Does nitric oxide modulate postexercise skin blood flow and sweating?

Imane Foudil-bey, Ryan McGinn, and Glen P. Kenny

Human and Environmental Physiology Research Unit, University of Ottawa

Introduction

It is well established that core body temperature remains elevated during postexercise recovery due to a rapid suppression in heat loss responses (i.e., skin blood flow and sweating) (1). However, the mechanism(s) by which skin blood flow (SkBF) and sweating are suppressed remains to be fully elucidated. Nitric oxide has been previously shown to have a notable role in the control of skin blood flow (SkBF) (2) and sweating (3) during exercise-induced heat stress. Thus, we examined whether nitric oxide modulates the suppression of heat loss responses following intermittent exercise.

Methods

Three young males (26 ± 5 years) cycled at 70% of their maximal aerobic capacity (VO_{2max}) for two 30 minute bouts, each followed by 30 minutes of seated recovery. Two intradermal microdialysis fibres were inserted into the forearm and were perfused with: 1) Lactated Ringer’s (Control); or 2) 10 mM L-NAME (non-selective nitric oxide synthase inhibitor). SkBF (laser Doppler), sweat rate (ventilated capsule), and esophageal temperature were measured continuously. SkBF responses are presented as maximum cutaneous vascular conductance (CVC) calculated as SkBF (perfusion units) divided by the mean arterial pressure.

Results

Our results are consistent with previous studies indicating that nitric oxide modulates both SkBF (2) and sweat rate (3) during exercise. In addition, we show that SkBF (measured as CVC) was greater at Control versus L-NAME within the first 10 minutes of Recovery 1 (33 vs. 24%) and Recovery 2 (28 vs. 19%), respectively. However, SkBF was similar between sites for the remaining 20 minutes of each recovery period. In contrast, no differences in sweat rate were observed throughout either of the recovery periods. Therefore, we show that nitric oxide contributes to the modulation of SkBF in the early stages of recovery; however, nitric oxide does not modulate the postexercise suppression of sweat rate. Further research is warranted to examine the role of nitric oxide during recovery as a function of greatest levels of exercise-induced hyperthermia.

References


Acknowledgments

I acknowledge Dr. Glen Kenny for giving me the opportunity to participate in the UROP program. As well as Ryan McGinn who led the research project.

Funding Support

This study was supported by an NSERC Discovery Grant RGPIN-298159-2009 held by Dr. Glen P. Kenny. Imane Foudil-bey is supported by the Undergraduate Research Opportunity Program.