Introduction

How do we manage to become aware of stimulus input that is relevant, yet banish from awareness that which is not relevant? One mode requires the active participation of the observer. The observer chooses to “attend” to that which is deemed to be relevant and thus become conscious of it. This “selective” attentional process therefore comes at a cost. The observer will not be aware of what might be highly relevant information that occurs outside of the focus of attention. For this reason, a second mode allows high relevant input to “capture” attention. The observer then has no choice but to become aware of these so-called intrusions into consciousness. But, what types of input are deemed to be so potentially relevant that ongoing cognitive activities are interrupted?

It is known that very frequently occurring, repetitive stimuli are highly unlikely to capture attention. It is more likely that rarely presented, novel stimuli will do so. Determining whether a stimulus captures attention is however methodologically very difficult. Many researchers employ the changes in the electrical activity of the brain to external stimuli (the so-called event-related potentials). An auditory “oddball” paradigm is often used in which the subject is presented with a unchanging frequently presented stimuli (the “standard”). At odd and unpredictable times, a feature of the standard is changed and a “deviant” is presented. The subject does not need to actively attend to the auditory stimuli. This is because the initial processing and extraction of the features of the stimuli takes place automatically (without the need for attention). The features of the deviant fail to match those of the standard. Thus, when the deviant is presented, it automatically elicits a negative wave after about 100 ms called the Mismatch Negativity (MMN). The observer is not however conscious of this detection of change. To do so would require that the observer attend to the auditory stimuli. The amplitude of the MMN varies with the extent of change. If it reaches a certain critical threshold, an interrupt signal is sent to the frontal lobes forcing a switch of attention away from ongoing current tasks and toward the incoming auditory stimuli. This is called “attention capture” or “distraction.” The switching of attention to the auditory stimuli allows the observer to become aware of what might be much more relevant information. The switching of attention to the potentially more relevant stimulus elicits an different event-related potential, a positive wave occurring at about 250 ms, called the P3a.

The present study examines the types stimuli that will be likely to result in a switch of attention (i.e. attention capture), as indexed by the P3a.

Method

Subjects: Ten young adults (18-26 years, 8 females) volunteered to participate in this study.

Procedure: Subjects were presented with an oddball paradigm consisting of a series of frequently occurring moderate intensity (80 dB SPL) 1000 Hz “standard” pure tones occurring on 92% of the trials. At rare (odd) and unpredictable times, a feature of the standard was changed to form the “deviant” stimulus, occurring on the remaining 8% of the trials. The duration of each stimulus was 300 ms. Four different “oddball” conditions each lasting about 10 minutes were presented in which the deviant was either: (a) 10 dB “increment” in intensity, (b) 20 dB “decrement” in intensity, (c) white noise burst, or (d) different environmental sounds with an average dB of 80 (e.g. buzz, musical instruments, animal sounds). Each condition was repeated 3 times to assure the replicability of the findings.

EEG (Electroencephalogram) Recording: In order to monitor the extent of processing of the unattended auditory stimuli, the subject’s EEG was recorded from 32 different scalp sites. Subjects were asked to watch a sub-titled video and thus ignore the auditory stimuli. In actual fact, what the subject is doing is incidental. Because subjects were not actively attending to the auditory stimuli, they should not have been conscious of them.

The brain’s response to the auditory stimuli (the ERP: Event-Related Potential) was recorded separately for the standard and the deviant stimuli. Processing of the deviant is best observed in a difference wave, computed by subtracting the processing of the deviant from the processing of the standard. Processing that is common to the standard and deviant stimuli will be removed by the subtraction process. If the processing of the standard and deviant was identical, the resulting difference wave would be a straight line.

Results

“Raw” Standard

Figure 1. ERPs to the standard (traced in black) and deviant (blue) stimuli. At time 0, a 300 ms stimulus (in grey at the bottom) is presented. The standard elicits a small response. Processing until about 100 ms is similar for the standard and the deviant. At about 100 ms, there is a larger negativity (measuring about 1 µV). This is the Mismatch Negativity (MMN) reflecting a detection of change (i.e., a mismatch from what was expected to be presented... the standard and what actually was presented... the deviant). While the MMN signals detection of change, it does not reflect a conscious detection. This only occurs at about 250 ms with the appearance of the optional P3a. The P3a signals that the subject has ceased ongoing cognitive activities (in this case, watching a video), and attention is forcibly switched to what potentially might be much more relevant, i.e. the features of the deviant stimulus. In the vast majority of cases, the intruding stimulus is found to be not relevant, and attention is switched back to the task at hand.

Conclusion

Stimulus change will always elicit a MMN. Stimulus change per se however will not necessarily result in attention capture as reflected by the P3a. Thus, subjects will not necessarily be conscious of any change. The increment and decrement deviants reflect a change in only the intensity for the standard. All the other features remained the same. The white noise deviant reflects a change of many features –mainly its pitch and its intensity. Similarly, the environmental sounds are created by changing many features of the standard. Thus, more novel stimuli (those that incorporate many changes in the features of the stimulus) are more likely to result in a switch of attention. Unfortunately, they are also more likely to result in distraction.

Acknowledgements

This research was supported by a research grant and an equipment grant from the Natural Sciences and Engineering Research Council of Canada. The Undergraduate Research Opportunity Program of the University of Ottawa provided the opportunity for undergraduate participation in this research study. A sincere thank you to Paniz Tavakoli, and Dr. Kenneth Campbell for their mentorship on this project.