NOTE TO USERS

Page(s) not included in the original manuscript and are unavailable from the author or university. The manuscript was scanned as received.

vi, x

This reproduction is the best copy available.
Basic Research and Practical Applications of Manganese and Chromium Complexes

Sandro Gambarotta
DIRECTEUR (DIRECTRICE) DE LA THÈSE / THESIS SUPERVISOR

CO-DIRECTEUR (CO-DIRECTRICE) DE LA THÈSE / THESIS CO-SUPERVISOR

EXAMINATEURS (EXAMINATRICES) DE LA THÈSE / THESIS EXAMINERS

S. Barry

D. Stephan

C. Detellier

D. Richeson (absent)

Gary W. Slater
Le Doyen de la Faculté des études supérieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies
Basic Research and Practical Applications of Manganese and Chromium Complexes

Patrick Crewdson

Thesis Submitted to the
Faculty of Graduate & Postdoctoral Studies
University of Ottawa
in partial fulfillment of the requirements for the
Ph.D. degree in the
Ottawa-Carleton Chemistry Institute

Thèse soumise à la
Faculté d'études supérieures et postdoctorales
de l’Université d'Ottawa
en vue de l'obtention de la maîtrise des sciences à
Ph.D. degré de

L’Institut de chimie d’Ottawa-Carleton

© Patrick Crewdson, Canada, 2007
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L’auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni les extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
I would like to dedicate this work in memory
of my good friend Robert Inglis
who is no longer here to witness me finally graduating

Blue skys wherever you are buddy.
Acknowledgements

So many people have helped me along with during my many years of study in Ottawa that I couldn’t possibly thank them all, however I will make my best effort. If I don’t specifically mention you by name it’s not because I don’t love you, but rather due to space limitations; seriously. My first thanks must of course be reserved for my wife Jessica, who has suffered many a delayed night due to my constantly needing “30 more minutes for this reaction” which, of course, always took significantly longer. How she managed to keep from throttling me, I’ll never know, but I’m eternally grateful for her support.

From within my group I’d like to thank Sandro for his years of guidance and giving me the opportunity to work in Europe, I will definitely miss his home baked bread. Illia Korobkov was a constant source of encyclopedic chemistry knowledge and techniques, his guidance over the years most certainly has earned him the nickname “Lab-Daddy” and aided my own research greatly. I especially need to thank him for teaching me the very useful skill of X-ray Crystallography and for introducing me to Zubrowka. Jenny Scott was both my best friend and chief rival for all of these years and I will miss her easy laughter and conversation. I would also like to thank Indu, Terri, Harminder and Claire for being such great co-workers and helping me so much as well as putting up with my occasional grumpiness.

Rob Duchateau, took time out of his busy schedule to have me come to the University of Eindhoven not once but three times, for which I am very grateful. These invaluable opportunities allowed me to accomplish much of my catalyst testing, which makes up a large part of this thesis. I’d like to thank Cheryl and Glenn for always taking the time to help me with my NMR “issues”.

Perhaps the group I will miss the most is my fellow grad students. Through the CGSA, and Acadia House/Nostalgica nights I met so many great people who also helped me out with my chemistry: Jay, Heather, Ken, Seb, Mark, Rich, Katherine, Johanna, Nat, Liz, Dave, all of the Matt’s, LC and Pat; I already miss you all. On a final note I would like to thank the University of Ottawa for providing the tuition waivers which allowed me to afford to attend school and eat three meals a day at the same time during my final three years.
Abstract

This thesis was aimed at exploring a few selected aspects of manganese chemistry with a particular emphasis on the unconventional reactivity for this metal. Firstly, appropriate organomanganese complexes have been prepared and fully characterized. The majority of these species stemmed from our development of the effective reagent \([\text{Mn(CH}_3\text{SiMe}_3)_2(\text{THF})]_2\) which was used as starting material in ligand metathesis reactions with protic organic ligands. Two such ligands specifically designed for this purpose were the hemi-labile N-MeDipyrrrole and N-MeTripyrrole ligands. These ligand systems, and various others, allowed for the synthesis of several model systems to mimic the water oxidation reaction of the OEC in Photosystem II. One such ligand (tartaric acid) formed the complex \([\text{Mn(μ}_3\text{,η}_2\text{-O}_2\text{CCH(O)CH(O)CO}_2\text{H}_2\text{O})}_0\text{.5]}\) \(\text{H}_2\text{O}_{1.5}\) which evolves oxygen upon addition of a strong oxidizing agent, thus indicating the oxidation of water.

In another practical application for Mn(II) complexes we probed the analogy between the high spin \(d^5\) electronic configuration with the \(d^{10}\) electron configuration of Zn by finding for the first time Mn complexes capable of acting as catalysts in the copolymerization of CO\(_2\) with an epoxide, producing nearly perfectly alternating polycarbonate. These findings prove that Mn is capable of catalyzing a reaction which is normally only performed by the late transition metal Zn. Similarly, we probed the behavior of Mn complexes of the bis-iminato pyridine ligand system which so effectively supports ethylene polymerization with a variety of metals. Our research into the reduction of Mn(II) complexes has led to the formation of the formally monovalent \([(\text{BisImine})\text{MnCl(THF)}]\) complex.

At the end of the thesis we have taken advantage of the synthesis of the novel hemi-labile pyrrolide ligands for the preparation of chromium catalysts for selective ethylene trimerization reaction. The main task was to elucidate the factors which determine selectivity in the oligomerization process. At this preliminary stage we targeted the issue of metal oxidation state. It was found that both Cr(III) and Cr(III) complexes of this ligand were highly active for the production of 1-hexene, but yielded a Shultz-Flory distribution of α-olefins. In addition, various imine-based ligands in
conjunction with Cr(III) were also found to produce statistical distributions of \(\alpha\)-olefins. This work led us to revisit the selective processes published in the literature with known SNS and PNP-based compounds of both Cr(II) and Cr(III). Overall, we were unable to unequivocally identify which oxidation state led to the selective formation of 1-hexene, our results instead indicated that selectivity might be entirely ligand-based and independent of the actual oxidation state.
List of Publications

Table of Contents

Acknowledgements .. v
Abstract ... vii
List of Publications .. ix
List of Figures ... xiii
List of Schemes .. xvii
List of Tables ... xix
List of Common Abbreviations .. xxi

Chapter 1 - Introduction ... 1

Chapter 2 - Pyrrrole-Based σ, π – Donating Ligand Design and Syntheses
 2.1 Introduction ... 11
 2.2 Pyrrrolide Chemistry ... 15
 2.3 Hemi-Labile Ligands ... 17
 2.4 Synthetic Strategies ... 19
 2.5 Results and Discussion ... 20
 2.6 Conclusions .. 27
 2.7 X-Ray Crystallography Section ... 27
 2.8 Experimental Section ... 29
 2.9 References .. 36

Chapter 3 - Preparation of Mn Alkyl Complexes
 3.1 Introduction .. 39
 3.2 Mn Alkyls .. 40
 3.3 Results and Discussion ... 42
 3.4 Conclusions ... 50
 3.5 X-Ray Crystallography Section ... 51
 3.6 Experimental Section ... 53
 3.7 References .. 56

Chapter 4 - Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex
 4.1 Introduction .. 57
 4.2 Recent Advances ... 61
 4.3 Research Rationale .. 64
 4.4 Results and Discussion ... 67
 4.5 Reactivity with Oxygen Sources ... 83
 4.6 Aqueous Synthesis ... 84
 4.7 Conclusions .. 86
 4.8 X-Ray Crystallography Section ... 87
 4.9 Experimental Section ... 90
 4.10 References .. 95
Chapter 5 - CO₂ CHO Epoxide Co-Polymerization
5.1 Introduction... 97
5.2 Recent Advances... 99
5.3 Co-polymerization Mechanism.. 102
5.4 Research Rationale... 105
5.5 Results and Discussion... 106
5.6 Structural and Mechanistic Investigations......................... 115
5.7 Conclusions.. 123
5.8 X-Ray Crystallographic Section....................................... 124
5.9 Experimental Section.. 127
5.10 References.. 131

Chapter 6 - Low-Valent Manganese Complexes Supported by the Bis-
Iminopyridinato Ligand
6.1 Introduction.. 133
6.2 Recent Advances.. 134
6.3 Research Rationale.. 139
6.4 Results and Discussion.. 141
6.5 Conclusions.. 146
6.6 X-Ray Crystallography Section....................................... 147
6.7 Experimental Section.. 148
6.8 References.. 150

Chapter 7 - Chromium Catalyzed Ethylene Oligomerization
7.1 Introduction:... 153
7.2 Recent Advances.. 154
7.3 Oligomerization Mechanism... 160
7.4 Research Rationale.. 164
7.5 Results and Discussion:.. 168
6.6 σ,π-Bonding Pyrrolide Ligands:....................................... 168
7.7 Cr(III) Imine Based Ligands:... 182
7.8 Sasol SNS/PNP Ligand Systems...................................... 197
7.9 Conclusions:... 211
7.10 X-Ray Crystallography Section..................................... 213
7.11 Experimental Section:.. 215
7.12 References:... 224

Chapter 8 - Conclusions and Future Research Aims......................... 229

APPENDIX 2... 237
APPENDIX 3... 238
APPENDIX 4... 238
APPENDIX 5... 239
APPENDIX 6... 240
APPENDIX 7... 240
List of Figures

Chapter 1

Figure 1.1 Basic Salen Ligand Framework ... 5

Chapter 2

Figure 2.1.1 Cyclopentadienyl Ligand Systems ... 12
Figure 2.1.2 Structure of Ferrocene .. 13
Figure 2.1.3 Cp Alternative Ligands .. 14
Figure 2.1.4 Bonding Modes of Pyrrolide Ligands ... 14
Figure 2.1.5 Basic Structure of Pyrrole Ligands .. 15
Figure 2.2.1 Simplified Porphyrinogen Structure Showing σ and π Bonding 16
Figure 2.3.1 Ligand Modifications for Trimerization Selectivity 17
Figure 2.5.2 Structures of LiN-Mepyrrole (1) and Corresponding Alcohol (2) 21
Figure 2.5.3 Condensation Reaction and Byproduct .. 22
Figure 2.5.4 Structure of N-McDipyrr (3) ... 22
Figure 2.5.5 Structures of Di-alcohol (4) and N-Mctripyr (5) 23
Figure 2.5.8 Structure of N-Mepyrroledi-Bu alcohol (6) ... 25
Figure 2.5.10 Structure of PhenylDipyrrrole (7) .. 26
Figure 2.5.11 Structure of CyPhenylDiol (8) ... 26

Chapter 3

Figure 3.3.2 Crystal Structure of [Mn(μ-CH₂SiMe₃)(CH₃SiMe₃)₂(THF)]₂ (2) with 30% Thermal Ellipsoids ... 43
Figure 3.3.3 Crystal Structure of [Mn(μ-CH₂CMe₃)(CH₂CMe₃)(THF)]₂ (3) with 30% Thermal Ellipsoids .. 44
Figure 3.3.4 Crystal Structure of [(TMEDA)Mn(CH₂SiMe₃)₂] (4) with 30% Thermal Ellipsoids ... 45
Figure 3.3.6 Crystal Structure of 5 with 30% Thermal Ellipsoids, Li(THF)₄ and Some Methyl Groups Omitted for Clarity ... 47
Figure 3.3.7 Crystal Structure of 6 with 30% Thermal Ellipsoids 48
Figure 3.3.8 Crystal Structure of 7 with 30% Thermal Ellipsoids, SiMe₃ Groups and Lattice Hexane Omitted for Clarity ... 49
Figure 3.3.9 Three Dimensional Positions of Mn atoms in 7 50

Chapter 4

Figure 4.2.1 Mn Cluster Structure From X-Ray Crystal Structure; Mn ligands Omitted for Clarity ... 61
Figure 4.2.3 Mn²⁺ Dimer for O₂ Production ... 63
Figure 4.2.4 Mn³⁺ Complex for Oxygen Evolution ... 64
Figure 4.3.1 Pyrrole Ligand Systems ... 65
Figure 4.3.4 Calix[4]arene Ligand Structure ... 66
Figure 4.4.1 Crystal Structure of 1 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ...67
Figure 4.4.2 Crystal Structure of 2 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ...68
Figure 4.4.3 Crystal Structure of 3 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ...69
Figure 4.4.5 Crystal Structure of 4 with 30 % Thermal Ellipsoids, Carbon Ellipsoids and μ-η¹ Bonds Omitted for Clarity ...71
Figure 4.4.6 Ring Structure of Mn atoms in Octameric Cluster (4) ..71
Figure 4.4.7 Crystal Structure of 4 with 30 % Thermal Ellipsoids, Cyclohexyl groups not Drawn for Clarity...72
Figure 4.4.8 Diagram of the Magnetic Susceptibility (χ) and of the Magnetic Moment (µµd) versus T for 4 ...73
Figure 4.4.10 Structure of 5 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ..75
Figure 4.4.11 Structure of 6 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ..76
Figure 4.4.12 Mn(1) Portion of Structure 6 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ...77
Figure 4.4.13 Structure of 7 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ..78
Figure 4.4.14 Core of Complex 7 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ..79
Figure 4.4.15 Structure of Complex 8, para-Bu Groups Removed for Clarity ..80
Figure 4.4.16 Structure of 9 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ..81
Figure 4.4.18 Structure 10 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity ..83
Figure 4.6.1 Truncated Structure of 11 with 30 % Thermal Ellipsoids, Carbon Ellipsoids and Solvent Water Molecules not Drawn for Clarity ..85

Chapter 5

Figure 5.2.1 Inoue Porphyrin Catalyst Framework ...99
Figure 5.2.2 Darenbourg’s Discrete Zn Complexes ...100
Figure 5.2.3 NacNac Ligand Framework Used by Coates ..101
Figure 5.3.4 PCy₃ Adduct for Probing Ether Linkage Formation ..104
Figure 5.5.1 Crystal Structure of Mn-Carboxylate; Terminal SiMe₃ Groups
Omitted for Clarity ..109
Figure 5.5.2 Proposed Structure for Entry 15 ...111
Figure 5.5.3 Proposed Structure for Entry 16 ..112
Figure 5.6.1 GPC Trace for Entry 9 (Table 5.5.2) ..116
Figure 5.6.2 GPC Trace for Entry 19 (Table 5.5.3) ..116
Figure 5.6.3 GPC Trace for Entry 20 (Table 5.5.3) ..117
Figure 5.6.5 Crystal Structure of (14) with 30 % Thermal Ellipsoids ..118
Figure 5.6.7 Crystal Structure of [(NacNac)Mn(CH₂SiMe₃)] (16) with 30% Thermal Ellipsoids ..119
Figure 5.6.8 Crystal Structure of (17) with 30% Thermal Ellipsoids ..120
Chapter 8

Figure 8.2 Simplified Structure of Pentameric Mn Cluster ...231
Figure 8.3 Structure of formally Mn^{II} [(BisIminc)MnCl(THF)]. ..232
List of Schemes

Chapter 2

<table>
<thead>
<tr>
<th>Scheme 2.3.2</th>
<th>Proposed Mechanism for Entrance Into Trimerization Pathway</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2.4.1</td>
<td>Proposed Synthetic Routes to N-MeDipyrr</td>
<td>19</td>
</tr>
<tr>
<td>Scheme 2.4.2</td>
<td>Proposed Alternate Synthetic Route to N-MeDipyrr</td>
<td>19</td>
</tr>
<tr>
<td>Scheme 2.5.6</td>
<td>Synthetic Routes to the σ, π-bonding ligands (3) and (5).</td>
<td>24</td>
</tr>
<tr>
<td>Scheme 2.5.7</td>
<td>Acid-Catalyzed Enolization</td>
<td>24</td>
</tr>
<tr>
<td>Scheme 2.5.9</td>
<td>Synthesis of PhenylDipyrrole (7)</td>
<td>25</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Scheme 3.1.1</th>
<th>Example of the Retention of an Alkali Cation</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 3.1.2</td>
<td>Proposed Metathesis Reaction</td>
<td>40</td>
</tr>
<tr>
<td>Scheme 3.2.1</td>
<td>Formation of [Mn(Necopentyl)$_2$]$_4$</td>
<td>41</td>
</tr>
<tr>
<td>Scheme 3.3.1</td>
<td>Proposed Synthesis of [Mn(CH$_3$SiMe$_3$)$_2$]$_2$</td>
<td>42</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Scheme 4.1.1</th>
<th>Products of Water Oxidation</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 4.1.2</td>
<td>Possible Source of Clean Energy</td>
<td>58</td>
</tr>
<tr>
<td>Scheme 4.1.3</td>
<td>Proposed Mn Clusters for the OEC</td>
<td>59</td>
</tr>
<tr>
<td>Scheme 4.1.4</td>
<td>Proposed Mn Oxidation States During Kok Cycle</td>
<td>60</td>
</tr>
<tr>
<td>Scheme 4.2.2</td>
<td>Proposed Water Oxidation Mechanism</td>
<td>62</td>
</tr>
<tr>
<td>Scheme 4.3.2</td>
<td>Metathesis Reaction for Generating MnIII Complexes</td>
<td>65</td>
</tr>
<tr>
<td>Scheme 4.3.3</td>
<td>Proposed Route for Generating oxo Mn Complexes</td>
<td>66</td>
</tr>
<tr>
<td>Scheme 4.4.9</td>
<td>Interconversion of Complexes 3 and 4</td>
<td>74</td>
</tr>
<tr>
<td>Scheme 4.4.17</td>
<td>Proposed Structure Formation</td>
<td>82</td>
</tr>
</tbody>
</table>

Chapter 5

<table>
<thead>
<tr>
<th>Scheme 5.1.1</th>
<th>CHO and PO Polycarbonate and Monomer Formation</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 5.3.1</td>
<td>Possible Reactivity Pathways</td>
<td>102</td>
</tr>
<tr>
<td>Scheme 5.3.2</td>
<td>Proposed Back-Biting Mechanism</td>
<td>103</td>
</tr>
<tr>
<td>Scheme 5.3.3</td>
<td>Ether Linkage Formation</td>
<td>103</td>
</tr>
<tr>
<td>Scheme 5.3.5</td>
<td>CO$_2$ Insertion Into Zn-Alkoxide Bond</td>
<td>104</td>
</tr>
<tr>
<td>Scheme 5.3.6</td>
<td>Insertion of CHO Into a Zn-Acetate Bond</td>
<td>105</td>
</tr>
<tr>
<td>Scheme 5.5.1</td>
<td>[Mn(CH$_3$SiMe$_3$)$_2$(THF)$_2$] Simplified Reactivity</td>
<td>106</td>
</tr>
<tr>
<td>Scheme 5.6.4</td>
<td>Reaction of Biphenol with [Mn(CH$_3$SiMe$_3$)$_2$(THF)$_2$]</td>
<td>118</td>
</tr>
<tr>
<td>Scheme 5.6.6</td>
<td>Synthesis of [(NacNac)Mn(CH$_3$SiMe$_3$)(THF)] (15)</td>
<td>119</td>
</tr>
<tr>
<td>Scheme 5.6.12</td>
<td>Formation of Quinone Complex (20).</td>
<td>123</td>
</tr>
</tbody>
</table>
Chapter 6

Scheme 6.2.2 Reaction Pathways for [(BisImine)Mn] Complexes.................................136
Scheme 6.2.3 Bis-Iminopyridinato Li Complexes...137
Scheme 6.2.4 Generation of Mono-Deprotonated BisImine Ligand (BisImine=CH2)..........138
Scheme 6.2.5 Formation of [(BisImine)V] Di-Nitrogen Complex139
Scheme 6.3.1 Proposed Formation of [(BisImine)MnR2]..140
Scheme 6.3.2 Proposed Formation of [(BisImine=CH2)MnCl]..140
Scheme 6.3.3 Proposed Formation of Mn Di-Nitrogen Complex141

Chapter 7

Scheme 7.2.1 Optimized Phillips System ..155
Scheme 7.2.2 Maleimidyl Ligand System ...155
Scheme 7.2.3 Cp Based Ligand System ..156
Scheme 7.2.4 Proposed Mechanism for Entrance Into Trimerization Pathway157
Scheme 7.2.5 Hemi-Labile Cp ligand (1) and Optimized Ligand (2)157
Scheme 7.2.6 SNS Ligand System ...158
Scheme 7.2.7 PNP Ligand System ...158
Scheme 7.2.8 1-Octene Producing PNP Ligand ...159
Scheme 7.3.1 Accepted Mechanism for Selective Trimerization161
Scheme 7.3.2 Concerted Hydride Transfer Mechanism ...162
Scheme 7.4.1 Proposed Catalyst Synthesis Strategy ..165
Scheme 7.4.3 Amidinate (NCN) and Amidate (NCO) Synthesis Strategy166
Scheme 7.6.17 Synthetic Routes to [N-MeTripyR] ..180
Scheme 7.7.2 Metathetic Routes to Cr(III) NCN, NCO, and NacNac Pre-Catalysts184
Scheme 7.7.3 Effect of Bite Angle (α vs γ) on Cr(III) Amidinate Complexes185
Scheme 7.7.5 Synthesis of NCO Ligand Complexes 20 and 21186
Scheme 7.8.1 Generation of 24 from Cr(III) or Cr(II) ...198
Scheme 7.8.4 Preparation of Cr(III) SNS Complexes 25-28 ..200
Scheme 7.8.6 Proposed Formation of Cr(III) Complex 29 ...202
Scheme 7.8.7 Preparation of Cr(III) SNS Complexes 29-31 ..203

Chapter 8

Scheme 8.1 Proposed Macrocycle Formation ...230
List of Tables

Chapter 2
Table 2.5.1 Attempted Mono-Alkylation Reactions .. 20
Table 2.7.1 Crystal Data and Structure Analysis Results for Complexes 1-3 28
Table 2.7.2 Crystal Data and Structure Analysis Results for Complexes 4-6 28
Table 2.7.3 Crystal Data and Structure Analysis Results for Complexes 7 and 8 29

Chapter 3
Table 3.3.5 Selected Bond Distances (Å) and Angles (°) for complexes 1-4 46
Table 3.5.1 Crystal Data and Structure Analysis Results for Complexes 1-2b 51
Table 3.5.2 Crystal Data and Structure Analysis Results for Complexes 3-5 52
Table 3.5.3 Crystal Data and Structure Analysis Results for Complexes 6-7 52

Chapter 4
Table 4.4.4 Selected Bond Distances (Å) and Angles (deg.) for Complexes 1-3 70
Table 4.8.1 Crystal Data and Structure Analysis Results for Complexes 1-3 88
Table 4.8.2 Crystal Data and Structure Analysis Results for Complexes 4-6 88
Table 4.8.3 Crystal Data and Structure Analysis Results for Complexes 7-9 89
Table 4.8.4 Crystal Data and Structure Analysis Results for Complexes 10 and 11 89

Chapter 5
Table 5.5.1 Catalytic Conditions and Results for Alcoholic Ligands 107
Table 5.5.2 Catalytic Conditions and Results for Mn Dialkyls 110
Table 5.5.3 Catalytic Conditions and Results for Imine Based Ligands 113
Table 5.8.1 Crystal Data and Structure Analysis Results for Complexes 14-17 126
Table 5.8.2 Crystal Data and Structure Analysis Results for Complexes 18-20 127

Chapter 6
Table 6.4.4 Comparison of Supposed Mn(II) and Mn(III) [(BisImine=CH2)Mn-µ2-Cl2Li(THF)2] (5) Bond Distances ... 144
Table 6.4.6 Polymerization Resultsa for Mn Catalysts 4-6 146
Table 6.6.1 Selected Bond Distances for Complexes 3, 5, and 6 147
Table 6.6.2 Crystal Data and Structure Analysis Results for Complexes 3 and 4 147
Table 6.6.3 Crystal Data and Structure Analysis Results for Complexes 5 and 6 148

Chapter 7
Table 7.6.7 Catalyst Testing for Ethylene Oligomerization 174
Table 7.6.8 α-Olefin Product Distribution ... 175
Table 7.6.9 Effect of Pressure on Catalyst 3 ... 176
Table 7.6.10 Effect of Pressure on the α-Olefin Product Distribution of 3 ...176
Table 7.6.11 Effect of Temperature on Catalyst 3 ..177
Table 7.6.12 Effect of Temperature on the α-Olefin Product Distribution of 3177
Table 7.6.13 Effect of Reaction Time on Catalyst 3 ...178
Table 7.6.14 Effect of Reaction Time on the α-Olefin Product Distribution of 3178
Table 7.6.15 Effect of Activator Type and Equivalents on Catalyst 3179
Table 7.6.16 Effect of MAO Activator Equivalents on the α-Olefin Product
Distribution of 3 ...179
Table 7.7.9 Amidinate Complexes; Oligomerization Activity189
Table 7.7.10 Amidinate Complexes; α-Olefin Product Distribution190
Table 7.7.13 Amidate Complexes; Oligomerization Activity ..192
Table 7.7.14 Amidate Complexes; α-Olefin Product Distribution193
Table 7.7.18 NacNac Complexes; Oligomerization Activity ..195
Table 7.7.19 NacNac Complexes; α-Olefin Product Distribution196
Table 7.8.2 PNP Complexes; Oligomerization Results ..198
Table 7.8.3 PNP Complexes; α-Olefin Product Distribution of 24199
Table 7.8.9 Cr(III) SNS Complexes; Oligomerization Activity204
Table 7.8.10 Cr(III) SNS Complexes; α-Olefin Product Distribution205
Table 7.8.11 Effect of MAO Concentration on the Cr(III) SNS Complexes 26 and 27 ...206
Table 7.8.12 Effect of MAO on the SNS Complexes 26 and 27; α-Olefin
Product Distribution ..206
Table 7.8.14 Cr(III) SNS Complexes; Oligomerization Activity207
Table 7.8.15 Cr(III) SNS Complexes; α-Olefin Product Distribution208
Table 7.8.16 Effect of MAO Concentration on the Cr(III) SNS Complexes 29 and 30208
Table 7.8.17 Effect of MAO on the SNS Complexes 29 and 30; α-Olefin
Product Distribution ..209
Table 7.8.18 Comparison of Cr(III) 27 and Cr(III) 30; Activity and α-Olefin
Product Distribution ..210
Table 7.10.1 Crystal Data and Structure Analysis Results for Complexes 1-3213
Table 7.10.2 Crystal Data and Structure Analysis Results for Complexes 4-6214
Table 7.10.3 Crystal Data and Structure Analysis Results for Complexes 7, 22-23214
Table 7.10.4 Crystal Data and Structure Analysis Results for Complex 29215
List of Common Abbreviations

ADP Adenosine Diphosphate
ATP Adenosine Triphosphate
BisImine [2,6-{(Pr)2Ph=N=C(CH3)2(C5H5N)]
^1Bu Tert-Butyl
calcd Calculated
CHO Cyclohexene epoxide
Cp Cyclopentadienyl Ligand
Cp* 1,2,3,4,5 – Pentamethyl-cyclopentadienyl Ligand
Cy Cyclohexyl
d^n Denotes d-orbital electrons where n = 0-10
DMF Dimethylformamide
DMSO Dimethylsulfoxide
e^- Electron
EI Electron Impact
EPR Electron Paramagnetic Resonance
Et Ethyl
EtOH Ethanol
Et_2O Diethyl ether
EXAFS Extended X-ray Absorbance Fine Structure
GPC Gel Permeation Chromatography
IBAO Tetraisobutylaluminoxane
LLDPE Linear Low-Density PolyEthylene
M^+ Molecular Ion
M_w Weight Average Molecular Mass
M_n Number Average Molecular Mass
MAO Methylaluminoxane
Me Methyl
MeOH Methanol
MTT Manganese Tricarbonyl Transfer (reagents)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NacNac</td>
<td>N,N'-(pent-2-ene-2-yl-4-ylidene)bis(2,6-diisopropyl-methylaniline)</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>N-MeDipyr</td>
<td>2-(diphenyl(1H-pyrrol-2-yl)methyl)-1-methyl-1H-pyrrole</td>
</tr>
<tr>
<td>N-MeTripyr</td>
<td>2,5-bis(diphenyl(1H-pyrrol-2-yl)methyl)-1-methyl-1H-pyrrole</td>
</tr>
<tr>
<td>OEC</td>
<td>Oxygen Evolving Complex</td>
</tr>
<tr>
<td>OAc</td>
<td>Acetate</td>
</tr>
<tr>
<td>Oxone</td>
<td>2 KHSO₅ · KHSO₄ · K₂SO₄</td>
</tr>
<tr>
<td>PCy₃</td>
<td>Tricyclohexyl Phosphine</td>
</tr>
<tr>
<td>PDI</td>
<td>Polydispersity Indice [Mₘ/Mₙ]</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>PNP</td>
<td>Bis-(diisopropylphosphino)cyclohexylamine</td>
</tr>
<tr>
<td>PO</td>
<td>Propylene oxide</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>R</td>
<td>Alkyl Group</td>
</tr>
<tr>
<td>Rᵣ</td>
<td>Retention Factor</td>
</tr>
<tr>
<td>Sⁿ</td>
<td>Nuclear Spin State</td>
</tr>
<tr>
<td>SEC</td>
<td>Size Exclusion Chromatography</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>NNN'N'-Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TOF</td>
<td>Turn Over Frequency</td>
</tr>
<tr>
<td>SNS</td>
<td>Bis-(2-(alkylthio)ethyl)amine</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray Absorbance Near Edge Structure</td>
</tr>
</tbody>
</table>

xxii
Introduction

Manganese is the twelfth most abundant element and comprises ~0.1% of the earth’s crust.\(^1\) All living creatures have been found to contain traces of the metal, and its removal or deficiency results in diminished growth or even death.\(^2\) Of course, excessive amounts of Mn may also lead to problems. In humans the first signs of Mn poisoning are often psychotic fits of laughter or crying\(^3\) (please note that these symptoms shouldn’t be confused with graduate students writing their theses). Perhaps the most famous example of Mn in classical 1\(^{st}\) year chemistry is the strong oxidizing agent KMnO\(_4\) (Mn\(^{VIII}\)), which is commonly used in organic syntheses to oxidize various functional groups.\(^4\) The only naturally occurring isotope is \(^{55}\)Mn and the most stable oxidation state is +2, which invariably has the high-field d\(^5\) electronic configuration. Though Mn\(^{II}\) is the most stable oxidation state, complexes exist for all possible intermediate oxidation states: zero-seven. The quadrupolar nature of the Mn nuclei (S = 5/2) coupled with the five unpaired electrons of its most common oxidation state invariably renders most Mn complexes un-analyzable via NMR. This is not to say that the NMR properties of Mn are
completely useless as they have been used to probe biomechanics and biomacromolecules via magnetic relaxation techniques.5 Thus, the only incontrovertible evidence for the structural assignments of Mn complexes is often single crystal X-ray diffraction coupled with magnetic moment measurements to clarify the oxidation state. The concomitant problems associated with this method of analysis severely hindered early exploration of Mn chemistry, though these problems have started to be overcome in the past 15 years. An even greater challenge to Mn chemistry is the tendency of the metal towards oxidation by atmospheric O\textsubscript{2} to produce the ubiquitous MnO\textsubscript{2}.6 Traditionally the chemistry of Mn was readily divided into the two fields of organometallic chemistry (for Mn(-1), Mn(0) and Mn(1)) and coordination chemistry for Mn(II) and higher with very little overlap.6 However, our current understanding of inorganic chemistry has blurred these two distinctions and for the purpose of this thesis I will refer to both collectively as “organometallic” chemistry. By far the major driving force behind the exploration of Mn chemistry has been the discovery that the metal Mn is an integral part of many bio-inorganic catalysts. In general these systems contain one to four Mn atoms and are usually found in the oxidation states 2-5 (Mn(III) usually being the resting state).7 Some important examples are: Superoxide Dismutase,8 Glucosyltransferase,9 and Manganese Peroxidase.10 By far the most important Mn-containing biological system is known as the Oxygen Evolving Complex (OEC), which is found in all plants and is responsible for the conversion of H\textsubscript{2}O to O\textsubscript{2}, protons, and electrons.6 This process is light driven and is responsible for all photosynthesis on the planet, making it the object of intense scientific scrutiny. In order to provide the reader with a fuller understanding of Mn chemistry, each oxidation state will be briefly discussed below along with the most common characteristics and uses of each oxidation state.

\textbf{Mn(0) Chemistry:}

Since Mn(0) has a d7 electronic configuration, stable monomeric species are almost unknown. The chemistry of this oxidation state, not surprisingly, is dominated by octahedral carbonyl compounds.11 The dimeric complex [Mn\textsubscript{2}(CO)\textsubscript{10}] was first prepared in 19491 and is commercially available. Like most pure carbonyl compounds [Mn\textsubscript{2}(CO)\textsubscript{10}] has been well explored photochemically.12 The radical character which is
generated by the splitting of the Mn-Mn bond allows the complex to catalyze the ring opening of α-propiothiolactones.13 The carbonyls can be substituted for other Group V (P, As, Sb) or Group VI (S, Se, Te) donor ligands, but generally only a maximum of two carbonyls may be replaced.11 The phosphine derivatives are able to catalyze homogeneous hydrogenation reactions.14 Other than these notable examples the chemistry of Mn(0) remains largely undeveloped.

Mn(I) Chemistry:

The chemistry of Mn(I) is much richer than that of the zero valent state for two main reasons. Firstly, the d6 electronic configuration is inherently more stable, and secondly low-spin octahedral compounds allow the use of NMR for characterization purposes for bound ligand systems. Once again the chemistry is dominated by carbonyl complexes, but the well-known cyclopentadienyl ligand (Cp) is also found ubiquitously.11 The most readily available Mn1 material is [Mn(CO)\textsubscript{5}Br] on which ligand exchange can be performed. However, the oxidation state is also accessible via reduction of Mn(II), though only in the presence of strong ligands (eg. CO, CN). There is quite a rich amount of carbene and carbyne chemistry,15 as well as attempts to make coordinatively unsaturated compounds,16 however very few practical applications have been realized to date. Perhaps the most practical application of Mn(I) compounds is the Manganese tricarbonyl transfer (MTT) reagents. MTT complexes can be used to synthesize hetero and homo- bimetallic compounds as well as desulfurizing benzothiophenes or assembling supra-molecular quinonoid structures.17 As in the case of the zero-valent oxidation state Mn1 compounds are sensitive to oxidation, however disproportionation does not appear to be a common decomposition pathway.

Mn(II) Chemistry:

The vast majority of Mn chemistry has been performed at the +2 oxidation state (high-spin d5) as the half-filled d-orbitals provides extra electronic stability. Mn(II) is considered to be a "hard" metal,18 and as such becomes the first oxidation state where carbonyl compounds are the exception and not the rule. In general, MnX\textsubscript{2}·6H\textsubscript{2}O (X = F, Cl, Br, I) is the most common starting material. Aqueous and electrochemical studies
abound for this metal, which quite often serves as a starting material for oxidation to higher valencies.6,19 The +2 oxidation state has no strong preference for coordination geometry, the complexes that do arise are generally ligand and stericly dependant and complexes are known for the coordination numbers 2 up to 8.6 In general, octahedral and tetrahedral geometries are the most prevalent. The hardness of the metal means that oxygen donor ligands are normally favoured over nitrogen donor ligands, which can obviously lead to problems in aqueous solutions. Nitrogen based ligand systems (amines, pyridines, etc.) are used extensively, and are often coupled with carboxylate or phenolate moieties to yield robust complexes. The five unpaired electrons of the common high-spin state make the use of EPR spectroscopy (Electron Paramagnetic Resonance) relevant for attempting structural characterization when a crystal structure is not forthcoming.20 As previously mentioned it is not uncommon to oxidize Mn(II) to yield higher valent complexes. Another commonly employed route to higher valent complexes is the comproportionation of Mn(II) with Mn(VII) sources, generating mixed oxidation state complexes.21 The mixed oxidation state Mn(IV,V) is important for several metalloenzymes, thus driving this type of research. Cluster compounds containing mixed valent Mn (+2 and higher) are also very important for understanding the photosynthetic coupled OEC complex. A further discussion of the specifics of this will be presented later in this thesis.

Mn(III) Chemistry:

The chemistry of Mn(III) is rather limited due to the propensity of Mn(II) to disproportionate, especially in aqueous solutions, to the stable MnO\textsubscript{2} and Mn(II).6 That is not to say however, that Mn(III) is completely unstable, as [Mn(OAc)\textsubscript{3}4H\textsubscript{2}O] is a quite versatile starting material for synthesis. Mn(II) has a d4 electronic configuration; therefore the octahedral compounds it commonly forms exhibit Jahn-Teller distortions. These distortions, along with the concomitant loss of an EPR signal are often tell-tale signs for the presence of this oxidation state in mixed-valent complexes. The most common coordination numbers found for this oxidation state are five or six.6 Once again, one of the main driving forces behind the chemistry of this valency is the elucidation of biological mechanisms which either start in, or pass through this oxidation state. The
stereo-selective epoxidation reaction,22 along with oxidations,23 and nitrogen transfer24 reactions are all performed by a Mn(III) starting material coupled with the Schiff-base Salen ligand (see Figure 1.1).

\begin{center}
\includegraphics[width=0.3\textwidth]{Salen_Ligand.png}
\end{center}

\textbf{Figure 1.1} Basic Salen Ligand Framework.

The Mn(III)Salen system is the exception to the disproportionation rule, as it is able to generate a Mn(V) compound which then performs the previously mentioned catalytic transformations.

\textbf{Mn(IV) Chemistry:}

Unfortunately the most readily available Mn(IV) compound is the insoluble MnO₂, which forms quite readily from a variety of complexes and oxidation states. When useful compounds of this oxidation state do form, their d3 electronic state is responsible for the commonly found octahedral geometry and high-spin configurations. Remarkably, the tetra-alkyl [MnMe₄(dmpe)] has been found to be reasonably stable, though it is actually generated from the disproportionation of a Mn(III).25 Other ligand systems which are able to, at least temporarily, stabilize Mn(IV) are porphyrins,26 Salen,27 and 1,4,7-triazacyclononanes.28 The triazacyclononane complexes have been used as oxidation,29 and asymmetric epoxidation catalysts.30 When cluster compounds are assembled containing the mixed-oxidation states Mn(III,IV), unique superparamagnetic properties can result. These complexes then act like miniature magnets; this property has attracted the interest of researchers for their potential uses as data storage devices.31

\textbf{Mn(V-VII) Chemistry:}

The later oxidation states are all very strongly oxidizing and are dominated by oxo- compounds, with their chemistry being very poorly developed. The exception to this are bulky imido ligands (ie. N+Bu3-). These ligands are able to generate
characterizable compounds for Mn(V-VII). The oxo-species Mn(V)O_4^{3-}, and Mn(VI)O_4^{2-} have generated some interest for their properties as near-IR lasers and represents the main body of interest in the higher oxidation states to date.33

Thesis Overview:

The above overview of the coordination chemistry of manganese, in spite of its brevity, gives a convincing impression of the unique versatility of this metal. By spanning a large range of oxidation states, and in combination with its abundance, non-toxicity and prevalence in biological systems, this element provides a great potential for important applications including: solid state chemistry, bio-inorganic, catalysis. We were particularly attracted to the OEC enzyme and trying to understand how such a relatively simple tetranuclear cluster core could perform such a remarkable transformation with only the energy input of sunlight. Besides the possibility of obtaining critical information which in turn may provide the basis for the potential development of photocatalysts for renewable sources of energy, we also found it fascinating that one of the strongest oxidants in nature, di-oxygen, is evolved during a reaction forming a relatively low-oxidation state (Mn^{III}). In turn, this suggested to us that this metal has, indeed, the potential for supporting oxygen-resistant, low-cost alternatives to water-soluble organometallic catalysts. Obviously we are not alone in this interest. As a result of a remarkable wealth of activity in this field, our understanding of this absolutely unique metal has substantially advanced. The state of the art in this field is reviewed in the introductory part of Chapter 4. Thus, by using the available information about oxidation state, coordination geometry, ligand donor atoms and cluster nuclearity, we are in the fortunate position of being able to explore Mn chemistry in a variety of directions.

It should be noted that the type of research performed is not dictated by the transition metal, but rather the goals of the scientist performing the investigation. The field of organometallic chemistry34 is quite diverse and hosts an entire spectrum of research possibilities. At the practical end of this continuum is the work centred on producing catalysts for the manufacture of commodities (e.g. polyethylene),35 or for organic transformations.36 On the more esoteric side of things, there is basic research which explores the fundamental ways in which transition metals interact with one another.
or with various organic molecules, be it the formation of cluster compounds, 37 multiple metal-metal bonds, 38 or even unique spin-states. 39 Between these two extremes is the investigation and attempts at mimicry of natural systems which contain transition metals that catalyze various processes. From this field stems research such as di-nitrogen activation/reduction 40 and water oxidation. 41 When we selected the first-row transition metal Mn for this doctoral work, it became readily apparent that the metal could support both practical chemistry as well as basic research. From the practical point of view, creating catalysts from Mn offers cost benefits as it is relatively simples and inexpensive to obtain in a variety of oxidation states. Polymers produced for food packaging purposes by using non-toxic manganese would obviously avoid the health concerns arising from catalysts leaching as recently trumpeted by the media. Most of all we were motivated by understanding the factors (ligand features, coordination geometry, oxidation state and presence of reactive functions) which determine the richness and diversity of the Mn chemical transformations.

As each chapter contains its own unique introductory section, with a review of the relevant literature, only a brief overview of each will be outlined below.

Chapter 2 details the organic synthesis of several novel ligand systems along with a discussion of the accompanying synthetic pitfalls which were encountered during their preparation.

In Chapter 3, the preparation of several Mn(III) di-alkyls which were used extensively in most of the following chapters was explored. The Mn di-alkyl was prepared to act as a starting material for metathesis reactions with ligand systems, including those designed in the second chapter. The first two chapters represent basic research as they were not done for a specific commercial purpose, but rather to create a platform from which more science could be developed.

The fourth chapter, details our preliminary efforts in modelling studies that attempted to mimic the Oxygen Evolving Complex (OEC). This chapter built upon work from previous chapters as the Mn di-alkyls were used extensively, along with some of the ligand systems developed in Chapter 2.
The fifth chapter details our investigations of Mn\(^{(II)}\) for the co-polymerization of CO\(_2\) and epoxides. This was the first practical exploration using the Mn di-alkyl materials developed in the third chapter.

Chapter 6 contains a continuation of previous work in our lab, as well as a collaboration of work performed by Jennifer Scott and Indu Vidyaratne in generating extremely low-valent metal-Brookhart ligand complexes. The work was on a less practical level and more along the lines of basic research. However, once again the di-alkyls generated in Chapter 3 were used as starting materials. The resulting complexes are unique as they represent some of the only examples of non-Cp or carbonyl containing Mn\(^{(I)}\) complexes.

Continuing the trend started in chapter 5 of examining practical applications of organometallic complexes, Chapter 7 explores the use of the ligands developed in the second chapter for the selective oligomerization of ethylene using Cr\(^{(II)}\) and Cr\(^{(III)}\) as the inorganic precursors. The reason for switching our interest from Mn to Cr chemistry was dictated by an observation obtained from our work in Mn chemistry that convinced us that the ligand system developed for Mn chemistry could also be used in combination with Cr to provide important answers for an industrially relevant problem. The fundamental aim of this part of the project was to attempt to identify which oxidation state of Cr was closer to that of the actual active catalyst.

Overall this thesis explores both practical applications and a range of basic research into the mid first-row transition metals. Though not strictly related, the chapters of this thesis do knit together to depict a well-rounded investigation of the applications of the transition metals Cr and Mn in both a basic and practical sense.

References:

Chapter 2

Pyrrole-Based σ, π – Donating Ligand Design and Syntheses

Table of Contents:

2.1 Introduction.. 11
2.2 Pyrrolide Chemistry.. 15
2.3 Hemi-Labile Ligands .. 17
2.4 Synthetic Strategies... 19
2.5 Results and Discussion ... 20
2.6 Conclusions.. 27
2.7 X-Ray Crystallography Section .. 27
2.8 Experimental Section .. 29
2.9 References... 36

2.1 Introduction:

The richness of organometallic chemistry is mediated by two main factors. Foremost is the selection of the transition metal which will imbue a system with its own unique characteristics and reactivity. Secondly, but no less importantly, is the selection of the ligand system that will accompany the metal centre, which can be used to tailor the reactivity of the metal. This can be accomplished through myriad different routes, but the
main goals are always the same. The ligand can be used to alter: the electronic density; the steric/symmetry; and the coordination geometry about the metal centre. As a ligand system is employed, trends are often noted which can then be used to retool and improve the ligand system in order to explore new directions.

Essentially a ligand, in terms of organometallic chemistry, is any organic molecule which binds to a metal centre through either a neutral lone-pair of electrons or an anionic electron pair. A single ligand can bind to a metal from more than one position on the molecule which leads to the so-called multi-dentate ligand systems. As well as donating electrons to a transition metal, many ligands are also able to accept electron density from a metal centre in a process known as back-bonding.

Perhaps one of the most well-known and widely explored ligand systems to date is the cyclopentadienyl (Cp) or its more sterically bulky derivative; 1,2,3,4,5-pentamethyl-cyclopentadienyl (Cp*) (see Figure 2.1.1) as well as an endless number of alternate variations.

![Cyclopentadienyl Ligand Systems](image)

Figure 2.1.1 Cyclopentadienyl Ligand Systems.

What makes this ligand system unique is that it coordinates in an \(\eta^5 \) fashion, composed of one anionic electron pair and two double bonds which, through resonance, allows the ligand to bind strongly to a metal in an orthogonal orientation. Specifically, the molecular orbitals formed upon complexation of Cp to a metal centre allow it to form one σ-bond, two π-bonds, and allows for metal-ligand back donation through a δ-bonding interaction if necessary.

The utility of this ligand, and the richness of chemistry which resulted from its inception, stemmed from the work of Geoffrey Wilkinson and his correct formulation of
the sandwich structure of ferrocene. This seminal discovery, and the realization of the ability of π-systems to bind to transition metals, marked a true milestone in the development of organometallic chemistry and was acknowledged with the award of the Nobel Prize in 1973.

Figure 2.1.2 Structure of Ferrocene.

Today, Cp-based organometallic complexes have been used for almost every chemistry application including among the most famous: coordination chemistry,\(^2\) polyethylene production,\(^3\) electrochemistry,\(^4\) metal promoted organic syntheses\(^5\) and even di-nitrogen activation.\(^6\) The ligand system is capable of supporting a vast array of molecular activation processes and catalytic transformations for several reasons. Foremost is the ligands electronic flexibility. The interaction with the π-system results in the donation of up to 6 electrons when the ligand is centred over the metal. However, crystallographic studies have determined that Cp is also capable of partially slipping from the metal which results in less electron donation.\(^7\) In addition, the π* orbitals of the Cp rings are capable of receiving excess electron density from the metal centre through δ-bonding, which allows even more electronic flexibility. Also, the steric protection of the Cp ring, positioned perpendicularly with respect to the metal-ligand vector limits the approach of other molecules to well-defined areas around the metal. This effect is even more pronounced in the case of the Cp* ligand, or any substituted Cp, with their larger steric bulk.

The versatility of the Cp–based ligand systems has of course spawned a substantial amount of interest in generating "alternate" ligands which would be able to fulfill or even surpass the usefulness of the Cp system. It was thought that generating a 6 e\(^-\) donating ligand with a massive steric bulk or a cone angle comparable to the Cp derivatives would be the best substitute for the Cp ligand. Following this rationale, Wolczanski published extensive studies on bulky alkoxide ligands (see Scheme 2.1.3).\(^8\)
Although these ligand systems produced, and continue to produce interesting chemistry, especially in atom transfer reactions, they did not exhibit the same broad chemical reactivity of the Cp organometallic complexes. The reduced reactivity of the tritox and silox organometallic complexes could perhaps be attributed to the inability of the ligands to partake in efficient back-bonding interactions with electronically saturated metal centres.

The simplest ligand system with the potential to mimic the electronic and steric features of Cp is the deprotonated pyrrole molecule. Once deprotonated, the pyrrole ligand can bind to a metal in one of two fashions. If the anionic charge is localized on the nitrogen a two electron \(\sigma \)-bond can be formed. If, however, the anionic charge is delocalized over the five-membered ring an \(\eta^5 \)-bond similar to the traditional Cp ligand (up to six electrons donated) may be formed (see Figure 2.1.4).

These two bonding modes create a certain level of flexibility, allowing the ligand systems to accommodate a variety of metals and oxidation states. However, a search of the Cambridge Crystallographic Database demonstrates that the simple pyrrole ligand always binds to the metal in the \(\sigma \)-bonding fashion, precluding its ability to mimic Cp. When the pyrrole moiety is incorporated into a larger ligand framework (See Figure 2.1.5), however, the \(\pi \)-bonding orientation becomes much more prevalent.
Figure 2.1.5 Basic Structure of Pyrrole Ligands.

These pyrrolide-derived ligand systems have produced a wealth of high-impact chemistry, making them an attractive target for further improvement.

2.2 Pyrrolide Chemistry:

The coordination chemistry of the pyrrolide anions has focused mainly upon the preparation of complexes for small molecule binding and activation; however, pyrrolides do also form potent catalysts. When SmCl$_3$(THF)$_3$ was treated with the lithium salt of octaethyl-porphyrinogen and then subsequently reduced with metallic Li, a dinuclear complex with a reduced N$_2$ molecule linking them together resulted. This is in striking contrast to the reactivity of [Cp*Sm] with N$_2$ which leads to the side-on bound, labile coordination of the molecule with no reduction. Therefore, in this case the pyrrolide-based ligand system shows an increased reactivity over Cp. Within the dinuclear complex, each Sm unit was σ-bound by two pyrrolides, and π-bound by two more (See Figure 2.2.1). The lithium alkali cations were also retained in the dimeric structure in order to balance the overall charge of the tetra-anionic octaethylporphyrinogen ligands.
Since the porphyrinogen ligand systems always require the presence of alkali cations to balance the overall complex charge in low oxidation state metals, the dipyrrrole ligand systems were explored in an attempt to avoid the presence of the alkali metal, by forming neutral divalent complexes. One of the first reported reactions utilizing a dipyrrrolide ligand also involved the Sm(III)-mediated partial reduction of di-nitrogen. The diphenyldipyrrolide ligand formed a tetra-nuclear cluster complex with each Sm centre being both σ- and π-bound to the pyrrolides. It was also found that the nature of the halogen used in the complex (I vs. Cl) led to either partial N_2 reduction, or no N_2 binding respectively. Di-nitrogen and ethylene coordination and reduction reactions were extensively explored using a variety of different metals and ligand back-bones. However, the common motif of the σ, π-bonding pyrrolides was always present.

Perhaps one of the most striking results was the propensity of the pyrrolide ligands to allow both σ and π-bonding in the formation of cluster compounds (up to octameric). What is even more remarkable is that in some cases it appears that the nuclearity is controlled by an accompanying alkali metal. When diphenyldipyrrole was reacted with YbCl$_3$(THF)$_3$ a noteworthy observation was made. If the lithium salt of the ligand was used, an octameric cluster resulted. However, if the sodium salt was used a monomeric compound was formed. These results indicated that the nature of the alkali metal and how it interacted with the pyrrolide rings influenced the overall cluster assembly. This is not a general trend, however, and is unique to this and a few other reactions.
In general, the σ, π-donating ability of the pyrrole ligand systems led to some very rich chemistry. That said, controlling the reactions proved quite difficult as the nature of the metal, the alkali cation, backbone groups, and even solvent influenced the reactivity.

2.3 Hemi-Labile Ligands:

Hemi-labile ligands are defined as multi-dentate ligands which bind strongly to a metal centre at one ligand site, while at the same time having the ability to loosely coordinate to the metal from at least one other position on the ligand.\(^\text{18}\) The propensity for labile coordination to the metal from a second position allows the ligand to provide electronic and coordinative stability, while at the same time allowing other substrates access to the metal. Ether moieties\(^\text{19}\) and sulfone\(^\text{20}\) groups are prime examples of functional groups which can serve to generate hemi-labile ligand systems.

A particularly successfully example of the employment of this class of ligands was recently reported by Hessen et. al. who documented the switching of a Ti catalyst system from ethylene polymerization to trimerization via the use of a hemi-labile Cp-based ligand system (see Figure 2.3.1).\(^\text{21}\)

![Trimerization and Polymerization Diagrams](image)

Figure 2.3.1 Ligand Modifications for Trimerization Selectivity.

It was argued that the hemi-labile ligand system is able to stabilize a transient low-valent Ti\(^{\text{II}}\) species (top left Scheme 2.3.2) which in turn feeds the trimerization catalytic cycle. This behaviour was ascribed to the lability of the arene group which, via de-coordination, provides empty metal orbitals for a β-hydride elimination to occur, thus allowing a subsequent reductive elimination to proceed yielding a "Ti\(^{\text{IV}}\)" species. A Ti\(^{\text{II}}\) species
can indeed provide the two electron redox couple which is believed to be necessary for ethylene trimerization.

Scheme 2.3.2 Proposed Mechanism for Entrance Into Trimerization Pathway.

The hemi-labile coordination of the arene ring of this remarkable catalytic system made us re-examine the pyrrolide chemistry in a new light. Since it has already been demonstrated that the pyrrolide ring is capable of π-coordination, it seemed logical to explore ways of altering the ligand system to enhance π-ligation. In order to accomplish this goal, one of the N-H bonds must be substituted by an R group in order to ensure that the pyrrole ring can not be deprotonated, thus remaining neutral and incapable of anionic σ-bond donation. Given the above rationale we have targeted the dipyrrrole molecule (see Scheme 2.1.5) for a simple modification; such as the alkylation of one of the two nitrogen atoms. We anticipated that such a modification would lead to a hemi-labile ligand, which should be quite useful for a variety of purposes including the catalytic trimerization of ethylene.
2.4 Synthetic Strategies:

Although the pyrrole moiety can be found in many systems, very little comprehensive synthetic chemistry has been published, none of which describes the condensation of an N-R pyrrole. The two literature examples that report N-R pyrrolides are based on the porphyrinogen backbone and provide such dismal yields as to be synthetically useless. Thus, the traditional dipyrrole synthesis seemed to be the best starting point in order to generate the N-R substituted product. It was hypothesized that this could be done in one of several ways. The first route would attempt to condense an N-Me pyrrole with a normal pyrrole and the second route would attempt to substitute an N-H for a Me group on a dipyrrole molecule (see Scheme 2.4.1) thus generating a dipyrrole containing one N-Me group: N-Medipyrrole (N-Medipyr).

![Scheme 2.4.1 Proposed Synthetic Routes to N-MeDipyr.]

If neither of the previous two routes proved viable a third, more intensive, approach was proposed. The third technique will rely on first depronating an N-Mepyrrrole, followed by reaction of the nulceophilic N-Mepyrrrolide with a ketone. After quenching, the resulting alcohol could then be condensed with a normal pyrrole in order to generate the desired product (see Scheme 2.4.2).

![Scheme 2.4.2 Proposed Alternate Synthetic Route to N-MeDipyr.]
2.5 Results and Discussion:

Since the first synthetic strategy was by far the easiest, it served as the starting point of this project. Unfortunately, the route quickly proved non-viable as the only products recovered were the unsubstituted dipyroles. No N-Me products were found even when the stoichiometric ratio was 1000:1 (N-Mepyrrrole:pyrrole) or even in the case of N-Mepyrrrole without pyrrole. The use of different ketones had no impact on the outcome of this reaction, invariably leading to non-methylated dipyrrrole products only. These results clearly show that N-Mepyrrrole is incapable of undergoing the condensation reaction used to generate the traditional dipyrrrole molecule.

Upon even a cursory inspection it can be seen that the second synthetic strategy also has a major problem. Since both N-H groups of the dipyrrrole ligand are chemically and sterically equivalent, selective alkylation could prove problematic. A variety of deprotonating agents were used in conjunction with the diphenyldipyrrrole ligand and methylidiodide with varying success (see Table 2.5.2).

<table>
<thead>
<tr>
<th>Alkylating Agent</th>
<th>Eq.</th>
<th>Total Yield (%)</th>
<th>Unsubstituted (%)<sup>a</sup></th>
<th>Mono-Substituted (%)<sup>a</sup></th>
<th>Di-Substituted (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>KH</td>
<td>1.0</td>
<td>62</td>
<td>40</td>
<td>trace</td>
<td>60</td>
</tr>
<tr>
<td>KH</td>
<td>0.5</td>
<td>68</td>
<td>77</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>LiMe</td>
<td>1.0</td>
<td>48</td>
<td>42</td>
<td>7</td>
<td>51</td>
</tr>
<tr>
<td>LiMe</td>
<td>0.5</td>
<td>53</td>
<td>63</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>t-BuLi</td>
<td>1.0</td>
<td>66</td>
<td>37</td>
<td>17</td>
<td>46</td>
</tr>
<tr>
<td>t-BuLi</td>
<td>0.5</td>
<td>54</td>
<td>35</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>LiCH<sub>2</sub>SiMe<sub>3</sub></td>
<td>1.0</td>
<td>72</td>
<td>35</td>
<td>21</td>
<td>44</td>
</tr>
<tr>
<td>LiCH<sub>2</sub>SiMe<sub>3</sub></td>
<td>0.5</td>
<td>66</td>
<td>34</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>KN(TMS)<sub>2</sub></td>
<td>1.0</td>
<td>79</td>
<td>29</td>
<td>26</td>
<td>45</td>
</tr>
<tr>
<td>KN(TMS)<sub>2</sub></td>
<td>0.5</td>
<td>76</td>
<td>47</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>KN(TMS)<sub>2</sub></td>
<td>0.8</td>
<td>82</td>
<td>30</td>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>

^a Based on relative NMR signals

In general it was observed that as the alkylating agent grew in steric bulk, the more mono-alkylated product was recovered. Conversely, the amount of di-substituted product
diminished with steric bulk. This was important as the unsubstituted product could be recycled back into the reaction, the di-substituted product, however, was considered to be waste. After much testing it was found that the reaction of 0.8 eq of KN(TMS)$_2$ was the best route for mainly producing the mono-substituted product. Unfortunately, the ligand was only obtained in sufficient purity after approximately five recrystallizations, depending on the scale. The resulting, recrystallized product was only 97% pure with 3% di-substituted product as a contaminant.

Due to the excessively long time required to recrystallize the ligand, the relatively small yields (maximum ~3 g) and the presence of the unsubstituted contaminant, it was decided to probe the third synthetic strategy (see Scheme 2.4.2). When N-Mepyrrrole was reacted with 1.05 eq of nBuLi the α-position of the ring was deprotonated to yield 1 (see Figure 2.5.2). The corresponding nucleophilic N-Mepyrrrolide was then added to a cooled solution of THF and benzophenone.

![Figure 2.5.2 Structures of LiN-Mepyrrrole (1) and Corresponding Alcohol (2).](image)

After quenching of the reaction, the alcohol $[(1$-Me$_4$H$_2$N)C(OH)Ph$_2$] (2) was recovered in good yield (56%). Following the procedure for the conventional condensation reaction the alcohol was dissolved in ethanol with several equivalents of pyrrole and a catalytic amount of methanesulphonic acid. Surprisingly, the reaction did not proceed as
expected, but rather yielded a mixture of products, of which 36% was the desired product with 24% of the isolated product having an ethoxide substituted at the alcohol position (see Scheme 2.5.3).

![Condensation Reaction and Byproduct](image)

Figure 2.5.3 Condensation Reaction and Byproduct.

When the reaction was performed in methanol similar results were found with ~60% total yield, of which 70% was the desired product and 30% was the methoxide substituted product. To avoid the issue of solvent incorporation the reaction was performed in neat pyrrole with a catalytic amount of methanesulphonic acid, resulting in the desired product \([1-(Me-C_4H_3N)(C_4H_3N)CPh_2]\) (3) being isolated in pure form in 82% yield (see Figure 2.5.4).

![Structure of N-MeDipyrr (3)](image)

Figure 2.5.4 Structure of N-MeDipyrr (3).

Since the preparation of N-MeDipyrr could be successfully synthesized in large quantities (≥ 25 g) it was decided to attempt a similar reaction in order to generate an N-MeTripyrrole (N-MeTripyrr). In order to generate the di-lithium salt of N-Mepyrrrole,
slightly more forcing conditions are required.24 The N-Mepyrrrole was refluxed in the presence of TMEDA in a solution of hexanes in order to generate the salt. The salt was then added to a cooled THF solution containing benzophenone. After the reaction was quenched the di-alcohol [2,5-{Ph\textsubscript{2}C(OH)}\textsubscript{2}-1-Me-C\textsubscript{4}H\textsubscript{2}N] (4) was isolated in good yield (53\%) (see Figure 2.5.5). Using the same neat pyrrole condensation used to prepare the N-MeDipyrr (3), it was possible to isolate pure N-MeTripyrr [2,5-{Ph\textsubscript{2}C(C\textsubscript{4}H\textsubscript{3}N)}\textsubscript{2}-1-Me-C\textsubscript{4}H\textsubscript{2}N] (5) in good yield (83\%) after several days of stirring. This synthesis represents the first case in which an N-MeTripyrrrole molecule has been rationally synthesized in a meaningful yield.26

![Figure 2.5.5 Structures of Di-alcohol (4) and N-MeTripyrr (5).](image)

Though the synthetic strategy used (see Scheme 2.5.6) involves the use of pyrophoric chemicals and takes several days to complete, the high purity of the products, and ability to produce the ligands in bulk (≥ 25 g) makes this route the most viable for the production of the \(\sigma, \pi\)–bonding ligands 3 and 5. Furthermore, the alcohols generated (2 and 4) can serve as ligands themselves, or building blocks for assembling other ligands via the simple \(S\textsubscript{N}1\) substitution reaction.
Scheme 2.5.6 Synthetic Routes to the σ, π-bonding ligands (3) and (5).

In order to increase the solubility of the N-MeDipyr (3) ligand, the reaction of LiN-Mepyrrrolide was attempted with several other ketones. Unfortunately, even though the formation of the alcohol occurred, in all of the cases where a β-hydrogen was present, elimination of H_2O occurred during the pyrrole condensation step (see Scheme 2.5.7). This occurred even in the case of the more constrained rings: cyclohexanone and cyclopentanone which were expected to be more robust towards this type of reaction. These results indicated that this synthetic route appears valid only in the cases where there are no β-hydrogen present in the starting materials (as in the case of benzophenone).

Scheme 2.5.7 Acid-Catalyzed Enolization.
In order to test this hypothesis, the reaction of LiN-Mepyrrroide with di-tertbutylketone was attempted. The reaction proceeded yielding the alcohol \([(1\text{-Me-C}_4\text{H}_3\text{N})\text{C(OH)}\text{tBu}_2] \) (6) in good yield (40%) (see Figure 2.5.8).

![Figure 2.5.8 Structure of N-MePyrroledi-Bu alcohol (6).](image)

Though no elimination route is open to form side-products, the steric bulk of the t-Bu groups appear to severely retard the condensation reaction of 6 with pyrrole, as only traces of the desired product were observed along with unreacted starting material, even after several days of stirring with heating.

As a further extension of the synthetic method for the preparation of \(\sigma, \pi \)-bonding ligands, it was decided to replace the central N-Me pyrrole ring with a benzene moiety (see Scheme 2.5.9).

![Scheme 2.5.9 Synthesis of PhenylDipyrole (7).](image)
Using a slightly modified literature preparation26 the PhenylDipyrrrole \([p-\{\text{Me}_2\text{C}(\text{C}_4\text{H}_3\text{N})\}_2\text{C}_6\text{H}_4]\) (7) was isolated in low yield (32\%) via sublimation (See Figure 2.5.10). Interestingly, even though the diol precursor possesses \(\beta\)-hydrogens, the condensation occurs without the elimination reaction which was observed in the case of N-Me pyrrole.

\[\text{Figure 2.5.10 Structure of PhenylDipyrrrole (7).}\]

The PhenylDipyrrrole (7), unfortunately, was found to have very poor solubility properties. Thus it was decided to attempt to substitute the methyl groups with groups that would provide better solubility in common organic solvents. Reacting 1,4-dibromobenzene with 2 equivalents of \(\text{nBuLi}\) and then subsequently reacting the di-lithium salt with cyclohexanone in THF yielded the alcohol \([p-\{\text{CyC(OH)}\}_2\text{C}_6\text{H}_4]\) (8) in low yield (27\% see Figure 2.5.11).

\[\text{Figure 2.5.11 Structure of CyPhenylDiol (8).}\]
As the work on 8 is so recent, the subsequent condensation with pyrrole has not been completed, and represents future work to be explored by our research group.

2.6 Conclusions:

Through the judicious selection of the proper synthetic strategy, several σ, π-donating ligands have been successfully synthesized in good yields. Both the N-MeDipyrr and N-MeTripyr have already been utilized by our group to produce some remarkable chemistry ranging from low-valent Ti27 and Th28 to ethylene oligomerization (see Chapter 5).29 The versatility of this ligand bodes well for its future, and further demonstrates that rational ligand modifications can further enrich organometallic chemistry. Although the chemistry of the PhenylDipyrrole ligands is, as yet untested, rich chemistry is expected ensuring that future researchers will continue to develop this class of ligands.

Furthermore, this work demonstrates that N-MeTripyrrrole and N-MeDipyrrole molecules can be rationally synthesized in large quantities, which is an unprecedented feat in the literature. The ability of these molecules to act as hemi-labile ligands with significant steric constraints will hopefully stimulate new research in the future.

2.7 X-Ray Crystallography Section:

The full crystallographic data and structural descriptions, including bond lengths and angles may be found in Appendix 2. The abbreviated crystallographic data for the structures contained within this chapter are as presented in Tables 2.7.1 - 2.7.3.
Table 2.7.1 Crystal Data and Structure Analysis Results.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₁₃H₂₂LiNO₂</td>
<td>C₁₈H₁₇NO</td>
<td>C₂₂H₂₀N₂</td>
</tr>
<tr>
<td>FW</td>
<td>231.26</td>
<td>263.33</td>
<td>312.40</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, C2/c</td>
<td>Monoclinic, P2(1)/n</td>
<td>Monoclinic, Cc</td>
</tr>
<tr>
<td>a (Å)</td>
<td>19.619(10)</td>
<td>13.145(3)</td>
<td>10.138(15)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>9.175(5)</td>
<td>10.553(3)</td>
<td>29.86(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>15.720(8)</td>
<td>11.436(3)</td>
<td>7.408(8)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>98.997(9)</td>
<td>115.223(15)</td>
<td>132.34(9)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>2795(3)</td>
<td>1435.2(7)</td>
<td>1658(4)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>200(2)</td>
<td>206(2)</td>
<td>209(2)</td>
</tr>
<tr>
<td>D<sub>calcd</sub> (g cm<sup>-3</sup>)</td>
<td>1.099</td>
<td>1.219</td>
<td>1.252</td>
</tr>
<tr>
<td>μ<sub>calcd</sub> (mm<sup>-1</sup>)</td>
<td>0.072</td>
<td>0.075</td>
<td>0.074</td>
</tr>
<tr>
<td>F<sub>000</sub></td>
<td>1008</td>
<td>560</td>
<td>664</td>
</tr>
<tr>
<td>R<sub>R</sub>, R<sub>W</sub><sup>2a</sup></td>
<td>0.0775, 0.1878</td>
<td>0.0599, 0.1091</td>
<td>0.0435, 0.0817</td>
</tr>
<tr>
<td>GoF</td>
<td>1.039</td>
<td>1.029</td>
<td>1.022</td>
</tr>
</tbody>
</table>

^{a R = Σ|Fo| - |Fc|/Σ|F|. R_W = [Σ(|Fo| - |Fc|²)/ΣwFo²]^{1/2}.}

Table 2.7.2 Crystal Data and Structure Analysis Results.

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C<sub>31</sub>H<sub>27</sub>NO<sub>2</sub></td>
<td>C<sub>39.7S</sub>H<sub>34.5S</sub>Cl<sub>1.5S</sub>N<sub>3</sub></td>
<td>C<sub>14</sub>H<sub>26</sub>NO</td>
</tr>
<tr>
<td>FW</td>
<td>445.54</td>
<td>607.38</td>
<td>223.35</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, C2/c</td>
<td>Triclinic, P-1</td>
<td>Orthorhombic, Pna2(1)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>32.396(7)</td>
<td>9.934(3)</td>
<td>8.033(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.3912(17)</td>
<td>12.368(4)</td>
<td>14.786(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>23.621(5)</td>
<td>14.173(4)</td>
<td>11.661(5)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>89.491(5)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>129.859(3)</td>
<td>80.429(4)</td>
<td>90</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>72.618(4)</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4929.0(18)</td>
<td>1637.0(8)</td>
<td>1385.0(10)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>206(2)</td>
<td>206(2)</td>
<td>213(2)</td>
</tr>
<tr>
<td>D<sub>calcd</sub> (g cm<sup>-3</sup>)</td>
<td>1.201</td>
<td>1.232</td>
<td>1.071</td>
</tr>
<tr>
<td>μ<sub>calcd</sub> (mm<sup>-1</sup>)</td>
<td>0.074</td>
<td>0.190</td>
<td>0.066</td>
</tr>
<tr>
<td>F<sub>000</sub></td>
<td>1888</td>
<td>639</td>
<td>496</td>
</tr>
<tr>
<td>R<sub>R</sub>, R<sub>W</sub><sup>2a</sup></td>
<td>0.0757, 0.1116</td>
<td>0.1034, 0.1910</td>
<td>0.0619, 0.1287</td>
</tr>
<tr>
<td>GoF</td>
<td>1.013</td>
<td>1.014</td>
<td>1.053</td>
</tr>
</tbody>
</table>

^{a R = Σ|Fo| - |Fc|/Σ|F|. R_W = [Σ(|Fo| - |Fc|²)/ΣwFo²]^{1/2}.}
Table 2.7.3 Crystal Data and Structure Analysis Results.

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{20}H_{24}N_{2}</td>
<td>C_{18}H_{26}O_{2}</td>
</tr>
<tr>
<td>FW</td>
<td>292.41</td>
<td>274.40</td>
</tr>
<tr>
<td>space group</td>
<td>Rhombohedral, R-3</td>
<td>Orthorhombic, Cmca</td>
</tr>
<tr>
<td>a (Å)</td>
<td>25.732(4)</td>
<td>53.339(6)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>25.732(4)</td>
<td>24.289(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>6.720(2)</td>
<td>10.026(4)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>3853.5(16)</td>
<td>12989.19(50)</td>
</tr>
<tr>
<td>Z</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>213(2)</td>
<td>202(2)</td>
</tr>
<tr>
<td>D_{calc} (g cm⁻³)</td>
<td>1.134</td>
<td>1.111</td>
</tr>
<tr>
<td>μ_{calc} (mm⁻¹)</td>
<td>0.066</td>
<td>0.132</td>
</tr>
<tr>
<td>F₀₀₀</td>
<td>1422</td>
<td>2923</td>
</tr>
<tr>
<td>R, R_{w} ²</td>
<td>0.0548, 0.1438</td>
<td>0.1358, 0.2458</td>
</tr>
<tr>
<td>GoF</td>
<td>1.038</td>
<td>1.099</td>
</tr>
</tbody>
</table>

^a R = \Sigma|Fo| - |Fc|/\Sigma|F|. R_w = [\Sigma(|Fo| - |Fc|²/\Sigma wFo²)]^{1/2}.

2.8 Experimental Section:

All reactions were carried out under a dry nitrogen or argon atmosphere unless otherwise stated. Solvents were dried using an aluminum oxide solvent purification system. Reagent grade (>98 %) 1,4-dibromobenzene, pyrrole and 1-MePyrrole were purchased from Aldrich. The pyrrole was vacuum distilled prior to use. Lithium reagents were purchased from Aldrich and used as they arrived. TMEDA was dried over Na/K amalgam and distilled before use. Diphenylidipyrrrole was synthesized according to published procedure.\(^{16}\) Infrared spectra were recorded on an ABB Bomem FTIR instrument from Nujol mulls prepared in a drybox. NMR were collected on an INOVA Varian 500 MHz instrument in CDCl₃. Elemental analysis was carried out with a Perkin-Elmer 2400 CHN analyzer. Data for X-ray crystal structure determination were obtained with a Bruker diffractometer equipped with a 1K Smart CCD area detector.

General Experimental Procedure for Table 2.5.1: Diphenylidipyrrrole (0.500 g, 1.68 mmol) was dissolved in 100 ml of THF and cooled to 0 °C. The selected deprotonating
agent was then added and allowed to stir for two hours while warming to room
temperature, after which Mel (0.238 g, 1.68 mmol) was added. The reaction was then
dried in vacuo. The organics were then extracted with CH₂Cl₂ (3 X 15 mL) which was
subsequently dried in vacuo. The resulting off-white powder was used to calculate the %
yield. In order to determine the % yield of each product the NMR N-H peak of the
unsubstituted product (7.83 ppm) was compared to the N-H peak of the mono-substituted
product (7.74 ppm) and the N-CH₃ peak of the disubstituted product (2.88) was compared
to the mono-substituted product (2.94 ppm). In order to purify the mono-substituted
product several recrystallizations from hot hexanes were required which conveniently
separated out the unsubstituted product, but always contained a minimum of 3% disubstituted product.

Synthesis of (1-methyl-1H-pyrrol-2-yl)diphenylmethanol (2): A 250 mL Schlenk
flask was filled with 10 mL (9.14 g, 0.113 mol) of 99% 1-Methylpyrrole and 100 mL of
THF. The solution was then cooled to -78 °C using a dry ice and acetone bath. 10 M n-
BuLi in hexanes was then slowly added to the stirring solution over several minutes (1.05
eq, 11.83 mL, 0.118 mol). This resulted in the solution turning slightly brown and a
precipitate forming. The solution was allowed to stir for 4 hours while warming to room
temperature, after which time, it was slowly added to a cooled solution (-78 °C) of
benzophenone (1 eq, 20.59 g, 0.113 mol) in THF. The solution immediately turned blue-
green. The solution was then allowed to stir for 12 hours as it warmed to room
temperature. After 12 hours the colour of the solution was again yellow-brown. The
solution was then dried under reduced pressure and 100 mL of hexanes were added along
with H₂O (2 eq, 4.068 g, 0.226 mol). The resulting suspension was filtered at the boiling
point of hexane and washed with 3 X 20 mL of hot hexane in order to extract all organic
product from the salt. The solution was then allowed to stand at room temperature for 12
hours after which slightly yellow crystals of the alcohol formed. The crystals were
filtered and washed twice with cold hexanes 2 X 10 mL and dried yielding 16.72 g (56.2
%, 0.0635 mol).
Elemental Analysis calcd (Found) for C₁₈H₁₇NO: C 82.10 (82.12), H 6.51 (6.58), N 5.32
(5.58). MS (EI) m/z (found): 263 (263).
IR (neat): 3464 (br, s), 3058, 3025, 2947 (m), 1642, 1598 (m), 1490, 1447 (s), 1411 (w), 1329, 1293 (m), 1234(w), 1204, 1153 (m), 1092 (m), 1061(w), 1018, 1001 (m), 924, 899, 867 (m), 792 (w), 755, 721, 701 (s), 669 (m), 628 (w).

1H NMR (CDCl$_3$, 500 MHz)(δ): 7.24 (br, 10H, phenyl), 6.58 (m, 1H, pyrrole), 5.92 (m, 1H, pyrrole), 5.47 (m, 1H, pyrrole), 3.32 (s, 3H, N-CH$_3$), 2.90 (1H, OH).

13C NMR (CDCl$_3$, 500 MHz)(δ): 146.35 (phenyl, ipso), 136.06 (N-Me pyrrole ipso), 127.79 (phenyl), 127.09 (phenyl), 126.87 (phenyl), 124.80 (N-Me pyrrole), 112.14 (N-Me pyrrole), 105.52 (N-Me pyrrole), 78.44 (C-OH), 35.94 (N-CH$_3$).

Synthesis of 2-(diphenyl(1H-pyrrol-2-yl)methyl)-1-methyl-1H-pyrrole (N-MeDipyrrole) (3): The alcohol 2 (16.72 g, 0.0635 mol) was placed in neat pyrrole (~ 50 mL) using slight heating until fully dissolved at which time 12 drops of methanesulphonic acid were added which yielded a red solution. After stirring for 72 hours the grey product was filtered from pyrrole and washed 4 X 20 mL with cold MeOH yielding 16.21 g (81.8 %, 0.0519 mol) of white solid after drying under vacuum.

Elemental Analysis calcd (Found) for C$_{22}$H$_{20}$N$_2$: C 84.58 (84.62), H 6.45 (6.58), N 8.97 (8.88). MS (El) m/z (found): 312 (312).

IR (neat): 3428 (m), 3083, 3061, 2956 (m), 1954, 1899, 1814 (w), 1591, 1549 (m), 1492, 1443, 1408, 1399 (m), 1321(w), 1298 (m), 1266, 1230, 1188 (m), 1155 (w), 1111, 1091 (m), 1041, 1031 (m), 1001 (w), 962 (m), 928 (w), 902, 888, 844 (m), 797 (s), 761, 744, 720, 702 (s), 620 (m), 566(s), 547(m), 492, 479 (w).

1H NMR (CDCl$_3$, 500 MHz)(δ): 7.74 (br, 1H, N-H), 7.27 (m, 6H, phenyl), 7.13 (m, 4H, phenyl), 6.75 (m, 1H, pyrrole α), 6.65 (m, 1H, N-Me pyrrole α), 6.18 (m, 1H, N-Me pyrrole β), 6.14 (m, 1H, N-Me pyrrole γ), 6.02 (m, 1H, pyrrole β), 5.62 (m, 1H, pyrrole γ), 2.94 (s, 3H, N-CH$_3$).
13C NMR (CDCl$_3$, 500 MHz)(δ): 145.97 (phenyl, ipso), 136.21 (N-Me pyrrole ipso), 134.71 (pyrrole ipso), 129.30 (phenyl), 127.64 (phenyl), 126.37 (phenyl), 124.32 (N-Me pyrrole α), 117.258 (pyrrole α), 111.99 (N-Me pyrrole β), 109.04 (pyrrole β), 107.72 (N-Me pyrrole γ), 105.81 (pyrrole γ), 55.44 (quaternary), 35.49 (N-CH$_3$).

Synthesis of (1-methyl-1H-pyrrole-2,5-diyl)bis(diphenylmethanol) (4): 1-Methylpyrrole (10.0 mL, 0.113 mol) was added to a Schlenk flask containing 150 ml hexanes. 3.0 equivalents of TMEDA (51.0 mL, 0.338 mol) was then added to the flask and it was cooled to 0 °C in an ice bath. To the stirring solution was added 3.0 equivalents of 10.0 M nBuLi (33.8 mL, 0.338 mol). The solution was allowed to warm to room temperature and then the flask was fitted with a condenser, and the solution was refluxed for 4 hours. After refluxing, the off-white suspension was filtered and the solid portion was washed (3 X 50 mL hexanes) yielding a white product. This product was dried briefly under vacuum (1 hour) and then redissolved in 100 mL of THF and cooled to -20 °C. In a separate flask, 2.0 equivalents of benzophenone (41.18 g, 0.226 mol) was added to 100 mL of stirring THF and cooled to -20 °C. The benzophenone solution was then cannulated into the di-lithium pyrrolide solution, resulting in a deep blue colour. This solution was then stirred for 12 hours, after which time the solvent was removed under vacuum. 200 mL of hexanes was then added along with 4 equivalents of water (8 mL, 0.452 mol) resulting in an off-white suspension. This suspension was then filtered and washed with hexanes (4 X 50 mL). The purity of the solid can be tested via TLC (20:1 toluene:ether) diol R$_f$: 0.0; mono-substituted alcohol R$_f$: 0.3; benzophenone R$_f$: 0.45. If any impurities are detected a further washing (2 X 50 mL) by hexanes can be used to remove the impurities. The product is then extracted using several portions of CH$_2$Cl$_2$ (5 X 40 mL) and then dried under reduced vacuum yielding an off-white solid 26.75 g (53.2 %, 0.0601 mol). X-ray quality crystals of 4 were grown from CH$_2$Cl$_2$.

Elemental Analysis calcd (Found) for C$_{31}$H$_{27}$NO$_2$: C 83.57 (83.32), H 6.11 (6.18), N 3.14 (3.28). MS (EI) m/z (found): 445 (445).
IR (neat): 3484 (br, s), 3084, 3058, 3025, 2946 (m), 1597 (m), 1490, 1447 (s), 1411 (w), 1329, 1293 (s), 1234(s), 1204, 1153 (m), 1092 (m), 1061(w), 1018, 1001 (s), 924, 899, 867 (m), 792 (w), 755, 721, 701 (s), 670 (m), 628 (w), 612 (w), 559 (w), 472 (s).

\(^1\)H NMR (CDCl\(_3\), 500 MHz)(\(\delta\)): 7.27 (m, 20H, phenyl), 5.29 (s, 2H, pyrrole), 3.13 (s, 3H, N-CH\(_3\)), 2.87 (br, 2H, OH).

\(^13\)C NMR (CDCl\(_3\), 500 MHz)(\(\delta\)): 145.66 (ipso-phenyl), 138.83 (ipso N-Me pyrrole), 127.86 (phenyl), 127.25 (phenyl), 127.02 (phenyl), 110.17 (N-Me pyrrole), 78.83 (C-OH), 35.11 (N-CH\(_3\)).

Synthesis of 2,5-bis(diphenyl(1H-pyrrol-2-yl)methyl)-1-methyl-1H-pyrrrole (N-MeTripyrrole) (5): The alcohol 4 26.75 g (0.0601 mol) was dissolved in 60 mL of hot stirring pyrrole and 10 drops of methanesulphonic acid was added, resulting in a dark red solution. After 72 hours the suspension was filtered and the solid portion was washed with cold methanol (3 X 30 mL), yielding a white solid. This solid was then dried under vacuum. Alternately, the compound can be recrystallized from hot toluene, yielding a 1:1 (ligand:toluene) light beige final product. Yield 10.35 g (83.4%, 0.0501 mol).

Elemental Analysiscalc (Found) for C\(_{39}\)H\(_{33}\)N\(_3\): C 86.15 (86.32), H 6.12 (6.18), N 7.73 (7.88). [M\(^+\)] 543, found 543.

\(^1\)H NMR (CDCl\(_3\), 500 MHz)(\(\delta\)): 7.69 (br, 2H, N-H), 7.18 (m, 8H, phenyl), 7.13 (m, 4H, phenyl), 7.07 (m, 8H, phenyl), 6.68 (m, 2H, pyrrole), 6.05 (m, 2H, pyrrole), 5.99 (m, 2H, pyrrole), 5.46 (s, 2H, N-Me pyrrole), 2.14 (s, 3H, N-CH\(_3\)).

\(^13\)C NMR (CDCl\(_3\), 500 MHz)(\(\delta\)): 145.52 (ipso-phenyl), 139.06 (ipso N-Me pyrrole), 129.66 (ipso-pyrrole), 127.93 (phenyl), 126.73 (phenyl), 117.26 (phenyl), 110.35 (pyrrole), 109.37 (pyrrole), 108.10 (pyrrole), 56.19 (quaternary), 34.80 (N-CH\(_3\)).
Synthesis of 2,2,4,4-tetramethyl-3-(1-methyl-1H-pyrrol-2-yl)pentan-3-ol (6): A 250 mL Schlenk flask was filled with 6.20 mL (5.67 g, 0.070 mol) of 99% 1-Methylpyrrole and 100 mL of THF. The solution was then cooled to -78 °C using a dry ice and acetone bath. 10 M n-BuLi in hexanes was then slowly added to the stirring solution over several minutes (1.05 eq, 7.33 mL, 0.073 mol). This resulted in the solution turning slightly brown. The solution was allowed to stir for 4 hours while warming to room temperature, after which time, it was slowly added to a cooled solution (-78 °C) of hexamethylacetone (1 eq, 9.96 g, 0.070 mol) in THF. The beige solution was then allowed to stir for 12 hours as it warmed to room temperature. The solution was then dried under reduced pressure and 50 mL of hexanes was added along with H2O (2 eq, 2.520 g, 0.140 mol). The resulting suspension was filtered at the boiling point of hexanes and washed with 3 X 20 mL of hot hexane in order to extract all organic product from the salt. The solution was then allowed to stand at room temperature for 12 hours after which slightly yellow but no crystals formed. Removing the hexanes under reduced pressure and adding fresh pentanes (10 mL) followed by cooling (-35 °C) resulted in crystal formation after 24 hours 6.21 g (39.7 %, 0.0278 mol).

Elemental Analysis calcd (Found) for C14H25NO: C 75.28 (82.12), H 11.28 (6.58), N 6.27 (5.58). MS (EI) m/z (found): 223 (223).

IR (neat): 3472 (br, s), 3055, 3023, 2948 (m), 1690 (w), 1507 (m), 1450 (m), 1394 (m), 1288 (s), 1208 (w), 1097, 1054 (m), 983 (m), 942 (m), 864 (s), 671 (m), 652(s).

1H NMR (CDCl$_3$, 500 MHz)(δ): 6.38 (m, 1H, pyrrole), 6.06 (m, 1H, pyrrole), 5.98 (m, 1H, pyrrole), 3.80 (s, 3H, N-CH$_3$), 1.89 (s, 1H, OH), 1.07 (s, 18H, t-Bu).

13C NMR (CDCl$_3$, 500 MHz)(δ): 128.06 (N-Me pyrrole ipso), 114.60 (N-Me pyrrole), 107.34 (N-Me pyrrole), 100.33 (N-Me pyrrole), 68.46 (C-OH), 48.71 (tBu quaternary), 31.54 (N-CH$_3$), 22.31 (t-Bu).
Synthesis of 1,4-bis(2-(1H-pyrrol-2-yl)propan-2-yl)benzene (7): 2,2’-(1,4-phenylene) dipropan-2-ol 5.0 g (0.0257 mol) was dissolved in 25 mL of pyrrole. Then BF₃OEt₂ 3.59 mL (1.10 eq, 0.0283 mol) was added drop-wise over 15 min. The beige solution was then stirred for 1 hr. The reaction was then diluted with 50 mL of CH₂Cl₂ and quenched with 8 mL of a 0.1 M NaOH solution. The organic layer was then washed 3 X 20 mL H₂O, dried with Na₂SO₄ and then dried under reduced pressure. The resulting brown oil was then sublimed (120 °C, 30 torr), resulting in a white solid 2.42 g (32.2%, 8.28 mmol). Elemental Analysis calcd (Found) for C₁₂H₁₈O₂: C 74.19 (74.32), H 9.34 (9.48). MS (EI) m/z (found): 194 (194).

IR (neat): 3368 (br, s), 3100, 2967, 2867 (w,s,w), 1561 (m), 1507 (m), 1468 (m), 1421, 1401 (m), 1382, 1362 (w), 1291 (m), 1254, 1226 (m), 1121, 1109 (s), 1084 (w), 1038, 1017 (m), 950 (m), 907 (s), 883 (w), 831 (s), 791 (s), 745 (s), 588 (s), 541 (m).

¹H NMR (CDCl₃, 500 MHz)(δ): 7.63 (br, 2H, N-H), 7.11 (s, 4H, phenyl), 6.68 (m, 2H, pyrrole), 6.14 (m, 2H, pyrrole), 6.08 (m, 2H, pyrrole), 1.64 (s, 12H, C-CH₃).

¹³C NMR (CDCl₃, 500 MHz)(δ): 146.94 (ipso-phenyl), 140.67 (ipso-pyrrole), 126.63 (phenyl), 116.87 (pyrrole), 107.81 (pyrrole), 104.41 (pyrrole), 39.04 (quaternary), 27.15 (methyl).

Synthesis of 1,1’-(1,4-phenylene)dicyclohexanol (8): A 250 mL Schlenck flask was filled with ~100 mL of hexanes and 1,4-dibromobenzene 4.00 g (0.0169 mol). 10 M N-BuLi 42.4 mL (2.5 eq, 0.0425 mol) was then added to the stirring mixture. The flask was then refluxed for 2 hours resulting in a white precipitate. The precipitate was then filtered and washed (3 X 20 mL) with hexanes. The white solid was then redissolved in 50 mL of THF and slowly added to a cooled solution (-50 °C) of cyclohexanone 3.317 g (2 eq, 0.0338 mol) in 150 mL of THF. The solution was allowed to warm to room temperature and was stirred overnight. The solution was then dried under reduce pressure and hexanes was added ~100 mL along with H₂O 0.77 g (2.5 eq, 0.0425 mol). The resulting crude material was then filtered hot, and washed with 3 X 20 mL hot
hexanes. The volume was reduced ~25 mL and the colourless diol 8 slowly crystallized overnight 1.27 g (27.3 %, 4.61 mmol). Elemental Analysis calcd (Found) for C₁₈H₂₆O₂: C 78.79 (78.62), H 9.55 (9.58). MS (El) m/z (found): 274 (274).

IR (neat): 3326 (br, s), 2845 (s), 1443, 1392, 1349 (m), 1289 (m), 1252 (m), 1216 (m), 1181, 1169 (w), 1146, 1132, 1117 (m), 1055 (w), 1034, 1007 (m), 971 (s), 928 (w), 898 (m), 847 (m), 824 (s), 772 (w), 738 (w), 695 (w), 665 (w), 569 (w).

¹H NMR (CDCl₃, 500 MHz)(δ): 7.46 (s, 4H, phenyl), 1.77 (m, 14H, Cy), 1.63 (s, 2H, OH), 1.61 (m, 4H, Cy), 1.27 (m, 2H, Cy).

¹³C NMR (CDCl₃, 500 MHz)(δ): 147.99 (ipso-phenyl), 124.68 (phenyl), 73.18 (C-OH), 38.99 (Cy), 25.71 (Cy), 22.38 (Cy).

2.9 References:

19) Saito, T. *Early Transition Metal Clusters with π-Donor Ligands* VCH: New York, **1995**.

Chapter 3

Preparation of Mn Alkyl Complexes

Table of Contents

3.1 Introduction ... 39
3.2 Mn Alkyls .. 40
3.3 Results and Discussion .. 42
3.4 Conclusions .. 50
3.5 X-Ray Crystallography Section 51
3.6 Experimental Section .. 53
3.7 References ... 56

3.1 Introduction:

The most ready source of divalent Mn complexes is provided by the simple chloride salt [MnCl₂(THF)₁.₅]. However, one limitation of this reagent is that it often requires that ligands be used as their alkali metal salts via metal exchange reactions. As demonstrated in Chapter 2, the use of ligand alkali salts in metathesis reactions often leads to anionic metallate complexes in which the cationic alkali metal is retained.¹ This is a trend which will be further demonstrated in Chapter 6 (see Scheme 3.1.1) and can occur even in the case of polydentate ligands.
Scheme 3.1.1 Example of the Retention of an Alkali Cation.

The retention of the alkali cation, in turn, can lead to the assembly of cluster compounds via bridging interactions.\(^1\) This type of reactivity can significantly compromise the ability to controllably prepare specific organometallic complexes, and was envisaged to be a potential problem. In order to avoid the issue of anionic metallate complex formation, it was decided to attempt the synthesis of various MnR\(_2\) reagents. These reagents can be expected to react much cleaner via a hydrogen exchange reaction, as light hydrocarbons are released from the reaction, providing an irreversible driving force (see Scheme 3.1.2).

Scheme 3.1.2 Proposed Metathesis Reaction.

This type of reactivity is well documented with many different transition metals and many different R groups.\(^2\)

3.2 Mn Alkyls:

The formation of organometallic complexes of Mn\(^{II}\) was first reproducibly examined in the mid-1970’s and followed the general trend of using Grignard reagents, or lithium salts in conjunction with Mn\(^{II}\) halides. The group of Wilkinson pioneered the syntheses for (MnR\(_2\))\(_n\) (R = Neopentyl n = 4; Neophyl n = 2; Trimethylsilylmethyl n = \(\infty\)) using MnCl\(_2\) and the appropriate Grignard reagents (see Scheme 3.2.1).\(^3\)
Scheme 3.2.1 Formation of [Mn(Neopentyl)₂]₄.

Though a crystal structure of the neophyl equivalent was reported, their diagrams of the crystal structures for the neopentyl, and trimethylsilylmethyl analogues referred to a personal communication as the source of the data. The monomeric complex [Mn(CH₂SiMe₃)₂(PMe₃)₂] was isolated several years later using the same synthesis; indicating that the di-alkyl, in one form or another, was originally formed by the Wilkinson group.⁴ In addition to the complexes of Wilkinson, several other Mn(II) alkyls have been synthesized. In 1983 the group of Floriani published the synthesis and crystal structure of the linear, trinuclear [Mn₃(Mesityl)₆].⁵ The monomeric homoleptic complex [Mn{C(SiMe₃)₃}₂] was synthesized from the corresponding lithium salt, however the complex proved to be kinetically inert to any further transformations.⁶

Though no complexes of the formulation [MnRCl] have been reported yet, two cases of metallate complexes with the general formulae Li[MnR₃] and Li₂[MnR₄] have been reported. The Power’s group has described the synthesis and characterization of [Li(THF)₄]₂[Mn₂Ph₆] and [Li(THF)₄][Mn(Mesityl)₃] from the corresponding lithium salts.⁷ Similar di-anionic, metallate Mn(II) structures were produced in 1989 by the group of Girolami by simply combining methyl or ethyl lithium with MnCl₂ and subsequently treating the reaction with TMEDA in order to produce [Li(TMEDA)]₂[MnR₄].⁸

In summary, the literature examples clearly indicate that homoleptic Mn(II) alkyls may be synthesized, and that they are sufficiently stable so as to serve as a bulk starting material for further chemical transformations.
3.3 Results and Discussion:

As enumerated in the previous section, several viable Mn di-alkyls have been synthesized which could serve as the starting point for this project. Perhaps the most attractive was the monomeric \([\text{Mn}\{\text{C(SiMe}_3\}_3\}_2]\). However, given its apparent inertness,\(^6\) it was decided that smaller R groups would allow for more facile metathetic reactions with the planned ligand systems. The mesityl group was also evaluated to be too sterically crowded. Thus the original Wilkinson complex \([\text{Mn(CH}_2\text{SiMe}_3\}_2\]_\infty\) was selected, since it was expected to be highly soluble and synthetically facile to produce. In addition, the steric bulk should be sufficiently small so as to allow for the planned metathesis reactions with a variety of ligands to occur rapidly.

The synthetic procedure utilized was straightforward. Either anhydrous MnCl\(_2\) or the etherate form \([\text{MnCl}_2(\text{THF}) \substack{1,3} \] would serve as a ready source of Mn for the reaction with solid LiCH\(_2\)SiMe\(_3\) in different stoichiometric ratios (see Scheme 3.3.1).

![Scheme 3.3.1 Proposed Synthesis of \([\text{Mn(} \text{CH}_2\text{SiMe}_3\}_2\]_\infty\)]

The alkylating agent would be used in stoichiometric ratios ranging from one two four equivalents in order to generate all possible combinations of Mn-alkyls. These various Mn alkyls could then be reacted with various ligand systems to generate a variety of Mn organometallic complexes.

In the case of the di-alkyl, it was quickly found that the choice of starting material had very little impact on the final product. Specifically the tetrahydrofuranate \([\text{MnCl}_2(\text{THF}) \substack{1,3} \] or the anhydrous \([\text{MnCl}_2\] could be used interchangeably to produce the same complexes. Given the ease of producing MnCl\(_2\) from MnCl\(_2\)(H\(_2\)O)\(_6\), the anhydrous complex was used for bulk preparations. Reacting 2.05 equivalents of LiCH\(_2\)SiMe\(_3\) with Mn in ether lead to the desired \([\text{Mn(} \mu-\text{CH}_2\text{SiMe}_3\} (\text{CH}_2\text{SiMe}_3)(\text{Et}_2\text{O})]_2\)
(1) or [Mn(μ-CH₂SiMe₃)(CH₂SiMe₃)(THF)]₂ (2) if the solvent THF was used, or if 1 was boiled in THF briefly (see Figure 3.3.2). Both 1 and 2 are extremely air and moisture sensitive; decomposing rapidly on exposure to either. However, both can be prepared in excess of 90 % yield and crystallized as large, dark orange block crystals from hexanes. Given that metal-carbon bonds tend to be quite unstable in homoleptic compounds, the thermal stability of these MnR₂ compounds (which are stable in boiling toluene for several hours) is rather remarkable.

Figure 3.3.2 Crystal Structure of [Mn(μ-CH₂SiMe₃)(CH₂SiMe₃)(THF)]₂ (2) with 30% Thermal Ellipsoids.

Since the only structural difference between complexes 1 and 2 is the coordination of diethyl ether versus THF, only 2 will be described herein. The structure of 2 is a dinuclear complex in which each Mn atom is tetrahedrally coordinated, and bridged to the neighbouring Mn via a -CH₂SiMe₃ group. The Mn-Mn distance of 2.7878(9) Å is sufficiently short to be considered as falling within metal-metal bonding range, however anti-ferromagnetic exchange via the bridging alkyl groups was found to be the only interaction present between the two metal centres. Three of the groups around each Mn atom can be considered as σ-bonded to the Mn centre [Mn–C(1) = 2.129(3), Mn–C(5) = 2.214(3), Mn–O(1) = 2.188(2) Å] while the fourth is the C atom of the bridging alkyl [Mn–C(5a) = 2.360(3) Å]. Although the H atoms were not unequivocally located it seems quite likely that an agostic interaction between the hydrogens of the bridging alkyl
and the metal centre substantially contribute to the assembly of the dimeric structure and its stability (calculated hydrogens of C(5a)–Mn: 2.283(3) and 2.164(3) Å). The angles of the complex show a slight distortion from true tetrahedral [O(1)–Mn–C(1) = 108.19(11), O(1)–Mn–C(5) = 99.19(10), O(1)–Mn–C(5a) = 94.73(10)°]. The bridging angle is also quite narrow 75.07(9)° and is likely to responsible for the short Mn–Mn distance. These results are in sharp contrast to the structural formulation reported by Wilkinson, who stated that the structure was an ether-free infinite polymer. The reported structure is difficult to rationalize given that both the Wilkinson reaction and this reaction were performed in an ether solvent under virtually identical conditions, with the only difference being the use of the Grignard in Wilkinson’s case. It is hard to rationalize how a Grignard could yield an infinite polymer, whereas the lithium reagent leads to the dimeric structure.

Given that our crystal structure was so different from the reported case a second Wilkinson compound, the tetrameric of [Mn(Neopentyl)2]4 (see Scheme 3.2.1) was prepared in order to verify our results. The neopentyl analogue was easily obtained from neopentyl lithium and either source of MnCl2 in THF or ether. Once again a dimeric Mn complex resulted from the reaction [Mn(μ-CH2CMe3)(CH2CMe3)(THF)]2 (3) (see Figure 3.3.3).

Figure 3.3.3 Crystal Structure of [Mn(μ-CH2CMe3)(CH2CMe3)(THF)]2 (3) with 30% Thermal Ellipsoids.
The structure is very similar to those of Complexes 1 and 2, with a few minor differences. The most obvious is that while in 1 and 2, the Mn-(μ-\(\mu\))-Mn moiety was planar, it is puckered in the case of the neopentyl group. This distortion appears to be caused by a partial rotation of the bridging groups which orients one of the hydrogens closer to the Mn than in the previous case (calculated hydrogens of C(1)–Mn(1): 1.958(3) and 2.778(3) Å; 0.21 Å shorter than the closest contact in the CH\(_2\)SiMe\(_3\) case). The rest of the tetrahedral environment shows very little other distortions [Mn–O(1) = 2.204(4), Mn–C(1) = 2.230(5), Mn–C(6) = 2.135(6) Å], although the distance to the bridging alkyls are now slightly longer [Mn–C(1a) = 2.482(6) Å]. The metal-metal distance is also slightly shorter in this case 2.718(6) Å, although there is very little change in the magnetic moment value (4.36 \(\mu\)\(_B\) vs. 4.48 \(\mu\)\(_B\)) indicating that there is probably no metal-metal bonding. The angles of the complex also show a distortion from true tetrahedral [O(1)–Mn–C(6) = 103.4(2), O(1)–Mn–C(1) = 127.3(2), O(1)–Mn–C(1a) = 88.96(10)°]. The bridging angle is also quite narrow 70.23(10)° which is once again probably responsible for the short Mn-Mn distance. Again, it is difficult to reconcile this structure with the reported tetrameric structure in the Wilkinson case, with the only explanation being that the Grignard reagents are reacting in a manner different from their lithium analogues.

In order to determine whether the dimeric Mn\(^{\text{II}}\) complexes could be dissociated, the simple complexation reaction of 2 with TMEDA was performed. The formation of the expected monomeric complex [(TMEDA)\(\text{Mn(CH}_2\text{SiMe}_3)_2\)] (4), occurred in near quantitative isolated yield (see Figure 3.3.4).

Figure 3.3.4 Crystal Structure of [(TMEDA)\(\text{Mn(CH}_2\text{SiMe}_3)_2\)] (4) with 30% Thermal Ellipsoids.
The complex is monomeric and tetrahedral as expected for the high-spin d⁵ electronic configuration of a Mn⁴⁺ metal centre. The four coordination sites are filled by two alkyls, and the TMEDA molecule [Mn–C(1) = 2.1486(18), Mn–N(1) = 2.3433(16) Å, C(1)–Mn–C(1a) = 139.27(11), C(1)–Mn–N(1) = 101.79(6), C(1)–Mn–N(1a) = 109.32(7)°]. This structure demonstrates that the di-alkyls can be conveniently converted to monomeric forms via the simple addition of chelating Lewis bases. For a comparison of the bond distances and angles of the di-alkyl complexes see Table 3.3.5.

Table 3.3.5 Selected Bond Distances (Å) and Angles (°) for complexes 1-4.

<table>
<thead>
<tr>
<th>[MnR₂(Et₂O)]₂ (1) R = CH₂SiMe₃</th>
<th>[MnR₂(THF)]₂ (2) R = CH₂SiMe₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn-Mn = 2.785(2)</td>
<td>Mn-Mn = 2.7878(9)</td>
</tr>
<tr>
<td>Mn-O(1) = 2.230(6)</td>
<td>Mn-O(1) = 2.188(2)</td>
</tr>
<tr>
<td>Mn-C(5) = 2.136(8)</td>
<td>Mn-C(1) = 2.129(3)</td>
</tr>
<tr>
<td>Mn-C(1a) = 2.210(8)</td>
<td>Mn-C(5) = 2.214(3)</td>
</tr>
<tr>
<td>Mn-H of C(1) = 2.052(8)</td>
<td>Mn-H of C(5a) = 2.164(3)</td>
</tr>
<tr>
<td>O(1)-Mn-C(5) = 128.1(4)</td>
<td>O(1)-Mn-C(1) = 108.19(11)</td>
</tr>
<tr>
<td>O(1)-Mn-C(1) = 104.7(4)</td>
<td>O(1)-Mn-C(5) = 99.19(10)</td>
</tr>
<tr>
<td>Mn-C(1)-Mn = 74.56(2)</td>
<td>Mn-C(5)-Mn = 75.07(9)</td>
</tr>
</tbody>
</table>

Table 3.3.5 continued.

<table>
<thead>
<tr>
<th>[MnR₂(THF)]₂ (3) R = CH₂CMe₃</th>
<th>[(TMEDA)MnR₂(THF)] (4) R = CH₂SiMe₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn-Mn = 2.7183(17)</td>
<td>Mn-N(1) = 2.3433(16)</td>
</tr>
<tr>
<td>Mn-O(1) = 2.204(4)</td>
<td>Mn-C(1) = 2.1486(18)</td>
</tr>
<tr>
<td>Mn-C(6) = 2.135(6)</td>
<td>N(1)-Mn-C(1) = 101.79(6)</td>
</tr>
<tr>
<td>Mn-C(1) = 2.230(5)</td>
<td>N(1)-Mn-C(1a) = 109.32(7)</td>
</tr>
<tr>
<td>Mn-H of C(1a) = 1.958(6)</td>
<td>N(1)-Mn-N(1a) = 79.52(8)</td>
</tr>
<tr>
<td>O(1)-Mn-C(6) = 103.4(2)</td>
<td></td>
</tr>
<tr>
<td>O(1)-Mn-C(1) = 100.01(17)</td>
<td></td>
</tr>
<tr>
<td>Mn-C(1)-Mn = 70.23(6)</td>
<td></td>
</tr>
</tbody>
</table>

The formation of the di-alkyl is a stoichiometry-sensitive reaction. This was clearly indicated by the fact that when a slight excess of 2.35 eq of LiCH₂SiMe₃ was used during a synthesis of the di-alkyl, the reaction afforded an interesting side product. A triangulo structure consisting of three Mn atoms and seven alkyl anions, along with one
solvated lithium counter-anion resulted \([\text{Mn}_3(\mu_3-\text{CH}_2\text{SiMe}_3)(\mu_2-\text{CH}_2\text{SiMe}_3)_3(\text{CH}_2\text{SiMe}_3)_3][\text{Li(THF)}_4] (5)\) (see Figure 3.3.6).

Figure 3.3.6 Crystal Structure of 5 with 30% Thermal Ellipsoids, Li(THF)_4, and Some Methyl Groups Omitted for Clarity.

Complex 5 consists of three Mn atoms defining the triangular core \([\text{Mn}(1)-\text{Mn}(2) = 2.8521(13), \text{Mn}(1)-\text{Mn}(3) = 2.9665(13), \text{Mn}(2)-\text{Mn}(3) = 2.8145(14) \text{ Å, Mn}(1)-\text{Mn}(2)-\text{Mn}(3) = 63.13(3), \text{Mn}(2)-\text{Mn}(1)-\text{Mn}(3) = 57.82(3)^\circ]\). Each Mn is pseudo-tetrahedrally coordinated by one terminal alkyl, two \(\mu_2\)-bridging alkyls, and a final alkyl group which is \(\mu_3\)-bridging all of the Mn atoms \([\text{Mn}(1)-\text{C}(17) = 2.148(6), \text{Mn}(1)-\text{C}(5) = 2.238(6), \text{Mn}(1)-\text{hydrogen-C}(9) = 1.601(6), \text{Mn}(1)-\text{hydrogen-C}(1) = 2.289(6) \text{ Å, C}(17)-\text{Mn}(1)-\text{C}(5) = 123.5(3), \text{C}(17)-\text{Mn}(1)-\text{hydrogen-C}(9) = 101.44(3), \text{C}(17)-\text{Mn}(1)-\text{hydrogen-C}(1) = 88.92(3)^\circ]\). One tetrahedrally coordinated Li(THF)_4 unit counter-balances the overall negative charge of the complex.

The unusual tri-alkyl anion \([\text{Mn}(\mu_2-\text{CH}_2\text{SiMe}_3)(\text{CH}_2\text{SiMe}_3)_2(\text{LiOEt})_2)_2 (6)\) was obtained by combining three equivalents of LiCH_2SiMe_3 with either MnCl_2 source in THF or ether (see Figure 3.3.7).
The complex adopts a linear arrangement along the Li-Mn-Mn-Li axis with each Mn atom bonded to two terminal and two bridging alkyls, along with the Li counter-cation which is hydrogen bonded to the terminal alkyl groups [Mn(1)–C(4) = 2.259(3), Mn(1)–C(12) = 2.222(3), Mn(1)–C(8) = 2.216(3), Mn(1)–hydrogen C(8a) = 2.085(3) Å, C(4)–Mn(1)–C(12) = 104.44(11), C(4)–Mn(1)–C(8) = 113.79(11), C(4)–Mn(1)–C(8a) = 103.847(11)°]. The Mn-Mn distance is slightly longer than in the previous cases [2.8208(19) Å] and as per usual there is a very tight Mn(1)-C(8)-Mn(1a) angle [75.07(11)°] which is probably enforced by the hydrogen bonding of the bridging alkyl groups similar to the previous cases.

Although exposure of any of the di-alkyls to atmosphere led almost instantaneously to dark coloured, completely insoluble materials, their exposure to CO₂ instead lead to a colourless hexane soluble product. The rate of this discolouration was qualitatively observed to be much faster in polar solvents like THF vs. the non-polar hexanes. Regardless of the solvent the complex was reacted in, all invariably lead to colourless single crystal formation out of cooled, concentrated, hexanes solutions. The crystal structure of \([\text{Mn}_5(\eta^2-\mu_3-O_2\text{CCH}_3\text{SiMe}_3)_6(\text{CH}_2\text{SiMe}_3)_4](\text{C}_6\text{H}_{10})\) (7) revealed the species to be a carboxylate bridged penta-nuclear cluster with four of the five Mn centres retaining an intact alkyl group (see Figure 3.3.8).
The core of the cluster contains a central Mn(1) which is octahedrally coordinated by six carboxylate oxygens \([\text{Mn}(1)–\text{O}(2) = 2.252(2), \text{Mn}(1)–\text{O}(3) = 2.211(2), \text{Mn}(1)–\text{O}(6) = 2.205(2), \text{Mn}(1)–\text{O}(7) = 2.223(2), \text{Mn}(1)–\text{O}(9) = 2.205(3), \text{Mn}(1)–\text{O}(11) = 2.171(2) \text{ Å}, \text{O}(2)–\text{Mn}(1)–\text{O}(3) = 76.61(9), \text{O}(2)–\text{Mn}(1)–\text{O}(9) = 91.96(9), \text{O}(2)–\text{Mn}(1)–\text{O}(7) = 86.95(9), \text{O}(2)–\text{Mn}(1)–\text{O}(11) = 167.04(9)°]\). Each of the four external Mn atoms are tetrahedrally coordinated by three bridging carboxylate groups and one terminal \(\text{CH}_2\text{SiMe}_3\) group \([\text{Mn}(2)–\text{C}(1) = 2.095(4), \text{Mn}(2)–\text{O}(1) = 2.071(3), \text{Mn}(2)–\text{O}(6) = 2.112(2), \text{Mn}(2)–\text{O}(7) = 2.152(2) \text{ Å}, \text{C}(1)–\text{Mn}(2)–\text{O}(1) = 123.70(9), \text{C}(1)–\text{Mn}(2)–\text{O}(6) = 123.53(9), \text{C}(1)–\text{Mn}(2)–\text{O}(7) = 130.33(9)°]\). The positioning of the four Mn atoms forms a tetrahedron with the octahedral Mn occupying the central position (see Figure 3.3.9).
Figure 3.3.9 Three Dimensional Positions of Mn atoms in 7.

Since the complex still possesses terminal alkyl groups along its exterior, this complex could readily serve as a building block for even larger cluster compounds, especially as the octahedrally coordinated central Mn should lend a large degree of structural strength.

3.4 Conclusions:

With this study we have demonstrated that several di-alkyl Mn(II) complexes can be readily synthesized in order to provide starting material for future metathesis reactions with protic ligands. The use of [Mn(μ₂-CH₂SiMe₃)(CH₂₂SiMe₃)(THF)]₂ (2) will be more extensively investigated in the following chapters. Furthermore, it was demonstrated that the di-alkyl complexes could readily be made monomeric via the simple introduction of the chelating agent TMEDA.

In addition to the di-alkyls we have observed that the tris-alkyl [Mn(μ₂-CH₂SiMe₃)(CH₂₂SiMe₃)₂(LiOEt₂)]₂ (6) can also be readily prepared, and could also serve as a precursor for future studies. The formation of the triangulo compound 5 does indicate that this type of chemistry is quite sensitive to the stoichiometry of the alkylation agent.

The reaction of the di-alkyl 2 with CO₂ led to the insertion of CO₂ into the alkyl ligand creating the robust carboxylate pentameric cluster compound 7. This cluster could serve as an anchor for further transformations since it still contains four intact CH₂SiMe₃ alkyl groups that would easily support metathetic ligand exchange.
3.5 X-Ray Crystallography Section:

The full crystallographic data, including bond lengths and angles may be found in Appendix 3. The abbreviated crystallographic data for the structures contained within this chapter are as presented in Tables 3.5.1 to 3.5.3.

Table 3.5.1 Crystal Data and Structure Analysis Results for Complexes 1-2b.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{24}H_{64}Mn_{5}O_{2}Si_{4}</td>
<td>C_{24}H_{68}Mn_{5}O_{2}Si_{4}</td>
<td>C_{24}H_{69}Mn_{2}O_{2}Si_{4}</td>
</tr>
<tr>
<td>FW</td>
<td>606.99</td>
<td>602.96</td>
<td>602.96</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, P2(1)/n</td>
<td>Monoclinic, P2(1)/c</td>
<td>Triclinic, P1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3807(16)</td>
<td>10.1991(16)</td>
<td>10.226(6)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>10.4515(17)</td>
<td>15.568(2)</td>
<td>10.793(7)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>17.653(3)</td>
<td>12.747(2)</td>
<td>38.76(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>89.696(10)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90.802(3)</td>
<td>113.482(2)</td>
<td>89.864(9)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>63.284(9)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1915.0(5)</td>
<td>1856.4(5)</td>
<td>3821(4)</td>
</tr>
<tr>
<td>Z, Z'</td>
<td>2</td>
<td>2</td>
<td>2, 4</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>203(2)</td>
<td>203(2)</td>
<td>200(2)</td>
</tr>
<tr>
<td>D_{calc} (g cm⁻³)</td>
<td>1.053</td>
<td>1.079</td>
<td>1.048</td>
</tr>
<tr>
<td>μ_{calc} (mm⁻¹)</td>
<td>0.800</td>
<td>0.825</td>
<td>0.802</td>
</tr>
<tr>
<td>F_{000}</td>
<td>660</td>
<td>652</td>
<td>1304</td>
</tr>
<tr>
<td>R, R_w ²ᵃ</td>
<td>0.0679, 0.1644</td>
<td>0.0488, 0.1300</td>
<td>0.0615, 0.1253</td>
</tr>
<tr>
<td>GoF</td>
<td>1.014</td>
<td>1.048</td>
<td>1.019</td>
</tr>
</tbody>
</table>

* R = Σ|Fo| - |Fc|/Σ|Fo|. R_w = [Σ(|Fo| - |Fc|)^2/ΣwFo^2]^(1/2).
Table 3.5.2 Crystal Data and Structure Analysis Results for Complexes 3-5.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${28}$H${60}$Mn$_2$O$_2$</td>
<td>C${44}$H${38}$Mn$_2$Si$_2$</td>
<td>C${44}$H${111}$LiMn$_3$O$_4$Si$_7$</td>
</tr>
<tr>
<td>FW</td>
<td>538.64</td>
<td>345.58</td>
<td>1072.72</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, C2/c</td>
<td>Monoclinic, C2/c</td>
<td>Monoclinic, P2(1)/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.028(2)</td>
<td>18.448(2)</td>
<td>12.515(10)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>17.698(5)</td>
<td>9.9379(12)</td>
<td>27.755(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>19.227(4)</td>
<td>12.8427(16)</td>
<td>19.7478(16)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>103.950(4)</td>
<td>108.487(2)</td>
<td>91.4790(10)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>3311.7(14)</td>
<td>2233.0(5)</td>
<td>6857.4(10)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>203(2)</td>
<td>203(2)</td>
<td>203(2)</td>
</tr>
<tr>
<td>D$_{calcd}$ (g cm$^{-3}$)</td>
<td>1.080</td>
<td>1.028</td>
<td>1.039</td>
</tr>
<tr>
<td>μ$_{calcd}$ (mm$^{-1}$)</td>
<td>0.781</td>
<td>0.692</td>
<td>0.696</td>
</tr>
<tr>
<td>F$_{000}$</td>
<td>1176</td>
<td>756</td>
<td>2332</td>
</tr>
<tr>
<td>R, R$_{w}^2$ a</td>
<td>0.0668, 0.1655</td>
<td>0.0355, 0.0831</td>
<td>0.0799, 0.1942</td>
</tr>
<tr>
<td>GoF</td>
<td>1.041</td>
<td>1.064</td>
<td>1.013</td>
</tr>
</tbody>
</table>

a = $\Sigma|F_o| - |F_c|/\Sigma|F|$. $R_w = [\Sigma(|F_o| - |F_c|)^2/\Sigma w|F_o|^2]^{1/2}$.

Table 3.5.3 Crystal Data and Structure Analysis Results for Complexes 6-7.

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>6b</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${32}$H${58}$Li$_2$Mn$_2$O$_2$Si$_6$</td>
<td>C${32}$H${54}$Li$_2$Mn$_2$O$_2$Si$_6$</td>
<td>C${49}$H${117}$Mn3O${12}$Si$_{10}$</td>
</tr>
<tr>
<td>FW</td>
<td>795.30</td>
<td>793.29</td>
<td>1454.03</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, P2(1)/n</td>
<td>Triclinic, P-1</td>
<td>Triclinic, P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.745(9)</td>
<td>11.1960(13)</td>
<td>15.3309(19)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>19.010(16)</td>
<td>12.4512(14)</td>
<td>15.379(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>12.570(11)</td>
<td>20.741(2)</td>
<td>21.242(3)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>93.144(2)</td>
<td>89.675(2)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>92.964(14)</td>
<td>97.159(2)</td>
<td>69.448(2)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>115.671(2)</td>
<td>64.043(2)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>2564(4)</td>
<td>2566.4(5)</td>
<td>4150.8(9)</td>
</tr>
<tr>
<td>Z, Z'</td>
<td>4, 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>203(2)</td>
<td>203(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>D$_{calcd}$ (g cm$^{-3}$)</td>
<td>1.030</td>
<td>1.027</td>
<td>1.163</td>
</tr>
<tr>
<td>μ$_{calcd}$ (mm$^{-1}$)</td>
<td>0.655</td>
<td>0.654</td>
<td>0.926</td>
</tr>
<tr>
<td>F$_{000}$</td>
<td>868</td>
<td>864</td>
<td>1544</td>
</tr>
<tr>
<td>R, R$_{w}^2$ a</td>
<td>0.0437, 0.1128</td>
<td>0.0700, 0.1213</td>
<td>0.0526, 0.1220</td>
</tr>
<tr>
<td>GoF</td>
<td>1.064</td>
<td>1.023</td>
<td>1.005</td>
</tr>
</tbody>
</table>

a = $\Sigma|F_o| - |F_c|/\Sigma|F|$. $R_w = [\Sigma(|F_o| - |F_c|)^2/\Sigma w|F_o|^2]^{1/2}$.
3.6 Experimental Section:

All reactions were carried out under a dry nitrogen atmosphere. Solvents were dried using an aluminum oxide solvent purification system. MnCl\textsubscript{2}(THF)\textsubscript{1.5} was prepared according to the literature preparation10 and anhydrous MnCl\textsubscript{2} was prepared by dehydrating MnCl\textsubscript{2}6H\textsubscript{2}O under vacuum at 300 °C for 24 hours. LiCH\textsubscript{2}SiMe\textsubscript{3} was prepared via a modified literature preparation11 and LiCH\textsubscript{2}CMe\textsubscript{3} was preapred according to the literature.12 TMEDA was purchased from Aldrich, dried over Na/K amalgam and distilled prior to use. CO\textsubscript{2} was research grade, and was passed through a P\textsubscript{2}O\textsubscript{5} drying column prior to use. Infrared spectra were recorded on an ABB Bomem FTIR instrument from Nujol mulls prepared in a drybox. Samples for magnetic susceptibility were pre-weighed inside a drybox equipped with an analytical balance and measured on a Johnson Matthey Magnetic Susceptibility balance. Elemental analysis was carried out with a Perkin-Elmer 2400 CHN analyzer. Data for X-ray crystal structure determination were obtained with a Bruker diffractometer equipped with a 1K Smart CCD area detector.

Modified Synthesis of LiCH\textsubscript{2}SiMe\textsubscript{3}: 10.0 g of solid lithium (4.0 eq, 1.44 mol) was beaten flat and cut into thin strips in an Argon stream from a 500 mL round bottom Schlenk flask containing 300 mL of hexanes. Once the lithium was added to the flask was cooled to -30 °C and Me\textsubscript{3}SiCH\textsubscript{2}Cl (1.0 eq, 50.27 mL, 0.360 mol) was added dropwise at a rate that ensured that boiling did not occur. The solution was then refluxed for 24 hours, after which it was filtered and the filtrate was dried in vacuo yielding 26.3 g of a beige white solid (0.279 mol, 77.6 %).

General Synthesis [MnR\textsubscript{2}(THF)]\textsubscript{2} R= CH\textsubscript{2}SiMe\textsubscript{3}, CH\textsubscript{2}CMe\textsubscript{3} (1-3): Either MnCl\textsubscript{2}(THF)\textsubscript{1.5} or MnCl\textsubscript{2} may be used for any of the preparations. A slurry of MnCl\textsubscript{2} (5.0 g, 39.7 mmol) in 50 mL of THF was cooled to -30 °C. In a separate flask LiCH\textsubscript{2}SiMe\textsubscript{3} (2.05 eq, 7.67 g) was cooled to -30 °C in 10 mL of THF. The alkyl solution was then added to the stirring slurry and allowed to warm to room temperature. The colour of the solution quickly turned orange and the suspension became a clear solution. After stirring for 12 hours the THF was removed in vacuo and 75 mL of hexanes was added. The pure white LiCl was then centrifuged off yielding a dark orange solution.
This solution was progressively cooled in the following manner: 1 hr at 5 °C, 12 hrs at -17 °C, and 12 hrs at -35 °C. After the cooling extremely large dark orange block crystals of 2 (in excess of 5 cm) were recovered. The supernatant was then concentrated to ~10 mL and cooled to -35 °C in order to collect a second crop of crystals. Overall yield 11.05 g (36.6 mmol, Yield 92.3 %).

Characterization for [Mn(μ₂-CH₂SiMe₃)(CH₂SiMe₃)(Et₂O)]₂ (1): IR (Nujol) v: 1293 (w), 1243 (s), 1001 (m), 919 (s), 897 (s) 840 (s), 748 (s), 695 (s), 674 (s), 605 (m), 446 (s). Elemental Analysis calc (Found) for Mn₂C₂₄H₆₄Si₄O₂: C 47.50 (47.63), H 10.64 (10.53).

\[\mu_{\text{eff}} = 4.52 \mu_B. \]

Characterization for [Mn(μ₂-CH₂SiMe₃)(CH₂SiMe₃)(THF)]₂ (2): IR (Nujol) v: 1294 (w), 1245 (s), 998 (m), 917 (s), 897 (s) 843 (s), 743 (s), 700 (s), 680 (s), 607 (m), 446 (s). Elemental Analysis calc (Found) for Mn₂C₂₄H₆₀Si₄O₂: C 47.81 (47.73), H 10.03 (9.92).

\[\mu_{\text{eff}} = 4.48 \mu_B. \]

Characterization for [Mn(μ₂-CH₂CMe₃)(CH₂CMe₃)(THF)]₂ (3): IR (Nujol) v: 1292 (w), 1253 (s), 991 (m), 912 (s), 902 (s) 838 (s), 741 (s), 711 (s), 683 (s), 611 (m), 453 (s). Elemental Analysis calc (Found) for Mn₂C₂₄H₆₀Si₄O₂: C 62.41 (62.59), H 11.23 (11.18).

\[\mu_{\text{eff}} = 4.36 \mu_B. \]

Synthesis [(TMEDA)Mn(CH₂SiMe₃)]₂ (4): To a hexanes solution of 2 (0.250 g, 0.829 mmol) in 10 mL of hexanes was added TMEDA (1.05 eq, 0.131 mL, 0.871 mmol). The solution immediately went from orange to colourless. The solution was then cooled for 12 hours at -35 °C after which colourless block crystals were recovered 0.268 g (0.776 mmol, 93.6 % Yield).

IR (Nujol) v: 2748 (s), 1293 (w), 1263 (s), 1150 (s), 1044 (s), 1001 (m), 924 (s), 894 (s) 856 (s), 741 (s), 692 (s), 669 (s), 600 (m), 426 (s).
Elemental Analysis calcd (Found) for MnC_14H_38N_2Si_2: C 48.66 (48.39), H 11.08 (11.23), N 8.11 (8.25). $\mu_{	ext{eff}} = 5.53 \mu_B$.

Synthesis [Mn$_3$(µ$_3$-CH$_2$SiMe$_3$)(µ$_2$-CH$_2$SiMe$_3$)$_2$(CH$_2$SiMe$_3$)$_3$][Li(THF)$_4$] (5): The synthesis of the triangulo compound complex was never accomplished in full purity, but was found to be a side product in some cases when the stoichiometry was incorrect. When the stoichiometry was varied between 2.1-3.0 eq (of LiCH$_2$SiMe$_3$) some of the triangulo compound would sometimes results as prismatic dark orange crystals which were recovered from cold hexanes. No meaningful characterization data except the crystal structure was found due to the presence of other Mn species. Performing the reaction in non-polar solvents (ie. Hexanes) tended to lead to an increased amount of the triangulo complex.

Synthesis of [Mn(µ$_2$-CH$_2$SiMe$_3$)(CH$_2$SiMe$_3$)$_2$(LiOEt)$_2$]$_2$ (6): Either MnCl$_2$(THF)$_{1.5}$ or MnCl$_2$ may be used for this preparation. A slurry of MnCl$_2$ (1.0 g, 7.94 mmol) in 25 mL of THF was cooled to -30 °C. In a separate flask LiCH$_2$SiMe$_3$ (3.05 eq, 2.28 g, 24.2 mmol) was cooled to -30 °C in 10 mL of THF. The alkyl solution was then added to the stirring slurry and allowed to warm to room temperature. The colour of the solution quickly turned orange and the suspension became a clear solution. After stirring for 12 hours the THF was removed in vacuo and 50 mL of hexanes was added. The pure white LiCl was then centrifuged off yielding a dark orange solution (much darker than in the MnR$_2$ synthesis). This solution was progressively cooled in the following manner: 1 hr at 5 °C, 12 hrs at -17 °C, and 12 hrs at -35 °C. After the cooling large dark orange block crystals of 6 were recovered. The supernatant was then concentrated to ~10 mL and cooled to -35 °C in order to collect a second crop of crystals. Overall yield 2.63g (6.61 mmol, Yield 83.3 %).

IR (Nujol) ν: 1278 (w), 1226 (s), 1021 (m), 932 (s), 867 (s) 833 (s), 752 (s), 720 (s), 631 (s), 588 (m), 427 (s).
Elemental Analysis calcd (Found) for Mn$_2$C$_{32}$H$_{86}$Li$_2$O$_2$Si$_6$: C 48.34 (48.51), H 10.91 (10.81). μ_{eff} = 4.36 μ_B.

Synthesis of [Mn$_5$(η$_7$-μ$_2$O$_2$CCH$_2$SiMe$_3$)$_6$(CH$_2$SiMe$_3$)$_4$](C$_6$H$_{10}$) (7): A solution of 2 (2.0 g, 6.63 mmol) in 50 mL of THF was exposed to CO$_2$ for ~2 hours. The solution quickly turned from orange to colourless over half an hour. The THF was then removed \textit{in vacuo} and hexanes (50 mL) was added. The solution was then placed in the freezer at -35 °C for 12 hours after which time large block crystals of 7 which also contain half a molecule of hexane per pentamer, were recovered 1.73 g (1.19 mmol, 89.7 % Yield).

IR (Nujol) v: 1610 (s), 1565 (s), 1249 (s), 1115 (s), 1003 (w), 968 (m), 847 (s), 711 (s), 639 (s), 557 (m), 496 (m), 471 (m).

Elemental Analysis calcd (Found) for Mn$_5$C$_{49}$H$_{117}$O$_{12}$Si$_{16}$: C 40.49 (40.34), H 8.12 (8.07). μ_{eff} = 12.83 μ_B.

3.7 References:
Chapter 4

Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex

Table of Contents

4.1 Introduction .. 57
4.2 Recent Advances ... 61
4.3 Research Rationale ... 64
4.4 Results and Discussion .. 67
4.5 Reactivity with Oxygen Sources ... 83
4.6 Aqueous Synthesis ... 84
4.7 Conclusions ... 86
4.8 X-Ray Crystallography Section .. 87
4.9 Experimental Section .. 90
4.10 References ... 95

4.1 Introduction:

Photosynthesis is a complex chain of intermingling physical and chemical events which not only are at the very beginning of the food chain but are also responsible for the production of oxygen and removal of carbon dioxide from the atmosphere. In its simplest terms photosynthesis is the process by which all plants convert the energy of the sun into
carbohydrates and oxygen, while utilizing water and carbon dioxide as reactants. A photon absorbed by a chlorophyll molecule commences the process at an active site known as P680, which is located within a complex known as Photosystem II. The light absorption oxidizes P680, forming P680⁺ which is a strong oxidizing agent, while also passing the high-energy electron through a series of electron transfer agents to Photosystem I. At this particular site, another chain of events converts the photon’s energy into chemical form by storing the energy in the ADP/ATP system. The P680⁺ species is sufficiently oxidizing to extract an electron from water via another electron transport chain, at a site known as the oxygen evolving complex (OEC), or alternately, the water oxidation complex (WOC). Without the OEC, the plant would have no source of electrons to drive the formation of the crucial chemical energy carriers, and photosynthesis would cease to function (see Scheme 4.1.1).

\[2 \text{H}_2\text{O} \xrightarrow{\text{hv}} \text{O}_2 + 4\text{H}^+ + 2\text{NADPH} + 1.25 \text{ATP} \]

Scheme 4.1.1 Products of Water Oxidation.

Attempts to model some aspects of the behaviour of the fascinating OEC complex was the target of our work. Incidentally, there is a spectacular growth of interest for a better understanding of this system because of the possible applications for the photo-oxidation of water as a convenient and plentiful supply of H₂ and O₂ gases, to be used cleanly and cyclically for harnessing the power of the sun through fuel cell technology (see Scheme 4.1.2).

\[2 \text{H}_2\text{O} \xrightarrow{\text{hv}} \text{O}_2 + 4\text{e}^- + 4\text{H}^+ \xrightarrow{\text{Energy}} 2 \text{H}_2 + \text{O}_2 \]

Scheme 4.1.2 Possible Source of Clean Energy.
The challenges associated with the elucidation of the exact structure of the OEC were quite formidable due to its incorporation within a protein structure in an active biological system. Nonetheless, it has been the object of intense scientific interest since the original discovery. In 2001, when this study was undertaken, several facts were known about the nature of the OEC. At the heart of the structure are 4 manganese atoms bridged by an unknown number of oxygens, one calcium, and one chloride atom. It is this inorganic metal cluster which is believed to play the role of fixating, and oxidizing water. From EXAFS (Extended X-ray Absorbance Fine Structure) and XANES (X-ray Absorbance Near Edge Structure) measurements of the OEC, several geometries for the cluster were proposed (see Scheme 4.1.3).
At that time structures A and F (Scheme 4.1.3) were the most popular among workers in the field, though none of the other could be conclusively ruled out. The amount of science produced on OEC is today so large that an entire volume of review articles was assembled, providing an excellent source for further reading.7 The structure of the active site is also thought to be fluxional since the oxidation of water does not occur in one step, but rather four steps. These four steps were investigated by Joliet, and Kok in the late 1970's by using short bursts of light and measuring the amount of O\textsubscript{2} produced.8 From their studies, they were able to show that O\textsubscript{2} was only evolved after every 4th flash of light, indicating that four photons were required to power each oxidative step in the water splitting reaction. These steps were referred to as the S–states of the Kok cycle. These S–states were later incorporated with the known 4-membered Mn cluster in order to attempt to explain the mechanism of H\textsubscript{2}O oxidation. EPR studies (Electron Paramagnetic Resonance), along with the various X-ray techniques (EXAFS, and XANES) helped to elucidate the oxidation states of the Mn atoms within the OEC, however, there still remains some ambiguity (see Scheme 4.1.4).9

\begin{center}
\begin{tikzpicture}

\node (S0) at (0,0) {S_0};
\node (S1) at (3,3) {S_1};
\node (S2) at (6,0) {S_2};
\node (S3) at (3,-3) {S_3};
\node (S4) at (0,-6) {S_4};
\node (O2) at (-3,0) {O_2};
\node (Mn41IV3) at (9,0) {$\text{Mn}_4(\text{III},\text{IV}_3)$};
\node (Mn41IV2) at (3,6) {$\text{Mn}_4(\text{II},\text{III},\text{IV}_2)$};
\node (Mn4III2IV2) at (6,6) {$\text{Mn}_4(\text{III}_2,\text{IV}_2)$};

\draw[->,thick,black] (S0) -- (S1) node[midway,above] (TextNode) {e^-};
\draw[->,thick,black] (S1) -- (S2) node[midway,above] (TextNode) {e^-};
\draw[->,thick,black] (S2) -- (S3) node[midway,above] (TextNode) {e^-};
\draw[->,thick,black] (S3) -- (S4) node[midway,above] (TextNode) {e^-};
\draw[->,thick,black] (S4) -- (S0) node[midway,above] (TextNode) {e^-};
\draw[->,thick,black] (S0) -- (O2) node[midway,above] (TextNode) {hv};
\draw[->,thick,black] (S1) -- (Mn41IV2) node[midway,above] (TextNode) {hv};
\draw[->,thick,black] (S2) -- (Mn4III2IV2) node[midway,above] (TextNode) {hv};
\draw[->,thick,black] (S3) -- (Mn4III2IV2) node[midway,above] (TextNode) {hv};
\draw[->,thick,black] (S4) -- (Mn4III2IV2) node[midway,above] (TextNode) {hv};
\end{tikzpicture}
\end{center}

\textbf{Scheme 4.1.4} Proposed Mn Oxidation States During Kok Cycle.9
The different S-states, which had appreciable lifetimes, were analyzed by using timed laser pulses in order to synchronize the OEC in each state. It should be noted that the \(S_3 \rightarrow S_4 \rightarrow S_0 \) transition occurs too quickly for any current spectroscopic techniques to garner information. From Scheme 4.1.4, it would appear that there is the possibility that two of the Mn atoms may never change their oxidation state from the +4 level. If this is true, they are most likely serving to anchor the remaining two Mn atoms in a specific geometry, within which the reaction is most likely occurring. It should be noted that the \(d^5 \), \(d^4 \) and \(d^3 \) electronic configurations of di-, tri- and tetravalent manganese have very specific requirement in terms of geometry. To model the behaviour of OEC system, many aqua-Mn compounds containing different numbers of oxo-bridges were synthesized in order to provide structural data closely matching the X-ray and EPR data of the naturally occurring system. However none of these synthetic models showed activity for \(O_2 \) production.\(^{10}\)

4.2 Recent Advances:

The finding in 2004 by Ferreira \textit{et al.}\(^{11}\) solved the literature controversy over the geometry of the Mn cluster by conclusively clarifying by X-ray diffraction methods the structure of the OEC active site.\(^{12}\) Within the structure, the Ca atom was located, as were the probable positions of the \(\text{Cl}^- \) and coordinated water molecules (see Figure 4.2.1).

\begin{center}
\textbf{Figure 4.2.1} Mn Cluster Structure From X-Ray Crystal Structure; Mn ligands omitted for clarity.\(^{11}\)
\end{center}

From this data a new model mechanism for the evolution of \(O_2 \) was proposed by Brudvig \textit{et al.}\(^{13}\) although there still remains much debate in the current literature.\(^{14}\)
Scheme 4.2.2 Proposed Water Oxidation Mechanism.12

In this mechanism, it is important to note that only two of the Mn atoms are actually taking part in the redox process, while the remaining two appear to serve only as anchors for the cluster. According to the postulated cycle the two Mn centres go through the redox process from MnII,III in the S\textsubscript{0} state to MnIV,V at the S\textsubscript{4} state, after which they are restored to their original S\textsubscript{0} oxidation states while releasing a molecule of O\textsubscript{2}. It is important to note that the proposed functional OEC is postulated to contain a Mn-OH group in close proximity to a bridging Mn-O-Mn, making the Mn-OH moiety an important target for synthesis.

Much literature has been published reporting on model compounds for the OEC,15 which serve as references for the X-ray and EPR investigations. As mentioned above however, none were able to produce O\textsubscript{2} gas. The production of O\textsubscript{2} from a Mn compound is so rare that only four precedents exist in the literature. The first such example was claimed in 1994 using a MnIII porphyrin dimer (see Figure 4.2.3).
Using an electrochemical cell, catalytic oxidation of water was observed. The best run was obtained with catalyst 3 (Figure 4.2.3) producing 9.2 mols. of O₂ per mol. of catalyst. Though the rate of catalysis was extremely low, this may offer the first real example of a Mn complex catalytically producing oxygen from water. Unfortunately, the water was not unambiguously shown to be the source of the oxygen gas, since the possibility that solvent, or even ClO₄⁻ counteranion degradation might be the actual sources could not conclusively be ruled out.

Brudvig and Crabtree published a series of papers detailing the production of oxygen gas from water, beginning with a Science publication in 1999.¹⁶ Using a simple terpyridine mixed valent μ-oxo₂ Mn complex (see Figure 4.2.4) the group was able to produce up to 4 mols of O₂ per mol of catalyst using NaClO or Oxone (2 KHSO₅ · KHSO₄ · K₂SO₄) as an oxidant.
More findings were obtained by the same groups using similar terpy framework. The common theme of all this chemistry was that either oxone or NaOCl were required as oxidants, and that the activities were always extremely low.

Very recently Deronzier, and Collomb et al. have revisited the Brudvig’s system, after the finding that the Brudvig compounds did not produce O₂ when an oxidizing agent not containing oxygen was employed. Their investigation found that using electrochemical methods, no O₂ was generated from the Brudvig compounds. The only time that O₂ production ensued was when oxygen containing oxidizing agents were employed (i.e. NaOCl, and Oxone). These results quite clearly throw into question whether any of the reported cases of Mn-catalyzed water oxidations were truly produced by water, rather than from the oxidizing agent. Taken as a whole, all of these results quite clearly demonstrate that the activity of the OEC is still far from being fully understood, and thus encourages more research.

4.3 Research Rationale:

As briefly mentioned above, the overall goal of this work was to explore functional models for the OEC. As such, assembling either tetrameric, or dimeric Mn clusters is a key target. As discussed in Chapter 2 (see Chapter 2.1-2.2) the dipyrrrolide ligand often assembles clusters of atoms, up to octameric, therefore offering a good potential (see Figure 4.3.1).
In addition to the dipyrrrole ligand, both the N-MeDipyrrrole (N-MeDipyr), and N-MeTripyrrrole (N-MeTripyr) ligands whose synthesis is discussed in Chapter 2 were utilized in an attempt to assemble Mn(II) cluster compounds. The generation of the Mn(II) compounds was expected to readily occur via a simple metathesis reaction with the Mn di-alkyl \([\text{Mn(CH}_2\text{SiMe}_3)_2(\text{THF})]_2\) which was described in Chapter 3 (see Scheme 4.3.2). Although the possible hydrolysis of the Mn-N \(\sigma\)-bond was anticipated as a very realistic drawback for the use of these derivatives as model compounds, we were solely interested, at such an early stage, in the cluster chemistry of manganese by using ligand systems which in principle may cross the \(\sigma\)- and \(\pi\)-bonding modes. In the long term, we planned to oxidize these species with anhydrous oxygen with the hope that the corresponding oxo-clusters would have improved resistance to hydrolysis.

\[
[\text{Mn(CH}_2\text{SiMe}_3)_2(\text{THF})]_2 + \begin{array}{c}
\text{R} \\
\text{R}
\end{array} \rightarrow \begin{array}{c}
\text{R} \\
\text{R}
\end{array} + 2 \text{SiMe}_3
\]

Scheme 4.3.2 Metathesis Reaction for Generating Mn(II) Complexes.

Given that the homoleptic Mn dialkyl species are soluble even in hexanes, the only expected limitation of the reaction will be the solubility of the ligand. As mentioned above, the idea was that Mn complexes generated by this technique could then be exposed to dry oxygen in an attempt to generate oxo-containing clusters of a higher oxidation state (see Scheme 4.3.2).
Scheme 4.3.3 Proposed Route for Generating oxo Mn Complexes.

Another ligand system which bears potential is the well known calix[4]arene system. The ligand is easily tunable by varying the nature and sterics of the R groups attached to the phenyl backbones. The calix[4]arene ligand is also well known for assembling two transition metals in close proximity.

Figure 4.3.4 Calix[4]arene Ligand Structure.

By combining the calixarene ligand system with manganese according to the same synthetic strategy outlined in Schemes 4.3.2 and 4.3.3, further Mn oxo-containing compounds can be envisaged.

Once a collection of oxo-containing Mn compounds have been assembled, electrochemistry would be employed in aqueous media, in order to determine if any of
the compounds have any activity towards the oxidation of water and the concomitant production of gaseous oxygen.

4.4 Results and Discussion:

The dipyrrrole ligand system was the first system utilized given that so many variations were readily available in our lab. Using the metathesis strategy outlined in Scheme 4.3.2 the diethylidipyrrrole ligand (Et$_2$DipyrrH$_2$) readily formed a dimeric Mn(II) compound [Mn(η1-μ-η1-Et$_2$Dipyrr)(THF)$_2$]$_2$ (1) which was crystallized from THF (See Figure 4.4.1). The crystal structure revealed that each diethylidipyrrrole ligand is σ-bound to one Mn atom, and μ1-η1 bridging to a second, creating the dimeric structure.

![Crystal Structure of 1 with 30% Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.](image)

Each Mn is present in a distorted trigonal bipyramidal coordination geometry. The equatorial plane is comprised of one σ-bound pyrrole, one μ1-η1 bridging pyrrole, and one molecule of THF [Mn–N(1) = 2.0711(17), Mn–N(2a) = 2.1886(17), Mn–O(2) = 2.1771(17) Å, N(1)–Mn–N(2a) = 114.35(6), N(1)–Mn–O(2) = 101.34(6)°]. The axial positions are fulfilled by the μ1-η1 bridging pyrrole N(2) and the second molecule of THF [Mn–N(2) = 2.3080(16), Mn–O(1) = 2.2674(15) Å, N(2)–Mn–O(1) = 169.48(6)°].
The long Mn-Mn distance (3.2135(8) Å) precludes any direct metal-metal bonding, however the low room temperature magnetic moment of 7.14 μB indicates that there is electronic interaction between the Mn centres.

Utilizing a chiral menthone-based dipyrrole ligand (I-ment-dipyrlH₂) and the same metathesis technique a dimeric structure [Mn(η⁰':μ⁺-η⁻₁-l-ment-dipyrl)(THF)₂]₂(THF)₂ (2), and exhibited the identical pyrrolide bonding, with both σ⁻, and μ⁺⁻η⁻ bonding (see Figure 4.4.2).

![Crystal Structure of 2 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.](image)

As in the previous case the complex adopts a distorted trigonal bipyramidal geometry. The equatorial plane is again comprised of one σ-bound pyrrolide, one μ⁺⁻η⁻ bound pyrrolide, and a molecule of THF [Mn–N(1) = 2.077(7), Mn–N(2a) = 2.171(7), Mn–O(2) = 2.190(6) Å, N(1)–Mn–N(2a) = 111.6(3), N(1)–Mn–O(2) = 107.5(3)°]. The axial positions are fulfilled by the bridging pyrrolide N(2) and the second molecule of THF [Mn–N(2) = 2.270(7), Mn–O(1) = 2.269(6) Å, N(2)–Mn–O(1) = 173.9(3)°]. The long Mn-Mn distance (3.224(3) Å) once again precludes any direct metal-metal bonding,
though there again appears to be electronic interaction between the Mn centres as demonstrated by the low magnetic moment: 7.08 μ_B.

Using the highly soluble cyclohexyl dipyrrrole (CyDipyrrH$_2$) led to the expected dimeric complex $[\text{Mn}(\eta^1:\mu-\eta^1-\text{CyDipyrr})(\text{THF})_2](\text{THF})$ (3). As in the previous two cases the dipyrrrole ligand adopted both the σ, and $\mu^1-\eta^1$ bonding modes (see Figure 4.4.3).

![Crystal Structure of 3 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.](image)

The expected distorted trigonal bipyramidal coordination geometry is again present in complex 3. The equatorial plane is again comprised of one σ-bound pyrrole, one $\mu^1-\eta^1$ bound pyrrole, and a molecule of THF $[\text{Mn}–\text{N}(1) = 2.089(2), \text{Mn}–\text{N}(2a) = 2.1954(18), \text{Mn}–\text{O}(2) = 2.1933(16)\,\text{Å}, \text{N}(1)–\text{Mn}–\text{N}(2a) = 113.84(8), \text{N}(1)–\text{Mn}–\text{O}(2) = 99.27(7)°]$. The axial positions are fulfilled by the bridging pyrrole N(2) and the second molecule of THF $[\text{Mn}–\text{N}(2) = 2.3211(19), \text{Mn}–\text{O}(1) = 2.2699(17)\,\text{Å}, \text{N}(2)–\text{Mn}–\text{O}(1) = 165.43(7)°]$. As in the previous two cases there is a long Mn–Mn distance (3.2033(7) Å) and a low magnetic moment (7.02 μ_B). A comparison of selected bond distances and angles is provided in Table 4.4.4 demonstrates the close similarity among these dimeric structures.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn-Mn</td>
<td>3.2135(8)</td>
<td>Mn-Mn</td>
<td>3.224(3)</td>
</tr>
<tr>
<td>Mn-N(1)</td>
<td>2.0711(17)</td>
<td>Mn-N(1)</td>
<td>2.077(7)</td>
</tr>
<tr>
<td>Mn-N(2a)</td>
<td>2.1886(17)</td>
<td>Mn-N(2a)</td>
<td>2.171(7)</td>
</tr>
<tr>
<td>Mn-O(2)</td>
<td>2.1771(17)</td>
<td>Mn-O(2)</td>
<td>2.190(6)</td>
</tr>
<tr>
<td>Mn-N(2)</td>
<td>2.3080(16)</td>
<td>Mn-N(2)</td>
<td>2.270(7)</td>
</tr>
<tr>
<td>Mn-O(1)</td>
<td>2.2674(15)</td>
<td>Mn-O(1)</td>
<td>2.269(6)</td>
</tr>
<tr>
<td>N(1)-Mn-N(2a)</td>
<td>114.35(6)</td>
<td>N(1)-Mn-N(2a)</td>
<td>111.63(3)</td>
</tr>
<tr>
<td>N(1)-Mn-O(2)</td>
<td>101.34(6)</td>
<td>N(1)-Mn-O(2)</td>
<td>107.5(3)</td>
</tr>
<tr>
<td>N(2a)-Mn-O(2)</td>
<td>144.19(6)</td>
<td>N(2a)-Mn-O(2)</td>
<td>140.7(3)</td>
</tr>
<tr>
<td>N(2)-Mn-O(1)</td>
<td>169.48(6)</td>
<td>N(2)-Mn-O(1)</td>
<td>173.9(3)</td>
</tr>
<tr>
<td>N(2)-Mn-N(1)</td>
<td>92.62(7)</td>
<td>N(2)-Mn-N(1)</td>
<td>89.7(3)</td>
</tr>
</tbody>
</table>

The crystal structures described above were obtained from crystals grown in coordinating solvents such as THF. It is thus possible that the retention of THF in the coordination sphere of manganese may have played a significant role in the bonding mode adopted by the dipyrrrole ligand. When the metathetic exchange of the dipyrrrole ligand was performed with the homoleptic manganese complex in toluene, crystalline material was also obtained in near quantitative yield (96%). In the case of the CyDipyrr ligand the crystallinity was of sufficient quality to enable crystal structure determination revealing an unprecedented octameric cluster [Mn(η³:μ-η³-CyDipyrr)]₈⁽⁺⁾(toluene)₄ (4) (see Figures 4.4.5 and 4.4.6).
Figure 4.4.5 Crystal Structure of 4 with 30 % Thermal Ellipsoids, Carbon Ellipsoids and $\mu-\eta^4$ Bonds Omitted for Clarity.

The structure of 4 consists of an octanuclear, cyclic structure with the eight Mn atoms (each formally having a 21-electron configuration) being nearly coplanar and forming a regular ring (see Figure 4.4.6). Each MnII ion adopts a pseudotetrahedral coordination geometry defined by the centroids of two π-bonded rings from two different ligands and σ-bonded N atoms of two other rings also from the two ligands (See Figure 4.4.7).

Figure 4.4.6 Ring Structure of Mn atoms in Octameric Cluster (4).

The Mn-Mn distances between two contiguous Mn atoms fall between 4.015 and 4.113 Å. A large circular void exists inside the ring with a diameter of ~10 Å. It should also be
noted that the cluster is remarkably thermally robust in boiling toluene, though it still exhibits extreme air sensitivity.

![Crystal Structure of 4 with 30% Thermal Ellipsoids, Cyclohexyl Groups not Drawn for Clarity.](image)

Figure 4.4.7 Crystal Structure of 4 with 30% Thermal Ellipsoids, Cyclohexyl Groups not Drawn for Clarity.

The tetrahedral coordination geometry about each metal center is as expected for the d^5 high-spin electronic configuration of divalent manganese. The two σ-bound rings N(1) and N(4) display Mn-N distances within the normal pyrroline bonding distances [2.117(5) and 2.116(5) Å respectively]. The two π-bound pyrrolide rings are somewhat non-equivalent as the ring containing N(2) (Mn(1)–centroid = 2.533 Å) is slightly closer than the ring containing N(3) (Mn(1)–centroid = 2.744 Å). This is most likely indicating that there is some ring-slippage occurring in order to reduce the amount of electron density on the metal towards a formal electron count closer to 18 e$^-$.

The behavior of the magnetic susceptibility of the octanuclear complex 4 as a function of the temperature shows the characteristic maximum at 35 K also indicative of the presence of intramolecular antiferromagnetic exchange (Figure 4.4.8).21

21 Chapter 4 - Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex
The rise in χ_M at low temperature signals a small proportion of paramagnetic impurity, typical in large clusters. The magnetic moment per mole displays normal behaviour for such a system rising from 3.13 μ_B at 4 K to a maximum value of 14.7 μ_B at 300 K (Figure 4.4.8). This is indicative of an antiferromagnetic/superexchange process through the pyrrolide fragments. The room temperature moment is somewhat lower than that expected for eight uncoupled Mn$^{(II)}$ centers ($g = 2$, 16.7 μ_B). The magnetic data (per mole) were not fitted to an exchange model based on a ring of eight Mn$^{(II)}$ ($S = 5/2$) centers, because of the computing difficulties of dealing with such a large calculation. Instead, since the ring is large, and approximates a 1-dimensional chain, the data were fitted to a 1-dimensional chain model assuming a classical spin vector assembly of $S = 5/2$ centers. A successful fit was obtained with $g = 1.96(2)$, $J = -3.4(2)$ cm$^{-1}$, $\rho = 0.015$, TIP = 0 cm3mol$^{-1}$, $\theta = 0$ K ($^2R = 3.0$). The solid lines in Figure 4.4.8 were calculated with these parameters. The Mn$^{(II)}$ centers are therefore coupled uniformly throughout the ring with a moderate exchange integral, and coupling may occur (given the long Mn-Mn non-bonding distance) through the two types of pyrrolide bridging ligands connecting each adjacent pair of metal ions (supereexchange). Definite information about the strength of the ligand field induced by a π-bonded pyrrolide ring is not available, and thus the possibility that an intermediate spin state might provide a more correct description for
Mn(II) in the type of coordination environment existing in 4 cannot confidently be excluded. Nevertheless, it seems questionable in light of the tetrahedral coordination environment.

Interestingly, complexes 3 and 4 are quantitatively converted from one to the other by dissolution in the appropriate solvent with heating, followed by recrystallization (see Scheme 4.4.9).

\[
\begin{align*}
[\text{Mn}(\eta^1:\mu-\eta^1\cdot\text{CyDipyrr})(\text{THF})_2]_2\text{(THF)} & \xrightarrow{\Delta + \text{Toluene}} [\text{Mn}(\eta^1:\mu-\eta^5\cdot\text{CyDipyrr})]_3\text{(toluene)}_4 (4) \\
\Delta + \text{THF}
\end{align*}
\]

Scheme 4.4.9 Interconversion of Complexes 3 and 4.

The ability of the negatively charged N donor atoms of the dipyrride dianion to form σ-bonds is obviously the basis of their poor tendency towards π-ligation. This is in spite of the success in obtaining the π-bond containing octameric structure via a non-coordinating solvent. Since the facile switch of bonding mode was regarded as a possible obstacle for molecular activation processes, we wondered whether the alkylation of one of the two rings might promote more robust π-ligation. We expected that the alkylation of one of the two pyrrole rings would yield the π-ligation as the sole bonding mode for the second ring and the metal center. In turn, the consequently increased “soft” character of the metal center could provide more hydrolysis-resistant systems. Therefore, we have reacted the Mn di-alkyl successfully used above with N-MeDipyrrH and N-MeTripyrrH₂ according to the previous methodology. The monomeric complex [Mn(N-MeDipyrr)₂] (5) was obtained regardless of the stoichiometry employed (see Figure 4.4.10).
The metal is in a pseudo tetrahedral geometry comprised of two σ-bonding pyrrolides, and two π-bonded N-Me pyrrole rings $[\text{N}(1)-\text{Mn}(1)-\text{N}(3) = 105.8(3), \text{N}(1)-\text{Mn}(1)-\text{C}(29) = 140.9(3), \text{N}(1)-\text{Mn}(1)-\text{C}(7) = 97.7(3)^\circ]$. The sigma bonds are within the normal bonding distances observed for the previous Mn complexes $[\text{Mn}(1)-\text{N}(1) = 2.067(7), \text{Mn}(1)-\text{N}(1) = 2.051(7) \text{ Å}]$. It is difficult to determine the extent of the π-bonding based on the bond distances alone. The closest contacts are shown in figure 4.4.9 $[\text{Mn}(1)-\text{C}(7) = 2.523(7), \text{Mn}(1)-\text{C}(29) = 2.519(9) \text{ Å}]$. The other positions on the rings are then slightly longer $[\text{Mn}(1)-\text{C}(8) = 2.798(9), \text{Mn}(1)-\text{C}(6) = 2.645(7) \text{ Å}]$. This would tend to indicate that there could possibly be a η^3 type of interaction with the Mn centre. This loose coordination at least demonstrates that the rationale behind the ligand design (ie. hemi-lability, see Chapter 2) may in fact be correct.

When $[\text{Mn(CH}_2\text{SiMe}_3)_2(\text{THF})_2]$ was reacted with N-MeTriyrH$_2$ in toluene the tetrameric cluster $[\text{Mn}(\eta^1-\eta^5:\mu-\eta^3-\text{N-MeTripyr})]_4(\text{toluene})_{4.85}$ (6) was obtained. Each Mn atom is σ-bonded to two pyrrolides, and η^5 π-bonded to an N-MePyrrole from the same ligand, a neighbouring ligand is η^3 bound to each Mn via one of its pyrrolide moieties (see Figure 4.4.11). The void space within the cluster measure 7.4 Å and is slightly bowl-shaped with two of the Mn atoms above the plane of the others.
Figure 4.4.11 Structure of 6 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.

For clarity, the cropped view of the cluster (see Figure 4.4.12) will be discussed with respect to the coordination geometry. Each Mn centre exhibits a pseudo-tetrahedral coordination geometry comprised of the N-MePyrrrole ring centroid [Mn-centroid = 2.400(6) Å], the two σ-bound pyrrolides [Mn(1)–N(1) = 2.120(7), Mn(1)–N(3) = 2.038(9) Å], and finally what appears to be an η² bond from a neighbouring ligand pyrrolide [Mn(1)–C(41) = 2.335(9) Å].
Figure 4.4.12 Mn(1) Portion of Structure 6 with 30% Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.

It is difficult to determine the bonding mode of the neighbouring ligand, though it does appear to be a weak η^3 interaction, since the next two nearest atoms are at 2.771(9) and 2.898(9) Å respectively for C(40) and C(42). The angles are quite distorted from tetrahedral [$\text{N}(1)-\text{Mn}(1)-\text{N}(3) = 106.1(3)$, $\text{N}(1)-\text{Mn}(1)-\text{C}(41) = 132.1(3)$, $\text{N}(1)-\text{Mn}(1)$-centroid = 94.7(3)°]. As in the previous cases the cluster displays a lower than expected magnetic moment indicating that there is electronic interactions between the Mn atoms: $10.37 \mu_B$.

As mentioned in the introductory part, oxygen based ligand systems and calix[4]arene in particular are regarded as providing probably the most versatile models for water activation reactions due to the robustness of the Mn-OR bond towards hydrolysis. The first reactions using the calix[4]arene ligand system proved to be quite disappointing as they invariably led to the formation of insoluble white gels regardless of either the stoichiometry, or the choice of solvents. Assuming that the jelly appearance of these products might be caused by polymeric aggregation, we have attempted the disruption of possible polymeric structures via coordination with pyridine, notoriously a
strongly coordinating ligand. Addition of pyridine and heating did not modify the outcome of the reaction. We speculated that perhaps the reaction is yielding a polymeric product in which the Mn centres are highly secluded. In order to avoid this possibility, the monomeric Mn-dialkyl [(TMEDA)Mn(CH₂SiMe₅)₂] was utilized (see Chapter 3 for synthesis) for the metathetic reaction with calixarene. The reactions of both one and two equivalents of the di-alkyl with the calixarene ligand were successful. When one equivalent was utilized the dimeric, partly deprotonated di-Manganese complex 7 (see Figure 4.4.13) was formed.

![Image](image.png)

Figure 4.4.13 Structure of 7 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.

Within the dimer each calixarene ligand has been deprotonated twice, retaining two OH functions each. Each Mn atom is in a distorted square pyramidal coordination geometry, and the two Mn atoms are linked via a bridging phenoxide group, one molecule of TMEDA per dimetallic unit is also retained. The basal plane about Mn(1) is composed of two oxygen atoms (one still carrying the proton) from each of the two macrocycles [Mn(1)–O(1) = 2.116(4), Mn(1)–O(2) = 2.133(4), Mn(1)–O(5) = 2.333(4), Mn(1)–O(7) = 2.099(5) Å, O(1)–Mn(1)–O(2) = 85.35(15), O(1)–Mn(1)–O(5) = 82.67(15), O(1)–Mn(1)–O(7) = 153.34(17)°]. The axial position is occupied by the last phenoxide group of the first ligand and which incidentally is also bridging the second manganese atom of
the dimetallic unit by occupying its axial position \([\text{Mn}(1)–\text{O}(6) = 2.013(4) \text{ Å}, \text{O}(6)–\text{Mn}(1)–\text{O}(1) = 91.44(16), \text{O}(6)–\text{Mn}(1)–\text{O}(2) = 98.03(16)^\circ]\) (see Figure 4.4.14).

Figure 4.4.14 Core of Complex 7 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.

The second \(\text{Mn}(2)\) atom is in a similar coordination environment with the only difference being that TMEDA now occupies two of the basal positions, along with the two oxygen atoms of one ligand, one having been deprotonated and the second carrying the proton \([\text{Mn}(2)–\text{N}(1) = 2.308(5), \text{Mn}(2)–\text{N}(2) = 2.347(5), \text{Mn}(2)–\text{O}(3) = 2.136(4), \text{Mn}(2)–\text{O}(4) = 2.077(4) \text{ Å}, \text{N}(1)–\text{Mn}(2)–\text{N}(2) = 76.5(2), \text{N}(1)–\text{Mn}(2)–\text{O}(3) = 93.9(2), \text{N}(1)–\text{Mn}(2)–\text{O}(4) = 155.96(18)^\circ]\). The phenoxide bridging the two manganese atoms occupy the axial position of both metals \([\text{Mn}(2)–\text{O}(6) = 2.078(4) \text{ Å}, \text{O}(6)–\text{Mn}(2)–\text{N}(1) = 111.15(18), \text{O}(6)–\text{Mn}(2)–\text{N}(2) = 115.29(19)^\circ]\). This complex represents the first time that we have successfully synthesized two of the most important motifs in the OEC. Those being a \(\text{Mn-O-Mn}\) bond and a \(\text{Mn-OH}\) bond in close proximity. Arguably, both the bridging
oxygen and the M-OH are still bonded to the calixarene ligand, but they do represent an important structural scaffold.

The reaction of two equivalents of the Mn-dialkyl [(TMEDA)Mn(CH₂SiMe₃)₂] with the calixarene ligand led to the expected, fully deprotonated, dinuclear calixarene complex [(η₇-TMEDA)Mn(η₂:μ₂-Calix)Mn(η₇-TMEDA)] (8) (See Figure 4.4.15).

![Figure 4.4.15 Structure of Complex 8, para-Bu Groups Removed for Clarity.](image)

The dinuclear structure contains two identical, tetrahedrally coordinated Mn atoms. Each atom is σ-bound to one phenoxyde and shares two further bridging phenoxydes, the final position of the tetrahedron is filled by an η₇-bound TMEDA molecule [Mn(1)–O(1) = 1.868(5), Mn(1)–O(2) = 1.911(4), Mn(1)–O(4) = 1.919(5), Mn(1)–N(1) = 2.070(4) Å, O(1)–Mn(1)–N(1) = 103.24(10), O(1)–Mn(1)–O(4) = 128.15(11), O(1)–Mn(1)–O(2) = 103.21(10)°]. The short Mn-Mn distance (2.716 Å) and low magnetic moment (6.98 μᵣ) indicates that there is most likely a magnetic interaction between the two metals. A unique feature of this complex is the unusual chair-like conformer that the calix[4]arene must adopt in order to accommodate the two Mn atoms. Replacement of the TMEDA molecules by water molecules is of course the next step in developing this molecule.
These two unprecedented compounds displayed a great potential for the water splitting reaction given their oxygen donor-atom-only type of environment and the compatibility with the presence of OH functions. It is therefore most unfortunate that attempts to oxidize the complex towards the oxidation state +4 (expected to be sufficiently reactive to extract a hydrogen atom from water) were unsuccessful. For this reason we have attempted the synthesis of other Mn complexes with a less restraining ligand system. The bis-phenoxide, a close relative to calixarene, was the most immediate choice. Reaction of the bis-phenol ligand with [Mn(CH₂SiMe₃)₂(THF)]₂ led to the dimeric structure [Mn(η¹:μ-η¹-bisPhenoxy)(THF)]₂(hexane)₀.₈₇₅ (9) (see Figure 4.4.16). The dimeric structure is reminiscent of the dipyrrrole complexes, with the exception that only one THF molecule remains coordinated to each Mn atom.

![Figure 4.4.16 Structure of 9 with 30 % Thermal Ellipsoids, Carbon Ellipsoids not Drawn for Clarity.](image)

Each Mn atom is in a tetrahedral coordination geometry comprised of one terminal phenoxy and two bridging phenoxydes, the final position is occupied by a molecule of THF [Mn(1)−O(1) = 2.100(4), Mn(1)−O(1a) = 2.077(4), Mn(1)−O(2) = 1.953(4), Mn(1)−O(3) = 2.129(4) Å, O(2)−Mn(1)−O(1) = 115.95(16), O(2)−Mn(1)−O(1a) = 131.81(16), O(2)−Mn(1)−O(3) = 102.25(17)°]. The Mn-Mn distance of 2.767(4) Å is sufficiently short to allow for a direct metal-metal interaction. The low magnetic moment 6.84 μₜₜ is
slightly lower than the dipyrrrolides ligand system, and is indicative of electronic interaction between the Mn centres. Even in this case attempts to oxidize these complexes with a variety of oxidizing agents were not successful, perhaps due to involvement of the aryloxide ligand system in the oxidation reaction.

The idea for the final complex synthesis stemmed from the research into CO₂ co-polymerization (see Chapter 5). It was observed that the [((NacNac)Mn(CH₂SiMe₃))]. would be ideally suited to create a hydroxide bridge with another Mn atom if a hydrolysis was performed on the complex (see Scheme 4.4.17).

![Scheme 4.4.17 Proposed Structure Formation.](image)

A THF solution containing the stoichiometric amount of water was slowly added to another solution containing [((NacNac)Mn(CH₂SiMe₃))], and resulted in the dimeric complex [((NacNac)Mn(μ-OH))]₂ (10) (see Figure 4.4.18).
The complex adopts a tetrahedral geometry with two positions occupied by the NacNac ligand, and the remaining two filled by bridging OH groups [Mn(1)–N(1) = 2.113(4), Mn(1)–N(2) = 2.112(3), Mn(1)–O(1) = 2.054(4), Mn(1)–O(1a) = 2.039(4) Å, N(1)–Mn(1)–N(2) = 91.60(14), N(1)–Mn(1)–O(1) = 120.80(15), N(1)–Mn(1)–O(1a) = 122.37(16)°]. The long Mn-Mn distance (3.1456(14) Å) again precludes direct metal-metal bonding, but the low magnetic moment as per usual indicates that there is electronic interaction between the two Mn centres ($\mu_{\text{eff}} = 7.9 \mu_B$).

The presence of the isolable Mn-OH moiety was a major breakthrough in this project and represented the closest structural match with the proposed OEC. If the proposed reaction mechanism for oxygen evolution is correct, it may be possible to convert this Mn-OH species into the per-oxo derivative (see Scheme 4.2.2) and perhaps eventually even to eliminate dioxygen.

4.5 Reactivity with Oxygen Sources:

Once all of the cluster compounds had been synthesized, their reactivity with O$_2$ was systematically scanned. The oxygen was first dried in a P$_2$O$_5$ column in order to
remove any traces of water. In every case instantaneous reactions were observed as indicated by the immediate color change upon exposure of the various complex solutions to dry oxygen. Unfortunately, in all cases except the calixarene ligand, the reactions produced insoluble gel-like precipitates. The precipitates were insoluble in all available organic solvents, including pyridine. Further attempts at solubilization of the complexes included the use of polar solvents (ie. DMSO, DMF, acetonitrile); with similar results. Polar protic solvents including methanol, ethanol, and isopropanol also failed to solubilise the materials. In the case of the calixarene, the solutions quickly turned purple, and insoluble products were formed. The sudden darkening of the nearly colourless MnII solutions is a clear indication that oxidation state of the metal was increased. It was argued that the lack of stoichiometry control in terms of calibrating the amount of oxygen could have been at the basis of the problem. Therefore it was decided to attempt the reaction using a single oxygen donor material. Triphenylphosphine oxide is a known molecular oxygen transfer agent and therefore the logical choice for further testing.23 The reactions proceeded in much the same manner as the previous cases with the exception that the colour change to the brown or purple insoluble materials took significantly longer. This again indicates that higher valent manganese species were being generated. Regrettably, all these species proved impossible to crystallize in spite of the variety of ligands and solvents and therefore escape so far crystallographic characterization.

4.6 Aqueous Synthesis:

The failure to obtain higher valent manganese complexes via oxidation of the well-defined divalent compounds described above was disappointing and seemed to bring us to a deadlock. Therefore, we have decided as the last attempt to probe the self-assembling synthetic approach. Instead of preparing well-defined divalent complexes for further oxidation, we have now tried the in situ oxidation of a simple MnII salt in water medium and in the presence of a variety of ligands. In one case, the reaction was very successful by providing a MnIV complex which appears to spontaneously react with water through a redox process to eliminated O\textsubscript{2}.

Chapter 4 - Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex
A screening of reactions was performed which combined [Mn(OAc)₂] and KMnO₄ with many simple, poly-alcohol and carboxylic acid containing, organic molecules in water. The vast majority of these reactions led to intractable materials; however, in one instance a compound was successfully characterized. The equimolar reaction of [Mn(OAc)₂] and KMnO₄ in the presence of aqueous tartaric acid led to the isolation of brown crystals of the polymeric \([\text{Mn}(\mu_3,\eta_2-O_2 \text{CCH(O)CH(O)CO}_2)(\text{H}_2\text{O})_{0.5}]_n \cdot \text{H}_2\text{O}_{1.5}(11) (n = \infty)\) (see Figure 4.6.1).

Figure 4.6.1 Truncated Structure of 11 with 30% Thermal Ellipsoids, Carbon Ellipsoids and Solvent Water Molecules not Drawn for Clarity.

Analysis of the crystal structure revealed an infinite three dimensional polymer in which each Mn atom is found in an octahedral coordination environment. Five of the octahedron positions are filled by the oxygen atoms of the fully deprotonated tartarate molecules, with the final position alternating regularly between a bound water molecule (as seen in Figure 4.6.1) or a tartarate oxygen atom. The slightly distorted octahedral geometry is comprised of three carboxylate donor groups and one alkoxide along the equatorial plane \([\text{Mn}(1)–\text{O}(1) = 2.184(4), \text{Mn}(1)–\text{O}(7) = 2.135(4), \text{Mn}(1)–\text{O}(11a) = 2.105(3), \text{Mn}(1)–\text{O}(3) = 2.206(4) \text{ Å}, \text{O}(1)–\text{Mn}(1)–\text{O}(3) 73.08(9), \text{O}(1)–\text{Mn}(1)–\text{O}(7) 160.88(12), \text{O}(1)–\text{Mn}(1)–\text{O}(13) 96.33(9)°] \). The axial positions are filled by a water
molecule and an alkoxide donor from one of the fully deprotonated tartarate ligands $[\text{Mn}(1)-\text{O}(13) = 2.134(4), \text{Mn}(1)-\text{O}(9) = 2.268(4) \text{ Å, O(13)--Mn(1)--O(9) = 166.82(13)'\text{e}}]$.

If the complex is allowed to stand at room temperature for several days the dark brown colour, which is normally associated with Mn$^{(IV)}$, slowly fades leaving a pale pink precipitate. Subsequent treatment with KMnO$_4$ restores the solution to its previous brown colouring. This observation led us to hypothesize that the compound may, in fact, be liberating O$_2$ from the water and concomitantly reducing to a lower valent oxidation state. Heating of the brown solution to 90 °C resulted in a very quick discolouration and the moderate evolution of a gas from the solution. Subsequent testing of the atmosphere of the solution with a portable oxygen sensor indicated that appreciable amounts of O$_2$ were being emitted.

This very preliminary work has sparked continuing research in this field which is even now being carried out by our group. Several very important questions must be answered about this observed O$_2$ evolution before it can truly be declared a breakthrough: 1) will careful quantification of the O$_2$ evolved indicate an appreciable activity per mol of Mn 2) is the source of the oxygen truly from the solvent water, or merely from the strong oxidant KMnO$_4$ 3) can this process be coupled with a photo-oxidant to provide a truly “green” reaction.

4.7 Conclusions:

This work has demonstrated that the assembly of dimeric, tetrameric, and even octameric Mn complexes is possible with the selected ligands. Furthermore, the nuclearity of the clusters was found to be strongly influenced by the nature of the solvent, with non-coordinating solvents tending to produce larger clusters. These clusters are assembled via the weak π-ligation of the pyrrole rings. This weakness is demonstrated via the conversion of the cluster to dimers in the presence of co-ordinating solvents like THF. The results of the reactions of the clusters with oxygen sources were partly disappointing, as none proved to be characterizable. That said, the colour changes clearly indicate that higher oxidation state Mn centres have, indeed, been generated. Future work may yield the chemical structures of these higher oxidation state complexes. Literature published in 2006 has indicated that PhIO$^{2+}$ may prove to be a more efficient
and cleaner oxygen transfer agent then the triphenylphosphine oxide which was utilized, thus providing another avenue for future research into this area.

The calixarene, and NacNac Mn structures represent the most valuable contributions of this work towards assembling a surrogate for the OEC. The calixarene structure (8) contains both the Mn-O-Mn and Mn-OH moieties which have been proposed to be integral parts of the OEC cluster. In the case of the NacNac Mn complex (10) the two bridging Mn-OH moieties in close proximity to one another may yet yield the best chance of generating peroxo species, and maybe eventually even yield dioxygen.

By far the most intriguing results to date though, are those produced by the aqueous tartarate system (11). The observation that O$_2$ is evolved from this system could elevate this system to the forefront of this type of chemistry. That said, much more testing is required, and is currently underway, to ensure that this system is as remarkable as this introductory evaluation makes it appear.

4.8 X-Ray Crystallography Section:

The full crystallographic data, including bond lengths and angles may be found in Appendix 4. The abbreviated crystallographic data for the structures contained within this chapter are as presented in Tables 4.8.1 to 4.8.4.
Table 4.8.1 Crystal Data and Structure Analysis Results for Complexes 1-3.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₄₂H₆₄Mn₂N₄O₄</td>
<td>C₆₃H₁₉₂Mn₃N₆O₈</td>
<td>C₅₂H₅₈Mn₃N₄O₅</td>
</tr>
<tr>
<td>FW</td>
<td>798.85</td>
<td>1223.50</td>
<td>951.11</td>
</tr>
<tr>
<td>Space Group</td>
<td>Monoclinic, P2/(1)/n</td>
<td>Triclinic, P-1</td>
<td>Monoclinic, P2/(1)/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.516(2)</td>
<td>9.699(2)</td>
<td>10.6733(11)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>13.816(3)</td>
<td>12.460(3)</td>
<td>11.8769(13)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>15.259(4)</td>
<td>15.902(4)</td>
<td>19.867(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>111.355(4)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>94.354(4)</td>
<td>98.938(4)</td>
<td>97.054(2)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>101.703(4)</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>2000.4(8)</td>
<td>1696.6(6)</td>
<td>2499.4(5)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>203(2)</td>
<td>203(2)</td>
<td>203(2)</td>
</tr>
<tr>
<td>Dcalcd (g cm⁻³)</td>
<td>1.326</td>
<td>1.198</td>
<td>1.285</td>
</tr>
<tr>
<td>μcalcd (mm⁻¹)</td>
<td>0.677</td>
<td>0.426</td>
<td>0.557</td>
</tr>
<tr>
<td>F₀₀₀</td>
<td>852</td>
<td>662</td>
<td>1036</td>
</tr>
<tr>
<td>R, R_w⁡²</td>
<td>0.0622, 0.1246</td>
<td>0.0690, 0.1202</td>
<td>0.0503, 0.1379</td>
</tr>
<tr>
<td>GoF</td>
<td>1.051</td>
<td>1.010</td>
<td>1.023</td>
</tr>
</tbody>
</table>

*R = Σ|Fo| - |Fc|/Σ|F|. *R_w = [Σ(|Fo| - |Fc|)²/ΣwF₀²]¹/².

Table 4.8.2 Crystal Data and Structure Analysis Results for Complexes 4-6.

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₁₄₀H₁₆₀Mn₈N₁₆</td>
<td>C₄₄H₃₈Mn₄N₄</td>
<td>C₁₉₀H₁₇₀Mn₄N₁₂</td>
</tr>
<tr>
<td>FW</td>
<td>2506.36</td>
<td>677.72</td>
<td>2841.14</td>
</tr>
<tr>
<td>a (Å)</td>
<td>26.483(9)</td>
<td>25.811(5)</td>
<td>18.65(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>20.351(7)</td>
<td>10.2964(18)</td>
<td>19.51(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>23.459(8)</td>
<td>26.128(5)</td>
<td>21.61(3)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>91.159(3)</td>
<td>95.53(16)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>100.96(15)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>12 643(7)</td>
<td>6 942(2)</td>
<td>7 579(20)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>203(2)</td>
<td>206(2)</td>
<td>209(2)</td>
</tr>
<tr>
<td>Dcalcd (g cm⁻³)</td>
<td>1.317</td>
<td>1.297</td>
<td>1.245</td>
</tr>
<tr>
<td>μcalcd (mm⁻¹)</td>
<td>0.828</td>
<td>0.418</td>
<td>0.385</td>
</tr>
<tr>
<td>F₀₀₀</td>
<td>5248</td>
<td>2840</td>
<td>2988</td>
</tr>
<tr>
<td>R, R_w⁡²</td>
<td>0.0603, 0.1339</td>
<td>0.0735, 0.1639</td>
<td>0.0698, 0.1501</td>
</tr>
<tr>
<td>GoF</td>
<td>1.038</td>
<td>1.066</td>
<td>1.025</td>
</tr>
</tbody>
</table>

*R = Σ|Fo| - |Fc|/Σ|F|. *R_w = [Σ(|Fo| - |Fc|)²/ΣwF₀²]¹/².

Chapter 4 - Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex
Table 4.8.3 Crystal Data and Structure Analysis Results for Complexes 7-9.

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$\text{C}{122}\text{H}{156}\text{Mn}_2\text{N}_2\text{O}_8$</td>
<td>$\text{C}{58}\text{H}{84}\text{Mn}_2\text{N}_2\text{O}_4$</td>
<td>$\text{C}{56.5}\text{H}{81.5}\text{Mn}_2\text{O}_6$</td>
</tr>
<tr>
<td>FW</td>
<td>1888.37</td>
<td>987.17</td>
<td>966.60</td>
</tr>
<tr>
<td>space group</td>
<td>Orthorhombic, $P2(1)2(1)2(1)$</td>
<td>Monoclinic, $C2/c$</td>
<td>Monoclinic, $P2(1)/c$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>17.378(5)</td>
<td>12.523(6)</td>
<td>12.473(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>17.502(5)</td>
<td>17.288(8)</td>
<td>17.353(5)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>37.511(10)</td>
<td>17.111(6)</td>
<td>17.081(4)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>90.542(5)</td>
<td>108.568(4)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å^3)</td>
<td>11409(5)</td>
<td>7495(5)</td>
<td>3504.4(16)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>206(2)</td>
<td>206(2)</td>
<td>203(2)</td>
</tr>
<tr>
<td>D_{calcd} (g cm$^{-3}$)</td>
<td>1.099</td>
<td>1.186</td>
<td>0.916</td>
</tr>
<tr>
<td>μ_{calcd} (mm$^{-1}$)</td>
<td>0.275</td>
<td>0.563</td>
<td>0.396</td>
</tr>
<tr>
<td>F_{000}</td>
<td>4064</td>
<td>3053</td>
<td>1037</td>
</tr>
<tr>
<td>R, $R_w^{2,a}$</td>
<td>0.0737, 0.1437</td>
<td>0.0841, 0.1782</td>
<td>0.0799, 0.1875</td>
</tr>
<tr>
<td>GoF</td>
<td>1.047</td>
<td>1.066</td>
<td>1.038</td>
</tr>
</tbody>
</table>

$^a R = \Sigma|F_o| - |F_c|/\Sigma|F|$. $R_w = [\Sigma(|F_o| - |F_c|)^2/\Sigma w|F|^2]^{1/2}$.

Table 4.8.4 Crystal Data and Structure Analysis Results for Complexes 10 and 11.

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$\text{C}{58}\text{H}{84}\text{Mn}_2\text{N}_2\text{O}_4$</td>
<td>$\text{C}_{68}\text{Mn}2\text{O}{16}$</td>
</tr>
<tr>
<td>FW</td>
<td>979.18</td>
<td>474.06</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, $C2/c$</td>
<td>Monoclinic, $P2(1)$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>23.022(4)</td>
<td>7.6033(11)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>14.820(2)</td>
<td>11.1919(16)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>16.219(3)</td>
<td>8.9855(12)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>91.294(3)</td>
<td>99.432(2)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å^3)</td>
<td>5532.0(16)</td>
<td>754.29(18)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>209(2)</td>
<td>213(2)</td>
</tr>
<tr>
<td>D_{calcd} (g cm$^{-3}$)</td>
<td>1.176</td>
<td>2.087</td>
</tr>
<tr>
<td>μ_{calcd} (mm$^{-1}$)</td>
<td>0.499</td>
<td>1.766</td>
</tr>
<tr>
<td>F_{000}</td>
<td>2104</td>
<td>476</td>
</tr>
<tr>
<td>R, $R_w^{2,a}$</td>
<td>0.0749, 0.1400</td>
<td>0.0366, 0.0862</td>
</tr>
<tr>
<td>GoF</td>
<td>1.053</td>
<td>1.060</td>
</tr>
</tbody>
</table>

$^a R = \Sigma|F_o| - |F_c|/\Sigma|F|$. $R_w = [\Sigma(|F_o| - |F_c|)^2/\Sigma w|F|^2]^{1/2}$.

Chapter 4 - Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex
4.9 Experimental Section:

All reactions were carried out under a dry nitrogen or argon atmosphere. Solvents were dried using an aluminum oxide solvent purification system. The dipyrrrolide,25 calix[4]arene,19 and NacNac26 ligands were prepared using literature preparations. N-MeDipyrr, and N-MeTripyr were prepared as detailed in Chapter 2. [Mn(CH\textsubscript{2}SiMe\textsubscript{3})(THF)]\textsubscript{2} and [(TMEDA)Mn(CH\textsubscript{2}SiMe\textsubscript{3})\textsubscript{2}] were prepared as detailed in Chapter 3, while [NacNacMn(CH\textsubscript{2}SiMe\textsubscript{3})] was prepared as detailed in Chapter 5. Infrared spectra were recorded on an ABB Bomem FTIR instrument from Nujol mulls prepared in a drybox. Samples for magnetic susceptibility were pre-weighed inside a drybox equipped with an analytical balance and measured on a Johnson Matthey Magnetic Susceptibility balance. Samples of 3 and 4 for magnetic susceptibility measurements were preweighed inside a drybox equipped with an analytical balance and flame sealed into calibrated 5 mm “o.d.” quartz tubes. Magnetic measurements were carried out using a Quantum Design MPMS5S SQUID magnetometer at 0.1 T, in the temperature range 2-300 K. The accurate sample mass was determined by difference by breaking the tube after data collection. Background data on the cleaned, empty tube were obtained under identical experimental conditions. Standard corrections for underlying diamagnetism were applied to data.27 Elemental analysis was carried out with a Perkin-Elmer 2400 CHN analyzer. Data for X-ray crystal structure determination were obtained with a Bruker diffractometer equipped with a 1K Smart CCD area detector.

Synthesis of [Mn(η1:μ-η1-Et\textsubscript{2}Dipyrr)(THF)]\textsubscript{2} (1): Et\textsubscript{2}DipyrrH\textsubscript{2} (0.250 g, 1.24 mmol) was dissolved in 15 mL of THF and [Mn(CH\textsubscript{2}SiMe\textsubscript{3})(THF)]\textsubscript{2} (0.5 eq, 0.186 g, 0.62 mmol) was dissolved in a separate vial in 15 mL of THF. The ligand was then added drop-wise to the Mn di-alkyl over the span of ~1 minute. The colour gradually lightened from light-orange to a light pink colourless solution. The solution was then cooled to -35 °C and stored for 4 days after which time 0.401 g of pale pink block crystals of X-ray quality formed (1.00 mmol, 81.1% Yield).
IR (KBr, Nujol, cm⁻¹): 3083 (w), 3078 (w), 1162 (w), 1129 (w), 1063 (m), 1032 (s), 962 (w), 955 (w), 901 (m), 877 (m), 830 (w), 736 (m), 724 (m), 712 (m), 634 (w).

Elemental Analysis calcd (Found) for Mn₂C₄H₆N₄O₄: C 63.15 (63.25), H 8.08 (8.22), N 7.01 (7.22). \(\mu_{\text{eff}} = 7.14 \, \mu_B \).

Synthesis of [Mn(\(\eta^1: \mu-\eta^1 \)-MentDipy) (THF)₂]₂(THF)₄ (2): MentDipyH₂ (0.250 g, 0.925 mmol) was dissolved in 15 mL of THF and [Mn(CH₂SiMe₃)(THF)]₂ (0.5 eq, 0.139 g, 0.462 mmol) was dissolved in a separate vial in 15 ml of THF. The ligand was then added drop-wise to the Mn di-alkyl over the span of ~1 minute. The colour gradually lightened from light-orange to a light pink/colourless solution. The solution was then cooled to -35 °C and stored for 8 days after which time 0.448 g of pale pink block crystals of X-ray quality formed (0.367 mmol, 79.3% Yield).

IR (KBr, Nujol, cm⁻¹): 3086 (w), 3084 (w), 1163 (w), 1125 (w), 1062 (m), 1026 (s), 964 (w), 951 (w), 902 (m), 871 (m), 828 (w), 737 (m), 729 (m), 715 (m), 633 (w).

Elemental Analysis calcd (Found) for Mn₂C₆₈H₁₁₂N₄O₈: C 66.75 (66.61), H 9.23 (9.22), N 4.58 (4.44). \(\mu_{\text{eff}} = 7.08 \, \mu_B \).

Synthesis of [Mn(\(\eta^1: \mu-\eta^1 \)-CyDipy)(THF)₂]₂(THF) (3): CyDipyH₂ (0.250 g, 1.17 mmol) was dissolved in 15 mL of THF and [Mn(CH₂SiMe₃)(THF)]₂ (0.5 eq, 0.175 g, 0.583 mmol) was dissolved in a separate vial in 15 ml of THF. The ligand was then added drop-wise to the Mn di-alkyl over the span of ~1 minute. The colour gradually lightened from light-orange to a light pink/colourless solution. The solution was then cooled to -35 °C and stored for 1 day after which time 0.418 g of pale pink block crystals of X-ray quality formed (0.440 mmol, 75.4% Yield).

IR (KBr, Nujol, cm⁻¹): 3088 (w), 3086 (w), 1164 (w), 1127 (w), 1065 (m), 1030 (s), 965 (w), 952 (w), 905 (m), 874 (m), 829 (w), 738 (m), 726 (m), 714 (m), 631 (w).

Elemental Analysis calcd (Found) for Mn₂C₅₂H₈₀N₄O₅: C 64.85 (64.55), H 8.34 (8.29), N 5.79 (5.69). \(\mu_{\text{eff}} = 7.02 \, \mu_B \).
Synthesis of $[\text{Mn}(\eta^1:\mu-\eta^5-\text{CyDpyr})_4]_{\beta}(\text{toluene})_4$ (4): CyDpyrβH$_2$ (0.250 g, 1.17 mmol) was dissolved in 15 mL of toluene and $[\text{Mn}(\text{CH}_3\text{SiMe}_3)(\text{THF})]?_2$ (0.5 eq, 0.175 g, 0.583 mmol) was dissolved in a separate vial in 15 ml of toluene. The ligand was then added drop-wise to the Mn di-alkyl over the span of ~1 minute. The colour gradually lightened from light-orange to a colourless solution. The solution was then allowed to stand for 24 hours at room temperature, followed by cooling to -35 °C for a subsequent 24 hrs after which time 0.418 g of colourless block crystals of X-ray quality formed (0.440 mmol, 96.2% Yield).

IR (KBr, Nujol, cm$^{-1}$): 3370 (w), 3088 (w), 1609 (w), 1300 (w), 1272 (m), 1200 (s), 1161 (s), 1129 (s), 1106 (m), 1033 (s), 965 (m), 906 (m), 872 (w), 851 (w), 830 (w), 790 (s), 744 (s), 693 (m), 621 (m).

Elemental Analysis calcd (Found) for Mn$_6$C$_{140}$H$_{160}$N$_{16}$: C 67.09 (67.01), H 6.43 (6.39), N 8.94 (8.88). $\mu_{\text{eff}} = 14.07$ μ_B.

Synthesis of $[\text{Mn}(\text{N-MeDipyrr})_2]$ (5): N-MeDipyrrH (0.250 g, 0.800 mmol) was dissolved in 15 mL of toluene and $[\text{Mn}(\text{CH}_3\text{SiMe}_3)(\text{THF})]?_2$ (0.5 eq, 0.121 g, 0.400 mmol) was dissolved in a separate vial in 15 ml of toluene. The ligand was then added drop-wise to the Mn di-alkyl over the span of ~1 minute. The colour gradually lightened from light-orange to a colourless solution. The solution was then allowed to stand for 24 hours at room temperature, followed by cooling to -35 °C for another 24 hrs after which time 0.247 g of colourless block crystals of X-ray quality formed (0.365 mmol, 91.1% Yield).

IR (KBr, Nujol, cm$^{-1}$): 3088 (w), 3086 (w), 1164 (w), 1127 (w), 1065 (m), 1030 (s), 965 (w), 952 (w), 905 (m), 874 (m), 829 (w), 738 (m), 726 (m), 714 (m), 631 (w).

Elemental Analysis calcd (Found) for MnC$_{44}$H$_{38}$N$_4$: C 77.98 (78.01), H 5.65 (5.41), N 8.27 (8.43). $\mu_{\text{eff}} = 6.08$ μ_B.

Chapter 4 - Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex
Synthesis of $\text{[Mn(\eta^1:2:3:4-\mu-\eta^3-N-MeTripyr)]}_4$ (toluene)$_{4.85}$ (6): N-MeTripyrH·toluene (0.250 g, 0.393 mmol) was dissolved in 15 mL of toluene and $\text{[Mn(CH}_2\text{SiMe}_3)_2]$ (1.0 eq, 0.119 g, 0.393 mmol) was dissolved in a separate vial in 15 mL of toluene. The ligand was then added drop-wise to the Mn di-alkyl over the span of ~ 1 minute. The colour gradually lightened from light-orange to a colourless solution. The solution was then allowed to stand for 24 hours at room temperature, followed by cooling to -35 °C for another 24 hrs after which time 0.248 g of colourless block crystals of X-ray quality formed (8.73 X 10$^{-5}$ mol, 88.9% Yield).

IR (KBr, Nujol, cm$^{-1}$): 3368 (w), 1607 (w), 1303 (w), 1261 (m), 1196 (s), 1158 (s), 1133 (s), 1106 (m), 1030 (s), 966 (m), 900 (m), 866 (w), 822 (w), 799 (s), 745 (s), 690 (m), 617 (m).

Elemental Analysis calcd (Found) for Mn$_4$C$_{198}$H$_{170}$N$_{12}$: C 80.32 (80.51), H 6.03 (6.11), N 5.92 (6.09). $\mu_{\text{eff}} = 10.37 \mu_B$.

Synthesis of $\text{[(Calix(OH)]}_2\text{Mn-(\mu-O)-Mn(Calix(OH)]}_2$(TMEDA)] (7): 4-4Bu$_4$-Calix[4]arene·(toluene)$_{1.5}$ (0.250 g, 0.318 mmol) was dissolved in 15 mL of THF and [(TMEDA)Mn(CH$_2$SiMe$_3$)$_2$] (1.0 eq, 0.110 g, 0.318 mmol) was dissolved in a separate vial in 15 mL of THF. The Mn di-alkyl was then added drop-wise to the ligand solution over the span of ~ 1 minute. The colour gradually lightened from light-orange to a colourless solution. The solution was then allowed to stand for 24 hours at room temperature, followed by cooling to -35 °C for another 24 hrs after which time 0.251 g of colourless crystals of X-ray quality formed (0.133 mmol, 83.6% Yield).

IR (KBr, Nujol, cm$^{-1}$): 3155 (s,br), 1604 (s), 1477 (s), 1362 (s), 1304 (s), 1237 (m), 1109 (m), 1118 (w), 899 (m), 870 (s), 816 (s), 782 (s), 729 (m), 695 (w), 673 (w), 591(w).

Elemental Analysis calcd (Found) for Mn$_2$C$_{122}$H$_{156}$N$_2$O$_6$: C 77.59 (77.54), H 8.33 (8.49), N 1.48 (1.62). $\mu_{\text{eff}} = 7.36 \mu_B$.

Chapter 4 - Manganese Complexes as Models for the Photosystem II Oxygen Evolving Complex
Synthesis of [(Calix)Mn$_2$(TMEDA)$_2$] (8): 4-t-Bu$_4$-Calix[4]arene-(toluene)$_{1.5}$ (0.125 g, 0.159 mmol) was dissolved in 15 mL of THF and [(TMEDA)Mn(CH$_2$SiMe$_3$)$_2$] (2.0 eq, 0.110 g, 0.318 mmol) was dissolved in a separate vial in 15 mL of THF. The Mn di-alkyl was then added drop-wise to the ligand solution over the span of ~ 1 minute. The colour gradually lightened from light-orange to a colourless solution. The solution was then allowed to stand for 24 hours at room temperature, followed by cooling to -35 °C for another 24 hrs after which time 0.196 g of colourless crystals of X-ray quality formed (0.099 mmol, 62.2% Yield).

IR (KBr, Nujol, cm$^{-1}$): 1606 (w), 1303 (m), 1303 (m), 1278 (w), 1201 (m), 1127 (w), 872 (m), 820 (m), 788 (w), 727 (m), 694 (w).

Elemental Analysis calcd (Found) for Mn$_2$C$_{56}$H$_{84}$N$_4$O$_4$: C 68.13 (68.54), H 8.58 (8.49), N 5.68 (5.62). $\mu_{eff} = 6.98 \mu_B$.

Synthesis of [NacNacMn(μ-OH)$_2$] (10): [NacNacMn(CH$_2$SiMe$_3$)] (0.250 g, 0.447 mmol) was dissolved in 15 mL of THF and 8.93 mL of a 0.05 M water solution in THF was added drop-wise. The yellow solution did not progress through any colour change except a very slight lightening of the colour. The solution was then allowed to stand for 24 hours at room temperature, followed by cooling to -35 °C for another 24 hrs after which time 0.210 g of colourless block crystals of X-ray quality formed (0.215 mmol, 96.3% Yield).

IR (KBr, Nujol, cm$^{-1}$): 3688 (s), 1960 (m), 1815 (m), 1575 (m), 1558 (m), 1539 (m), 1506 (s), 1476 (s), 1457 (s), 1430 (s), 1386 (s), 1318 (s), 1261 (s), 1122 (m), 1070 (w).

Elemental Analysis calcd (Found) for Mn$_2$C$_{58}$H$_{84}$N$_4$O$_2$: C 71.14 (71.32), H 8.65 (8.59), N 5.72 (5.82). $\mu_{eff} = 7.27 \mu_B$.

Synthesis of [Mn($\mu$$_3$$\eta$2-O$_2$CCH(O)CH(O)CO$_2$)(H$_2$O)$_{0.5}$]$_n$. H$_2O_{1.5}$ (11): [Mn(OAc)$_2$] (0.150 g, 0.86 mmol) and tartaric acid (0.141 g, 0.94 mmol, 1.1 eq.) were dissolved in 15 mL of stirring distilled deionized water. KMnO$_4$ (0.135 g, 0.86 mmol, 1.0 eq) was then
added to the stirring mixture resulting in a dark purple solution, which over the course of several hours gradually turned dark brown. After stirring for 8 hours the stir bar was removed and the solution was left at room temperature for several days. After several days crystals of X-ray quality were collected (0.213 g, 0.45 mmol, 52.2% yield).

IR (KBr pellet, cm⁻¹): 3598 (m, br), 3359 (m, br), 1610 (s, br), 1397 (m, br), 1294 (m), 1234 (m), 1215 (m), 1123 (m), 1047 (m), 1002 (w), 933 (w), 895 (w), 835 (w), 713 (m).

Elemental Analysis calcd (Found) for MnC₄H₆O₈: C 26.53 (26.54), H 2.78 (2.88). \(\mu_{\text{eff}} = 3.36 \mu_B. \)

4.10 References:
3) biochem book
7) *Biochimica et Biophysica Acta: Bioenergetics* 2001, 1503, 1-259
Chapter 5

CO₂ CHO Epoxide Co-Polymerization

Table of Contents

5.1 Introduction ... 97
5.2 Recent Advances ... 99
5.3 Co-polymerization Mechanism ... 102
5.4 Research Rationale ... 105
5.5 Results and Discussion .. 106
5.6 Structural and Mechanistic Investigations 115
5.7 Conclusions ... 123
5.8 X-Ray Crystallographic Section 124
5.9 Experimental Section ... 127
5.10 References ... 131

5.1 Introduction:

The use of CO₂ as a chemical feedstock is not only attractive from the environmental point of view, but is also an economically profitable practice. Today, CO₂ is inexpensive and largely available as a high purity condensed gas. However, there are major challenges thwarting its common use. The large thermodynamic stability of CO₂ poses a formidable barrier towards the formation of C-C bonds in a catalytic fashion,
though this stability does make it an ideal medium for other processes.1,2,3 This is not to say, however, that CO\textsubscript{2} cannot be combined with highly reactive molecules (ie. epoxides) in order to produce a polycarbonate co-polymer. Using CO\textsubscript{2} as a carbon source is also a safer alternative to the traditional use of the highly toxic phosgene gas for polycarbonate synthesis.

The two epoxides which have garnered the most interest to date have been cyclohexene oxide (CHO) and propylene oxide (PO). When combined with CO\textsubscript{2} they can form either monomeric cyclic carbonates or polycarbonates (see Scheme 5.1.1). For the scope of this thesis only the polycarbonate case will be examined in detail even though traces of the monomeric cyclic product are always present due to its thermodynamic stability.4

\begin{center}
\begin{tikzpicture}
\node (choice) at (0,0) {CHO};
\node (product) at (2,0) {\[
\begin{array}{c}
\text{CHO} \\
\text{CHO}
\end{array}
\]};
\node (reaction) at (0,1) {$\text{CHO} + \text{CO}_2 \xrightarrow{\text{catalyst}} \text{polycarbonate}$};
\node (molecule) at (2,1) {CHO};
\node (catalyst) at (-1,0) {catalyst};
\node (product2) at (4,0) {\[
\begin{array}{c}
\text{polycarbonate}
\end{array}
\]};
\node (product3) at (4,1) {\[
\begin{array}{c}
\text{CHO}
\end{array}
\]};
\end{tikzpicture}
\end{center}

Scheme 5.1.1 CHO and PO Polycarbonate and Monomer Formation.

Polycarbonates are known for their optical clarity and are used to make useful items, such as CD's and safety glasses. Aliphatic polycarbonates have also found uses in packaging materials, thermoplastics, resins, pyrotechnics and interliners for safety glasses.5,6,7 It has also been found that polypropylene carbonate decomposes controllably and uniformly to form the cyclic carbonate,8 which makes it a useful binder for ceramics, adhesives, and propellants.9 According to Coates,10 the most promising use for the polypropylene carbonate will be as a mid-segment of polyurethanes. Cyclohexene polycarbonate possesses a much higher T_g than propylene polycarbonate (115 $^\circ$C vs. 38 $^\circ$C) giving it characteristics much like those of polystyrene.11 Due to the higher decomposition temperature of cyclohexene polycarbonate (\sim300 $^\circ$C), industrial melt-processing is a feasible refinement process. Another unique application for cyclohexene polycarbonates is their use for the construction of microfluidic devices.12 Given the wide range of
applications for these polycarbonate materials it readily becomes apparent why this field has received much scientific interest.

The initial discovery of the CO₂ co-polymerization reaction was made by Inoue in 1969, with the discovery that a 1:1 mixture of ZnEt₂ and H₂O catalyzed the alternating co-polymerization of CO₂ and propylene oxide at 20-50 atm of CO₂. It was found that the activity for the reaction (given in Turn-Over Frequency [TOF]) was 0.12 h⁻¹ and the resulting polymer had 88% carbonate linkages. Presumably an EtZnOH complex generated in situ is the catalytically active species. Remarkably, polycarbonates were not formed when methanol was used in lieu of water. Subsequent work by the Inoue group explored the use of diprotic compounds such as: resorcinol, dicarboxylic acids, and primary amines. These systems formed catalysts with only moderate improvements in activity over the original: TOF’s 0.17, 0.43, and 0.06 h⁻¹ respectively. Further work by Kuran on the ZnEt₂ system demonstrated that mono-protic molecules led exclusively to the cyclic monomer, whereas di- and tri-protic molecules led to co-polymerization.

5.2 Recent Advances:

Given the vast volume of literature concerning CO₂ co-polymerization (over 500 publications and patents) only the most relevant examples for the scope of this thesis will be discussed. For a complete overview of the literature several reviews have been written by the likes of Walther, Darenbourg, Kurau, and Coates.

In 1978 Inoue made another major breakthrough in the field by introducing the first single-site catalyst for epoxidation. The catalyst was based upon the porphyrin framework and utilized Al as the metal centre (see Figure 5.2.1).

![Inoue Porphyrin Catalyst Framework](image)

Figure 5.2.1 Inoue Porphyrin Catalyst Framework.
It was found that when X = OMe the co-polymerization of PO and CO$_2$ (20 °C, 8 atm CO$_2$) proceeded to yield propylene polycarbonate with 40% carbonate linkages over 19 days with a M$_w$ = 4 485 g/mol and a PDI (polydispersity indice [M$_w$/M$_n$]) of 1.15.22 Inoue also reported that the incorporation of carbonate linkages was drastically increased when the salt EtPh$_3$PBr was combined with the complex wherein X = Cl. In the case of PO, the polycarbonate was found to have >99% carbonate linkages after treatment with 48 atm CO$_2$ at 20 °C (M$_w$ = 3 815 g/mol, PDI = 1.09, TOF = 0.18 h$^{-1}$). Further investigation of the same system by Ree in 1999 did cast some doubt on the results by finding that the system only yielded 72% carbonate linkages at 20 °C and 52 atm CO$_2$ (M$_w$ = 2 090 g/mol, PDI = 1.10).23 Inoue also reported that the porphyrin system with X = Cl also co-polymerized CHO and CO$_2$ with >99% carbonate linkages in the presence of the phosphorous salt (M$_w$ = 6 572 g/mol, PDI = 1.06, TOF = 0.30 h$^{-1}$).24 Though the activities of these systems were quite low, the extremely low PDI’s and living nature of the catalyst marked a milestone in this field.

The heterogeneous nature of the Zn based catalytic systems severely hampered the reproducibility of this family of catalysts and made them unsuitable for mechanistic studies. Darensbourg attempted to solve these issues by way of generating discrete Zn complexes.25 Several square-planar complexes were synthesized from phenols and the starting material [Zn(N(SiMe$_3$)$_2$)$_2$] and characterized by X-ray crystallography (See Figure 5.2.2).

![Figure 5.2.2 Darensbourg's Discrete Zn Complexes.](image)

It was found that 1 was able to co-polymerize CHO with 91% carbonate linkages under 55 atm CO$_2$ at 80 °C (M$_w$ = 171 000 g/mol, PDI = 5.5, TOF = 2.4 h$^{-1}$). Further investigations examined the effects of the ortho substituents. It was found that in the case of catalysts 2-4, the least bulky catalyst 4 was the most active.26 In order to round out the
analysis of the effect of the ortho-substituents, phenols with bis-ortho F, Cl, and Br were reacted to form the corresponding Zn complexes. The results of these tests clearly showed that the electron withdrawing ability of the groups attached to the phenol (F>Cl>Br), is directly related to an increase in activity for CHO co-polymerization.²⁷

Though the Darensbourg catalysts were an improvement over the traditional systems, they still suffered from having two possible active sites formed by the two bulky aryloxide groups. This problem was solved by utilizing the NacNac ligand (see Figure 5.2.3) in order to synthesize discrete, single-site catalysts with Zn.

![Figure 5.2.3 NacNac Ligand Framework Used by Coates.](image)

From this basic framework the Coates group has built up a large array of complexes synthesizing alkoxide and acetate bridged Zn structures with many alterations of the NacNac framework. Remarkably, these catalysts are very active even under exceedingly mild conditions (7 atm CO₂ and 50 °C).²⁸ The effect of the bulkiness of the group on the ortho-position of the phenyl rings (R₁ and R₂) was the first trend to emerge from this work. The Zn complex of the di-methyl substituted phenyl ligand (5) shows no co-polymerization activity, whereas the Zn complexes containing bulkier phenyl side-groups (6) and (7), showed remarkable activities with TOF’s of 431 h⁻¹ and 360 h⁻¹ respectively.²⁹ The substitution of an electron withdrawing group onto the NacNac backbone (R₃) such as in the ligand 8, led to a highly active catalyst that yielded cyclohexene polycarbonate with 90% carbonate linkages (M_𝑤 = 20 585 g/mol, PDI = 1.15, TOF = 917 h⁻¹) in only 20 minutes.³⁰ It was also found that making an asymmetric
ligand system $R_1 \neq R_2$ led to very active catalysts, especially when coupled with the electron withdrawing effects of a CN group. The Zn methoxide complex of 9 proved to be the most active catalyst yielding a TOF of 2290 h$^{-1}$ with a PDI = 1.09-1.11 in only 10 minutes.

5.3 Co-polymerization Mechanism:

Many mechanistic studies have been undertaken in order to gain a better understanding of how to improve the co-polymerization systems. The most succinct summary of these many studies is presented in a review article by Coates. 10 Since the inception of this chemistry and the observation that poly-hydridic compounds were able to facilitate polycarbonate formation while mono-hydridic compounds led only to monomeric cyclic products, a multi-nuclear (with respect to Zn) mechanism has been invoked. Regardless of the actual mechanism, it is apparent that there are two reaction pathways accessible whenever CO$_2$ and an epoxide are combined. These two routes are the formation of the monomeric cyclic product, or the linear polycarbonate chain (see Scheme 5.3.1).

![Scheme 5.3.1 Possible Reactivity Pathways.](image)

The mechanism is a two-step process which commences when a CO$_2$ molecule inserts into either a metal-alkoxide or metal-phenoxide bond, forming the corresponding carbonate. It is for this reason that all catalysts contain a metal oxygen bond. A second subsequent insertion of another CO$_2$ molecule to form a pure polycarbonate is so
thermodynamically unfavourable that it has yet to be observed. The second step involves the insertion of the epoxide into the metal carbonate bond. In the case of aliphatic epoxides, ring-opening usually, though not exclusively, occurs at the least hindered C-O bond. The observed stereochemistry of the epoxide ring-opening is typical of an $S_{N}2$ attack, giving an inversion of the stereochemistry and yielding the *trans* ring-opened product. At this stage the metal alkoxide species may either enter into the cyclization or co-polymerization pathway (see Scheme 5.3.1). It has been demonstrated that the cyclization process most likely occurs when a metal-alkoxide back-bites into an adjacent carbonate linkage (see Scheme 5.3.2).

![Scheme 5.3.2 Proposed Back-Biting Mechanism.](image)

Higher temperatures and lower pressures of CO$_2$ favour the thermodynamically stable cyclic species. The final side-product pathway which is common in the CO$_2$ co-polymerizations is the formation of ether linkages. These occur when two or more epoxide units concurrently insert into the polymer chain (see Scheme 5.3.3).

![Scheme 5.3.3 Ether Linkage Formation.](image)

Darensbourg hypothesized that two coordination sites were required on the metal in order to effect polyether formation, whereas alternating co-polymerization requires only one site. In order to test this hypothesis the PC$_3$ adduct 10 versus its THF counterpart 11 (see Figure 5.3.4) were compared.
As expected, complex **10** produced polycarbonate with no ether linkages, while complex **11** yielded co-polymer with only 50% carbonate linkages. These and other similar results tend to support the hypothesis that two coordination sites are indeed required for polyether formation.

Recent structurally characterized complexes have provided evidence for the co-polymerization mechanism depicted in Scheme 5.3.1, according to Coates. When a Zn-isoproploxide complex of the NacNac ligand was exposed to CO$_2$, a rapid insertion reaction occurred to yield a carbonate bridged structure which was characterized by X-ray crystallography (see Scheme 5.3.5).

The same work has also crystallographically characterized the insertion of CHO into a Zn-acetate bond, which occurred over the course of a few days (see Scheme 5.3.6).
Kinetic work which was performed in conjunction with the structural characterizations indicated that the rate-determining step for the co-polymerization process is the insertion of the epoxide into the carbonate bond. Furthermore, Coates reports that his kinetic data supports the hypothesis that co-polymerization requires two metal centres.29

5.4 Research Rationale:

Many metals have been explored for the co-polymerization of CO\textsubscript{2} and epoxides ranging from Al22, Cr34, Co35, and even encompassing the lanthanide Y.36 However, the most performing systems to date have always been based on Zn(II).

When attempting to mimic the behaviour of a compound the concept of isolobality can be used to search for complexes that should, in principle, provide similar chemical properties. Isolobality is an indication that two atoms or compounds have similar types of valence orbitals. In the case of Zn(II), the metal producing the most performing catalysts, the electronic configuration is d10 which indicates a completely full valence shell. A high-spin Mn(II) complex with its d5 high-spin electronic configuration, should therefore be a very good mimic of the d10 Zn complexes. Furthermore, its larger atomic radius, and greater oxophilicity may further facilitate the rate of binding and reacting with the epoxides and CO\textsubscript{2}.

The Mn-dialkyl ([Mn(CH\textsubscript{2}SiMe\textsubscript{3})\textsubscript{2}(THF)]\textsubscript{2}) synthesized in Chapter 3 could in principle provide an excellent starting material for the exploration of this chemistry as it readily and cleanly reacts with either CO\textsubscript{2} or any protic ligand (See Scheme 5.5.1).
Complexes related to the structure of 12 would be a close mimic to the classic Zn phenoxide complexes, or in the case of aliphatic alcohols, the Zn alkoxide compounds. The Mn carboxylate compound depicted in a simplified form as 13 (see Figure 5.5.1 for full structure) provides the same framework as in Scheme 5.3.6 and should allow for the ready insertion of CHO into the complex, in turn leading to co-polymer formation. Furthermore, reaction of a Mn di-alkyl with bulky amine ligands which are known to generate single-site catalysts will provide a good contrast to the Coates NacNac complexes.

5.5 Results and Discussion:

The first attempts to explore the CO$_2$ co-polymerization process were performed using the in situ reaction of the electron withdrawing 2,6-difluoro-phenoxide ligand and [Mn(CH$_2$SiMe$_3$)$_2$(THF)]$_2$ (See Table 5.5.1). This ligand was selected as it has been found that electron withdrawing groups attached to the metal centre are typically able to increase the reactivity. Unfortunately, no polymerization was observed using 2 equivalents of the phenol (entry 2), and only traces of polymer were observed via NMR in the case of 1 equivalent of phenol (entry 1). The active site of the one eq. reaction is most likely the alkyl group which is able to insert CO$_2$ in order to form a carboxylate. Since the original work of Inoue has established that mono-protic alcohols often do not lead to polymerization, and that poly-protic alcohols were often required, the bis-phenol depicted in entry 3 was used. Just as in the case of entry 1, only traces of polymer were observable via NMR. These results tended to indicate, that in the case of Mn, phenoxide based ligand systems provided only very poor performance. Aliphatic alcohols were then
examined in order to determine the influence of a more electron rich alcohol on the metal centre. The cyclohexanol adduct (entry 4) proved to be a successful candidate as it was the first alkoxide catalyst to produce a measurable amount of polymer. The polymer had a large PDI of 13.93 and a M_w of 100 637 g/mol and contained greater than 98% carbonate linkages, indicating almost perfect co-polymerization. The TOF (see Appendix 4 for TOF and % carbonate linkage calculations) of 0.168 h$^{-1}$ places the catalyst in the "low" activity range according to the classification system defined by Coates. Entry 5 utilized the same cyclohexanol framework, but with the addition of a pendant OMe group which should be able to loosely co-ordinate to the metal in order to increase the electron density thereon. Although the pendant OMe group alkoxide appears to slightly retard the reaction when compared to cyclohexanol (TOF 0.158 vs. 0.168), the polymer exhibited a similar PDI and M_w and % carbonate linkages (>98%), indicating a similar reaction mechanism. Since all subsequent active runs invariably yielded >98 % carbonate linkages, this attribute will not be further discussed. It is important to note that this value does indicate that all of the active MnIII catalysts were exhibiting nearly perfect co-polymerization activity.

Table 5.5.1 Catalytic Conditions and Results for Alcoholic Ligands.

<table>
<thead>
<tr>
<th>Proposed Catalyst (entry number)</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 °C</td>
<td>Trace polymer via NMR TOF \sim 0 h$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 °C</td>
<td>No Polymer TOF = 0 h$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.5.1 Conditions and Results for Alcoholic Ligands continued.

<table>
<thead>
<tr>
<th>Proposed Catalyst (entry number)</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td> THF (3)</td>
<td>80 °C 24 h</td>
<td>Trace polymer via NMR TOF ~ 0 h⁻¹</td>
</tr>
<tr>
<td> THF (4)</td>
<td>80 °C 24 h</td>
<td>0.172 g Polymer Mₘ = 100 637 g/mol PDI = 13.929 TOF = 0.168 h⁻¹</td>
</tr>
<tr>
<td> THF (5)</td>
<td>80 °C 24 h</td>
<td>0.162 g Polymer Mₘ = 95 322 g/mol PDI = 15.582 TOF = 0.158 h⁻¹</td>
</tr>
</tbody>
</table>

*All catalysis runs were conducted using 300 µmol of catalyst and 15 mL (0.15 mol) CHO in 35 mL of toluene and 80 bar CO₂ unless otherwise stated. All catalysts were pre-treated at 60 °C, 40 bar CO₂ for 3 hours prior to the runs in order to ensure carbonate formation.

Although the performance of the in situ generated Mn alkoxides was somewhat disappointing, it did clearly indicate that the insertion of CO₂ into the Mn-OR function was indeed possible. The poor activity of these in situ generated catalysts could be ascribed to an intrinsic low ability of a Mn(III) centre to support this type of catalysis. However, it is also possible that the reaction of MnR₂ with ROH was more complicated than anticipated, perhaps also leading to oxidation of the metal centre. For this reason it was decided to utilize complexes of well-defined structures, from which the oxidation state could conclusively be proven via the magnetic moment. As demonstrated in Chapter 3 the Mn di-alkyl ([Mn(CH₂SiMe₃)₂(THF)]₂) reacts readily with CO₂ in any
solvent to yield a pentameric carboxylate structure $[\text{Mn}_5(\text{O}_2\text{CCH}_2\text{SiMe}_3)_6(\text{CH}_2\text{SiMe}_3)_4]$ (See Figure 5.5.1) in which Mn retains the +2 oxidation state.

![Crystal Structure of Mn-Carboxylate; Terminal SiMe₃ Groups Omitted for Clarity.](image)

Figure 5.5.1 Crystal Structure of Mn-Carboxylate; Terminal SiMe₃ Groups Omitted for Clarity.

This carboxylate should be a good model for the carbonate structure required in the co-polymerization cycle (see Scheme 5.3.1) and should therefore allow the facile insertion of CHO, leading to co-polymerization. In order to ensure that a carboxylate structure is present the $[\text{Mn(CH}_2\text{SiMe}_3)_2(\text{THF})]_2$ was pre-treated with 40 bar CO_2 at 60 °C for 3 h prior to all runs. Using the same conditions as in the case of the alcohols (80 °C, 24 h, 80 bar CO_2) it was quickly found that the Mn di-alkyl $([\text{Mn(CH}_2\text{SiMe}_3)_2(\text{THF})]_2$ was an effective catalyst (see entry 9 in Table 5.5.2). The catalyst was twice as active as the best alkoxide case (TOF 0.387 h⁻¹ vs 0.168 h⁻¹) and yielded polymer that was about 60 000 g/mol (60 %) heavier, but with a similar PDI. Varying the time of reaction was found to have a significant impact on the polymerization. When the reaction was run for only 3 h (entry 8) only traces of polymer were found via NMR. In contrast to this, when the reaction was run for 64 h (entry 10) the overall activity was about half of the 24 h case (TOF 0.142 vs. 0.387 h⁻¹). A 19% decrease in the M_w was also observed, indicating that depolymerization may be occurring over longer reaction times. The effect of the solvent was also examined by using both THF and toluene (entries 6 and 9). It was found that the presence of THF completely inhibited the reaction as only traces of polymer were found.
via NMR. When the reaction was run in 50 mL of neat CHO (entry 12) similar results to the standard conditions (entry 9) were obtained with only a slight drop-off in activity: TOF 0.240 vs. 0.387 h⁻¹ and Mₐ’s 156 029 vs. 159 312 g/mol. In order to determine if the pre-treatment of the Mn di-alkyls with CO₂ had any impact on the reaction, a run was performed with no pre-treatment of CO₂ pressure at 60 °C (entry 13). It was found that the activity was about half (TOF 0.157 vs. 0.387 h⁻¹) of the standard case (entry 9) and the Mₐ was slightly lower (Mₐ = 102 597 vs. 159 213 g/mol). The decrease in activity can probably be attributed to the lack of carboxylate groups for the insertion of CHO, which would take some time to form before the catalytic cycle could become active. The most active run was found to occur at the elevated temperature of 120 °C (entry 11). A five-fold increase in activity was observed (TOF 1.692 vs. 0.387 h⁻¹) with very little change in the Mₐ (156 029 vs. 159 213 g/mol), though the PDI was somewhat broader than the standard (entry 9).

<table>
<thead>
<tr>
<th>Catalyst (entry number)</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mn(CHO₂SiMe₃)₂(THF)]₂ (6)</td>
<td>80 °C 24 h in THF</td>
<td>Trace polymer via NMR TOF ~ 0 h⁻¹</td>
</tr>
<tr>
<td>[Mn(CHO₂SiMe₃)₂(THF)]₂ (7)</td>
<td>20 bar CO₂ 50 °C 24 h</td>
<td>No Polymer</td>
</tr>
<tr>
<td>[Mn(CHO₂SiMe₃)₂(THF)]₂ (8)</td>
<td>80 °C 3 h</td>
<td>Trace polymer via NMR TOF ~ 0 h⁻¹</td>
</tr>
<tr>
<td>[Mn(CHO₂SiMe₃)₂(THF)]₂ (9)</td>
<td>80 °C 24 h</td>
<td>0.396 g Polymer Mₐ = 159 213 g/mol PDI = 16.873 TOF = 0.387 h⁻¹</td>
</tr>
<tr>
<td>[Mn(CHO₂SiMe₃)₂(THF)]₂ (10)</td>
<td>80 °C 64 h</td>
<td>0.388 g Polymer Mₐ = 118 755 g/mol PDI = 17.124 TOF = 0.142 h⁻¹</td>
</tr>
<tr>
<td>[Mn(CHO₂SiMe₃)₂(THF)]₂ (11)</td>
<td>120 °C 24 h</td>
<td>1.733 g Polymer Mₐ = 167 376 g/mol PDI = 19.438 TOF = 1.692 h⁻¹</td>
</tr>
</tbody>
</table>

Table 5.5.2 Catalytic Conditions and Results for Mn Dialkyls.³
<table>
<thead>
<tr>
<th>Compound</th>
<th>Reaction Conditions</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mn(CH₂SiMe₃)₂(THF)]₂</td>
<td>80 °C, 24 h, neat CHO</td>
<td>0.246 g Polymer, Mₚ = 156 029 g/mol, PDI = 19.335, TOF = 0.240 h⁻¹</td>
</tr>
<tr>
<td>[Mn(CH₂SiMe₃)₂(THF)]₂</td>
<td>80 °C, 24 h, No CO₂ Pre-treatment</td>
<td>0.161 g Polymer, Mₚ = 102 597 g/mol, PDI = 13.084, TOF = 0.157 h⁻¹</td>
</tr>
</tbody>
</table>

All catalysis runs were conducted using 300 μmol of catalyst and 15 mL (0.15 mol) CHO in 35 mL of toluene and 80 bar CO₂ unless otherwise stated. The [Mn(CH₂SiMe₃)₂(THF)]₂ was pre-treated at 60 °C, 40 bar CO₂ for 3 hours prior to the runs in order to ensure carboxylate formation.

The results of the catalysis testing with the Mn di-alkyls proved that the Mn(II) system was quite capable of co-polymerization. However, the Mn di-alkyls have two possible active sites and no ligands which remain tightly coordinated to the metal in order to influence the polymerization. We hypothesized that the lack of sterically demanding ligands attached to the metal centre could be the reason for the observed broad PDI’s. Thus we endeavoured to test well-defined catalysts by placing a variety of imine-based ligands about the metal centre. The choice of the imine-based ligand systems was prompted by the robustness of their coordination mode and also since the class of ligand has been used for a variety of catalytic systems and metal-promoted organic reactions. The bis-imino pyridinato ligand, introduced in the literature by Gibson and Brookhart, 37 attracted our interest because of its superb electronic flexibility and ability to sustain PE polymerizations with a variety of metals. When the ligand was combined with a solution of [Mn(CH₂SiMe₃)₂(THF)]₂ an immediate reaction took place changing the colour of the solution from a light orange to a dark purple. This type of reactivity has been reported before, resulting in one -C(=NAr)CH₃ being deprotonated. 38 Based on the previous example we propose that the structure of the catalyst is a mono-deprotonated form (see Figure 5.5.2), however other possible structures are described in Chapter 6.
Figure 5.5.2 Proposed Structure for Entry 15.

When the catalyst was tested it was found to be about half as active as the standard entry 9. The catalyst (entry 14) had a TOF of 0.126 h^{-1} and produced a polymer with a PDI of 9.687 and a M_w of 76 049 g/mol. When a similar reaction was attempted with the di-imine of entry 15 the same deep colour change was observed leading us to propose the same type of structure as seen in Fig. 5.5.2. The less bulky di-imine ligand only exhibited half of the activity of the Brookhart case TOF 0.053 h^{-1} but yielded a nearly identical PDI with a slightly higher M_w 85 892. The similarity of the PDI's and M_w found for these two catalysts most likely indicates that they have a similar active site. Another di-imine ligand which was examined was the Bazan ligand.39 This ligand is known to co-ordinate via the enolic moiety as the oxygen penetrates better in the metal coordination sphere than does nitrogen, especially as Mn is quite oxophilic (see Figure 5.5.3).

Figure 5.5.3 Proposed Structure for Entry 16.

Entry 16 yielded polymer with a TOF of 0.112 h^{-1} and a PDI of 16.134 which is much broader than the previous di-imines, the M_w was also significantly higher at 118 274 g/mol. The higher M_w and PDI observed in this case could perhaps be attributed to the much less sterically crowded metal centre.
In order to enable a better comparison with the Coates’ Zn-NacNac system, we prepared a Mn(II) catalyst with the same ligand. When the catalyst in entry 17 was tested under the usual conditions it yielded roughly half of the activity as the Mn di-alkyl entry 9: TOF 0.159 vs. 0.387 h\(^{-1}\). This was not entirely unanticipated as the catalyst is expected to have only one active site, as opposed to two on the Mn di-alkyl. The PDI (15.839) was very similar to the di-alkyl, though the polymer produced was about 60 000 g/mol lighter (\(M_w = 103\ 115\) g/mol, −60\%). When the same catalyst run was performed at 120 °C the activity rose by a factor of 3 (TOF = 0.512 h\(^{-1}\)), however both the \(M_w\) and PDI remained virtually unchanged. This would tend to indicate that heating this catalyst increases the rate of reaction, with no observable detrimental effects.

The last attempt to prepare a satisfactory Mn(II) catalyst was carried out via the reaction of Mn di-alkyl with the simple amidinate depicted in entry 19. Amidinates are quite versatile ligands since both their electronics and sterics are easily tuned by adjusting their side-groups, just as in the case of the NacNac ligand. The only major difference between the NacNac and amidinate ligands is the size of the “bite-angle” the ligand adopts. Amidinates have a much narrower 3-atom “bite”, compared to NacNac’s 5-atom “bite”. The amidinate system 19 was slightly more active than the NacNac system (TOF = 0.177 vs. 0.159 h\(^{-1}\)), however the polymer it produced was about 50 000 g/mol heavier (150 456 g/mol) while the PDI remained relatively unchanged (PDI = 13.559). When the catalysis was conducted at 120 °C a seven-fold increase in activity was observed (TOF = 1.188 h\(^{-1}\)) as well as a large increase in the \(M_w\) 233 296 g/mol, however the PDI was also negatively affected as it increased from 13.559 at 80 °C to 21.828 at 120 °C.

In conclusion, this work proved that Mn(II) complexes can, indeed, catalyze co-polymerization of CHO and CO\(_2\) with promising activity although they are not competitive with the current generation of Zn systems.
<table>
<thead>
<tr>
<th>Proposed Catalyst (entry number)</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
</table>
| ![Structure 14](image) | 80 °C 24 h | 0.129 g Polymer
$M_w = 76,049$ g/mol
PDI = 9.687
TOF = 0.126 h$^{-1}$ |
| ![Structure 15](image) | 80 °C 24 h | 0.054 g Polymer
$M_w = 85,892$ g/mol
PDI = 10.244
TOF = 0.053 h$^{-1}$ |
| ![Structure 16](image) | 80 °C 24 h | 0.115 g Polymer
$M_w = 118,274$ g/mol
PDI = 16.134
TOF = 0.112 h$^{-1}$ |
| ![Structure 17](image) | 80 °C 24 h | 0.163 g Polymer
$M_w = 103,115$ g/mol
PDI = 15.839
TOF = 0.159 h$^{-1}$ |
| ![Structure 18](image) | 120 °C 24 h | 0.524 g Polymer
$M_w = 97,682$ g/mol
PDI = 15.51
TOF = 0.512 h$^{-1}$ |
Table 5.5.3 cont’d Catalytic Conditions and Results for Imine Based Ligands

<table>
<thead>
<tr>
<th>Structure</th>
<th>Temperature</th>
<th>Reaction Time</th>
<th>Polymer</th>
<th>M_w (g/mol)</th>
<th>PDI</th>
<th>TOF (h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 °C</td>
<td>24 h</td>
<td>0.181 g</td>
<td>150 456</td>
<td>13.559</td>
<td>0.177</td>
</tr>
<tr>
<td></td>
<td>120 °C</td>
<td>24 h</td>
<td>1.217 g</td>
<td>233 296</td>
<td>21.828</td>
<td>1.188</td>
</tr>
</tbody>
</table>

*a All catalysis runs were conducted using 300 μmol of catalyst and 15 mL (0.15 mol) CHO in 35 mL of toluene and 80 bar CO₂ unless otherwise stated. All catalysts were pre-treated at 60 °C, 40 bar CO₂ for 3 hours prior to the runs in order to ensure carboxylate formation.

5.6 Structural and Mechanistic Investigations:

Although the activities exhibited by the Mn catalysts were quite reasonable when compared to the literature examples, the PDI’s and supporting GPC traces proved intriguing. The lowest PDI produced by these catalysts was 9.687 whereas the highest was 21.828. This trend was disappointing, since changing the ligands and even reaction temperature appear to have very little impact on the polydispersity. The three SEC/GPC traces depicted in Figs. 5.6.1-3 represent the typical results found. The regions between the first triangle and the diamond indicate where the co-polymers elute.
Figure 5.6.1 GPC Trace for Entry 9 (Table 5.5.2).

Figure 5.6.2 GPC Trace for Entry 19 (Table 5.5.3).
Figure 5.6.3 GPC Trace for Entry 20 (Table 5.5.3).

Each trace depicts a near uniform distribution of M_w’s between 5000 and 800000 g/mol. There appears to be absolutely no modality present which would tend to indicate that there may be a very long initiation time or a very long termination time. If the catalyst is either dying, or initiating very slowly the plateau-shape would be expected as many different catalysts would have many different chain-lengths attached to them. Alternately, many different active sites with overlapping polymer distributions could generate these types of plateaus; however this possibility is so remote that it can be discounted.

In order to probe the mechanics of this reaction, several organometallic reaction studies were initiated. Firstly, in order to demonstrate that the in situ reactions of Table 5.5.1 were producing the proposed structures, the reaction of [Mn(CH₂SiMe₃)₂(THF)]₂ with the bi-phenol ligand from entry 3 (see Scheme 5.6.4) was carried out.
Scheme 5.6.4 Reaction of Biphenol with $[\text{Mn(CH}_2\text{SiMe}_3)_2\text{TiF}_3]_2$.

Complex 14 was isolated in 83% crystalline yield from hexanes and is actually a dimeric structure where one phenol is σ-bound to Mn while the second is μ_2-bound to two Mn centres (see Figure. 5.6.5).

Figure 5.6.5 Crystal Structure of (14) with 30 % Thermal Ellipsoids.

The structure supports the hypothesis that the in situ reaction is a valid way of generating the tested Mn-alkoxide species from Table 5.5.1.

Using the NacNac ligand depicted in Scheme 5.5.3 the $[(\text{NacNac})\text{Mn(CH}_2\text{SiMe}_3)(\text{THF})]$ complex 15 was synthesized in 93 % crystalline yield as yellow blocks (see Scheme 5.6.6).
Scheme 5.6.6 Synthesis of [(NacNac)Mn(CH₂SiMe₃)(THF)] (15).

Over the course of days, or if heated slightly, the complex loses THF to form the monomeric species 16 which was crystallized in near quantitative yield from hexanes as yellow block crystals (See Figure 5.6.7).

Figure 5.6.7 Crystal Structure of [(NacNac)Mn(CH₂SiMe₃)] (16) With 30% Thermal Ellipsoids.

Upon exposure to 1.1 atm of CO₂ gas for several hours a yellow solution of either 15 or 16 in hexanes slowly becomes colourless. Crystals of 17 were grown from cold hexanes in near quantitative yield. The structure of 17 clearly shows that CO₂ inserted into the Mn-C bond forming a dimeric carboxylate structure (see Figure 5.6.8). The structure is analogous to the Coates’ Zn carbonate structure²⁹ which further indicates that Mn(II) behaves much the same way as Zn. Unfortunately, unlike the Coates’ system, prolonged exposure of compound 17 to an excess of CHO did not result in any isolable insertion products, but rather led to dark-coloured solutions after several days, from which only intractable materials resulted. This most likely indicates that the epoxide is oxidizing Mn
to a higher valency, thus reiterating that the Mn-R moiety can be responsible for an array of side-reactions which are detrimental to catalytic performance.

![Crystal Structure of (17) with 30% Thermal Ellipsoids.](image)

Since the CHO insertion product was not isolated it was proposed to explore whether substituting the alkyl group for a phenol, and then attempting the reaction would be a more successful route. Some very interesting, and quite unexpected chemistry resulted from these investigations. When the [(NacNac)Mn(CH$_2$SiMe$_3$)] complex (16) was reacted with 3,5-t-Bu-Phenol an unanticipated product was formed. Instead of the expected Mn-phenoxide bond, ligand leaching was observed (see Fig. 5.6.9).
Complex 18 is a tri-nuclear structure with three tetrahedrally co-ordinated Mn(II) atoms. What is quite surprising is that the central Mn atom has completely lost the NacNac ligand system in order to bond with four bridging oxygen atoms. This implies that during the course of catalysis it is quite possible that any ligand on the Mn centre may be replaced with an oxide ligand, thus leaving the metal centre with little ability to control the growth of the polymer chains. This reactivity is probably attributable to the high oxophilicity of Mn, especially when compared to Zn. When the 3,5-iBu groups are placed at the ortho positions, the reactivity was quite different. The reaction of 3,5-iBu-Phenol resulted in the formation of the expected Mn-phenoxide complex (19) which was crystallized from cold hexanes (see Figure 5.6.10).
Oddly, it was observed that when a solution of 19 was allowed to stand at room temperature, the colour slowly darkened over time. This observation was perplexing as the molecule should be quite stable. It was found that when the dark red-brown solution was cooled, colourless crystals of 20 were recovered (see Figure 5.6.11). The formation of diphenylquinone implies the loss of a molecule of H₂ from two phenoxides, with a concomitant two-electron reduction of one or two Mn centres (See Scheme 5.6.12). This process is known to be a radical type of reaction and has been performed using Mn complexes. This indicates that the Mn(III) centre is able to initiate radical chemistry which might well account for the broad PDI’s, as the presence of radicals within a polymerization can lead to a poor product distributions. This gradual reduction also precluded the isolation of any complexes from the reaction of 19 with CHO. Therefore the question of whether the epoxide is able to readily insert into the Mn-OR bond is unknown in this case.
Subsequent to our investigations the group of Inoue published a paper detailing the first case of Mn co-polymerizing CO₂ with CHO. Based on the same porphyrin structure as in Fig. 5.2.1 the complex utilized Mn(III) as the active catalyst. However, the very best run only yielded an activity of 16.3 h⁻¹ with a Mₕ of 8 710 g/mol and a PDI of 1.3 (99% carbonate linkages). Remarkably, their catalyst was able to function at 1 atm of CO₂, albeit at a slow rate (when compared to the Zn catalysts).
The results of our investigations have shown that Mn^{II} could perhaps produce viable catalysts, and produces significantly higher M_w’s than the Mn^{III} catalyst of Inoue. In addition, the Mn^{II} catalysts are capable of producing nearly perfectly alternating copolymer, given that the % carbonate linkages were always found to be in excess of 98%. That said, further tuning is definitely required in order to gain better control over the large PDI’s produced by Mn^{II}. The cause of which, we have demonstrated, may be attributed to the presence of radicals in the polymerization or leaching of the ligand from the metal. Furthermore, the activities will need to be drastically increased if they are to compete with the Zn-based catalysts.

5.8 X-Ray Crystallographic Section:

The full crystallographic data and structural descriptions, including bond lengths and angles may be found in Appendix 5. The abbreviated crystallographic data for the structures contained within this chapter are as presented in Tables 5.8.1 and 5.8.2.

In complex 14 two Mn atoms are each pseudo-tetrahedrally coordinated with one \(\sigma \)-bound phenol \([\text{Mn}(1)-\text{O}(2) = 1.953(4) \text{ Å}]\) and two \(\mu_2 \)-bridging phenols \([\text{Mn}(1)-\text{O}(1) = 2.100(4), \text{Mn}(1)-\text{O}(1') = 2.077(4) \text{ Å}]\). The final coordination site is filled by a molecule of THF \([\text{Mn}(1)-\text{O}(3) = 2.129(4) \text{ Å}]\). The Mn-Mn distance \((3.1289(18) \text{ Å})\) places the two metal centres outside of typical bonding range, although electronic exchange via the bridging phenols is quite probable. Three highly disordered, and partially occupied hexane molecules were found in each unit cell, leading to the non-integer value of the empirical formula. When the complex is crystallized from Et_2O the THF is displaced yielding the structurally identical structure 14b.

Complex 15 is best described as a distorted trigonal pyramid. The basal plane is comprised of the two nitrogens \((\text{N}(1) \text{ and } \text{N}(2))\) of the NacNac ligand and C(30) of the \(\text{CH}_2\text{SiMe}_3 \) group. The Mn atom sits very slightly above the plane formed by the previously mentioned three atoms \([\text{Mn}(1)-\text{N}(1) = 2.119(3), \text{Mn}(1)-\text{N}(2) = 2.101(4), \text{Mn}(1)-(\text{C30}) = 2.107(3) \text{ Å}]\). The ligand enforces a narrower angle between the two nitrogens \([\text{N}(1)-\text{Mn}(1)-\text{N}(2) = 91.29(9)^\circ]\) then between the nitrogens and the alkyl group \([\text{N}(1)-\text{Mn}(1)-\text{C}(30) = 117.57(13)^\circ, \text{N}(2)-\text{Mn}(1)-\text{C}(30) = 136.55(10)^\circ]\). The pyramidal
structure is capped by a molecule of THF \([\text{Mn}(1)-\text{O}(1) = 2.204(3) \AA]\). The THF free analogue 16 shows significantly less distortion along the basal plane, yielding an almost perfectly flat trigonal planar geometry. The plane is compromised of the ligand Mn bonds \([\text{Mn}(1)-\text{N}(1) = 2.064(2), \text{Mn}(1)-\text{N}(2) = 2.0654(19) \AA]\) with the alkyl group filling the final position \([\text{Mn}(1)-\text{C}(30) = 2.100(3) \AA]\). The same distorted angle enforced by the ligand as seen in 15 was again observed \([\text{N}(1)-\text{Mn}(1)-\text{N}(2) = 91.73(8)\degree]\) although the angles between the nitrogens and the alkyl were slightly more relaxed in this case \([\text{N}(1)-\text{Mn}(1)-\text{C}(30) = 123.35(10)\degree, \text{N}(2)-\text{Mn}(1)-\text{C}(30) = 143.60(10)\degree]\).

The CO$_2$-insertion adduct 17 adopts a distorted tetrahedral geometry compromised of the ligand system \([\text{Mn}(1)-\text{N}(1) = 2.092(3), \text{Mn}(1)-\text{N}(2) = 2.082(3) \AA]\) and two bridging carboxylate groups \([\text{Mn}(1)-\text{O}(1) = 2.037(3), \text{Mn}(1)-\text{O}(2) = 2.047(3) \AA]\). Sterics are probably the cause of the large angle observed between the bridging carboxylates \([\text{O}(1)-\text{Mn}(1)-\text{O}(2) = 121.66(14)\degree]\). The ligand again enforces the tight angle that was previously seen \([\text{N}(1)-\text{Mn}(1)-\text{N}(2) = 92.58(12)\degree]\). The Mn-Mn distance \((5.142(3) \AA)\) is well outside of bonding range, therefore any electronic coupling is strictly ligand mediated.

Complex 18 is quite convoluted. The structure contains three Mn atoms in a linear arrangement, each in a pseudo-tetrahedral geometry. Each end of the tri-nuclear cluster is capped with a NacNac ligand \([\text{Mn}(1)-\text{N}(1) = 2.117(8), \text{Mn}(1)-\text{N}(2) = 2.151(8), \text{Mn}(3)-\text{N}(3) = 2.127(8), \text{Mn}(3)-\text{N}(4) = 2.107(8) \AA]\). The central Mn is bridged to each terminal Mn via bridging phenoxides \([\text{Mn}(2)-\text{O}(1) = 2.070(6), \text{Mn}(2)-\text{O}(2) = 2.118(7), \text{Mn}(2)-\text{O}(3) = 2.088(6), \text{Mn}(2)-\text{O}(4) = 2.071(7)\degree]\). Three toluene molecules (with two disordered over two positions) complete the asymmetric unit.

Complex 19 is isostructural to complex 16, although it shows slightly more distortion from planarity which is most likely a result of the much larger steric bulk of the phenoxide. The distorted trigonal planar structure is composed of the ligand \([\text{Mn}(1)-\text{N}(1) = 2.073(4), \text{Mn}(1)-\text{N}(2) = 2.037(4) \AA]\) and the phenoxide ligand \([\text{Mn}(1)-\text{O}(1) = 1.891(3) \AA]\) which rests slightly above the plane of the ligand. As per usual the NacNac ligand enforces a tight angle with the metal \([\text{N}(1)-\text{Mn}(1)-\text{N}(2) = 93.85(16)\degree]\), while the phenoxide is slightly skewed to one side \([\text{N}(1)-\text{Mn}(1)-\text{O}(1) = 125.15(16)\degree, \text{N}(2)-\text{Mn}(1)-\text{O}(1) = 141.80(16)\degree]\). If crystallization is initiated too quickly the half-reacted complex
19b is recovered, although it is fully converted to product if redissolved into the mother liquor. The structure of 19b includes one molecule of 19 and one molecule of 16. The bond distances and angles of the two complexes within 19b are identical to their pure forms.

Since the molecule 20 rests on an inversion centre a corrected Z factor (Z') was required in order to correctly describe the chemical structure. The distance between C(6) and O(1) (1.243(3) Å) clearly reveals that a double bond is present. While the intra-ring distances are a little more vague [C(1)–C(6) = 1.472(4), C(1)–C(2) = 1.351(4), C(3)–C(4) = 1.440(4) Å], they are consistent with a single bond between C(1)–C(2) and C(3)–C(4) and a double bond between C(1)–C(2). The C(3) – C(3') distance (1.416(6) Å) is slightly long for a double bond, however the complete planarity of the structure indicates the sp² character of each atom, necessitating the presence of a double bond.

Table 5.8.1 Crystal Data and Structure Analysis Results for Complexes 14-17.

<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{28}25H_{40.75}O_{3.5}Mn</td>
<td>C_{34}H_{52}N_{2}SiMn</td>
<td>C_{34}H_{52}N_{2}O_{2}SiMn</td>
</tr>
<tr>
<td>FW</td>
<td>483.30</td>
<td>559.80</td>
<td>603.81</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, P2(1)/c</td>
<td>Monoclinic, P2(1)/n</td>
<td>Monoclinic, P2(1)/n</td>
</tr>
<tr>
<td>a (Å)</td>
<td>12.473(3)</td>
<td>10.7504(13)</td>
<td>12.6721(13)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>17.353(5)</td>
<td>21.524(3)</td>
<td>12.6426(13)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>17.081(4)</td>
<td>15.0063(19)</td>
<td>22.342(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>108.568(4)</td>
<td>96.700(2)</td>
<td>92.690(2)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>3505.4(16)</td>
<td>3448.5(7)</td>
<td>3575.4(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>203(2)</td>
<td>203(2)</td>
<td>209(2)</td>
</tr>
<tr>
<td>D_{calcd} (g cm⁻³)</td>
<td>0.916</td>
<td>1.078</td>
<td>1.122</td>
</tr>
<tr>
<td>μ_{calcd} (mm⁻¹)</td>
<td>0.396</td>
<td>0.439</td>
<td>0.432</td>
</tr>
<tr>
<td>F_{000}</td>
<td>1037</td>
<td>1212</td>
<td>1300</td>
</tr>
<tr>
<td>R, R_w²</td>
<td>0.0799, 0.1875</td>
<td>0.0598, 0.1668</td>
<td>0.0675, 0.1262</td>
</tr>
<tr>
<td>GoF</td>
<td>1.038</td>
<td>1.044</td>
<td>1.087</td>
</tr>
</tbody>
</table>

\(^a\) R = \Sigma|F_o| - |F_c|/\Sigma|F|. \(R_w = [\Sigma(|F_o| - |F_c|)^2/\Sigma w F_o^2]^{1/2}\).
Table 5.8.2 Crystal Data and Structure Analysis Results for Complexes 18-20.

<table>
<thead>
<tr>
<th></th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C\textsubscript{133}H\textsubscript{158}N\textsubscript{4}O\textsubscript{4}Mn\textsubscript{3}</td>
<td>C\textsubscript{43}H\textsubscript{62}N\textsubscript{2}O\textsubscript{5}Mn</td>
<td>C\textsubscript{24}H\textsubscript{40}O\textsubscript{2}</td>
</tr>
<tr>
<td>FW</td>
<td>2097.73</td>
<td>677.89</td>
<td>408.60</td>
</tr>
<tr>
<td>space group</td>
<td>Orthorhombic, \textit{Pca2}(1)</td>
<td>Monoclinic, \textit{P2}(1)/\textit{n}</td>
<td>Triclinic, \textit{P}-\textit{I}</td>
</tr>
<tr>
<td>a (Å)</td>
<td>28.55(4)</td>
<td>19.548(3)</td>
<td>6.0664(15)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>15.69(2)</td>
<td>9.7800(15)</td>
<td>10.355(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>32.15(5)</td>
<td>22.978(4)</td>
<td>10.418(3)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>81.561(5)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>115.912(3)</td>
<td>76.564(5)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>81.358(5)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>13481(37)</td>
<td>3985.2(11)</td>
<td>625.0(3)</td>
</tr>
<tr>
<td>Z, (Z')</td>
<td>4</td>
<td>4</td>
<td>2, (1)</td>
</tr>
<tr>
<td>radiation (K\alpha, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>213(2)</td>
<td>213(2)</td>
<td>209(2)</td>
</tr>
<tr>
<td>D\textsubscript{calc} (g cm-3)</td>
<td>1.034</td>
<td>1.130</td>
<td>1.086</td>
</tr>
<tr>
<td>μ\textsubscript{calc} (mm-1)</td>
<td>0.325</td>
<td>0.364</td>
<td>0.066</td>
</tr>
<tr>
<td>F\textsubscript{000}</td>
<td>4540</td>
<td>1468</td>
<td>224</td>
</tr>
<tr>
<td>R, Rwa</td>
<td>0.0803, 0.1805</td>
<td>0.0606, 0.1393</td>
<td>0.0617, 0.0968</td>
</tr>
<tr>
<td>GoF</td>
<td>1.040</td>
<td>1.010</td>
<td>1.049</td>
</tr>
</tbody>
</table>

a R = Σ|Fo| - |Fc|Σ|F|, R\textsubscript{w} = [Σ(Fo) - |Fc|]2/ΣwFo21/2.

5.9 Experimental Section:

All reactions were carried out under a dry nitrogen or argon atmosphere. Solvents were dried using an aluminum oxide solvent purification system, CHO was purchased from Aldrich (>98 %) and was freshly distilled and degassed prior to each run. All alcohols were purchased from Aldrich and used after drying \textit{in vacuo}. [Mn(CH\textsubscript{2}SiMe\textsubscript{3})\textsubscript{2}(THF)]\textsubscript{2} was prepared as described in Ch 3. The ligands used for entries 14,40 15,40 16,39 17,42 and 1943 were prepared according to literature references and were only used once the purity was > 98% by NMR. Infrared spectra were recorded on an ABB Bomem FTIR instrument from Nujol mulls prepared in a drybox. Samples for magnetic susceptibility were pre-weighed inside a drybox equipped with an analytical balance and measured on a Johnson Matthey Magnetic Susceptibility balance. Molecular weight and product dispersity was measured on a Splatastic GPC/SEC. NMR were collected on an INOVA Varian 300 MHz instrument in CDC\textsubscript{3}. Elemental analysis was carried out with a Perkin-Elmer 2400 CHN analyzer. Data for X-ray crystal structure
determination were obtained with a Bruker diffractometer equipped with a 1K Smart CCD area detector.

Polymerization Details: The 150 mL reactor was dried at 120 °C under vacuum for a minimum of 4 hours prior to each run. The catalyst and solvent mixture was then injected under a stream of argon gas, following which the reactor was pressurized to 40 bar CO₂ at 40 °C for 4 hours. CHO was then injected and the pressure and temperature were raised to those required for the run. After the run was complete, the reactor was vented and 30 mL of MeOH was injected in order to quench the reaction. The reactor was then drained and a portion removed for NMR. The bulk of the solution from the reactor was then stirred with ~500 mL of petroleum ether in order to precipitate the polycarbonate portion.

Synthesis of [Mn(CH₂{4-Me-2-tBu-6′C₆H₂O}₂)(THF)]₂(C₇H₈)₀.₇₅ (14): A solution of the alcohol (0.150 g, 0.440 mmol) in toluene (5 mL) was slowly added to a solution of [Mn(CH₂Si(CH₃)₂)(THF)]₂ (0.133 g, 0.440 mmol) also in toluene (4 mL). The orange solution quickly discoloured to yield a clear solution. The solution was then cooled to -35 °C and allowed to stand for 24 hours, after which, colourless extremely air-sensitive X-ray quality crystals of 14 were formed (0.176 g, 0.365 mmol, 83%).

IR (Nujol) cm⁻¹: 2928 (s), 2824 (s), 1606 (w), 1303 (m), 1303 (m), 1278 (w), 1220 (w), 1201 (m), 1127 (w), 872 (m), 848 (w), 807 (w), 704 (w).

Elemental Analysis (Found) for MnC₂₈₂₃H₄₀₀₇₅O₃Mn₄: C 70.20 (70.38), H 8.50 (8.62).

μₑffective = 6.85 μ₀B.M.

Synthesis of [Mn(P₃NacNac)(CH₂SiMe₃)] (16): A solution of the P₃NacNac ligand (0.250 g, 0.597 mmol) in hexanes (5 mL) was slowly added to a solution of [Mn(CH₂Si(CH₃)₂)(THF)]₂ (0.180 g, 0.597 mmol) also in toluene (4 mL). The orange solution quickly turned a clear yellow. If the solution was allowed to stand at room temperature overnight, crystals of the THF adduct 15 were isolated. These crystals
slowly converted to a hexanes soluble solution over the course of several days. If the hexanes soluble solution is cooled to -35°C and allowed to stand for 24 hours, yellow extremely air-sensitive X-ray quality block crystals of 16 were formed. After two subsequent concentrations and recrystallizations the total crop of crystalline material was (0.321 g, 0.573 mmol, 96%).

IR (Nujol) cm⁻¹: 3088 (w), 3076 (w), 1172 (w), 1131 (m), 1071 (s), 1022 (s), 961 (w), 944 (m), 900 (w), 875 (m), 831 (w), 733 (m), 726 (m), 711 (m), 630 (w).

Elemental Analysis (Found) for MnC₃₃H₅₂N₂Si: C 70.80 (70.48), H 9.36 (9.62), N 5.00 (5.08). μₑffect = 7.25 μₜₘₐₓ.

Synthesis of [Mn(PrNacNac)(μ-O₂CH₂SiMe₃)]₂ (17): A solution of 16 (0.250 g, 0.447 mmol) in hexanes (10 mL) was exposed to 1.1 atm of dry CO₂. The yellow solution slowly turned colourless over several hours. The solution was then cooled to -35°C and allowed to stand for 24 hours, after which X-ray quality block crystals of 17 were formed (0.256 g, 0.424 mmol, 95%).

IR (Nujol) cm⁻¹: 3087 (w), 3076 (w), 1160 (w), 1128 (w), 1066 (s), 1020 (s), 952 (w), 888 (m), 870 (m), 824 (w), 730 (m), 722 (w), 710 (m), 605 (w).

Elemental Analysis (Found) for MnC₃₄H₅₂N₂O₂Si: C 67.63 (67.50), H 8.68 (8.62), N 5.64 (5.52). μₑffect = 6.51 μₜₘₐₓ.

Synthesis of [(PrNacNac)Mn(μ₂-O-3,5-di-tBu-C₆H₃)₂Mn(μ₂-O-3,5-di-tBu-C₆H₃)₂Mn(PrNacNac)](C₇H₈)₃ (18): A solution of 16 (0.250 g, 0.447 mmol) in toluene (5 mL) was mixed with a toluene solution of 3,5-di-tBu-phenol (0.092 g, 0.447 mmol). The yellow solution slowly turned colourless over several hours. The solution was then cooled to -35°C and allowed to stand for 24 hours, after which X-ray quality crystals of 18 were formed (0.200 g, 0.095 mmol, 64% based on Mn).
IR (Nujol) cm⁻¹: 3079 (m), 3064 (w), 1155 (m), 1122 (w), 1075 (s), 1020 (s), 955 (m), 943 (m), 911 (m), 871 (m), 825 (w), 739 (m), 735 (m), 711 (m), 630 (w).

Elemental Analysis (Found) for Mn₂C₁₃₅H₁₉₀N₄O₄: C 77.29 (77.50), H 9.13 (9.62), N 2.67 (2.52). \(\mu_{\text{eff}} = 4.12 \, \mu_{\text{BM}} \).

Synthesis of \([^{\text{iPrNacNac}}\text{Mn(O-2,6-di-tBu-C₆H₃)}]\) (19): A solution of 16 (0.250 g, 0.447 mmol) in toluene (5 mL) was mixed with a toluene solution of 2,6-di-tBu-phenol (0.092 g, 0.447 mmol). The yellow solution slowly turned colourless over several hours. The solution was then evaporated *in vacuo* and re-dissolved in hexanes. The solution was then cooled to -35°C and allowed to stand for 24 hours, after which X-ray quality crystals of 19 were formed (0.224 g, 0.331 mmol, 74%).

IR (Nujol) cm⁻¹: 3088 (w), 3070 (m), 1130 (m), 1078 (s), 1029 (s), 958 (m), 951 (w), 888 (w), 873 (m), 825 (w), 736 (m), 716 (m), 710 (m), 620 (w).

Elemental Analysis (Found) for MnC₄H₆₂N₂O: C 76.18 (76.50), H 9.22 (9.52), N 5.13 (5.22). \(\mu_{\text{eff}} = 6.72 \, \mu_{\text{BM}} \).

Synthesis of 3,3′,5,5′-tetra-tert-butyl(bi-2,5-cyclohexadien-1-ylidene)-4,4'-dione (20):
It was found that after sitting at room temperature for several days a hexanes solution of 19 (0.200 g, 0.295 mmol) gradually darkened in colour. The dark brown/red solution was placed in the freezer at -35 °C. After several days colourless crystals of 20 grew from the solution (0.077 g, 0.188 mmol, 32% based on 19).

IR (neat) cm⁻¹: 2930, 2820 (s), 1632 (w), 1620 (s), 1608 (w), 1450 (s), 1360, 1348 (s), 1250, 1220 (w), 1090 (m), 906 (m), 899 (w), 848 (w), 807 (w), 704 (w).

Elemental Analysis (Found) for MnC₄H₆₂N₂O: C 76.18 (76.50), H 9.22 (9.52), N 5.13 (5.22).

\(^1\)H NMR (300 MHz): 6.21 (4H), 1.05 (36 H).
5.10 References:

6) http://www.empowermaterials.com
Chapter 6

Low-Valent Manganese Complexes Supported by the Bis-Iminopyridinato Ligand

Table of Contents

6.1 Introduction .. 133
6.2 Recent Advances ... 134
6.3 Research Rationale .. 139
6.4 Results and Discussion ... 141
6.5 Conclusions .. 146
6.6 X-Ray Crystallography Section .. 147
6.7 Experimental Section .. 148
6.8 References ... 150

6.1 Introduction:

Since the discovery Ziegler-Natta catalysts the science of olefin polymerization has progressed in leaps and bounds. Perhaps one of the biggest breakthroughs was made by the groups of Gibson,\(^1\) Brookhart,\(^2\) and Bennett\(^3\) in the mid-1990's who pioneered a sterically bulky ligand bis-iminopyridinato ligand, \([\{2,6-(iPr)_2PhN=C(Me)\}_2(C_3H_7N)]\)
(see Figure 6.1.1), which produced extremely active late-metal olefin polymerization catalysts for the first time.

![Structure of the Bis-Iminopyridinato (BisImine) Ligand.](image)

Figure 6.1.1 Structure of the Bis-Iminopyridinato (BisImine) Ligand.

This, and related ligand systems, spawned intense academic and industrial research into late-metal catalyzed polymerization. In addition, the observation that this ligand system is promoting a high degree of activity with many disparate metals across the periodic table suggests that the direct involvement of the ligand system in the reactivity of the metal could very well play a very significant role in the performance of the catalytic system.

6.2 Recent Advances:

Our group first became interested in the bis-iminopyridinato \([2,6-(2,6-\{^{\prime}\text{Pr}\}_2\text{PhN}=\text{C}(\text{CH}_3)\}_2\text{C}_5\text{H}_5\text{N}]\) (BisImine) ligand system in 1999 when it was observed that reacting the [(BisImine)VCl₃] adduct with common alkylating agents led to alkylation of the pyridine ring as well as reduction to the rare V(IV) oxidation state.⁴ These results were the first step in exposing the non-innocent behaviour of this ligand system, and sparked subsequent study by our group.

Manganese has yet to be reported to support any meaningful level of polymerization with ethylene, as was the case for the late metals Fe, Co, Ni etc. before the advent of the bis-iminato (the so-called Brookhart/Gibson) ligands.⁵ However, the Bis-Iminopyridinato ligand system is able to induce spectacular polymerization activity in both the late and early metals. Thus, the production of complexes and polymerization
attempts of the notoriously inactive metal Mn with this ligand system was of significant interest. Reaction of the ligand with [MnCl₂(THF)₁₃] led to the expected, trigonal bipyramidal, [(BisImine)MnCl₂] adduct.⁶ Surprisingly, even though the Mn complex exhibited the same coordination geometry as the highly active Fe, and Co analogues,⁷ no polymerization activity resulted upon the activation of the complex with MAO in the presence of ethylene (under the same conditions as for Fe, and Co). In order to explore the reason for this lack of reactivity the [(BisImine)MnCl₂] compound was reacted with LiMe and LiCH₂SiMe₃ in an attempt to generate the alkylated pre-catalyst. Instead of the expected alkylation, reduced complexes which were assigned the Mn⁽¹⁾ and Mn⁽⁰⁾ oxidation states (see Figure 6.2.1), respectively, were recovered, in line with the behaviour of the V⁽³⁾ analogues.

![Figure 6.2.1 Suspected Mn⁽¹⁾ and Mn⁽⁰⁾ Structures.](image)

Though the one electron reduction from Mn⁽¹⁾ to Mn⁽¹⁾ is not unprecedented,⁸ the two electron reduction to Mn⁽⁰⁾ seemed quite unrealistic. Careful examination of the crystal structure and DFT calculations, revealed that the structure which was initially thought to contain a Mn⁽⁰⁾ was actually most likely a Mn⁽¹⁾ complex. The dianionic ligand charge was attributed to the two imino methyl groups of the ligand having been deprotonated (see Scheme 6.2.2).⁹ The same deprotonation had been previously observed in a similar ligand system adding further weight to this new structural assignment.¹⁰ The Mn⁽¹⁾ structure, on the other hand, was never re-examined in order to determine if the oxidation state was truly +1.
During the course of exploring the deprotonation reactions, a new dimeric complex was isolated which added further evidence that the imino methyl groups of the ligand were being deprotonated. This observation, together with literature data, indicates that the original [(BisImine)MnCl₂] complex undergoes several possible transformations when exposed to alkylating agents (see Scheme 6.2.2). Along with the deprotonation pathway it was thought that a mono-deprotonated transient Mn-R species was generated which would then either undergo a radical coupling to generate the dimeric Mn(I) complex, or react with another equivalent of alkylating agent in order to generate the doubly deprotonated [(BisIminato)Mn(II)][Li(ether)₄] complex. Alternatively, instead of deprotonation, the reduction pathway may also be followed, generating a monomeric non-deprotonated [Mn(II)-R] complex. Though the connectivity of the monomeric non-deprotonated complex assigned the formal oxidation state as Mn(I), the magnetic moment and DFT calculations actually indicated that the complex should be described as a Mn(II) complex which is anti-ferromagnetically coupled to a ligand radical anion. This finding further confused the role of the Bis-iminopyridinato ligand, as it appeared that the ligand...
was able to store electrons, forming organic radicals, thus making oxidation state assignment dubious. The ambiguity involved in whether or not the ligand was retaining delocalized radicals led our group to explore the reactions of the free ligand with various equivalents of either Li metal or lithium naphthalenide in THF under an argon atmosphere. The investigations found that the ligand was able to retain up to three electrons within the delocalized system, to yield the paramagnetic complex 1 (see Scheme 6.2.3).\(^1\)

\[
\text{Scheme 6.2.3 Bis-Iminopyridinato Li Complexes.}\(^1\)
\]

Complex 1 spontaneously decomposed to the diamagnetic, tri-anionic compound 2 if heated in toluene, or if generated from lithium naphthalenide via a one electron oxidation. These results clearly demonstrate that: 1) the ligand is capable of storing up to 3 electrons and; 2) there is significant radical character located on the imino methyl groups of the ligand which could explain coupling observed above.

The formally tri-anionic ligands generated by the reaction of three equivalents of Li with the free ligand proved to be synthetically uninteresting due to its thermal instability. Therefore, the rational preparation of the mono-anionic ligand was explored. It was found that reaction of LiMe with the ligand led to a dimeric compound (the Y group is an identical unit bound at the para position, except that an ether molecule is coordinated to Li) in which the pyridine nitrogen is alkylated (see Scheme 6.2.4).\(^1\)
Scheme 6.2.4 Generation of Mono-Deprotonated BisImine Ligand (BisImine=CH₂).

If the nitrogen alkylated complex is then placed into toluene and refluxed briefly the mono-deprotonated ligand (BisImine=CH₂) results. Formation of this ligand again reiterates the fact that the imino methyl groups of the ligand are quite susceptible to attack by alkylating agents.

The ability of this ligand to form complexes with the deceiving appearance of low-valent complexes is not limited to Mn. In fact it seems a rather general behaviour having been observed with lanthanide, Al and Fe complexes. An intriguing question obviously arises as to whether or not the ability of storing electrons can be used for purposes other than simply preparing complexes with the formal appearance of low-valent states. In our group it was found that when the [(BisImine)VCl₃] was reacted with excess NaH in THF, a di-nitrogen bridged dimeric structure resulted (see Scheme 6.2.5).¹³ The generation of di-nitrogen bound organometallic complexes isn’t limited to V, as it was also observed that [(BisImine)Co] complexes were also able to form analogous di-nitrogen structures.¹⁴
Scheme 6.2.5 Formation of [(BisImine)V] Di-Nitrogen Complex.

Once again, the metal may formally be regarded as the very rare case of a zero-valent complex. However, DFT calculations, and the distorted bond lengths within the ligand system would tend to indicate that each V is in the +3 oxidation state and each ligand is carrying a -2 charge. In turn this implies a substantial amount of reduction of the coordinated di-nitrogen unit, as it is also demonstrated by the lengthening of the N-N distance. Therefore, the ligand system is capable of stabilizing complexes whose appearance as low-valent is exclusively a formalism. However, the metal seems to retain the very high reactivity expected from a genuinely low-valent species, as the ability to coordinate an exceedingly stable molecule such as N$_2$ seems to suggest.

6.3 Research Rationale:

The target of this sub-project was to probe the ability of the bis-imine pyridinato ligand to sustain catalytic activity even with a metal, Mn, which notoriously does not produce catalysts. Thus, the immediate synthetic target was to prepare a complex containing two Mn-R functions, which eventually could be activated by Lewis acids.

The Mn di-alkyl [Mn(CH$_2$SiMe$_3$)$_2$(THF)]$_2$ (see Chapter 3) offers to provide new insights into the reactivity of [(BisImine)Mn] complexes as the metal centre already contains two alky groups. This will preclude the need for external alkylating agents which could detrimentally react with the ligand, therefore allowing the formation of the elusive [(BisImine)MnR$_2$] type of complex (see Scheme 6.3.1).
Scheme 6.3.1 Proposed Formation of [(BisImine)MnR₂].

The [(BisImine)MnR₂] complex would then be tested for ethylene polymerization activity, to evaluate whether this new synthetic strategy will finally lead to a functional catalyst.

As was previously reported, the mono-deprotonated ligand (BisImine=CH₂) may be readily synthesized via the addition of LiMe to the free ligand. This mono-anionic ligand, should react with MnCl₂(THF)₁.₅ (see Scheme 6.3.2) to form a species analogous to the supposed Mn(¹) complex found in Scheme 6.2.1

Scheme 6.3.2 Proposed Formation of [(BisImine=CH₂)MnCl].

This model structure should allow for a better comparison of the electronics and crystal structure in order to determine the proper oxidation state of the supposed Mn(¹) complex.

We wish also to test whether it would be possible to use the electron storage ability of this ligand for the preparation of an unprecedented Mn di-nitrogen complex. The formation of low-valent Mn via the reduction of [(BisImine)MnCl₂] with NaH will be attempted in order to determine whether di-nitrogen coordination by Mn is possible with this unique ligand system (see Scheme 6.3.3).
Scheme 6.3.3 Proposed Formation of Mn Di-Nitrogen Complex.

Di-nitrogen complexes of Mn are exceedingly rare, the only reliable example to date exists in the +1 oxidation state \([\text{MnH}(\text{N}_2)(\text{dmpe})_2]\).\(^{15}\)

6.4 Results and Discussion:

In order to have a good point of reference the neutral ligand was crystallized from toluene (see Figure 6.4.1).

Figure 6.4.1 Structure of BisImine (3) with 30% Thermal Ellipsoids.

The imine bond and imino methyl groups quite obviously are composed of a double and single bond respectively \([\text{N}(1)-\text{C}(2) = 1.278(4), \text{C}(1)-\text{C}(2) = 1.503(4) \text{ Å}]\). All other
bonds in the structure are within the expected distances, for a comparison of the bonds, along with the other complexes synthesized in this chapter see Table 6.6.1.

Upon mixing the Mn di-alkyl [Mn(CH₂SiMe₃)₂(THF)]₂ with the free ligand in either toluene or THF the colour immediately turned a very dark purple, which generally indicates a redox reaction as Mn(I) tends to be either colourless, or only very lightly coloured. X-ray quality crystals were eventually grown of the dimeric complex 4 (see Figure 6.4.2).

![Figure 6.4.2 Structure of 4 with 30% Thermal Ellipsoids, Carbon Ellipsoids Omitted for Clarity.](image)

The complex was formed via the radical coupling of two of the ligand imino methyl groups in order to generate what appears to be two Mn(I) metal centres. Unfortunately, this structure is identical to the previously published example,⁹ indicating that the Mn di-alkyl is incapable of creating a discrete [(BisImine)MnR₂] type of complex. Furthermore, this result would tend to indicate that the alkylating agents used in the introduction examples do not attack the ligand first, but rather add to the metal centre, and then subsequently are transferred to the ligand system. Since this complex was already obtained by our group via a different synthetic route, its coordination geometry will not be discussed here, however a comparison with the other complexes synthesized in this chapter can be found in Table 6.6.1.

Reaction of [MnCl₂(THF)₂] with the mono-deprotonated ligand (BisImine=CH₂) led to the formation of the monomeric metallate structure [(BisImine=CH₂)Mn-µ₂-
\(\text{Cl}_2 \text{Li(THF)}_2 \) (5) (See Figure 6.4.3). The Mn is found in a distorted trigonal bipyramidal coordination geometry with the equatorial plane occupied by the two bridging chlorides, and the pyridine nitrogen [Mn–Cl(1) = 2.436(3), Mn–Cl(2) = 2.417(3), Mn–N(2) = 2.209(5) Å, N(3)–Mn–Cl(1) = 124.92(17), N(3)–Mn–Cl(2) = 139.01(18)°].

![Figure 6.4.3 Structure of 5 with 30% Thermal Ellipsoids, Carbon Ellipsoids Omitted for Clarity.](image)

The axial positions are filled by the remaining two nitrogen atoms [Mn–N(1) = 2.295(7), Mn–N(3) = 2.334(6) Å, N(1)–Mn–N(3) = 145.1(2), N(1)–Mn–Cl(1) = 103.13(19)°]. It appears that the anionic charge is delocalized over the ligand framework as the C(1)–C(2) and C(8)–C(9) distances are longer than expected [1.439(10) and 1.486(10) Å respectively]. The imine bonds reflect this delocalized charge by their significant lengthening [C(2)–N(3) = 1.338(8), C(8)–N(1) = 1.366(9) Å]. A comparison of this structure with the published structure, which was assumed to be Mn\(^{II}\), reveals some striking similarities between the two structures (see Table 6.4.4).
Table 6.4.4 Comparison of Supposed Mn(I)\(^6\), and Mn(II) \([(\text{BisImine}=\text{CH}_2)\text{Mn-}\mu_2\text{-Cl}_2\text{Li(THF)}_2]\) (5) Bond Distances.

<table>
<thead>
<tr>
<th></th>
<th>([(\text{BisImine}=\text{CH}_2)\text{Mn-}\mu_2\text{-Cl}_2\text{Li(THF)}_2]) (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)–C(2)</td>
<td>1.467</td>
</tr>
<tr>
<td>C(8)–C(9)</td>
<td>1.482</td>
</tr>
<tr>
<td>C(2)–C(3)</td>
<td>1.449</td>
</tr>
<tr>
<td>C(7)–C(8)</td>
<td>1.451</td>
</tr>
<tr>
<td>C(2)–N(3)</td>
<td>1.333</td>
</tr>
<tr>
<td>C(8)–N(1)</td>
<td>1.320</td>
</tr>
<tr>
<td>C(1)–C(2)</td>
<td>1.439(10)</td>
</tr>
<tr>
<td>C(8)–C(9)</td>
<td>1.486(10)</td>
</tr>
<tr>
<td>C(2)–C(3)</td>
<td>1.527(10)</td>
</tr>
<tr>
<td>C(7)–C(8)</td>
<td>1.437(10)</td>
</tr>
<tr>
<td>C(2)–N(3)</td>
<td>1.338(8)</td>
</tr>
<tr>
<td>C(8)–N(1)</td>
<td>1.366(9)</td>
</tr>
</tbody>
</table>

If the averaged distance for the Mn(I) and Mn(II) complexes are compared (1.475 vs. 1.463 Å) a difference of only 0.01 Å is observed which may very well indicate that the Mn(I) has actually lost one proton from an imino methyl group. The imine bonds are also remarkably close to one another with only a 0.03 Å difference between their averaged values. Given the similarity of the crystal structure of the two complexes, along with near identical magnetic moments (Mn(I) = 4.82 µₘ vs Mn(II) 4.98 µₘ) it would seem a reasonable assumption to make that the Mn(I) complex would more correctly be formulated as the Mn(II) complex \([(\text{BisImine}=\text{CH}_2)\text{MnCH}_3]\).

The reduction of \([(\text{BisImine})\text{MnCl}_2]\) with 2.1 equivalents of NaH led to the formation of the formally Mn(II) structure \([(\text{BisImine})\text{MnCl(THF)}]\) (6) (See Figure 6.4.5). The coordination geometry of the Mn centre is best described as square pyramidal with the basal plane comprised of the ligand and the chloride atom [Mn(1)–N(1) = 2.280(4), Mn(1)–N(2) = 2.072(4), Mn(1)–N(3) = 2.305(4), Mn(1)–Cl(1) = 2.316(2) Å, N(1)–Mn(1)–N(2) = 73.46(14), N(1)–Mn(1)–N(3) = 142.39(13), N(1)–Mn(1)–Cl(1) = 103.72(11)°].
The axial position is occupied by a molecule of coordinated THF \([\text{Mn}(1)-\text{O}(1) = 2.171(4) \ \text{Å}, \ \text{O}(1)-\text{Mn}(1)-\text{Cl}(1) = 99.62(11)°]\). The imino methyl groups of the ligand appear to be completely intact \([\text{C}(1)-\text{C}(2) = 1.519(6), \ \text{C}(8)-\text{C}(9) = 1.511(6) \ \text{Å}]\) showing no signs of deprotonation. There is a slight lengthening of the imine bonds \([\text{N}(1)-\text{C}(2) = 1.311(4), \ \text{N}(3)-\text{C}(8) = 1.303(4) \ \text{Å}]\) and the bonds adjacent to the pyridine \([\text{C}(2)-\text{C}(3) = 1.444(5), \ \text{C}(7)-\text{C}(8) = 1.443(5) \ \text{Å}]\) which may indicate that the ligand is, in fact, carrying a negative charge which would make the complex \(\text{Mn}^{II}\). The rather low magnetic moment \((4.14 \ \mu_\text{B})\) would tend to favour a formulation that the metal is in the +2 oxidation state and that a radical character exists on the ligand, however without detailed calculations this must remain a conjecture.

As stated in the introduction, Mn catalysts tend to produce abysmal activities when used for the production of PE. However, to not even attempt polymerization with the newly synthesized complexes 4-6 would do this thesis a disservice. As such each was tested under standard conditions (see Table 6.4.6).
Table 6.4.6 Polymerization Results\(a\) for Mn Catalysts 4-6.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Amount (mmol)</th>
<th>PE Produced (g)</th>
<th>Activity (g PE/mmole-h-atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fe(BisImine)Cl](2)</td>
<td>0.01</td>
<td>3.90</td>
<td>678</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>0.48</td>
<td>0.320</td>
</tr>
<tr>
<td>5</td>
<td>3.0</td>
<td>0.44</td>
<td>0.293</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>0.51</td>
<td>0.340</td>
</tr>
<tr>
<td>Blank</td>
<td>0</td>
<td>0.11</td>
<td>-</td>
</tr>
</tbody>
</table>

\(a\) Conditions: 500 eq MAO activator, 1 atm ethylene, 24 °C, 30 minutes reaction time, total volume 150 mL in toluene.

From the table it is readily apparent that these Mn complexes are no exception to the general trend of being poor PE catalysts. The Mn complexes 4-6 only produce measurable quantities for PE when used in mmol amounts, as compared to their Fe analogues which utilize µmol amounts and yield better results. On the whole these results are not terribly surprising, and serves to confirm the trend of poor activity for Mn based PE catalysts.

6.5 Conclusions:

This work has confirmed that even with Mn the Bis-Iminopyridinato ligand system continues to have a fickle nature\(^{16}\) which is difficult to fully grasp. The reaction of the preformed Mn di-alkyl \([Mn(CH_2SiMe_3)(THF)]_2\) with the ligand system clearly shows that the presence of alkyl groups on the metal centre triggers the ligand transformation/reductive pathways regardless if the alkyl groups begin the reaction attached to the metal, or are added as their alkali-metal salts. Construction of the model Mn\(^{II}\) compound \([(\text{BisImine}=\text{CH}_2)\text{Mn-µ}_2-\text{Cl}_2\text{Li}(\text{THF})_2]\) (5) appears to have solved the oxidation state questions of the previously published Mn\(^{II}\) complex \([(\text{BisImine})\text{MnCH}_3]\), which should now be considered as the Mn\(^{II}\) \([(\text{BisImine}=\text{CH}_2)\text{MnCH}_3]\) complex. Finally, though the reduction of the \([(\text{BisImine})\text{MnCl}_2]\) complex with NaH did not yield the hoped for di-nitrogen complex, it does appear that an actual Mn\(^{II}\) complex may have been generated in this case, though the possibility that it is in the +2 oxidation state can not conclusively be ruled out. Further study with increased equivalents of NaH may lead to even lower oxidation states, or even the ever elusive Mn di-nitrogen complex.

Chapter 6 - Low-Valent Manganese Complexes Supported by the Bis-Iminopyridinato Ligand
6.6 X-Ray Crystallography Section:

The full crystallographic data, including bond lengths and angles may be found in Appendix 5. The abbreviated crystallographic data for the structures contained within this chapter are as presented in Tables 6.6.1 to 6.6.3.

Table 6.6.1 Selected Bond Distances for Complexes 3, 5, and 6.

<table>
<thead>
<tr>
<th>(BisImine) (3)</th>
<th>[(BisImine=CH₂)Mn₂µ₂-Cl₃Li(THF)] (5)</th>
<th>[(BisImine)MnCl(THF)] (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)–C(2) = 1.503(4)</td>
<td>C(1)–C(2) = 1.439(10)</td>
<td>C(1)–C(2) = 1.519(6)</td>
</tr>
<tr>
<td>C(2)–C(3) = 1.500(4)</td>
<td>C(8)–C(9) = 1.486(10)</td>
<td>C(8)–C(9) = 1.511(6)</td>
</tr>
<tr>
<td>C(2)–N(1) = 1.278(4)</td>
<td>C(2)–C(3) = 1.527(10)</td>
<td>C(2)–C(3) = 1.444(5)</td>
</tr>
<tr>
<td></td>
<td>C(7)–C(8) = 1.437(10)</td>
<td>C(7)–C(8) = 1.443(5)</td>
</tr>
<tr>
<td></td>
<td>C(2)–N(3) = 1.338(8)</td>
<td>C(2)–N(1) = 1.311(4)</td>
</tr>
<tr>
<td></td>
<td>C(8)–N(1) = 1.366(9)</td>
<td>C(8)–N(3) = 1.303(4)</td>
</tr>
</tbody>
</table>

Table 6.6.2 Crystal Data and Structure Analysis Results for Complexes 3 and 4.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₃₃H₄₈N₃</td>
<td>C₇₄H₁₀₈Mn₂N₈Si₂</td>
</tr>
<tr>
<td>FW</td>
<td>481.70</td>
<td>1245.71</td>
</tr>
<tr>
<td>space group</td>
<td>Orthorhombic, Pbcn</td>
<td>Monoclinic, P2(1)/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>24.03(3)</td>
<td>17.469(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>7.654(9)</td>
<td>12.0207(19)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>16.105(19)</td>
<td>18.372(3)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>110.800(3)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>2.962(6)</td>
<td>3618.9(10)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>217(2)</td>
<td>203(2)</td>
</tr>
<tr>
<td>D_calcd (g cm⁻³)</td>
<td>1.080</td>
<td>1.143</td>
</tr>
<tr>
<td>μ_calcd (mm⁻¹)</td>
<td>0.063</td>
<td>0.425</td>
</tr>
<tr>
<td>F_000</td>
<td>1048</td>
<td>1340</td>
</tr>
<tr>
<td>R, R_w²ᵃ</td>
<td>0.0789, 0.1467</td>
<td>0.0818, 0.1541</td>
</tr>
<tr>
<td>GoF</td>
<td>1.182</td>
<td>1.088</td>
</tr>
</tbody>
</table>

ᵃ R = Σ|Fo| - |Fc|/Σ|Fo|, R_w = [Σ(|Fo| - |Fc|)²/Σ|Fo|²]¹/².
Table 6.6.3 Crystal Data and Structure Analysis Results for Complexes 5 and 6.

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{51.50}H_{70}Cl_{2}LiMnN_{3}O_{2}</td>
<td>C_{37}H_{51}ClMnN_{3}O</td>
</tr>
<tr>
<td>FW</td>
<td>895.89</td>
<td>644.20</td>
</tr>
<tr>
<td>space group</td>
<td>Tetragonal, (P4(1)2(1)2)</td>
<td>Monoclinic, (P2(1)/c)</td>
</tr>
<tr>
<td>(a (\text{Å}))</td>
<td>14.230(4)</td>
<td>10.105(8)</td>
</tr>
<tr>
<td>(b (\text{Å}))</td>
<td>14.230(4)</td>
<td>16.075(12)</td>
</tr>
<tr>
<td>(c (\text{Å}))</td>
<td>51.930(9)</td>
<td>22.708(15)</td>
</tr>
<tr>
<td>(\alpha \ (\text{deg}))</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(\beta \ (\text{deg}))</td>
<td>90</td>
<td>102.01(4)</td>
</tr>
<tr>
<td>(\gamma \ (\text{deg}))</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(V (\text{Å}^3))</td>
<td>10.516(7)</td>
<td>3.608(5)</td>
</tr>
<tr>
<td>(Z)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>radiation ((K\alpha, \text{Å}))</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>(T (K))</td>
<td>203(2)</td>
<td>198(2)</td>
</tr>
<tr>
<td>(D_{\text{calcd}} \ (\text{g cm}^{-3}))</td>
<td>1.312</td>
<td>1.186</td>
</tr>
<tr>
<td>(\mu_{\text{calcd}} \ (\text{mm}^{-1}))</td>
<td>0.391</td>
<td>0.471</td>
</tr>
<tr>
<td>(F_{000})</td>
<td>3824</td>
<td>1376</td>
</tr>
<tr>
<td>(R, R_w^{*a})</td>
<td>0.0723, 0.1082</td>
<td>0.0533, 0.1125</td>
</tr>
<tr>
<td>GoF</td>
<td>1.029</td>
<td>1.030</td>
</tr>
</tbody>
</table>

\(^{*a} R = \Sigma |F_o| - |F_c|/\Sigma |F_o|, Rw = [\Sigma (|F_o| - |F_c|)^2/\Sigma w|F_o|^2]^{1/2} \).

6.7 Experimental Section:

All reactions were carried out under a dry nitrogen or argon atmosphere. Solvents were dried using an aluminum oxide solvent purification system. The \([\{2,6-(i\text{Pr})_2\text{PhN=C(Me)}\}_2\text{C}_5\text{H}_2\text{N}]\) and the deprotonated \([(\text{BisImine}=\text{CH}_3\text{Li}(\text{THF}))\text{Li}]\) ligands were prepared according to literature procedure.\(^{1a,12}\) \([\text{Mn(CH}_3\text{SiMe}_3\text{)(THF)}]_2\) was prepared as detailed in Chapter 3. Infrared spectra were recorded on an ABB Bomem FTIR instrument from Nujol mulls prepared in a drybox. Samples for magnetic susceptibility were pre-weighed inside a drybox equipped with an analytical balance and measured on a Johnson Matthey Magnetic Susceptibility balance. Elemental analysis was carried out with a Perkin-Elmer 2400 CHN analyzer. Data for X-ray crystal structure determination were obtained with a Bruker diffractometer equipped with a 1K Smart CCD area detector.
Synthesis of Dimeric Complex (4): (BisImine) (0.250 g, 0.519 mmol) was dissolved in 15 mL of THF and [Mn(CH$_2$SiMe$_3$)(THF)$_2$] (0.5 eq, 0.078 g, 0.259 mmol) was dissolved in a separate vial in 15 ml of THF. The two solutions were then mixed which led to an immediate colour change to dark purple. After reacting for 4 hours the solution was dried in vacuo and redissolved in 15 mL of toluene and layered with hexanes. After several days of standing at room temperature dark crystals of X-ray quality formed (0.063 g, 5.06 X10$^{-5}$ mol, 39.1% Yield).

IR (KBr, Nujol, cm$^{-1}$): 1644 (s), 1567 (m), 1530 (s), 1493 (s), 1365 (s), 1317 (w), 1266 (s), 1253 (s), 1227 (s), 1194 (w), 1162 (s), 1135 (w), 1110 (s), 1092 (s), 1050 (s), 1022 (s), 991 (s), 958 (s), 872 (s), 823 (s), 784 (m), 775 (w), 765 (m), 748 (s), 722 (s), 691 (s), 670 (w), 617 (w). $\mu_{eff} = 5.72 \mu_B$.

Synthesis of [(BisImine=CH$_2$Mn-μ_2-Cl$_2$Li(TIIF)$_2$)] (5): (BisImine=CH$_2$Li(THF)) (0.300 g, 0.536 mmol) was dissolved in 15 mL of THF and [MnCl$_2$(THF)$_2$] (1.0 eq, 0.145 g, 0.536 mmol) was suspended in a separate vial in 15 ml of THF. The two solutions were then mixed which led to an immediate colour change to dark green. After reacting for 4 hours the solution was dried in vacuo and redissolved in 15 mL of toluene and centrifuged to remove small amounts of solid. The solution was then cooled to -35 °C, after standing for several days dark green crystals of X-ray quality formed (0.364 g, 0.406 mmol, 75.8% Yield).

IR (KBr, Nujol, cm$^{-1}$): 1624 (s), 1530 (s), 1393 (s), 1377 (s), 1278 (s), 1244 (s), 1217 (s), 1172 (m), 1100 (s), 1072 (m), 1038 (w), 1022 (s), 981 (s), 952 (m), 872 (s), 826 (s), 789 (m), 743 (w), 771 (m), 732 (s), 712 (s).

Elemental Analysis calcd (Found) for MnC$_{51.50}$H$_{70}$N$_3$Cl$_2$LiO$_2$: C 69.04 (69.21), H 7.88 (7.82), N 4.69 (4.66). $\mu_{eff} = 4.98 \mu_g$.

Chapter 6 - Low-Valent Manganese Complexes Supported by the Bis-Iminopyridinato Ligand
Synthesis of [(BisImine)MnCl(THF)] (6): (BisImine) (0.300 g, 0.623 mmol) was dissolved in 15 mL of THF and [MnCl₂(THF)₂] (1.0 eq, 0.68 g, 0.623 mmol) was suspended in a separate vial in 15 ml of THF. The two solutions were then mixed which and refluxed overnight, which led to the expected orange [(BisImine)MnCl₂] complex. NaH (2.05 eq, 0.031 g, 1.28 mmol) was then added and the suspension was stirred for one week. Over the course of the week the colour slowly turned dark blue/black. The solution was then dried in vacuo and redisolved in 15 mL of hexanes after which it was centrifuged. The hexanes solution was then cooled to -35 °C for several days after which time orange crystals of X-ray quality were recovered (0.263 g, 0.408 mmo, 65.5% Yield).

IR (KBr, Nujol, cm⁻¹): 1565(m), 1461(s), 1377(s), 1309(m), 1300(w), 1263(m), 1231 (m), 1138(w), 1101(m), 1077 (w), 999(w), 960(w), 873(w), 820(m), 798(w), 766(s), 721(m), 696(w).

Elemental Analysis calcd (Found) for MnC₃₀H₅₁N₃ClO: C 68.98 (69.04), H 7.98 (8.09), N 6.52 (6.52). μ_{eff} = 4.14 μ_B.

6.8 References:
Chapter 7

Chromium Catalyzed Ethylene Oligomerization

Table of Contents

7.1 Introduction .. 153
7.2 Recent Advances ... 154
7.3 Oligomerization Mechanism 160
7.4 Research Rationale .. 164
7.5 Results and Discussion 168
 7.6 σ,π-Bonding Pyrrolide Ligands 168
 7.7 Cr(II) Imine Based Ligands 182
 7.8 Sasol SNS/PNP Ligand Systems 197
7.9 Conclusions .. 211
7.10 X-Ray Crystallography Section 213
7.11 Experimental Section 215
7.12 References .. 224

7.1 Introduction:

Linear α-olefins are valued commodity chemicals for industrial applications as they have a variety of uses as precursors to detergents, co-polymers, synthetic lubricants and plasticizers. In particular, the C_6 and C_8 fractions are in the highest demand as co-monomers for the production of LLDPE (Linear Low-Density PolyEthylene).
Traditionally, α-olefins were produced as a Shultz-Flory2 distribution ranging from C\textsubscript{4}-C\textsubscript{20} (eg. the SHOP3 process), making the production rather inconvenient, especially as extensive distillation is required in order to adequately separate the desired fractions. The highest market demand is currently for 1-butene, 1-hexene and 1-octene. While satisfactory processes for the production of 1-butene are conveniently available by using Ni-based catalyst systems, a selective system for producing 1-hexene has only recently been commercialized by Chevron Phillips in Qatar. The groundwork for the selective trimerization of ethylene was actually laid 39 years ago. In 1967, Manyik and Walker of the Union Carbide Corporation made the observation that a CrIII catalyst activated by PIBAO (partially hydrolyzed tri-isobutylaluminum) produced a polymer with regular butyl side-chains.4 The authors later rationalized, and provided experimental evidence, that the presence of the butyl side-groups was a result of 1-hexene being formed and subsequently incorporated into the growing polymer chain.5 It was further observed that the formation of 1-hexene was more influenced by the pressure of ethylene, than was the formation of PE. From these observations, they were able to derive a rate law for 1-hexene formation which was second order with respect to ethylene. This observation was incompatible with the known rate laws for polymer formation which, invariably, are first order with respect to ethylene; thus indicating that some, as yet, unknown mechanism was responsible for the selective formation of 1-hexene.

7.2 Recent Advances:

Since the original discovery of selective oligomerization a tremendous increase in interest has occurred for developing commercial catalysts, with over 200 patents being filed since 1987. In 2004, John Dixon of Sasol Technology published the most comprehensive review of both the patent and academic literature to date.6 Due to the sheer number of publications in the field, only the most relevant to the scope of this chapter will be discussed.

The first major contribution to the field of selective oligomerization was made in a patent filed in 1991 by Reagan7 describing the reaction of sodium pyrrolide with different stoichiometric ratios of CrII and CrIII reagents. Though the resulting complexes were often poorly characterized, they all had one important feature in
common. When combined with various alkylation agents in the presence of ethylene, all these species performed oligomerization. Subsequent work by the Phillips company utilized 2,5-dimethylpyrrole, which had superior thermal and light stability along with $[\text{Cr}^{\text{III}}(\text{2-EH})_3]$ (2-EH = 2-ethylhexanoate) which would soon become a standard source of Cr for oligomerization catalysts. Eventually, a catalyst that produced 156 666 (g/g·Cr·h) at 115 °C with a 93 % yield of 1-hexene was patented.8 This system was subsequently optimized through the judicious use of activators and additives to yield one of the most active catalysts for 1-hexene production to date, again utilizing $[\text{Cr}^{\text{III}}(\text{2-EH})_3]$ (see Scheme 7.2.1).9

$$\begin{array}{c}
\text{Cr}^{\text{III}}(\text{2-EH})_3 \\
\text{AlEt}_3 \\
\text{Hexachloroethane} \\
105 \, ^\circ\text{C}, 50 \, \text{bar C}_2\text{H}_4
\end{array} \xrightarrow{\text{3 780 000 g/g Cr h}} 95.4\% \text{ 1-hexene}$$

Scheme 7.2.1 Optimized Phillips System.

Quite similar to pyrrole in terms of both electronic and molecular orbital arrangement, the maleimidyl ligand was expected to also yield a viable catalyst. The Tosoh Corporation patented such a system in 1997 (see Scheme 7.2.2).10

$$\begin{array}{c}
\text{C}_2\text{H}_4
\end{array} \xrightarrow{\text{278 000 g/g Cr h}} 79.6\% \text{ 1-hexene}$$

Scheme 7.2.2 Maleimidyl Ligand System.

It was observed that both the selectivity and activity could be increased via the addition of a chloro-derivatized alkylation agent AlEt$_2$Cl in this case,11 a similar trend was also noted in the case of the 2,5-dimethylpyrrole system.12

Given that the pyrrolide molecule is isoelectronic with the Cp ligand (Cp = cyclopentadienyl), it is quite odd that “CpCr” systems were known only for ethylene polymerization, with no traces of incorporated oligomers.13 In fact, it is possible to convert a “CpCr” complex into a trimerization catalyst, but it requires the substitution of the ring by bulky aryl groups (see Scheme 7.2.3).14
Scheme 7.2.3 Cp Based Ligand System.

The major drawback of the system, besides the exorbitant price of the ligand, is that a substantial amount of internal hexenes (14%) are produced, which are very difficult to separate from the desired α-product. If less bulky groups are used the production of 1-hexene rapidly decreases, indicating that the steric bulk is an important prerequisite for the selective production of 1-hexene.

Recently, Hessen found that by substituting one of the Cp ring positions with a C(CH$_3$)$_2$Ph group, switched the output of a traditionally ethylene polymerization catalyst from PE production to 1-hexene. This remarkable discovery was ascribed to the hemilabile nature of the phenyl ring, which was thought to stabilize intermediates in the trimerization cycle (see Scheme 7.2.4).15,16
It was proposed that the hemi-labile properties of the ligand allowed both coordinative and electronic flexibility. This flexibility was thought to allow for the generation a Ti(III) species (top right Scheme 7.2.4) which would subsequently enter into the metallacyclic oligomerization cycle (see Section 7.3 for a mechanistic discussion). The most striking feature of the catalytic system was that it performed successfully at pressures and temperatures very low in comparison to the chromium systems (see Scheme 7.2.5).
Through the introduction of steric bulk to both the Cp ring and the pendant phenyl ring the authors were further able to increase the activity of the ligand with only a minute drop in selectivity.

Although these catalysts are highly performing, the absolute record in terms of selectivity is attributed to the so-called SNS Sasol ligand. The catalyst precursor is very simple and consists of a CrCl$_3$ unit octahedrally coordinated to the tridentate sulphur/amine ligand [((RSCH$_2$CH$_2$)$_2$NH] (see Scheme 7.2.6).17

![Scheme 7.2.6 SNS Ligand System.](image)

By varying the groups attached to the sulphur atoms, Sasol’s scientists were able to synthesize a variety of catalysts, which all showed remarkable selectivity for 1-hexene. The best catalyst reported utilized n-decyl groups. The catalyst was quite active while using only 30 eq. of MAO activator and yielded one of the highest overall selectivity for 1-hexene yet reported. The use of such a remarkably low amount of activator is of course an attractive feature in terms of cost-savings, safety and simplicity of the system.

Perhaps one of the largest advances in the field of ethylene oligomerization came with the publication of the PNP catalyst systems. The first major breakthrough using the PNP system occurred in 2002 when Wass of BP published an extremely active and selective catalyst (see Scheme 7.2.7).18

![Scheme 7.2.7 PNP Ligand System.](image)
The activity of the system is quite remarkable and is characterized by a very slow decrease of ~10 %/h of catalytic activity. This is in stark contrast to most other trimerization systems which lose most of their activity during the first 30 minutes. What is even more outstanding about this catalyst system is that the C₆ oligomer fraction is 99.9 % composed of 1-hexene which was an unprecedented level of selectivity. Even more desirable, the authors didn’t report the formation of PE, though this is most likely an oversight rather than a characteristic of the catalyst, as no catalyst has been reported to date which was free of PE production. It should be noted that formation of PE during the oligomerization process is highly undesirable, due to the fouling of the reactors requiring lengthy and costly clean up procedures. The second, and most significant, breakthrough in PNP based oligomerizations was reported by Sasol. Exchanging the methyl group attached to the central nitrogen with a bulkier group ("pentyl, Pr, Ph, Cy, etc.) significantly affected the outcome of the oligomerization. The selectivity switched from predominantly 1-hexene, to 1-octene. The activity of these catalysts, though not quite to the level of the BP PNP system are still quite respectable (see Scheme 7.2.8). It should be reiterated that no other catalysts reported in the literature, at the time, produced predominantly 1-octene. Incidentally, 1-octene is the most requested α-olefin for industrial purposes, which demonstrates the value of these findings.

\[
\text{Cr(acac)}_3 \quad \begin{array}{c}
\text{MAO} \\
\text{toluene} \\
45 ^\circ C, 45 \text{ bar C}_2\text{H}_4
\end{array} \quad \begin{array}{c}
\text{272 400 g/g Cr h} \\
67.4 \% \text{ 1-octene}
\end{array}
\]

Scheme 7.2.8 1-Octene Producing PNP Ligand.

As a general trend in this family of catalysts, the production of 1-octene was favoured at lower temperature, and higher pressure conditions. In addition, substituents in the ortho positions had a remarkable impact on selectivity. In the absence of substituents, the catalyst produced 1-octene as the main oligomer (33% C₆ vs 61% C₈). However, the presence of the more bulky ethyl group changed the distribution more towards 1-hexene (47% C₆ vs 47% C₈). Finally, the presence of a dative bonding group (OMe) completely changes the selectivity to 1-hexene (74% C₆ vs 6% C₈).
7.3 Oligomerization Mechanism:

A rapid survey of the scientific and patent literature clearly pointed out that chromium is by far the most recurrent metal among all the reported catalytic systems. Although catalysts based on other metal systems (Ti,15,16 V,20 Ni,21 and even U5) have been found, none can be compared to the chromium based systems in terms of activity and selectivity. Perhaps as a result of the great industrial interest in obtaining performing catalysts, the large majority of chromium catalysts are based on poorly defined in situ generated systems, or on simple coordination compounds which clearly are catalyst precursors. As a result, our understanding of the mechanism of the oligomerization process and especially of the factors which favour a selective process instead of a statistical distribution of oligomers or even polymerization remains very limited. It should be noted that selective and non-selective oligomerization and polymerization belong to the same category of process, through which C-C bonds are generated from ethylene coupling. The current level of understanding can basically be summarized with two current mechanistic proposals. The first may be regarded as an “aborted” polymerization: a polymerization occurring in the presence of a highly competitive β-H elimination process. As usual, the alkylation of the metal center and possible cationization may provide the conditions for the insertion reaction and chain growth. The extent of selectivity in this case will be determined by the same factors governing the β-H elimination process and which could be related to either steric factors or the thermal stability of the M-C bond or a combination of both. An important point is that the chain-growth mechanism does not require a redox reaction at the metal center. Therefore, the fact that the vast majority of chromium catalysts are based on the trivalent state makes good sense, given the stability of these d5 octahedral compounds and the sometimes surprising chemical inertness of the Cr-C bond.22 This mechanistic proposal was published by Cossee in 1964 to explain observations from Ziegler-Natta polymerization and, though unlikely, may account for the selective oligomerization process.

An alternative proposal, which is currently the most supported by observations, is known as the metallacyclic ring expansion mechanism, which is commonly abbreviated to the “metallacyclic mechanism”. The cycle is initiated when two molecules of ethylene oxidatively add to a Cr centre, generating a metallacyclopentane (A) (see Scheme 7.3.1).
Scheme 7.3.1 Accepted Mechanism for Selective Trimerization.

At this point one of two events may occur. During the constructive pathway another molecule of ethylene coordinates to the metal and inserts into the ring expanding it to a metallacycloheptane. The other option is that a \(\beta \)-hydride elimination occurs followed by a subsequent reductive elimination of 1-butene. Once at position (B) two competing events may occur. If the rate of ethylene insertion is greater than the rate of \(\beta \)-hydride elimination, another ethylene molecule will insert into the ring generating a metallacyclononane. If, however, the rate of \(\beta \)-hydride elimination is greater (as in the case of selective trimerization), 1-hexene will be generated and the catalyst will be returned to its resting oxidation state (n).
There was debate⁶ as to why the 5-membered ring should be more stable than the 7-membered, with the possible explanation that the 5-membered ring was too sterically constrained to allow β-hydride elimination. This hypothesis was further proven when Jolly synthesized, and crystallographically characterized both the five and seven membered chromacyclic rings using a Cp-based ligand system.²³ It was found that the 5-membered ring decomposed at 20 °C, while the 7-membered ring decomposed at 0 °C and liberated 1-hexene. These results showed that the metallacyclopentane species was much more stable than the corresponding metallacycloheptane, thus providing rather strong evidence as to why 1-hexene was selectively formed. Furthermore, when the metallacyclopentane compound was exposed to ethylene, and subsequently protonated, hexane was formed. These results quite clearly indicated that the metallacyclic mechanism was plausible, and that the insertion of ethylene into the 5-membered ring was also a viable route.

Several calculations have also been performed on the system in order to better elucidate the mechanism. The most accurate calculations were performed on Ti since it has a closed shell, allowing easier data processing with the currently available computational models. Not surprisingly, it was found that there is a significant energy barrier for the β-hydride elimination from the 5-membered ring and that the energy required for the insertion of another ethylene unit is minute in comparison, making it the preferred pathway.²⁴ Perhaps the only surprise revealed by the computational work was for the β-hydride elimination step. It was found that rather than the accepted two step process [β-hydride elimination to the metal followed by reductive elimination to yield an alkene (see Scheme 7.3.1)] a concerted hydride transfer takes place utilizing a linear C····H····C spatial arrangement (see Scheme 7.3.2).²⁵

Scheme 7.3.2 Concerted Hydride Transfer Mechanism.
The 5-membered ring was incapable of attaining this transition state, further explaining the selectivity for 1-hexene. Of course, all calculation chemistry should be taken with a grain of salt, as several of the authors postulated that further growth to form 1-octene would be highly unlikely, if not impossible.26

It is important to note that this process requires a two electron redox couple. Namely there is a two-electron oxidative addition of the metal centre to the ethylene double bond and then, after subsequent insertions, a reductive elimination of α-olefin which restores the original catalyst oxidation state for further cycles. The fact that this mechanism explains very well the variety of the by-products occasionally observed during the oligomerization process is considered to be convincing evidence in favour for this type of mechanism. However, if a two electron process is at the very heart of the process the major question is: \textit{which oxidation state of the chromium centre may be sufficiently reactive to perform reversible oxidative addition to ethylene.} Ethylene chromium complexes are exceedingly rare. The only example of a crystallographically characterized ethylene complex was reported by Jolly, with the fixation of ethylene at a [CpCr(PMe$_3$)$_2$] residue.22 Remarkably, this complex is non-reactive with ethylene, tentatively suggesting that the formally monovalent oxidation state of chromium is producing complexes which are too stable to initiate the insertion mechanism, although it is likely that the coordination of PMe$_3$ may be quenching the reactivity. Nonetheless, convincing evidence has been reported in the literature that a Cr$^{(I)}$/Cr$^{(III)}$ redox couple in some cases may be entering the catalytic cycle. Evidence has also been reported that other redox couples such as Cr$^{(I)}$/Cr$^{(II)}$,27 Cr$^{(I)}$/Cr$^{(III)}$,28 Cr$^{(II)}$/Cr$^{(IV)}$,29 Cr$^{(III)}$/Cr$^{(V)}$,30 may be involved. Of these the Cr$^{(III)}$/Cr$^{(IV)}$ couple appears to be the most likely candidate as they proceed through the most accessible and reactive oxidation states. Deuterium labelling experiments also are strong supporting evidence that the reaction proceeds via a metallacyclic mechanism (see Scheme 7.3.1), rather than a linear chain growth mechanism.31

One of the final points of the literature controversy for the selective trimerization reaction is with respect to the rate determining step. Several authors have noted a 2nd order dependence on ethylene, which would tend to indicate that the initial 5-membered ring formation is the rate determining step.5,12 Whilst others have instead observed a 1st
order dependence on ethylene which would imply that the limiting step is the insertion of ethylene into a metallacycle.15,32 Neither calculations, nor experimental evidence have solved this controversy. It is possible that the rate determining step is ligand dependant, therefore causing the discrepancies between the several observations.

It is important to note that with a few very rare exceptions,33 all oligomerization catalysts require activation. The activator is usually an aluminum alkyl (MAO, AlEt\textsubscript{3}, etc.) and its role is generally accepted to be the alkylation of the metal in order to generate an active catalyst. However, as will be explored later in this chapter, the role of the activators is not necessarily so straightforward.

7.4 Research Rationale:

It should be noted that while the results presented here are based exclusively on Cr, the σ,π-bonding pyrrolide complexes of Mn (See Chapter 4) were also tested given that the main thrust of this thesis was the investigation of the metal Mn. Not surprisingly, absolutely no oligomerization activity was ever observed in the case of Mn. The most likely reason for this is that if the metallacyclic mechanism is the true mechanism for this reaction, a metal must then possess a readily accessible two electron redox pair in order to participate. Manganese +2, with its highly stable d^5 electron configuration does not have access to a facile two-electron redox couple, and therefore was never expected to be active for this process.

The Cr project had three main directions which were explored. Foremost, was the utilization of the hemi-labile and σ,π-bonding pyrrole ligands developed in Chapter 2, to study the reactivity of chromium-based catalysts. Secondly, several amidinate (NCN) and amidate (NCO) ligands were explored as they bear a structural resemblance to the PNP tetramerization catalysts. Finally, an attempt was made to better determine the active oxidation state for the process via the careful exploration of CrII and CrIII PNP and SNS ligand systems using well defined, rather than \textit{in situ} generated catalysts.

Given the tremendous activity of the pyrrole based Phillips catalyst, we hoped that the N-MeDipyrr and N-MeTripyr ligands (see Figure 7.4.1) developed in Chapter 2 may also provide promising results.
In other words, by combining the known effectiveness of the pyrrole ligand system, with the hemi-labile motif of the Hessen system (see Scheme 7.2.5), it was hoped that a potent catalyst would be created.

The strategy adopted for exploring this system was quite straight-forward (see scheme 7.4.2).

The potassium salt of either ligand will be combined with either Cr\(^{\text{II}}\) or Cr\(^{\text{III}}\) in varying stoichiometries in order to generate well-defined complexes for testing. The catalysts will then be tested in conjunction with an activator according to commonly used conditions. It was anticipated that the N-MeDipyrr ligand will behave in much the same hemi-labile manner as the Hessen system providing flexible electronic and steric interactions. The \(\sigma,\pi,\sigma\)-bonding N-MeTripyrr ligand on the other hand, was not expected to have quite as much flexibility since the two \(\sigma\)-bonds effectively lock the N-Me pyrrole ring in close proximity to the metal centre. That said, the N-Me pyrrole ring should still offer electronic flexibility by donating more or less electrons (2 vs. 6 \(\epsilon^\circ\)) depending on ring-slippage, or quaternization of the N-Me group.

Given that the PNP ligand is performing so well in terms of formation of 1-octene, it was decided that it would be an optimum template for rationale modification. In order to explore the effects of the bite angle, a system with the same 3-atom bite was
selected. However, rather than the PNP framework, the NCN amidinate framework (CyNC(R)NCy) was chosen. This ligand is mono-anionic and serves as a 4 e⁻ donor versus the PNP system which is neutral but also a 4 e⁻ donor. Since nitrogen is a harder donor than phosphorous it will be interesting to see how this affects the overall activity. Also, since the amidinate system can only have one terminal group attached to the nitrogen instead of the two attached to the phosphorous of the PNP ligand, there will be less steric constraint. Nonetheless, the use of the bulky cyclohexyl groups should still provide the steric bulk which is seemingly so important. The amidinate ligand system is readily available with a large variety of substituents since it can be obtained via reaction of the appropriate RLi reagent with carbodiimides some of which are commercially available at very reasonable prices (see Scheme 7.4.3). With this methodology, several compounds can be synthesized. Since any changes in electronic factors are readily transmitted throughout the conjugated π-system of the amidinate ligand, the possibility of altering the para position with both electron donating and electron withdrawing groups was regarded as beneficial for mechanistic studies. In turn, this will affect the electronic environment of the metal center allowing us to evaluate how catalytic performance may be related to the electron density on the metal center.

Scheme 7.4.3 Amidinate (NCN) and Amidate (NCO) Synthesis Strategy.
Following the same line of reasoning, the amidate (NCO) ligand35 (see Scheme 7.4.3) is isostructural with the amidinate ligand, showing a similar bite angle, the major difference being the presence of the oxygen donor atom as part of the ligand backbone. The oxygen group acts as an even harder donor atom than nitrogen, and can act as a binding site for the aluminum activator. In addition, the replacement of the steric bulk of the N-Cy group by an oxygen atom will allow for the further evaluation of steric effects on catalysis.

Finally, we wish to revisit a family of established compounds which have been reported in the literature as mediocre polymerization catalysts when combined with Cr.36 The NacNac ligand system37 (see Figure 7.4.4) is comparable to the NCN amidinate systems as it too is a mono-anionic bi-dentate, and based on two nitrogen donor atoms. The main difference is that the ligand “bite” has been widened. Furthermore, the NacNac ligand provides quite extensive steric bulk leaving a well-defined pocket within which ethylene may react, and is quite good at generating monomeric species.38

![Figure 7.4.4 NacNac Ligand Framework.](image)

Both the NCN, and NCO derivatives 8-13 (see Scheme 7.4.3) and the KNacNac (14-15) ligand will be reacted with various stoichiometries of CrCl\textsubscript{3}(THF), and CrCl\textsubscript{2}(THF), in order to attempt to isolate well-defined complexes for catalysis. The impact of the various bite-angles, hetero-atoms, and electron withdrawing/donating groups will then be evaluated with respect to oligomerization selectivity and activity.

The final thrust of this project was to evaluate well-defined catalyst systems in order to determine the most likely oxidation state of the catalyst. To address the important point of the chromium oxidation state in the catalytically active species and of
how this may affect the selectivity of the oligomerization process, we have embarked on a project aimed at isolating and characterizing complexes arising from the reaction of trivalent or divalent chromium complexes with alkyl aluminum derivatives. To this end, we have analyzed the remarkable BP/Sasol PNP ligand, and Sasol’s SNS ligand (see Figure 7.4.5). These ligands were selected as they provide the most selective systems to date, with published literature conditions for testing which will offer us a good base-line indication to compare our results with.

![SNS and PNP Ligands Utilized](image)

Figure 7.4.5 SNS and PNP Ligands Utilized.

Just as in the previous cases the two ligand systems will be reacted with various stoichiometric ratios of both Cr(III) and Cr(III) in order to attempt to isolate well-defined complexes. In addition, the interaction of the isolated complexes with Al activators will be critically examined in order to gain insights as to the nature of the catalytically active species.

7.5 Results and Discussion:

Given the sheer volume of results, breaking them down into separate sub-sections is required in order to maintain clarity. The interpretation of each sub-section will be presented individually while the overall trends, especially comparing different catalysts, will be presented in the concluding section of this chapter (see Section 7.9 – Conclusions).

7.6 \(\sigma,\pi\)-Bonding Pyrrolide Ligands:

The reaction of two equivalents of KN-MeDipyr (see Figure 7.4.1) with CrCl\(_2\)(THF)\(_2\) provided good yields of Complex 1 (see Figure 7.6.1).
The structure consists of a pseudo-trigonal bipyramidally coordinated chromium centre with N(1)–Cr(1) = 2.079(7) Å and N(3)–Cr(1) = 2.068(8) Å occupying the axial positions [N(1)–Cr(1)–N(3) = 173.4(3)°]. One equatorial position is filled by a molecule of THF [O(1)–Cr(1) = 2.097(6) Å]. The final two equatorial positions are filled by two N-Me pyrroles [O(1)–Cr(1)–C(29) = 122.8(8)°, O(1)–Cr(1)–C(7) = 134.5(8)°] which both appear to be bonding in either an η¹ or η³ fashion. The closest contact occurs between C(29)–Cr(1) = 2.558(7) Å and C(7)–Cr(1) = 2.579(7) Å, the distances, though long, are still considered to be within bonding range.\(^39\) Whether the pyrroles could be η³ bonding is slightly more doubtful as the interatomic distances grow quite far apart [C(28)–Cr(1) = 2.997(7) Å, C(30)–Cr(1) = 2.992(7) Å]. Finally, the remaining two atoms of the ring [C(31) and N(4)] are over 3.5 Å from the Cr centre, excluding any bonding interaction. The second N-Me pyrrole ring [based on N(2)] shows nearly identical distances from the ring positions, indicating that both N-Me pyrroles are coordinated in the same fashion. The results would tend to indicate that the N-MeDipyrr ligand system is indeed acting as a hemi-labile ligand with a very loose coordination to the metal as demonstrated by the very long bond distances.
For the case of the N-MeTripyr ligand (see Figure 7.4.1) a slightly more complex situation arose. When K$_2$N-MeTripyr was reacted with CrCl$_2$(THF)$_2$ in THF, an insoluble light blue product formed nearly instantaneously. This solid was insoluble in all common solvents, including CH$_2$Cl$_2$ and acetonitrile which led to great difficulty in separating the complex from the two equivalents of KCl, which must concomitantly form. Crystals suitable for X-ray crystallography were obtained by layering a THF solution of K$_2$N-MeTripyr on a buffering solution of pure THF which had been layered on a solution of CrCl$_2$(THF)$_2$ in THF. This trinary system was then left undisturbed for several days, after which time crystals of [(N-MeTripyr)Cr(THF)$_2$] (2) of appropriate size grew out of the solution (see Figure 7.6.2). Although this technique does not allow for the bulk preparation of materials, the crystalline and dried non-crystalline samples displayed identical IR spectra, therefore indicating that KCl was likely the sole contaminant.

Figure 7.6.2 Crystal Structure of (2) with 30% Thermal Ellipsoids.

The Cr atom is in a square-planar geometry with each pyrrroleide trans to a coordinated THF molecule [N(1)–Cr(1) = 2.065(7)Å, N(3)–Cr(1) = 2.053(7)Å, O(1)–Cr(1) = 2.091(7)Å,]
O(2)–Cr(1) = 2.107(7) Å, N(1)–Cr(1)–N(3) = 96.3(7), N(1)–Cr(1)–O(1) = 88.8(7), O(1)–Cr(1)–O(2) = 83.1(7)°. The N-Me pyrrole ring appears to be outside the typical bonding range [ring centroid is 2.70 Å from Cr(1)]; although a bonding interaction with a large Jahn-Teller distortion can not be discounted. The N-Me pyrrole ring is perfectly centred above the Cr atom so it is possible that a very weak, and probably dynamic interaction is occurring, especially in solution state.

Complex 2 was treated with pyridine in boiling toluene in an attempt to completely separate the [(N-MeTripyr)Cr(THF)₂][THF]₁₄ from KCl, thus generating an analytically pure, well-defined complex. This treatment solubilised the complex, forming the intensely purple [(N-MeTripyr)Cr(pyridine)₂] (3) while allowing the KCl to be centrifuged off (see Figure 7.6.3).

Figure 7.6.3 Crystal Structure of (3) with 30% Thermal Ellipsoids.

Not surprisingly, Complex 3 is isostructural with 2, as the only difference between the two species is that the THF molecules have now been replaced with pyridine. Once again the complex assumes a square planar geometry with the N-Me ring perfectly centred over
Cr(1) [centroid–Cr(1) = 2.70, Cr(1)–N(2) = 2.093(3), Cr(1)–N(3) = 2.158(3) Å, N(2)–Cr(1)–N(3) = 88.80(11), N(2)–Cr(1)–N(2a) = 92.97(15)°].

Conversely, if the lithium salt (Li₂N-MeTripyr) is used in the synthesis, the metallate structure [(N-MeTripyr)Cr(C1Li(THF)₃)] (4) was isolated in good yield (see Figure 7.6.4).

![Crystal Structure](image)

Figure 7.6.4 Crystal Structure of (4) with 30% Thermal Ellipsoids, THF Molecules Have Been Omitted for Clarity.

Complex 11 assumes a distorted square-planar geometry in which Cr(1) lies slightly below the N(2)–N(2a) plane and slightly above the N(1)–Cl(1) plane. The pyrrolides are *trans* to one another as are Cl(1) and the N-Me pyrrole N(1) [N(2)–Cr(1) = 2.053(11), N(1)–Cr(1) = 2.239(13), Cl(1)–Cr(1) = 2.359(12) Å]. The most striking feature of the complex is that the N-Me group has lost its sp² geometry and has become quaternized as indicated by the sp³ configuration of the nitrogen atom directly σ-bonding with Cr(1) [C(1)–N(1)–Cr(1) = 104.3(3)°]. This is in striking contrast to complexes 2 and 3 in which the N-Me ring appears to be non-bonding, and further demonstrates the flexibility of the N-MeTripyr ligand system.
Reaction of the K₂N-MeTripyr ligand with CrCl₃(THF)₃ proceeded smoothly to yield the expected [(N-MeTripyr)CrCl] (5) complex (see Figure 7.6.5). The d³ metal centre adopts a tetrahedral geometry comprised of the two pyrroside rings, a fully η⁵ coordinating N-Me pyrrole ring, and finally one Cl atom [N(1)–Cr(1) = 1.958(4), N(3)–Cr(1) = 1.981(4), centroid–Cr(1) = 1.997, Cl(1)–Cr(1) = 2.221(2) Å, N(1)–Cr(1)–N(3) = 105.74(15), N(1)–Cr(1)–Cl(1) = 100.55(13), N(1)–Cr(1)–centroid = 108.3°].

Figure 7.6.5 Crystal Structure of (5) with 30% Thermal Ellipsoids.

The greater Lewis acidity of the Cr(III) metal may be the driving force for the formation of the fully η²-coordinated N-Me pyrrole ring in this case. For full bond angles and distances for the N-MeDipyrr and N-MeTripyr complexes see Appendix 7.

All catalyst testing was performed at the Technical University of Eindhoven (the Netherlands) under the supervision of Dr. Rob Duchateau, using a temperature controlled 250 mL Büchi reactor with mechanical stirring. During the first round of testing in May
2005, the σ,π-bonding pyrrolide ligands N-MeDipyrr and N-MeTripyrr (see Figure 7.6.6 and Table 7.6.7) were investigated.

\[
\begin{align*}
\text{[N-MeDipyrrCr(THF)]} & \quad \text{[N-MeTripyrrCr(THF)$_2$]} & \quad \text{[N-MeTripyrrCr(pyridine)$_2$]} \\
1 & \quad \text{Cr(II)} & \quad \text{Cr(II)} & \quad \text{Cr(II)} \\
\text{Figure 7.6.1} & \quad \text{Figure 7.6.2} & \quad \text{Figure 7.6.3} \\
\text{Cr(II)} & \quad \text{Cr(II)} & \quad \text{Cr(II)} \\
\text{[N-MeTripyrrCr(ChLiTHF)$_3$]} & \quad \text{[N-MeTripyrrCrCl]} \\
4 & \quad \text{Cr(II)} & \quad \text{Cr(II)} \\
\text{Figure 7.6.4} & \quad \text{Figure 7.6.5} \\
\text{Cr(II)} & \quad \text{Cr(II)}
\end{align*}
\]

Figure 7.6.6 Catalysts Used in Tables 7.6.7 and 7.6.8.

<table>
<thead>
<tr>
<th>Table 7.6.7</th>
<th>Catalyst Testing for Ethylene Oligomerization.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>Catalyst</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>blank</td>
</tr>
</tbody>
</table>

a Conditions: 30 μmol of catalyst, MAO activator, 40 bar ethylene, 50 °C, 1 hour reaction time, total volume 150 mL in toluene.

From the results presented in the table it readily becomes apparent that the N-MeDipyrr and N-MeTripyrr ligands produce active catalysts. Furthermore, a clear difference is visible between the Cr(II) and Cr(III) oxidation states. Even the least active Cr(III) catalyst (entry 2) is almost five times more active than the Cr(III) catalyst (entry 5). This would tend to indicate that Cr(III) is able to generate an active species capable of oligomerizing ethylene better than the Cr(III) oxidation state. Amongst the Cr(III) catalysts there is very little deviation in overall reactivity, with the only real differences being the amount of PE which was produced during the runs. It can be observed that entries 1 and 4 produce significantly more polymer than the other catalysts. The Li alkali metal present in entry 4
could somehow be influencing this increase in PE production; however, it is difficult to rationalize a reason for the increased PE production found in entry 1.

Table 7.6.8 α-Olefin Product Distribution.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Activity (g/g Cr·h)</th>
<th>mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C₄</td>
<td>C₆</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>24267</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>18119</td>
<td>16.2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>23296</td>
<td>12.3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>20708</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3813</td>
<td>14.7</td>
</tr>
</tbody>
</table>

* Determined by GC-FID, against standard solutions of authentic α-olefin samples.

The product distributions for the α-olefins produced in each run are presented in Table 7.6.8. It must be noted that very small amounts (<0.5 % of each oligomer fraction) of what was assumed to be internal olefins would often be detected, but their extremely low concentrations made meaningful quantification impossible. From this table it becomes apparent that a Shulz-Flory distribution is occurring for all of the catalysts tested. The majority of which (entries 1-3, 5) are centred upon the C₆ fraction. A deviation from this trend is observed in entry 4 which utilizes a catalyst, [N-MeTripyrCr(CILiTHF₃)] (4), that contains a Li cation. In this case the production of 1-butene has been almost completely retarded, and the overall Shulz-Flory distribution of α-olefins is now centred on C₈ (33.1 %). The production of the higher α-olefins has also been increased in the case of entry 4, indicating that the presence of the alkali metal is most likely affecting the catalysis by shifting the oligomer production to higher chain lengths. It should also be noted that there is virtually no difference between the product distributions of the Cr^{II} and Cr^{III} complexes that do not contain an alkali metal (entries 1-3 vs. 5).

Since the [N-MeTripyrCr(pyridine)₂] (3) complex oligomerized ethylene with a respectable rate and very little PE produced, it was decided to investigate other reaction conditions utilizing this species. The first variable which was investigated was the effect of changing the pressure of ethylene while holding all other conditions constant (see Table 7.6.9).
Table 7.6.9 Effect of Pressure on Catalyst 3.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pressure (bar)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>0.49</td>
<td>1.0</td>
<td>22 433</td>
<td>431</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0.21</td>
<td>33.0</td>
<td>740 300</td>
<td>14 237</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>0.69</td>
<td>50.3</td>
<td>1 127 275</td>
<td>21 678</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>2.30</td>
<td>54.0</td>
<td>1 211 400</td>
<td>23 296</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>3.54</td>
<td>32.3</td>
<td>723 475</td>
<td>13 913</td>
</tr>
</tbody>
</table>

\(^a\) Conditions: 30 \(\mu\)mol of catalyst, 2000 eq. of MAO activator, 50 °C, 1 hour reaction time, total volume 150 mL in toluene.

There is a marked decrease in oligomerization activity when the pressure is reduced to 1 bar of ethylene (entry 1), yielding a fifty-fold decrease in activity from the most active case (entry 9) which utilized 40 bars of ethylene. Overall the activity appears to increase from 1-40 bar, at which point it plateaus and then falls when the pressure is increased in the 60 bar run (entry 10).

Table 7.6.10 Effect of Pressure on the \(\alpha\)-Olefin Product Distribution of 3.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pressure (bar)</th>
<th>Activity g/g·Cr·h</th>
<th>(\alpha)-olefin mol %</th>
<th>(\alpha)-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_4)</td>
<td>(C_6)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>431</td>
<td>8.6</td>
<td>51.0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>14 237</td>
<td>16.4</td>
<td>37.4</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>21 678</td>
<td>17.0</td>
<td>35.2</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>23 296</td>
<td>12.3</td>
<td>36.8</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>13 913</td>
<td>20.7</td>
<td>35.6</td>
</tr>
</tbody>
</table>

\(^a\) Determined by GC-FID, against standard solutions of authentic \(\alpha\)-olefin samples.

There appears to be very little influence on the selectivity of the catalyst over the pressure ranges tested, as all produced a Shulz-Flory distribution centred at 1-hexene. At the low 1 bar pressure (entry 6) there appears to be a slight reduction in the production of 1-butene. Though this could also represent a sample which has lost more of the 1-butene gas into the atmosphere than have the other samples, especially since such a small volume of oligomers was produced to begin with (~1 mL).

Temperature often has quite a large influence on catalytic processes, hence it was deemed prudent to investigate the effect of temperature on 3 (see Table 7.6.11).
From entries 11-13 it would appear that the catalyst prefers operating at slightly elevated temperature as both the 50 °C and 70 °C runs produced almost identical activities. When the catalysis is run at the slightly lower temperature of 30 °C, the activity is nearly halved (entry 11).

Table 7.6.12 Effect of Temperature on the α-Olefin Product Distribution of 3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature (°C)</th>
<th>Activity g/g·Cr·h</th>
<th>α-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C₄</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>12 295</td>
<td>22.2</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>23 296</td>
<td>12.3</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>23 630</td>
<td>11.5</td>
</tr>
</tbody>
</table>

*a Determined by GC-FID, against standard solutions of authentic α-olefin samples.

Upon examination of the α-olefin selectivities it can be observed that temperature has very little impact. Similar to their activities, entries 12 and 13 displayed nearly identical selectivities, yielding a Shulz-Flory distribution centred on 1-hexene. At the lower reaction temperature (30 °C, entry 11), the reaction displayed slightly higher selectivity for the lower α-olefins C₄ and C₆.

By examining the activity of a catalyst over different time periods, it can be determined whether the catalyst is highly active but quickly deactivated, or working at a lower rate over a longer period of time. For this reason, the catalyst activity at three different times was measured (see Table 7.6.13).
Table 7.6.13 Effect of Reaction Time on Catalyst 3.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (min)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>30</td>
<td>0.97</td>
<td>1.2</td>
<td>56 083</td>
<td>1 079</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>1.20</td>
<td>3.6</td>
<td>76 650</td>
<td>1 347</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>2.20</td>
<td>9.0</td>
<td>100 950</td>
<td>1 941</td>
</tr>
</tbody>
</table>

*a Conditions: 30 μmol of catalyst, 1000 eq. of MAO activator, 40 bar ethylene, 50 °C, total volume 150 mL in toluene.

As displayed in entries 14-16 the activities of the catalyst appears to increase over longer reaction times. Specifically, the activity at 120 min (entry 16) is nearly double that of the 30 min (entry 14) run. This would tend to indicate that the catalyst does not decompose very rapidly and, in fact, may require longer reaction times in order to fully activate.

Table 7.6.14 Effect of Reaction Time on the α-Olefin Product Distribution of 3.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (min)</th>
<th>Activity g/g·Cr·h</th>
<th>C4</th>
<th>C6</th>
<th>C8</th>
<th>C10</th>
<th>C12</th>
<th>C14</th>
<th>C16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>30</td>
<td>1 079</td>
<td>19.2</td>
<td>37.3</td>
<td>23.4</td>
<td>10.5</td>
<td>5.4</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>1 347</td>
<td>13.5</td>
<td>38.7</td>
<td>24.4</td>
<td>11.5</td>
<td>6.4</td>
<td>3.2</td>
<td>2.1</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>1 941</td>
<td>11.2</td>
<td>38.9</td>
<td>22.8</td>
<td>13.4</td>
<td>7.3</td>
<td>4.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>

*a Determined by GC-FID, against standard solutions of authentic α-olefin samples.

There is virtually no effect on the selectivity of the catalyst over the different reaction times, indicating that the same species is present throughout the catalytic run.

Perhaps one of the most difficult tasks of this project was the search for an appropriate activator, and the correct stoichiometric ratio required. When the catalyst testing was first commenced very low loadings of MAO were used (entry 20) which resulted in some oligomerization activity, but the amount produced was so low (0.5-1.0 mL), that it made quantification very difficult. Other known activators were used in an attempt to generate better activity (entries 17-19), but all failed.
Table 7.6.15 Effect of Activator Type and Equivalents on Catalyst 3.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Activator (eq.)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>ZnMe(_2) (100)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>AlEt(_3) (300)</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>AlMe(_3) (300)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>MAO (500)</td>
<td>1.30</td>
<td>1.0</td>
<td>22 433</td>
<td>431</td>
</tr>
<tr>
<td>21</td>
<td>MAO (1000)</td>
<td>1.20</td>
<td>1.5</td>
<td>33 650</td>
<td>647</td>
</tr>
<tr>
<td>22</td>
<td>MAO (2000)</td>
<td>2.30</td>
<td>54.0</td>
<td>1 211 400</td>
<td>23 296</td>
</tr>
<tr>
<td>23</td>
<td>MAO (3000)</td>
<td>1.70</td>
<td>62.0</td>
<td>1 390 867</td>
<td>26 747</td>
</tr>
<tr>
<td>24</td>
<td>IBAO (2000)</td>
<td>26.52</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\) Conditions: 30 µmol of catalyst, 1 hour reaction time, 40 bar ethylene, 50 °C, total volume 150 mL in toluene.

It was only upon the addition of greater amounts of MAO (entries 21-23) that appreciable levels of activity were observed. There is a drastic increase in activity from 1000 eq. of MAO to 2000 eq. and then a somewhat smaller increase at 3000 eq. The large amounts of MAO also had virtually no impact on the amount of PE being produced by the reaction. The most unanticipated result was obtained when the activator IBAO (di-isobutylaluminumoxane) was used. In this case the activity of the catalyst was completely switched from an oligomerization catalyst, into a PE producing catalyst via an, as yet, unknown mechanism.\(^{40}\)

Table 7.6.16 Effect of MAO Activator Equivalents on the \(\alpha\)-Olefin Product Distribution of 3.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Activator (eq.)</th>
<th>Activity g/g·Cr·h</th>
<th>(\alpha)-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C(_4)</td>
<td>C(_5)</td>
</tr>
<tr>
<td>20</td>
<td>MAO (500)</td>
<td>22 433</td>
<td>10.1</td>
</tr>
<tr>
<td>21</td>
<td>MAO (1000)</td>
<td>33 650</td>
<td>13.5</td>
</tr>
<tr>
<td>22</td>
<td>MAO (2000)</td>
<td>1 211 400</td>
<td>12.3</td>
</tr>
<tr>
<td>23</td>
<td>MAO (3000)</td>
<td>1 390 867</td>
<td>16.8</td>
</tr>
</tbody>
</table>

\(^a\) Determined by GC-FID, against standard solutions of authentic \(\alpha\)-olefin samples.

Increasing the amount of MAO not only had no significant impact on the amount of PE produced, but also did not impact on the selectivity of the catalyst. As seen in Table 7.6.16 the distribution of \(\alpha\)-olefins remains nearly constant throughout all the different
equivalents of MAO. This would then indicate that a large amount of MAO is required to properly activate the catalyst, but that MAO does not directly influence the metal centre after generating the active species.

Since the Cr(III) complex [N-MeTripyrCrCl] (5) (Figure 7.6.5) had such a poor activity it was decided to replace the Cl group with a methyl group in order to produce a catalyst which should be better able to initiate the oligomerization process and to evaluate the stability of the Cr(III)-C bond. This was attempted via two methods which are detailed in Scheme 7.6.17. The first method involves reacting Complex 5 (left side of Scheme 7.6.17) with a variety of alkylating agents in order to substitute the chloride for an alkyl group.

\[
\begin{align*}
\text{AlMe}_3 & \quad \text{LiR} \quad \text{MgXR} \\
\text{[N-MeTripyrCrCl]} & \quad \rightarrow \\
\text{[N-MeTripyrCrR]} & \quad \text{Li}_2\text{N-MeTripyr} \\
\text{[CrCl}_2\text{Me(THF)}_3] & \quad \leftarrow
\end{align*}
\]

Scheme 7.6.17 Synthetic Routes to [N-MeTripyrR].

The second method involves the reaction of the Cr(III) mono-methyl species\(^4\) with the lithium salt of the ligand (right side Scheme 7.6.17). Although many different alkylating agents were used, they invariably led to dark coloured intractable materials, except in the case of AlMe\(_3\) (5 eq). The reaction yielded a small amount of crystalline compound which was found to be the result of ligand leaching (see Figure 7.6.18).

![Crystal Structure](image)

Figure 7.6.18 Crystal Structure of [N-MeTripyrAlMeTHF] (6) with 30% Thermal Ellipsoids.
The Al(1) atom exists in a slightly distorted trigonal bipyramidal coordination geometry with the equatorial plane comprised of the two pyrroline functions and the methyl group [Al(1)–N(1) = 1.891(4), Al(1)–N(3) = 1.895(4), Al(1)–C(40) = 1.951(5) Å, N(1)–Al(1)–N(3) = 113.71(15), N(1)–Al(1)–C(40) = 126.10(19), N(1)–Al(1)–O(1) = 90.46(14)°]. The axial plane is composed of a molecule of THF and the N-Mepyrrrole N(2) [Al(1) O(1) = 1.994(3), Al(1)–N(2) = 2.466(3) Å, N(2)–Al(1)–O(1) = 165.99(14)°]. The strong Lewis acidity of the Al atom has caused the N-Me pyrrole group to lose its planarity, adopting a more tetrahedral arrangement to better donate the N(2) lone pair to Al(1) [NMe group is now 26.97(14)° out of the ring plane]. The formation of this species clearly demonstrates that AlMe₃ has the power to remove the ligand from the Cr metal. Since AlMe₃ is present in MAO, this could explain the poor behaviour exhibited for the oligomerization reaction. The second synthetic strategy was partly successful in the sense that a trivalent species was isolated in this case (see Figure 7.6.19).

![Figure 7.6.19 Crystal Structure of 7 with 30% Thermal Ellipsoids, Li-THF Molecules Omitted for Clarity.](image)

Complex 7 is most likely the result of an attack of the N-Me group by the CH₃ group on the Cr starting material. The structure adopts a trigonal bipyramidal geometry with the equatorial plane defined by the N-CH₂ (C22), a molecule of THF, and Cl(1) [Cr(1)–C(22)
= 2.005(3), Cr(1)–O(1) = 2.195(2), Cr(1)–Cl(1) = 2.3527(11) Å, C(22)–Cr(1)–O(1) = 145.42(9), C(22)–Cr(1)–Cl(1) = 113.76(7), C(22)–Cr(1)–N(1) = 89.61(10)°]. The axial positions are filled by the two pyrroline moieties which are almost perfectly trans to one another [Cr(1)–N(1) = 2.074(2), Cr(1)–N(3) = 2.068(2), N(1)–Cr(1)–N(3) = 178.70(9)°]. Though the trivalent oxidation state was preserved, the N-Me group is now directly σ-bonded to the Cr centre. This type of reactivity tends to indicate that the Cr(III)–Me moiety is quite unstable, a fact which is reiterated in the literature.42 Furthermore, it was observed in the previous structure 6 (see Scheme 7.6.18) that the presence of an Al-Me residue in close proximity to the N-Me pyrrole was incapable of this deprotonation reaction. Taken together these two results offer a reasonable explanation as to why the Cr(III) N-MeTuripy system is such a poor oligomerization catalyst.

The results outlined above are quite encouraging. Not only do they demonstrate that the σ,π-bonding pyrrolines are capable of sustaining oligomerization activity, but they have clearly demonstrated that the Cr(I) oxidation state may be closer to the active species than Cr(III), contrary to the current consensus. In fact, the Cr(II) oxidation state was over six times more active than the analogous Cr(III) complex. The results of the reactions of Cr(III) with AlMe3 may provide some insight as to the reason behind the general lack of selectivity in these systems. It is not difficult to envisage this ligand leaching reaction occurring in the presence of the large excess of MAO which is required for the trimerization process. The reaction of the Cr(III)-Me with the ligand system clearly demonstrates that the Cr(III)-Me moiety is quite unstable and highly reactive in combination with the pyrroline ligand system, perhaps leading to the low activity found in the case of the Cr(III) catalyst.

7.7 Cr(II) Imine Based Ligands:

The synthesis of the Cr- amidinate (NCN), amidate (NCO), and NacNac ligand complexes used in this work was carried out via the metathetic reaction between the ligand in the form of either a lithium or potassium salt (see Figure 7.7.1) with CrCl2(THF)2.
The amidinate ligands 8-10 were prepared by reacting dicyclohexylcarbodiimide (DCC) with the appropriate RLi reagents (see Scheme 7.4.3) according to literature methods and were fully characterized by NMR (\(^1\)H, \(^13\)C\(^{\text{1H}}\), \(^13\)C\(^{\text{1H}}\)DEPT, \(^1\)H-\(^1\)H COSY, \(^13\)C-\(^1\)H HMQC) and IR (Nujol). The NMR spectra for ligands 8-10 showed the presence of small amounts of impurities (<3%); however, the compounds were considered sufficiently pure for the subsequent methathesis reactions. The amidate ligands 11-13 were prepared via reaction of the appropriate para-substituted benzoyl chloride with p-isopropylaniline (see Scheme 7.4.3). Once again, full spectroscopic characterization was satisfactory and in agreement with the protonated formulations reported in Figure 7.4.3. The NMR spectra of the protonated ligands 11-13 showed that they were all pure (>99%) after their aqueous workup and subsequent drying. These ligands also showed an interesting trend in the \(^1\)H spectra with respect to the N-H peaks. Due to the progressive deshielding effect from the adjacent phenyl ring which resulted from the different electron donating/withdrawing substituents, the N-H peak progressively shifted downfield, going from 7.88, to 8.08 and 8.57 for 11 (Ph), 12 (p-MeO-Ph) and 13 (p-F-Ph) respectively. This confirmed that there are indeed pronounced electronic effects due to the different substituents which should influence the Cr center once complexed. The formation of the potassium salt of 11, was obtained via the in situ treatment of the ligand with KH in anhydrous THF prior to the reaction with CrCl\(_2\)(THF)\(_2\). Unfortunately, the reaction of the ligands 12 and 13 did not readily occur in THF due to insolubility, precluding their further use in this study. If future investigations are to be conducted on...
the amidate class of ligands it will be imperative that side chains which confer greater solubility be added. The protonated form of the NacNac ligands 14 and 15 were prepared according to literature procedure and the potassium salt was generated via its reaction with KH in THF, followed by isolation from hexanes. Full characterization indicated the formation of solvent-free KNacNac in pure form (>99%).

The metathetic reactions of the ligands with CrCl₂(THF)₂ were carried out in THF at room temperature by using the appropriate ligand/Cr stoichiometric ratios (see Scheme 7.7.2). In spite of repeated attempts, compounds 16-18 proved impossible to crystallize into X-ray diffraction quality form, as they consistently grew as multiple needles/plates regardless of solvent. Therefore, the formulations of these species rely on their analogy with previously reported compounds and on satisfactory values obtained for the magnetic moments and elemental analyses.

Scheme 7.7.2 Metathetic Routes to Cr(II) NCN, NCO, and NacNac Pre-Catalysts.
There is good reason to believe that the compounds obtained from the syntheses are as depicted in Scheme 7.7.2. The proposed coordination geometries for complexes 16-18 are based on previous work performed by this group and by Winter et al. It was reported that modifying the R group on the amidinate carbon has a profound impact on the eventual arrangement of the Cr(III) structure (see Scheme 7.7.3).

Scheme 7.7.3 Effect of Bite Angle (α vs γ) on Cr(III) Amidinate Complexes.

In essence, it was found that when \(R = H \), the “paddlewheel” possibly quadruply bonded, Cr-Cr complexes are formed (top-right Scheme 7.7.3). However, when \(R = \text{Me} \) or a larger substituent, only the bis-amidinate monomeric complexes are formed (bottom-right Scheme 7.7.3). It also appears that the amidinate class of ligand only provides 2:1 complexes regardless of the stoichiometric ratio employed in the preparation, as the 1:1 reactions always yielded unreacted CrCl₂(THF)₂ along with the 2:1 products. This observation is reinforced by the fact that no 1:1 amidinate Cr(III)X complexes have ever been reported in the literature. The binuclear paddlewheel complexes exhibit extensive metal-metal bonding leading to nearly diamagnetic complexes, or genuinely diamagnetic, depending on the extent of Cr···Cr interaction. The mononuclear configuration, conversely, nearly always affords high-spin, square-planar, complexes with very few low-spin square pyramidal exceptions. Since 16-18 all had magnetic moments ranging
from 4.68–4.84 μ_B, the complexes are quite clearly in the d^4 high-spin electronic configuration of divalent chromium in a square-planar ligand field, further supporting the formulation of the structures in Scheme 7.7.2.

Although reaction of the amidate (NCO) (11) with CrCl$_2$(THF)$_2$ did not produce crystalline material of sufficient quality for an X-ray structure determination, the diamagnetism of the complex permitted elucidation of the structure via NMR. Just as in the case of the published CrII amidinate complexes, a paddlewheel structure with short metal-metal contacts and two axial THF molecules was found (19).

Current work in our lab on an amidate NCO ligand system (see Figure 7.7.4), similar to the previously discussed 11 (see Figure 7.7.1) has also yielded CrII catalysts for examination.

![Figure 7.7.4 NCO Ligand for Complexes 20 and 21.](Image)

Complex 20 was characterized by both NMR and X-ray crystallography and was found to adopt the classic paddlewheel configuration with a short Cr···Cr distance (see right side of Figure 7.7.5). Each “spoke” of the paddlewheel is an amidate ligand which is staggered versus the neighbouring ligands so that the steric repulsions between each 2,6-Me$_2$-Ph is minimized.

![Scheme 7.7.5 Synthesis of NCO Ligand Complexes 20 and 21.](Image)
As this ligand is so structurally similar to 11, this provides further evidence that the proposed structure (19) is most likely correct (see Scheme 7.7.2). The second complex with this ligand (21) is an ionic complex in which the ortho positions of the backbone phenyl are anionically coordinated to Cr (see left side Scheme 7.7.5). This complex represents a deviation from the normal amidate (NCO) bonding style and was structurally characterized via X-ray crystallography. The metal adopts a distorted square-planar geometry with each amidate nitrogen trans to one another, as are the phenyl groups.

The chromium NacNac complex 22 was obtained in excellent yield as X-ray quality crystals (see Figure 7.7.6). Although the cell parameters were slightly different, the structure of 22 was identical to that of a previously published example, though the synthetic routes were different.\(^{46}\)

![Figure 7.7.6 Crystal Structure of (22) with 30% Thermal Ellipsoids.](image)

Complex 22 was formed regardless of the stoichiometric ratio employed (2:1 or 1:1), most likely due to the steric constraints of the bulky 2,6-iPr\(_2\)-Phenyl groups. The structure is composed of two square-planar Cr centres which are bridged to one another.
via two chlorine atoms [Cr(1)–Cl(1) = 2.3796(8), Cr(1)–Cl(1A) = 2.3970(9), Cr(1)–N(1) = 2.047(2), Cr(1)–N(2) = 2.038(2) Å, Cl(1)–Cr(1)–N(1) = 94.90(6), Cl(1)–Cr(1)–Cl(1A) = 81.04(3), Cl(1)–Cr(1)–N(2) = 174.01(6)°]. The long Cr–Cr distance [3.631(8) Å] precludes any direct metal-metal bonding. The 2,6-iPr2-Phenyl groups of each NacNac ligand are slightly skewed in the crystal structure indicating that there is some steric repulsion occurring, a fact which may help to cleave the dimeric structure in solution.

Complex 23 was generated by addition of the potassium salt of the slightly less bulky (2,6-Me2-Ph)NacNac ligand (15) with [CrCl2(THF)]2. X-ray quality crystals were retrieved in a good yield and their analysis shows a very similar structure to 22, though two molecules of THF are retained in this case (see Scheme 7.7.7).

![Crystal Structure of (23) with 30% Thermal Ellipsoids.](image)

Each Cr centre exists in a square pyramidal coordination environment with the basal plane defined by the NacNac ligand and the two bridging chlorides [Cr(1)–N(1) = 2.062(5), Cr(1)–N(2) = 2.056(5), Cr(1)–Cl(1) = 2.4168(19), Cr(1)–Cl(1a) = 2.3976(18) Å, N(1)–Cr(1)–N(2) = 89.5(2), N(1)–Cr(1)–Cl(1) = 175.67(15), N(1)–Cr(1)–Cl(1a) = 93.88(15)°]. The axial position of each Cr atom is filled by a coordinated molecule of THF [Cr(1)–O(1) = 2.393(4), O(1)–Cr(1)–Cl(1) = 90.06(12), O(1)–Cr(1)–N(2) = 90.17(13)°].
97.08(12)°. This additional coordination of THF is most likely due to the slightly less sterically constrained environment around the Cr centre as opposed to the previous case with complex 22. Similar to 22 the phenyl groups of the ligand are skewed indicating that there is steric interference which may favour a monomeric structure in solution.

With our hypothesis that Cr(II) could possibly create more active oligomerization catalysts than Cr(III) the imine-based catalysts were tested for activity in March of 2006 at the Technical University of Eindhoven. The catalytic testing was broken down into several sections: for the amidinate (NCN) see Figure 7.7.8, for the amidate (NCO) see Figure 7.7.12 and for the NacNac systems see Figure 7.7.17.

![Diagram of amidinate complex](image)

R = H (16), OMe (17), CF₃ (18)

Figure 7.7.8 Amidinate Complexes for Oligomerization Testing.

The amidinate system quickly proved to be exceedingly active; producing large amounts of oligomers (see Table 7.7.9) through a very exothermic reaction. The activities of all three complexes tested put them on par with the previously tested N-MeDipyrr and N-MeTripyr Cr(II) complexes, though the amidinates showed a roughly 25% increase in activity.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>16</td>
<td>50</td>
<td>1.03</td>
<td>61.5</td>
<td>1 379 650</td>
<td>26 532</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td>50</td>
<td>1.87</td>
<td>68.25</td>
<td>1 531 075</td>
<td>29 444</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>50</td>
<td>1.84</td>
<td>71.25</td>
<td>1 598 375</td>
<td>30 738</td>
</tr>
<tr>
<td>28</td>
<td>18</td>
<td>5</td>
<td>1.15</td>
<td>61.5</td>
<td>1 379 650</td>
<td>26 532</td>
</tr>
</tbody>
</table>

Conditions: 30 μmol of catalyst, 2000 eq. of MAO activator, 35 bar ethylene, total volume 150 mL in toluene, 1 hour reaction time.
In general, it appears that the activity of the catalysts increased in relation to the electron withdrawing ability of the ligand. The O-Me containing complex (17), which is the most electron donating, shows the lowest activity. The Ph derivative (16) yields an activity (entry 27) between the two other groups, as expected. The electron-withdrawing CF₃ ligand (18) displays the highest activity of the three. This then indicates that a metal centre which is more electron poor is more capable of producing higher activity which in turn is consistent with a “cationic” type of mechanism.

Table 7.7.10 Amidinate Complexes; α-Olefin Product Distribution.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>Activity g/g Cr·h</th>
<th>α-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C₄</td>
<td>C₆</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>50</td>
<td>26 532</td>
<td>10.1</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td>50</td>
<td>29 444</td>
<td>13.5</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>50</td>
<td>30 738</td>
<td>13.1</td>
</tr>
<tr>
<td>28</td>
<td>18</td>
<td>5</td>
<td>26 532</td>
<td>14.6</td>
</tr>
</tbody>
</table>

* Determined by GC-FID, against standard solutions of authentic α-olefin samples.

Just as in the case of the pyrrolide ligand systems, the amidinates only produced a Shulz-Flory distribution of oligomers which was centered at 1-hexene. There appears to be no direct link between the electron donating/withdrawing ability of the ligand system and the selectivity it displays, as all three complexes display near identical selectivities (entries 25-27). When the reaction was carried out at 5 °C (entry 31), a 13% drop in activity was observed (entry 27). This drop in activity is accompanied by a 20% increase in the amount of 1-hexene produced (entries 27 and 28), though, allowing for some thermal control over the products. At 5 °C catalyst 18 produces much less higher α-olefins than the other catalysts. All four polymerizations were performed in a reactor equipped with a thermocouple in order to sample the temperatures within the reactor. In the case of each amidinate ligand an exotherm was observed upon catalyst injection (see Figure 7.7.11).
Figure 7.7.11 Exotherms for Entries 25-28.

It should be noted that the most active catalyst 18 exhibited a very large exotherm, reaching 118.7 °C within three minutes of being injected and charged with ethylene. The other two complexes slowly build in temperature until they reach a maximum and begin falling. This most likely indicates that, in the case of 18 (entry 27), there is a massive amount of activity which causes the temperature to rise to a level where the catalyst begins to decompose, at which point the temperature begins to fall. It is also noteworthy that the O-Me ligand (16) exhibits the lowest temperature increase, which is in line with its lower overall activity.

The amidate ligand systems (see Scheme 7.7.12) were also tested in thermocouple-equipped reactors for their oligomerization ability.
Figure 7.7.12 Amidate (NCO) Complexes.

All three amidate Cr complexes displayed good catalytic activity for the oligomerization of ethylene (see Table 7.7.13). It appears that there is a steric influence on the activity as complex 19 (entry 29) which contains 2,5-Me₂-Ph groups has a much lower activity than 20 (entry 31) which has only hydrogens in the ortho positions.

Table 7.7.13 Amidate Complexes; Oligomerization Activity.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol-h</th>
<th>Activity g/g Cr-h</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>19</td>
<td>50</td>
<td>0.26</td>
<td>63.0</td>
<td>1 413 300</td>
<td>27 179</td>
</tr>
<tr>
<td>30</td>
<td>19</td>
<td>5</td>
<td>0.29</td>
<td>76.5</td>
<td>1 716 150</td>
<td>33 003</td>
</tr>
<tr>
<td>31</td>
<td>20</td>
<td>50</td>
<td>0.24</td>
<td>69.8</td>
<td>2 040 946</td>
<td>39 249</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>5</td>
<td>0.67</td>
<td>73.5</td>
<td>2 150 674</td>
<td>41 359</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>50</td>
<td>1.901</td>
<td>64.5</td>
<td>1 446 950</td>
<td>27 826</td>
</tr>
</tbody>
</table>

\(^a\) Conditions: 30 µmol of catalyst, 2000 eq. of MAO activator, 35 bar ethylene, total volume 150 mL in toluene, 1 hour reaction time.

The square-planar, ortho–metallated analogue of 20 displays a decent level of activity (entry 33), though it is 30% less active than its parent compound (entry 31). It also produces significantly more PE than the other non-metallated amidate ligand systems. When the temperature of the reaction is lowered to 5 °C, the activity for both 19 (entry 30) and 20 (entry 32) increases. This most likely indicates that higher temperatures lead to catalyst decomposition.
Table 7.7.14 Amidate Complexes; α-Olefin Product Distribution.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>Activity g/g·Cr·h</th>
<th>C(_4)</th>
<th>C(_6)</th>
<th>C(_8)</th>
<th>C(_{10})</th>
<th>C(_{12})</th>
<th>C(_{14})</th>
<th>C(_{16})</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>19</td>
<td>50</td>
<td>27 179</td>
<td>6.6</td>
<td>32.1</td>
<td>22.6</td>
<td>15.9</td>
<td>10.9</td>
<td>7.0</td>
<td>4.8</td>
</tr>
<tr>
<td>30</td>
<td>19</td>
<td>5</td>
<td>33 003</td>
<td>23.2</td>
<td>46.1</td>
<td>17.2</td>
<td>8.1</td>
<td>3.4</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>31</td>
<td>20</td>
<td>50</td>
<td>39 249</td>
<td>2.1</td>
<td>28.7</td>
<td>26.1</td>
<td>17.9</td>
<td>12.2</td>
<td>7.7</td>
<td>5.2</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>5</td>
<td>41 359</td>
<td>18.7</td>
<td>46.0</td>
<td>20.3</td>
<td>8.8</td>
<td>4.0</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>50</td>
<td>27 826</td>
<td>6.4</td>
<td>31.9</td>
<td>23.8</td>
<td>15.9</td>
<td>10.7</td>
<td>6.9</td>
<td>4.6</td>
</tr>
</tbody>
</table>

\(^a\) Determined by GC-FID, against standard solutions of authentic α-olefin samples.

The higher temperature runs (entries 29, 31, 33) all show a Shulz-Flory distribution of α-olefins, centred at 1-hexene. When the temperature is lowered to 5 °C the catalysts become much more selective for 1-hexene and 1-octene, though they do also produce much more 1-butene. If the trend were to continue at even lower temperatures, it may be possible to develop a system that only produces 1-butene, 1-hexene, and 1-octene. When all three amidate ligand systems were tested at 50 °C extremely large exotherms were observed within the first minutes of catalysis (see Figure 7.7.15).

Figure 7.7.15 Exotherms for Entries 29, 31, 33.
As Figure 7.7.15 demonstrates, the reactions almost reach the boiling point of toluene within the first minutes of oligomerization. The temperature then rapidly declines, which most likely indicates that all of the catalytic activity is being performed within the first ten minutes of the run, during this time the catalysts are probably decomposing due to the extreme temperatures. In the case of the 5 °C runs (entries 30, 32) an exotherm is still observed, but it is now much milder (see Figure 7.7.16).

![Graph showing temperature changes over time for Complexes 19 and 20.](image)

Figure 7.7.16 Exotherms for Entries 30, 32.

Oddly, Complex 20 now displays the larger exotherm, though it is only by a few degrees. It is also observed that in both cases the temperature does not fall to the regulated 5 °C temperature of the reactor. This would indicate that at lower temperatures the catalysts are remaining active for much longer periods of time. Complex 19 also displays a strange, bi-modal exotherm, which could possibly be attributed to an initial exothermic reaction at the metal centre, followed by an induction period, and then the actual catalytic activity.

The final complexes in the imine nitrogen donor ligand series are the NacNac Cr complexes 22 and 23 (see Scheme 7.7.17).
Figure 7.7.17 NacNac Cr Complexes 22 and 23.

It had been previously reported that complex 22 was a poor PE producing catalyst, but no testing was done to detect oligomers.46 It seemed logical that the poor PE producing ability may be an indication that oligomerization was the more active catalytic pathway; especially given that all previously tested oligomerization catalysts had such poor yields of PE.

Table 7.7.18 NacNac Complexes; Oligomerization Activity.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>22</td>
<td>50</td>
<td>18.22</td>
<td>1.0</td>
<td>22 433</td>
<td>431</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>50</td>
<td>6.03</td>
<td>1.8</td>
<td>40 379</td>
<td>776</td>
</tr>
</tbody>
</table>

a Conditions: 30 µmol of catalyst, 2000 eq. of MAO activator, 35 bar ethylene, total volume 150 mL in toluene, 1 hour reaction time.

Table 7.7.18 shows that the NacNac complexes do produce some oligomers, however the amount is extremely low. This low activity was also reflected in the exotherms produced by the catalysts, which never increased above 56 °C. In addition, the systems produce much more PE than any other oligomerization system with the exception of the IBAO N-MeTripyr reaction (see Table 7.7.10), however that system did not produce any oligomers.
Table 7.7.19 NacNac Complexes; α-Olefin Product Distribution.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp (°C)</th>
<th>Activity g/g·Cr·h</th>
<th>α-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>C6</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>50</td>
<td>431</td>
<td>41.0</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>50</td>
<td>776</td>
<td>28.2</td>
</tr>
</tbody>
</table>

*a Determined by GC-FID, against standard solutions of authentic α-olefin samples.

What is very intriguing about catalyst 22 is the selectivity of the oligomers produced. From Table 7.7.19 it is apparent that the catalyst produces only 1-butene and 1-hexene, with no higher olefins detected. This is unprecedented in all of the systems we have examined thus far. It may be an indication that the extremely large steric bulk of the ligand favours the linear PE production mechanism. However, when it does under go the metalla-cyclic oligomerization mechanism, the steric constraint must be so great that only small ring sizes are accommodated. In order to test this hypothesis the sterically less bulky NacNac complex 23 was synthesized and tested (entry 35). A drastic reduction of PE production was observed along with a concomitant increase in both the oligomerization activity and selectivity for longer chain α-olefins. This result would tend to support the hypothesis that removing some steric crowding about the Cr centre allows space for the trimerization catalytic cycle to occur preferentially over the production of PE. Furthermore, the presence of 1-octene in the case of the less bulky ligand, which is not present when the bulkier analogue is used, would tend to indicate that the steric bulk of the ligand can directly influence the size of the metalla-cycle which can be accommodated by the catalyst.

In summary, it appears from our work that the Cr(III) oxidation state can provide a very substantial level of oligomerization activity. Unfortunately, this activity is unaccompanied by any selectivity, as Shulz-Flory distributions are inevitably found. Whether this lack of selectivity may be attributed to the oxidation state is debatable however, given that the Cr(III) compound [N-MeTripyrCrCl] (5) (see Table 7.6.8) produced the same distribution of oligomers as did it's Cr(II) analogue. This would tend to indicate that the N-donor ligand systems themselves may be inadequate for enforcing selectivity. Furthermore, the ligand leaching and instability of the Cr-Me moiety demonstrated by the N-MeTripyr ligand (see Figures 7.6.18-19) may indicate a further
inability of the nitrogen-based ligand framework to support the selective, active catalyst. The variable temperature testing on both the amidate (NCO), and amidinate (NCN) frameworks demonstrated that, at lower temperatures the oligomerizations did become more selective for 1-hexene. Thus indicating that, perhaps under carefully chosen conditions the nitrogen-based ligand systems could become selective for 1-hexene. The interesting questions inspired by this work lead us to investigate some of the most performing catalyst systems to date in order to better determine if selectivity is oxidation state dependant, or whether it is ligand dependant.

7.8 Sasol SNS/PNP Ligand Systems:

The Sasol/BP PNP and Sasol SNS ligand systems are amongst the best oligomerization catalysts due to their selectivity for 1-octene, and 1-hexene respectively. The activities of these two catalysts are also quite respectable making them industrially relevant. That said, no current work has been published exploring the actual active oxidation state of the catalyst, nor its interaction with alkylaluminum activators (which are present during catalysis). A complete understanding of these two very important factors is required in order to fully comprehend the catalytic mechanism, and to design future catalysts. As such the catalytic behaviour of the two literature systems was critically examined with respect to the metal oxidation state, and the systems reactivity with Al activators.

Recent work in our lab on the reaction of the $\text{Cr}^{(\text{III})}$ PNP complex [PNPCrCl$_3$] (PNP = Ph$_2$PN(Cy)PPh$_2$) with AlMe$_3$ yielded quite an enigma. It was found that after exposure to 10 eq. of AlMe$_3$ the divalent complex [PNP$_2$Cr(AlMe$_3$)] [AlMe$_3$Cl]’(toluene)$_{0.25}$ (hexane)$_{0.25}$ (24) formed in 48 % yield (see Scheme 7.8.1). 47
Scheme 7.8.1 Generation of 24 from Cr(III) or Cr(II). \(^4^7\)

In addition 24 could be prepared by reacting the PNP ligand with \(\text{CrCl}_2(\text{THF})_2\), but only in the presence of \(\text{AlMe}_3\). The literature published on the 1-octene selective PNPCr system utilized Cr(III) as the precursor, and reported that this was the oxidation state of the active catalyst.\(^1^9\) Since we had discovered that Cr(II) catalyzes the oligomerization reaction more efficiently than Cr(III) in the case of the N-MeTripyr ligand system (see Table 7.6.7), Complex 24 was tested to determine the impact of the Cr(II) oxidation state on catalysis (see Table 7.8.2).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>[PNPCrCl(_3)]</td>
<td>300</td>
<td>0.5</td>
<td>n/a</td>
<td>n/a</td>
<td>8 050</td>
</tr>
<tr>
<td>37</td>
<td>24</td>
<td>300</td>
<td>0.16</td>
<td>19.5</td>
<td>437 450</td>
<td>8 413</td>
</tr>
<tr>
<td>38</td>
<td>24</td>
<td>2000</td>
<td>10.67</td>
<td>66.75</td>
<td>1 497 425</td>
<td>28 797</td>
</tr>
</tbody>
</table>

\(^a\) Conditions: 30 μmol of catalyst, 30 bar ethylene, 65 °C, total volume 150 mL in toluene, 1 hour reaction time. \(^b\) Reported in ref. 19.

As the results in the table indicate, the Cr(II) (entry 37) analogue of the published PNP ligand (entry 36) is active and more importantly, selective, for the oligomerization of ethylene. Furthermore, the catalyst is 10% more selective towards 1-octene production.
than the Cr(III) compound (see Table 7.8.3) and does so with no drop in activity compared to the literature value. It also appears that the addition of a large excess of MAO (2000, entry 38) results in a threefold increase in activity.

Table 7.8.3 PNP Complexes; α-Olefin Product Distribution of 24.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>Activity g/g Cr h</th>
<th>α-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>36b</td>
<td>[PNP-CrCl3]</td>
<td>300</td>
<td>8050</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>24</td>
<td>300</td>
<td>8413</td>
<td>1.1</td>
</tr>
<tr>
<td>38</td>
<td>24</td>
<td>2000</td>
<td>28797</td>
<td>9.7</td>
</tr>
</tbody>
</table>

*a Determined by GC-FID, against standard solutions of authentic α-olefin samples. b Reported in ref. 19.

The increase in activity, unfortunately, is concomitant to a decrease in selectivity as the catalyst now produces a Shulz-Flory distribution of α-olefins. The drop in selectivity most likely indicates that the large excess of MAO is disrupting the ligand environment around the Cr centre, resulting in less steric control over the process. These results strongly indicate that, in the case of the PNP ligand, Cr(III) produces a catalyst which is more selective, and more active than Cr(III).47 This reaction demonstrates that Cr(III) complexes can be readily reduced to Cr(II). Complex 24 is a catalyst precursor since it also requires activation by MAO. The fact that the catalytic results clearly show that the Cr(II) compound produces the same (if not better) activities and selectivities as the Cr(III) parent compound, strongly suggests that the catalytically active species is based on divalent chromium. This observation is in agreement with our results described above on the different nitrogen-based ligand systems, invariably pointing towards divalent chromium as the catalytically active species.

Our results with both the N-MeTripyr and PNP systems lead us to believe that the Cr(II) oxidation state was closer to the actual active catalyst oxidation state, or may even be the true active catalyst. To further probe this working hypothesis, our group has recently embarked on an extensive study on the other Sasol selective catalyst: [SNS-CrCl3] SNS = CySCH2CH2NHCH2CH2SCy (see Scheme 7.8.4).48,49 This catalytic system as reported by Sasol consists of a simple coordinatively saturated Cr(III) octahedral compound formulated on the basis of its crystal structure. Since no information was
reported about the reaction mechanism, we have applied the same strategy previously used and extensively investigated the reactivity of this catalyst precursor with several Al activators. In addition to exploring the oxidation state of the SNSCr system, the role of the N-H group of the ligand was also examined. It has been claimed that deprotonation of this function occurs during catalysis, so the presence or absence of the N-H function in an alkylating environment such as that provided by the Al activators is an important issue to be addressed.

Scheme 7.8.4 Preparation of Cr(III) SNS Complexes 25-28.
It is known that Cr\(^{II}\) complexes, having a d\(^4\) electron configuration, commonly adopt a square-planar geometry. However, there does exist the possibility to form octahedral complexes. If strong ligand-field splitting ligands are utilized, low-spin octahedral complexes can result. The other case is a high-spin octahedral geometry which exhibits strong Jahn-Teller distortions.\(^{50}\) This Jahn-Teller distorted octahedral geometry was observed for complexes 25-27. One reaction of significant interest was the formation of 27 which formed from the spontaneous reduction of a Cr\(^{III}\) species in the presence of the alkyl aluminum reagent IBAO. This reaction is very similar to the PNPCr case and reiterates the point that Cr\(^{III}\) alkyls may be quite unstable. Complex 28 was prepared by reacting the deprotonated SNS ligand with [CrCl\(_2\)(THF)\(_2\)] in order to test the catalytic activity of an SNS catalyst which has no N-H bond.

A stunning discovery was made when the SNS ligand and [CrCl\(_2\)(THF)\(_2\)] was reacted with 10 eq. of AlMe\(_3\). From the reaction mixture green X-ray quality crystals of a trivalent and cationic complex [SNSCrMe(\(\mu\)-Cl)]\(_2\)[(AlMe\(_3\))\(_2\)(\(\mu\)-Cl)]\(_2\) (toluene) (29) were isolated in moderate yield (see Figure 7.8.5).
Figure 7.8.5 Crystal Structure of 29 with 30% Thermal Ellipsoids, [(Me₃Al)₂Cl] Anion Omitted for Clarity.

The dicationic dimeric structure $[\text{SNSCrMe}(\mu-\text{Cl})]_2[(\text{AlMe}_3)_2(\mu-\text{Cl})]_2(\text{toluene})$ (29) has an octahedral geometry and contains a terminal methyl group [Cr(1)–C(17) = 2.049(5) Å]. The dimer is bridged by two chlorine atoms which are cis to one another and trans to the methyl and nitrogen of the SNS ligand [Cr(1)–Cl(1) = 2.339(2), Cr(1)–Cl(1a) = 2.519(2), Cr(1)–N(1) = 2.088(4), Cr(1)–S(1) = 2.445(2), Cr(1)–S(2) = 2.446(2) Å]. The angles about Cr(1) are again quite close to the ideal values for an octahedral geometry with only a slight distortion at the sulphur groups [N(1)–Cr(1)–S(1) = 83.63(13), N(1)–Cr(1)–S(2) = 83.59(13), N(1)–Cr(1)–Cl(1) = 174.09(12), N(1)–Cr(1)–Cl(1a) = 88.61(13), N(1)–Cr(1)–C(17) = 91.8(2)°]. Two $[(\text{Me}_3\text{Al})_2(\mu-\text{Cl})]$ anions balance the charge of the chromium complex and appear to be hydrogen bonding to the N-H groups of the SNS ligand [Cl(6)–H(1) = 2.537(2) Å]. The oxidation of the metal center during the formation of 29 has no straightforward explanation given that an alkylating agent, such as AlMe₃, can hardly be regarded as an oxidizing agent. The only possibility of explaining this behaviour is to propose that a disproportionation reaction may account for the re-oxidation of the metal center (see Scheme 7.8.6).

Scheme 7.8.6 Proposed Formation of Cr(III) Complex 29.

This proposal, in turn, implies that a species with a valence lower than two must be generated as a result of the formation of the trivalent 29. The well-established stability of zero- and mono-valent chromium–arene complexes⁵¹ could well be a driving force for the disproportionation. However, we found no evidence for these species, although we did observe that a substantial amount of metallic chromium was invariably present in these
reaction mixtures as a black, pyrophoric, and insoluble material. The X-ray fluorescence spectrum of this material confirmed the presence of Cr as the only heavy element while both the IR spectrum and combustion analysis showed the absence of organic functions. Furthermore, the EPR spectrum of the crude reaction mixture was found to be identical to that of an analytically pure sample of 29,49 thereby conclusively proving that 29 is the only EPR-active species formed during this unusual reaction.

Work in our lab found that the reaction of the trivalent Sasol catalyst precursor [SNSCrCl₃] with 4 eq. of AlMe₃ (see Scheme 7.8.7) also afforded the trivalent 29. The fact that the trivalent oxidation state was preserved in this unprecedented cationic organochromium species is in stark contrast with the PNP chemistry (see Scheme 7.8.1) described above.

![Chemical Structures](image)

Scheme 7.8.7 Preparation of Cr(III) SNS Complexes 29-31.

Furthermore, the trivalent oxidation state was also preserved when the ethyl containing alkyl aluminum AlEt₂Cl was used, forming the dicationic Cr-Et containing complex 30.
The M-Et bond is known to be even more reducing than the M-Me bond (found in 29), implying that these Cr(III) complexes may have a uniquely stable M-C bond. The final complex, 31, resulted from the reaction of [SNSCrCl₃] with AlCl₃ and should provide information as to whether a cationic complex is more performing than the neutral literature system.

As no Cr(II) SNS catalyst systems had been previously reported, they provide an interesting point to begin the analysis of the oligomerization results (see Figure 7.8.8).

![Chemical structures](image)

Figure 7.8.8 Cr(II) SNS Catalysts From Scheme 7.8.4.

All Cr(II) SNS catalysts which were tested produced oligomerization activity, albeit at only ~10% of the activity of the previously discussed nitrogen based ligand systems.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>25</td>
<td>1000</td>
<td>2.58</td>
<td>6.8</td>
<td>151 425</td>
<td>2 912</td>
</tr>
<tr>
<td>40</td>
<td>26</td>
<td>1000</td>
<td>0.64</td>
<td>5.3</td>
<td>117 775</td>
<td>2 265</td>
</tr>
<tr>
<td>41</td>
<td>27</td>
<td>1000</td>
<td>0.86</td>
<td>6.0</td>
<td>134 600</td>
<td>2 588</td>
</tr>
<tr>
<td>42</td>
<td>28</td>
<td>2000</td>
<td>2.2</td>
<td>0.9</td>
<td>22 433</td>
<td>431</td>
</tr>
</tbody>
</table>

Conditions: 30 µmol of catalyst, 35 bar ethylene, 50 °C, total volume 150 mL in toluene, 1 hour reaction time.

The most active system was the aluminum free complex 25 (entry 39) which was 11% more active than the bulky IBAO containing 27 (entry 41), and 29% more active than the AlEtCl₃ containing 26 (entry 40). This may indicate that the coordinated anions may be hindering the reactivity, and that the more bulky IBAO containing complex might dissociate more readily. When the SNS ligand is deprotonated (entry 42), the activity
drastically decreased, thus indicating that the N-H moiety may play a crucial role in creating an effective catalyst.

Table 7.8.10 CrIII SNS Complexes; \(\alpha\)-Olefin Product Distributiona

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>Activity g/gCr-h</th>
<th>(\alpha)-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(C_4)</td>
</tr>
<tr>
<td>39</td>
<td>25</td>
<td>1000</td>
<td>2,912</td>
<td>2.7</td>
</tr>
<tr>
<td>40</td>
<td>26</td>
<td>1000</td>
<td>2,265</td>
<td>2.2</td>
</tr>
<tr>
<td>41</td>
<td>27</td>
<td>1000</td>
<td>2,588</td>
<td>17.1</td>
</tr>
<tr>
<td>42</td>
<td>28</td>
<td>2000</td>
<td>431</td>
<td>14.3</td>
</tr>
</tbody>
</table>

\(a\) Determined by GC-FID, against standard solutions of authentic \(\alpha\)-olefin samples.

Analysis of the oligomers yielded some interesting results. Similar to the published Cr-SNS examples,17 catalysts 25 and 26 (entries 39 and 40) are extremely selective for 1-hexene, though they also produce small amounts of 1-butene. Curiously, none of the Sasol literature published to date has even acknowledged the presence of 1-butene in the selective systems, although this is most likely attributed to an oversight, or improper testing on their part. Interestingly, it appears that the nature of the Al anion has an impact on the catalyst selectivity as the AlEtCl_3 containing 26 produces 1-hexene in 96 % selectivity versus the IBAO containing 27, which only has 68% selectivity for 1-hexene and also shows the beginnings of a Shulz-Flory distribution of products. It is possible that the differences between entries 40 and 41 could also be attributed to the monomeric and dimeric catalyst structures, respectively. The deprotonation of the SNS ligand not only had a large impact on the activity, but also the selectivity as well (entry 42). The products are now produced in a Shulz-Flory distribution which is centred at 1-octene. These results tend to indicate one of two things: 1) The N-H group is an integral component for the production of a selective catalyst; 2) Strongly bound dimeric structures lead to Shulz-Flory product distributions. The fact that both of the dimeric structures tend to produce a Shulz-Flory distribution would be in agreement with the second point. Unfortunately no other deprotonated SNS systems currently exist with which to compare to, so the first point must remain a conjecture until further evidence
arises. There were basically no temperature deviations during any of the reactions, and hence no information, as all runs remained within 2 °C of the reactor temperature.

Since complexes 26 and 27 were so similar, and yet produced such disparate results in the original testing (see Tables 7.8.9-10), it was decided to further investigate the two systems. It was found that varying the number of equivalents of MAO had a profound impact on the catalyst activities (see Table 7.8.11).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>26</td>
<td>500</td>
<td>0.80</td>
<td>6</td>
<td>134 600</td>
<td>2 588</td>
</tr>
<tr>
<td>44</td>
<td>26</td>
<td>1000</td>
<td>0.64</td>
<td>5.3</td>
<td>117 775</td>
<td>2 265</td>
</tr>
<tr>
<td>45</td>
<td>26</td>
<td>2000</td>
<td>1.53</td>
<td>4.5</td>
<td>100 950</td>
<td>1 941</td>
</tr>
<tr>
<td>46</td>
<td>27</td>
<td>300</td>
<td>0.70</td>
<td>10.5</td>
<td>235 550</td>
<td>4 530</td>
</tr>
<tr>
<td>47</td>
<td>27</td>
<td>500</td>
<td>0.78</td>
<td>8.3</td>
<td>185 075</td>
<td>3 559</td>
</tr>
<tr>
<td>48</td>
<td>27</td>
<td>1000</td>
<td>0.86</td>
<td>6.0</td>
<td>134 600</td>
<td>2 588</td>
</tr>
<tr>
<td>49</td>
<td>27</td>
<td>2000</td>
<td>1.47</td>
<td>3.8</td>
<td>84 125</td>
<td>1 618</td>
</tr>
</tbody>
</table>

* Conditions: 30 μmol of catalyst, 35 bar ethylene, 50 °C, total volume 150 mL in toluene, 1 hour reaction time.

Contrary to the nitrogen donor ligand catalysts, increasing the amount of MAO actually leads to a marked decrease in catalyst performance. Inversely, by reducing the amount of MAO the catalyst performance increases. Furthermore, the amount of MAO also has a large impact on the α-olefin product distribution.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>Activity g/g·Cr·h</th>
<th>α-olefin mol %</th>
<th>C4</th>
<th>C6</th>
<th>C8</th>
<th>C10</th>
<th>C12</th>
<th>C14</th>
<th>C16</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>26</td>
<td>500</td>
<td>2 588</td>
<td>2.7</td>
<td>92.2</td>
<td>2.6</td>
<td>1.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>26</td>
<td>1000</td>
<td>2 265</td>
<td>2.2</td>
<td>96.0</td>
<td>1.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>26</td>
<td>2000</td>
<td>1 941</td>
<td>23.9</td>
<td>54.8</td>
<td>11.2</td>
<td>5.5</td>
<td>2.7</td>
<td>1.2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>27</td>
<td>300</td>
<td>4 530</td>
<td>0.8</td>
<td>98.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>27</td>
<td>500</td>
<td>3 559</td>
<td>1.6</td>
<td>96.6</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>27</td>
<td>1000</td>
<td>2 588</td>
<td>17.0</td>
<td>68.0</td>
<td>5.8</td>
<td>4.5</td>
<td>2.6</td>
<td>1.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>27</td>
<td>2000</td>
<td>1 618</td>
<td>26.5</td>
<td>49.7</td>
<td>11.0</td>
<td>6.2</td>
<td>3.7</td>
<td>1.9</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

* Determined by GC-FID, against standard solutions of authentic α-olefin samples.

Chapter 7 - Chromium Catalyzed Ethylene Oligomerization 206
At 2000 eq. of MAO both catalysts yield nearly identical, Shulz-Flory product distributions centred at C₆ (entries 45 and 49). When the MAO is reduced to 500 (entry 43) or 300 (entry 46) the catalysts produce 1-hexene in high selectivity. These observations clearly demonstrate that too much activator harshly effects both the activity, and selectivity of the Cr(III) SNS systems. This is most likely due to large amounts of MAO leading to catalyst decomposition, or the creation of other, non-selective catalytic species. Even the most active run (entry 46) did not show any temperature increases during the catalytic run, once again offering no insights into the system.

Concurrent with the Cr(III) SNS runs, a series of Cr(III) SNS catalytic testing was performed on the complexes detailed in Figure 7.8.13.

\[
\begin{align*}
[SNSCrCl_2(THF)][AlCl_4] & \quad [SNSCrMe(\mu-Cl)\{\text{Me}_3Al\}_2(\mu-Cl)]_2 & [SNSCrEt(\mu-Cl)\{\text{AlEtCl}_3\}_2 \\
31 & \quad 29 & \quad 30 \\
\text{monomeric} & \quad \text{dimeric} & \quad \text{dimeric}
\end{align*}
\]

Figure 7.8.13 Cr(III) SNS Catalysts from Scheme 7.8.7.

Upon first inspection it can be seen that the Cr(III) catalysts appear to be up to 6.5 times more active than their Cr(III) counterparts (see Table 7.8.14). However, there appears to be much more fluxionality involved in the Cr(III) systems.

Table 7.8.14 Cr(III) SNS Complexes: Oligomerization Activity.²

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>50ᵇ</td>
<td>[SNSCrCl₃]</td>
<td>1000</td>
<td>0.08</td>
<td>-</td>
<td>-</td>
<td>5 824</td>
</tr>
<tr>
<td>51</td>
<td>31</td>
<td>1000</td>
<td>1.01</td>
<td>32.3</td>
<td>723 475</td>
<td>13 913</td>
</tr>
<tr>
<td>52</td>
<td>29</td>
<td>1000</td>
<td>0.82</td>
<td>16.0</td>
<td>358 933</td>
<td>6 903</td>
</tr>
<tr>
<td>53</td>
<td>30</td>
<td>1000</td>
<td>0.80</td>
<td>29.3</td>
<td>487 925</td>
<td>12 619</td>
</tr>
</tbody>
</table>

² Conditions: 30 μmol of catalyst, 35 bar ethylene, 50 °C, total volume 150 mL in toluene, 1 hour reaction time. ᵃ Ref. 49.

There appears to be little in the way of a logical explanation for the wide range of catalytic activity. If, for example, the monomeric versus dimeric species are compared (entries 50, 51 vs. 52, 53), both display a higher and lower activity catalyst. Complexes 29 (entry 52) and 30 (entry 53) are nearly identical in structure, differing at only the
terminally bound methyl or ethyl groups, and yet they display distinctly different reactivities. So too can the presence, or absence of an aluminum counter-anion be ruled out as the sole source of the different activities (entry 50 vs. 51-52). Perhaps the nature of the anion plays some role as demonstrated by entries 51-53. Both 30 and 31 display higher activities and both have monomeric anions ([AlEtCl]_2 and [AlCl_4]) versus 29 which has a dimeric anion ([(Me_3Al)_2(μ-Cl)]_2).

Table 7.8.15 Cr(III) SNS Complexes; α-Olefin Product Distribution.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>Activity g/g·Cr·h</th>
<th>α-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C_4</td>
</tr>
<tr>
<td>50</td>
<td>[SNSCrCl_3]</td>
<td>1000</td>
<td>5 824</td>
<td>-</td>
</tr>
<tr>
<td>51</td>
<td>31</td>
<td>1000</td>
<td>13 913</td>
<td>0.0</td>
</tr>
<tr>
<td>52</td>
<td>29</td>
<td>1000</td>
<td>6 903</td>
<td>1.9</td>
</tr>
<tr>
<td>53</td>
<td>30</td>
<td>1000</td>
<td>9 383</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* Determined by GC-FID, against standard solutions of authentic α-olefin samples. ^b^ Ref. 49.

Even though all four complexes had quite disparate activities, they did share one trait in common. All four compounds are nearly 100% selective for the production of 1-hexene (see Table 7.8.15). There is virtually no difference between the selectivity for each, indicating that even though something is influencing the overall activity it is not interfering with the selective production of the α-olefins.

In order to try and gain a better understanding into the factors which are effecting the Cr(III) catalysts, complexes 29 and 30 were selected for more extensive testing. Varying the amount of MAO had a large impact on 29, and to a lesser extent 30 (see Table 7.8.16).

Table 7.8.16 Effect of MAO Concentration on the Cr(III) SNS Complexes 29 and 30.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>PE (g)</th>
<th>Alkenes (mL)</th>
<th>Activity g/mol·h</th>
<th>Activity g/g·Cr·h</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>29</td>
<td>500</td>
<td>0.41</td>
<td>18.6</td>
<td>417 260</td>
<td>8 024</td>
</tr>
<tr>
<td>55</td>
<td>29</td>
<td>1000</td>
<td>0.82</td>
<td>16.0</td>
<td>358 933</td>
<td>6 903</td>
</tr>
<tr>
<td>56</td>
<td>29</td>
<td>2000</td>
<td>4.26</td>
<td>3.5</td>
<td>78 517</td>
<td>1 510</td>
</tr>
<tr>
<td>57</td>
<td>30</td>
<td>500</td>
<td>0.74</td>
<td>26.3</td>
<td>588 875</td>
<td>11 325</td>
</tr>
<tr>
<td>58</td>
<td>30</td>
<td>1000</td>
<td>0.80</td>
<td>29.3</td>
<td>487 925</td>
<td>12 619</td>
</tr>
<tr>
<td>59</td>
<td>30</td>
<td>2000</td>
<td>1.64</td>
<td>21.8</td>
<td>656 175</td>
<td>9 383</td>
</tr>
</tbody>
</table>

* Conditions: 30 μmol of catalyst, 35 bar ethylene, 50 °C, total volume 150 mL in toluene, 1 hour reaction time.
In both cases, as the number of equivalents of MAO is decreased, there is a concomitant increase in activity. An eightfold increase in activity is observed between 500 and 2000 eq. in the case of complex 29 (entry 54 and 56). Whereas only a 17% increase in activity is observed for catalyst 30 (entry 57 and 59). The decrease in activity occurs concurrently with an increase in PE production, hinting that perhaps some of the catalyst is being converted from an oligomerization catalyst to a PE producing catalyst.

Table 7.8.17 Effect of MAO on the SNS Complexes 29 and 30; α-Olefin Product Distribution.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>Activity g/g Crh</th>
<th>α-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>54</td>
<td>29</td>
<td>500</td>
<td>8024</td>
<td>1.6</td>
</tr>
<tr>
<td>55</td>
<td>29</td>
<td>1000</td>
<td>6903</td>
<td>1.9</td>
</tr>
<tr>
<td>56</td>
<td>29</td>
<td>2000</td>
<td>1510</td>
<td>24.4</td>
</tr>
<tr>
<td>57</td>
<td>30</td>
<td>500</td>
<td>11325</td>
<td>0.1</td>
</tr>
<tr>
<td>58</td>
<td>30</td>
<td>1000</td>
<td>12619</td>
<td>0.6</td>
</tr>
<tr>
<td>59</td>
<td>30</td>
<td>2000</td>
<td>9383</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* Determined by GC-FID, against standard solutions of authentic α-olefin samples.

In the case of 29 the drop in activity was accompanied by a switch in selectivity towards a Shulz-Flory distribution of products centred at 1-hexene. On the other hand, catalyst 30 did not seem to be effected by the increased concentration of MAO as it continued to produce 1-hexene almost exclusively. This extreme dichotomy between two catalysts which are almost identical structurally remains a perplexing mystery, and is currently being studied by our group.

Overall it has been demonstrated that in the case of the SNS ligand the Cr(III) oxidation state produces both a more active and more selective catalyst. This can be seen by comparing the most active Cr(II) and Cr(III) catalysts (see Table 7.8.18).
Table 7.8.18 Comparison of Cr^{III} 27 and Cr^{III} 30; Activity and α-Olefin Product Distribution.

<table>
<thead>
<tr>
<th>Ox State</th>
<th>Entry</th>
<th>Catalyst</th>
<th>MAO (eq.)</th>
<th>Activity g/g Cr·h</th>
<th>α-olefin mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₄</td>
<td>C₆</td>
</tr>
<tr>
<td>Cr^{III}</td>
<td>46</td>
<td>27</td>
<td>300</td>
<td>4 530</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>27</td>
<td>500</td>
<td>3 559</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>27</td>
<td>1000</td>
<td>2 588</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>27</td>
<td>2000</td>
<td>1 618</td>
<td>26.5</td>
</tr>
<tr>
<td>Cr^{III}</td>
<td>57</td>
<td>30</td>
<td>500</td>
<td>11 325</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>30</td>
<td>1000</td>
<td>12 619</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>30</td>
<td>2000</td>
<td>9 383</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* Determined by GC-FID, against standard solutions of authentic α-olefin samples.

The Cr^{III} catalyst (27) approaches half of the activity of the Cr^{III} catalyst at lower loading of MAO (300 eq. entry 46) and shows almost the same overall selectivity for 1-hexene. The Cr^{III} catalyst is much more sensitive to the presence of excess activator, however, as can be seen by the rapid loss of selectivity towards a Shulz-Flory distribution at higher loadings of MAO. The Cr^{III} catalyst appears much more resistant towards this loss in selectivity.

It is difficult to rationalize the active oxidation state for the oligomerization process. In the case of the PNP ligand (see Table 7.8.3) it seems quite clear that the Cr^{III} catalyst is reduced in the presence of the aluminum activator, and that the Cr^{III} analogue produces the same activity and selectivity as the parent Cr^{III} compound. In the case of the SNS ligand, the same reduction of a Cr^{III} to a Cr^{II} complex was observed in the case of the aluminum activator IBAO (Complex 27 Scheme 7.8.4). This complex produced lower activities and selectivities than the parent Cr^{III} compound, though it did approach the parent compound results at a very low loading of MAO (Table 7.8.12). Our working hypothesis that all Cr^{III} compounds spontaneously reduce to the Cr^{III} oxidation state was thrown into disarray upon the discovery that the Cr^{II} complex 29 was actually oxidized to a Cr^{III} alkyl in the presence of AlMe₃ (see Scheme 7.8.6). This serves to further confuse the situation, and currently there is no solid explanation as to which oxidation state is better, or how readily they interconvert. That said, in general, for the SNS ligand system the Cr^{III} oxidation state does appear to generate better catalysts based on several criteria: 1) The SNSCr^{III} catalysts are generally 3-12 times more active than their Cr^{II}...
anallogues; 2) The selectivity of the Cr(III) catalysts are generally for 1-hexene only; 3) The Cr(III) catalysts appear more tolerant to an excess of Al activator and only begin to show loss of selectivity at very high loading (~2000 eq. MAO).

7.9 Conclusions:

This project has been successful in a number of areas. Firstly, it was conclusively demonstrated that the Cr complexes of the hemi-labile ligands (N-MeDipyrr and N-MeTripyr) produced in Chapter 2 are capable of oligomerizing ethylene (see Table 7.6.7). Though not selective, these catalysts can be optimized further to produce better yields of the desired products. Another fascinating ability exhibited by the N-MeTripyr complex is its ability to switch between oligomerization and polymerization depending on the nature of the activator. The ability of alkylaluminum to cause ligand leaching as well as the instability of the Cr-Me moiety were also demonstrated using the N-MeTripyr ligand system.

The amidinate (NCN) catalysts yielded excellent activities (see Table 7.7.10). More importantly, by varying the electron donating/withdrawing ability of the ligand, it was demonstrated that electron-withdrawing ligands produce much higher activities.

The amide (NCO) catalysts proved to be the most active out of all those tested, although producing only Shulz-Flory product distributions. These catalysts displayed the effects of steric crowding on the overall activity, as the catalyst without ortho substituents yielded a higher activity while maintaining the same selectivity as the ortho substituted catalyst (see Table 7.7.14).

Although the NacNac ligand displayed the lowest activity out of all the nitrogen based ligands and produced the most polymer, it did have one unique feature. The oligomers it produced were exclusively 1-butene and 1-hexene (see Table 7.7.19). Given the ease of changing the substituents on the NacNac ligand it should be quite easy to remove some steric bulk to observe if the yield of oligomers increases.

Our investigations into the PNP ligand framework rather conclusively demonstrated that the Cr(III) oxidation state results from the spontaneous reduction of the parent [PNPCrCl3] in the presence of the alkyl aluminum AlMe3. Furthermore, the Cr(II)
analogue exhibited a slightly higher activity and improved selectivity. These results lead us to the conclusion that the \(\mathrm{Cr}^{(III)} \) oxidation state was more closely related to the active catalyst in the case of the PNP ligand system.

Vice versa, the SNS complexes are perhaps the most difficult to assess as there were no clear-cut trends. On the whole \(\mathrm{Cr}^{(III)} \) does appear to produce a more active and selective catalyst, however, when the \(\mathrm{Cr}^{(II)} \) complexes were reacted at low-loadings of MAO their activities and selectivity neared that of the \(\mathrm{Cr}^{(III)} \) analogues (see Table 7.8.18). The identity of the oxidation state of the catalyst will most likely remain unclear for some time, especially given that we have found that the SNS complexes can be both oxidized and reduced in the presence of alkylaluminum. The isolation of several cationic \(\mathrm{Cr}^{(III)} \)-alkyl complexes has given us cause to consider that perhaps the SNS ligand is capable of stabilizing this reactive moiety, perhaps to such an extent as to allow the +3 oxidation state to form an active catalyst. Another, as yet unsolved mystery is the reason why all of the nitrogen based ligand systems yielded catalysts which provided a Shulz-Flory distribution of oligomers only, while the PNP and SNS systems are capable of selective catalysis. The most straight-forward answer is that the 2\(^{nd}\) row atoms P, and S, are somehow influencing the catalyst centre, making it selective. Another intriguing possibility is the geometry of the metal. In all of the nitrogen/oxygen donor cases the complexes were either square-planar or paddlewheel (low-spin octahedral). However, all of the \(\mathrm{Cr}^{(II)} \) SNS catalysts exhibited the very odd, Jahn-Teller distorted octahedral structure. There is the possibility that this type of geometry bestows a unique electronic and steric environment upon the metal, and perhaps this could lead to the selectivity which is observed. Whether this Jahn-Teller distortion is a function of the ligand framework, or is created by the nature of the sulphur atoms remains yet to be determined. Current work is under way to synthesize a S,N ligand which should only bond in a square-planar manner to test this hypothesis.

On the whole we have failed to conclusively identify the oxidation state of the active \(\mathrm{Cr} \) catalyst involved in the oligomerization process. We have, however, conclusively proven that the \(\mathrm{Cr}^{(II)} \) oxidation state can quite likely form active catalysts, which has been a largely ignored possibility in the literature. It would seem that the process may, in fact, be mediated by the nature of the ligand about the \(\mathrm{Cr} \) centre. In the
case of the $\sigma\pi$-bonding pyrrolides, and the PNP ligand the Cr(III) oxidation state yielded much better catalysis in terms of both selectivity and activity. However, given the results of the SNS chemistry we can not discount the possibility that Cr(III) is being oxidized to an active Cr(III) species. Furthermore, these results may indicate that selectivity is governed solely by the nature of the ligand attached to the metal and is independent of the oxidation state, be it $+2$, $+3$ or some as yet undetermined valency.

7.10 X-Ray Crystallography Section:

The full crystallographic data, including bond lengths and angles may be found in Appendix 7. The abbreviated crystallographic data for the structures contained within this chapter are as presented in Tables 7.10.1 to 7.10.4.

Table 7.10.1 Crystal Data and Structure Analysis Results for Complexes 1-3.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${50.23}$H${51}$CrN${4}$O${1.625}$</td>
<td>C${47}$H${47}$CrN${3}$O${2}$</td>
<td>C${54.50}$H${52}$CrN${5}$O${1.38}$</td>
</tr>
<tr>
<td>FW</td>
<td>788.98</td>
<td>737.89</td>
<td>851.01</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, $P2_1/n$</td>
<td>Triclinic, $P1$</td>
<td>Orthorhombic, $Cmc2(1)$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.340(2)</td>
<td>8.969(1)</td>
<td>18.080(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>12.030(3)</td>
<td>12.744(7)</td>
<td>17.140(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>38.232(9)</td>
<td>17.005(5)</td>
<td>16.732(4)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>89.466(4)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>93.339(6)</td>
<td>85.866(5)</td>
<td>90</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>88.870(7)</td>
<td>90</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>4288.3(18)</td>
<td>3987.1(18)</td>
<td>5185(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>radiation (K, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>203(2)</td>
<td>203(2)</td>
<td>209(2)</td>
</tr>
<tr>
<td>D$_{calcd}$ (g cm$^{-3}$)</td>
<td>1.157</td>
<td>1.134</td>
<td>1.090</td>
</tr>
<tr>
<td>μ_{calcd} (mm$^{-1}$)</td>
<td>0.305</td>
<td>0.311</td>
<td>0.261</td>
</tr>
<tr>
<td>F$_{000}$</td>
<td>1576</td>
<td>1511</td>
<td>1796</td>
</tr>
<tr>
<td>R, R$_{w}^{2a}$</td>
<td>0.0961, 0.2209</td>
<td>0.1251, 0.2439</td>
<td>0.0518, 0.1185</td>
</tr>
<tr>
<td>GoF</td>
<td>1.033</td>
<td>1.085</td>
<td>1.012</td>
</tr>
</tbody>
</table>

a $R = \Sigma|F_o| - |F_c|/\Sigma|F_o|$, $R_w = \sqrt{\Sigma|F_o| - |F_c|^2/\Sigma w F_o^2}$.

Chapter 7 - Chromium Catalyzed Ethylene Oligomerization 213
Table 7.10.2 Crystal Data and Structure Analysis Results for Complexes 4-6.

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{51}H_{63}ClCrLiN_{3}O_{3}</td>
<td>C_{39}H_{31}ClCrN_{3}</td>
<td>C_{46.10}H_{44.40}AlN_{3}O</td>
</tr>
<tr>
<td>FW</td>
<td>852.37</td>
<td>629.12</td>
<td>683.43</td>
</tr>
<tr>
<td>space group</td>
<td>Orthorhombic, Pnm</td>
<td>Monoclinic, P2(1)/c</td>
<td>Triclinic, P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>18.88(10)</td>
<td>8.594(10)</td>
<td>13.013(7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>22.13(12)</td>
<td>15.904(19)</td>
<td>13.057(7)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>11.15(6)</td>
<td>23.14(3)</td>
<td>13.186(7)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>87.737(9)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>99.04(2)</td>
<td>62.129(7)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>72.480(8)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4658(44)</td>
<td>3124(6)</td>
<td>1879.3(17)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>211(2)</td>
<td>210(2)</td>
<td>208(2)</td>
</tr>
<tr>
<td>D_{calcd} (g cm³)</td>
<td>1.215</td>
<td>1.338</td>
<td>1.208</td>
</tr>
<tr>
<td>μ_{calcd} (mm⁻¹)</td>
<td>0.347</td>
<td>0.485</td>
<td>0.093</td>
</tr>
<tr>
<td>F_{000}</td>
<td>1800</td>
<td>1308</td>
<td>726</td>
</tr>
<tr>
<td>R, R_w ²</td>
<td>0.0633, 0.1279</td>
<td>0.0592, 0.1055</td>
<td>0.0649, 0.1804</td>
</tr>
<tr>
<td>GoF</td>
<td>1.039</td>
<td>1.054</td>
<td>1.049</td>
</tr>
</tbody>
</table>

* R = Σ|F_o| - |F_c|/Σ|F|, R_w = [Σ(|F_o| - |F_c|²/ΣwF_o²)]¹/².

Table 7.10.3 Crystal Data and Structure Analysis Results for Complexes 7, 22-23.

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{51}H_{62}ClCrLiN_{3}O_{4}</td>
<td>C_{29}H_{41}ClCrN_{2}</td>
<td>C_{23}H_{33}ClCrN_{2}O</td>
</tr>
<tr>
<td>FW</td>
<td>923.47</td>
<td>505.09</td>
<td>464.98</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, P2(1)/c</td>
<td>Monoclinic, P2(1)/n</td>
<td>Monoclinic, P2(1)/n</td>
</tr>
<tr>
<td>a (Å)</td>
<td>15.099(7)</td>
<td>9.2086(17)</td>
<td>12.982(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>17.935(8)</td>
<td>14.392(3)</td>
<td>12.726(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>19.398(9)</td>
<td>21.035(4)</td>
<td>15.123(3)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>109.114(7)</td>
<td>91.812(4)</td>
<td>97.535(5)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4963(4)</td>
<td>2786.5(9)</td>
<td>2477.0(10)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>radiation (Kα, Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>209(2)</td>
<td>198(2)</td>
<td>202(2)</td>
</tr>
<tr>
<td>D_{calcd} (g cm³)</td>
<td>1.236</td>
<td>1.204</td>
<td>1.247</td>
</tr>
<tr>
<td>μ_{calcd} (mm⁻¹)</td>
<td>0.332</td>
<td>0.525</td>
<td>0.587</td>
</tr>
<tr>
<td>F_{000}</td>
<td>1956</td>
<td>1080</td>
<td>984</td>
</tr>
<tr>
<td>R, R_w ²</td>
<td>0.0537, 0.1159</td>
<td>0.0449, 0.1083</td>
<td>0.0625, 0.1485</td>
</tr>
<tr>
<td>GoF</td>
<td>1.004</td>
<td>1.040</td>
<td>1.003</td>
</tr>
</tbody>
</table>

* R = Σ|F_o| - |F_c|/Σ|F|, R_w = [Σ(|F_o| - |F_c|²/ΣwF_o²)]¹/².
Table 7.10.4 Crystal Data and Structure Analysis Results for Complex 29.

<table>
<thead>
<tr>
<th></th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C({29.85})H({59.55})Al(2)Cl({2.15})Cr NS(_2)</td>
</tr>
<tr>
<td>FW</td>
<td>678.83</td>
</tr>
<tr>
<td>space group</td>
<td>Monoclinic, (P2(1)/c)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>13.782(12)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>12.776(11)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>21.606(19)</td>
</tr>
<tr>
<td>(\alpha) (deg)</td>
<td>90</td>
</tr>
<tr>
<td>(\beta) (deg)</td>
<td>96.037(16)</td>
</tr>
<tr>
<td>(\gamma) (deg)</td>
<td>90</td>
</tr>
<tr>
<td>V (Å(^3))</td>
<td>3783(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>radiation (kα, Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>T (K)</td>
<td>208(2)</td>
</tr>
<tr>
<td>(D_{calc}) (g cm(^{-3}))</td>
<td>1.192</td>
</tr>
<tr>
<td>(\mu_{calc}) (mm(^{-1}))</td>
<td>0.630</td>
</tr>
<tr>
<td>(F_{000})</td>
<td>1457</td>
</tr>
<tr>
<td>(R, R_w^2)</td>
<td>0.0734, 0.1659</td>
</tr>
<tr>
<td>GoF</td>
<td>1.042</td>
</tr>
</tbody>
</table>

\(^{a}\) \(R = \Sigma|F_o| - |F_c|/\Sigma|F|; R_w = [\Sigma(|F_o| - |F_c|)^2/\Sigma wF_o^2]^{1/2}\).

7.11 Experimental Section:

All reactions were carried out under a dry nitrogen or argon atmosphere. Solvents were dried using an aluminum oxide solvent purification system. The Aluminum activators, i-BAO (Aldrich), AlMe\(_3\) (Strem), AlEt\(_3\) (Strem) and MAO (Chemtura) were used as received. The amidinate 8-10,\(^{34}\) amidate 11-13,\(^{35}\) and NacNac 14,15\(^{37}\) ligands were prepared according to literature methods, using starting materials supplied by Aldrich and used without further purification. The full experimental details for the SNS\(^{48,49}\) and PNP\(^{47}\) ligand synthesis and complex formation are detailed in our recent publications. The full experimental details for 8-11 have also been recently published by our group.\(^{40}\) N-MeDipyry, and N-MeTripyr were prepared as detailed in chapter 2. Infrared spectra were recorded on an ABB Bomem FTIR instrument from Nujol mulls prepared in a drybox. Samples for magnetic susceptibility were pre-weighed inside a drybox equipped with an analytical balance and measured on a Johnson Matthey.
Magnetic Susceptibility balance. NMR were collected on an INOVA Varian 300 or 500 MHz instrument in CDCl₃ unless otherwise stated. The oligomer reaction mixtures were analyzed using a CP 9000 gas chromatograph (GC) fitted with a 30 m X 0.32 mm i.d. capillary CP volumine column, with an FID detector. Elemental analysis was carried out with a Perkin-Elmer 2400 CHN analyzer. Data for X-ray crystal structure determination were obtained with a Bruker diffractometer equipped with a 1K Smart CCD area detector.

Polymerization Details: Polymerizations were carried out in a steel 250 mL Büchi reactor equipped with a mechanical stirrer and temperature controller, which had been dried in a 150 °C oven for a minimum of five hours prior to each run. The reactor was then placed under vacuum for 30 mins, after which it was flushed in three cycles of argon/vacuum. The toluene/MAO mixture was then injected and the reactor was allowed to stir for several minutes at the desired reaction temperature. The catalyst was then injected as a solution in toluene under a flow of argon gas, after which the reactor was charged with the appropriate pressure of ethylene. After the reaction time had expired the reactor was rapidly cooled to 5 °C in order to minimize the loss of i-butene and an EtOH/HCl solution was injected in order to quench the reaction. The reaction mixture was then removed and stirred with a large excess of EtOH/HCl for several minutes. The toluene fraction was then removed and any PE was filtered. The reaction mixture was then analyzed by NMR to determine the production of oligomers, after which it was analyzed by GC to determine the selectivity of oligomers. The PE portion was stirred in HCl/H₂O for ~30 mins and then dried overnight under vacuum at 60 °C.

Ligand Preparation:

Synthesis of [(C₆H₅)-C-(NCy)₂]Li (8): A solution of dicyclohexylcarbodiimide (DCC) (4.25 g, 20.6 mmol) in hexane (30 mL) was added dropwise to PhLi (13.1 mL, 2.1 M in O'Bu₂, 27.5 mmol) in hexanes (20 mL) at room temperature. The reaction was slightly exothermic. After 18 hours of stirring, the reaction mixture was refluxed for 1 hour. The
precipitate was isolated by glass frit filtration and washed with cold hexanes (2 x 50 mL). The beige solid was subsequently dried in vacuo. The yield was 42% (2.5 g, 8.7 mmol).

1H NMR (500 MHz, THF-d$_8$) $\delta = 0.88$-1.55 (m, 20H), 2.51 (m, 2H), 7.01 (d, 2H, $J = 7.5$ Hz), 7.15 (t, 1H, $J = 7.0$ Hz), 7.24 (dd, 2H, $J = 7.0$, 7.5 Hz). IR (KBr, Nujol, cm$^{-1}$): 1641, 1362, 1347, 1260, 1063, 1027, 986, 916, 888, 778, 703, 610.

Synthesis of [p-MeO(C$_6$H$_4$)-C-(NC$_6$H$_4$)$_2$Li (9): BuLi (8.44 mL, 2.7 M in hexane, 22.8 mmol) was added dropwise to a stirred solution of p-MeO(C$_6$H$_4$)Br (2.85 mL, 22.8 mmol) in hexane (30 mL) at room temperature. After 12 hours of stirring, the white precipitate was washed with cold hexane (2 x 10 mL). Hexane (30 mL) was then added to the white solid, then DCC (4.70 g, 22.8 mmol) hexane (30 mL) was added dropwise at room temperature. The reaction was slightly exothermic. Once the solution cooled, the white suspension was refluxed for 2 hours. After cooling, the white precipitate was isolated by glass frit filtration and washed with cold hexane (2 x 50 mL). The white crystalline solid was subsequently dried in vacuo. The yield was 55% (4.05 g, 12.5 mmol).

1H NMR (500 MHz, THF-d$_8$) $\delta = 0.88$-1.56 (m, 20H), 2.54 (m, 2H), 3.77 (s, 3H), 6.84 (d, 2H, $J = 8.0$ Hz), 6.93 (d, 2H, $J = 8.0$ Hz).

13C NMR (500 MHz, THF-d$_8$) $\delta = 158.99$, 134.11, 128.82, 113.72, 112.47, 57.63, 55.18, 38.38, 27.12, 27.02.

IR (KBr, Nujol, cm$^{-1}$): 1605, 1508, 1489, 1410, 1357, 1343, 1234, 1175, 1062, 1025, 1017, 985, 901, 886, 843, 614.

Synthesis of [p-F$_3$C(C$_6$H$_4$)-C-(NC$_6$H$_4$)$_2$Li (10): BuLi (7.48 mL, 2.7 M in hexane, 20.2 mmol) was added dropwise to a stirred solution of p-F$_3$C(C$_6$H$_4$)Br (2.79 mL, 20.2 mmol) in Et$_2$O (30 mL) at -78°C (dry ice/acetone bath). The solution was allowed to warm to room temperature and was stirred for 18 hours. The solvent was evaporated and the solid
dissolved in hexane (30 mL). To this solution was added dropwise a solution DCC (3.47 g, 16.8 mmol) in hexane (30 mL) at room temperature. The reaction was slightly exothermic. The brown/orange solution was stirred for 12 hours, then refluxed for 1 hour. After cooling, the beige precipitate was isolated by glass frit filtration and washed with hexane (50 mL). The solid was subsequently dried in vacuo. The yield was 23% (1.4 g, 3.9 mmol).

1H NMR (500 MHz, THF-d$_8$) δ = 0.82-1.79 (m, 20H), 2.29 (m, 2H), 7.09-7.87 (m, 4H).

13C NMR (500 MHz, THF-d$_8$) δ = 129.92, 128.63, 125.26, 59.98, 57.56, 38.64, 34.71, 33.59, 32.63, 27.36, 27.21, 27.17, 26.97, 26.55.

IR (KBr, Nujol, cm$^{-1}$): 1641, 1617, 1599, 1449, 1405, 1365, 1326, 1292, 1261, 1240, 1163, 1129, 1107, 1066, 1021, 986, 890, 851.

Synthesis of [(C$_6$H$_5$)C(O)NH(C$_6$H$_4$p-Pr)] (11): To a solution of benzoyl chloride (9.7 mL, 83.5 mmol) in dichloromethane (160 mL) was added dropwise p-propylaniline (11.88 mL, 83.5 mmol) at room temperature. The reaction was mildly exothermic and a precipitate was seen to form immediately. The solution was allowed to cool to room temperature, then Et$_3$N (17 mL) was added. The precipitate solubilized initially, but reformed after approximately 15 minutes. The reaction mixture was stirred at room temperature until completion was detected by TLC (3:2 hexane:ethyl acetate). The organic phase was washed with water (3 x 250 mL), then dried over MgSO$_4$. The solvent was removed in vacuo to yield a peach/beige coloured solid. The yield was 84% (16.7 g, 70.1 mmol).

1H NMR (500 MHz, CDCl$_3$) δ = 1.23 (d, 6H, $J = 7.0$ Hz), 2.88 (septet, 1H, $J = 7.0$ Hz), 7.18 (d, 2H, $J = 8.5$ Hz), 7.54 (d, 2H, $J = 8.0$ Hz), 7.38-7.83 (m, 5H), 8.08 (s br., 1H).

13C NMR (500 MHz, CDCl$_3$) δ = 166.05, 145.42, 135.81, 135.21, 131.82, 128.82, 127.24, 127.07, 120.70, 33.79, 24.21.
EI-MS: \(m/z = 239 \ [M^+] \), 224 \([M^+ - CH_3]\), 105 \([M^+ - N(H)C_6H_4(CH(CH_3)_2)]\), 77 \([M^+ - C(O)NC_6H_4(CH(CH_3)_2)]\). IR (NaCl, Nujol, cm\(^{-1}\)): 3299, 1648, 1595, 1578, 1530, 1515, 1414, 1318, 1265, 1053, 1025, 902, 830, 715, 695.

Synthesis of \([p-MeO(C_6H_5)C(O)NH(C_6H_4p-^3Pr)]\) (12): To a solution of \(p\)-methoxybenzoyl chloride (14.24 g, 83.5 mmol) in dichloromethane (160 mL) was added dropwise \(p\)-\(^3\)propylaniline (11.88 mL, 83.5 mmol) at room temperature. The reaction was mildly exothermic and a precipitate was immediately formed. Once the solution cooled, Et\(_3\)N (17 mL) was added. The reaction mixture was stirred at room temperature until completion was determined by TLC (3:2 hexane:ethyl acetate). The organic phase was washed with water (5 x 250 mL), then dried over MgSO\(_4\). The solvent was removed in vacuo to yield a peach/beige coloured solid. The yield was 87% (19.6 g, 72.6 mmol).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta = 1.24 \) (d, 6H, \(J = 7.0 \) Hz), 2.89 (septet, 1H, \(J = 7.0 \) Hz), 3.85 (s, 3H), 6.93 (d, 2H, \(J = 9.0 \) Hz), 7.20 (d, 2H, \(J = 8.0 \) Hz), 7.54 (d, 2H, \(J = 8.0 \) Hz), 7.82 (d, 2H, \(J = 8.5 \) Hz), 7.88 (s br., 1H).

\(^{13}\)C NMR (500 MHz, CDCl\(_3\)) \(\delta = 165.45, 162.53, 145.23, 135.98, 129.09, 127.43, 127.10, 120.57, 114.07, 55.63, 33.81, 24.24.\)

EI-MS: \(m/z = 269 \ [M^+] \), 135 \([M^+ - NC_6H_4(CH(CH_3)_2)]\). IR (NaCl, Nujol, cm\(^{-1}\)): 3326, 1643, 1607, 1521, 1502, 1319, 1310, 1251, 1241, 1179, 1026, 840, 827, 762.

Synthesis of \([p-F_3C(C_6H_5)C(O)NH(C_6H_4p-^3Pr)]\) (13): To a solution of \(p\)-trifluoromethylbenzoyl chloride (10 mL, 83.5 mmol) in dichloromethane (160 mL) was added dropwise \(p\)-\(^3\)propylaniline (11.88 mL, 83.5 mmol) at room temperature. The reaction was mildly exothermic and a precipitate was immediately formed. The solution was allowed to cool to room temperature, then Et\(_3\)N (17 mL) was added. The reaction mixture was stirred at room temperature until completion was detected by TLC (3:2 hexane:ethyl acetate). The organic phase was washed water (9 x 250 mL) however, a
white emulsion did not solubilize in either the organic or aqueous phases. The white emulsion was allowed to dry. The organic phase was dried with MgSO₄ and capped in a flask with a septum for 4 to 5 days. Clear crystalline needles suitable for X-ray crystallography formed in the flask.

\(^1\)H NMR (500 MHz, CD₃CN) at 65°C of the crystalline product; \(\delta = 1.26\) (d, 6H, \(J = 7.0\) Hz), 2.93 (septet, 1H, \(J = 6.8\) Hz), 7.21-7.99 (m, 8H), 8.57 (s br., 1H).

\(^{13}\)C NMR (500 MHz, CD₃CN) \(\delta = 131.66, 131.59, 128.27, 122.60, 117.03, 116.85, 35.07, 24.94, 17.00.\)

EI-MS: \(m/z = 257\) [M⁺], 242 [M⁺ - CH₃], 123 [M⁺ - NC₆H₄(CH(CH₃)₂)], 95 [M⁺ - C(O)NC₆H₄(CH(CH₃)₂)]. IR (NaCl, Nujol, cm\(^{-1}\)): 3346, 3068, 3048, 1910, 1651, 1598, 1525, 1501, 1416, 1364, 1321, 1298, 1223, 942, 902, 851, 828, 759.

Synthesis of [K-2,6-iPr₂Ph-NacNac] (14): NacNac\(^{36}\) [(ArNC(Me)CHC(Me)NHAr); \(\text{Ar} = 2,6\text{-iPr}_2\text{C}_6\text{H}_3\) (2 g, 4.78 mmol) was dissolved in THF (10 mL), then KH (0.230 g, 5.7 mmol) was added. The suspension was stirred overnight and the solution slowly turned from colourless to a yellow solution. After stirring, the solution was dried *in vacuo* and hexanes (20 mL) was added. The yellow hexanes solution was then centrifuged to remove insoluble materials. The yellow solution was then evaporated to dryness and left under vacuum for 6 hours at 60°C. The product was isolated as a yellow solid. The yield was 96% (2.1 g, 4.6 mmol).

\(^1\)H NMR (500 MHz, C₆D₆) \(\delta = 1.11\) (d, 12H, \(J = 7.0\) Hz), 1.29 (d, 12H, \(J = 7.0\) Hz), 1.91 (s, 6H), 3.38 (septet, 4H, \(J = 7.0\) Hz), 4.84 (s, 1H), 7.06 (t, 1H, \(J = 7.5\) Hz), 7.18 (d, 2H, \(J = 7.5\) Hz).

\(^{13}\)C NMR (500 MHz, C₆D₆) \(\delta = 160.75, 151.21, 140.00, 123.97, 121.67, 91.52, 28.06, 24.89, 24.27, 24.03.\)
IR (NaCl, Nujol, cm⁻¹): 2361, 1623, 1595, 1558, 1514, 1419, 1363, 1322, 1255, 1221, 1165, 1018, 922, 795, 786, 761, 665, 610.

Synthesis of [K-2,6-Me₂Ph-NacNac] (15): NacNac³⁶ [(ArNC(Me)CHC(Me)NHAr); Ar = 2,6-Me₂C₆H₃] (2 g, 6.53 mmol) was dissolved in THF (10 mL), then KH (0.314 g, 7.8 mmol) was added. The suspension was stirred overnight and the solution slowly turned from colourless to a yellow solution. After stirring, the solution was dried *in vacuo* and Et₂O (20 mL) was added. The yellow Et₂O solution was then centrifuged to remove insoluble materials. The yellow solution was then evaporated to dryness and left under vacuum for 6 hours at 60°C. The product was isolated as a yellow solid. The yield was 91% (2.05 g, 5.9 mmol).

¹H NMR (500 MHz, C₆D₆) δ = 1.61 (s, 12 H), 1.94 (s, 6H), 4.84 (s, 1H), 7.08 (t, 1H, J = 7.5 Hz), 7.17 (d, 2H, J = 7.5 Hz).

¹³C NMR (500 MHz, C₆D₆) δ = 161.65, 150.14, 141.11, 121.37, 120.37, 90.52, 27.76, 24.99.

IR (NaCl, Nujol, cm⁻¹): 2362, 1624, 1591, 1552, 1522, 1409, 1355, 1322, 1262, 1220, 1161, 1018, 914, 792, 782, 752, 666, 601.

Preparation of Cr complexes:

Synthesis of [CrL₂; L =[(C₆H₅)-C-(NCy)₂]] (16): A mixture of CrCl₂(THF)₂ (0.216 g, 0.81 mmol) and [(C₆H₅)-C-(NCy)₂]Li (0.471 g, 1.62 mmol) in THF (15 mL) was stirred at room temperature for 18 hours resulting in a green/brown solution. After centrifugation and decantation, the solvent was removed *in vacuo* and the residue was extracted with hexane. The concentrated hexane solution was stored at -35°C for one day. Dark green needle-like microcrystals, of insufficient quality for X-ray crystallography, were obtained (0.312 g, 0.50 mmol, 62.3% Yield).
IR (KBr, Nujol, cm\(^{-1}\)): 1363 (m), 1343 (m), 1092 (s), 1056 (s), 986 (s), 911 (w), 887 (m), 776 (s), 701 (m), 660 (m).

Elemental Analysis calcd (Found) for CrC\(_{38}\)H\(_{54}\)N\(_4\): C 73.75 (74.15), H 8.80 (8.62), N 9.05 (9.22). \(\mu_{\text{eff}} = 4.62 \mu_B\).

Synthesis of \([\text{CrL}_2; L = [p-\text{MeO(C}_6\text{H}_4)-\text{C-(NCy)}_2]']\) (17): A mixture of CrCl\(_2\)(THF)\(_2\) (0.197 g, 0.74 mmol) and \([p-\text{MeO(C}_6\text{H}_4)-\text{C-(NCy)}_2]\)Li (0.472 g, 1.47 mmol) in THF (15 mL) was stirred at room temperature for 18 hours resulting in a dark green solution. After centrifugation and decantation, the solvent was removed *in vacuo* and the residue was extracted with hexane. The concentrated hexane solution was stored at -35°C for one day. Pale green solid was obtained upon cooling (0.327 g, 0.48 mmol, 65.1% Yield).

IR (KBr, Nujol, cm\(^{-1}\)): 1609 (s), 1576 (m), 1364 (m), 1345 (m), 1292 (m), 1246 (s), 1227 (s), 1173 (m), 1034 (s), 989 (s), 888 (m), 835 (m), 811 (w), 629 (m).

Elemental Analysis calcd (Found) for CrC\(_{40}\)H\(_{58}\)N\(_4\)O\(_2\): C 70.76 (70.58), H 8.61 (8.41), N 8.25 (8.51). \(\mu_{\text{eff}} = 4.83 \mu_B\).

Synthesis of \([\text{CrL}_2; L = [p-\text{F}_3\text{C(C}_6\text{H}_4)-\text{C-(NCy)}_2]']\) (18): A mixture of CrCl\(_2\)(THF)\(_2\) (0.177 g, 0.66 mmol) and \([p-\text{F}_3\text{C(C}_6\text{H}_4)-\text{C-(NCy)}_2]\)Li (0.476 g, 1.33 mmol) in THF (15 mL) was stirred at room temperature for 18 hours resulting in a dark green solution. After centrifugation and decantation, the solvent was removed *in vacuo* and the residue was extracted with hexane. The concentrated hexane solution was stored at -35°C for one day. Brown needle-like microcrystals, of insufficient quality for X-ray crystallography, were obtained (0.245 g, 0.32 mmol, 48.9% Yield).

IR (KBr, Nujol, cm\(^{-1}\)): 1493 (s), 1322 (m), 1260 (s), 1222 (s), 1167 (m), 1129 (m), 1064 (w), 1047 (s), 1021 (m), 848 (m), 610 (m).
Elemental Analysis calcd (Found) for CrC_{40}H_{52}N_{4}F_{6}: C 63.65 (63.27), H 6.94 (6.77), N 7.42 (7.36). $\mu_{\text{eff}} = 4.74 \mu_B$.

Synthesis of [2,6-iPr$_2$-NacNacCr(\mu-Cl)]$_2$ (22): A mixture of CrCl$_2$(THF)$_2$ (0.232 g, 0.87 mmol) and [K-2,6-iPr$_2$-NacNac] (0.396 g, 0.87 mmol) in THF (10 mL) was stirred at room temperature for 18 hours resulting in a dark green solution. After centrifugation and decantation, the solvent was removed *in vacuo* and the residue was extracted with 2 mL of hexanes. The concentrated hexane solution was stored at -35°C for one day. Dark green single crystals, suitable for X-ray crystallography, were obtained (0.391 g, 0.77 mmol, 89.1% Yield).

IR (KBr, Nujol, cm$^{-1}$): 1539 (s), 1526 (m), 1505 (m), 1437 (w), 1311 (m), 1253 (s), 1173 (m), 1054 (w), 1029 (m), 935 (w), 854 (m), 794 (s), 758 (w).

Elemental Analysis calcd (Found) for Cr$_2$Cl$_2$C$_{58}$H$_{62}$N$_4$: C 68.96 (69.08), H 8.18 (8.11), N 5.55 (5.39). $\mu_{\text{eff}} = 2.42 \mu_B$.

Synthesis of [2,6-Me$_2$-NacNacCr(\mu-Cl)]$_2$ (23): A mixture of CrCl$_2$(THF)$_2$ (0.250 g, 0.94 mmol) and [K-2,6-Me$_2$-NacNac] (0.325 g, 0.94 mmol) in THF (10 mL) was stirred at room temperature for 18 hours resulting in a dark green solution. After centrifugation and decantation, the solvent was removed *in vacuo* and the residue was extracted with 2 mL of hexanes. The concentrated hexane solution was stored at -35°C for one day. Dark green single crystals, suitable for X-ray crystallography, were obtained (0.315 g, 0.68 mmol, 72.3% Yield).

IR (KBr, Nujol, cm$^{-1}$): 1544 (s), 1519 (m), 1513 (m), 1422 (w), 1309 (m), 1255 (s), 1164 (m), 1063 (w), 1028 (m), 935 (w), 847 (m), 802 (s), 766 (w).

Elemental Analysis calcd (Found) for Cr$_2$Cl$_2$C$_{50}$H$_{56}$N$_4$: C 69.90 (69.78), H 7.74 (7.61), N 6.52 (6.55). $\mu_{\text{eff}} = 2.59 \mu_B$.

Chapter 7 - Chromium Catalyzed Ethylene Oligomerization
Synthesis of [(N-MeDipyrr)_2Cr(THF)] (7): N-MeDipyrr (0.320 g, 1.02 mmol) was dissolved in 15 mL of THF and KH (1.05 eq, 0.043 g, 1.08 mmol) was added while stirring, bubbles immediately formed in the solution. After stirring for 4 hours the solution was added to a suspension of CrCl_2(THF)_2 (1 eq, 0.274 g, 1.02 mmol) in 10 mL of THF. The suspension slowly dissolved yielding a light blue solution from which precipitate slowly evolved. The THF solution was dried in vacuo and fresh THF (5 mL) was added. The solution was then cooled to -35 °C and stored for 4 days after which time 0.531 g of pale blue plate crystals of X-ray quality formed (0.67 mmol, 66.0% Yield).

IR (KBr, Nujol, cm⁻¹): 1604 (s), 1218 (m), 1153 (m), 1043 (m), 751 (s), 692 (s), 632 (s).

Elemental Analysis calcd (Found) for CrC_{50.25}H_{31}N_{4}O_{1.625}: C 76.50 (76.55), H 6.52 (6.62), N 7.10 (7.52). \(\mu_{\text{eff}} = 4.52 \mu_{B}\).

7.12 References:

46) V.C. Gibson; C. Newton; C. Redshaw; G.A. Solan; A.J.P. White; D.J. Williams.
47) Jabri, A.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R.
Organometallics 2006, 25, 715.
48) Jabri, A.; Temple, C.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R.
49) Temple, C.; Jabri, J.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R.
Conclusions and Future Research Aims

Though each of the projects presented within this thesis successfully reached logical conclusions, there is still much room left for further exploration and refinement. Perhaps the best example of this is the hemi-labile bonding ligands prepared in chapter 2. In the short time they have been available in our lab they have already been used to generate low-valent Th,\(^1\) and Ti\(^2\) complexes as well as supporting ethylene trimerization and polymerization.\(^3\) The major limitation of the hemi-labile ligand systems is their generally poor solubilities. More work will be required in order to create compounds that contain highly soluble side-groups. The most intriguing modification of the ligand system, however, would be to close the N-MeTripyrrolide ligand in order to create a macrocycle (see Scheme 8.1).
Scheme 8.1 Proposed Macrocycle Formation.

The most likely route to accomplishing this task would be to combine the N-MeTripyr ligand and its alcohol analogue. This condensation reaction would most likely be catalyzed by the addition of a weak acid or via addition of the strong Lewis acid BF₃. This new class of ligand would combine the robust nature of the porphyrinogen⁴ ligand with the hemi-lability of the N-Me pyrrole groups and should serve to stabilize a plethora of highly-reactive low-valent metals.

The Mn alkyl complexes synthesized in chapter 3 served as highly valuable starting materials for the synthesis of various Mn complexes in the following chapters. The only compound missing from the series [Mn(CH₂SiMe₃)ₙ] (n= 0-3) is the monalkylated analogue [MnCl(CH₂SiMe₃)]. This compound would serve as an excellent reagent for ligand metathesis reactions, while at the same time leaving the chloride ligand as a site for further chemical transformation. As such, developing this material could be useful for future research. In addition, the pentameric carboxylate structure should be explored in future research as it should readily serve as an anchor for building up larger macromolecules via metathesis reactions with its terminal alkyl groups (see Figure 8.2).
The majority of the model complexes synthesized to mimic the OEC in chapter 4, unfortunately, proved to be incompatible with water. However, the recent aqueous based chemistry of the tartrate ligand in combination with [Mn(OAc)₂] and KMnO₄ has yielded the encouraging evolution of O₂ from the mixture. This major breakthrough must now be fully evaluated in order to determine how efficient the liberation of O₂ from water is. Furthermore, the eventual coupling of this reaction with a non chemical-based oxidizing agent would be our long term goal. A group that successfully coupled this reaction with solar energy would largely solve our world’s energy problems, providing an imperative incentive for us to continue this line of research.

The unprecedented ability of Mn(II) to catalyze the co-polymerization of CO₂ with epoxide was demonstrated in chapter 5. Our findings that the process led to a very broad distribution of molecular weights in the resulting polymer were at first very confusing. The subsequent investigation of discrete Mn complexes quickly revealed that both ligand leaching and radical reduction of the Mn were likely responsible for the large PDI’s observed. Given the relatively low activity of the catalysts, and their very poor control
over the molecular weight, it is not likely that Mn(II) complexes will be investigated in the future. However, since the recent publication of Inoue\(^5\) has revealed that Mn(III) can serve to catalyze the process it would be very interesting to explore some of our novel hemi-labile ligands in conjunction with Mn(III) for this process.

Exploring the ability of the well-known Brookhart-Gibson ligand to support low-valent Mn complexes led us to two major findings. We found that the radical coupling behaviour of the ligand was present whenever an alkyl group was attached to a Mn atom. And secondly, a formally mono-valent [(BisImine)MnCl(THF)] complex (see Figure 8.3) was found.

![Figure 8.3](image_url) Structure of formally Mn(II) [(BisImine)MnCl(THF)].

The aim of further research will be to discover whether this structure is truly in the mono-valent state, or is actually Mn(II) with a radical residing on the ligand. Generating formally zero-valent complexes using the NaH synthetic route is also an intriguing proposition to explore in the future.

Chapter 7 detailed our investigations into the fascinating Cr catalyzed selective ethylene trimerization (and tetramerization) reaction. Use of the hemi-labile ligands developed in chapter 2 in conjunction with both Cr(II) and Cr(III) led to active oligomerization catalysts, though without 1-hexene selectivity. Furthermore, it was found that changing the activator from the normal MAO to IBAO led to a change in catalyst productivity, yielding PE instead.\(^3\) Though our investigations attempted to...
identify which oxidation state bestowed catalyst selectivity, we were unable to
conclusively identify either Cr\(^{II}\) or Cr\(^{III}\) as being the selective oxidation state. To
further confuse the issue it was found that both oxidation states were susceptible to
oxidation and reduction reactions that occurred in the presence of activators which could
conceivably interconvert the two oxidation states. On the whole it appears that catalyst
selectivity may be ligand dependant only, precluding the need to use either valent metal
specifically. Further investigations of this system are ongoing in our lab with the goal of
modifying the SNS ligand system in order to fully understand how selectivity is bestowed
upon this remarkable and sometimes confusing catalytic system.

Overall this thesis has helped advance the state of the art for both Mn and Cr
chemistry in both basic and practical terms. In addition the novel hemi-labile ligand
systems should help stimulate further research in the chemistry community due to their
published ability to support a variety of chemical processes. This now draws to a close
my doctoral thesis, I sincerely hope that you have found it to be both concise and
informative.

References:
1) Arunachalampillai, A.; Crewdson, P.; Korobkov, I.; Gambarotta, S. Organometallics
 2006, 25, 3856.
2) Nikiforov, G. B.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Budzelaar, P. H. M.
3) Crewdson, P.; Gambarotta, S.; Djoman, M.-C.; Korobkov, I.; Duchateau, R.
 Organometallics 2005, 24, 5214.
 3549.
APPENDIX 2

X-Ray Crystallography:
Complex 1 consists of a dimer of two N-MePyrrolides, each bridged to the other by a lithium atom. Each pyrroline ring is slightly skewed and forms a 3-centered 2-electron bond (C(4)–Li(1A) = 2.202(6), C(4)–Li(1) = 2.239(6) Å, Li(1)–C(4)–Li(1A) = 67.9(2)°). The coordination sphere of each Li is completed by two molecules of THF. The electrons of the pyrroline rings appear to be delocalized (C(4)–C(3) = 1.388(5), C(3)–C(2) = 1.408(5), C(2)–C(1) = 1.351(5), C(1)–N(1) = 1.373(4), N(1)–C(4) = 1.395(4) Å).
Complex 2 crystallized as the monomeric solvent free molecule depicted. The C(6)–O(1) = 1.444(2) Å distance corresponds to a single C-O bond, and makes chemical sense as C(6) is tetrahedral.
Complex 3 also crystallized as the monomeric solvent free molecule depicted. The only notable feature of the structure is that the N-Me pyrrole appears to be slightly less delocalized than the un-methylated pyrrole: C(6)–N(2) = 1.389(4), N(2)–C(9) = 1.368(3), C(9)–C(8) = 1.370(3), C(8)–C(7) = 1.402(4), C(7)–C(6) = 1.380(3) Å vs. C(1)–N(1) = 1.361(3), N(1)–C(4) = 1.378(3), C(4)–C(3) = 1.369(3), C(3)–C(2) = 1.424(4), C(2)–C(1) = 1.363(4) Å.
Complex 4 crystallized as the monomeric solvent free molecule depicted. Other than hydrogen bonding between adjacent diol units (H(1)–O(2)' = 2.105 (6) Å) there are no structurally abnormal features to describe.
Complex 5 co-crystallized with ¼ of a molecule of CH₂Cl₂. All bond distances and geometries are as chemically expected.
Complex 6 crystallized as the monomeric solvent free molecule depicted. The C(6)–O(1) = 1.449(8) Å distance corresponds to a single C-O bond, and makes chemical sense as C(6) is tetrahedral.
Complex 7 as the monomeric solvent free molecule depicted. All bond distances and geometries are as chemically expected.

For the complete Crystallographic data please see the attached data CD.
APPENDIX 3

X-Ray Structures:
The full crystallographic packages for Complex 2 has been previously published, and will not be listed herein. \(^1\) Since the geometries of the different structures were discussed in the body of chapter 3, only the full Crystallographic data will be listed here:

For the complete Crystallographic data please see the attached data CD.

APPENDIX 4

X-Ray Structures:
The full crystallographic packages for Complexes 3, and 4 have been previously published, and will not be listed herein. \(^1\) Since the geometries of the different structures were discussed in the body of chapter 7, only the full Crystallographic data will be listed here:

For the complete Crystallographic data please see the attached data CD.
APPENDIX 5

% Carbonate Linkage Calculation: The 1H NMR is diagnostic for determining ether, and carbonate linkages. The cyclohexyl methine proton appears at 4.6 ppm for polycarbonate and 3.3 ppm for polyether linkages. Integrating the relative intensities yields the % carbonate (See Figure 1).

$$\text{% carbonate} = \frac{\text{carbonate H}}{\text{carbonate H} + \text{ether H}}$$

Figure 1. Typical NMR with polyether and polycarbonate methine signals integrated.

TOF Calculation: The TOF (TurnOver Frequency) represents the mols of CHO utilized per mol of catalyst per hour. The figure is calculated taking into consideration the % carbonate linkages. The mass of the end-groups of the polymer chains are negligible and therefore aren’t considered in the calculation.

In order to determine the mass of CHO in the polymer:

$$\text{% CHO}_{\text{incorporated}} = \frac{98.14 \text{ g/mol}}{(98.14 + 44.011 \times \text{% carbonate})}$$

$$\text{TOF} = \frac{(\text{polymer g}) \times (\text{% CHO}_{\text{incorporated}})}{(98.14 \text{ g/mol}) \times (3.0 \times 10^{-4} \text{ mol catalyst}) \times (\text{h})}$$

References:

X-Ray Crystallography:
Since the geometries of the different structures was discussed in the body of chapter 4, only the full Crystallographic data will be listed here:

For the complete Crystallographic data please see the attached data CD.
APPENDIX 6

X-Ray Structures:

The full crystallographic packages for Complex 4 has been previously published, and will not be listed herein. Since the geometries of the different structures were discussed in the body of chapter 6, only the full Crystallographic data will be listed here:

For the complete Crystallographic data please see the attached data CD.

APPENDIX 7

Oligomerization Activity:

Activity was calculated by integrating the methylene 1H NMR signals of the alkenes versus the known volume of o-toluene (150 mL) and assuming the identity of the oligomeric signal was 1-hexene. As such, the reported activity values are not exact values, as the selectivities of all other olefins should be accounted for in order to yield the true activity. For the scope of this study the slight differences in activities were not enough to warrant the more exact calculations. The following Figure represents a typical NMR, and the resulting yield of oligomers.
Oligomerization Selectivity:

A stock solution was prepared in order to properly calibrate the GC in order to quantify the different oligomers:

Stock Solution 2006:

30 μL 1-hexene = 8.0561 \times 10^{-2} \text{ M}
30 μL 1-octene = 6.3720 \times 10^{-2} \text{ M}
30 μL 1-decene = 5.2827 \times 10^{-2} \text{ M}
30 μL 1-dodecene = 4.5033 \times 10^{-2} \text{ M}
2880 μL toluene

The stock solution was then used to prepare a number of standard with a total volume of 1 mL and a differing amount of stock solution:

Standard Dilutions:

2 μL, 5 μL, 10 μL, 20 μL, 50 μL, 100 μL, 200 μL, 500 μL, 700 μL, 1000 μL

The standard solutions were then injected into the GC and the area of the peaks was used to prepare calibration curves:

C6 Standard Curve
C8 Standard Curve

\[y = 196679x \]
\[R^2 = 0.9996 \]

C10 Standard Curve

\[y = 238304x \]
\[R^2 = 0.9976 \]
Since it was not possible to obtain samples for the quantification of the 1-butene, 1-tetradecene, and 1-hexadecene the values were extrapolated and interpolated from the standard curves of the other samples.
The equations of the lines from the different standard curves were then used in order to quantify the oligomers produced from the catalysis according to the following formulae:

1-butene: Peak Area / 93 080 area/M
1-hexene: Peak Area / 129 615 area/M
1-octene: Peak Area / 196 679 area/M
1-decene: Peak Area / 238 304 area/M
1-dodecene: Peak Area / 272 550 area/M
1-tetradecene: Peak Area / 325 780 area/M
1-hexadecene: Peak Area / 372 320 area/M

The mol % values were then determined by the following formula (1-hexene shown as an example):

mol % = (1-hexene M / Sum of all oligomers M) X 100 %

X-Ray Structures:
Since the geometries of the different structures were discussed in the body of chapter 5, only the full Crystallographic data will be listed here:

For the complete Crystallographic data please see the attached data CD.