Preparation and Characterization of TiO$_2$-Based Nano Particles and Tests for Their Activities in Methylene Blue Photodegradation

Aoshu Duan

Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master of Applied Science

Under the auspices of the Chemical & Biological Engineering

© Aoshu Duan, Ottawa, Canada, 2014
Abstract

A two-step hydrothermal method was applied to synthesis Vanadium Sulfide (IV) coupled with commercial P25 on TiO₂ nanoparticle (VS₄-on-P25). Materials were characterized by scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV-Vis), diffuse reflectance UV-Vis spectroscopy and Raman spectroscopy. Photocatalytic activity of this new material was determined by photo-degradation of Methylene blue (MB) under UV irradiation. Experiments show that the VS₄-on-P25 exhibits a higher photocatalytic activity than commercial P25 by providing more active site for dye adsorption, and reducing the recombination of charge carriers. Furthermore, the VS₄-on-P25 extends its light-absorption spectrum into visible-light range due to its narrower band gap. The highest photocatalytic activity was found with a VS₄ loading of 6 wt.%, which outperforms pure P25 by a factor of 2.29 in MB degradation rate.
Résumé

Un procédé hydrothermal en deux étapes a été utilisé pour la synthèse du sulfure de vanadium (IV) couplé avec la nanoparticule commerciale P25 TiO₂ (VS₄-sur-P25). Les matériaux ont été caractérisées par la microscopie électronique à balayage (MEB), la microscopie électronique à transmission haute résolution (HRTEM), la diffraction des rayons X (XRD), la spectroscopie ultraviolet-visible (UV-Vis), la spectroscopie par réflectance diffuse UV-Vis et la spectroscopie Raman. Le rendement photocatalytique a été déterminé par la photo-dégradation du bleu de méthylène sous irradiation UV. Les expériences montrent que la VS₄-on-P25 présente une activité photocatalytique supérieure à celle du P25 commercial en fournissant plus de sites actifs pour l'adsorption de colorant, et en réduisant la recombinaison des porteurs de charge. En outre, le VS₄-on-P25 étend son spectre d'absorption de lumière dans la plage de lumière visible en rétrécissant sa largeur de bande. Le rendement photocatalytique le plus élevé a été trouvé à une charge de VS₄ de 6 poids.%, ce qui surpasse le P25 pur d’un facteur de 2,29 du bleu de méthylène sous irradiation UV.
I would like to express the deepest appreciation to the people who helped me during the study period both in University of Ottawa and University of Waterloo.

First of all, I would like to acknowledge my supervisor, Dr Jason Zhang, for providing me with the opportunity to work on this project of photocatalyst. His support and guidance were of great help to me during the past two years.

I am grateful to my co-supervisor, Dr. Aiping Yu of University of Waterloo for making this project possible by providing the laboratory, generously sharing equipment, and for providing information on the field of semiconductors and photocatalysts. I would also like to acknowledge Dr. Zhongwei Chen for his guidance during my 11-month stay in University of Waterloo.

I would like to acknowledge lab members from Dr. Yu’s group for the help they provided in my experiments and in writing my thesis. I am particularly grateful to Gregory Lui and Dr. Jinyun Liao for their precious support and disinterested help on this project. I would like to acknowledge Mica Peng for her assistance on bilingual editing.

Last but not least, I want to thank all the colleagues and my family for their supports and encouragements.
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>conduction band</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
<tr>
<td>EV</td>
<td>electron volt</td>
</tr>
<tr>
<td>FESEM</td>
<td>field-emission scanning electron microscopy</td>
</tr>
<tr>
<td>GC/MS</td>
<td>gas chromatography/mass spectrometry</td>
</tr>
<tr>
<td>HRTEM</td>
<td>high-resolution transmission electron microscopy</td>
</tr>
<tr>
<td>JCPDS</td>
<td>joint committee on powder diffraction standards</td>
</tr>
<tr>
<td>LC/MS</td>
<td>liquid chromatography/mass spectrometry</td>
</tr>
<tr>
<td>MB</td>
<td>Methylene blue</td>
</tr>
<tr>
<td>SC</td>
<td>semiconductor</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>TAA</td>
<td>Thioacetamide</td>
</tr>
<tr>
<td>TMD</td>
<td>transition-metal dichalcogenide</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>ultraviolet–visible spectroscopy</td>
</tr>
<tr>
<td>VB</td>
<td>valence band</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
Contents

Abstract ... 1
Résumé ... 2
Acknowledgment .. 3
Nomenclature .. 4
Contents .. 5
Table of Figures ... 7
List of Tables .. 8
1. Introduction .. 9

2. TiO₂ Photocatalytic Reactions ... 15
 2.1 Crystal Structures of TiO₂ ... 15
 2.2 Mechanism of Photocatalysis ... 19
 2.3 Mechanism of TiO₂ Photodegradation MB Dye .. 23
 2.4 Kinetics of TiO₂ Photodegradation MB Dye ... 27
 Adsorption of MB on TiO₂ .. 27
 Disappearance of MB .. 28
 2.5 Influence of Physical Parameters on MB Photodegradation .. 29
 Initial Concentration (CI) of MB .. 29
 Mass of TiO₂ Photocatalyst .. 29
 Temperature .. 30
 Wavelength of the Light Source .. 30
3. Modification to Promote Visible-Light Active TiO₂ Photocatalyst 32

3.1 Metal Doping ... 32
 Alkali Metal/Alkaline Earth Metal Doping .. 33
 Transition Metal Doping .. 34

3.2 Non-Metal Doping .. 36

3.3 Semiconductor Coupling ... 39
 Coupling with Transition Metal Dichalcogenides ... 41
 Brief Introduction of Nano Scaled VS₄ ... 45

4. Experimental Section ... 48

4.1 Synthesis .. 48
 Materials ... 48
 Preparation of VS₄ Nano Materials .. 48
 Synthesis of VS₄-on-TiO₂ .. 49

4.2 Characterizations .. 51

5. Results and Discussion .. 52

5.1 Scanning Electron Microscopy .. 52
 Nanodiscs .. 52
 Micro-Spheres ... 53
 Nanorings .. 56
 Micro-Cluster .. 57
 Micro Balls and Rods ... 59

5.2 High-Resolution Transmission Electron Microscopy .. 60

5.3 X-ray Diffraction ... 61

5.4 Raman Spectroscopy .. 63
5.5 Ultraviolet–Visible Spectroscopy ..64
5.6 Diffuse Reflectance UV-Vis Spectroscopy ..69
6. Conclusions and Future work ...72
References ..74

Table of Figures

Figure 1-1 Known TMDs in Periodic table of chemical elements12
Figure 2-1 Schematic representations of selected low-index faces of rutile17
Figure 2-2 Schematic representations of selected low-index faces of anatase19
Figure 2-3 Schematic of photocatalysis process ..21
Figure 2-4 Chemical formula and light-absorbance spectrum of MB24
Figure 2-5 Scheme of MB degradation pathway ..26
Figure 2-6 Kinetics of adsorption of MB in dark ..28
Figure 2-7 Influence of physical parameters for MB photodegradation31
Figure 3-1 Mechanism of visible light absorption by in Nitrogen-doped TiO₂37
Figure 3-2 Visible light activation of TiO₂ coupled with a narrow band gap SC. 40
Figure 3-3 Sketch of the structure of typical TMD ...42
Figure 3-4 Sketch of the in situ photo-reduction deposition synthesis of TiO₂ coupled MoS₂/WS₂ ..43
Figure 3-5 Morphology of TiO₂ nanobelts and MoS₂-TiO₂ coupling system45
Figure 3-6 3-D geometries of VS₂ and VS₄ ..47
Figure 5-1 SEM images of VS₄ nanodiscs ..53
Figure 5-2 SEM images of VS$_4$ Micro-Spheres. ...55
Figure 5-3 SEM images of VS$_4$ nanorings at different magnifications57
Figure 5-4 SEM images of VS$_4$ Micro-Clusters at different magnifications58
Figure 5-5 SEM images of VS$_4$ Micro balls and rods at different magnifications ...60
Figure 5-6 HRTEM images of VS$_4$ nanodiscs and VS$_4$-on-P25.61
Figure 5-7 XRD pattern of VS$_4$..62
Figure 5-8 XRD pattern of VS$_4$-on-P25 and P25..63
Figure 5-9 Raman spectroscopy of VS$_4$ nanodiscs ..64
Figure 5-10 Photodegradation of Methylene blue under UV irradiation, comparing the performance of commercial P25 and 4 different VS$_4$-on-P25s (1wt.%, 3wt.%, 6wt.%, 10wt.%). ...65
Figure 5-11 Photodegradation of Methylene blue under UV irradiation, comparing the performance of pure VS$_4$, and 20wt.% VS$_4$-on-P25. ...68
Figure 5-12 Light absorption spectrum of P25, 1 wt.% VS$_4$-on-P25, 6 wt.% VS$_4$-on-P25 and pure VS$_4$...70
Figure 5-13 Tauc Plot of P25, 1 wt.% VS$_4$-on-P25, and 6 wt.% VS$_4$-on-P2571

List of Tables

Table 2-1 Characteristic time for primary stages of reaction in TiO$_2$ photocatalysis22
Table 4-1 Various VS$_4$ products obtained by different hydrothermal parameter50
Table 5-1 Rate constant calculations for data obtained from Figure 5-1066
1. Introduction

Since Fujishima [1] first reported the photoelectrochemical water-splitting on Titanium Dioxide (TiO$_2$) electrode in 1972, this environmental friendly chemical approach has quickly become a hot research topic in numerous areas such as anti-bacteria coating [2, 3], self-cleaning materials [4, 5], hydrogen generation [1, 6-8], and especially air [3, 9-11] or water[12-14] purification due to its implications for solar energy conversion.

The very first documented study on photocatalytic phenomenon can be traced back to 1921 [15], when Renz reported discolorations of TiO$_2$ and some other metal oxides during illumination with sunlight. But not until Fujishima's milestone discovery in 1972 [1], the mechanism of photocatalysed reactions was postulated. Generally speaking, a photocatalysed reaction takes place at the surface of the capable semiconductor photocatalyst/photocatalysts under certain illumination. Photogenerated electrons transfer from the valence band to the conduction band (e^-_{cb}) by the driving of absorbed photon energy, result in positively charged holes left in the valence band (h^+_{vb}). Electrons and holes travel to the surface of the photocatalysis simultaneously and evenly, participate in reduction and oxidation reactions with the reactants respectively. The basic expression of this procedure can be written as Reaction (1.1):

$$TiO_2 + hv = e^-_{cb} + h^+_{vb} \ldots \ldots \ldots \ldots \ldots \ldots \ldots (1-1)$$
A large number of different photocatalysts have been investigated over the last several decades. Most of them are transition-metal oxides or sulphides semiconductors such as TiO$_2$[1], ZnO [16], WO$_3$ [17], SrTiO$_3$ [18], α-Fe$_2$O$_3$[19], ZnS [20], CdS [21], CdSe [22] and PbS [23]. Among all the candidate semiconductors, TiO$_2$ is one of the first discovered and also most intensively studied photocatalysts worldwide. Highly photo-active, remarkably stable, non-toxic, and more importantly, inexpensive, all these characteristics [24] render TiO$_2$ as the most promising photocatalyst to satisfy the need of future industrial scale use.

TiO$_2$ photocatalysts however can only be solely activated under ultraviolet (UV) irradiation, which accounts for only about 5% of the total solar spectrum. Moreover, the efficiency of photon-to-electron conversion is greatly limited by electron and hole recombination: during which, large amounts of energy loss in the form of heat [25]. These considerations currently limit the practical applications of TiO$_2$ photocatalysts, and comprise the most pertinent technical challenges that must be addressed.

It is therefore highly desirable to extend the absorbance spectrum of TiO$_2$ photocatalysts to visible light range. With the recent progress in nano semiconductor science and technology, several different methods have been investigated to raise the visible light response of TiO$_2$ by introducing impurities and defects to the photocatalyst/photocatalysts system. These methods include metal [26, 27] and/or[28] non-metal [29, 30] ion doping, surface deposition of noble metal [31, 32], emiconductor coupling [33, 34], and photosensitization of photocatalysts [35, 36].
Nano-scaled few layered transition-metal dichalcogenides (TMD), or transition-metal disulfides TC$_2$, in which T is a transition-metal element from groups 4 IVB to 10 VIIIB and C is a chalcogen (be specific, the sulphur predominantly) [37]. As shown in Figure1-1, sixteen transition-metal elements and three chalcogen elements are highlighted in the periodic table as yellow and magenta, respectively, indicates that those elements are proven for crystallizing the layered transition-metal dichalcogenides. Several known forms of TC$_2$ [38-54] are frequently reported in the field of photoelectron chemistry due to their excellent electrical and catalytic activities. These materials are widely considered as potential coupling semiconductor alternatives for enhancing conventional photocatalysts’ visible-light photoactivity [24, 43, 55]. One thing should be noticed is that layered structure TMDs may not exist in every combination between a "yellow" element and a "magenta" element: e.g. NiTe$_2$ is typically layer-structured [56] while NiS$_2$ is found to be a pyrite unit cell structure due to the existing of S$_2^{2-}$ dimer [45].
Among these TMDs, Vanadium Disulfide (VS\textsubscript{2}) has been studied in many different areas such as batteries [57], supercapacitors [58], and sensors [59] due to its high conductivity and low band gap. However, the difficulties and complexities of VS\textsubscript{2} synthesis, particularly nano-scaled VS\textsubscript{2}, greatly limit its research progress. On the other hand, Patrónite (VS\textsubscript{4}) is another Vanadium Sulfide with the formula V4+(S\textsubscript{2}-)\textsubscript{2}. The "linear-chain" structured VS\textsubscript{4} shares some similarities with VS\textsubscript{2} crystal, making it a possible suceedanum of VS\textsubscript{2}.

In this study, we report a two-step solvo/hydrothermal process for first synthesis VS\textsubscript{4} nanodiscs, and then introducing the VS\textsubscript{4} to the surface of type P25 TiO\textsubscript{2} nano particles (a
commercially available TiO$_2$ nano particle, the average diameter of P25 nano particles is 21 nm) to form VS$_4$-on-P25 heterostructures. Scanning electron microscope (SEM) characterized the morphology of VS$_4$ material, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) further confirmed the crystal structure and chemical composition of VS$_4$ and VS$_4$-on-P25, ultraviolet–visible spectroscopy (UV-Vis) is used to detect the Methylene blue (MB) concentration during the photodegradation study, while diffuse reflectance UV-Vis spectroscopy is applied to measure the light-absorbing spectrum of synthesized materials. Raman spectroscopy of VS$_4$ nanomaterials is also reported in this thesis. Photocatalytic activity was determined by the photodegradation of MB under UV irradiation. Results showed that the VS$_4$-on-P25 exhibits a higher photocatalytic activity than commercial P25 in MB photodegradation. This is attributed to the coupled highly conductive, nanodiscs structural VS$_4$, which provides a planar conjugated surface for dye adsorption, contributes charge transfer with its high conductivity, and increases photon to charge-carrier conversion by narrower the band gap of VS$_4$-on-P25 material.

This thesis is divided into six chapters: Chapter 1, the introduction, which provides an overview of the project outline and background; Chapter 2, the literature review on TiO$_2$ photocatalytic reactions, which includes the properties of TiO$_2$ materials, and the mechanisms and dynamics of photocatalysts, especially the TiO$_2$ assisted MB dye photodegradation reactions; Chapter 3, the literature review of photocatalysis enhancement methods, mainly focusing on doping and coupling. Also layered TMDs and VS$_4$ would be briefly introduced in this section; Chapter 4, the experimental section of this study;
Chapter 5 characterizations and the photocatalytic activity test of VS$_4$-on-P25. Conclusions and future works for this study would be summarized in Chapter 6, as the last Chapter of this thesis.
2. TiO\textsubscript{2} Photocatalytic Reactions

2.1 Crystal Structures of TiO\textsubscript{2}

There are 3 major polymorphs of TiO\textsubscript{2} in nature: rutile, anatase and less-commonly seen brookite [60]. Among them, rutile and anatase are crystals while brookite is orthorhombic [61]. Since most previous work on TiO\textsubscript{2} has been focused on rutile and anatase, the emphasis of this chapter is on those two.

It is an undeniable fact that different phases of TiO\textsubscript{2} differ in activities for photocatalytic reactions. A universally recognized conclusion is that the photocatalytic activity of anatase is superior to that of rutile. The advantages of anatase include high density of localized states and small grain size, restricting the energy loss caused by electron-hole recombination [62-64]. This allows for more effective provision of charge carriers by the anatase, resulting in higher photocatalytic efficiency compared to rutile. Even more advantageous aspects of anatase are that, in general terms, anatase has a higher surface energy than rutile due to its smaller grain size [65, 66], leading to a more attractive surface for the reactants to attach.

However, it is too costly to synthesize or separate phase-pure TiO\textsubscript{2} in anatase [67-69]. Besides, as previously mentioned in Chapter 1, rather than the difference in photocatalytic activity between different crystal phases, the main factor that restricts TiO\textsubscript{2} photocatalysts’
applications is its narrow light-absorption spectrum which all phases of TiO₂ material suffer from.

Due to (110) (Figure 2-1 a) and (100) (Figure 2-1 b) crystal faces which are low in energy, rutile is more thermodynamically stable than any other polymorphs of TiO₂ [70]. The (110) terraces is the most stable face. Each Oxygen atom bridges two Titanium atoms, while each Titanium atom coordinates six Oxygen atoms. Five-coordinated Titanium atoms can be found parallel located to the lines of bridging Oxygen atoms.

Similar to (110) surface, the parallel Oxygen atoms and five-coordinate Titanium atoms structure exists in (100) surface as well. However, the more distorted spatial arrangement of those atoms increases the total energy of (110) surface, resulting in less thermodynamic stability.

The high energy (001) (Figure 2-1 c) crystal face–is the most unstable face. Rows of double-coordinated Oxygen atoms and five-coordinated Titanium atoms are being arranged alternatively in (001) surface. High temperature would disturb this weak orientation: Ramamoorthy and Vanderbilt [71] reported that starting at 475 °C, the (001) surface would experience a phase re-structure transition.
Anatase is another one of the two major mineral forms of titanium dioxide, in which low energy (101) (Figure 2-2 a) and (001) (Figure 2-2 b) surfaces exist naturally [72]. In (101) crystal faces, undulating geometrically arranged five-coordinated Titanium atoms and bridging Oxygen atoms with intervals are located in every two parallel rows. Also, the (101) crystal face is the most commonly seen and thermodynamically stable surface in
anatase [63], the surface energy of anatase (101) crystal face is proven to be even lower in surface energy than the rutile (110) face [70]. The atom configuration in (001) crystal face is more flat but less stable compared to (101) surface.

The unusually seen (100) surface (Figure 2-2 c), consists of two parallel rows of double-coordinated Oxygen atoms and one row of five-coordinated Titanium atoms, respectively. Both (001) and (100) crystal faces are unstable thermodynamically, phase re-structure transitions can be observed among those two surfaces [72-74].
2.2 Mechanism of Photocatalysis

As discussed in the introduction, it took almost half a century for generations of researchers to reveal the reaction mechanism of photocatalysis [1, 15, 75-77]. Essentially, photocatalysis is an energy conversion process [78]: first, light energy which carried by
photons is transferred into chemical energy carried by free radicals. And then, a specific chemical reaction would be accelerated since free radicals can lower the activation energy of the reaction. In a heterogeneous TiO$_2$ photocatalysis system, this process can be fundamentally described as:

\[
TiO_2 + hv = e^-_{cb} + h^+_{vb} \quad \ldots \quad (2-1)
\]

\[
O_2 + 4H^+ + 4e^-_{cb} = 2H_2O \quad \ldots \quad (2-2)
\]

\[
2H_2O + 4h^+_{vb} = O_2 + 4H^+ \quad \ldots \quad (2-3)
\]

Where e^-_{cb} and h^+_{vb} are respective electrons in the conduction band and the electrons vacancy in the valence band.

To achieve a photocatalysis process, the photon energy has to be equal or higher than the band gap of the photocatalyst. Under this irradiation, a hole in valence band can be formed. Meanwhile, to balance the total charge, a photo-activated electron escapes from the conduction band to fill the valence band. Thus electron-hole pairs can be generated. Then, the electrons and holes travel to the photocatalyst surface separately, where electrons are trapped by oxidants/acceptors while holes are trapped by reductants/donors. The interface between photocatalyst and reactants can provide the path for these charged free radicals to participate in secondary reactions, in which electrons can cause reduction while holes can take part in oxidation. One thing should be noticed here, not all the photo-generated electrons and holes contribute the photocatalysis process; charge recombination occurs.
both in bulk and at the surface of the photocatalysts. Figure 2-3 depicts the process of photocatalysis.

Study on interface and colloid chemistry further expounding the mechanism of photocatalysis. As Table 2-1 shows the characteristic time for each stages of reaction in TiO$_2$ photocatalysis.

![Figure 2-3 Schematic of photocatalysis process](image)

Figure 2-3 Schematic of photocatalysis process, (red) photo-generation of electron & hole pair (green) hole trapping and oxidation of donor/reductant at photocatalyst surface (blue) electron trapping and reduction of oxidant/acceptor at photocatalyst surface (yellow) electron and hole recombination in the bulk and at surface of photocatalyst [88]
Table 2-1 Characteristic time for primary stages of reaction in TiO$_2$ photocatalysis

<table>
<thead>
<tr>
<th>Primary process</th>
<th>Chemical Equation</th>
<th>Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge carrier generation</td>
<td>$TiO_2 + h\nu = e_{cb}^- + h_{vb}^+$</td>
<td>fs</td>
<td>Extremely fast indirect transition, It is impossible and meaningless to quantitative measure nowadays [24, 79]</td>
</tr>
<tr>
<td>Charge trapping</td>
<td>$e_{cb}^- \rightarrow e_{tr}^-$</td>
<td>\sim500 ps [80]</td>
<td>The deeper electrons/holes travel, the more time it takes for trapping</td>
</tr>
<tr>
<td></td>
<td>$h_{vb}^+ \rightarrow h_{tr}^+$</td>
<td>\sim100 ps [80]</td>
<td></td>
</tr>
<tr>
<td>Charge recombination</td>
<td>$h_{tr}^+ + e_{cb}^- \rightarrow HEAT$</td>
<td>1-25 μs [81, 82]</td>
<td>Besides heat, Photons might be generated in recombination as well</td>
</tr>
<tr>
<td></td>
<td>$e_{tr}^- + h_{vb}^+ \rightarrow HEAT$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfacial charge transfer</td>
<td>$h_{tr}^+ + Organic Molecule \rightarrow Oxidized Molecule^{+}$</td>
<td>ps, ns, μs</td>
<td>The transfer rate is varied for different organic molecules [83-86]</td>
</tr>
<tr>
<td></td>
<td>$e_{tr}^- + O_2 = O_2^-$</td>
<td>ns, μs, ms</td>
<td>The transfer rate is varied for different organic molecules. However, this process is always slower than the transfer of holes [80-82, 87, 88]</td>
</tr>
</tbody>
</table>
2.3 Mechanism of TiO₂ Photodegradation MB Dye

One of the most important and promising applications for TiO₂ photocatalyst is to purify water by decomposing and mineralizing the organic compounds [89-92]. Studies have shown that a large number of the organic pollutants are TiO₂-photodegradable, including alkanes [93, 94], haloalkanes [95, 96], alkenes [97, 98], aromatics [99, 100], aliphatic hydrocarbons[101, 102], heterocyclic compounds [103, 104], herbicides [105-107], pesticides [103, 108, 109], and dyes [110-112].

Methylene blue (MB), molecular formula \(C_{16}H_{18}N_3SCl \) (Figure 2-4 a), is a heterocyclic aromatic chemical compound. It is a dark green powdery solid at room temperature while its aqueous solution is blue. The maximum light absorption for MB can be observed around 664-666 nm, as Figure 2-4 (b) shows. MB is unstable and colorless when exposed to a reducing agent, and it is widely used as biological and chemical indicator in numerous areas, e.g. analytical chemistry [113-115] and biochemistry [116-118] redox indicator.

The photodegradation study of MB aqueous solution under UV [30, 119, 120] or visible light [121-123] irradiation is one of the most fundamental and convenient methods to investigate the activity of a TiO₂ photocatalyst.
The mechanism of photodegradation in heterogeneous TiO$_2$ photocatalysis system for different kinds of organic molecules can be acquired in many studies [124-126]. In general, the mechanism can be written as an extension of the basic equations described earlier in this review. A scheme re-edited from Ref. [127] shows the photodegradation pathway of MB:

1. Electron and hole generation

 See Equation (2-1)

2. Oxygen free radical generation (by electron)

 \[
 (O_2)_{ads} + e^-_{cb} = O_2^- \]

3. Hydroxy free radical generation (by hole)
\((H_2O \Leftrightarrow H^+ + OH^-)_{\text{ads}} + h^+_\text{vb} = H^+_\text{vb} + OH^*\)

4. Neutralization of hydroperoxyl free radical (by Oxygen free radical)

\[O_2^{2-} + H^+ = HO_2^*\]

5. Disproportionation of hydroperoxyl free radical

\[2HO_2^{2-} = H_2O_2 + O_2\]

6. Decomposition of hydrogen peroxide (by electron)

\[H_2O_2 + e^- = OH^* + OH^-\]

7. Oxidation of the organic reactant (by hydroxyl free radical)

\[R + OH^* = R^* + H_2O\]

8. Formation of degradation product

\[R + h^+_\text{vb} = R^{\text{vb}} = P_D\]
Figure 2-5 Scheme of MB degradation pathway [127]
2.4 Kinetics of TiO₂ Photodegradation MB Dye

To put it simply, the entire heterogeneous TiO₂ assisted MB photodegradation reaction proceeds following 3 steps as listed, 1. TiO₂ adsorbs the MB. 2. Reaction occurs at the interface between them. 3. The colorless product detaches from the TiO₂ surface.

Adsorption of MB on TiO₂

Adsorption is the necessary prerequisite to a photodegradation reaction. The electrostatic attractions of MB and TiO₂ create the interface between them, as well as the pathway for charge transfer. The MB adsorption on TiO₂ surface can be described by Langmuir adsorption model [128-130]; an accelerated adsorption during the initial stage followed up by a deceleration stage and finally reaching the adsorption and releasing equilibrium. According to the Langmuir adsorption model, the coverage θ can be put like:

\[\theta = \frac{n_{ads}}{n_t} = \frac{KC}{1+KC} \] \hspace{1cm} (2-11)

Where \(n_t \) is the total number of adsorption sites, while \(K \) is the adsorption constant of MB.

Houas and Lachhe et al [127] reported in their study, four different concentrations of MB solution (5ppm, 15ppm, 25ppm, 30ppm) all reach the equilibrium adsorption within 1h in dark (Figure 2-6 white). A linear transform is also given (Figure 2-6 blue) to confirm its kinetic model.
Disappearance of MB

The kinetic model of MB photodegradation has been proved to be a Langmuir–Hinshelwood model by previous studies [131-135], as the expression shows below:

\[r = \frac{dC}{dt} = \frac{kKC}{1+KC} \]

Where \(r \) is the degradation rate of MB, and \(k \) is the constant of degradation rate.

Thus, it is obvious that for MB diluted solutions, \(KC=1 \) and the reaction is of apparent first-order. After a certain concentration, the degradation rate starts to follow zero-order
kinetics. A noteworthy phenomenon has been reported by Demeestere and Visscher et al [136], that a pseudo-zeroth-order kinetic degradation can be observed for suspended TiO$_2$ mediated heterogeneous photodegradation of trichloroethylene in gas-phase.

2.5 Influence of Physical Parameters on MB Photodegradation

Initial Concentration (C_I) of MB

The kinetic of a MB photodegradation reaction follows a Langmuir–Hinshelwood mechanism where the initial reaction rates were found to be directly proportional to the C_I of MB. The degradation reaches its maximum rate when the zero-order kinetic is applied (Figure 2-7 a).

Mass of TiO$_2$ Photocatalyst

The degradation rates were found to be linearly proportional to the mass of TiO$_2$, as the Langmuir–Hinshelwood kinetic also applied for the catalyst loading (Figure 2-7 b). This can be understood by reviewing that: the reagent has to in direct contact onto the TiO$_2$ surface to bond pathways for the charge transfer. Additionally, those non-contacted TiO$_2$ might block the light source (especially TiO$_2$ nano particles), resulting in an even lower reaction efficiency.
Temperature

Unlike most catalytic chemical reactions which can be accelerated by using a higher reaction temperature. The increase of temperature enhances recombination of electrons and holes, as well as the desorption process of MB on the TiO$_2$ surface, resulting in loss of photocatalytic activity. However, at a very low temperature, the degradation rate of MB can be limited by the high apparent activation energy (Figure 2-7 c).

Wavelength of the Light Source

The absorbed photon energy has to equal or exceed the band gap of the TiO$_2$ (anatase of 3.2 electron volt, and 3.0 eV for rutile) to trigger a TiO$_2$ photodegradation reaction. According to Planck relation, this requires the wavelength of light source to be near or below 400 nm (UV-light) (Figure 2-7 d).
Figure 2-7 Influence of physical parameters for MB photodegradation (a) Concentration of MB (b) Mass of TiO$_2$ photocatalyst (c) Temperature (d) Wavelength of the light source
3. Modification to Promote Visible-Light Active TiO₂ Photocatalyst

As discussed in Chapter 2.1, anatase and rutile TiO₂ photocatalysts mainly absorb ultraviolet photons due to their large band gaps. This greatly limits the practical applications of pristine TiO₂ photocatalysts, because only 5% of solar spectrum consists of ultraviolet light. Therefore, as mentioned in Chapter 1, the development of visible light responsive TiO₂ has become one of the most important subjects in the field of photocatalysis. Different methods have been investigate in the past several decades, including metal and/or non-metal ion doping, surface deposition of noble metal, semiconductor coupling, photosensitization of photocatalysts. Among all those methods, the most representative and promising modifications are domestic doping and foreign coupling.

3.1 Metal Doping

From the point of view of crystallography, defects and impurities determine the photo-electrochemistry ability of a photocatalyst. The presence of metal ions in TiO₂ crystal would reduce electron and hole recombination, since charge carriers are more attracted to metal ions. For metal doped-TiO₂, the metal trapping center could capture electrons when the valence state of metal ion is higher than Ti⁴⁺. On the other hand, when the valence state
of metal ion is lower than Ti$^{4+}$, holes would be captured. In addition, the presence of impurities lead to narrower band gaps than that of pristine TiO$_2$. Therefore, less photon energy is required for metal-doped TiO$_2$ to generate electron and hole pairs.

So far, researchers have synthesized and discussed almost every metal ion doped TiO$_2$ photocatalyst. The visible-light photocatalytic performance of metal elements – including alkali metals, alkaline earth metals, transition metals and rare earth metals – have all been tested through various means [137-159].

Alkali Metal/Alkaline Earth Metal Doping

Brezova et al [137] reported that several candidate metal ions, including Li$^+$, can be used as doping elements to enhance the photoactivity of TiO$_2$. According to their results, the sol-gel synthesized Li$^+$ doped-TiO$_2$ experienced a more significantly enhancement in Phenol photodegradation compared to Zn$^{2+}$ or Cd$^{2+}$ doped-TiO$_2$ prepared by same technique. Latter in 2001, Lopez et al [146] also obtained this kind of improvement in their study. They reported that the photodegradation efficiency of 2,4-Dinitroaniline can be improved by their sol-gel synthesized Li$^+$ and Rb$^+$ doped TiO$_2$. They also postulated that Li$^+$ is the electron trapping center to capture holes. Potassium doped TiO$_2$ has also been reported to be more photoactive than the pure TiO$_2$. Morawski et al [148] reported a perovskite structure Potassium doped TiO$_2$ with a chemical formula K$_2$Ti$_4$O$_9$. The Phenol photocatalytic degradation experiment showed that K$_2$Ti$_4$O$_9$ contributes to photodegradation by generating more electrons and holes compared to pure TiO$_2$.
Alkaline earth metal doping has also been investigated. As Venkatachalam et al [153] reported that in their TiO$_2$ photodegradation of Bisphenol-A study, Mg$^{2+}$ and Ba$^{2+}$ doped nano-TiO$_2$ were found to be more efficient than the both the pure nano-TiO$_2$ and commercial TiO$_2$.

However, some studies have shown that the presence of Na$^+$ in TiO$_2$ lattice may damage the performance of the photocatalyst due to alkaline contamination from support subtract to photocatalyst [160, 161]. Local high concentration of dopant metal ions may serve as recombination centers for electrons and holes [162], which exists in all metal cation/cations doped TiO$_2$ photocatalysts.

Transition Metal Doping

Most transition metals have multiple potential oxidation states. Relying on this property, transition metals can greatly reduce the electron and hole recombination by efficiently serving as charge carrier trapping centers [163]. In general, compared to alkali or alkaline earth metals, the atomic radius of transition metals are more similar to that of TiO$_2$, making them more technically accessible into the crystal lattice of TiO$_2$ with inhibited migration [164].
Choi et al. studied nineteen transition metal ions as doping materials, including $V^{3+}, V^{4+}, Cr^{3+}, Mn^{3+}, Fe^{3+}, Co^{3+}, Ni^{2+}, Zn^{2+}, Ga^{3+}, Zr^{4+}, Nb^{5+}, Mo^{5+}, Ru^{3+}, Rh^{3+}, Sn^{4+}, Sb^{5+}, Ta^{5+}, Re^{5+}$ and Os^{3+}. In their experiment, both the reduction of an electron accepter and oxidation of an electron donor were characterized via CCl_4 dechlorination, and $CHCl_3$ degradation respectively. Results showed that doping TiO$_2$ with $V^{4+}, Mo^{5+}, Fe^{3+}, Ru^{3+}, Re^{5+}, Os^{3+}$ can remarkably increase the activity of TiO$_2$ photocatalyst. And there is an optimal doping concentration for each tested transition metal ion-doped TiO$_2$. A very rough approximation is also provided in their work: about 0.1-0.5wt.% would be a decent doping concentration in general.

Studies show that visible light photodegradation of organic compounds can be achieved by doping with transition metals such as Vanadium, Manganese, Cobalt, Tungsten, Chromium, Ferrum, and Nickel etc. Fuerte et al [167] and Anpo et al [162] studied the red shift in absorbance spectrum of several different kinds of transition metal doped TiO$_2$s. According to their results, besides the doping concentration, red shift rate in absorption varies from one doping transition metal to another. This shift, in order from greatest to smallest was found to be: Vanadium > Chromium＞Manganese＞Ferrum＞Nickel. The red shift can be explain as the presence of transition metal ion in TiO$_2$ lattice which bridges the charge transfer from its own d electrons to the conductive band or valence band of TiO$_2$, so that less energy is required to activate the doped TiO$_2$ [168].

Rare earth metal and noble metal elements recently have drawn massive attention among all the transition metal elements. Doping with rare earth metals in the TiO$_2$ crystal,
especially Lanthanoids, can further promote the photocatalytic activity of TiO$_2$ by attracting the organic compound/compounds to the doped TiO$_2$ surface and forming Lewis acid/base complexes [169]. Regarding noble metals, they are highly resistant to corrosion and oxidation, which can greatly extend the lifetime of TiO$_2$ photocatalysts, since catalyst deactivation is a major threaten to the long term photoactivity of TiO$_2$. Currently, the manufacturing costs for rare earth metal or noble metal doped TiO$_2$ is the primary issue of concern to their practical application.

Overall, metal doped TiO$_2$ has distinctly shown its positive impacts on photocatalysis. However, doping with metals damages the thermal stability of TiO$_2$ semiconductors [170], and the doped metal ions sometimes inhabit the surface active sites of the photocatalysts [171].

3.2 Non-Metal Doping

Various Non-Metal elements, such as Nitrogen [172-178], Carbon [93, 179-182], Sulfur [178, 183-187], Boron [188-193], Phosphorous [194-197], Chlorine [198-200] and Fluorine [201-204], have frequently been reported in the past several years as a class of promising doping element to enhance and extend the photoactivity of pure TiO$_2$ to visible-light range. The mechanism of this absorbance in the visible light region brought on by non-metal ion doping can be explained with the help of the Figure 3-1.
In general, by doping with non-metal ions, the band gap of TiO\(_2\) decreases since a "springboard" energy level between the valence band and conduction band contributes to the charge transfer [205]. Representatively, the most popular method for non-metal doping, Nitrogen doped TiO\(_2\): the valence band of TiO\(_2\) is primarily O-2p orbitals, while the conduction band consists of Ti-3d orbitals. Doping with Nitrogen ions brings an energy level in between them, and the orbitals of this energy level (N-2p orbitals) are very similar to the valence band. After the mid-way "springboard" energy level populates with electrons from the valence band, holes generated from the valence band, and the electrons can be pulled to the conduction band using less photon energy, which in this case, is about 2.5eV. That means the light-absorbance spectrum of this N-doped TiO\(_2\) has been extend from 390nm (UV range) to 500nm (visible light range).

Figure 3-1 Mechanism of visible light absorption by in Nitrogen-doped TiO\(_2\)
Among all the anion-doping materials, Carbon has been claimed to be another important candidate. Similar to Nitrogen, the introduced Carbon is $C-2p$ orbitals. In the study conducted by Sakthivel et al [206], C-doped TiO$_2$ efficiently decomposed 4-Chlorophenol under visible light irradiation due to the red shift caused by Carbon substitutions at Oxygen sites inside the TiO$_2$ lattice. In some cases, the formation of carbonaceous species on the surface of C-doped TiO$_2$ has also been shown to promote the visible light response [207, 208].

Besides Nitrogen and Carbon doping, doping TiO$_2$ with Sulfur has been investigated as well. Studies showed some evidence of how the $S-2p$ orbitals narrow the bang gap of TiO$_2$. However, these studies remain controversial in the academic community, as some researchers claimed that these results are possibly due to misleading characterization and are "partial" and "incomplete"[61, 123, 209].

The drawback of non-metal element doping is the poor thermal stability for doped non-metal ion inside the crystal lattice. A high temperature chemical process, annealing for instance, would reduce the concentration of the non-metal, leading to a low catalytic activity and poor visible light response of the doped TiO$_2$ photocatalyst [210]. Co-doping [178, 186, 190, 197, 210] with two or more metal/non-metal elements has been considered as one of several ways to overcome the drawbacks of metal or non-metal doped TiO$_2$ due to the synergetic effect of co-doped ions.
3.3 Semiconductor Coupling

Many researchers have reported their efforts on coupling narrow band gap semiconductor/semiconductors on the surface of TiO$_2$. Due to overlaps between the valence band, conduction band and band gap of two different semiconductors, this heterostructure system can effectively separate the photon-generated electrons and holes while hamper their recombination. The addition of a narrower band gap semiconductor can also extend the light response of this system to visible light region [211]. In this context, coupled TiO$_2$ heterostructures systems were considered to be a class of high visible light activity photocatalysts.

The basic mechanism of this technique is given below in Figure 3-2. The coupled semiconductor with a narrow band gap can be photo-active under visible light irradiation, the photon generated electrons from the conduction band of coupled semiconductor insert to the conduction band of in-activated TiO$_2$, while holes are left behind at the valence band of coupled semiconductor. The charge transfer process takes place at the interface between these two semiconductors, during which, active oxidative species generate and start to catalyze the reactants adsorbed on the coupled-TiO$_2$ [212, 213].
Spanhel et al [214] reported in 1987 the most important principle of selecting candidate coupling semiconductors: the band gap of coupling semiconductor must be shorter than the band gap of TiO$_2$ so that a visible-light response can be possibly achieved. Afterword, studies [212, 215] ascertained that the conduction band of coupled narrow band gap semiconductor has to be lower, while its valence band should be higher than which of TiO$_2$.

Various of coupling systems have been reported recently, such as CdS-TiO$_2$ [216-222], SnO$_2$-TiO$_2$ [223-225], SiO$_2$-TiO$_2$ [147, 226-228], WO$_3$-TiO$_2$ [17, 115, 229-233], Al$_2$O$_3$-TiO$_2$ [49, 226, 234-237], ZnO-TiO$_2$ [7, 93, 135, 238-240], ZnS-TiO$_2$ [241-243] and MoS$_2$-
TiO$_2$[244-246] etc. Among them, the most in-depth studied material is CdS due to its deal band gap and energy levels.

Laurence et al [221] introduced layered CdS quantum dots to nanocrystalline TiO$_2$ electrodes by a self-assembly method. Characterization results showed that their TiO$_2$ can be effectively photo-sensitized via CdS coupling. A microemulsion-mediated solvothermal synthesis of nanoscale CdS-TiO$_2$ has been reported by Yu et al [222]. Using this method, a significant enhancement of visible-light absorbance was observed in their CdS-TiO$_2$ samples. Also, Yu’s couple system was found to be more effective for the Methylene blue reduction under visible light irradiation compared to pure TiO$_2$. More importantly, electron paramagnetic resonance (EPR) spectrum identified the existence of Ti$^{3+}$ in CdS-TiO$_2$. In contrast, no EPR signal of Ti$^{3+}$ can be observed using the same characterization conditions and device for pure TiO$_2$ samples, which supports the idea of photo-generated electron injection from the CB of CdS to that of TiO$_2$.

Coupling with Transition Metal Dichalcogenides

Recent studies have demonstrated that nano-scaled transition metal dichalcogenides, or transition-metal disulfides (TMDs) with graphene-like mono or few layer structure experience strong anisotropy in many properties, especially electrical properties. The typical structure of TC$_2$, as shown in Figure 3-3 is a “sandwich” layered structure, where a layer of transition metal atoms is located hexagonally in between of two layers of chalcogen atoms. Inside the mono layer of TMD, transition metal atoms and the chalcogen
atoms are bonded to each other via wave-live covalent bonds, while the Van Der Waals force maintains the interaction along the surfaces of two "sandwich" layers.

![Diagram of TMD structure](image)

Figure 3-3 Sketch of the structure of typical TMD (a) X or Y-Axis view of two layers of TMD, each "T" stands for a transition metal atom while a "C" represents a chalcogen atom (b) Z-axis view of single layer of TMD, the yellow and magenta balls indicate the transition metal atoms and chalcogen atoms, respectively.

TMDs such as MoS$_2$ and WS$_2$, have drawn considerable attention since they are easy to prepare at relatively low cost and have more photocorrosion resistance compared to conventional materials such as CdS and ZnO.

Ho et al [247] reported an in situ photo-reduction deposition synthesis of TiO$_2$ coupled MoS$_2$/WS$_2$ for enhanced visible-light photocatalysts. Figure 3-4 shows the experimental set up for the fabrication of MoS$_2$/WS$_2$-TiO$_2$. This method required a photochemical reactor with a high-pressure Mercury lamp as the light source. The nano-sized TiO$_2$ was suspended in the aqueous solution of (NH$_4$)$_2$MoS$_4$/(NH$_4$)$_2$WS$_4$, while Nitrogen gas was
continuously bubbled to the reaction system in order to protect the reactants from oxidation. The harvested MoS$_2$/WS$_2$-TiO$_2$ nano powder experienced a significant improvement in the visible-light decomposition of Methylene blue and 4-Chlorophenol, which they claimed, was due to the alerted energy levels of the conduction and valence band in the coupling systems.

![Diagram of the in situ photo-reduction deposition synthesis of TiO$_2$ coupled MoS$_2$/WS$_2$](image)

Figure 3-4 Sketch of the in situ photo-reduction deposition synthesis of TiO$_2$ coupled MoS$_2$/WS$_2$

An even more accessible method of semiconductor coupling has been investigated by Zhou et al [248], as they reported a visible-light active MoS$_2$-TiO$_2$ photocatalyst for hydrogen production and Rhodamine B photodegradation. In their study, a few-layer MoS$_2$ nanosheet-coated TiO$_2$ nanobelt hetero-photocatalyst system was synthesized by a hydrothermal reaction. The pre-synthesized TiO$_2$ nanobelts were suspended in the aqueous
solution of Thioacetamide (TAA) and Sodium Molybdate. After being heated in a Teflon-lined stainless steel autoclave at 200 °C for 24 h, the outcome MoS$_2$-TiO$_2$ photocatalyst can be synthesized.

Figure 3-5 shows the characterization on the morphology of Zhou’s samples, (a) is the scanning electron microscope (SEM) image of pure TiO$_2$ nanobelts. (b) is the SEM image of after-hydrothermal MoS$_2$-TiO$_2$ hetero-photocatalyst system, which was a remarkable evidence for its coupling heterostructure between two semiconductors. (c) and (d) are transmission electron microscopy (TEM) images of lattice fringes of MoS$_2$-TiO$_2$ that can further prove the chemical coupling between MoS$_2$ and TiO$_2$ can be achieved via a hydrothermal method.
Figure 3-5 Morphology of TiO$_2$ nanobelts and MoS$_2$-TiO$_2$ coupling system (a) SEM images of pure TiO$_2$ nanobelts (b) SEM image of MoS$_2$-TiO$_2$ coupling system (c) and (d) TEM image of MoS$_2$-TiO$_2$ coupling system [248]

Brief Introduction of Nano Scaled VS$_4$

As already discussed in Chapter 1, VS$_2$ is a typical layered-structure TMD (Figure 3-6 a) which has been shown considerable attention recently due to its remarkable electrochemistry properties. However, the difficulties and complexities of VS$_2$ synthesis
make it necessary to seek other forms of vanadium sulfide minerals as substitutes in practical applications. Studies on some TMDs with S_2^{2-} dimer have shown that these materials have great potential in photochemistry and catalyst applications: Cattierite (CoS$_2$) is a possible electro-catalysis for Oxygen reduction [249]; while Vaesite (NiS$_2$), can be applied as Li batteries’ anode material [250]. Thus, make the Vanadium Sulphide mineral with a formula $V^{4+}(S_2^{2-})_2$, a very promising material in the field of electrochemistry.

The first recorded document of VS$_4$ was published in 1906 [251], when Hillebrasd found this Vanadium Sulphide mineral in Minaragra, Peru. VS$_4$ was named Patrónite in honor of Peruvian metallurgist Antenor Rizo-Patrón (1866–1948) who discovered the Vanadium ore in that area. In 1972, Kutoglu and Allmann [252] first reported the crystallography structure of VS$_4$ (article in German with English abs.): The VS$_4$ is a "linear-chain" compound (Figure 3-6 b) where a Vanadium center is octa-coordinated in between two four-sulfide-rectangulars.

The most recent work on VS$_4$ was carried out by Rout and Kim et al [253]. Single crystalline VS$_4$ nanostructures were successfully synthesized via a simple hydrothermal method, and a VS$_4$ based hybrid anode material for Li batteries with graphene oxide was synthesized. Material performance was demonstrated by initial discharge and charge capacities, which were found to be 1669 and 1105 mA h g$^{-1}$, respectively. And the VS$_4$ and Graphene Oxide hybrid showed good durability by remaining a high charge capacity of 954 mA h g$^{-1}$ after underwent more than 100 charge and discharge cycles at 0.1 C. Also,
characterizations such as SEM, TEM and XRD were included in their report. This paper shows a great potential that VS₄ materials could have to apply in electrochemical field.

Figure 3-6 3-D geometries of VS₂ (a) and VS₄ (b); The purple balls are Vanadium atoms, while the golden balls are Sulfide atoms [253]

There have been scattered reports on VS₄ over the last 50 years, However, the difficulty of synthesize pure VS₄ greatly hinders the researchers to study it systematically. The nonstoichiometric phases of Vanadium Sulfides with various different oxidation states are so difficult to limited by controlling the sulfurization process during synthesis [254], and separating VSₓ from existing VS₄ is also intractability in practice [255, 256].
4. Experimental Section

4.1 Synthesis

Materials

Sodium Orthovanadate (Na₃VO₄, 99.8%), Thioacetamide (TAA, C₂H₅NS ≥99.0%), Titanium (IV) Oxide nanopowder (P25, ≥99.5%) and Methylene blue (MB, ≥82%) were commercially available from Sigma-Aldrich Co. LLC. All reagents were conducted using double-deionized water and used as received without further purification.

Preparation of VS₄ Nano Materials

In a typical experiment, 552 mg Sodium Orthovanadate (Na₃VO₄) and 1.125 g Thioacetamide (C₂H₅NS) were dissolved with 30 mL double deionized water and stirred vigorously for 5 minutes to dissolve all reagents, then the contents were transferred to a Teflon-lined stainless-steel autoclave and heated in an electric oven at 160 °C for 24 hours. Black precipitate was finally collected by centrifugation at 10K rpm and washed 5 times with double deionized water. The wet black product was re-dispersed in 15 mL double deionized water. The above dispersion was sonicated in an ice bath for 1 hour. The resultant black VS₄ was harvested after centrifugation and freeze dried at -40 °C for 12
hours. Notice that different reaction parameters such as temperature or time lead to different morphologies as listed in Table 4-1.

Synthesis of VS$_4$-on-TiO$_2$

The process of growing nano VS$_4$ discs on nano TiO$_2$ heterostructures (6 wt.% of VS$_4$) is described as follows. Typically, 6 mg VS$_4$ nanodiscs and 94 mg of P25 were dissolved with 25 mL of double deionized water in a 30 mL vial. Then this dispersion was heated with a hot-plate magnetic-stirrer at 100 °C and bubbled with Nitrogen gas for 3 hours. The desired nano VS$_4$-on-TiO$_2$ samples were obtained after centrifugation and freeze dried at -40 °C for 12 hours. Different loadings of VS$_4$-on-P25 have been synthesized via the same method (1wt.%, 3wt.%, 10wt.%, 20wt.%). The influence of photocatalytic activities for different loading of VS$_4$-on-P25 will be discussed in the following Chapter 5.
Table 4-1 Various VS₄ products obtained by different hydrothermal parameter

<table>
<thead>
<tr>
<th>Parameters Morphology</th>
<th>Reaction Time</th>
<th>Reaction Temperature</th>
<th>Reactants Concentration</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanodiscs</td>
<td>24 h</td>
<td>160 °C</td>
<td>552 mg Na₃VO₄ + 1.125 g C₂H₅NS + 30 mL H₂O</td>
<td>Figure 5-1</td>
</tr>
<tr>
<td>Micro-Spheres</td>
<td>36 h/48 h</td>
<td>160 °C</td>
<td>552 mg Na₃VO₄ + 1.125 g C₂H₅NS + 30 mL H₂O</td>
<td>Figure 5-2</td>
</tr>
<tr>
<td>Nanorings</td>
<td>24 h</td>
<td>200 °C</td>
<td>46 mg Na₃VO₄ + 120 mg C₂H₅NS + 30 mL H₂O</td>
<td>Figure 5-3</td>
</tr>
<tr>
<td>Micro-Cluster</td>
<td>36 h</td>
<td>200 °C</td>
<td>46 mg Na₃VO₄ + 120 mg C₂H₅NS + 30 mL H₂O</td>
<td>Figure 5-4</td>
</tr>
<tr>
<td>Micro balls and rods</td>
<td>36 h</td>
<td>200 °C</td>
<td>3.312 g Na₃VO₄ + 6.65 g C₂H₅NS + 30 mL H₂O</td>
<td>Figure 5-5</td>
</tr>
</tbody>
</table>
4.2 Characterizations

Field-emission scanning electron microscopy (FESEM, Zeiss ULTRA Plus; 10 kV acceleration voltage), transmission electron microscopy (TEM, JEOL 2010F; 200 kV acceleration voltage), X-ray diffraction (XRD, Bruker AXS D8 Advance), and Raman spectroscopy (Bruker SENTERRA; 532 nm 20 mW laser) were employed to determine the morphologies, and crystal structures of materials.

Material performance was determined by the photocatalytic degradation of MB under UV light irradiation (500 W Mercury lamp, Beijing CEL Sci-Tech Co., Ltd). 30 mg of photocatalyst was added to a 40 mL MB aqueous solution (1.56 × 10^{-3} M) and stirred in dark for 30 min to achieve adsorption–desorption equilibrium, during which, 1 mL sample solution were drawn at 10, 20, and 30 min. Then the UV lamp was applied, under irradiation, 1 mL sample solutions were drawn at 1, 2, 3, 4, 5, 10, 15, 20, and 30 min. After diluting 4-folds and centrifuging to remove the photocatalyst, the concentration of MB was obtained using a UV-Vis photospectrometer (Fischer Scientific, GENESYS 10S). The absorbance was measured at the characteristic MB peak (664 nm). Diffuse reflectance absorption data of materials were obtained using a diffuse reflectance UV-Vis recording spectrophotometer (Shimadzu Corporation UV-2501PC).
5. Results and Discussion

5.1 Scanning Electron Microscopy

SEM was used to investigate the morphology and microstructure of the synthesized VS$_4$ materials. As it discussed in Chapter 4.1, five different VS$_4$ materials have been developed in this study. Among them, two are in nano-scale and the rest three are in micro size.

Nanodiscs

Figure 5-1 (a) demonstrates the uniformly distributed VS$_4$ nano discs. The prepared nanodiscs were synthesized at 160°C for 24 hours, and the initial concentrations of Na$_3$VO$_4$ and C$_2$H$_5$NS (TAA) are 0.1 mol/L and 0.5 mol/L, respectively. A single prepared nanodisc is approximately 100 to 200 nm in diameter with a thickness of 10 to 20 nm (Figure 5-1 b, c). Self-assembly is common, as some nanodiscs self-assembled to form microspheres during the synthesis. However, most of the particles are remain in the nano-scale with no more than three self-assembled discs (Figure 5-1 d).
Figure 5-1 SEM images of VS$_4$ nanodiscs (a) uniformly distributed VS$_4$ nanodiscs; (b) (c) self-assembly of VS$_4$ nanodiscs; (d) mono or limited self-assembled VS$_4$ nanodiscs

Micro-Spheres

A time study was applied to investigate the growth of VS$_4$ nano material under different reaction time (36 and 48 hours). This demonstrates that the self-assembly of the nanodiscs
was more pronounced as the reaction time increases: the size of single nanodiscs remains the same regardless of the different reaction times (Figure 5-2 a, c). However, most of the nanodiscs self-assembled to form micro-spheres. A similar phenomenon has been reported by Zhou et al [248], where in their study, another kind of nano TMD (MoS$_2$) micro-spheres (Figure 5-2 e) have been hydrothermally synthesized using Sodium Molybdate (Na$_2$MoO$_4$ · 2H$_2$O) and TAA as the precursors. Their time study also indicates that the size of micro-spheres increases with the reaction time due to the self-assembly process. The average diameter of the VS$_4$ micro-spheres is 1 to 2 um for the 36 hours group, while this number becomes inconclusive for the 48 hours group due to the presence of large clusters that are over 10 ums in diameter. (Figure 5-2 b, d)
Figure 5-2 SEM images of VS$_4$ Micro-Spheres (a) (c) VS$_4$ Micro-Sphere after 36 hours reaction time; (b) (d) VS$_4$ Micro-Sphere after 48 hours reaction time; (e) MoS$_2$ Micro-Sphere [248]
Nanorings

The nanoring structures were obtained by a hydrothermal reaction at 200°C, which is the maximal temperature for this reaction system since the melting point of Teflon-lined chamber is 220°C. The initial concentrations of both two precursors are 8.3×10^{-3} mol/L (Na_3VO_4) and 5.3×10^{-2} mol/L (TAA). For a typical nanoring structure, several small nanoparticles comprise a ring that has inside and outside diameters of 100 and 200 nm, respectively (Figure 5-3 a). The thickness of these nanorings is not homogenous, and usually the thinnest part of a nanoring can be observed at the connection points of two small nanoparticles (Figure 5-3 a, b). In general, this ring-structured nano VS$_4$ is soundly uniform in size and shape. However, due to a higher surface energy caused by its large surface area, the nanoring structure undergo more favorable self-assembly compared to the nanodiscs (Figure 5-3 c).
Figure 5-3 SEM images of VS₄ nanorings at different magnifications (a) (b) mono VS₄ nanoring consisted with small VS₄ nanoparticles; (c) self-assembly of VS₄ nanorings

Micro-Cluster

A time study has also been applied to investigate the growth of nanorings with a longer reaction time (36h). This time study shows that VS₄ nanoparticles have a strong self-assembly tendency under this reaction condition due to their specific surface area and large
surface energy. However, the size of a single nanoparticle would not be affected by reaction time. For one nanoparticle, the size remains at a diameter around 50 nm (Figure 5-4 a,b), Although a few nanorings still can be found under SEM, most of them self-assembled into micro-scale clusters (Figure 5-4 b,c).

Figure 5-4 SEM images of VS$_4$ Micro-Clusters at different magnifications
Micro Balls and Rods

The limitation initial concentrations of this reaction are 0.6 mol/L and 3 mol/L for Na$_3$VO$_4$ and TAA, respectively. This is due to the formation of H$_2$S gas as a part of the side reaction, overloading of the two precursors could increase the risk of autoclave leaking or explosion. At this high concentration, the synthesized material is no longer in nano-scale: Micro balls and rod structures can be obtained as shown by SEM imaging (Figure 5-5). The Micro balls are made up with petal-like nanoparticles which are around 100 nm wide and 200 nm in length as the core, surrounding by nano rods which are 50 nm in diameter and several microns long (Figure 5-5 a, b). These micro balls and rods are uniformly distributed, and the balls are mostly around 2 um in diameter and show a very limited degree of self-assembly between two or more micro balls (Figure 5-5 c, d).
According to the experiment results of the synthesis of VS$_4$-on-P25, it suggested that the nanodisc structure VS$_4$ is the most suitable material to grow onto P25 surface due to its relatively low surface energy compared to the size. Thus, starting from Chapter 5.2, all the VS$_4$ materials that conducted with VS4-on-P25 are VS$_4$ nanodiscs.

5.2 High-Resolution Transmission Electron Microscopy
The HRTEM images of pure VS₄ nanodiscs and VS₄-on-P25 are shown in Figure 5-6. The \(d \)-spacing of prepared nanodiscs is approximately 0.56nm, which corresponds to that of the (110) plane of monoclinic phase of VS₄ [PDF No. 072-1294, \(d \) (110) = 0.56 nm]. Long-range ordering of the VS₄ crystals was observed both in Figure 5-6 (a) and (b). Figure 5-6 (b) further verifies the growth of nanoscale VS₄-on-P25. However, compared to Rout and Kim et al [253] study on VS₄, the tested VS₄ nanodiscs show less in crystal regulation.

![HRTEM images](image)

Figure 5-6 HRTEM images of (a) the VS₄ nanodiscs. (b) The VS₄-on-P25, ribbon showing TiO₂ lattice spacing of 0.35 nm in the (101) plane of anatase TiO₂[257]; and the VS₄ lattice spacing of 0.56 nm corresponding to the (110) plane

5.3 X-ray Diffraction

XRD was conducted using Cu K \(\alpha \) radiation with a wavelength of 1.54 Å. Figure 5-7 shows typical XRD patterns of VS₄ nanodiscs using JCPDS No. 072-1294 as reference.
Characteristic peaks at each degree are marked in the figure. Compared to the standard JCPDS No. 072-1294, the XRD patterns of tested VS₄ sample have greater noise levels, and two or three characteristic peaks cannot match the reference, which offers more support to the cause of the less crystallinity TEM image in Chapter 5.2.

![XRD pattern of VS₄](image)

Figure 5-7 XRD pattern of VS₄. Reference from known monoclinic VS₄ [JCPDS No. 072-1294]

The XRD spectra of pure P25 and 6 wt.% VS₄-on-P25 are also given in this study. For pure P25 samples, characteristic peaks of anatase phase TiO₂ at 25.5°, 38.0°, 48.2°, 54.1°, and 55.2° are marked in the Figure 5-8 as "A". While the peaks of a rutile phase TiO₂, as indicated by the characteristic peaks at 27.4°, 36.3° and 69.0°, are marked in the Figure 5-8 as "R"[258]. A typical XRD pattern of 6 wt.% VS₄-on-P25 shows that the VS₄ phase is not
readily detected in the composite due to the low loading of VS$_4$, which is in agreement with some literatures, that the XRD would failed to detect at this low degree of loading [257, 259].

![Figure 5-8 XRD pattern of VS$_4$-on-P25 and P25](image)

Figure 5-8 XRD pattern of VS$_4$-on-P25 and P25

5.4 Raman Spectroscopy

The Raman spectrum of VS$_4$ nanodiscs is also reported in this article. However, no previous work has ever been published on this characterization of VS$_4$ nanomaterials.
Moreover, the XRD data already shows the insufficient crystallinity and/or fineness on this test VS\textsubscript{4} sample. Thus, the Raman spectroscopy result can be only provided as rough approximations.

![Raman spectra of VS\textsubscript{4} nanodiscs](image)

Figure 5-9 Raman spectroscopy of VS\textsubscript{4} nanodiscs

5.5 Ultraviolet–Visible Spectroscopy
The photodegradation activity of pure P25 and VS$_4$-on-TiO$_2$ was determined via UV decomposition of Methylene Blue. The equipment and procedures of this test have already been discussed in Chapter 4.2.

Figure 5-10 shows the photodegradation of MB over 30 minutes' of UV irradiation using 4 different VS$_4$-on-P25s (1wt.%, 3wt.%, 6wt.%, 10wt.%) and pure P25. The degradation curves of MB on different catalysts are typically first order kinetics. Thus, lists in Table 5-1, are the simple calculations of the degradation rate via the equation:
\[k = -\frac{\ln \frac{C}{C_I}}{T} \] \hspace{1cm} (5-1)

In which \(C \) is the final concentration of MB and \(C_I \) is the initial concentration of MB, \(T \) is the reaction time and \(k \) is the degradation constant.

Table 5-1 Rate constant calculations for data obtained from Figure 5-10

<table>
<thead>
<tr>
<th>Sample</th>
<th>MB initial concentration (C_I) ((\mu g/mL))</th>
<th>MB final concentration (C) ((\mu g/mL))</th>
<th>degradation constant (k) (min(^{-1}))</th>
<th>(k/k_{P25})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>18.8</td>
<td>4.81</td>
<td>0.045</td>
<td>1.00</td>
</tr>
<tr>
<td>1wt.% VS(_4)-on-P25</td>
<td>18.9</td>
<td>1.87</td>
<td>0.077</td>
<td>1.71</td>
</tr>
<tr>
<td>3wt.% VS(_4)-on-P25</td>
<td>17.7</td>
<td>1.07</td>
<td>0.094</td>
<td>2.09</td>
</tr>
<tr>
<td>6wt.% VS(_4)-on-P25</td>
<td>17.6</td>
<td>0.8</td>
<td>0.103</td>
<td>2.29</td>
</tr>
<tr>
<td>10wt.% VS(_4)-on-P25</td>
<td>18.1</td>
<td>5.06</td>
<td>0.042</td>
<td>0.93</td>
</tr>
</tbody>
</table>

At 1wt.%, 3wt.%, and 6wt.% VS\(_4\)-on-P25 outperforms pure P25 in MB photodegradation. Quantitative measurements are given in Table 5.1, the highest degradation rate constant is provided by 6wt.% VS\(_4\)-on-P25, 0.094 min\(^{-1}\), which is 2.29 times higher than that of pure P25's 0.045 min\(^{-1}\). The 1wt.% and 3wt.% VS\(_4\)-on-P25 offer the improvements of 71% and 109%, respectively. Three loadings of VS\(_4\)-on-P25 samples are superior to pure P25 when the residual MB concentration is lower than 8ug/ml. These improvements can be attributed to the heterostructure of the VS\(_4\)-on-P25. The VS\(_4\) crystalline nanostructure accelerates
charge transfer, resulting in lower electron-hole recombination rates compared to pure TiO$_2$ nanoparticles.

Several readings with fluctuations from 0 to 10 minutes (under UV irradiation) were obtained within 10wt.% VS$_4$-on-P25. Also, the rate constant of 10wt.% VS$_4$-on-P25 can be mathematical derived by dividing that of P25, k (P25)=0.045 (min$^{-1}$) and k (10wt.% VS$_4$-on-P25)=0.042 (min$^{-1}$), this quantitative measure shows that the 10wt.% VS$_4$-on-P25 actually performs worse that pure P25 by 7%.

To better understand how different loadings of VS$_4$ impact the heterostructure’s photocatalytic performance, a same MB degradation study has carried out using 20wt.% VS$_4$-on-P25 (30 mg in total, 6 mg VS$_4$ contains) and pure VS$_4$ (6 mg). Figure 5-11 shows the results of MB degradation over 30 minutes storage in dark and 30 minutes' under UV irradiation. Significant fluctuations can be found with both 20wt.% VS$_4$-on-P25 and pure VS$_4$ samples. High but unstable absorbance for MB can be detected within the first 30 min in dark experiment until the dye-catalyst system reaches adsorption–desorption equilibrium.
Figure 5-11 Photodegradation of Methylene blue under UV irradiation, comparing the performance of pure VS₄, and 20wt.% VS₄-on-P25

Also, the fluctuations on photodegradation curves under UV irradiation can be ascribed to the temporarily combination between MB and VS₄: when MB is attached on the surface of VS₄ or VS₄-on-P25, the extended interface between them allows an acceleration of the photodegradation process by bridging the charge transfer. As a result, the MB concentration of the solution fluctuates greatly contributed by both photodegradation and adsorption. For the 20wt.% VS₄-on-P25 group, after 5 min UV irradiation, MB photodegradation starts to predominate over adsorption, lead to the appearance of a first
order kinetic in Figure 5-11 (blue curve). Due to the relatively large VS$_4$ surface area and the absent of TiO$_2$ compared to VS$_4$-on-P25s, pure VS$_4$ experiences a violent absorb-release process under UV irradiation which is reflected in Figure 5-11 (red curve): the wild fluctuations last over 20 min.

5.6 Diffuse Reflectance UV-Vis Spectroscopy

A diffuse-reflectance UV-Vis recording spectrophotometer was applied to detect the light absorption for different materials. Figure 5-12 shows the light absorption spectrum of P25, 1 wt.% VS$_4$-on-P25, 6 wt.% VS$_4$-on-P25, and VS$_4$ samples. Pure P25 (red curve) follows the pattern of a typical TiO$_2$'s absorption spectrum: the TiO$_2$ material stops responding when the incoming light is in visible-light range (400 nm). Compared to P25, both 1 wt.% VS$_4$-on-P25 and 6 wt.% VS$_4$-on-P25 extends their absorptions into the visible range, especially the critical range in between 400 nm and 500 nm due to the strong UV and visible-light absorption ability of pure VS$_4$ (green curve).
A Tauc plot (Figure 5-13) can be generated after a Kubelka-Munk transformation on light absorption data [260, 261]. In this Tauc plot, (Y) axis represents Kubelka-Munk function $[F(R_{\infty})\hbar v]^\frac{1}{2}$, which approximately equals to $ah\hbar v^\frac{1}{2}$ (a is the material absorption coefficient). The horizontal (X) axis represents photon energy $\hbar v$. Extrapolating tangents (black lines) established from the linear region of the curve to the abscissa, sketchy-calculated band gaps for P25, 1 wt.% VS$_4$-on-P25, and 6 wt.% VS$_4$-on-P25 can be found at 3.0 eV, 2.5 eV, and 2.1 eV respectively. Therefore, coupling VS$_4$ on TiO$_2$ can increase the
charge generation efficiency by extending TiO$_2$'s light absorption spectrum to visible light range. Consequently, this heterostructured photocatalyst can reduce the recombination rate of photogenerated electron-hole pairs, results in a superior photocatalytic activity compared to pure TiO$_2$. It is worth noting that due to the lack of data on VS$_4$’s absorption coefficient, all the Kubelka-Munk transformations of VS$_4$-on-P25 materials are acquired by using the absorption coefficient of TiO$_2$, which may lead to the lessening of results.

Figure 5-13 Tauc Plot of P25, 1 wt.% VS$_4$-on-P25, and 6 wt.% VS$_4$-on-P25; including the band gap estimations by extrapolating tangents to the abscissa
6. Conclusions and Future work

In summary, the VS$_4$ nanodiscs have been synthesized by apply a simple hydrothermal reaction, and the VS$_4$-on-P25 can be achieved via the same method. The VS$_4$-on-P25 heterostructures experience a significant improvement in photo-degradation of MB under UV irradiation. In this work, VS$_4$-on-P25 has been shown to be superior to P25 in photocatalytic performance by increase charge transfer rate along the coupled two semiconductors. Coupling VS$_4$ on P25 decreases the band gap of the pure TiO$_2$, lead to a wider light-absorption spectrum which greatly improves the photocatalytic activity at visible light range. Furthermore, this improved performance should also be ascribed to the adsorption ability of VS$_4$, which provides adsorption sites for MB, increases conductivity between the dye and photocatalyst, and suppresses charge carriers' recombination. The optimal VS$_4$ loading was found to be 6 wt.%.

It is believed that this easy-synthesized novel heterostructured VS$_4$-on-P25 provides a new idea as a highly-active visible-light photocatalyst, not only in chemical deconstruction, but also in hydrogen production and even solar energy techniques.

Based on the existing results and a survey of present literatures, several recommendations can be proposed for future works. Firstly is to study VS$_4$ systematically, especially its physicochemical properties. Secondly, it is greatly needed to deeply investigate the
reaction mechanism of the synthesis of VS₄ to improve and perfect the synthesis of VS₄ with high crystallinity and purity. Thirdly, ground work of VS₄ on other different fields would also be very helpful for further understanding of this novel semiconductor material.
References

68. - Chen JS, - Ng MF, - Wu HB, - Zhang L, - Lou XW: Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties. - CrystEngComm (16):- 5133.

75. - Goodeve CF, - Kitchener JA: Photosensitisation by titanium dioxide. - Trans Faraday Soc (0):- 570.

77. - McLintock IS, - Ritchie M: Reactions on titanium dioxide; photo-adsorption and oxidation of ethylene and propylene. - Trans Faraday Soc (0):- 1007.

87

96

