheology ... 51
 5.8 Water content .. 54
 5.9 Enzymatic degradation ... 56

6. Conclusions and Future work ... 59

Reference ... 61
List of Figures

Figure 1.1 Different types of polymer degradation. ..5
Figure 2.1 The chemical structure of hyaluronic acid consisting of GlcUA and GlcNAc. ..19
Figure 2.2 The chemical structure of sodium alginate ...20
Figure 2.3 The chemical structure of chitosan ..21
Figure 3.1 An ideal 3D micro-channel cell patterning scaffold to stimulate and direct neural cell growth in injured spinal cord ...26
Figure 4.1 EDC/NHS coupling reaction to create amine-reactive intermediates that can improve the coupling yield. ..28
Figure 4.3 DTT added to cleave the disulfide ...29
Figure 5.1 Lyophilized HA-SH. The sample is white, appeared fibrous structure. 36
Figure 5.2 FTIR spectrums of hyaluronic acid and HA-SH38
Figure 5.3 Standard curve of absorbance at 412nm for solution of varying amount of L-cysteine ethyl ester hydrochloride ...44
Figure 5.4 Ellman’s test results of lyophilized HA-SH. Error bars represent one standard deviation. Columns represent mean±S.D., n=6 (1X, 2X and 3X, p<0.05 versus the control group) ...44
Figure 5.5 Decrease of the thiol groups (Under storage -20°C dry sample)45
Figure 5.6 Comparison of DSC records of hyaluronic acid sodium salt and thiolated hyaluronic acid (HA-SH) in inert atmosphere, flow rate 20 mL min⁻¹, heating rate 10°C/min. ...47
Figure 5.7 A sample of HA-SH hydrogel and its structure. The product is obtained by dissolving the lyophilized material in PBS, then added BM(PEG)₂ to chemically crosslink the sulfhydryl groups on HA49
Figure 5.8 Representative viscosity–time curves for matrices with varying thiol content ..53
Figure 5.9 Water content of HA–SH hydrogels with different percentages of crosslinker. ..55
Figure 5.10 In vitro degradation of HA-SH hydrogel. Solid shapes: samples incubated in DPBS with 200 U ml⁻¹ of hyaluronidase. Hollow shapes: samples incubated in DPBS (control) average percentage of equilibrium weight (standard deviation n=3) ..58
List of Schemes and Tables

Scheme 5.1 Synthetic scheme of the thioled HA and HA-SH hydrogel preparation..37

Table 5.1 Experiment design to test the effect of 2 factors on thiol substitution of the products: (a) The ratio of HA to EDC/NHS; (b) the ratio of HA to L-cysteine ethyl ester..40
Abstract
Spinal Cord Injury (SCI) often causes cell death, demyelination, axonal degeneration and cavitation, resulting in functional motor and sensory loss below the site of injury. In an attempt to overcome SCI, the regenerating neurons require a permissive environment to promote their ability to reconnect. We report a novel thiolated hyaluronic acid (HA) hydrogel scaffold that can be used to repair the injured spinal cord. More specifically, thiolated hyaluronic acid hydrogels with varying thiol concentrations were successfully synthesized. The amount of thiol groups was measured spectrophotometrically using Ellman’s test. HA gels with different crosslinking densities were synthesized and the water content of the hydrogels was determined. The thermal behavior of the HA gels were studied by DSC. The strength of the hydrogels with varying thiol group content was evaluated by a rheometer. In addition, in vitro enzymatic degradation was performed through submerge the hydrogels in 200U/ml of hyaluronidase solution and incubate at 37°C. According to the result of the present study, this novel hydrogel shows great potential to serve as a 3D cell-patterning scaffold which can be inserted into a hollow fiber channel that could be used to promote regeneration after the SCI.
Résumé

La lésion de la moelle épinière provoque souvent la mort des cellules, démyélinisation, une dégénérescence axonale et la cavitation, qui se résultent dans le moteur fonctionnelle et une perte sensorielle situer en-dessous de la blessure. Dans une tentative pour surmonter les blessures d’une lésion de la moelle épinière, les neurones de régénération nécessitent un environnement permissif pour favoriser leur capacité de se reconnexer. Nous rapportons un nouveau thiolée d’acide hyaluronique (AH) hydrogel d’échafaudage, qui peut être utilisé pour réparer la moelle épinière qui est blessée. Plus précisément, l’acide hyaluronique thiolées hydrogels avec des concentrations variables de thiol ont été synthétisés avec succès. La quantité de groupe de thiol a été mesurée par spectrophotométrie en utilisant le test d’Ellman. Les gels AH avec différentes densités de réticulation ont été synthétisés de la teneur en eau des hydrogels ont été déterminée. Le comportement thermique des gels AH ont été étudiées par DSC. La résistance des hydrogels avec des teneurs variables en groupes de thiol a été évaluée par un rhéomètre. En outre, in vitro, la dégradation enzymatique a été effectuée à travers les hydrogels immergés dans 200U/ml de solution de hyaluronidase et incubé à 37°C. Selon le résultat de l’étude présent, ce nouvel hydrogel a montré un grand potentiel pour servir comme une image de trois dimensions d’une cellule échafaudé de motif qui peut être inséré dans un canal de fibre creux qui pourrait être utilisé pour favoriser la régénération après une blessure de la lésion de la moelle épinière.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR</td>
<td>attenuated total reflectance</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>BM(PEG)$_2$</td>
<td>bismaleimide-activated polyethylene glycol</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CSPG</td>
<td>chondroitin sulfate proteoglycan</td>
</tr>
<tr>
<td>ddH$_2$O</td>
<td>deionized distilled water</td>
</tr>
<tr>
<td>DSC</td>
<td>differential scanning calorimetry</td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5'-dithiobis-(2-nitrobenzoic acid)</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiotheitol</td>
</tr>
<tr>
<td>EDC</td>
<td>1-(3-dimethylaminopropyl)-3-ethyl-carboodimide</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>FGF</td>
<td>fibroblast growth factor</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>GAG</td>
<td>glycosaminoglycan</td>
</tr>
<tr>
<td>GF</td>
<td>growth factor</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>β-1,3-acetyl-D- glucosamine</td>
</tr>
<tr>
<td>GlcUA</td>
<td>α-1,4-D-glucuronic acid</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronic acid</td>
</tr>
<tr>
<td>HAase</td>
<td>hyaluronidase</td>
</tr>
<tr>
<td>IKVAV</td>
<td>Ile-Lys-Val-Ala-Val</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mag</td>
<td>myelin-associated glycoprotein</td>
</tr>
<tr>
<td>MVC</td>
<td>motor vehicle collision</td>
</tr>
<tr>
<td>NGF</td>
<td>nerve growth factor</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxysuccinimide</td>
</tr>
<tr>
<td>Omgp</td>
<td>oligodendrocyte myelin glycoprotein</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>PNS</td>
<td>peripheral nerves system</td>
</tr>
<tr>
<td>PVP</td>
<td>poly(N-vinyl-2-pyrrolidone)</td>
</tr>
<tr>
<td>REDV</td>
<td>Arg-Glu-Asp-Val</td>
</tr>
<tr>
<td>RGDS</td>
<td>Arg-Gly-Asp-Ser</td>
</tr>
<tr>
<td>RGM</td>
<td>repulsive guidance molecule</td>
</tr>
<tr>
<td>RHAMM</td>
<td>receptor for hyaluronic acid mediated motility</td>
</tr>
<tr>
<td>SCI</td>
<td>spinal cord injury</td>
</tr>
<tr>
<td>TSCI</td>
<td>traumatic spinal cord injury</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>YIGSR</td>
<td>Tyr-Ile-Gly-Ser-Arg</td>
</tr>
<tr>
<td>3D</td>
<td>three-dimensional</td>
</tr>
</tbody>
</table>
1. Introduction

Natural or synthetic materials which are suitable for introducing into living tissue are generally known as biomaterials [1]. Synthetic materials can be synthesized through some chemical methods utilizing metals, polymers, ceramics or composite materials. Biomaterials in the form of implants (bone plates, heart valves, dental implants, vascular grafts, sutures, ligaments, intraocular lenses, joint replacements, etc.) and medical devices (biosensors, pacemakers and artificial blood vessels tubes to name a few) are often used to substitute whole or part of a living structure or a bio-device which performs or replaces a natural function, to enhance survival or improve quality of life [2].

Nowadays, injuries to the central nervous system (CNS) are characterized by the inability of the injured axons to regenerate. No functional recovery method exists, particularly for the patients who have spinal cord injuries (SCI). Although palliative care services are available to improve the quality of patients’ life, there is still no effective way to restore motor, sensory, and autonomic functions. The SCI usually makes patients permanently injured. A therapy to help overcome SCI would need to both provide new neurons or neural stems cells to the affected area, and stimulate and direct their growth so that they can form the correct connections with other neurons and restore proper functions. Our ultimate goal is to develop a novel hydrogel for three-dimensional patterns to enable nerve regeneration after SCI.
1.1 A short history of biomaterials

The use of biomaterials dates back to ancient civilizations. Two thousand years ago, it was found gold was used in dental applications in China, Rome and by the Aztec. Glass eyes and wooden teeth were recorded next. Synthetic plastics were developed in the turn of the last century. Just after World War II, vascular prostheses were made with parachute cloth. However, the word “biomaterial” had not appeared when these applications had already spanned much of the written history. However, the origin of the term “biomaterials” was probably invoked through the early Clemson University biomaterials symposia in the late 1960s and early 1970s. It led to the formation of the Society for Biomaterials in 1975 [3].

The development of biomaterials has been an evolving process. Polymeric materials, as a type of biomaterials have unique chemical structures which can provide specific functions for desired applications, and have great impact on the improvement of health and quality of life. There has been extensive research on polymeric materials over the past several decades. The integration and multipurpose usages of polymer biomaterials depend on the advances in the synthesis of polymers with controlled methods and functional architectures, which can enhance their biocompatibility[4] [5]. According to their different effects on organisms, polymeric biomaterials can be divided into two main parts: non-biodegradable (bio-inert materials) and biodegradable polymeric materials.
1.2 Biodegradable polymeric materials

As the widely used polymeric biomaterials, non-biodegradable polymers, such as polyethylene, nylon and silicone rubbers, have some key properties: biostability, implantability, chemical resistance and ease of sterilization [6]. With the recent development in the field of tissue engineering, regenerative medicine and drug controlled release, biodegradable polymers have started playing a major role and have become a new research frontier.

Biodegradable polymeric materials are defined as polymers which are bio- and environmentally degradable. Figure 1.1 shows different types of polymer degradations. Hydrolysis and enzymatic cleavage are the main reasons leading to a scission of the polymer backbone which can cause degradation. The advantages of biodegradable polymers are the following [7-11]:

- Their degradation does not lead to inflammatory or toxic response;
- They are metabolizable in the body after they complete their purpose, leaving no trace and avoiding a second surgical intervention for removal;
- With the polymeric materials’ degradation, the surrounding tissue is continuously repaired and then healed;
- They offer tremendous potential as the basis for controlled drug delivery because they can release drugs gradually.

In terms of sources, there are two general types of biodegradable polymers: natural biodegradable polymers and synthetic biodegradable polymer materials. These polymer materials are extremely useful for various applications in many fields currently, such as medical, drug release and packaging, etc. In this study, we used
natural biodegradation material, including alginate [12, 13], chitin and chitosan [14-16], starch, hyaluronan [17-20], and gelatin [21, 22].

Hyaluronic acid (HA) was chosen for the fabrication of hydrogels in our study. HA is a naturally occurring component of the extracellular matrix (ECM) and is found in synovial fluid, connective tissues and organs of all higher animals [4, 23-25]. More details of HA will be reviewed in the next section (Literature review). Generally, HA is an ideal choice for the pattern base because (i) it is a component of the natural cell microenvironment and known to support cell proliferation [26], (ii) it naturally shows cell anti-adhesive properties in that it prevents the background binding of cells located off-pattern [27], and (iii) it has the reactive carboxyl groups that can be used for chemical crosslinking to form stable hydrogels [17, 20, 28]. Although pure HA has a high degradation rate in vivo, it can also be chemically modified to alter its properties by esterification [29], cross-linking [17, 20], and binding with other polymers [30]. For example, one method consist in attaching thiol groups to HA, then using the thiol groups to crosslink and form the hydrogel has been reported [20, 23, 31].
Type I

\[\text{X} \rightarrow \text{labile backbone bonds} \]

Type II

\[\text{A} \rightarrow \text{hydrophobic side group} \]
\[\text{B} \rightarrow \text{hydrophilic side group} \]

Type III

\[\text{C} \rightarrow \text{crosslinks} \]

Figure 1.1 Different types of polymer degradation.
2. Literature survey

2.1 Spinal cord injury

2.1.1 Overview of SCI

Spinal cord is a tubular bundle nervous tissue that can be classified into five sections: the cervical, thoracic, lumbar, sacral, and coccygeal regions [32]. Traumatic injury to spinal cord is an annihilating disorder of the central nervous system and often leads to devastating personal, economic and social problems. The current reality is that the mammalian CNS is unable to fully regain function after injury, the clinical consequences of which are often permanent loss of sensory, motor, and autonomic functions. Over the past few decades, young males have been known to be at the highest risk for traumatic SCI (TSCI), mainly caused by motor vehicle collisions (MVC) [33, 34]. A cohort study of TSCI in Canada has been done by Pickett et al. [35], in which TSCI was investigated by fitting a bimodal distribution by age. Groups that have higher risk of traumatic SCI include not only young males, but also elders more than 60 years old. Falls are another cause of spinal cord injury. Noonan et al. [36] also estimated initial incidence of traumatic SCI is 1,785 cases per year, and the discharge incidence is 1,389 (41 per million) in Canada in 2010. Moreover, the direct costs of healthcare in the traumatic SCI population were estimated to range between $100,000-$130,000 Canadian Dollars (CAD) per person. In-patient rehabilitation care is the largest cost in the health care system [37]. It is life changing for the injured people and their family, and also has horrendous social costs for health care treatment, recovery, loss of productivity, to name a few [38].
2.1.2 Inhibitory factors

In mammals, two main obstacles prevent neural regeneration: inhibitors present within myelin and the formation of a glial scar. After CNS injury, oligodendrocyte precursors, microglia, meningeal cells, astrocytes, etc., are assembled to the site. Axon growth inhibitory molecules associated with myelin and the glial scar prevent axon regeneration by acting as a barrier at the injury site to inhibit axon growth in vivo, and result in permanent loss of motor, sensory, and autonomic function below the area of injury [39-41].

2.1.2.1 Inhibitors of regeneration in myelin

Interestingly, myelin extracted from peripheral nerves system (PNS) was shown to be growth permissive whereas CNS myelin strongly inhibited nerve growth. As first described by Ramon y Cajal, white matter could ‘block’ regeneration in the CNS [42]. But it was no longer true till Schwab and his colleagues did their research in the late 1980s and gave a molecular insight into the mechanism of inhibition [43, 44]. The IN-1 monoclonal antibody, which could help neurite extension, allowed axons to grow on myelin both in vitro and in vivo [44, 45]. The antigen for the IN-1 antibody was identified after a decade. Three groups independently cloned an antigen of the IN-1 antibody, which was named Nogo by Schwab [46, 47]. In addition, multiple components of CNS myelin that inhibit axonal growth were identified by investigators, such as myelin-associated glycoprotein (Mag)[48, 49], oligodendrocyte myelin glycoprotein (Omgp)[50], repulsive guidance molecule (RGM)[51] and ephrin-B3 [52].
A therapy that emerged from research was the use of the IN-1 anti-Nogo antibodies. This work was initiated over two decades ago, directed against what was then known as 2 neurite outgrowth inhibitors, NI-250 and NI-35 (i.e. Nogo)[44]. Schnell et al. indicated that the IN-1 antibody in a partial transection model of SCI in the rat was found to promote axonal regeneration after injury [53] and functional recovery [54]. The anti-Nogo antibody treatment strategy has been commercialized by Novartis, as one of the most promising approaches to enhance axonal regeneration following SCI. But one obvious question about the use of antibody treatments (or other myelin inhibitors) is the functionality of the axonal sprouting that might be induced. Myelin-associated inhibitors may have evolved as means to maintain the structural integrity of synaptic networks formed during development and limit sprouting following developmental pruning and myelination.

2.1.2.2 Glial scar–associated inhibitors

Glial scar formation is a reactive cellular process which can cause reactive astrogliosis after injury to the CNS. The place where regeneration of axons fails necessarily contains a glial scar. All the five cell types, astrocytes, oligodendrocyte precursors, oligodendrocytes, microglia, and meningeal cells have inhibitory properties, which mean any one kind of these cells is potentially sufficient to block regeneration of most CNS axons.

The cells that comprise the glial scar secrete some growth inhibitory extracellular matrix components, known as chondroitin sulfate proteoglycans (CSPGs) which inhibit axonal outgrowth [55, 56]. The CSPGs (neurocan, brevican, versican, aggrecan, phosphacan and NG₂ [57]) have a protein core which attach sulfated
glycosaminoglycan (GAG) chains through covalent bond. *In vitro* studies
demonstrate that the ability of CSPGs restricts neurite outgrowth from various
kinds of cultured neurons and indicates inhibitory properties owing to the
chondroitin side chains on CSPGs [58-60]. Moreover, increased levels of CSPGs
present in the area wound inhibit axon regeneration. For this reason, various
treatments have attempted to eliminate the chemical components of the glial scar
or adjust their negative effects, especially by eliminating the CSPGs [61, 62].

2.1.3 Nerve growth factor

Growth factors (GFs) are naturally occurring substances which are defined as
protein or steroid hormone [63]. They are capable of stimulating neurite outgrowth,
cell survival, proliferation in the case of cells capable of mitosis, and differentiation
in biological environment. GFs have different cell type specifications; some GFs (e.g.,
nerve growth factor) stimulate only one or few cell types while others (e.g.,
insulin-like growth factor) stimulate a wide variety of cell types. Over the past
several decades, the number of growth factors has continually increased and been
grouped as members of some ‘families’. Nerve growth factor (NGF) denotes a
heterogeneous group of neurotrophic agents, which were discovered and
characterized by Levi-Montalcini and Cohen [64]. NGF participates in a wide range
of actions in adult animal, such as axon growth, peptides synthesis, transmitter
enzymes and calcium-binding proteins, dendritic arborization, sprouting and
myelination [65]. For these reasons, it can be expected that NGF will enhance
axonal regeneration [66-68].
2.1.4 Development of neurotrophic factors therapeutic methods

The preceding section highlights the fact that nerve growth factor can arouse growth of axon and promote functional recovery in the injured spinal cord [69]. In addition, other neurotrophic factors have beneficial effects on different kinds of axons. For example, NT-3 promotes growth of corticospinal axons [70]; Brain-derived neurotrophic factor (BDNF) can boost rubrospinal and propriospinal axon growth [71] and acidic fibroblast growth factor (FGF) has been reported to promote the regeneration of supraspinal axonal projections in the spinal cord [72]. But several problems inhibit the translation of these promising discoveries from animal models of spinal cord injury to the clinical application [73]:

a. Suitable scaffolds must provide structural support to the injured spinal cord over which injured axons can extend.

b. The mechanisms of function restored in rodent models of spinal cord injury need to be understood to then predict which factors are worth to test in humans with spinal cord injury.

c. The differences between the rodent models and human spinal cord were required to be tested before clinical trials can be justified in humans, such as spinal cord organizations, projection patterns and functions exist.

As mentioned above, neurotrophic factors have the potential to regenerate the motor neurons at the level of a spinal cord injury. However, comparing with other single therapies, such as cellular replacement and neutralization of myelin-associated inhibitors, they all remain the subject of continued debate so that their applications are extremely limited.
Over the past decade, some groups published several inspiring papers, reporting that combinations of treatment approaches exert greater effects on axon regeneration than single therapies [74, 75]. For example, in order to realize the regeneration of dorsal column sensory axons into and beyond the lesion site, combinatorial therapies can support both intrinsic and extrinsic neuronal growth. Intrinsic mechanisms were achieved by increasing the level of cyclic adenosine monophosphate (cAMP) in sensory neuronal soma; extrinsic mechanisms were targeted by placing extra- and intra-cellular matrices in the lesion site to lead axonal attachment and by dosing neurotrophic factors within and beyond the bridge in lesion site to provide a trophic stimulus to injured axons [67]. Houle et al. also confirmed that combinatorial therapies can enhance the axon regeneration in rodent models of spinal cord injury [76]. Furthermore, truly axonal regeneration is difficult to achieve because it requires targeting both intrinsic and extrinsic mechanisms through different therapies to achieve limited numbers and distances of regenerating axons. It may be difficult for just one therapy to handle this complicated issue. Although some practical obstacles to combinations of treatment approaches need to be overcome, such as design a combinatorial approach in larger animal models instead of rodent models, it still may bring benefits to humans at last.
2.2 Hydrogels

Pharmaceutical chemistry has developed steadily in recent years and has become invaluable in helping people prevent disease and keep healthy. In the past few decades, research in the treatment of diseases via biomolecules, such as drugs and proteins, has progressed a lot. Initially, biomolecules could just be administered in limited ways, due to some of the restrictions of drug delivery in the body [77]. And then, biomaterial carriers, which can be encapsulated or immobilized with drugs, are discovered, allowing the drugs reach the required site safely. These carriers realized the drugs release in the location which was inaccessible formerly. After years of evolution, the nature of these carriers has progressed from ceramics to synthetic materials [78]. Many factors were considered during the design process of the carriers, such as integrity, biocompatibility and flexibility. This has led to the use of hydrophilic three dimensional matrices as carrier materials. This class of materials is known as hydrogels. Synthetic hydrogels can be prepared from varied monomers, and has many applications, especially in tissue engineering. They provide an effective and controlled way in which to administer proteins and peptides for treatment, because hydrogels have ordered polymer networks and physicochemical properties [77]. Therefore, hydrogels have become a premier material used for drug delivery and biomedical implant devices.

2.2.1 Properties of hydrogels

Hydrogels are hydrophilic and highly absorbent polymer matrices, capable of imbibing a great deal of water or biological fluids when placed in aqueous environment [79, 80]. Their high water content and soft consistency contribute to
their biocompatibility. These gels resemble natural living tissue more than any other kind of synthetic biomaterial, making them ideal materials for applications in tissue engineering [81]. The hydrogel networks, which have a three dimensional structure and are composed of homopolymers or heteropolymers, can be split into ‘physical’ (e.g., entanglements, crystallites) and ‘chemical’ gels (tie-points, junctions) [82, 83]. Physical hydrogels’ network formation is reversible. In contrast, chemical crosslinks are established by irreversible covalent bonds. Combinations of both physical and chemical networks can also be achieved, e.g. gelatin modified with methacrylamide groups [84]. As mentioned above, the biocompatibility and crosslinked structure of hydrogel make them usable for contact lenses, artificial skin, membranes for biosensors and drug delivery devices [5, 85, 86].

2.2.1.1 Water swollen capacity and absorption capacity
The water swollen capacity and absorption capacity both are important properties of the hydrogels that bring them wide applications. The presence of polar hydrophilic groups, such as –OH, -COOH and –CONH₂ in the network, bound with the water molecules and affect the swelling and absorption properties [87]. The network will intake additional water due to the osmotic driving force [88]. This additional swelling is opposed by the chemical or physical crosslinks, leading to an elastic retraction force in the network. Then, the hydrogel will reach equilibrium.

2.2.1.2 Biocompatible properties
Biocompatibility is important for hydrogels as useful biomedical polymers. It relates to the material’s ability to exist within the body without damaging cells or resulting in significant scarring or eliciting an opposite response from desired function [89].
Most polymers used for biomedical applications must have cytotoxicity assays and in-vivo toxicity tests. Most toxicity problems associated with hydrogels arise from the unreacted monomers, oligomers and initiators. Thus, an assessment of the potential toxicity of a material used in hydrogel fabrication is a necessary part of the determination for biological applications. In order to decrease toxic effects, gamma irradiation is employed as polymerization technique instead of the use of initiators [90]. Steps are taken to remove impurities from hydrogels by repeated washing and immersing. The kinetics of polymerization has also been studied to achieve higher conversion rates, and avoid unreacted monomers and byproducts.

2.2.1.3 Mechanical properties

The mechanical properties of hydrogels are essential design parameters in tissue engineering, because the gel must maintain physical and mechanical integrity and create a space for tissue development. In addition, the adhesion and gene expression of cells have strong correlation with the mechanical properties of the polymer scaffold [91]. Typically, the crosslinking molecules’ type, the original rigidity of polymer chains and the crosslinking density determine the mechanical properties of hydrogels [92]. The strength of the hydrogel can be increased by adding crosslinkers and monomers to increase the degree of crosslinking. However, there is an optimum degree of crosslinking. A higher degree of crosslinking leads to more brittleness and less elasticity. Elasticity is also an important parameter for hydrogels. It means flexibility for the crosslinked chains, and capability to stimulate movement of incorporated bioactive agent. Thus, it is necessary to find a balance between mechanical strength and flexibility for hydrogels’ applications.
2.2.1.4 Controlled degradation

It is important to control the degradation rate of hydrogels in tissue engineering, whether the gels are obtained from natural or synthetic substances. Typically, the degradation rate of a scaffold and the time of tissue development need to be considered and will depend on the type of tissue to be engineered. Many reasons can cause hydrogels’ degradation, such as hydrolysis, enzymatic action and dissolution [89]. The degradation rates of crosslinked gels can affect the mechanical properties by introducing network defects, and resulting in the formation of soft hydrogels with longer degradation time than for high crosslinked gels [93].

2.2.2 Preparation of hydrogels

Hydrogels are crosslinked polymeric networks which can swell in water or biological fluids [86]. They can be used for release control and for cell or biomolecule encapsulation. In most cases, the polymer structure of hydrogels can degrade in no potential toxic products [3]. The preparation methods of hydrogels include chemical and physical crosslinking, both of which are used for the design of biocompatible hydrogels and will be discussed in detail. In this study, the hydrogels were crosslinked via crosslinking agent BM(PEG)2, which can form covalent bonds and ensure hydrogels to be mechanically stable.

Physical crosslinks are entanglements, crystallites, and association bonds such as hydrogen bonds and strong van der Waals interactions [77]. The physical gels can be classified as strong physical gels and weak physical gels. Strong physical gels have strong physical bonds between polymer chains having mechanical properties similar to chemical gels. Weak physical gels have reversible links between chains and the
associations are temporarily, which means that they have limited lifetimes, breaking and changing continuously.

Chemical crosslinking requires a linear or branched polymer with small molecular weight, difunctional or multifunctional crosslinking agent. This agent usually links two polymer chains through its functional groups. In most cases, this reaction is performed in solution for biomedical applications. The solvent mostly used for these reactions is water, but some organic solvent, such as ethanol, benzene and chloroform are also used. The second method is copolymerization reaction, which is used to chemically synthesize a copolymer and the initiators used in this reaction are radical and anionic initiators. Four steps to crosslink are initiation, propagation, crosslinking, and termination. The third method involves a combination of monomer and linear polymeric chains that are crosslinked by interlinking agents. Moreover, some of these techniques can also be performed by high energy radiative processes (e.g., gamma rays, X-rays, electron beam radiation) to form hydrogels. For instance, poly(N-vinyl-2-pyrrolidone) (PVP) can produce hydrogel with UV radiations [94]. Recently, Sperinde et al.[95] provided a novel method, enzymatic crosslinking, to synthesize PEG-based hydrogels.
2.3 Naturally derived materials

Naturally derived hydrogel forming polymers have been widely used in biomedical applications because they have similar, often identical properties to the natural extracellular matrix. An overview of some of the most commonly used proteins and polysaccharides for tissue engineering is presented below.

2.3.1 Collagen

Collagen is one of the most widely used tissue-derived polymers and a major ECM protein existing in mammalian tissues. It has a unique helix structure. Collagen can be crosslinked through both physical and chemical ways. Physically crosslinked collagen gels are reversible and have limited mechanical properties. Chemically formed gels provided better physical properties, but still have some weak points: they have poor physical strength, and are potentially immunogenic and expensive [96]. Because of its superior biocompatibility, collagen has been used as a 3D tissue scaffold [97] or artificial skin [98]. Recently research focuses on the optimization of collagen-based biomaterials for pharmaceutical applications by enhancing their mechanical properties, biodegradability and delivery characteristics.

2.3.2 Hyaluronic acid (HA)

Hyaluronic acid (HA) is a naturally occurring linear polysaccharide consisting of repeated disaccharide units. The structure of HA is composed of repeating disaccharide units α-1,4-D-glucuronic acid (GlcUA) and β-1,3-acetyl-D-glucosamine (GlcNAc)(Figure 2.1) with a molecular weight ranging from 10^3 to 10^7 Da [99]. It can be found in body fluids and tissues, such as synovial fluid, extracellular matrices, connective tissues and organs of all higher animals [100]. HA as one kind of the
glycosaminoglycans (GAGs) has been highly negatively charged due to the carboxyl groups on the HA chain that provide the molecule their negative charges. It makes the molecule extremely hydrophilic so that it can highly extend in aqueous solution and occupies extraordinary volume compared with its mass.

HA was known for its applications in cartilage, vitreous humor and ECM of skin [101]. In addition, HA has been found to bind to some kinds of plasma membrane receptors on the surface of cells in the body. Two major receptors are CD44 and the receptor for hyaluronic acid mediated motility, RHAMM [102]. All HA binding receptors contain two positively charged amino acids, Arg and Lys, that cause them to bind to the negatively charged carboxyl groups on HA. Although HA hydrogels show non-adhesion to cells, when modified with adhesive peptides, such as the adhesive fibronectin peptide fragment: Arg-Gly-Asp-Ser (RGDS), and then binding to cell receptors, HA can directly influence cell behavior.

Pure HA has a high degradation rate in vivo because of hyaluronidase. A variety of modifications and crosslinking strategies have been tried to improve the strength, toughness and durability of HA [20]. The chemical modifications of HA include two commonly used functional groups of its structure: carboxyl groups on the GlcUA subunits and hydroxyl groups. The carboxylic acid groups are often modified by esterification [103] and carbodiimide-mediated dihydrazide reactions [20, 104] to form ester linkages, whereas hydroxyl groups can be used to form ether linkages. Carbodiimide-mediated coupling of HA to primary amines has been confirmed in a variety of studies that the amide bonds could not be formed efficiently and crosslinked easily [105] till the reactive intermediate rearranges rapidly to a stable
N-acylurea adduct. But it should be noted that since the carboxyl groups of HA engaged cell surface receptors, any crosslinking or chemical modification involved the carboxyl group (including carbodiimide-mediated coupling reactions) is predictable to decrease the specific biological functions associated with HA [106].

![Chemical structure of hyaluronic acid](image)

Figure 2.1 The chemical structure of hyaluronic acid consisting of GlcUA and GlcNAc.

2.3.3 Alginate

Alginate, also known as algin or alginic acid, is a well-known biomaterial distributed in the cell walls of brown algae. The units which make up this linear copolymer include β-D-mannuronate and α-L-glucuronate units [107]. The molecular weight ranges from 10 to 1000 kDa depending on the source and the process of its production. Alginate has a number of outstanding properties such as low toxicity, biocompatibility, relatively low cost. It can form gel simply with divalent positive ions. It has found frequent usages as microcarriers for cell encapsulation, wound dressing, immobilization matrix, dental impression and so on [108]. Although alginate has many advantages, a potential obstacle in using alginate gels in tissue engineering is the shortage of cellular interaction. In order to solve this problem, cell-interactive peptides (e.g., RGD) or growth factors can be coupled to alginate.
gels to enhance cell adhesion [109]. In addition, the molecular weights of many alginate gels are above the renal threshold of the kidney [110]. A remarkable way to control the degradation of alginate has been reported recently. It includes the isolation of polyguluronate blocks with molecular mass of 6000 Da from alginate, then the derivatives crosslinking with adipic acid dihydrazide [111]. The mechanical and degradation properties of polymers could be controlled depending on the density of crosslinking [93].

![Figure 2.2 The chemical structure of sodium alginate](image)

2.3.4 Chitosan

Chitosan is an N-deacetylated derivative of chitin which is obtained from the shells of crabs or shrimps. It has found many biomedical applications due to its biocompatibility, biochemical activity and low toxicity. It can be degraded in the presence of enzymes such as chitosanase [112]. Chitosan has good water solubility with a pH <6.2 [113], but is generally insoluble in neutral conditions and in most organic solvents due to the neutralization of the amino groups and its high crystallinity. Therefore, many approaches have been reported to improve the solubility of this polymer, such as introducing glucosamine branches [114]. Chitosan can form hydrogel ionically [115] or by chemical cross-linking with di- or
polyaldehydes [116]. The gelation rate was increased by increasing the concentration of either chitosan or aldehyde [113]. The scaffold applications of chitosan-based hydrogel in tissue engineering have also been studied. Chitosan hydrogel can be applied either itself [117] or as part of composites with synthetic polymers [118, 119], ceramics [120, 121] or natural polymer [122] aiming at different applications.

Figure 2.3 The chemical structure of chitosan
2.4 Cell adhesion

2.4.1 Cell adhesive proteins and peptides

Cells in the body do not simply “stick” together to assemble three-dimensional tissues, but rather are composed into diverse and unique patterns [123]. They also contain receptors on their surfaces, with which can bind to the underlying material through some specific proteins, such as fibrinogen, fibronectin, laminin and vitronectin [124]. Traditionally speaking, cellular adhesion on biomaterials is realized through the nonspecific adsorption of proteins to their surfaces. Researchers have found that several distinctive amino acid sequences that exist in the larger cell adhesive protein molecules also mediated adhesion, which means that direct binding of these sequences or the cell adhesive protein molecules on the biomaterials could stimulate cell adhesion and other cellular responses [125]. However, the use of proteins has a number of disadvantages for the applications of biomaterials. First of all, large proteins have to be isolated and purified. They may elicit immune responses and increase infection risks. Furthermore, these proteins can become denatured or unfolded, which could cause the receptors on the cells surface to no longer recognize them. In order to avoid proteins’ degradation, they need to be refreshed continuously. Inflammation and infection can even accelerate the degradation rate, so that long-term applications of these materials seem impossible. Due to the orientation of the protein is stochastic on a surface, it is limited if only the active site for binding is available to cells [126].

Conversely, small immobilized peptides sequences can overcome most of the problems. They are more stable, show higher stability towards sterilization and
storage conditions [127]. They can be packed with higher density on surfaces due to their lower space requirement; They can be chemically synthesized without be isolated from other organisms [125]. The peptide sequences bonded to surfaces could be displayed in a manner such that nearly all of them were active and available for binding to cell surface receptors [128]; some small peptides can even help against degradation.

2.4.2 Most commonly used cell adhesive peptides

A number of cell adhesive peptide sequences that exist in the proteins are being extensively researched. The main sequences used in the literature include RGD, REDV, YIGSR and IKVAV.

RGD was originally derived from the protein fibronectin. Since its original discovery, RGD sequences have been identified in a variety of other proteins mediating cell adhesion (e.g., vitronectin, laminin, fibrinogen, collagen) [125].

The integrin receptor α4β1 offers a target that is present on the endothelial cell but not the blood platelet. But this receptor lack of selectivity so that only can address by REDV, a tetrapeptide derived from the protein fibronectin, which has found can achieve cell-type selectivity [129].

The sequences YIGSR and IKVAV domain from laminin, has been used in the literature for nerve regeneration. YIGSR binds to the 67 kDa laminin receptor (67LR) on cell surfaces. YIGSR peptide has been found to promote adhesion and spreading of a variety of cell lines and several types of nerve cells [130-132]. IKVAV binds to a 110 kDa laminin binding protein on cell surfaces and has been found not only to
mediate neuronal attachment and growth, but also to promote the sprouting of neurites, the projections extending from neurons [133].

In our design, the cell adhesive peptide RGDS needs to be caged before it is covalently linked to thiol-modified hyaluronic acid hydrogels, and then uncaged selectively using a photomask by exposure to UV light, creating patterns on the gel which can form cell adhesive and non-adhesive areas. This design will allow the axons’ directional growth from one end of the site of injury to the other site, helping the spinal cord to regenerate.
3 Hypothesis and Objectives

3.1 Project goals

Thiolated hyaluronic acid (HA-SH) has been specifically studied for drug delivery applications, but it has not been investigated as a SCI repair implant device. The aim of this study is to develop a three-dimensional cell patterning scaffold, shown in Fig. 3.1, which would possibly be designed and realized to make the broken spinal cord reconnect and fix the SCI.

3.2 Hypothesis

Thiolated HA can be chemically modified and crosslinked to form a three-dimensional hydrogel for spinal cord injury repair applications.

3.3 Objectives

1) Create a novel process to form a HA-SH hydrogel which will eventually be incorporated into a biomimetic device for treatment of spinal cord injuries.

2) Synthesize hydrogels with varying concentrations of HA-SH and different amounts of thiol groups are examined the differences among the gels.

3) Test the chemical, physical and mechanical properties of the hydrogels with varying thiol groups.

4) Study the effect of the crosslinking on the hydrogel biodegradability.

The literature review has provided with current thoughts on central nervous system regeneration, why we choose hyaluronic acid as a scaffold material, and some background information on cell adhesion. This section has provided the major ideas and objectives that are involved in the work for this thesis. This will be followed by
the experiment design, results we have achieved, and a description of the future work.

Figure 3.1 An ideal 3D micro-channel cell patterning scaffold to stimulate and direct neural cell growth in injured spinal cord.
4. Experimental Methods

4.1 Materials

Hyaluronic acid sodium salt (HA) from *Streptococcus equi* was obtained from Sigma-Aldrich (Oakville, ON). Crosslinker bismaleimide-activated PEG (1,8-Bis-Maleimidodiethyleneglycol, BM(PEG)_n, n=2, MW=308 Da) was purchased from Pierce (Ottawa, ON). N-hydroxysuccinimide (NHS), Dithiotheitol (DTT), and Ethylenediaminetetraacetic acid (EDTA) were purchased from Thermo Scientific (Burlington, ON). 1-(3-dimethylaminopropyl)-3-ethyl- carbodiimide (EDC) was from VWR (Mississauga, ON). Dulbecco’s phosphate buffered saline (DPBS) was from Invitrogen (Burlington, ON). All other chemicals were obtained from Sigma-Aldrich and used for the experiments as received unless indicated otherwise.

4.2 Synthesis of thiolated-hyaluronic acid (HA-SH)

The covalent bond between sodium hyaluronic acid and L-cysteine ethyl ester hydrochloride was formed via the formation of amide bonds between activated carboxyl group of hyaluronate and primary amino group of L-cysteine. HA-SH was prepared as previously described by others with minor modifications (see Figure 4.1 to 4.3 for more details of the chemistry) [20].
Figure 4.1 EDC/NHS coupling reaction to create amine-reactive intermediates that can improve the coupling yield.
Figure 4.2 L-Cysteine ethyl ester is an amine-containing compound which can react with NHS ester

Figure 4.3 DTT added to cleave the disulfide
In a typical reaction, 0.100g HA was added into 25ml PBS (pH 7.4) under constant stirring overnight at ambient temperature to obtain a 0.4% (w/v) polymer solution. Subsequently, 431.33mg of EDC (90mM) and 258.95mg of NHS (90mM) were added to the HA solution. The reaction mixture was then stirred for 30 min at room temperature to activate the carboxyl groups on HA. To the activated HA reaction mixture, 278.51mg L-Cysteine ethyl ester hydrochloride was added and the reaction was allowed to proceed overnight at room temperature. Finally, 385.60mg of DTT (300mM) in solid form was then added to the reaction mixture to cleave the disulfide in the solution for 2 hours with stirring. The resulting reaction mixture was transferred to 6,000-8,000 MWCO FisherBrand regenerated cellulose dialysis tubing (Burlington, ON) and dialyzed twice against 1% NaCl for 24 hours to remove unreacted L-cysteine ethyl ester hydrochloride, EDC and NHS coupling agents. The samples were then purified against deionized distilled water (ddH$_2$O) twice. All the dialysate used here was bubbled by N$_2$ for 2h to remove the oxygen from the solution, added 1mM EDTA and adjusted the pH to 3 through 1mM HCl to avoid oxidation [134-136]. Finally, the samples were dialyzed against ddH$_2$O once to raise the pH of the mixture to neutral. The exhaustively dialyzed samples were frozen and lyophilized (Lyophilizer: Labconco Freezone 6, Kansas City, MO) to dry at -80°C, 10Pa for 2 days, and then stored at -20 °C for further use.

4.3 Determination of thiol groups

4.3.1 Fourier transform infrared (FT-IR) spectroscopy of HA-SH

The Fourier transform infrared spectrum was utilized to determine the structures of the molecules with the molecules’ characteristic absorption of infrared radiation.
The HA and HA-SH lyophilized samples’ FT-IR spectra were recorded to characterize the sulfhydryl group in the products, indicating the covalent attachment of L-cysteine ethyl ester hydrochloride to HA can be achieved through the reaction. An attenuated total reflectance (ATR) FT-IR spectrometer (Agilent, Mississauga, ON) was used to collect 32 scans in the 600-4,000 cm\(^{-1}\) range with a resolution of 2 cm\(^{-1}\).

4.3.2 Ellman’s test

The thiol groups immobilized on the samples were determined spectrophotometrically using Ellman’s reagent which is on the basis of UV absorption of free sulfhydryl group as proposed by Riddles [137]. To carry out the test, Reaction Buffer was prepared by dissolved 1mM EDTA into 0.1M sodium phosphate buffer at pH 8.0. Ellman’s Reagent Solution was prepared by dissolving 4mg Ellman’s Reagent (DTNB) in 1ml of Reaction Buffer. For each sample to be tested, a tube was prepared which containing 50μl of Ellman’s Reagent Solution and 2.5ml of Reaction Buffer. 5mg lyophilized HA-SH was dissolved in 10ml of reaction buffer to form a final concentration of 0.5mg/ml and split into three aliquots. Then 250μl of each sample was added to the tubes separately, mixed well, incubated at room temperature, and gassed with nitrogen for 15 minutes. The samples’ absorbance at 412nm was measured with UV/VIS spectrometer (Perkin-Elmer Lambda 25, Waltham, MA).

The quantity of the free thiol groups was calculated based on a standard curve obtained by solutions with L-cysteine ethyl ester hydrochloride of known concentrations (0.0Mm-1.5mM) measured in the same way.
4.3.3 Stability of thiol groups in the lyophilized product

Lyophilized HA-SH conjugates were stored in a freezer at -20°C. At pre-determined time points (3 days), 1.5mg of each assayed sample was taken out and dissolved in 3ml reaction buffer at a final concentration of 0.5mg/ml. Aliquots of 200μl were pipetted into a vial and 50μl of 1M HCl were dripped in order to stop the further reaction[20], such as oxidation and disulfide bonds formation. The content of remaining thiol groups was determined via Ellman’s reagent.

4.4 Differential scanning calorimetry (DSC) analysis

DSC characterizations were recorded by DSC Q1000 (TA Instrument, New Castle, DE), using TA Instrument Explorer software. Approximately 3-5 mg samples were added into aluminum pan at room ambient. After that, the pan with HA and the pan with HA-SH conjugate were sealed separately. Anhydrous nitrogen was used as a purge gas (purge: 20ml/min). The instrument was calibrated with pure indium (purity 99.999%, melt point 156.6°C, heat of fusion 28.45 J/g). Equilibrate at 25°C and ramp 10°C /min to 275°C.

4.5 Cross-linking of hydrogel

Each assayed sample was prepared by dissolving lyophilized HA-SH product in PBS with 5mM EDTA in 24-well plates, in a final concentration of 15mg/ml, typically 1-2ml solution contained in each well. After the samples were dissolved, ice bath was used to control the reaction rate during the crosslinking process. The amount of maleimide crosslinker BM(PEG)₂ added was based on the molar ratio of thiol groups in HA to carbon-carbon double bonds in BM(PEG)₂. Theoretically for 100% crosslinking, two moles of thiol group in HA indicates that one mole of crosslinker
should be added. However, in practical applications, two-fold molar excess BM(PEG)$_2$ added in the solution is acceptable in the reaction. Crosslinker Stock Solution was first prepared by dissolving 6.2mg BM(PEG)$_2$ in 100μl DMSO. Afterwards, the reaction mixtures were kept at RT for a few hours before incubating in PBS at 37°C.

4.6 Rheological analysis

The viscoelastic mechanical properties of the HA-SH hydrogels were characterized by a Brookfield R/S Plus rheometer (Middleboro, MA) fitted with a 50mm conical spindle with 2° cone angle. For rheology analysis, 1.5ml of each hydrogel sample was prepared by dissolving in PBS (pH 7.4) at the concentration of 30mg/ml. After the thermostat warmed the metal plate onto which the hydrogel will place to 37°C, the crosslinker was quickly added in the sample and mixed well. The mixture was then quickly placed on a metal plate which was below the spindle of the rheometer. The spindle was then immediately lowered to a gap size of 4μm so it could completely contact with the solution. Indicated viscosity was determined with time at a constant shear rate $5s^{-1}$. The *Rheo3000 v1.2* software was used to monitor the rheological properties in terms of viscosity (Pa·s) and time to gelation (s). The time at which the maximum viscosity was reached was considered to be the material’s time to gelation.

4.7 Water content of hydrogel

The water-absorbing capacity of the hydrogel was determined by gravimetric method. HA hydrogels were synthesized according to the method mentioned in Section 4.2 and cut into defined shapes, dried in a vacuum oven and weight. The
weight of each hydrogel was recorded as the dry weight at t=0 (M_0). The hydrogels were then immersed in 1ml PBS buffer and incubated at 37°C for 24 hours. The hydrogels were removed from the buffer and excess buffer was gently blotted away on the surface by kimwipe, to measure the mass (M_a). For all the hydrogels had been tested, a relatively constant mass was achieved after 24hrs of hydration in PBS. From these data, water content of the hydrogels was calculated as following:

\[
\% \text{water} = \frac{(M_a - M_0)}{M_a} \times 100
\]

4.8 In vitro enzymatic degradation assay

In order to determine the stability of the HA-SH hydrogel, samples of HA-SH hydrogels were synthesized in pre-weight vials, cut into defined shapes and dehydrated in the vacuum oven. Afterwards, the hydrogels were fully swollen in DPBS at 37°C for 24 hours, and the initial mass was recorded as M_i. In vitro degradation of HA was performed by incubating the hydrogels with 200 U/ml hyaluronidase (HAase) in DPBS at 37°C. Supernatant was removed at each predetermined time points, hydrogels were weighed (M_t), and the percentage of equilibrium mass was calculated as the following formation:

\[
\frac{M_t}{M_i} \times 100
\]

Fresh DPBS containing 200 U/ml HAase were then replaced in each sample at each time point. Hydrogels incubated in DPBS at 37°C with no enzyme were used as a control group to make a comparison of degradation analysis.
4.9 Statistics

All statistical analyses were performed using Student’s t-test (two-tailed), p<0.05 was set as the criterion for statistical significance. The data are represented as the mean±standard deviations.
5. Results and Discussion

5.1 Synthesis of Thiolated HA

The well-established carbodiimide coupling method has been broadly used for activating the carboxyl group on polysaccharides. In our study, thiolated hyaluronic acid was successfully synthesized through forming amide bonds between carboxylic acid groups on HA chain and amine groups of cysteine ethyl ester (Scheme 5.1). Images for the HA-SH conjugate lyophilized products are shown in Figure 5.1.

EDC reacts with the carboxyl groups of HA first and forms an amine-reactive O-acylisourea intermediate [138]. However, the intermediate is unstable in aqueous solutions, and the hydrolysis may cause the yield of thiol moieties decreasing. *N*-hydroxysuccinimide (NHS) or its water-soluble analog (Sulfo-NHS) is often added in EDC coupling reaction to create amine-reactive intermediates that can improve the coupling yield. The hydrolysis of NHS esters’ reaction rate is much slower than that of these active esters with primary amino groups at pH 6.0-7.5. Mediated by carbodiimide and *N*-hydroxysuccinimide, thiol groups on L-cysteine ethyl ester were introduced into HA to get the aimed product (HA-SH). The lyophilized samples were white, appeared to be of fibrous structure, almost like cotton.

![Figure 5.1 Lyophilized HA-SH. The sample is a white, fibrous structure.](image)
Scheme 5.1 Synthetic scheme of the thioled HA and HA-SH hydrogel preparation
5.2 FT-IR characterization

The presence of thiol functional groups on HA was confirmed by FT-IR spectroscopy. Figure 5.2 shows the FT-IR spectra of HA and HA-SH. Both of them have saccharide characteristic peak at 1300-1000 cm\(^{-1}\) (C-O-C), amide bonds peak at 1650-1550 cm\(^{-1}\) and a board band of O-H stretch (3500-3200 cm\(^{-1}\)). Compared with the original hyaluronic acid, there are no significant differences between these two spectra, apart from a new small peak at 2400-2600 cm\(^{-1}\). The peak at 2557 cm\(^{-1}\) can be attributed to the coupling of cysteine ethyl ester on the HA polymer chain, which is the characteristic transmittance peak of –SH stretching vibration area [139].

![Figure 5.2 FTIR spectra of hyaluronic acid and HA-SH.](image-url)
5.3 Experiment design

5.3.1 Conditions design
The method to synthesize thiolated hyaluronic acid involves forming amide bonds between the carboxyl groups on HA and amine groups on L-cysteine ethyl ester. The reaction of HA with EDC and NHS activates the carboxylic acid groups on HA, which is the site for the incorporation of an amine-containing compound. Table 5.1 shows the influence of several reaction parameters under different conditions on thiol replacement. However, thiol (-SH) is an active group, which could create a disulfide bond in aqueous solution [140]. For the L-cysteine ethyl ester, five-fold excess of DTT was added as reducing agent in the reaction mixture to reduce disulfide bonds. A Control was prepared in a similar way as hyaluronan-cysteine conjugates but omitting EDC/NHS during the coupling reaction for comparing with other samples and testing the accuracy of the procedure. The following experiments are based on this design.
Table 5.1 Experiment design to test the effect of different conditions on thiol substitution of the products: (a) The ratio of HA to EDC/NHS; (b) the ratio of HA to L-cysteine ethyl ester.

<table>
<thead>
<tr>
<th></th>
<th>Hyaluronic acid</th>
<th>EDC/NHS</th>
<th>L-Cysteine ethyl ester</th>
<th>DTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-SH 1X</td>
<td>20mM</td>
<td>30mM</td>
<td>20mM</td>
<td>100mM</td>
</tr>
<tr>
<td>HA-SH 2X</td>
<td>20mM</td>
<td>60mM</td>
<td>40mM</td>
<td>200mM</td>
</tr>
<tr>
<td>HA-SH 3X</td>
<td>20mM</td>
<td>90mM</td>
<td>60mM</td>
<td>300mM</td>
</tr>
<tr>
<td>HA-SH 4X</td>
<td>20mM</td>
<td>120mM</td>
<td>80mM</td>
<td>400mM</td>
</tr>
<tr>
<td>HA-SH 5X</td>
<td>20mM</td>
<td>150mM</td>
<td>100mM</td>
<td>500mM</td>
</tr>
<tr>
<td>HA-SH 6X</td>
<td>20mM</td>
<td>180mM</td>
<td>120mM</td>
<td>600mM</td>
</tr>
<tr>
<td>Control</td>
<td>20mM</td>
<td>0</td>
<td>60mM</td>
<td>300mM</td>
</tr>
</tbody>
</table>

As the Fig 5.4 shows, the thiol content is an important parameter to control for gel formation, and it strongly depends on the molar ratio of HA: EDC/NHS: thiol group. By maintaining all other conditions constant, increasing the concentration of EDC/NHS in the reaction mixtures, the quantity of activated carboxyl groups is hypothesized to increase as well. In other words, it can also be described as an increase in the amount of NHS-esters [141]. Consequently, more L-cysteine ethyl ester can be incorporated into HA thus increasing the free thiol groups on HA. In addition, increasing the concentration of L-cysteine ethyl ester would also increase the amount of thiol-containing molecules in the reaction mixture which will react with NHS-ester and thus increase the quantity of thiol groups. The experiment is designed to increase the concentration of EDC, NHS, L-cysteine ethyl ester and DTT altogether for each sample to verify the hypothesis.
There are also some variations in the suggested pH of the EDC/NHS coupling reaction. For example, Kafedjiiski et al. performed the reaction at pH 5.5 whereas an instruction about protein-protein coupling using EDC/NHS which is published by Pierce claimed that the activation reaction proceeds most efficiently at pH between 4.5 and 7.2. EDC reactions are often performed at pH 4.7-6.0 and NHS-ester reactions are usually performed in phosphate-buffered saline (PBS). According to these previous publications [20, 142, 143], the carbodiimide-mediated coupling of HA to primary amines did not lead efficiently to the formation of amide bonds. Meanwhile, when NHS is added to the reaction, it can cause the formation of a non-rearrangable intermediate product and thus improve the coupling yields.

Therefore, we chose to investigate the effect of HA: EDC/NHS molar ratio and HA: L-cysteine ethyl ester molar ratio on the final thiol content of the prepared HA-SH samples. The goal of this design was to create a screening design for those relative factors and to gauge the factors’ effect. All the reactions are performed in PBS buffer, because it can provide relatively stable conditions and suitable pH range for the reactions.
5.3.2 Solubility of lyophilized HA-SH samples

The solubility of the thiolated HA was measured by dissolving the samples in PBS buffer. Six kinds of HA-SH denoted from HA-SH 1X to HA-SH 6X were generated with various concentrations of EDC, NHS, DTT, and L-Cysteine ethyl ester (Table 5.1). The products showed insoluble property when the ratio HA: EDC/NHS: L-cysteine ethyl ester rose. The mean dissolution times of HA-SH 4X and HA-SH 5X were more than 2 hours in buffer for the concentration of 15mg/ml. This was unexpected because none of the literature reported this issue for derivatized HA. The results obtained by Shu et al., which used one kind of thiolated HA derivative, suggested that the HA-SH should dissolve very well (30mg/ml used in the experiments) [31]. However if the coupling rate is too high, the material may already be crosslinked due to oxidation, resulting in insolubility. In order to avoid oxidation, some samples were prepared under nitrogen, but it did not improve the solubility. In contrast, the samples synthesized under inert atmosphere were hard to dissolve but showed higher concentration of free thiol group. The phenomenon was noted during the experiment but not gauged for insolubility. Because of the carboxyl groups on the HA chain provide the molecule its negative charge which will make the molecule extremely hydrophilic, the insolubility phenomenon may be explained by the thiol group of HA-SH substituting the carboxyl group in HA to the effect that less hydrogen bonds can form in the sample and which makes it hydrophobic in relation to HA. However, the HA-SH 6X sample turned cloudy during the process, and it could not form hydrogel when crosslinker was added. For this reason, all the samples of HA-SH 6X were discarded and the experiments of HA: EDC/NHS molar ratios more than 6 were put on hold. It was hypothesized that too much EDC added
in the system would interfere with the system and react with polymer which contain carboxyl group, and induced precipitation of the material [144]. In the end, 4X to 6X samples were discarded.

5.3 Ellman’s test
Measuring the side thiol content of the samples was meant to determine the successfulness of the modification. Ellman’s test, as described above, was used to calculate the amount of free thiol groups in the samples. A standard curve was obtained from the solutions of a known cysteine concentration (Figure 5.3). The absorbance of the samples was compared with the curve to calculate the concentration of free thiol groups in HA-SH.

As shown in Figure 5.4 the free sulfhydryl groups on the side chain of the samples were determined by measuring absorbance. The absorbance was measured in triplicates for each sample. HA-SH 1X, HA-SH 2X showed 163.4 ± 28.8 μmol/g and 400.0 ± 56.3 μmol/g thiol groups respectively, the sample HA-SH 3X exhibited a maximum of 488.4 ± 95.9 μmol/g immobilized free thiol groups, meaning that HA: EDC/NHS ratio increase leads the growth of sulfhydryl groups (p<0.05). The controls omitting EDC/NHS during the coupling reaction resulted in a negligible amount of thiol groups: 19.1 ± 14.9 μmol/g.
Figure 5.3 Standard curve of absorbance at 412nm for solution of varying amount of L-cysteine ethyl ester hydrochloride.

Figure 5.4 Ellman’s test results of lyophilized HA-SH. Error bars represent one standard deviation. Columns represent mean±S.D., n=6 (1X, 2X and 3X, p<0.05 versus the control group).
5.4 Oxidation of thiol groups

To characterize the storage period of the product, the decrease of thiol groups was quantified as a function of time. The oxidation experiments were conducted under a standard storage condition at −20 °C in a sealed container, and the thiol groups were measured through Ellman’s assay. The results of this study are shown in Figure 5.5. A relatively rapid formation of the disulfide bonds was observed in the first 15 days of storage and was followed by a comparatively lower oxidation process in the next few days. HA-SH 3X showed outstanding stability among the three samples (1X, 2X and 3X) with 38% thiol group loss after 15 days. At the end of the process, at least 40–50% of thiol groups remained available to react.

Figure 5.5 Decrease of the thiol groups (Under storage -20°C dry sample).
5.5 DSC analysis

The thermal behavior of the HA and thiolated HA was investigated by DSC in nitrogen atmosphere. The thermograms are shown in Figure 5.6. Under nitrogen atmosphere, HA shows an exothermic peak at 222°C. Such a process was attributed to be the decomposition of the polymer, resulting into a carbonized residue. The data published previously demonstrated HA thermal resistance at least up to 150°C [145, 146]. Moreover, Villetti et al. reported that a degradation of sodium hyaluronate could be caused by increasing the temperatures above 200°C in a nitrogen atmosphere. The exothermal peak occurring in the temperature range of 200-250°C is related to the conformation change of polysaccharide—the cleavage of β-(1-4) glycosidic bond in the backbone [147]. Thermal degradation processes of thiolated derivate showed similar behavior as hyaluronic acid, and had an exothermic peak at 198°C. The comparison presented in Fig. 5.6 shows that the thermal behavior of HA and HA-SH differs mainly in intensity of released heat during decomposition in the first step and in the intensity of peak maxima. Moreover, the intensity ratio of peak maxima differed significantly. Therefore, the modified HA caused a shift to lower decomposition onset temperatures in comparison with HA (difference of 24°C).

Thermal analysis is an important method because heat is commonly used in industrial processes, and the thermal decomposition data relates to materials’ stability and the residues of its decomposition.
Figure 5.6 Comparison of DSC records of hyaluronic acid sodium salt and thiolated hyaluronic acid (HA-SH) in inert atmosphere, flow rate 20 mL min\(^{-1}\), heating rate 10°C/min.
5.6 BM(PEG)$_2$ cross-linked HA-SH hydrogels

Several strategies have been created to synthesize thiolated hyaluronic acid (HA-SH) and then form hydrogels [20, 31, 148]. However, a common method to prepare hydrogel from thiol modified HA is disulfide crosslinking. Although this reaction is reversible and can form gels under mild conditions, the gel crosslink via disulfide bonds is time-consuming, unstable and the process is hard to monitor. In this thesis, HA-SH hydrogels with varying thiol concentrations were successfully synthesized by the protocol as described in Section 4.5. It leads to a following conjugation as shown in Scheme 5.1. The image of the hydrogel is shown in Figure 5.7.
Figure 5.7 A sample of HA-SH hydrogel and its structure. The product is obtained by dissolving the lyophilized material in PBS, then adding BM(PEG)$_2$ to chemically crosslink the sulfhydryl groups on HA.

5.6.1 Attempted crosslinking

The first attempt at gelation was not successful. The main reason for the failure was due to adding 1mM HCl in the solution to avoid oxidation during dissolving. As the pH is an important parameter for gelation, the hydrogel cannot form if the HA-SH sample is out of the suitable pH range. Some reports mentioned that the pH of a solution has strong effect on hydrogel crosslinking [149, 150]. Reaction of maleimides with free sulfhydryl groups is mainly at pH 6.5-7.5 [151]. More gelation experiments were done in PBS without acid to validate this reaction condition and then gels were formed successfully. Various concentrations of HA-SH dissolved in PBS with 5mM EDTA for crosslinking were tested: 10, 15, 20, 25, 30 and 35mg/ml.
The lowest concentration of polymer that can form stable a hydrogel was 15mg/ml. Because of its insolubility, several samples which were prepared at the concentration of 35mg/ml could not dissolve completely. Therefore, the chosen concentration range to prepare the hydrogels was from 15ml/mg to 30ml/mg.

5.6.2 Transparency of hydrogels
The synthesized HA-SH hydrogel was a solid, transparent and jelly-like material. After incubation at 37°C, the hydrogel showed moisture evaporation and turned yellow. However, soaking the hydrogel in PBS would help remove the color and turn it back to clear. These color changes may have been caused by residual maleimides crosslinker which in turn dyed the gel due to BM(PEG)_2 having not reacted completely. After washing this phenomenon, for the remaining attempts to make HA-SH hydrogels, the excess crosslinkers were removed by washing the gels in PBS or adding a quenching solution. The hydrogels later made were all transparent ones. The quenching solutions can be found in Pierce instructions on BM(PEG)_n that is prepared by concentrated (0.5-1M) cysteine, DTT, or other thiol-containing reducing agent.
5.7 Rheology

The physical characteristics, and particularly the rheological properties of a material, are important in the development of injectable hydrogels. The viscosity of the hydrogels, which is related to the stability upon implantation, was characterized by parallel-plate geometry at 37°C, which shows information about the strength of the hydrogels and the relationship between the amount of thiol groups and the gelation time. The concentration of the thiol group varies in the hyaluronic acid to modulate the gelling behavior of the material. Three types of hydrogels were evaluated: HA-SH 1X, HA-SH 2X, and HA-SH 3X. The results are shown in Figure 5.8.

Increasing the thiol content led to a reduction in time to gelation. However, the relationship was a non-linear change. The gelation time of HA-SH2X and HA-SH 3X were about 31min and 6min respectively, and both were shorter than HA-SH 1X which has the longest gelation time at about 37min. Significant differences effected between HA-SH 1X and HA-SH 3X in the gelation time. Moreover, rheological data also demonstrated a direct relationship between the concentration of sulfhydryl groups and maximum viscosity. The maximum viscosities reached for HA-SH 1X, HA-SH 2X and HA-SH 3X were 6.7 Pa·s, 46.0 Pa·s and 61.0 Pa·s, respectively. The HA-SH 1X hydrogel had the lowest relative viscosity, whereas the HA-SH 3X had the highest. As the concentration of thiol group was increased, greater viscosity of the hydrogel and a reduction in the time to gelation were observed. In other words, the strength of the hydrogel was increasing. Figure 5.8 also illustrates the apparent decline of viscosity in the curve of HA-SH 3X. This is due to the experiment being carried out in an open environment and the conical spindle having a cone angle. The curve is regulated by the cooperative and synergistic actions of many factors, such
as shear thinning, evaporation and gelation. Moreover, some pieces of HA-SH 3X hydrogel were extruded during the shearing process, causing viscosity to plummet. Rheology tests are commonly used to characterize hydrogels. The data can provide suitable injectability and allow adequate time for delivery of the material before a change in viscosity occurs [152-154].

Finally, we chose HA-SH 2X and HA-SH 3X for further experiments; HA-SH 1X was discarded because of its poor mechanical property.
Figure 5.8 Representative viscosity–time curves for matrices with varying thiol content
5.8 Water content

The water absorbance capacity is one of the most important physical properties to characterize hydrogel. It was determined by calculating the water content of the HA-SH hydrogels which was influenced by the percentage of theoretical crosslinks and the amount of thiol group within the hydrogel. The percentage of the water content in the HA hydrogels decreased with increasing the amount of maleimide crosslinker. As shown in Fig 5.9, the water content of HA-SH 2X dropped from 95.1±0.72% to 85.2±1.92% and HA-SH 3X from 95.0±0.86% to 78.7±0.57% for 50% and 100% of theoretical maleimide crosslinker respectively. Also, the percentage of water in the hydrogels decreased when the amount of thiol group raised while keeping the amount of BM(PEG)$_2$ constant.
Figure 5.9 Water content of HA–SH hydrogels with different percentages of crosslinker.
5.9 Enzymatic degradation

The biodegradability of component materials is critical when designing an implantable device. The erosion process occurs either in bulk or at the polymers surface whereby release rates are related to the surface area. Researchers have been able to control the rate of drug delivery by varying each of these factors. To monitor in vitro degradation of HA-SH hydrogels, the samples were incubated in DPBS with 200U/ml of hyaluronidase at 37°C. The effect of hyaluronidase on the degradation of HA-SH in vitro is shown in Figure 5.10.

HA-SH hydrogels presented here were found to degrade in the presence of hyaluronidase (HAase) indicating that the modification of HA does not prevent biodegradation. It means that HA-SH hydrogels have potential for applications in tissue engineering. The time for complete degradation of the hydrogels in HAase depends on their thiol content and equivalents of crosslinker. The most stable hydrogels can be produced with the highest degree of crosslinking. At the same time, the samples incubated in PBS (controls) showed no significant mass loss.

Regarding HA-SH 2X hydrogels which were incubated with HAase, the gels consumed rapidly as the enzymatic reaction proceeded: over 50% of equilibrium mass loss after 72h and 26.7±15.4% remained at 96h was observed. For HA-SH 3X, the initial decrease of mass took place slower compared with HA-SH 2X, 66.79±3.1% remained at 72h and 52.9±5.7% remained after 96h was found. The maximal time for the hydrogels to degrade completely was 216h (HA-SH 2X) and 312h (HA-SH 3X) in HAase (200U/ml), which illustrated that HA-SH 3X had better stability than that of HA-SH 2X. HA hydrogels have been reported for a variety of crosslinking chemistries, such as those based on adipic dihydrazides [17] and disulfides[31]. However, for
these hydrogels, the slowest degradation rates of the adipic dihydrazides were after 4 days (96 h) for 100% degradation [17], and 36% degradation in 2 days (48h) for the disulfides [31]. The degradation rates of these hydrogels were faster than what we observed in the current study.

Furthermore, slower degradation rates for HA-SH hydrogels in vivo may be achieved because hyaluronidase levels in the organism are much lower than those used in this study. Though the results obtained from this experiment only monitored the thiol concentration, it verified that the HA-SH is suitable for application in tissue engineering within a certain degradation time. Thus, the hydrogel could be tailored depending on the application.
Figure 5.10 In vitro degradation of HA-SH hydrogel. Solid shapes: samples incubated in DPBS with 200 U ml⁻¹ of hyaluronidase. Open shapes: samples incubated in DPBS (control) average percentage of equilibrium weight (standard deviation n=3).
6. Conclusions and Future work

The benefits of hyaluronic acid in tissue engineering applications have been seen in the areas of wound healing [155, 156], artificial skin [157], and soft tissue augmentation [158]. However, none of the reported in literature for HA used as an implantable device to treat SCI [159]. In this study, hyaluronic-cysteine ethyl ester conjugate was successfully synthesized and gelled through a novel method. By increasing the amount of reagents used to modify HA, the synthesized hydrogels resulted in higher thiol content and insolubility. Moreover, the hydrogels with higher thiol content showed higher viscosity. Also, increasing the degree of cross-linking in the hydrogels resulted in lower water content. Compared with unmodified HA, the significantly lowered biodegradation rate is a prerequisite for future HA-SH hydrogel to be applied in SCI treatment. Therefore, this novel thiolated polymer appears to be a very promising material for the development of implantable devices.

Our project focuses on developing a novel 3D cell patterning scaffold, which is aimed at bridging the nerve gap and could eventually be incorporated into a nerve conduit for repairing the injured spinal cord [160, 161]. In order to use the scaffold for this application, many factors need to be considered, such as the degree of crosslinking, strength of hydrogel, and biocompatibility. when developing an applicable scaffold. In this work, we characterized the chemical, physical, and mechanical properties of the biomaterial and its hydrogels.

In order to create an ideal conduit model to realize SCI therapy, the future studies that we wish to conduct can be divided into three sections with different goals:

1. To incorporate the peptide RGDS into the hydrogel.
2. To demonstrate the extent of the cell adhesion to modified hydrogel surfaces.

3. To incorporate caged RGDS in the gel, patterning in three-dimensional using a two-photon laser.
Reference

