Danya Alhyari

M.Sc. (Cellular and Molecular Medicine)

Department of Cellular and Molecular Medicine

DSLMAP is a Component of the Developing Heart Tube and may Interact with Slit/Robo pathway in Drosophila

Balwant Tuana

Antonia Colavita

Marc Ekkee

Gary W. Slater

Le Doyen de la Faculté des études supérieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies
DSLMAP is a component of the developing heart tube and may interact with Slit/Robo pathway in Drosophila

By
Danya H. Alhyari

Department of Cellular and Molecular Medicine
Faculty of Medicine
University of Ottawa
Ottawa, Ontario, Canada
January 19, 2010

This thesis is submitted as a partial fulfilment of the M.Sc. degree program in the
Department of Cellular and Molecular Medicine

© Danya H. Alhyari, Ottawa, ON, Canada, 2010
NOTICE:

The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
ACKNOWLEDGMENTS

It is a pleasure to acknowledge my supervisor Dr. Balwant Tuana for his continuous support, and help during this project, and my co-supervisor Dr. Margaret Sonnenfeld who has given me constant advice, I owe a dept of gratitude to Momena Dawood for her helpful advices and her continuous support which made a difference in this project.

I would like also to thanks my colleagues; Helina Tadesse, Jennifer Rugers, Mysoon Salih, Puneet Singh, Moni Nader, Tatiana Morozova, Omar hawari for their continous support during my graduated studies.

I want to thank University of Petra Amman-Jordan, for giving me a scholarship to finish my Master degree.

Finally, I would like to thank my parents, for their continuous support, encouragement, and prayers through my academic research, Special thanks to my husband Moath who helped me and supported me through my graduated studies, and my two sons, Sa’ad and Abdualrahman who always put a smile on my face. Special thanks to all my brothers and sisters for their continuous support.
The *Drosophila* heart is composed of cardioblasts (CBs) and pericardial cells. Together, these cells form a linear heart tube that resembles the early vertebrate heart. Many genes involved in heart development are conserved from fruit flies to mammals. For example, the *Drosophila* homeobox gene Tinman and its vertebrate homologue Nkx2.5 are both critical for heart development. The secreted protein Slit and its receptor Roundabout (Robo) contribute to heart tube formation by guiding cardioblast alignment and adhesion. Slit null mutant showed severe alignment and migration defects, which include delays, gaps in the heart tube, and failure of lumen formation. Robo loss of function mutant also had severe defects which include, twisted heart tube, missing parts of the heart tube, and aggregation of the CBs. The Slit/Robo complex appears to serve conserved roles across species and in different systems by influencing cell guidance and migration. Previous studies have shown that sarcolemmal membrane associated protein (SLMAP) is expressed early during mammalian cardiac development and it may play role in cardiac function at the level of membrane biology and signal transduction. *SLMAP* and its homolog in *Drosophila DSLMAP* have similar structural features which include, a C-terminus transmembrane domain, a coiled-coil region, and a fork head associated domain at the N-terminus. *DSLMAP* and its mammalian homologue share 28.6% identity over 721 amino acid residues; a higher percentage identity was noted in the forkhead-associated domain (55.9%). Further more, *DSLMAP* were found to genetically interact with Slit/Robo pathway in the developing nervous system. Here, we show that *DSLMAP* is expressed in both the CBs and the pericardial cells at early stages of *Drosophila* heart development. Alterations in *DSLMAP* expression in the CBs, and the pericardial cells,
using a UAS-DSLMAP-RNAi transgene causes a delay in migration of CBs and PCs, and misalignment of the cardiac cells. The up-regulation of DSLMAP in the CBs and the pericardial cells led to delay in migration of the cardiac cells, and to CBs aggregation. Down-regulation of DSLMAP has similar phenotypes to Robo down-regulation in both the CBs and the pericardial cells. In addition, over-expression of DSLMAP or Slit have the same phenotypes in the two cell types. Delayed migration defects are reduced by pericardial expression of UAS-DSLMAP RNAi in Robo down-regulated embryos. Myocardial expression of UAS-DSLMAP transgene suppresses the delayed migration defects seen in Slit over-expression. DSLMAP over-expression in the CBs significantly reduced the phenotypes seen in slit^2 loss of function mutant. Over-expression of DSLMAP in the CBs of robo^{189} heterozygous background showed a significant reduction in the phenotypes observed in robo^{189} alone. DSLMAP down-regulation in the pericardial cells of slit^2 heterozygous background, or robo^{189} heterozygous background led to a significant decrease in defective embryos and the heart tube was seem to be properly organised. The data suggests that DSLMAP is expressed early in cells that form the Drosophila heart, and its regulated levels are critical for normal heart tube formation. Data also suggests that DSLMAP may genetically interact with the Slit/Robo pathway to ensure proper heart tube formation.
Table of contents

ACKNOWLEDGMENT ...i

ABSTRACT ...iii

LIST OF FIGURES .. viii

LIST OF TABLES ..xi

LIST OF ABBREVIATIONS ..xii

CHAPTER ONE

INTRODUCTION

1.1 Drosophila as a model organism .. 1

1.2 Heart development in Drosophila and vertebrates 3

1.3 The signals required for heart tube development are conserved from Drosophila to the vertebrates .. 9

1.4 Transcription factor Tinman and its homologue NKx2.5 16

1.5 Slit ligand and its Robo receptor ... 17

1.6 Common defects observed during Drosophila heart development in Slit and Robo mutants ... 20

1.7 Sarcolemmeal Membrane Associated Protein (SLMAP) 21

1.8 Rational and stamen of the problem 25

1.8.1 Hypothesis .. 25

1.8.2 OBJECTIVES .. 26

CHAPTER TWO
MATERIALS AND METHODS

2.1 Fly Stocks and Genetics 27
2.2 DSLMAP RNAi construct 27
2.3 DSLMAP HA tagged over-expression construct 27
2.4 GAL4/UAS Binary System 29
2.5 Genetic crosses generated to analyze DSLMAP's role during Drosophila heart development 32
2.6 in situ hybridization with Dig labelled riboprobes 33
2.7 Non-fluorescent protein/RNA double-labeling 36
2.8 Immunohistochemistry 38
2.9 Microscopy 41
2.10 Statistical analysis 41

CHAPTER THREE

RESULTS

3.1 Drosophila heart is composed of two cell types 42
3.2 DSLMAP mRNA expression during embryonic development 42
3.3 Dmef2 protein and DSLMAP mRNA localization 44
3.4 DSLMAP is expressed in all stages of Drosophila heart development 47
3.5 Down-regulation of DSLMAP mRNA using RNA interference in Drosophila heart 48
3.6 Confirmation of DSLMAP over-expression 51
3.7 Cardiac specific deregulation of DSLMAP caused defective heart tube
formation.

3.8 DSLMAP may serve a role in CBs adhesion and positioning

3.9 Down-regulation of DSLMAP or ROBO result in similar cardiac defects

3.10 Robo is mislocalized in DSLMAP down-regulated embryos

3.11 Targeted over-expression of DSLMAP has similar cardiac defects as Slit over-expression

3.12 Slit localization in the heart tube lumen is altered during DSLMAP over-expression

3.13 DSLAMP genetically interacts with the Slit/Robo pathway

CHAPTER FOUR

DISCUSSION

REFERENCES
LIST OF FIGURES

Figure 1: Life cycle of the fruit flies 2

Figure 2: Morphogenesis of the heart tube at different stages 4

Figure 3: Drosophila heart 6

Figure 4: Drosophila heart compared to vertebrate heart 8

Figure 5: Structural features of Slit ligand and Robo receptor. 19

Figure 6: Defects observed in Slit and Robo mutants 22

Figure 7: Structural features of Drosophila SLMAP and its mammalian homologue 23

Figure 8: Structure of the RNAi construct 28

Figure 9: Generation of DSLMAP HA tagged over-expression construct 30

Figure 10: Mechanism of the GAL4/UAS binary system 31

Figure 11: Drosophila heart consist of two types of cells 43

Figure 12: Embryonic expression of DSLMAP mRNA in Drosophila 45

Figure 13: Double-labeling using Dmef2 antibody and digoxigenin-labeled

DSLMAP riboprobes 46

Figure 14: DSLMAP expression doesn’t change through Drosophila embryonic heart developments. 49

Figure 15: Down-regulation of DSLMAP mRNA expression in Drosophila heart 52

Figure 16: Confirmation of DSLMAP over-expression. 50

Figure 17: DSLMAP down-regulation in the CBs results in delays in heart developments.
cells migration.

Figure 18: *DSLMAP* down-regulation in PCs results in defective heart tube.

Figure 19: *DSLMAP* over-expression in CBs leads to fusion defects.

Figure 20: *DSLMAP* over-expression in the PCs leads to delayed migration.

Figure 21: *DSLMAP* over-expression leads to delayed migration in heart cells.

Figure 22: Over-expression of *DSLMAP* may change the cell membrane of the CBs.

Figure 23: Down-regulation of *DSLMAP* alters the cell membrane of the CBs.

Figure 24: Phenotypes observed in *DSLMAP* down-regulation or *Robo* down-regulation.

Figure 25: Robo localization during DSLMAP down-regulation.

Figure 26: Phenotypes observed in *Slit* over-expression or *DSLMAP* over-expression.

Figure 27: Slit localization is altered in *DSLMAP* over-expressed embryos.

Figure 28: pericardial expression of UAS-*DSLMAP* reduced migration defects in Robo down-regulated embryo.

Figure 29: pericardial expression of UAS-*DSLMAP* transgene led to minor delays in Robo down-regulated embryos.

Figure 30: down-regulation of DSLMAP in the CBs of Slit over-expressed
embryos had an organized heart tube.

Figure 31: Myocardial over-expression of *DSLMAP* reduced cardiac defects associated with Slit over-expression or Robo down-regulation.

Figure 32: Gaps and lack of lumen formation are seen in *slit*² and *robo*¹⁸⁹ loss of function mutant.

Figure 33: *DSLMAP* over-expression reduced the phenotypes observed in *slit*² loss of function mutant.

Figure 34: *DSLMAP* over-expression reduced the phenotypes seen in *robo*¹⁸⁹ loss of function mutant.

Figure 35: *DSLMAP* down-regulation reduced the defects observed in *slit*² loss-of-function mutant.

Figure 36: *DSLMAP* down-regulation reduced the defects seen in *robo*¹⁸⁹ loss of function mutant.

Figure 37: Slit and Robo signaling and axon repulsion.

Figure 38: Putative molecular interaction of DSLMAP with the Slit/Robo Pathway.
LIST OF TABLES

Table 1. Quantitative analysis of the defects observed in pericardial cells for

DSLMA over-expression and down-regulation 61

Table 2. Quantitative analysis of the defects observed in the CBs.

for *DSLMAP* over-expression and down-regulation. 62

Table 3. Number of the CBs observed in DSLMAP over-expression

and down-regulation. 63

Table 4. Quantitative analysis of the defects observed in the cardioblasts

for *Slit* over-expression, and *Robo* down-regulation. 75

Table 5. Quantitative analysis of the defects observed in pericardial cells for

Slit over-expression, and *Robo* down-regulation. 76

Table 6. Quantitative analysis of phenotypes observed in the CBs in *DSLMAP*

genetic Interactions with *slit* over-expression and *Robo* down-regulation. 84

Table 7. Quantitative analysis of phenotypes observed in the PCs in *DSLMAP*

genetic interactions with *slit* over-expression and *Robo* down-regulation. 85

Table 8. Quantitative analysis of the phenotypes observed in the CBs of DSLMAP

genetic interaction with *slit* and *robo* loss of function mutants 94

Table 9. Quantitative analysis of the phenotypes observed in the PCs in DSLMAP

genetic interaction with *slit* and *robo* loss of function mutants 95
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP</td>
<td>Bone morphogenic protein</td>
</tr>
<tr>
<td>CBs</td>
<td>Cardioblasts</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>Dpp</td>
<td>Decapentaplgic</td>
</tr>
<tr>
<td>DSLMAP</td>
<td>Drosophila sarcolemmal membrane associated protein</td>
</tr>
<tr>
<td>E-C</td>
<td>Excitation-Contraction</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>FHA</td>
<td>Forkhead associated domain</td>
</tr>
<tr>
<td>IR</td>
<td>Inverted repeats</td>
</tr>
<tr>
<td>M1</td>
<td>1st initiating methionine</td>
</tr>
<tr>
<td>M2</td>
<td>2nd initiating methionine</td>
</tr>
<tr>
<td>PUAST</td>
<td>Upstream activating sequence transformation vector</td>
</tr>
<tr>
<td>pWIZ</td>
<td>white intron zipper motif</td>
</tr>
<tr>
<td>PCs</td>
<td>pericardial cells</td>
</tr>
<tr>
<td>Robo</td>
<td>Roundabout</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>SLMAP</td>
<td>Sarcolemmal membrane associated protein</td>
</tr>
<tr>
<td>TMD</td>
<td>Trans membrane domain</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream activating sequence</td>
</tr>
<tr>
<td>Wt</td>
<td>Wild type</td>
</tr>
</tbody>
</table>
Introduction

1.1. *Drosophila* as a model organism

Drosophila (fruit fly) is one of the most widely studied model organisms in developmental biology. It has been used for more than a century now, for genetic studies; because it is easy to handle, low in cost, and has a very short life cycle (Fig.1) (Tompkins, 1994; Flannery, 1997). The fruit fly has evolved to being an excellent tool for genetic studies, and has provided a wealth of information regarding cell fate and organogenesis. The *Drosophila* genome has been sequenced resulting in the identification of over 13,000 genes and providing a very useful source for developmental biologists: http://www.pitt.edu/~biohome/Dept/Frame/drosophila.htm.

The functions of many *Drosophila* genes have been recognized, due to the ease of creating mutants and performing gain or loss of function experiments. Although *Drosophila* has fewer genes than humans, *Drosophila* genes and human genes have a very close relationship, since the sequence of many recently discovered genes can usually be matched against their *Drosophila* counterparts. Among these genes, it is the disease causing genes that are of most interest. The studies of these relationships will help in discovering the function of analogous genes in humans - which may eventually help in the development of efficient drugs (http://genome.wellcome.ac.uk/doc_WTD020807.htm).

The *Drosophila* heart tube is similar to the early vertebrates’ heart, and this similarity makes it a good model to study the early events in mammalian heart development. Recently, *Drosophila* has been used to study the genes that are involved in specifying heart formation and the genes that are implicated in cardiac function (Bier and
Figure 1. Life cycle of the fruit flies

Drosophila starts its life span as an embryo in an egg. The embryo stays in the egg for about one day. During this time, the embryo develops into a larva. The first instar larva hatches out of the egg, after a day, the first instar larva molts and becomes the second instar larva. After two days in this stage, the larva molts again to become the third instar larva. After three days the larva crawls out of the food source and molts again. Following this molt, the larva stops moving and forms a pupa. *Drosophila* stays in the pupa for about five days. During this time, the metamorphosis from larva to adult is occurring, and adult structures, like wings, legs, and eyes develop (adapted from http://www.flymove.com)
The life cycle of *Drosophila melanogaster*

- Female
- Male
- Pupa
- Prepupa
- Embryo
- 1st instar larva
- 2nd instar larva
- 3rd instar larva
Bodmer, 2007). The data strongly supports the view that genetic programming in heart formation and function in *Drosophila* is highly conserved across species, and that further studies defining functional roles for genes would have direct relevance across species.

1.2. Heart development in *Drosophila* and vertebrates

The *Drosophila* circulatory system - which is similar to all other insects - consists of a dorsomedial muscular tube called the heart or the dorsal vessel (Wigglesworth, 1984; Cripps and Olson, 2002). This simple linear heart tube shares distinguished similarities with the more complicated vertebrate heart at early stage of heart development (Bodmer and Venkatesh, 1998). Heart cells in both are derived from cardiac precursor cells that originate from the dorsal mesoderm. Heart cells in both systems assemble in two rows of cells forming a heart tube; the only difference that these cells are merged at the dorsal midline in *Drosophila*, while in the vertebrates they are merged at the ventral midline. There is a clear change in terms of the reversal of the dorsal-ventral axis between vertebrates and invertebrates (Bodmer and Frasch, 1999).

Dorsal mesoderm is specified through genetically regulated networks and signalling pathways that are conserved from fruit flies to vertebrates (Ocorr *et al.*, 2007). The *Drosophila* heart consists of two types of cells: the inner cardioblasts (CBs) that have contractile muscle property that pumps the hemolymph in an open circulatory system and the outer pericardial cells (PCs) that flank the CBs on each side (Bodmer and Venkatesh, 1998; Bodmer and Frasch, 1999). The latter may have a role in filtering and detoxifying the hemolymph of the fly (Miller, 1950) (Fig 2, 3). The two cells are connected to one another by adherence junctions, and they align in two rows that fuse at the dorsal midline forming a heart tube where the hemolymph flows from posterior to anterior.
Figure 2. Morphogenesis of the heart tube at different stages.

The dorsal vessel is derived from the ventral mesoderm layer (yellow color) which is developed at stage 5. By stage 9 this layer will spread laterally to form a dorsal mesoderm (yellow). At stage 11, precursor cells are being specified which in turn are differentiated to cardioblasts at stage 12 (red), at stage 13-14 the cardioblasts will be aligned in two rows of cells, which will migrate dorsally, and form a complete heart tube by stage 17. Adapted from (Cripps and Olson, 2002; Sorrentino, Gajewski and Schulz, 2005; Tao and Schulz, 2007).
This process the same as blood flow in a vertebrate’s heart (Rugendorff, 1994; Bodmer and Venkatesh, 1998). Each row of the heart tube is composed of 52 CBs surrounded by 22 PCs (Bodmer and Frasch, 1999; Miller, 1950). *Drosophila* heart has anterior/posterior polarity, which leads to morphological variety along the length of the heart tube. The anterior part is called the aorta, while the posterior part is called the heart. The aorta and the heart are separated by the cardiovascular valve, which is composed of a pair of cells (Rizki, 1978; Molina and Cripps, 2001; Tao and Schulz, 2007). The hemolymph enters the circulation through the ostia, which is located in the heart, during the embryonic and larval stages (Rizki, 1978; Molina and Cripps, 2001).

Drosophila heart is composed of 11 segments. The heart cells extend along these segments from the second larval thoracic segment T2 to the eighth abdominal segment A8 (Fig. 3) (Bodmer and Frasch, 1999; Tao and Schulz, 2007). Most of the segments are composed of six pairs of cardiac cells. Two of them have smaller nuclei than the other, and express the receptor gene *seven-up* (Bodmer and Frasch, 1999); while the other four express the homeobox gene *Tinman* (Bodmer, 1993; Azpiazu and Frasch, 1993). In addition, two of these cells also express another homeobox gene (*ladybird*). One expresses *ladybird-early*, and the other expresses *ladybird-late* (Fig. 2) (Jagla et al., 1997). Less PCs are seen in the anterior segments, but there is a cluster of cells expressing PC markers called the lymph gland (Rizki, 1978; Lanot et al., 2001) and another rounded structure called the ring gland - which is an endocrine organ (Fig. 3) (Rugendorff, 1994). The similarities between *Drosophila* and vertebrate hearts are limited to the early stages of heart development in vertebrates, when a linear heart tube is formed.
Figure 3. *Drosophila* heart

Drosophila heart consists of 11 segments from T2 – A8; the anterior part is the aorta (a) the posterior part is the heart (h). The confocal microscopy shows the cells that compose the *Drosophila* heart; it has two types of cells: PCs (pc) and cardioblasts (cb). At the anterior front of PCs, there is the lymph gland (lg); and there is another rounded structure called the ring gland. The heart is surrounded by alary muscles (am). (Adapted from Tao and Schulz, 2007).
- Ring gland cell
- Lymph gland cell
- Cardioblast
- Pericardial cell
The embryonic vertebrate’s heart starts developing from a flat disc called the heart field which is composed of thin layers of epithelial cells. Later on, the flat heart field will be converted into a linear heart tube that resembles the *Drosophila* heart (Fig. 4) (Zaffran and Frasch, 2002).

The principal question is: How is this flat heart field converted into a linear heart tube? Studies on zebrafish embryos showed that the left heart field acts differently from the right heart field. The right heart field cells form a kind of a leading edge and move as a group beneath the cells of the left heart field, by rolling beneath them. In this way, the right heart field will be rolling inward on its own axis. Accordingly, the right heart field will shape the ventral floor of the heart tube; while the left heart field will form the roof (http://www.sciencedaily.com/releases/2008.02/080206153309.htm).

The vertebrates’ heart develops in the same way as in *Drosophila*. The cells migrate dorsally, to form a bilateral row of cells forming the heart tube. Afterwards, the cells will merge anteriorly, to form the “cardiac crescent” (Cripps and Olson, 2002). The initiated heart tube is formed from two layers: the inner endocardial layer and the outer myocardial layer (Redkar *et al.*, 2001). This linear heart tube will then undergo a looping process to form a chambered heart. During this process, double outflow tract will be shaped, in addition to the left and right ventricles and sinus venosus (Anderson, *et al.*, 1978; Moorman *et al.*, 1994).

How does this linear heart tube then give rise to a multi chambered heart? Heart development of the zebrafish and its’ vascular system shares a lot with the human heart (Shin, 2004). Two main genes are responsible for the formation of the atria ventricle (AV) valve in the chambered heart of the zebrafish: *foxn4* and *tbx2b*.

7
Figure 4. Drosophila heart compared to vertebrate heart.

(A) In *Drosophila*, the dorsal vessel is formed from two rows of cells that converge at the dorsal midline forming a linear tube (Semeriva *et al.*, 2002). Similarly in *zebrafish*, a linear heart tube is initially formed at the ventral midline from two rows of converging cells. This zebrafish heart begins as a simple vessel containing endocrinal cells in (green), CBs in (red), and epicardial cells in (blue). Epicardial cells are not found in *Drosophila*. The zebrafish heart resembles the dorsal vessel in fruit flies at this stage. (B) After expression of *foxn4*, which activates *tbx2b* expression, the endocardial cells move inward, forming the AV canal, and a valve; resulting in a conduction delay, that is required for setting up a unidirectional circulation. (C) Finally, the mature two-chambered heart with mature valves can circulate blood with high efficiency, in a closed system (Cohen and Morrisey, 2008).
Vertebrate

A
peristalsis

B
foxn4

normal conduction delay

C
unidirectional flow with valve delay

Drosophila

T2 T3 A1 A2 A3 A4 A5 A6 A7 A8

aorta heart

atrium

ventricle
Foxn4 is one member of the large FOX (Fork Head Box) family of transcription factors. Foxn4 has a major role in the regulation of cell proliferation and specification during development. Tbx2b is a transcription factor member of the TBX2 family, and it has been shown to be required for the specification of the midline mesoderm (Cohen and Morrisey, 2008). Tbx2b is required for outflow tract, and AV canal development in the mouse (Harrelson et al., 2004). Conserved binding sites for foxn4 and tbx5 - another member of T-box family - are present on the tbx2b promoter. When foxn4 is expressed, it activates the expression of tbx2 at locus q122q13. Endocardial cells then ingress inward, leading to the formation of the AV canal, which will divide the linear heart into chambers (Fig. 4) (Cohen and Morrisey, 2008). Different aspects are responsible for the formation of the heart tube in both Drosophila and vertebrates, including signalling pathways, transcription factors and regulating genes.

1.3. The signals required for heart tube development are conserved from Drosophila to the vertebrates

1.3.1 Decapentaplegic (DPP) and Bone Morphogenetic Proteins (BMPs) signaling

Cells of the dorsal mesoderm in Drosophila receive Dpp signalling in addition to other signals from the adjacent ectoderm where it is being secreted (Haag, 1999). Dpp is a member of the transforming growth factor-beta TGFβ superfamily. It is involved in many developmental processes, including the dorsal closure of the embryo, and the subdivision of the embryonic mesodermal layer (Affolter, 2001). Dpp activates the expression of the
The *tinman* gene - which plays an important role in the heart and visceral mesoderm development - in the dorsal mesoderm (Yin and Frasch, 1998).

How does Dpp signalling activate *tinman*? There is a specific binding site located downstream from *tinman*, called smad. The activation of these sites through mad and medea effectors that are found in Dpp signalling lead to the activation of *tinman*, but this binding is not enough to drive the expression of *tinman*. Therefore *tinman* itself works together with smad, in order to express *tinman* in the dorsal mesoderm (Yin et al., 1997; Xu et al., 1998). Dpp signal is therefore very important for dorsal vessel morphogenesis. In *Drosophila* embryo lacking this signal, there is failure of both dorsal vessel formation, and progenitor cells (Frasch, 1995). A similar signal is found in the vertebrates’ bone morphogenetic proteins (BMPs) which are considered the largest family of the TGFβ superfamily (Ashe, 2005).

There are more than six members of the BMPs being expressed in the heart, from early stages until late stages of development. BMPs are implicated in diverse biological processes including cell migration, differentiation, cellular proliferation, and play an important role in the formation of the anterior–posterior axis (Dale et al., 1992; Shinsuk et al., 2009). Inhibitors of BMP signalling were used to prove its inductive activity in the heart. Some of these inhibitors were inhibitory SMAD6 and BMP inhibitor noggin (Schultheiss, 1997; Walters, 2001). These studies showed that BMPs were required for cardiogenic mesoderm differentiation, and were also found to be necessary for the maintenance of transcription factors *NKx2.5* (homologue of *tinman*) and *gata* transcription factor expression. Similar to Dpp and *tinman* the mouse *NKx2.5* is also regulated by activating sequences that include SMAD binding sites (Reiter, 2001;
Liberatore, 2002; Lien, 2002). Accordingly, Dpp and BMP are very important signalling mechanisms for the heart, since they are responsible for the activation of tinman/NKx2.5. As both of these genes are considered the corner stone in heart formation, without them there would be no heart formed.

1.3.2 Wnt/ wingless signaling

DPP or BMP signalling is not enough for cardiogenic mesoderm specification in both Drosophila and vertebrates. Another signal is required for cardiac cell specification and heart development, known as wingless (wg) signalling. It is expressed early in both the ectoderm and the mesoderm, and secreted from transverse stripes that are located in ectodermal cells. These stripes intersect with the dorsally located dpp expression domain Wg performs its action in two ways: either directly in the mesoderm or it passes from the ectoderm to the mesoderm, in order to activate the specification of cardiogenic mesoderm from the dorsal mesoderm.

In Drosophila, the wg loss-of-function embryos failed to form progenitors of the dorsal vessel; which indicates the importance of wg signalling in heart development (Lawrence et al., 1995; Zaffran and Frasch, 2002; Tao and Schulz, 2007). Pangolin (Pan/dTCF/LEF-1) is a downstream transcriptional regulator of wg signalling (Park, 1996, 1998). When Pan is activated by wg, it affects three target genes. All of them are forkhead domain transcription factor genes, that are required for heart specification, known as sloppy-paired-1 and -2 (slp-1 and slp-2), and even-skipped (eve) (Lee and Frasch, 2000; Halfon, 2000; Knirr and Frasch, 2001). Slp is considered a very important mediator of wg signalling, since loss of its activity will lead to a complete loss of cardiogenic precursors (Zaffran and Frasch, 2002). In the mesoderm, slp has two main activities: first is the
suppression of bagpipe (bap) which is an important transcription factor that is involved in subdividing the mesoderm and determining the fate of the cells in the dorsal mesoderm (Azpiazu and Frasch, 1993). Second, slp sustains the expression of wg in the ectoderm, which is essential for wg to perform its function in heart development (Jagla et al., 1997). Several binding sites for Pan/TCF (Wingless effector) have been recognized in pericardial enhancer elements of even-skipped, which in addition to Tin and Smad maintain the expression of eve (Halfon et al., 2000; Knirr et al., 2001).

On the other hand, vertebrate studies have shown that wnt signalling is involved in blocking cardiac development. In the frog embryo for example, over-expression of Wnt3a and Wnt8 prevents the expression of Nkx2.5 and Tbx5, in addition to blocking cardiac differentiation. Similarly, in a chick embryo, when the mesoderm from the heart field was exposed to Wnt3a and Wnt-1, the expression of Nkx2-5 and Tbx5 was blocked. Wnt signalling has endogenous inhibitory factors: Crescent and Dkk-1 which can inhibit Wnt3a and Wnt-8, in addition to other Wnt ligands. (Marvin, 2001; Schneider and Mercola, 2001).

These different members of Wnt signalling, which act through β-catenin - its main transducer - have suppressing activity in heart development. In other words, cardiogenesis is inhibited by the canonical Wnt/β-catenin signalling (Marvin et al., 2001; Schneider and Mercola, 2001). Other contrary studies have shown that Wnt signalling also has a positive effect, through the non-canonical Wnt11/JNK signalling - which induces cardiogenesis in later stages of development (Eisenberg and Eisenberg, 1999, 2006; Pandur et al., 2002; Terami et al., 2004).
Consequently, this pathway has different functions throughout the different stages of heart development, through the activation of particular downstream effectors. In Xenopus embryo, Wnt6 was found to be expressed endogenously within the developing heart. Wnt6 loss-of-function experiments revealed that Wnt6 is required to prevent cardiac hypertrophy. Gain-of-function experiments showed that Wnt6 prevents heart muscle development at late stages of development; so Wnt6 is not needed during gastrulation but it is needed for later stages of development, during organogenesis, just before the cells differentiate into myocardium (Lavery et al., 2008).

1.3.3 Fibroblast growth factor signalling

Fibroblast growth factor (FGF) signalling controls the spread of the mesodermal layer during heart development, in both the vertebrates and the invertebrates (Wilson et al., 2005). There are 22 genes of the FGF family found in humans, all structurally related. Three genes are found in fruit flies: branchless, pyramus and thisb (Itoh and Ornitz, 2004). FGF are implicated in embryonic morphogenesis in both vertebrates and invertebrates, and are involved in many cellular processes, including cell migration and differentiation. FGFs act through activation of their receptors (FGFRs) with tyrosine kinase domains (Bottcher and Niehrs, 2005).

Heartless (htl) encodes an FGF receptor in Drosophila. Studies on heartless mutant embryos have shown that the mesodermal layer was unable to go through dorsolateral migration, and the dorsal vessel was lost (Gisselbrecht et al., 1996; Shishido et al., 1997). Two other mutations that lead to failure of dorsal mesoderm spreading are: the sugarless and sulfaless genes - which are important for the synthesis of the co-factor heparin proteoglycan of FGF signalling (Ling et al., 1999).
FGF signalling is required for the formation and migration of the mesodermal layer and without this signal it is hard for a dorsal vessel to be formed. Inhibition of FGF in mice leads to impairment in hearing function and raises the risk of heart failure (Murakami et al., 2008).

FGF16, which is a member of the FGF9 subfamily, was found to be involved in embryonic cardiac development in mice. Deletion of FGF16 led to embryonic death, and heart defects were seen in FGF16 null heart by day 10.5 (E10.5), including dilation in the chamber and reduced thickness of the arterial and ventricular walls (Yan, et al., 2008).

In zebrafish, FGF8 is expressed early in the heart, in FGF8 mutant embryos known as acerebellar, show strong cardiac defects and absence of ventricular structures. In addition, there was an obvious reduction of Nkx2-5 and Gata4 observed from the start of their expression. Inhibition of the FGF receptor with Fgfr1 SU5402 inhibitor blocked the expression of Nkx2-5 (Reifers et al., 2000). Altogether, FGF is not only involved in heart development, but it is also required for the activation of different cardiogenic transcription factors.

1.3.3 Notch signalling

Notch signalling is a very important signalling pathway, which plays a vital role during the early stages of heart development in both drosophila and vertebrates. Notch signalling has two main components: the transmembrane receptor and transmembrane ligand.

In Drosophila, there is a single notch receptor and two ligands: Delta and Serrate (Langdon et al., 1999). Mammals have four type I transmembrane receptors (Notch1 to Notch4) and five type I transmembrane ligands: Delta-like (Dll)1, Dll3, and Dll4, Jagged1, and Jagged2; all together referred to as the DSL (Delta/Serrate/Lag-2) family.
(Fleming et al., 1998). Notch signalling during Drosophila heart development has two main functions: one is lateral inhibition, which is considered cell-cell interaction between Notch and its ligands. This takes place in a group of cells which has the same destination in the process of the heart progenitor’s development. In response to this shared inhibition, Notch signalling will be inactivated by one cell of an equivalence group that allows it to be a heart progenitor (Mumm et al., 2000). The second function of Notch signalling is involved in its ability to specify the destination of heart precursor cells. In Drosophila, the heart precursor cells’ fate is determined by two types of cell division: symmetric and asymmetric (Ward et al., 2000). This signalling works in an asymmetric manner, in order to control the specification of CBs from distinct heart precursors (Han and Bodmer, 2003). A study done on a Notch mutant embryo showed that, asymmetric division was influenced by this mutation which led to the formation of two daughter cells of similar identity. Accordingly, in this mutant embryo, CBs were formed, but PCs were absent, which point to the importance of Notch signalling in Drosophila heart development (Ward et al., 2000).

In vertebrates, Notch signalling plays an important role in cell fate determination, in addition to other functions. The genes that are considered a direct target for notch signalling are members of the HRT family of basic helix-loop-helix proteins. All of them are involved in cardiac development (Nakagawa et al., 2000). These genes of the Hrt family are considered direct targets of notch signalling. They include three genes discovered by different groups and thus given different names: Hrt, Hey, Hesr, Herp and CHF (Nakagawa et al., 2000; Iso et al., 2003).
They are expressed in the vascular smooth muscle and the endothelial cells in the developing cardiovascular system (Kokubo et al., 1999; Leimeister et al., 2000). Severe cardiac defects were seen in Hrt2 knockout mice, including cardiomyopathy, AV valve dysfunction, ventricular enlargement and other defects that led to high rates of postnatal lethality (Donovan et al., 2002; Sakata et al., 2002; Kokubo et al., 2004). Alternatively, knockout of the genes Hrt1 and Hrt3 does not cause obvious cardiac defects (Fischer et al., 2004; Kokubo et al., 2005). Notch signalling is an important signal in both Drosophila and vertebrates, and loss of this signal will lead to abnormal heart tube formation.

1.4. Transcription factors and heart development

1.4.1 Tinman and its homologue Nkx gene

Tinman was the first gene discovered to control heart development in Drosophila. Tinman is a homeodomain containing transcription factor (Bodmer et al., 1990, Bodmer 1993; Azpiazu and Frasch, 1993).

Tinman is expressed in both CBs and PCs, in addition to somatic muscles. It is initially expressed in the presumptive mesoderm, but after gastrulation, its expression is limited to the dorsal portion of the mesoderm - this gives rise to the gut muscles, some dorsal skeletal muscles, and the heart. Tinman divides the mesoderm and the dorsal mesoderm into small sections, with the capability to form the heart (Bodmer et al., 1997; Bodmer and Frasch, 1998; Yin and Frasch, 1998). Knockout of tinman led to a complete loss of the heart, which indicates the importance of this gene in heart development (Bodmer et al., 1993).
NKx-2.5 is the vertebrates’ homologue of *tinman*. In both mouse and *xenopus*, this gene was found to be expressed early in the heart (Komuro and Izumo, 1993; Lints *et al.*, 1993; Tonissen *et al.*, 1994). *Nkx*-2.5 is important for the specification and maintenance of cells’ fate that originate from the mesoderm, subsequent to gastrulation (Chen and Fishman, 1996; Cleaver *et al.*, 1996). The knockdown mouse of this gene led to altered expression of the gene and abnormal heart development, this is in addition to death of the embryos between 8 and 9.5 dpc (Lyons *et al.*, 1995; Tanaka *et al.*, 1999). Altogether, NKx2.5 is extremely vital for heart development, just as *tinman*, and performs similar function during heart morphogenesis.

1.4.2 MEF2 and DMEF2

Tinman is not the only transcription factor that is involved in heart development. *Dmef2* is a member of myocyte enhancing factors, which belong to the MAD box family. *Dmef2* and its homologue in vertebrates MEF2 play a critical role in heart cell differentiation and specification in both systems (Bour *et al.*, 1995; Lilly *et al.*, 1995; Ranganayakulu *et al.*, 1995). There are four members of this gene family in mice and they are expressed in different cell types, but mainly in the precursors of cardiac, smooth and skeletal muscle. Mice which had a mutation in the *MEF2C* gene showed defects in heart development and other defects similar to NKX2.5 mutants (Lin, *et al.*, 1997).

Fruit flies have only one gene - *Dmef2* - that is expressed in the heart precursor cells. In *Dmef2* mutant embryos, heart cells were not differentiated, and failed to express contractile protein genes (Bour *et al.*, 1995; Lilly *et al.*, 1995; Ranganayakulu *et al.*, 1995). These defects mean that *dmef2* controls the later stages of heart development, in contrast to *tinman*. *Dmef2* was found to be a direct target of *tinman*, since two binding
sites were discovered in the cardiac enhancer of *Dmef2* that are necessary for promoting the function of cardiac muscle cells (Gajewski *et al.*, 1997).

1.5. Slit ligand and its Robo receptor

The epidermal growth factor (EGF) slit is a large multi domain leucine-rich repeat (LRR) ligand. Slit is involved in different functions, including heart morphogenesis, angiogenesis, and tumor metastasis (Taskonas *et al.*, 1990).

Slits are ligands for the Robo (Roundabout) receptors, which belong to the immunoglobulin (Ig) super family of transmembrane signalling molecules (Frenandis and Ganju, 2001). Slit is a secreted protein that is expressed by glial cells and neurons (Rothberg, 1990) and by the CBs in *Drosophila* heart (Li *et al.*, 2005). In vertebrates, slit consists of a family of three genes: *Slit1*, *Slit2*, and *Slit3*; while in *Drosophila*, there is only one *Slit* (Frenandis and Ganju, 2001). Slit proteins have four leucine-rich repeats (LRRs) at the N-terminus, known as D1–D4. This is followed by six epidermal growth factor (EGF) repeats, then a laminin G-like domain, and a cysteine knot at the C-terminus (Hohenester, 2008) (Fig. 5).

Robo receptor proteins which are highly conserved from *Drosophila* to mammals consist of five immunoglobulin (Ig) repeats and three fibronectin type III repeats in the ectodomain and polyproline stretch (Fig.5). In *Drosophila*, there are three genes: *Robo*, *Robo2*, and *Robo3*; but the vertebrates possess four receptors: they are Robo1, Robo2, Robo3, and Robo4 (Tear *et al.*, 1998; Cisholm and Lavigne, 1999; Hohenester, 2008). Slit and Robo induce a signal when Slit LRRs bind to the Ig domains of Robo. LRRs are considered the most important domain in Slit protein, since they are responsible for neuronal migration and axon projection (Chen *et al.*, 2001; Morlot, 2007).
Figure 5. Structural features of Slit ligand and Robo receptor.

Slit ligand consist of: four leucine-rich domains, from D1-D4 at the N-terminus, five epidermal growth factor (EGF), and laminin globulin domain (G), and a cysteine knot at the C-terminus. While the robo receptors consist of five immunoglobulin (Ig) repeats and three fibronectin type III repeats in the ectodomain and polyproline stretch (adapted from Hohenester, 2008).
The Slit/Robo complex regulates the growth of axons and their projections to certain regions of the brain. In addition it acts as a repellent to prevent the axons from crossing non-target areas (Rao, 1999; Fernandis and Ganju, 2001).

Drosophila heart tube formation needs Slit-Robo signal, to ensure proper cardiac tube assembly and lumen formation. (Li *et al.*, 2005; MacMullin and Jacobs, 2006; Santiago-Martinez *et al.*, 2006). In addition the Slit/Robo complex act as a repulsive signal to antagonize Shotgun/E-cadherin mediated cell adhesion. It was found that Shg/E-cad gain-of-function or Robo loss-of-function had similar phenotypes in which the lumen formation was prevented due to improper CBs adhesion. The Shg/E-cad loss-of-function or Robo gain-of-function the lumen formation was also prevented because the CBs adhesion was lost. Accordingly, Slit and Robo signal may be a repulsive signal, and it is required for normal lumen formation (Santiago-Martinez *et al.*, 2008). *Slit3* is the only member of *Slit* family genes that is expressed in the developing atrial walls of the murine heart. In addition, *Slit3* deficient mice resulted in abnormal heart formation including an apparent enlargement of the right ventricle (Liu *et al.*, 2003).

1.6 Common defects observed during *Drosophila* heart development in Slit and Robo mutants

Altering the expression of Slit or Robo in *Drosophila* results in different types of defects, and the severity of these defects depends on the type of the mutation in each gene. For instance, *slit* null mutant and *robo* double mutant causes severe migration defects in *Drosophila* heart tube compared to the wild type at the same stage (Fig.6 A-J). Delayed migration is one of the most common defects in *slit* null mutant embryo; in this defect the cells were not able to migrate dorsally as in a control embryo to form an organized heart
tube. Instead it is formed in an irregular manner (Fig. 6 B, D asterisk) (MacMullin and Jacobs, 2006). Another defect that is seen in both slit and robo double mutant, are large gaps, in which part of the heart tube totally disappeared (Fig. 6 D, f, J arrow). In addition, a twisted heart tube is also seen in slit null and robo double mutant, in which crossed lines of the CBs is seen, compared to the control embryo at stage 17 of embryonic development (Fig. 6 B diamond, J arrow) (Li et al., 2005; Macmullin and Jacobs, 2006).

Another defect that is detected at different stages of embryonic heart development is formation of double rows of cells or clustering of 2-3 cells as seen in stage 15 of Slit null mutant embryo (Fig. 6, H arrow) (Li et al., 2005).

1.7. Sarcolemmal Membrane Associated Proteins SLMAPs

The Tail-anchored (TA) membrane protein family are distinguished by a hydrophobic transmembrane domain at the C-terminus (Wattenberg and Lithgow, 2001). They have a major role in membrane fusion and are implicated in different cellular events such as neurosecretion and cell death (Cory and Adams, 2002). SLMAP is a member of this family which has two alternatively spliced tail anchors (TA1 and TA2) (Guzzo et al., 2004). SLMAP consists of alpha helical coiled regions containing two leucine rich motifs and a transmembrane (TA) at the C-terminus (Wigle et al., 1997; Guzzo et al., 2004). There are three isoforms of SLMAP: two cardiac muscle specific variants (SLMAP1, SLMAP2) and a ubiquitously expressed isoform (SLMAP3) (Wigle et al., 1997) SLMAP3 is recognized by its forkhead associated domain (FHA) at the N-terminus that is not found in the other isoforms, and two transmembrane domain at the N-terminus (TA1 and TA2) (Guzzo et al., 2004). SLMAP3 and Drosophila SLMAP (DSLMAP) have similar structural features.
Figure 6. Cardiac defects observed in Drosophila heart caused by slit and robo mutants

Different types of defects were detected in Slit and Robo mutants. (A-J) Embryos are at dorsal view anterior to the left. (A-D) the cardioblasts are stained with Cardial cells are labeled with the B2-3-20 enhancer trap, (E-J) the cardioblasts are labeled with Dmef2 antibody. (A) Control embryo, at stage 17 shows normal cardioblasts alignment. (B) slit null mutant embryo, at stage 17 shows several migration defects in the same embryo which include delayed migration (asterisk), twist or crossed line (diamond) and blisters (arrowhead). (C) Control embryo, at stage 14 has aligned cardioblasts. (D) slit null mutant embryo, at stage 14, two defects are seen in the embryo delayed migration (asterisk), and a gap (arrow). (E) Wild type embryo, at stage 17, shows organized heart tube (arrow). (F) slit null mutant embryo, at stage 17, shows crooked lines of the cardioblasts and misaligned cardioblasts (arrows). (G) Control embryo at stage 15, shows aligned cardioblast. (H) Slit null mutant embryo, at stage 15 shows double rows of the cardioblasts (arrow), and a gap (star). (I) control embryo, stage 17 shows normal cardiac cells alignment. (J) robo double mutant embryo, at stage 17, shows gaps, delays and twisted heart tube (arrows). (Fig. A-D, adapted from: MacMullin and Jacobs, 2006, Fig. E-J, adapted from: Li et al., 2005)
Figure 7. Structural features of *Drosophila* SLMAP and its mammalian homologue.

DSLMAP resembles the mammalian SLMAP. Both of them possess a fork head associated domain (FHA), a coiled-coil region, and a TM domain. A 55.9% identity was identified in FHA domain, and 25% identity was identified in the TM domain, and the % identity for overall sequence is 28.6% (Adapted from M’omena Dawood thesis, 2006; Guzzo *et al.*, 2003).
Drosophila
28.6%
Rabbit
CFHA^Fork head associated domain
Coiled coil domain
TM domain
FHA
55.9%
25%

771aa
DSLMAP and its mammalian homologue share 28.6% identity over 721 amino acid residues with the SLMAP3 isoform; a higher percentage identity was noted in the forkhead-associated domain (55.9%) (M’omena Dawood thesis, 2006) (Fig.7). Each domain in (SLMAP) has its own function. The presence of leucine-rich coiled coil regions in SLMAP is essential for SLMAP oligomerization and also to mediate SLMAP-SLMAP interaction (Guzzo et al., 2004).

Coiled-coil domains are extensively used in extracellular matrix molecules to join subunits in oligomeric proteins and maintain protein stability by directing subunit oligomerization (Procopio et al., 1999). Another domain that is found in DSLMAP and the mammalian SLMAP is the FHA domain, which plays an important role in different cellular events including DNA repair and cell cycle progression (Pike et al., 2001). The TA domains targets the SLMAP to reticular structures while TA2 targets SLMAP to the mitochondria (Guzzo et al., 2004) and may have a role in the function of this organelle (Byers et al., 2009).

SLMAP was found to be expressed in different systems, including early expression in the heart at nine days post coitum (d.p.c) (Guzzo et al., 2004), skeletal muscles, and in the rat (during neurogenesis) in the neonatal hippocampus and neonatal migratory neurons (Wigle et al., 1997). Studies on SLMAP have shown that it plays an important role in myoblast fusion during myogenesis. SLMAP is involved in the membrane biology of excitation-contraction (E-C) coupling in the developing muscles (Guzzo et al., 2004). Moreover, it was found that SLMAP in the mouse heart is implicated in the remodelling of E-C coupling components and that its elevated levels in cardiomyocytes are essential to guarantee a proper organization of subcellular compartments (Nader et al., 2008).
Recent work in our lab showed that DSLMAP is ubiquitously expressed at different stages of embryonic development in Drosophila, and was found to be expressed early in the CNS. Over-expression and down-regulation of DSLMAP in glia and neurons led to defects during neuronal development in the embryonic CNS and it was found that critical levels of DSLMAP is required for proper neuronal development (M’omena Dawood thesis, 2006). In addition different genetic interactions of DSLMAP with the Slit/Robo pathway indicated a role for DSLMAP in the CNS (M’omena Dawood, 2007).

1.8 Rationale and statement of the problem

SLMAP was found to be expressed early in the mammalian heart development, and data suggests that it may play a role in cardiac function at the level of membrane biology and signal transduction. SLMAP and its Drosophila homologue DSLMAP are highly conserved in terms of structural motifs including the presence of a C-terminal membrane anchor, a central coiled-coil region and a N-terminal FHA domain. DSLMAP was shown to be ubiquitously expressed during the embryonic development of Drosophila, and to interact genetically with the Slit/Robo pathway in the developing nervous system. In view of the ubiquitous expression of DSLMAP during embryonic development here we have studied expression of DSLMAP in the developing Drosophila heart tube. We have used a targeted approach to de-regulate DSLMAP levels in cardiac cells to define any potential contribution of this protein to heart tube formation. Further, we have also studied any potential genetic interactions of DSLMAP with the Slit/Robo pathway which is known to be a critical player in the normal development of the Drosophila heart.

1.9 Hypothesis

DSLMAP is expressed early in cardiac cells and its levels play a critical role in
developing the *Drosophila* heart tube. Further, in view of the role of Slit/Robo pathway in heart tube formation, we propose that DSLMAP interacts with these proteins to ensure proper heart development.

1.10 Objectives

A- To determine mRNA expression of *DSLMAP* during heart development.

B- To investigate the role of *DSLMAP* in *Drosophila* heart by:

1. Targeted down regulation of *DSLMAP* in *Drosophila* heart cells using RNAi.
2. Targeted up regulation of *DSLMAP* in *Drosophila* heart cells.

C- To characterize any genetic interactions between *DSLMAP* and Slit/Robo pathway in *Drosophila* heart by:

1. Targeted over-expression of *DSLMAP* in the CBs of *slit*\(^2\) and *robo*\(^{189}\) mutant heterozygous background.
2. Targeted down-regulation of *DSLMAP* in the PCs of *slit*\(^2\) and *robo*\(^{189}\) mutant heterozygous background.
3. Targeted over-expression of *DSLMAP* in the CBs of UAS-*Slit* transgene.
4. Targeted over-expression of *DSLMAP* in the CBs of UAS-*Robo-RNAi* transgene.
5. Targeted down-regulation of *DSLMAP* in the PCs of UAS-*Slit* transgene.
6. Targeted down-regulation of *DSLMAP* in the PCs of UAS-*Robo-RNAi* transgene.
Materials and Methods

2.1 Fly Stocks and Genetics

Flies were raised on corn cornmeal molasses/agar/yeast medium with both propionic acid and Tegosept at room temperature.

Stocks were obtained from Bloomington Drosophila Stock Center at Indiana University:

1. w^{118} white eye wild type
2. Paired-GAL4 driver
3. UAS Slit, UAS Robo RNAi
4. \textit{slit}^2 and \textit{robo}^{189} loss of function mutants

Heart drivers were obtained from Ralf Bodmer lab, university of Michigan:

TincΔ 4-GAL4 specific for CBs; Prc-GAL4 specific for PCs

2.2 DSLMAP RNAi construct

The UAS DSLMAP RNAi line was generated in the lab, by the use of pWIZ vector. \textit{DSLMAP} inverted repeat was subcloned in this vector to generate RNAi construct (M’omena Dawood thesis, 2006). as illustrated in (Fig. 8). This construct was sent for injection at Drosophila Transgenic Services in Sudbury, MA, USA.

2.3 DSLMAP HA tagged over-expression construct

A pUAST-Dros-SLMAP-2X HA construct was used to generate the over-expression lines. Briefly the generation of the construct was done by amplifying the full length DSLMAP cDNA (LD47843) from pOT2 vector. The amplified fragment was inserted into pCR-4 TOPO vector and then shuttled in frame from pCR-4 into EagI site of the Drosophila transformation plasmid pUAST (Brand and Perrimon, 1993). The colony with
Figure 8. Structure of the RNAi construct

The RNAi construct was generated using white intron zipper pWIZ vector (Lee and Carthew, 2003). Panel A shows a schematic representation of the pWIZ vector. This vector was made by inserting the 374-bp second intron of the white gene into the pUAST transformation vector (Lee and Carthew, 2003). Cloning was facilitated by several specific cloning sites on the 5' and 3' ends that flank the intron. Panel B, the RNAi construct generated using pWIZ vector. (Adapted and modified from M'omena Dawood thesis, 2006)
A. Structures of the RNAi construct

B. Structures of the RNAi construct

(pWIZ) RNAi vector

Lee and Carthew, 2003
the right orientation pUAST-Dros-SLMAP was further used to clone 2X HA tag to it. The 2X HA tag was amplified from pCDNA3 using HANT-F (HA-NotI-Forward) primer and the reverse primer HANT-R. Both primers have NotI sites. The amplified 2X HA fragment was then cloned to the C-terminus of pUAST-Dros-SLMAP construct to generate pUAST-Dros-SLMAP-2X HA construct. This construct was sent for injection (Drosophila Transgenic Services, Sudbury, MA, USA) (Fig. 9) (this construct was made by Maysoon Salih and M’omena Dawood). Ten transformant lines were generated and mapped by (M’omena Dawood).

2.4 GAL4/UAS binary system

DSLMAP role during Drosophila heart development was analyzed by using two approaches: one for down-regulation of DSLMAP by generating the upstream activating sequence (UAS) DSLMAP RNAi line, the second for over-expression of DSLMAP by generating UAS-DSLMAP lines. These lines alone can’t produce any expression in Drosophila embryonic heart, since the UAS promoter sequence is not found in fruit flies. Accordingly, the GAL4/UAS system was used, in which GAL4 a yeast transcription factor that is inactive alone in Drosophila (Duffy, 2002). The GAL4/UAS bipartite system is used to express different genes, in which the GAL4 binds to the UAS; this binding will activate the expression of the gene carried downstream the UAS promoter where ever the GAL4 is expressed in cell and tissue specific manner. The GAL4/UAS is considered as one of the most important genetic tool which is being used in Drosophila melanogaster, since it helped scientists to explore the function of genes in different medically and economically important processes (Duffy, 2002; Brian, 2003). Thus this system is used for the over-expression of transgenes from a UAS promoter because
Figure 9. Generation of DSLMAP HA tagged over-expression construct

Panel A, pUAST vector (Brand and Perrimon, 1993) which was used to subclone the full length DSLMAP downstream of the UAS promoter element. Panel B DSLMAP over-expression construct, 2 X-HA fragments was subcloned at the C-terminus of full length DSLMAP.
A. pUAST transformation vector

B. UAS-DSLMAP constructs
Figure 10. Mechanism of the GAL4/UAS binary system

Gal4 is a yeast transcription factor required to activate the expression of any coding sequence downstream of a (UAS) Upstream Activating Sequence. Two mutant flies are required: one to carry the Gal4 transgene fused to a promoter that has a specific expression pattern, and the other fly carries a coding sequence for the target gene, cloned downstream of the activating sequence. The first generation of a cross between Gal4 strain and UAS strain carry both transgenes and will express the UAS downstream gene in all cells that express GAL4.
Expression of target gene in tissue and cell specific manner where Gal4 is expressed.
GAL4 will drive the expression of the transgene without affecting the cells (Duffy, 2002; Brian, 2003). This is done by crossing a GAL4 driver line with a UAS line, thereby the gene will be fused to UAS and expressed in a temporally and spatially specific location where ever the driver gene is normally expressed (Fig. 10) (Perrimon, 1993; Brian, 2003).

2.5 Genetic crosses generated to analyze DSLMAP's role during Drosophila heart development

In order to study the expression of DSLMAP in Drosophila heart the following genetic crosses were made using GAL4/UAS binary system:

1- UAS DSLMAP /++; WT/+
2- Tin GAL4/++; UAS DSLMAP/+
3- Prc GAL4/++; UAS DSMLAP/+
4- UAS DSLMAP RNAi /++; WT/+
5- Tin GAL4 /++; UAS DSLMAP RNAi/+
6- Prc GAL4/++; UAS DSLMAP RNAi/+.
7- Paired GAL4/++; UAS DSLMAP
8- Tin GAL4/++; WT/+
9- Prc Gal4/++; WT/+

To study genetic interaction of DSLMAP with the Slit/Robo pathway the following crosses were made:

1- Tin GAL4/++; UAS Slit / +
2- Tin GAL4/++; UAS Robo/+
3- Prc GAL4/++; UAS Robo/+
4- Prc Gal4/++; UAS DSLMAP RNAi /++; UAS ROBO RNAi
5- Tin GAL4/+; UAS DSLMAP /+; Robo^{189} \\
6- Prc GAL4/+; UAS DSLMAP RNAi /+; Robo^{189} \\
7- Tin GAL4/+; UAS DSLMAP /+; Slit_{2} \\
8- Prc GAL4/+; UAS DSLMAP RNAi/+; Slit_{2} \\
9- WT/+; Slit^{2}/+ \\
10- WT/+; Robo^{189}/+ \\
11- Tin GAL4/+; Slit^{2}/+ \\
12- Tin GAL4/+; Robo^{189}/+ \\
13- Prc GAL4/+; Slit^{2}/+ \\
14- Prc GAL4/+; Robo^{189}/+ \\
15 UAS DSLMAP/+; Slit^{2}/+ \\
16-UAS DSLMAP RNAI/+; Slit^{2}/+ \\
17- UAS DSLMAP/+; Robo^{189}/+ \\
18- UAS DSLMAP RNAI/+; Robo^{189}/+ \\

2.6 In situ hybridization

2.6.1 Embryo collection and fixation for in situ hybridization

Embryos were collected on grape juice agar plates and transferred to vials which have a sieve cover. Embryos were washed with double distilled water and dechorionts in 25% commercial bleach (chlorix) in water for about 2-3 minutes. Cleared embryos then were transferred to a glass scintillation vial containing 1 ml fixation solution (4% formaldehyde in 1XPBS pH7.4) and 6ml heptane, which were shaken for 20 minutes. Using a glass pipette, the lower layer was removed, and 8 ml of methanol was added. The vials were shaken strongly for 15 seconds to burst the vitelline membrane, in order to
allow the devitelinized embryos to fall to the bottom, and be transferred to 5 ml vials and washed twice with methanol. Finally, embryos were stored in the freezer at -20°C.

2.6.2 In situ hybridisation of digoxigenin (DIG)-labelled probes

In situ hybridization is a type of hybridization that is used to detect and localize RNA or DNA sequence in a part of small tissue such as, Drosophila embryos. It involves the hybridization of DIG labelled complementary RNA or DNA strand (probe).

Whole-mount *Drosophila* RNA *in situ* hybridization was performed as described by Nusslein-Volhard lab. Dig-labelled RNA sense and α-sense probes were generated using a Dig RNA labeling kit (Roche), with probes of 300–550 base pairs in length (Momena Dawood thesis, 2006). All solutions were made in Diethyl Pyrocarbonate (DEPC) treated water. The fixed embryos stored at -20 were left at room temperature (RT) washed twice for 10 minutes in PBT (998.5ml 1XPBS;500ul DEPC;0.1% (v/v) tween20) embryos were post-fixed in 1ml PBT (4% formaldehyde) for 15 minutes, then washed 5X for 5 minutes in PBT and incubated in 0.05% Proteinase K in PBT for 5 minutes. Proteinase K digestion was terminated by incubating embryos for 2 minutes in 2 mg/ml glycine in PBT, and embryos were washed 2X for 5 minutes in PBT. Embryos were again fixed in 1ml PBT, 4% formaldehyde for 20 minutes and were washed after 5X for 5 minutes in PBT. The embryos were washed with hybridization B solution [hyb B: 50% (V/V) formaldehyde; 25% (v/v) 20X SSC; 25% (v/v) DEPC in H2O] for 5 minutes and prehybridized in hybridization A solution [50% v/v) formamide; 25% (v/v) 20X SSC; 10 mg/ml sonicated salmon sperm DNA; 20 mg/ml tRNA; 100 mg/ml heparin, ph 5.0] for 1 hour in a water bath at 70°C. The liquid containing the embryos was removed, only 2 mm of solution left above the surface of settled embryos, and 2μl of the probe was added
to 60μl of the hybridization A solution containing the embryos. Hybridization was carried out in a 70°C water bath overnight. Two 15 minutes washes with hybridization B solution were performed followed by serial washes in hybridization solution in PBT for 10 minutes at RT, which were followed by several washes in PBT 3X for 10 minutes. In order to remove any nonspecific binding materials the anti-DIG antibody conjugate (1:2000) was made freshly and preabsorbed the 1st day of this experiment against fixed embryos. Embryos were incubated for 2 hours in 1.2 ml of the diluted, preabsorbed anti-DIG antibody complex. The embryos were washed 3X for 20 minutes in PBT, and washed 2X for 20 minutes in staining buffer [1M MgCl2; 5M NaCl; 1M Levamisol; 20% Tween 20; 0.1M Tris-HCl, pH 9.5]. The signal was developed using 15 ml staining buffer containing [2.56% (v/v) NBT/BCIP].1ml of the staining solution was added to embryos. The tubes containing the embryos were covered with aluminum foil; in order to allow the color to develop in the dark. This reaction was left to proceed until the desired staining effect was viewed under the dissecting microscope, and PBT was used to stop the reaction. The embryos were washed 2X for 10 minutes in PBT, and 2X for 10 minutes in water on the rotator. The embryos were dehydrated with an ethanol gradient beginning at 70% ethanol. The tubes were inverted several times; embryos were allowed to settle down, in order to remove the ethanol. The embryos were treated with a mix of 70% ethanol and 100% ethanol followed by inversion of the tube several times. The final step in the dehydration process involves adding 100% ethanol alone 2X for 5 minutes. The ethanol was removed and the embryos were stored in 80% glycerol at RT.
2.7 Non-fluorescent protein/RNA double-labeling using Dmef2 antibody and DIG-labeled DSLMAP riboprobes.

2.7.1 Embryos fixation

Embryos from different developmental stages were collected for a week at RT on grape juice agar filled Petri plates containing a small smear of live yeast paste (Fleischmann’s dry). Embryos incubated for two hours at 29°C for heat shock to activate the yeast transcription factor GAL4, and then allowed to recover on for 1 hour at RT, to ensure the embryos were well differentiated. The plates containing the embryos were dechorionated for 7 minutes with 50% bleach, and were collected on a nitex sieve, and washed with distilled water. After drying the bottle using a kimwipe, the nitex sieve holding the dechorionated embryos was immersed in a scintillation vial containing a 1:1 mixture of heptane:fixation solution (fixation solution composed of 5% formaldehyde, 0.05M EGTA in 1X PBS. pH 7.0) for 30 minutes. Next the embryos were placed in an equal mixture of methanol: heptane on a shaker for 20 minutes, in order to ensure permeabilization of embryos to allow entry of the fixative and subsequent antibodies. The bottom aqueous layer was removed, replenished with fresh methanol and the vial containing the embryos was shaken vigorously for approximately twenty seconds in order to remove the vitelline membrane surrounding the embryos. The embryos then were transferred to 0.5 ml eppendorf tube using a Pasteur pipette. Traces of heptane were removed by three methanol washes.

2.7.2 Dmef2 antibody staining

Dmef2 antibody is specific for CBs and somatic muscles and it is used to stain these
embryos. The fixed embryos were washed for 15 minutes in 3% hydrogen peroxide in methanol, and then washed three times with methanol. They were then washed with PBTH for 3 X for 30 minutes (PBTH was prepared using filtered 1 X PBS, 0.1% Tween-20, 50 μg/ml heparin, and 250 μg/ml tRNA). The embryos were blocked by 100μl PBTH and 10μl NGS (Normal Goat Serum) for 30 minutes. Embryos were then incubated with Dmef2 antibody (1:1500) overnight at 4C. Embryos were washed at RT with PBTH for 6X for 20 minute, and blocked with100μl PBTH and 10μl NGS for 30 minutes. Embryos were then incubated with biotinylated secondary antibody for 2 hours at room temperature, and washed with several changes of PBTH for 60 minutes. For detection of the biotinylated secondary antibody, Vector Lab ABC amplification system was used. The reagents were mixed according to manufacturer's instructions 30 min. prior to use. Embryos were incubated with the pre-incubated ABC mixture for 30 minutes at RT, and washed for 15-30 min. with 3-4 changes of PBTH. The signal was developed with 20 μg/ml Diaminobenzidine, 0.03% hydrogen peroxide in PBTH. A brown signal will be produced. The reaction was stopped with several rinses of PBTH.

2.7.3 In situ hybridization using DIG labelled DSLMAP riboprobes:

Embryos were again fixed for 20 minutes with 5% formaldehyde in PBTH at RT, and washed 3 X for 5 minutes with PBTH. The embryos were then incubated with 50 μg/ml of Proteinase K in PBT for 2-3 minutes. The Proteinase K reaction was stopped with two washes for 3 minutes of 2 mg/ml glycine in PBT, and the embryos were rinsed twice with PBT. Embryos were fixed again for 20 minutes with 5% formaldehyde in PBT at room temperature, and washed 5X with PBT for 20 minutes each wash. Then the embryos were rinsed with PBT: Hybridization buffer (1:1), and then with hybridization buffer alone.
Hybridization buffer consisted of 50% (v/v) formamide; 25% (v/v) 20X SSC; 10 mg/ml sonicated salmon sperm DNA; 20 mg/ml tRNA; 100 mg/ml heparin, pH 5.0. Embryos were pre-hybridized in hybridization buffer for one hour at 70°C, and Digoxigenin-labelled DSLMAP riboprobes were added to the hybridization buffer and incubated overnight (12 to 16 hours) at the appropriate temperature. Post-hybridization washes were done for 20 minutes at the same temperature, the embryos were washed with hybridization buffer alone then PBT: hybridization buffer (1:1) and finally, with PBT alone for 5 washes. Embryos were incubated with anti-Digoxigenin antibody (Boehringer Mannheim) conjugated to alkaline phosphatase (diluted 1:2000 in PBT) for 2 hours at room temperature. Embryos were washed with PBT 4 times for 20 minutes each wash, and rinsed with alkaline phosphatase staining buffer (100 mM NaCl, 50 mM MgCl2, 100 mM Tris pH 9.5, 1 mM Levamisol, and 0.1% Tween 20). Finally, the signal was developed using NBT and BCIP in the alkaline phosphatase staining buffer as described by the manufacturer (Boehringer Mannheim). The reaction was stopped with several washes of PBT. The embryos were dehydrated with an ethanol series, and rinsed several times with PBT. The embryos were mounted in 70% glycerol and 30% 0.1 M Tris pH 8.0. This experiment was done according to (Manoukian, A. and Krause, H.M protocol.1992).

2.8 Immunohistochemistry

2.8.1 Embryo fixation

A large number of embryos from different developmental stages were collected overnight at RT on grape juice agar filled Petri plates containing a small spread of live yeast paste (Fleischmann’s dry). Embryos were left in the incubator for two hours at 29°C for heat
shock to activate the yeast transcription factor GAL4 and then allowed to recover on lab bench for 1 hour, to ensure that the embryos are well differentiated. The plates containing the embryos were dechorionated for 7 minutes with 50% bleach, and they were collected onto a nitex sieve and washed with distilled water. After drying the bottle using a kimwipe, the nitex sieve holding the dechorionated embryos was immersed in a scintillation vial containing a fixation solution of 500μl of 37% formaldehyde, 4.5ml 1X PBS (Phosphate Buffer Saline) and 5ml heptane. Embryos were left on a shaker for 30 minutes; heptane is used to ensure permeabilization of embryos to allow entry of the fixative and the following antibodies. The aqueous layer at the bottom was removed, fresh methanol was added and the vial containing the embryos was shaken vigorously for approximately twenty seconds in order to remove the vitelline layer surrounding the embryos. The bottom layer was transferred to a plastic tube using a Pasteur pipette, and embryos were washed three timed with methanol to remove any traces of heptane, and stored in -20°C. Embryo fixation was according to standard protocol (patel, 1994). Embryo staging was according to Campos-Ortega and Hartenstein (1985).

2.8.2 Antibody staining

In order to carry on with antibody staining, embryos stored in methanol at -20°C were used and washed with PBT (50 ml 10X PBS containing 0.1% triton X-100 and 450ml distilled water). Embryos were washed for 2X20 minutes in PBT on a rotator, and incubated in 100μl of PBT containing 10 μl of normal goat serum (NGS) for 30 minutes to block nonspecific antibody binding. A primary antibody with specific dilution was added to embryos in blocking solution and was incubated at 4°C overnight. Remaining antibody was washed away with PBT 3X for 1 hour. The washed embryos were blocked
again in 100μl of PBT containing 10 μl of NGS for 30 minutes. The secondary antibody was added to the blocking solution and embryos were incubated for two hours at RT. The secondary antibody was then washed out with PBT for 45-60 minutes on a rotator. Vector shield was added to conserve the embryo. (Antibody staining was according to standard protocol (Patel, 1994).

2.8.3 Antibodies

Primary antibodies Dmef2 (obtained from Rolf Bodmer lab university of Michigan) which is specific for myocardial and somatic muscles cells (1:1500), and ZFH1 antibody (obtained from Jim Skeath, department of genetics, Washington University) specific for pericardial cells (1:500) were used. The following primary antibodies were obtained from hybridoma bank: α-spectrin antibody to stain the cell membrane (1:10), Robo (1:10) and Slit a (1:10) were used. Anti Digoxigenin-AP primary antibody was used for in situ hybridization (Roche applied science). The secondary antibodies used are anti-rabbit IgG, anti-Digoxigenin-AP (Roche applied science), anti-mouse IgG, anti-Digoxigenin-AP (Roche applied science), and anti-guinea pig IgG, anti-Digoxigenin-AP (Jakson).

2.9 Microscopy

Embryos were viewed under fluorescent, light, and confocal microscope. All the confocal images were taken at 40X. All figures were processed using Adobe Photoshop software.

2.10 Statistical analyses

The expressivity for the phenotypes which is the number of defects per embryo was calculated with results from three independent trials. Four phenotypes were observed which include: delayed migration, clustering/aggregation of cells, twisted heart tube, and
gaps between the heart cells. The expressivity were calculated for each phenotype alone, for instance, the expressivity for the delayed migration defect was calculated for each cross by counting the number of defective embryos carrying this phenotype, and by counting how many delays were found in each embryo, then the mean and Standard deviation were calculated using Microsoft Excel. The Penetrance for each genetic cross was calculated by dividing the number of defective embryos (with specific phenotype) by the total number of embryos counted per cross.

The p-value for the second crosses was calculated using the T-test which was performed using (http://www.graphpad.com/quickcalcs/ttest1.cfm).
Results

4.1 *Drosophila* heart is composed of two cell types

Drosophila heart or the dorsal vessel has two types of cells: the cardioblasts (CBs) and the pericardial cells (PCs). There are 52 cells of CBs surrounded by 22 PCs on each row. CBs fuse together to form a linear heart tube by stage 17. *Dmef2*, which is specifically expressed in the CBs and somatic muscles, was used to stain CBs shown in red color (Fig. 11, A arrow). Zfh1, a specific marker for PCs, was used to stain these cells which are shown in green color (Fig.11, A’ arrow). Both types of cells converged at the dorsal midline to form a linear heart tube at stage 17 of embryonic development, as shown in (Fig.11, A”).

4.2 DSLMAP mRNA expression during embryonic development

The expression pattern of DSLMAP was examined using *in situ* hybridization which was performed with DIG labelled, sense-DSLMAP and antisense-DSLMAP riboprobes. Ubiquitous expression of DSLMAP mRNA was observed throughout the embryo and at various stages of embryonic heart development, as illustrated by whole mount *in situ* hybridization (Fig. 12). This expression was detected early at stage 2 of embryonic development (Fig.12, A) which lasts for 40 min, and is characterized by rapid cell cycles that successively divide the fertilized egg. Blastoderm cell formation occurs at stage 5 of embryonic development (Fig.12, B), and cellularization takes place by means of the introgression of membrane grooves to separate single blastoderm nuclei. At stage 9 of embryonic development, dorsal mesoderm is formed which marks the beginning of dorsal vessel formation (Fig.12, C arrow).
Figure 11. *Drosophila* heart consist of two types of cells

The heart tube in fruit flies has two cell types: the cardioblasts, and the PCs.

(A-A’') dorsal view of wild-type stage 16 embryos, anterior is to the left. (A) At stage 16, heart cells are aligned in two rows (arrows) forming the heart tube. The CBs, which have a cubodial shape, are identified with Dmef2 antibody (red color); somatic muscles are also seen (arrowheads). (A’) PCs have a round shape (arrowhead) and are identified with Zfh1 antibody (green color). Lymph glands are also indicated due to Zfh-1 expression (arrowheads). (A’’) The embryo is double-labelled with Dmef2 and Zfh1 antibodies. Scale bar =10 μm
At stage 14, heart cells are assembled in two rows, and DSLMAP transcript is noted in these cells due to hybridization with anti-sense DSLMAP riboprobe compared to the sense DSLMAP riboprobes at the same stage (Fig.12, D arrow). DSLMAP transcript is still noticeable at stage 15 where the dorsal mesoderm has finished fusion at anterior and posterior parts but not at the middle (Fig. 12, E, arrow head). Sense-DSLMAP RNA riboprobe was used as a control where no hybridization signal is observed during various stages of embryonic heart morphogenesis (Fig.12, right panel A, B, C, D, and E).

4.3 *Dmef2* protein and *DSLMAP* mRNA localization

Non-fluorescent protein/RNA double-labeling was used to determine the expression of *DSLMAP* in the heart since the whole mount *in situ* hybridization showed that *DSLMAP* is ubiquitously expressed during embryonic development. Dmef2 antibody stains the CBs and somatic muscles, while the DIG-labeled *DSLMAP* riboprobes were used to examine the *DSLMAP* mRNA expression.

This double labeling illustrates that *DSLMAP* is expressed in the heart at early stages of embryonic development. No clear differences between Dmef2 staining and *DSLMAP* mRNA localization were evident in heart cells or somatic muscles. However, darker signal was observed in these areas, which is indicative of *DSLMAP* expression in CBs at various stages of heart development. CBs and somatic muscles are observed at stage 14 with purple color, which is double labeled with Dmef2 and antisense *DSLMAP* riboprobe (Fig.13, A). Double labeling with Dmef2 and sense *DSLMAP* riboprobes were used as a control where no signal was obtained (Fig. 13, B).

These results indicate that *DSLMAP* expression in the embryonic heart detected from the beginning of heart tube formation, and that *DSLMAP* is a component of CBs.
Figure 12. Embryonic expression of *DSLMAP* mRNA in *Drosophila*

(A-E) Whole mount *in situ* hybridization was performed using DIG-labelled riboprobes at various stages of embryonic development; left panel: embryos were labelled with anti-sense *DSLMAP* riboprobe; right panel: embryos were labelled with sense riboprobes used as a control. All the embryos were anterior to the left

(A) Ubiquitous expression of *DSLMAP* at stage 2 of embryonic development. (B) *DSLMAP* mRNA expression did not change at stage 5 of embryonic development, and cellularization process occurred at this stage (arrow). (C) Sagittal view of stage 9 embryo where *DSLMAP* transcripts is highly concentrated in the dorsal mesoderm (arrowhead) and the midgut (arrow). (D) Sagittal view of stage 14 embryo showing heart cells aligned in a row (arrow) and the somatic muscles are also seen (arrowhead). (E) Dorsal view of stage 15 embryo showing the expression of *DSLMAP* transcript in the heart position (arrow). Scale bar = 20 μm
Figure 13. Double-labeling using Dmef2 antibody and digoxigenin-labeled DSLMAP riboprobes

Panel A: dorsal view of wild-type stage 14 embryo anterior to the left: this embryo was double labelled with Dmef2 - which is specific for cardioblasts and somatic muscles - and DSLMAP anti-sense riboprobe. Two rows of cardioblasts are clearly seen (arrows), in addition the somatic muscles are also detected (arrow head). Panel B: dorsal view of wild-type stage 14 embryo anterior to the left, this control embryo was double labelled with Dmef2 and DSLMAP sense riboprobe; two rows of the cardioblasts with no hybridization signal are seen (arrows), also the somatic muscles showing no signal (arrowhead). Scale bar = 20 μm
4.4 DSLMAP is expressed at all stages of Drosophila heart development

Dmef2/DSLMAP mRNA double labeling indicate that DSLMAP is expressed through all stages of Drosophila embryonic heart development. This expression did not appear to change from early stage 13 to stage 16. Double labeling with Dmef2 antibody and DSLMAP mRNA riboprobes was detected from the beginning of embryonic heart formation at stage 13, suggesting that both are expressed in the CBs (Fig. 14 A, arrow). The double labeling was also noted in the somatic muscles as illustrated in (Fig. 14 A, arrow). Dmef2 antibody was used to stain the CBs alone on another collection of wild type embryos at different stages of development. Immunostaining of CBs was obvious at stage 13 (Fig. 14 A’, arrow). The somatic muscles are also indicated as shown in (Fig.14 A’, arrowheads).

Double labelling with DSLMAP mRNA and Dmef2 antibody is localized at the CBs, where two rows of cells are formed by stage 14 (Fig.14 B, arrows), and the somatic muscles are also indicated (Fig.14 B, arrowheads). At the same stage, Dmef2 antibody staining similarly shows two rows of CBs, and the somatic muscles (Fig.14 B’ arrows, arrowheads). CBs migrated dorsally as observed in the double labelling with Dmef2 antibody and DSLMAP riboprobe at stage 15 of embryonic development (Fig.14 C, arrow), and the somatic muscles are also double labelled as shown in (Fig.14 C, arrowheads). Similarly at the same stage, the anti-Dmef2 staining of the CBs showed that they migrate dorsally, and the somatic muscles are also indicated (Fig. 14 C’ arrow, arrowheads). At stage 16, the double labelling showed that the CBs are aligned to form the heart tube as shown in (Fig. 14 D arrow), and the somatic muscles are shown in (Fig.
14 D arrowheads). Dmef2 antibody staining also illustrates that the CBs are forming the heart tube (Fig. 14 D’ arrow); the somatic muscles were also detected as shown in (Fig. 14 D’ arrowheads). This data illustrates that DSLMAP is expressed through the different stages of embryonic heart development in the CBs.

4.5 Down-regulation of DSLMAP mRNA using RNA interference in *Drosophila* heart

Flies carrying specific GAL4 heart driver TincΔ4GAL4, which is specific for CBs, were crossed to flies carrying UAS *DSLMAP* RNAi transgene in order to down-regulate mRNA expression of *DSLMAP* which was examined by *In situ* hybridization (Fig. 15, A-B). Down-regulation of *DSLMAP* mRNA expression was observed through various stages of embryonic heart development. This expression was detected at stage 13, which is the beginning of heart tube development, in which a reduced intensity of anti-sense DSLMAP riboprobe was seen in the heart (Fig. 15 B, arrow), while increased intensity was seen in the CNS and hind gut as shown in (Fig. 15 B, arrowheads), compared to the wild type embryo which had a ubiquitous expression of *DSLMAP* transcript, as illustrated in (Fig. 15 A, arrow).

DSLMAP down-regulation using TincΔ4GAL4 heart driver showed 61.8% reduced intensity of anti sense *DSLMAP* riboprobe among 30 embryos, compared to wild type embryos which had only 13% reduced intensity of anti sense *DSLMAP* riboprobe (Fig. 15 C).

Accordingly, DSLMAP mRNA expression using the specific heart driver showed that DSLMAP transcript intensity was reduced in *Drosophila* heart.
Figure 14. DSLMAP mRNA expression doesn’t change through Drosophila embryonic heart developments.

Left panel: wild-type embryos double labelled with Dmef2 protein/DSLMAP riboprobe. Right panel: wild-type embryos immunolabelled with Dmef2 antibody alone. Arrows indicate the CBs, and arrowheads, somatic muscles. (A, A’) Stage 13, sagittal view, (B, B’) Stage 14, dorsal view, (C, C’) Stage 15, sagittal view, (D, D’) Stage 16, dorsal view. DSLMAP mRNA expression did not change during Drosophila heart development. At stage 13, CBs are seen with purple color, which indicates that both Dmef2 and DSLMAP mRNA transcripts are hybridized where the CBs form a row of cells (A, arrow). The CBs stained with anti-Dmef2 are also forming a row of cells, as shown in (A’, arrow). At stage 14, the CBs are aligned in two rows of cells, as indicated with the double labelling in (B, arrows). Two rows of the CBs are immunolabelled with Dmef2 antibody (B’ arrows). The CBs migrated dorsally at stage 15 as shown in (C, C’ arrows), and the heart tube begin its formation at stage 16, where the CBs continued their alignment and migration towards their destination (D, D’). Scale bar =20 µm
Figure 15. Down-regulation of DSLMAP mRNA expression in *Drosophila* heart

(A-B) Whole mount *in situ* hybridization performed on embryos at stage 13 using anti-sense DSLMAP riboprobe. All the embryos have a dorsal view, anterior is to the left. (A) Wild type embryo at stage 13, the intensity of the color did not change through the whole embryo and DSLMAP transcript is intense in the heart (arrow). (B) Obvious reduction in DSLMAP mRNA intensity in TincA4 Gal4/+;UAS DSLMAP RNAi/+ embryo is seen in the heart (arrow), compared to the darker staining which is seen in the nervous system, and the hind gut (arrow heads). (C) Quantitative analysis of DSLMAP down-regulated embryos compared to the wild type. Among 30 embryos, 61% of them had a reduction in DSLMAP mRNA intensity in DSLMAP down-regulated embryos driven by TincA4Gal4, compared to 13% in the wt embryos. Scale bar =20 μm
A. Average number of embryos showing down-regulation of DSLMAP mRNA expression in the heart.

B. Genotypes:
- Wt/+
- TinGAL4/++;UAS-DSLSMAP-RNAI/+
4.6 Confirmation of *DSLMAP* over-expression.

UAS-DSLMAP construct was tagged with HA (hemagglutinin) in order to detect *DSLMAP* protein. The UAS DSLMAP lines were generated in the lab, and tested for over-expression of DSLMAP in these lines, by crossing female flies carrying the pairedGAL4 driver to male flies carrying the UAS-DSLMAP transgene. The embryos were collected, fixed, and stained with HA antibody to detect the expressed DSLMAP protein (Fig. 16 A-B”). Anti-HA staining indicates that *DSLMAP* is expressed early during dorsal vessel morphogenesis where dorsal mesoderm is formed by stage 9. At this stage, HA antibody staining shows 7 stripes in *DSLMAP* over-expressed embryo (Fig.16 B, numbers). The detection of the stripes confirms the over-expression of *DSLMAP*, since control embryo at the same stage shows no stripes at all (Fig. 16, A).

4.7 Cardiac specific deregulation of *DSLMAP* caused defective heart tube formation

4.7.1 Cardiac specific *DSLMAP* down-regulation causes delayed migration and misalignment in both the CBs and the PCs

While a linear heart tube is noted in control embryos, a significant change in the morphology of the heart tube was seen in embryos carrying the *UAS-DSLMAP-RNAi* transgene as shown in (Fig. 17, 18). These changes were characterized by severe alignment and migration defects in heart cells. These defects included: delayed migration, clustering of cells (which include clumps of 2-3 cells, double rows), gaps, and twisted heart tube. Dmef2 antibody was used to stain CBs (red color) while Zfh1 antibody was used to stain PCs (green color).
Figure 16. Confirmation of DSLMAP over-expression

(A-B) Saggital view of stage 9 embryos, anterior is to the left. (A) Control embryo of paired-GAL4 and w118 stained with HA antibody, no stripes were observed. (B) DSLMAP over-expressed embryo driven by paired-GAL4 was tagged with HA tag, stripes that confirm the over-expression were detected using HA antibody, 7 stripes are shown at stage 9 (numbers). Scale bar =10 μm
When *DSLMAP* was down-regulated, heart cells were unable to go to their destination and migrate dorsally to form the heart tube; instead, they were either migrated inward or outward causing delays in heart tube assembly.

The two heart drivers used to derive the UAS-*DSLMAP*-RNAi transgene showed that there was a delayed migration in both the CBs and PCs. At stage 15, these cells seemed to fail to migrate in the right direction (Fig. 17, B, B' arrows), compared to the control embryo at the same stage (Fig. 17, A, A'). To quantify this defect penetrance (number of defective embryos divided by total number of counted embryos was calculated; among 65 embryos) TinGAL4; UAS-*DSLMAP*-RNAi demonstrated that 49.16% of the embryos were carrying this defect (Table.1, A). The expressivity, which is the number of the defects per embryo, was also calculated and reached up to 66.5% for the delayed migration in this cross as displayed in (Table.1, B).

PrcGAL4; UAS-*DSLMAP*-RNAi also showed delayed defects in PCs (Fig.18, B arrow) compared to control embryos at the same stage (Fig.18, A) and the penetrance for the delayed migration defects reached up to 47.4% among 65 embryos (Table.2, A). The expressivity of this defect in PCs reached up to 69.9%, as shown in (Table. 2, B). The CBs in this cross had also clustering/aggregation of 2-3 cells in one row of the CBs as shown in (Fig. 18, B), compared to the control embryo which had normal alignment (Fig. 18, A).

DSLMAP down-regulation using the two heart drivers showed alignment and migration defects in both cell types, which suggest a role of *DSLMAP* in organizing these cells during *Drosophila* heart development.
Figure 17. DSLMAP down-regulation in the CBs results in delays in heart cells migration.

(A-B”) Stage 15 embryos, dorsal view, anterior to the left. (A) Control embryo stained with Dmef2 specific for CBs and somatic muscles, showing normal CBs alignment (arrow). (B) Down-regulation of DSLMAP expression driven by TinGAL4 heart driver led to delayed migration in CBs (arrow). (A’) Control embryo stained with Zfh1 antibody which is specific for PCs, where these cells have normal alignment (arrow). (B’) Delayed migration defect is seen in the PCs (arrow). (A”-B”) Double labelled with Dmef2 and Zfh1 antibodies. Scale bar = 10 μm
Tin Gal4/+; UAS-DSLMAP-RNAi/+; Dmef2, Zfh-1

\[A \] Tin Gal4/+; wt/+; Dmef2

\[A' \] Tin Gal4/+; wt/+; Zfh-1

\[A'' \] Tin Gal4/+; wt/+; Dmef2, Zfh-1

\[B \] Tin Gal4/+; UAS-DSLMAP-RNAi/+; Dmef2

\[B' \] Tin Gal4/+; UAS-DSLMAP-RNAi/+; Zfh-1

\[B'' \] Tin Gal4/+; UAS-DSLMAP-RNAi/+; Dmef2, Zfh-1
Figure 18. *DSLMAP* down-regulation in PCs results in defective heart tube

(A-B") All the embryos are at stage 17, dorsal view, anterior to the left, Dmef2 antibody (red), Zfh1 antibody (green). (A-A") Control embryo of UAS DSLMAP RNAi and w118 embryos showing organized heart tube. (A) Control embryo showing an organized heart tube (arrow). (B) Down regulation of *DSLMAP* expression driven by Prc GAL4 heart driver resulted in clustering/aggregation of the CBs (arrow). (A') Control embryo which have organized PCs (arrow). (B') pericardial expression of UAS *DSLMAP* RNAi led to delayed migration in the PCs. (A''-B'') Embryos double labelled with both antibodies. Scale bar =10 μm
4.7.2 Cardiac specific over-expression of *DSLMAP* causes defective heart tube development: potential effects on cardiac cell migration and fusion

In order to further address any defects which results from de-regulation of *DSLMAP* levels; over expression of *DSLMAP* in CBs was achieved by crossing TinGAL4 to the UAS lines (UAS line-4 and UAS line-10), and embryos were examined closely to quantify any effects on heart tube development (Fig. 19, 20 and 21) (Table. 1, 2).

At stage 14 of embryonic development, forced expression of *UAS-DSLMAP* in CBs (TinGAL4/+;UAS-*DSLMAP*-4/+) revealed that the CBs which were stained with Dmef2 antibody, had lost their columnar shape and many cells appeared to be aggregated or fused to the adjacent cell in each row, with a failure of dorsal closure (Fig. 19, B). This phenotype was detected in 32.2% of the embryos (n=65) as displayed in (Table.1, A), and the expressivity of this phenotype was ~ 35.29% (Table.1, B). On the other hand, the control embryos TinGAL4/+;wt/+ at the same developmental stage showed no defects in heart tube development (Fig. 19, A). Over-expression of *DSLMAP* in the CBs also had a secondary effect on the PCs which were stained with Zfh-1 antibody, where gaps between PCs were seen at the same stage (Fig. 19, B'), and the penetrance of this phenotype reached ~19.98% (n=65) as shown in (Table.2, A), while the expressivity reached up to 27.3% (Table.2, B).

Forced expression of *DSLMAP* in PCs using PrcGAL4 crossed with UAS-SLMAP line 4 also resulted in failure of dorsal closure, compared to the organized heart tube of the control embryo at the same stage (Fig. 20, A-B). PrcGAL4/+;UAS-DSLMPA/+ embryos showed delayed migration in the PCs which were labelled with Zfh-1 antibody compared
to the control embryos at the same stage (Fig. 20, A’, B’). Pericardial expression of UAS-
DSLMAP also exhibited secondary effects on the CBs which exhibited clustering/aggregation of the cells as shown in (Fig. 20, B). The penetrance for both phenotypes reached up to 47.85 and 13.76% respectively (Graph.1, A) and the expressivity was 56.75% and 47%, respectively (Table.1, B). Myocardial CB over-expression of DSLMAP (line 10), was also studied using TinGAL4, which revealed that the main defect was delayed migration in both cell types (Fig. 20, A-B”) with a penetrance of up to 47.6% (Table.1, A), and the expressivity reached up to 63.4% as displayed in (Table1, B), in contrast to the control embryo at the same stage which shows a well developed heart tube as illustrated in (Fig, 21, A). Furthermore, the number of the CBs that reached the dorsal midline were counted and the average number of the CBs in DSLMAP over-expression was 97±1.8 (n=18), compared to wild type embryos, which had an average of 103±1.1 as shown in (Table.3). Accordingly, DSLMAP over-expression in CBs or PCs led to defects in heart cells alignment and migration, similar to those seen during DSLMAP down-regulation. These results indicate that a regulated amount of DSLMAP may be critical to ensure proper heart tube formation.

4.8 DSLMAP may serve a role in CBs adhesion and positioning

Spectrin is a cytoskeletal protein that resides at the intracellular side of the plasma membrane of different cell types. In Drosophila, α-Spectrin is localized to the basolateral surface of the myocardial epithelium and plays an important role in the determination of cell shape (Lee et al., 1993). The CBs labelled with Dmef2 antibody have a columnar shape in wild type embryos.
Figure 19. *DSLMAP* over-expression in CBs leads to fusion defects

DSLMAP over-expression results in different defects and one of the most interesting is fused CBs. (A-B") Embryos are at dorsal view stage 14, anterior to the left. (A) Control embryo heterozygous for Tin-GAL4 and w\(^{118}\) stained with Dmef2. (B) Fused CBs are observed in UAS *DSLMAP* (line 4) driven by TinGAL4 (arrowhead). (A') Control embryo stained with Zfh1, which is specific for PCs. (B') Gaps between PCs are observed in the *DSLMAP* over-expressed embryo (arrowhead). (A"-B") Embryos are double-labelled with Dmef2 and Zfh1 antibodies. Scale bar = 10 µm.
Figure 20. **DSLMAP** over-expression in the PCs leads to delayed migration.

(A-B̕) All of the embryos are at dorsal view, stage 14, anterior to the left. (A) Control embryo heterozygous for Prc-GAL4 and w^{118} stained with Dmef2. (B) Clustered/clumps of 2-3 cells of the CBs are observed in UAS **DSLMAP** driven by Prc-GAL4 (white arrow). (A') Control embryo stained with Zfh1, which is specific for PCs. (B') Delays in PCs are observed in the same embryo (white arrow). (A''-B'') Embryos are double-labelled with Dmef2 and Zfh1 antibodies. Scale bar = 10 μm
A

Prc Gal4+/; wt/+

A'

Prc Gal4+/; wt/+

A''

Prc Gal4+/; wt/+ with Dmef2 and Zfh-1

B

Prc Gal4+/; UAS -DSLMAP/+ with Dmef2

B'

Prc Gal4+/; UAS -DSLMAP/+ with Zfh-1

B''

Prc Gal4+/; UAS -DSLMAP/+ with Dmef2 and Zfh-1
Figure 21. *DSLMAP* over-expression leads to delayed migration in heart cells.

(A-B") All of the embryos are at dorsal view stage 17, anterior to the left. (A) Control embryo heterozygous for Tin-GAL4 and *w*¹¹⁸ stained with Dmef2. (B) Delayed migration defect in the CBs is observed in UAS *DSLMAP* (line10) driven by TinGAL4 (arrow). (A’) Control embryo stained with Zfh1, which is specific for PCs. (B’) Similar to CBs, delayed migration defect is also observed in PCs within the same embryo (arrow), in addition some gaps is seen between PCs (arrow head). (A’-B”) Embryos are double labelled with Dmef2 and Zfh1 antibodies. Scale bar = 10 μm
Table 1. Quantitative analysis of the defects observed in CBs for

DSLMAP over-expression and down-regulation

Two heart drivers were used to examine the defects in both *DSLMAP* over-expression and down-regulation, which are: TincΔ4GAL4, and PrcGAL4. Embryos screened were from stage 14-17, and the sample size of the embryos was 65 for each cross. Two different lines of *DSLMAP* over-expression were used to examine the severity of the defects: line-4 and 10. (A) Penetrance for the phenotypes observed in CBs. Dmef2 antibody was used to stain the CBs. (B) Expressivity of the phenotypes observed in CBs. The expressivity of the delays for the two UAS-DSLMAP lines was similar: 62.8% and 63.9% respectively, but clustering of cells were higher for line-4 which reached up to 35%, but for line-10 it was 29.4%. RNAi line showed higher expressivity for the delayed migration defects in the CBs than the over expression lines, and reached up to 69.9%.
A. The penetrance of the phenotypes observed in the CBs

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Penetrance %</th>
<th>n=65</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed migration</td>
<td>Clustering of cells</td>
</tr>
<tr>
<td>PrcGal4/+;wt/+</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>TinGal4/+;wt/+</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>UAS-DSLMAP-4/+;wt/+</td>
<td>0</td>
<td>4.5</td>
</tr>
<tr>
<td>UAS-DSLMAP-10/+;wt/+</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>UAS-DSLMAP-RNAi/+;wt/+</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-DSLMAP-RNAi/+</td>
<td>47.7</td>
<td>15.36</td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-RNAi/+</td>
<td>49.16</td>
<td>23.01</td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-4/+</td>
<td>48.46</td>
<td>32.2</td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-10/+</td>
<td>51.46</td>
<td>13.6</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-DSLMAP-4/+</td>
<td>47.8</td>
<td>21.5</td>
</tr>
</tbody>
</table>

B. The expressivity of the phenotypes observed in the CBs

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Expressivity%</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed migration</td>
<td>Clustering of cells</td>
<td>Gaps</td>
<td>Twist</td>
<td></td>
</tr>
<tr>
<td>PrcGal4/+;UAS-DSLMAP-RNAi/+</td>
<td>66.5</td>
<td>25.4</td>
<td>25</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-RNAi/+</td>
<td>69.9</td>
<td>52</td>
<td>37.5</td>
<td>15.82</td>
<td></td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-4/+</td>
<td>62.89</td>
<td>29.4</td>
<td>22.2</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-10/+</td>
<td>63.4</td>
<td>35.29</td>
<td>27.7</td>
<td>13.49</td>
<td></td>
</tr>
<tr>
<td>PrcGal4/+;UAS-DSLMAP-4/+</td>
<td>56.75</td>
<td>47</td>
<td>25</td>
<td>15.5</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Quantitative analysis of the defects observed in pericardial cells for *DSLMAPl* over-expression and down-regulation

Both Tin-cΔ4GAL4 and PrcGAL4Two heart drivers were used to examine the defects in both *DSLMAPl* over-expression and down-regulation. Embryos screened were from stage 14-17, and the sample sizes of the embryos were 65 for each cross. In addition two different lines of DSLMAPl over-expression were used to examine the severity of the defects which are line-4 and line-10. (A) Penetrance of the phenotypes observed in pericardial cells. Zfh-1 antibody was used to stain these cells. The penetrance for the delayed migration was the highest among all the phenotypes.

(B) The expressivity of the phenotypes observed in pericardial cells. The expressivity of the delayed migration reached up to 57.1% in PrcGAL4/+;UAS-DSLMAPl-4/+, and 55.7% in TinGAL4/+;UAS-DSLMAPl-4/+, and it was higher in TinGAL4/+;UAS-DSLMAPl-10/+ where it reached up to 61.5%, while in TinGAL4/+;UAS-DSLMAPl-RNAi/+ it was 56.3%, and in PrcGAL4/+;UAS-DSLMAPl-RNAi/+ it reached up to 57.1%. Lower expressivity was seen in the other phenotypes. The error bars represent slandering error of the mean.
Table 3. CB numbers observed in *DSLMAP* over-expression and down regulation

Changed expression of *DSLMAP* affected the number of CBs that reached the dorsal midline, at stage 17 of embryonic development. This Table shows that both *DSLMAP* over-expression and down-regulation had a reduced number of the CBs, reaching up to 97 ± 1.8, and 97 ± 1.5, respectively. The number of the CBs for wild type embryos at the same stage reached up to 103 ± 1.1. The P-value was calculated using the unpaired t-test, where it was 0.001 for *DSLMAP* over-expression, and 0.0022 for *DSLMAP* down-regulation, both of which are considered as significant P-values. The error bars represent slandered error of the mean.
Average number of the CBs observed in DSLMAP over-expressed and down-regulated embryos

Genotype

- **w1118**
- **UASDSL MAP**
- **UAS DMPRNAi**

*** P-value 0.001
α-Spectrin antibody which labels the cell membrane was used to detect changes in the shape of the CBs when DSLMAP is over-expressed or down-regulated (Fig. 22, 23). Targeted over-expression of DSLMAP resulted in remarkable alteration in CBs shape, positioning, and adhesion. The CBs were aggregated to each other compared to those seen in the control embryo at the same stage (Fig. 22 A, A’ arrow). α-Spectrin antibody staining showed that some of the CBs had lost their columnar shape, and some were not surrounded by the cell membrane compared to the control embryo at the same stage (Fig.22, A”, B” arrow). Similarly down-regulation of DSLMAP caused an obvious change in the cell shape and positioning. The CBs were clustered to each other, and the alignment was perturbed compared to the control embryo at the same stage (Fig.23 A, and A’ arrow). Labelling with α-spectrin showed that some of the CBs are sharing the same cell membrane because of the aggregation of these cells, also the shape of these cells seemed to be changed, as it was no longer columnar (Fig 23 A”, and B” arrow). This data suggests that the morphology of the heart tube changes as a result of changes in properties such as shape and aggregation of CBs (examined by α-spectrin staining) when DSLMAP is de-regulated.

4.9 Down-regulation of DSLMAP or Robo results in similar cardiac defects

It has already been shown that DSLMAP genetically interacts with the Slit/Robo pathway in the CNS in Drosophila (Dawood et al., 2007). In order to study the relationship between DSLMAP and the Slit/Robo pathway in Drosophila heart; I first compared the phenotypes that resulted from crossing PrcGAL4 to UAS-DSLMAP-RNAi, with the phenotypes that resulted from crossing PrcGAL4 to UAS-Robo-RNAi transgene.
Figure 22. Over-expression of DSLMAP changes the cell membrane of the CBs.

The cell membrane in embryos having over-expression of DSLMAP is different from the control embryo at the same stage. (A-B’’) embryos are at stage 14, dorsal view anterior to the left. (A) Control embryo stained with Dmef2. (B) Over-expression in DSLMAP leads to fused CBs (arrow), compared to the control embryo at the same stage. (A’) Control embryo stained with α-spectrin, which is specific for cell membrane. (B’) Cell membrane stained with α-spectrin in over-expressed DSLMAP embryo, changes in the cell membrane are observed (arrow). (A’’) Control embryo double-labelled with Dmef2 and α-spectrin in wild type embryo. (B’’) Over-expressed DSLMAP embryo double labelled with Dmef2 and α-spectrin, some of the cells are sharing the same cell membrane because of fusion (arrow). (A’’’ and B’’’) magnification of A’’ and B’’, with higher magnification you can clearly see the space between the cells in DSLMAP over-expressed embryos compared to the control embryos (arrow). Scale bar =10 μm.
Figure 23. Down-regulation of DSLMAP alters the cell membrane of the CBs

Defective cell membrane is seen when DSLMAP is down-regulated compared to the wild type. (A-B'') Embryos are at stage 15, dorsal view, anterior to the left. (A) Control embryo stained with Dmef2. (B) Changes in the shape of the CBs compared to the wild type at the same stage are seen (arrow). (A') Control embryo stained with α-spectrin which is specific for cell membrane. (B') Cell membrane stained with α-spectrin in down-regulated DSLMAP embryo, changes in the cell membrane are seen (arrow). (A'') Control embryo double-labelled with Dmef2 and α-spectrin. (B'') Down-regulated DSLMAP embryo is double-labelled with Dmef2, and α-spectrin. (A'’-B’’’) Magnification of the control embryo and DSLMAP down-regulated embryos double-labelled with Dmef2, and α-spectrin in DSLMAP down-regulated embryos; there are some cells sharing the same cell membrane (arrow), compared to the control embryo, which has organized alignment of CBs surrounded by the cell membrane (arrow). Scale bar =10 μm
A

Tin Gal4/+;wt/+

Dmef2

A'

Tin Gal4/+;wt/+

α-spectrin

A''

Tin Gal4/+;wt/+

Dmef2, α-spectrin

B

Tin Gal4/+;UAS-DSLMAP-RNAi/+

Dmef2

B'

Tin Gal4/+;UAS-DSLMAP-RNAi/+

α-spectrin

B''

Tin Gal4/+;UAS-DSLMAP-RNAi/+

Dmef2, α-spectrin

B'''

Tin Gal4/+;UAS-DSLMAP-RNAi/+

Dmef2, α-spectrin

Tin Gal4/+;UAS-DSLMAP-RNAi/+
PrcGAL4/+;UAS-RoboRNAi/+ showed delayed migration in the PCs compared to the control embryo at the same stage as displayed in (Fig. 24 A’, and B’ arrow). Similarly when DSLAMP was down-regulated, delayed migration in the PCs was observed at the same stage as shown in (Fig. 24 C’ arrow). The penetrance of the delays in Robo down-regulated embryos reached ~33.8 % (n=65) (Table. 4 A) and the expressivity was ~55.3% as illustrated in (Table. 4, B). The CBs also appeared to be affected by the pericardial down regulation of Robo expression where these cells had a failure of dorsal closure compared to the control embryo at the same stage, as shown in (Fig. 24 A, and B). Similar findings were seen in DSLMAP down-regulated embryos, where the CBs had failure of dorsal closure compared to the control embryos, as shown in (Fig. 24 A, and C). TinGAL4 heart drivers were also used to compare the phenotypes obtained from DSLMAP or Robo down-regulation, where TinGAL4 driver were crossed to UAS-DSLMAP-RNAi transgene, and to UAS-Robo-RNAi transgene. Both of these crosses had similar phenotypes as illustrated in (Fig. 24 E-G”). The CBs had delayed migration defects, and aggregation of the CBs in both Robo down-regulation, or DSLMAP down regulation compared to the organised CBs rows in the control embryo as shown in (Fig. 24 E, F, and G arrows). Down-regulation of DSLMAP or Robo had a secondary effect on the PCs which also had delayed migration defects compared to the control embryo at the same stage as displayed in (Fig. 24 E’, F’, and G’ arrows). The penetrance of the delayed migration in Robo down-regulation reached ~ 33.8%, and the expressivity of this defect in the CBs reached ~54.54%, while in the PCs it reached 55.3% as shown in (Table 4, A and B). These results indicate that similar defects in heart tube development are noted, with the targeted down regulation of DSLMAP or Robo in heart cells.
Figure 24. Phenotypes observed in DSLMAP down-regulation or Robo down-regulation.

The phenotypes in DSLMAP down-regulation and Robo down-regulation were thoroughly examined using PrcGAL4, and TinGAL4 heart drivers as illustrated in (A-G’’). Embryos are at stage 17, anterior to the left, dorsal view. Anti-Dmef2 was used to label the CBs (red), and Zfh-1 was used to mark the PCs (green). (A) PrcGAL4 crossed to the wild type was used as a control. (B) Robo Down-regulation caused failure of dorsal closure in the CBs rows (arrow). (C) DSLMAP down-regulation also resulted in failure of dorsal closure in the CBs (arrow). (A’) control embryo stained with Zfh1, which is specific for PCs. (B’) Robo down-regulation in the PCs, led to delayed migration in these cells (star). (C’) Similar defects are observed in PCs in DSLMAP down-regulated embryo (arrow). (A’’), (B’’), and (C’’) Embryos are double-labelled with Dmef2 and Zfh1 antibodies. (E) TinGAL4 crossed to the wild type was used as a control. (F) Robo down regulation in the CBs led to aggregation of these cells and to delayed migration in the CBs rows (arrow). (G) DSLMAP down-regulation also had clustering/aggregation of the CBs and failure of dorsal closure (arrow). (E’) Control embryo stained with Zfh-1 antibody. (F’) Robo down regulation using Tin Gal4 also had a secondary effect in the PCs, where these cells had delayed migration defects (arrow). (G’) DSLMAP down-regulation using TinGAL4 also had a secondary effect on the PCs, and resulted in delayed migration defects in these cells (arrow). (E’’), (F’’), and (G’’) embryos are labelled with Dmef2 and Zfh-1 antibodies.
4.10 Robo is mislocalized in DSLMAP down-regulated embryos

To investigate whether DSLMAP down-regulation in CBs or PCs affects Robo localization, embryos generated from crossing TinGAL4 with UAS-DSLMAP-RNAi, and PrcGAL4 with UAS-DSLMAP-RNAi were examined for Robo protein. Dmef2 antibody was used to stain the CBs, while Zfh-1 antibody was used to mark the PCs, and Robo antibody was used to examine Robo localization as shown in (Fig. 25 A-D”). In wild type embryos Robo is localized on the apical surface of CBs as shown in (Fig. A”). In embryos derived from the TinGAL4/+;UAS-DSLMAP-RNAi lines, Robo is not localized in the lumen compared to the control embryo at the same stage (Fig. 25 A, and B). The CBs in this cross had delayed migration compared to the control embryo at the same stage (Fig. 25 B, and B”). Similar data was observed in PrcGAL4/+;UAS-DSLMAP-RNAi/+; where Robo localization was altered in these embryos compared to the control embryo at the same stage (Fig. 25 C”, and D”). The PCs in this cross had a delayed migration compared to the control embryo at the same stage as demonstrated in (Fig. 25 C’, and D’).

Accordingly, DSLMAP down-regulation alters the localization of Robo, and this may impact the migration and alignment defects that occurred to the cardiac cells, and result in defective heart tube formation.

4.11 Targeted over-expression of DSLMAP has similar cardiac defects as Slit over-expression

To address any potential relationship between DSLMAP and Slit during heart development, the phenotypes generated from targeted over-expression of DSLMAP were compared to the phenotypes that resulted from Slit over-expression.
Figure 25. Robo localization during DSLMAP down-regulation

DSLMAP down-regulation was found to affect Robo localization at stage 17 of heart
development. (A-D") Embryos are at stage 17, anterior to the left, dorsal view. (A) Control
embryo of TinGAL4/+;wt/+ stained with Robo shows the localization of Robo concentrated
in the lumen of the heart (arrow). (B) DSLMAP down-regulated embryo stained with
Robo. The localization of Robo is altered, as it’s no longer localized in the lumen, but is
instead moved outside the lumen as shown by (arrow). (A’) Control embryo stained
with Dmef2 shows organized CBs (arrow). (B’) DSLMAP down-regulated embryo stained
with Dmef2 shows delayed migration of the CBs (arrow). (A”) Control embryo double
labelled with robo and ZFh1. Robo is localized in the lumen between the CBs. (B”) Down-regulated
DSLMAP embryo double-labelled with Robo and Dmef2. Robo localization is changed compared
to control embryo (arrow). (C) Control embryo of Prc, Robo is localized in the lumen of the heart (arrow). (D) DSLMAP
down-regulated embryo shows alteration in Robo localization compared to control embryo at the same
stage. (C’) Control embryo stained with Zfh-1 shows non defective PCs. (D’) DSLMAP
down-regulated embryo has a delayed migration in PCs. (C”) Robo is localized in the center of the lumen in control embryo. (D”)
Robo localization is altered in DSLMAP down regulated embryo using PrcGal4 heart driver.
TinGal4 were crossed to UAS-\textit{DSLMAP}, and to the UAS-Slit to generate lines with targeted expression in CBs. DmeF2 antibody was used to identify the CBs, while Zfh-1 antibody was used to mark the PCs (Fig. 26 A-C'). The resulted phenotypes include: delayed migration, missing cells, and clustering of cells in these lines. TinGAL4/+;UAS-Slit/+ led to failure of dorsal closure, in which the cells were not migrating dorsally to form a regular heart tube, both the CBs and the PCs showed this phenotype as illustrated in (Fig. 26 B and B' arrows).

The penetrance of the delayed migration observed in heart cells due to Slit over-expression reached ~38.45% in both cell types as displayed in (Table 4 and 5 A). Similarly, \textit{DSLMAP} over-expression also showed failure of dorsal closure when \textit{DSLMAP} was over-expressed in both cell types as shown in (Fig. 26 C and C' arrows). In comparison, the control embryo had an organized heart tube at the same stage (Fig. 26 A-A' arrows).

To further study the relationship between \textit{DSLMAP} and Slit; PrcGAL4 driver was crossed to UAS-\textit{DSLMAP}, and to UAS-Slit. These two crosses also had similar defects, as illustrated in (Fig. 26 E-G'). Over-expression of Slit or \textit{DSLMAP} in the PCs, caused delayed migration defects in these cells compared to the control embryo at the same stage as shown in (Fig. 26 E', F', G' arrows). Slit over-expression, and \textit{DSLMAP} over-expression also affected the CBs and caused failure of dorsal closure compared to the organized CBs in the control embryo as displayed in (Fig. 26 E, F, and G). The penetrance of this phenotype in Slit over-expression reached ~26.3%, while the expressivity of this phenotype in the CBs reached ~40%, and in the PCs reached ~45% as illustrated in (Table 4, 5 A and B).
Figure 26. Phenotypes observed in *Slit* over-expression or *DSLMAP* over-expression

Two heart drivers were used to examine the phenotypes in UAS-*DSLMAP* and UAS-*Slit*. (A-G") Embryos are at stage 17, anterior to the left, dorsal view. The embryos were stained with *DmeF2* which is specific for the CBs and the somatic muscles, and Zfh-1 which is specific for the PCs. (A) TinGAL4 crossed to the wt is used as a control which has normal CBs alignment. (B) *Slit* over-expression in the CBs resulted in failure of dorsal closure in the CBs (star). (C) *DSLMAP* over-expression also shows failure of dorsal closure (star). (A’) Control embryo stained with Zfh1 which is specific for PCs. (B’) *Slit* over-expression also showed delayed migration in the PCs (star). (C’) Similar delayed migration defect is observed in PCs in *DSLMAP* over-expression (star). (A’”) Control embryo double labelled with DmeF2 and Zfh-1. (B’”) *Slit* over-expressed embryo double labelled with DmeF2 and Zfh-1. (C’”) DSLMAP over-expressed embryo double-labelled with DmeF2 and Zfh1. (E) PrcGA14 crossed to the wt is used as a control. (F) *Slit* over-expression in the PCs, where the CBs are affected and had delayed migration defects (arrow). (G) *DSLMAP* over-expression in the PCs, the CBs also have delayed migration defects (arrow). (E’) control embryo stained with Zfh-1. (F’) *Slit* over-expression in the PCs, where the PCs have delayed migration defects (arrow). (G’) *DSLMAP* over-expression in the PCs resulted in delayed migration defects in theses cells similar to *Slit* over-expression (arrow). (E’”), (F’”), and (G’”) all the embryos are double-labelled with DmeF2 and Zfh-1 antibodies.
A
TinGal4/+:Wt/+ Dmef2

A'
TinGal4/+:Wt/+ Zfh-1

A''
TinGal4/+:Wt/+ Dmef2, Zfh-1

B
TinGal4/+:UAS-Slit/+ Dmef2

B'
TinGal4/+:UAS-Slit/+ Zfh-1

B''
TinGal4/+:UAS-Slit/+ Dmef2, Zfh-1

C
TinGal4/+:UAS-DSLIVIAP/+ Dmef2

C'
TinGal4/+:UAS-DSLIVIAP/+ Zfh-1

C''
TinGal4/+:UAS-DSLIVIAP/+ Dmef2, Zfh-1

E
PrecGal4/+:Wt/+ Dmef2

E'
PrecGal4/+:Wt/+ Zfh-1

E''
PrecGal4/+:Wt/+ Dmef2, Zfh-1

F
PrecGal4/+:UAS-Slit/+ Dmef2

F'
PrecGal4/+:UAS-Slit/+ Zfh-1

F''
PrecGal4/+:UAS-Slit/+ Dmef2, Zfh-1

G
PrecGal4/+:UAS-DSLIVIAP/+ Dmef2

G'
PrecGal4/+:UAS-DSLIVIAP/+ Zfh-1

G''
PrecGal4/+:UAS-DSLIVIAP/+ Dmef2, Zfh-1
Both DSLMAP and Slit over-expression exhibited similar phenotypes characterized by delayed migration, and this may suggest a role for DSLMAP in guiding these cells towards their destination, as has been proposed for the Slit protein.

4.12 Slit localization in the heart tube lumen is altered during DSLMAP over-expression

In order to detect if Slit localization is affected by DSLMAP over-expression, TinGAL4 heart driver lines were crossed to UAS-DSLMAP and examined with Dmef2 antibody which identifies CBs and the somatic muscles, and the Slit antibody, which labels Slit protein (Fig. 27 A-B”). Slit is normally localized in the midline between CBs (Fig. 27 A”). An alteration in Slit localization was observed when DSLMAP was over-expressed, at stage 17 of embryonic development. The CBs were not able to form a normal lumen due to delayed migration, and exhibited a failure of dorsal closer compared to control embryo at the same stage, as shown in (Fig. 27 A’ and B’ arrows). Slit is mislocalized and is not found in the lumen in DSLMAP over-expressed embryos compared to the control at the same stage (Fig. 27 A”, B” arrows).

These results indicate that DSLMAP over-expression has heart tube defects similar to those seen during cardiac specific slit-over-expression; but DSLMAP levels also affect slit localization, which may imply a relationship between these two proteins.

4.13 DSLAMP genetically interacts with the Slit/Robo pathway

To investigate any genetic interaction between DSLMAP and the Slit/Robo pathway, many genetic crosses were performed, where TinGAL4, and PrcGAL4 heart drivers were crossed to UAS-DSLMAP, and UAS-DSLMAP-RNAi, and the virgin female flies were crossed to UAS-Slit and UAS-Robo-RNAi.
Figure 27. Slit localization is altered in DSLMAP over-expressed embryos

Slit localization is found to be altered, when there is a defect in DSLMAP over-expressed embryos. (A-C”) Embryos are at stage 17, anterior to the left, dorsal view. (A) Control embryo stained with Slit, which shows the localization of Slit in the lumen. (B) DSLMAP over-expressed embryo, where the localization of Slit is changed - it’s not localized in the lumen anymore, compared to control embryo at the same stage (arrow). (A’) Control embryo stained with Dmef2 specific for CBs, which has an organized alignment (arrow). (B’) Failure of dorsal closure in heart cells is seen in over-expressed DSLMAP embryo (arrow). (A”) Control embryo double-labelled with slit and Dmef2, Slit is localized in the lumen between CBs (arrow). (B”) DSLMAP over-expressed embryo double-labelled with slit and Dmef2, the localization of Slit is changed compared to the control embryo (arrow). (A”’-B””) magnification of A”, B” that shows the alteration in Slit localization in DSLMAP over-expressed embryo compared to the control embryo at the same stage.
Table 4. Quantitative analysis of the defects observed in the CBs for *slit* over-expression, and Robo down-regulation

Both TincΔ4GAL4 and PrcGAL4 heart drivers were used to examine the defects in Slit over-expression, and Robo down-regulation. Embryos screened were from stage 14-17 and the sample size was 65 embryos for each cross. (A) Penetrance of the phenotypes observed in CBs stained with Dmef2 antibody. Delayed migration had the highest penetrance among all the crosses. (B) Expressivity of the phenotypes observed in CBs. The expressivity of the delays reached up to 55.3% for PrcGal4/+;UAS- *Robo*-RNAi/+, and up to 54% for TinGAL4/+;UAS-*Robo*-RNAi, and up to 46.46% in TinGal4/+;UAS-*Slit*/+, and up to 36.38% for PrcGAL4/+;UAS-*Slit*/+.
A. The penetrance of the phenotypes observed in the CBs

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Delayed migration</th>
<th>Clustering of cells</th>
<th>Gaps</th>
<th>Twist</th>
<th>Non defective embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrcGal4/+;wt/+</td>
<td>4.5</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>93.3</td>
</tr>
<tr>
<td>TinGal4/+;wt/+</td>
<td>9</td>
<td>0</td>
<td>4.5</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>UAS-Robo-RNAi/+;wt/+</td>
<td>4.5</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>96.6</td>
</tr>
<tr>
<td>UAS-Slit/+;wt/+</td>
<td>4.5</td>
<td>0</td>
<td>4.5</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-Robo-RNAi/+</td>
<td>33.83</td>
<td>19.98</td>
<td>11.61</td>
<td>18.46</td>
<td>12.3</td>
</tr>
<tr>
<td>TinGal4/+;UAS-Robo-RNAi/+</td>
<td>40.9</td>
<td>24.59</td>
<td>18.39</td>
<td>16.95</td>
<td>16.95</td>
</tr>
<tr>
<td>TinGal4/+;UAS-Slit/+</td>
<td>38.45</td>
<td>32.22</td>
<td>16.95</td>
<td>12.93</td>
<td>15.36</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-Slit/+</td>
<td>26.03</td>
<td>24.43</td>
<td>10.71</td>
<td>10.71</td>
<td>26.16</td>
</tr>
</tbody>
</table>

B. The expressivity of the phenotypes observed in the CBs

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Delayed migration</th>
<th>Clustering of cells</th>
<th>Gaps</th>
<th>Twist</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrcGal4/+;UAS-Robo-RNAi/+</td>
<td>55.3</td>
<td>43.9</td>
<td>28.7</td>
<td>28.6</td>
</tr>
<tr>
<td>TinGal4/+;UAS-Robo-RNAi/+</td>
<td>54.1</td>
<td>34.6</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>TinGal4/+;UAS-Slit/+</td>
<td>46.46</td>
<td>36.6</td>
<td>33.3</td>
<td>18.1</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-Slit/+</td>
<td>36.7</td>
<td>26.5</td>
<td>19.16</td>
<td>12.4</td>
</tr>
</tbody>
</table>
Table 5. Quantitative analysis of the defects observed in the PCs for *slit* over-expression, and Robo down-regulation

Both TincΔ4GAL4 and PrcGAL4 heart drivers were used to examine the defects in Slit over-expression, and Robo down-regulation. Embryos screened were from stage 14-17, and the sample size was 65 embryos for each cross. (A) Penetrance of the phenotypes observed in PCs labelled with Zfh-1 antibody. Delayed migration had the highest penetrance among all the crosses. (B) Expressivity of the phenotypes observed in the PCs. The expressivity for the delayed migration in PrcGal4/+;UAS-Robo-RNAi/+ reached up to 42.4%, and for TinGAL4/+;UAS-Robo-RNAi 47.9%, and up to 46.9% in TinGal4/+;UAS-Slit/+;UAS-Slit/+. Lower expressivity was seen in the other phenotypes. The error bars represent slandered error of the mean.
Penetrance of the phenotypes observed in pericardial cells

Expressivity of the phenotypes observed in pericardial cells
Furthermore, to study the relation between DSLMAP and slit/Robo pathway, targeted over-expression of DSLMAP in the CBs of slit^2 and robo^{189} mutant heterozygous background, and targeted down-regulation of DSLMAP in the PCs of slit^2 and robo^{189} mutant heterozygous background were done.

4.13.1 DSLMAP over expression or down-regulation in the PCs of UAS-Robo-RNAi transgene led to less defective embryos

The genetic interaction between DSLMAP and Robo in PCs or CBs was studied by crossing PrcGal4-UAS-DSLMAP-RNAi to UAS-Robo-RNAi, and PrcUAS-DSLMAP was crossed to UAS-Robo-RNAi. The embryos generated were stained with Dmef2 antibody to mark the CBs and somatic muscles, while Zfh-1 antibody was used to stain the PCs. In PrcGal4-UAS-DSLMAP-RNAi/++;UAS-Robo-RNAi/+, the CBs and the PCs had showed recovery from the defects seen in DSLMAP over-expression alone (Fig.28 A-B)

In this genetic cross, the CBs had a more organized heart tube with no delays in migration, which is similar to the control embryo at the same stage (Fig. 28 A and B arrows). Similar phenotypes were observed in PCs, and no migration defects were seen (Fig. 28 A’ and B’ arrows). A significant increase in the penetrance of none defective embryos reached up to 47.5% in both types of cells (Table. 6 A and B) and (Table 7, A and B). PrcGal4-UAS-DSLMAP/++;UAS-Robo-RNAi/+ also showed a significant recovery of the defective heart tube, with an increased number of non defective embryos but with a lower penetrance ~ 55% as displayed in (Table.6, A) and (Table 7, A). However, some of the embryos still have delayed migration as shown in (Fig. 29 A-B").
Figure 28. Pericardial expression of DSLMAP down-regulation reduced migration defects in Robo down-regulated embryo

A partial recovery had been observed in embryos having both UAS-DSLMAP-RNAi, and UAS Robo RNAi transgenes. (A-B") Embryos are at stage 17, anterior to the left, dorsal view. (A) Control embryo stained with Dmef2 (B) DSLMAP down-regulation in the PCs of Robo down-regulated embryos led to normal CBs alignment (arrow). (A’) PCs stained with Zfh1 in control embryo (B’) PCs also shows normal PCs alignment (arrow). (A”), (B”) Embryos are double-labelled with anti-Dmef2 and anti-Zfh1.
Figure 29. Pericardial expression of UAS-DSLMAP transgene led to minor delays in Robo down-regulated embryos

Robo down-regulation reduces the cardiac defects produced by DSLMAP over-expression, but some of the embryo still has delayed migration. (A-B") Embryos are at stage 17, anterior to the left, dorsal view. (A) Control embryo stained with Dmef2. (B) DSLMAP over-expression in the PCs of Robo down-regulated embryo shows minor delays in CBs migration (star). (A’) PCs stained with Zfh1 in control embryo. (B’) DSLMAP over-expression in the PCs of Robo down-regulated embryo, the PCs also show minor delays in PCs migration (A”), (B”) Embryos are double-labelled with Dmef2 and Zfh1 antibodies.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dmc12</td>
</tr>
<tr>
<td>UASRobo RNAi/+;wt/+</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PrecGal4UAS DSLMAP; UAS-Robo-RNAi/+</td>
<td></td>
</tr>
<tr>
<td>A'</td>
<td></td>
</tr>
<tr>
<td>UASRobo RNAi/+;wt/+</td>
<td></td>
</tr>
<tr>
<td>B'</td>
<td></td>
</tr>
<tr>
<td>PrecGal4UAS DSLMAP;UAS-Robo-RNAi/+</td>
<td></td>
</tr>
<tr>
<td>A''</td>
<td></td>
</tr>
<tr>
<td>UASRobo RNAi/+;wt/+</td>
<td></td>
</tr>
<tr>
<td>B''</td>
<td></td>
</tr>
<tr>
<td>PrecGal4UAS DSL.MAP;UAS-Robo-RNAi/+</td>
<td></td>
</tr>
</tbody>
</table>
at the same stage, which had none of these defects (Fig. 29 A and B, A' and B' arrows),
and a significant reduction in the penetrance of the delayed migration was noted in both
the CBs and the PCs reached up to 17% as illustrated in (Table.6, A and B) and (Table 7,
A and B). These data suggest that there might be genetic interactions between DSLMAP
and Robo, since the heart cells had less migration and alignment defects compared to
DSLMAP over-expression alone or Robo down-regulation alone.

4.13.2 Down-regulation of DSLMAP reduced the cardiac defects
observed in Slit over-expression.

To further investigate the relationship between DSLMAP and Slit, another genetic cross
was performed using PrcGal4-UAS-DSLMAP-RNAi, and UAS-Slit. The progeny was
examined by staining with Dmef2 antibody and Zfh-1 antibody. This genetic cross Prc
Gal4-UAS-DSLMAPRNAi/+;UAS-Slit/+ showed that Slit over-expression was able to
minimize all the defects that were observed in DSLMAP down-regulated embryos in both
the CBs and the PCs. All the phenotypes including delayed migration,
clusters/aggregation of the CBs, gaps, and twist were reduced, and the heart tube was
more organized as shown in (Fig. 30 A-B’’). The CBs were more aligned and organized
compared to the DSLMAP down-regulated embryos at the same stage, as illustrated in
(Fig. 30 A and B arrows). Similar data was seen in the PCs with minimal migration
defects (Fig.30 A’ and B’ arrows). The penetrance for the non-defective embryos is
increased significantly and reached up to ~ 42.55%, and for the delayed migration
defects, a notable reduction is seen in both cell types and it was reduced up to ~18.17%
as shown in (Table. 6, A and B) and (Table 7 A and B). Consequently, DSLMAP may
genetically interact with Slit for the normal development of the heart tube.
Figure 30. Down-regulation of DSLMAP in the CBs of Slit over-expressed embryos had an organized heart tube.

Recovered heart tube formation has been detected in embryos with both UAS-DSLMAP-RNAi and UAS-Slit. (A-B’’) Embryos at stage 17, anterior are to the left, dorsal view. (A) Control embryo stained with Dmef2. (B) DSLMAP down-regulation and slit over-expression genetic interactions led to recovered heat tube formation (arrowhead). (A’) PCs stained with Zfh1 in control embryo. (B’) PCs also show a normal alignment of PCs compared to control embryo at the same stage (arrowhead). (A’’), (B’’) embryos are double-labelled with Dmef2, and Zfh-1 antibodies.
4.13.3 *DSLMAP* over-expression in the CBs reduced the delayed migration associated defects with *Robo* down-regulation or *Slit* over-expression

To further study any genetic interaction between the DSLMAP and Slit/Robo pathway, two genetic crosses were done, in which TinGAL4 UAS-*DSLMAP* was crossed with UAS-*Slit*, and also crossed to UAS-*Robo*-RNAi. The heart tube appeared normal with both the CBs and the PCs more aligned exhibiting less delayed migration as shown in (Fig. 31 A-C’). The CBs were stained with Dmef2 antibody, and anti-Zhh-1 was used to label the PCs. In TinGal4-UAS-*DSLMAP*/+;UAS-*Slit*/+, both the CBs and the PCs recovered from the delayed migration defects, and had similar alignment to the control embryo at the same stage as shown in (Fig. 31 A,B and A’, B’ arrows). TinGal4-UAS-*DSLMAP*/+;UAS-*Robo*-RNAi/+ also showed similar recovery in both the CBs and the PCs compared to the control embryo at the same stage as displayed in (Fig, 31 A,C and A’,B’ arrows). The penetrance of the non-defective embryos has increased significantly in TinGal4-UAS-*DSLMAP*/+;UAS *Slit*/+ and reached up to ~40% in both the CBs and the PCs (Table. 6 A and B) and (Table 7 A and B). In addition, the delayed migration defects were notably reduced for this cross in both the CBs and the PCs and reached up to ~20% compared with those seen in DSLMAP over-expression. On the other hand, the penetrance of the non-defective embryos in TinGal4-UAS-*DSLMAP*/+;UAS-Robo-RNAi/+ has increased significantly and reached up to ~45%, and the delayed migration defects were notably reduced to ~16.9% as displayed in (Table.6 A and B) and (Table.& A and B). This result implies a potential interaction between the DSLMAP and Slit/Robo pathways.
Figure 31. Myocardial over-expression of *DSLMAP* reduced cardiac defects associated with Slit over-expression or Robo down-regulation

(A-C") Embryos at stage 17, anterior are to the left, dorsal view. Embryos are labelled with Dmef2 antibody for the CBs (Red) and Zfn-1 antibody for the PCs (green). (A) Control embryo stained with Dmef2. (B) *DSLMAP* over-expression in the CBs of slit over-expressed embryos led to recovered CBs alignment (arrow). (C) Myocardial expression of DSLMAP in UAS-Robo-RNAi transgene led to organized CBs alignment. (A'), (B'), and (C') Embryos are double-labelled with dmef2 and Zfh-1 antibodies.

(A") PCs stained with Zfh1 in control embryo. (B") PCs also show a normal alignment, compared to control embryo at the same stage (arrow). (C") The PCs were also more organized similar to the control embryo. (A"'), (B"'), and (C"') Embryos are double-labelled with dmef2 and Zfh-1 antibodies.
Table 6 Quantitative analysis of phenotypes observed in the CBs for DSLMAP genetic interactions with slit over-expression and Robo down-regulation.

The phenotypes quantified in these crosses were examined in the CBs stained with Def2 antibody antibody. These phenotypes include: delays, gaps, twist, and clustering of cells. (A) Penetrance of the phenotypes observed in the CBs. (B) P-value for the phenotypes in the CBs. In all the crosses, the percentage of non-defective embryo was increased. PrcGal4-UAS DSLMAP/+; UAS-Robo-RNAi/+ scored the highest percentage for non-defective embryos which had normal heart cells alignment and this percentage reached up to 55%. While Tin Gal4-UAS-DSLMAPI-RNAi/+;UAS-Slit/+ had the lowest percentage of non-defective embryos, which reached up to 40%. Delayed migration defect in the CBs, had the highest overall percentage defects. The P-value was calculated using the unpaired t-test.
A. The penetrance of the phenotypes observed in the CBs

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Penetrance %</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed migration</td>
<td>Clustering of cells</td>
<td>Gaps</td>
<td>Twist</td>
<td>Non defective embryos</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-DSLMAP-RNAi/+</td>
<td>47.7</td>
<td>15.36</td>
<td>16.95</td>
<td>9.16</td>
<td>21.49</td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-RNAi/+</td>
<td>49.16</td>
<td>23.01</td>
<td>15.36</td>
<td>16.94</td>
<td>24.6</td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-4/+</td>
<td>48.46</td>
<td>32.2</td>
<td>15.4</td>
<td>12.34</td>
<td>18.45</td>
</tr>
<tr>
<td>TinGal4/+;UAS-DSLMAP-10/+</td>
<td>51.46</td>
<td>13.6</td>
<td>13.79</td>
<td>9.5</td>
<td>19.98</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-DSLMAP-4/+</td>
<td>47.8</td>
<td>21.5</td>
<td>13.7</td>
<td>12.2</td>
<td>19.91</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-Robo-RNAi/+</td>
<td>33.83</td>
<td>19.98</td>
<td>11.61</td>
<td>18.46</td>
<td>12.3</td>
</tr>
<tr>
<td>TinGal4/+;UAS-Robo-RNAi/+</td>
<td>40.9</td>
<td>24.59</td>
<td>18.39</td>
<td>16.95</td>
<td>16.95</td>
</tr>
<tr>
<td>TinGal4/+;UAS-Slit/+</td>
<td>38.45</td>
<td>32.22</td>
<td>16.95</td>
<td>12.93</td>
<td>15.36</td>
</tr>
<tr>
<td>PrcGal4/+;UAS-Slit/+</td>
<td>26.03</td>
<td>24.43</td>
<td>10.71</td>
<td>10.71</td>
<td>26.16</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP-RNAi/+;UAS-Slit/+</td>
<td>18.17</td>
<td>19.6</td>
<td>16.94</td>
<td>9.1</td>
<td>42.55</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP-RNAi/+;UAS-Robo-RNAi/+</td>
<td>26.15</td>
<td>28.9</td>
<td>22.98</td>
<td>18.15</td>
<td>47.5</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP/+; UAS-Robo-RNAi</td>
<td>25.5</td>
<td>21.29</td>
<td>0</td>
<td>7.6</td>
<td>55</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; UAS-Slit/+</td>
<td>13.7</td>
<td>14</td>
<td>16.9</td>
<td>10.7</td>
<td>40</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; UAS-Robo-RNAi/+</td>
<td>16.94</td>
<td>13.76</td>
<td>9.1</td>
<td>9.1</td>
<td>45</td>
</tr>
</tbody>
</table>

B. P value

<table>
<thead>
<tr>
<th>Genotype</th>
<th>P value</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed migration</td>
<td>Clustering of cells</td>
<td>Gaps</td>
<td>Twist</td>
<td>Non defective embryos</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP-RNAi/+;UAS-Slit/+</td>
<td>0.0025</td>
<td>0.0483</td>
<td>0.9968</td>
<td>0.9708</td>
<td>0.0053</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP-RNAi/+;UAS-Robo-RNAi/+</td>
<td>0.0052</td>
<td>0.0173</td>
<td>0.1057</td>
<td>0.0208</td>
<td>0.0046</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP/+; UAS-Robo-RNAi</td>
<td>0.015</td>
<td>0.9120</td>
<td>0.0054</td>
<td>0.115</td>
<td>0.0013</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; UAS-Slit/+</td>
<td>0.0002</td>
<td>0.9745</td>
<td>0.3754</td>
<td>0.354</td>
<td>0.0240</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; UAS-Robo-RNAi/+</td>
<td>0.0003</td>
<td>0.9926</td>
<td>0.9952</td>
<td>0.9836</td>
<td>0.0041</td>
</tr>
</tbody>
</table>
Table 7 Quantitative analysis of phenotypes observed in the PCs for *DSTMAP* genetic interactions with slit over-expression and Robo down-regulation.

The phenotypes quantified in these crosses were examined in the PCs stained with Zfh-1 antibody. These phenotypes include: delays, gaps, and twist (A) Penetrance of the phenotypes observed in the PCs. (B) P-value for the phenotypes in the PCs. PrcGal4-UAS*DSTMAP/*+; UAS-Robo-RNAi/+ scored the highest percentage for non-defective embryos among all the genetic crosses which had normal heart cells alignment and this percentage reached up to 55%, and in all the crosses, the percentage of non-defective embryo was increased, while TinGal4-UAS-*DSSTMAP*-RNAi/+;UAS-Slit/+ had the lowest percentage of non-defective embryos, which reached up to 40%. Delayed migration in the PCs had the highest overall percentage defects. The P-value was calculated using the unpaired t-test.
A.

Penetrance of the phenotypes observed in the pericardial cells

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Delayed migration</th>
<th>Gaps</th>
<th>Twist</th>
<th>Non defective embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prc Gal4 UAS-DSLMA P-RNAi/+;UAS-Slit/+</td>
<td>0.0025</td>
<td>0.1457</td>
<td>0.9708</td>
<td>0.0053</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMA P-RNAi/+;UAS-Robo-RNAi/+</td>
<td>0.0052</td>
<td>0.9396</td>
<td>0.0208</td>
<td>0.0046</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMA P/+;UAS-Robo-RNAi</td>
<td>0.015</td>
<td>0.0004</td>
<td>0.115</td>
<td>0.0013</td>
</tr>
<tr>
<td>Tin Gal4 UAS-DSLMA P/+;UAS-Slit/+</td>
<td>0.0002</td>
<td>0.9968</td>
<td>0.354</td>
<td>0.0240</td>
</tr>
<tr>
<td>Tin Gal4 UAS-DSLMA P/+;UAS-Robo-RNAi/+</td>
<td>0.0003</td>
<td>0.0639</td>
<td>0.9836</td>
<td>0.0041</td>
</tr>
</tbody>
</table>
4.13.4 Phenotypes observed in Slit\(^2\) and Robo\(^{189}\) mutants in Drosophila heart

Slit ligand is a secreted protein from the myocardial progenitor, and binds to Robo receptor to form a complex that plays a major role in cardiac cells alignment and migration during *Drosophila* heart development. *Slit2* and *robo\(^{189}\)* loss of function mutants showed severe alignment, and migration defects in the heart which included: delays, large gaps, clustering of cells, double rows and others (Fig. 32 A-C”). *Slit\(^2\)* embryo had a big gap in both CBs and PCs compared to the control embryo at the same stage (Fig. 32 A and B stars, A’ and B’ star), while in *robo\(^{189}\)*, the heart tube had crossed lines compared to the well-organized heart cells in the control embryo, as shown in (Fig.32 A and B arrows, A’ and B’ arrows).

4.13.5 DSLMAP protein can reduce heart tube defects observed in *Slit\(^2\)* and *Robo\(^{189}\)* loss of function mutants.

To further understand any role for DSLMAP in heart tube development, and the Slit/Robo pathway, myocardial expression of UAS-DSLMAP transgene in *slit\(^2\)* and *robo\(^{189}\)* heterozygous background were examined, where two genetic crosses were generated: TinGal4-UAS-DSLMAP/+;*slit\(^2\)/+ and TinGal4UAS-DSLMAP/+;*robo\(^{189}/+*. Over-expression of DSLMAP in *slit\(^2\)* and *robo\(^{189}\)* mutants’ background had shown a significant reduction in the phenotypes observed in both *slit\(^2\)* and *robo\(^{189}\)* mutants alone as displayed in (Fig.33 A-C”, and Fig.34 A-C”).

When DSLMAP was over-expressed in *slit\(^2\)* heterozygous background, the CBs stained with anti-*Dmef2* had normal cell alignment, similar to the control embryos at the same stage of development as shown in (Fig.33 A, B, and C arrows).
Figure 32. Gaps and lack of lumen formation are seen in *slit²* and *robo¹⁸⁹* loss of function mutant

(A–C”) Embryos are at stage 17, anterior to the left, dorsal view. (A) Control embryo stained with Dmef2 antibody which is specific for labelling the CBs. (B) *slit²* loss of function mutant stained with anti-Dmef2 which is specific for the CBs, large gap in the CBs is seen (Star). (C) *robo¹⁸⁹* loss of function mutant embryo stained with Dmef2 antibody shows crossed rows of the CBs (arrow). (A’) Control embryo stained with Zfh1 antibody which is specific for PCs. (B’) *slit²* loss of function mutant embryo stained with ZFH1 also a big gap is seen in PCs (star). (C’) *robo¹⁸⁹* loss of function mutant also shows defective PCs (arrow). (A”), (B”), (C”) Embryos are double-labelled with Dmef2 and Zfh1 antibodies.
Figure 33. **DSLMAP** over-expression reduced the phenotypes observed in *slit*² loss of function mutant

TinGAL4 driver was used with UAS-*DSLMAP* transgenic line-10 and crossed to *slit*² mutant. (A-C") Embryos at stage 17, dorsal view, anterior to the left, and stained with Dmef2 antibody red color Zfh1 antibody green color. (A-C") Embryos are at stage 17, anterior to the left, dorsal view. (A) Heterozygous control embryo of TinGAL4/+; *slit*²/+ stained with Dmef2 antibody, shows normal CBs alignment (arrow). (B) Heterozygous control embryo of UAS-Z)SXM4P\+; *slit*²/+stained with Dmef2,also have organized CBs (arrow). (C) TinGa.l4-U AS-DSLMAP\+; *slit*² shows recovered CBs alignment similar to the control embryo at the same stage (arrow). (A’) TinGAL4/+; *slit*²/+control embryo stained with Zfh1, has organized PCs (arrow). (B’) Heterozygous control embryo of UASDSLMAP\+; *slit*² /+stained with Zfh-1, shows normal PCs alignment (arrow)(C’) TinGal4-UAS-*DSLMAP*\+; *slit*²/+ shows recovered PCs alignment (arrow), stained with Zfh-1 antibody. (A”), (B”),(C”) Embryos are all double-labelled with Dmef2 and Zfh1 antibodies.
Also, the PCs stained with anti-Zfh-1 had normal alignment, just like the control embryo (Fig.33, A’, B’, and C’ arrows). The penetrance for non-defective embryos reached up to 72.33% (n=65), and all the other phenotypes were significantly reduced as displayed in (Table. 7 A and B).

The myocardial targeted over-expression of DSLMAP in robo189 heterozygous background demonstrated that the large gaps, the clustering of cells, and the delays were significantly reduced, and the CBs showed normal cardiac tube development, much similar to the control embryos as shown in (Fig.34 A, B, and C).

Similarly, the PCs had normal cells alignment, just as both control embryos, as shown in (Fig.34 A’, B’, and C’). The penetrance of non-defective embryos in both the CBs and the PCs reached up to 70.77% (n=65), as displayed in (Table.8 A and B) and (Table.9 A and B).

In situ hybridization showed that DSLMAP is expressed in the heart; while Robo is expressed in both the CBs and the PCs. Slit is expressed only by the CBs but not in the PCs, but the phenotypes observed in slit2 mutant indicated that any defect in the CBs will have an impact on the PCs; these defects include gaps, delayed migration in the heart cells and others. In order to study the genetic interaction of DSLMAP with Slit2 and robo189 mutants in the PCs, targeted pericardial down-regulation of DSLMAP was done in both slit2 and robo189 mutants.

Two genetic crosses were obtained: PrcGal4-UAS-DSLMAP-RNAi/++;slit2/+, and Prc Gal4-UAS-DSLMAP-RNAi/++;robo189/+;robo189 were seen, as in (Fig.35 A-C”, and Fig.36 A-C”).
DSLMAP down-regulation using PrcGAL4 in *slit*² heterozygous background (Prc Gal4-UAS-DSLMAP-RNAi/+;slit²/+) showed that the PCs labelled with anti-Zfh-1 had regular cardiac tube formation as in both control embryos (Fig.35 A', B', and C’ arrows), and the CBs stained with anti-Dmef2 had normal alignment at stage 17 of embryonic development, the same as the both control embryos as displayed in (Fig.35 A, B, and C arrows). The penetrance for non-defective embryos reached up to 72.39% (n=65), and all the other phenotypes were significantly reduced as shown in (Table.7 A and B).

The pericardial targeted down-regulation of **DSLMAP** in *robo*¹⁸⁹ heterozygous background (PrcGal4-UAS-DSLMAP-RNAi/+;robo¹⁸⁹) indicated that the defects that were seen in the *robo*¹⁸⁹ mutant were all decreased, and most of the embryos had normal cardiac cells alignment, similar to wild type embryo at the same stage (Fig.36 A-C’). At stage 17 of embryonic development, the PCs showed similar organized alignment of these cells that resembles the control embryos at the same stage (Fig.36 A’, B’, and C’ arrows), and the CBs were able to form a normal lumen, and had a normal cells alignment compared to the control embryos at the same stage (Fig.36 A, B, and C arrows). The penetrance of the phenotypes observed in *robo*¹⁸⁹ mutant were significantly decreased in both the CBs and the PCs, and the penetrance for non-defective embryos reached up to 66.12% (n=65) as illustrated in (Table.8 A and B) and (Table.9 A and B).

Accordingly, when DSLMAP was over-expressed in the CBs of *slit*² mutants, there was a significant reduction in all the defects seen in the CBs of *slit*² mutants alone. In addition, the PCs also had a reduction in all of the phenotypes observed in *slit*² mutants. Further, when **DSLMAP** was over-expressed in the CBs of *robo*¹⁸⁹ loss-of-function mutants, the number of non-defective CBs had increased, and similar effects were seen in the PCs.
Figure 34. **DSLMAP** over-expression reduced the phenotypes seen in

*robo*¹⁸⁹ loss of function mutant

TinGAL4 driver was used with UAS-DSLMAP transgenic line-10 and crossed to *robo*¹⁸⁹ mutant. (A-C") Embryos at stage 15, dorsal view, anterior to the left, and stained with Dmef2 antibody (red color) Zfh1 antibody (green color) and β-gal (green color). (A) Heterozygous control embryos of UAS-DSLMAP /+; *robo*¹⁸⁹/+, stained with Dmef2 antibody, shows organized CBs (arrow). (B) Heterozygous control embryos of TinGAL4/++; Robo¹⁸⁹/+ stained with Dmef2 antibody, has normal alignment (arrow). (C) Heterozygous embryo of TinGal4-UAS-DSLMAP-RNAi/++; *robo*¹⁸⁹/+, has recovered CBs alignment similar to the control embryos at the same stage. (A’) Heterozygous control embryos of UAS-DSLMAP /+; *robo*¹⁸⁹/+ stained with Zfh1 and β-gal antibody, shows organized PCs alignment (arrow). (B’) Heterozygous control embryo of TinGAL4/++; *robo*¹⁸⁹/+ stained with Zfh1, and β-gal antibodies, shows aligned PCs (arrow). (C’) Heterozygous embryo of Tin; UAS-DSLMAP-RNAi/++; *robo*¹⁸⁹/+, has recovered PCs (arrow). (A”), (B’), (C”) Embryos are all double-labelled with Dmef2 and Zfh1 and β-gal antibodies.
Figure 35. DSLMAP down-regulation reduced the defects observed in slit^2 loss-of-function mutant.

Prc GAL4 driver was used with the UAS-DLMA- RNAi transgenic line and crossed to slit^2 null mutant. (A-C") Embryos at stage 17, dorsal view, anterior to the left, and stained with Dmef2 antibody (red color) Zfh1 antibody (green color). (A) Heterozygous control embryo of UAS-DLMA-RNAi/+; slit^2/+ stained with Dmef2 antibody shows normal CBs alignment (arrow). (B) Heterozygous embryo of PrcGal4-UAS-DLMA-RNAi/+; slit^2/+ shows normal CBs alignment similar to the control embryo (arrow). (C) Heterozygous control embryo of PrcGAL4/+; slit^2/+ stained with Dmef2 antibody shows aligned CBs (arrow). (A’) Heterozygous control embryo of UAS-DLMA-RNAi/+; slit^2/+ stained with Zfh1, has organized PCs alignment (arrow). (B’) Heterozygous embryo of Prc;UAS-DLMA-RNAi/+; slit^2/+ shows recovered PCs, stained with Zfh-1 (arrow). (C’) Heterozygous control embryo of PrcGAL4/+; slit^2/+ stained with Zfh1, shows organized PCs (arrow). (A”), (B’), (C”) Embryos are all double-labelled with Dmef2 and Zfh1 antibodies.
Figure 36. **DSLMAP** down-regulation reduced the defects seen in robo189 loss-of-function mutant

Prc GAL4 driver was used with DSLMAP RNAi transgenic line and crossed to robo189 loss-of-function mutant. (A-C") Embryos at stage 17, dorsal view, anterior to the left, and stained with Dmef2 antibody (red color), Zfh1 antibody (green color) and β-gal (green color). (A) Heterozygous control embryos of UAS-DSLMAP-RNAi/+; robo189/+ stained with Dmef2 antibody, has aligned CBs (arrow). (B) Heterozygous embryo of Prc-Gal4-UAS-DSLMAP-RNAi/+; robo189/+ shows normal CBs alignment similar to the control embryo (arrow). (C) Heterozygous control embryo of PrcGAL4/+; robo189/+ stained with Dmef2 antibody, shows organized CBs (arrow). (A’) Heterozygous control embryos of UAS-DSLMAP-RNAi/+; robo189/+ stained with Zfh1 and β-gal antibodies, has organized PCs (arrow). (B’) Heterozygous embryo of Prc;UAS-DSLMAP-RNAi/+;robo189/+ shows normal PCs alignment, similar to control embryo (arrow). (C’) Heterozygous control embryo of PrcGAL4/+;robo189/+ stained with Zfh-1 has organized PCs (arrow). (A”), (B”), (C”) Embryos are all double-labelled with Dmef2 and Zfh1 and β-gal antibodies.
A
UAS-DSLMP-RNAid+/+;robo^{108}/+

A'
UAS-DSLMP-RNAid+/+;robo^{108}/+

A''
UAS-DSLMP-RNAid+/+;robo^{108}/+

B
PcGal4 UAS-DSLMP-RNAid+/+;robo^{108}/+

B'
PcGal4 UAS-DSLMP-RNAid+/+;robo^{108}/+

B''
PcGal4 UAS-DSLMP-RNAid+/+;robo^{108}/+

C
PcGal4/+; robo^{108}/+

C'
PcGal4/+; robo^{108}/+

C''
PcGal4/+; robo^{108}/+
Table 8. Quantitative analysis of the phenotypes observed in the CBs of DSLMAP genetic interaction with slit² and robo ¹⁸⁹ loss of function mutants

DSLMAP over-expression and DSLMAP down-regulated transgenic lines were crossed to slit² and robo ¹⁸⁹ loss-of-function mutants, using two different heart drivers: Tinc4Gal4 for myocardial expression, and PrcGAL4 specific for pericardial expression. (A) The penetrance for the phenotypes observed in CBs. (B) P-value for the phenotypes observed in the CBs. The penetrance for the non-defective embryos was increased in the CBs of all the genetic crosses where in TinGal4-UAS-DSLMAP/+;slit²/+ it reached up to 72.33%, in TinGal4-UAS-DSLMAP/+;robo ¹⁸⁹/+ it reached to 70.99%, PrcGal4-UAS-DSLMAP-RNAi/+; slit²/+ 73.8%, and in PrcGal4-UAS-DSLMAP-RNAi/+; robo ¹⁸⁹/+ it reached up to 66.12%. The P-value was calculated using the unpaired t-test, and it was highly significant in both the delayed migration defects, and for the penetrance in non-defective embryos. The P-value was calculated using the unpaired t-test.
A. Penetrance %

<table>
<thead>
<tr>
<th>Phenotype Genotype</th>
<th>Delayed migration</th>
<th>Clustering of cells</th>
<th>Gaps</th>
<th>Twist</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS-DSLMAP/+; slit2/+</td>
<td>9</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UAS-DSLMAP/+; robob189/+</td>
<td>4.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UAS-DSLMAP-RNAi/+; slit2/+</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UAS-DSLMAP-RNAi/+; robob189/+</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ProGal4/+; robob189/+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ProGal4/+; slit2/+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TinGal4/+; robob189/+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TinGal4/+; slit2/+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>slit2/+; slit2/+</td>
<td>64.91</td>
<td>35.4</td>
<td>33.9</td>
<td>10</td>
</tr>
<tr>
<td>robob189/+; robob189/+</td>
<td>27.6</td>
<td>49.9</td>
<td>40.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Pre Gal4 UAS-DSLMAP-RNAi/+; robob189/+</td>
<td>16.94</td>
<td>10.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pre Gal4 UAS-DSLMAP-RNAi/+; slit2/+</td>
<td>23</td>
<td>12.26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; robob189/+</td>
<td>13.6</td>
<td>15.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; slit2/+</td>
<td>16.95</td>
<td>13.7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B. P value

<table>
<thead>
<tr>
<th>Phenotype Genotype</th>
<th>Delayed migration</th>
<th>Clustering of cells</th>
<th>Gaps</th>
<th>Twist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Gal4 UAS-DSLMAP-RNAi/+; robob189/+</td>
<td>0.0176</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Pre Gal4 UAS-DSLMAP-RNAi/+; slit2/+</td>
<td>0.0004</td>
<td>0.0008</td>
<td><0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; robob189/+</td>
<td>0.0164</td>
<td>0.0003</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; slit2/+</td>
<td>0.0001</td>
<td>0.0023</td>
<td>0.0005</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Table 9. Quantitative analysis of the phenotypes observed in the PCs in DSLMAP genetic interaction with slit2 and robo189 loss of function mutants

In order to quantify the phenotypes observed in the PCs of DSLMAP over-expression and DSLMAP down-regulated transgenic lines which were crossed to slit2 and robo189 loss-of-function mutants, using two different heart drivers: Tinc4Gal4 for myocardial expression, and PrcGAL4 specific for pericardial expression the penetrance for all these crosses was calculated as displayed in (A) The penetrance of the phenotypes observed in PCs. (B) P-value for the phenotypes observed in the PCs. The penetrance for the non-defective embryos was increased in the CBs of all the genetic crosses where in Tin Gal4 UAS-DSLMAP/++;slit2/+ it reached up to 72.33%, in Tin Gal4-UAS-DSLMAP/++;robo189/+ it reached to 70.99%, PrcGal4-UAS-DSLMAP-RNAi/+; slit2/+ 73.8%, and in Prc Gal4-UAS-DSLMAP-RNAi/+; robo189/+ it reached up to 66.12%. The P-value was calculated using the unpaired t-test, and it was highly significant in both the delayed migration defects, and for the penetrance in non-defective embryos.
Penetrance of the phenotypes observed in the pericardial cells

A.

B.

<table>
<thead>
<tr>
<th>Phenotype Genotype</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delayed migration</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP-RNAi/+; robo^{189/1}</td>
<td>0.0176</td>
</tr>
<tr>
<td>Prc Gal4 UAS-DSLMAP-RNAi/+; slit^{2/1}</td>
<td>0.0004</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; robo^{189/1}</td>
<td>0.0164</td>
</tr>
<tr>
<td>TinGal4 UAS-DSLMAP/+; slit^{2/1}</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
The targeted pericardial down-regulation of DSLMAP in \textit{slit}^2 mutants, led to a reduction in the defects seen in the PCs of \textit{slit}^2 mutants alone, and the CBs were more organized compared to the CBs in \textit{slit}^2 mutants alone. In addition, the pericardial expression of UAS-DSLMAP-RNAi transgene in \textit{robo}^{189} loss-of-functions mutants, showed a significant reduction in the defects seen in the PCs of \textit{robo}^{189} mutants alone. The CBs also had a significant reduction in the defects, compared to the defects seen in the CBs of \textit{robo}^{189} mutants alone.

Altogether, these data suggest that DSLMAP may play a role in guiding both the CBs and the PCs towards their destination, and it may genetically interact with the Slit/Robo pathway to form an organized heart tube.
Discussion

Drosophila heart development is a complicated process which requires precise cell positioning and adhesion. During this process, the cardioblasts (CBs), and the PCs (PCs) align into rows, and migrate in an organized manner to the dorsal midline of the embryo, where they merge to form a linear heart tube (Rugendorff, 1994; Bodmer and Venkatesh, 1998). The CBs possess a contractile muscle property that pumps the hemolymph in an open circulatory system, and the PCs that flank the CBs on each side (Bodmer and Venkatesh, 1998; Bodmer and Frasch, 1999) may have a role in filtering and detoxifying the hemolymph of the fly (Miller, 1950). The similarity between *Drosophila* heart formation and vertebrate heart assembly at early stages of development (Bodmer and Venkatesh, 1998; Bodmer and Frasch, 1999), has led *Drosophila* to become an excellent model organism for studying the genetic mechanisms of heart tube formation, since most of these mechanisms are regulated by genetic networks that appear to be conserved from fruit flies to vertebrates (Ocorr *et al.*, 2007, Bier and Bodmer, 2007).

SLMAP, a tail anchored membrane protein was found to be expressed early in the mammalian heart (Guzzo *et al.*, 2004), and it may have an important role in cardiac development and function. DSLMAP, and its mammalian homologue share 28.6% identity over 721 amino acid residues with the SLMAP3 isoform; a higher percentage identity was noted in the forkhead-associated domain (55.9%) (M’omena Dawood thesis, 2006). Furthermore, it was demonstrated that DSLMAP has a ubiquitous expression during embryonic development of the fruit flies. The targeted de-regulation of DSLMAP using over-expression, and RNAi protocols in the CNS led to defective neuronal
development in *Drosophila*. In addition *DSLMAP* was also found to genetically interact with the Slit/Robo pathway, to maintain proper neuronal development (Dawood *et al*., 2007).

The data here shows that *DSLMAP* has a ubiquitous expression including the heart tube, during different stages of embryonic development as illustrated by whole mount *in situ* hybridization. Further, double labeling with anti-*Dmef2* -which is specifically expressed in the CBs and the somatic muscles- and *in situ* hybridization with *DSLMAP* mRNA probes at different developmental stages, indicates that *DSLMAP* is expressed in CBs population of *Drosophila* heart from the beginning of heart tube formation. This expression pattern is similar to that observed for its mammalian homologue SLMAP, which was also expressed at early stages of development in cardiac tissue (Wigle *et al*., 1997).

Changing the expression of *DSLMAP* in either CBs or PCs resulted in defects in heart tube development. Two different heart drivers were used; TinGAL4, PrcGAL4 to de-regulate *DSLMAP* specifically in CBs or PCs. Similar defects in heart tube development were noted when *DSLMAP* was de-regulated, these defects noted at different stages of heart development include: delayed cell migration, clustering of cells, gaps, and blisters in the midline alignment of cardiac cells. Instead of migrating dorsally to form a linear heart tube they either went inward, or outward, or aggregated together. These observations suggest that cardiac cells had undergone changes in cell-cell interactions, and become less adhered to each other, and perhaps had lost their ability for migration and guidance. The main defect was delayed cell migration associated with a delay in the CB cell rows as well as the PC rows. This would suggest that these two cell types may
interact with each other, and that both of them may require regulated levels of DSLMAP to maintain normal development of heart tube formation, and perhaps guiding these cells towards their final destination.

In wild-type embryos, there are normally 104 CBs that form two rows at the dorsal midline. However, in DSLMAP down-regulated embryos- at stage 17, an average of (97 ±1.5) (n= 18) CBs were noted. This change in CB numbers was not observed at stage 13, since both DSLMAP down-regulated embryos, and wild type embryos have the same number of cells. This suggests that this change in cell numbers occurs during development after stage 13. This may be a result of either cell loss due to cell death or perhaps changes in cell-cell interaction resulting in alterations in cell aggregation or cell fusion.

Spectrin is a protein that links the plasma membrane to the cytoskeleton. In Drosophila α-Spectrin is localized to the basal-lateral surface of the CBs and plays an important role in the determination of cell shape (Lee et al., 1993). The visualization of the expression of α-spectrin in the cell membrane that surrounds the CBs showed that these cells had undergone a change in their shape during de-regulation of DSLMAP. In addition, in DSLMAP over-expression the cell membrane organization of CBs indicates that they have actually merged with adjacent cell membranes, and some of these cells were aggregated or fused together. Further, the CBs were seem to be fused to each other at early stage 14, compared to the wild type were the CBs fuse in to a linear heart tube at the dorsal midline by stage 17 (Bodmer and Venkatesh,1998). This suggests a role for DSLMAP in the CBs positioning, and perhaps adhesion during heart tube formation.
It is notable that over expression of the mammalian homologue of DSLMAP was associated with defective myotube development, due to reduced myoblast fusion of C2C12 myoblasts (Guzzo et al., 2004, B). Furthermore, the membrane targeting or the FHA domain in SLMAP was not found to impact the effects on myotube development or myoblast fusion. The regulated levels and the temporal induction of endogenous SLMAP isoforms were concluded to be critical for muscle development, while, protein-interaction studies demonstrated that SLMAP can interact with itself, and can form homodimers in vivo (Guzzo et al., 2004, A). Structural analysis of DSLMAP shows that it possesses a coiled-coil region, a FHA domain, and a TM domain. The coiled-coil regions are implicated in protein-protein interactions (Blazek et al., 2005). In addition, the coiled-coil motif has also been demonstrated to be involved in intra-molecular interactions with the FHA domain (Lee et al., 2004). Accordingly, the de-regulation of DSLMAP may affect the protein-protein interactions mediated by the coiled-coil region, and the intermolecular interactions mediated through the FHA domain leading to defective heart tube formation.

To address whether DSLMAP interacts genetically with the Slit/Robo pathway, the phenotypes generated by DSLMAP over-expression, and down-regulation were compared with those of Slit and Robo de-regulation in a cardiac specific manner. The data revealed that over-expression of DSLMAP has the same phenotypes as those observed in Slit over-expression, while down-regulation of DSLMAP has the same phenotypes as those of Robo down-regulation. These phenotypes were observed at different stages of embryonic heart development. In addition, Slit and Robo localization had changed, where Slit and Robo were not localized in the lumen between the CBs when DSLMAP expression was
altered. This indicates that de-regulated DSLMAP expression may result in Slit and Robo mislocalization in the cytoplasm, and prevent their proper targeting or secretion.

The expression of DSLMAP and Slit in the CBs implies that these proteins could interact with each other, while both DSLAMP and Robo are expressed in CBs and PCs and thus these proteins may interact in these cell types (Li et al., 2005; Macmullin and Jacob, 2006).

Genetic interactions of DSLMAP with UAS-Slit, and UAS-Robo-RNAi transgenes revealed that the over-expression of DSLMAP in the CBs of Robo down-regulated embryos, reduced the number of defective embryos, and less embryos showed delayed migration defects in the CBs. Similar data was obtained when DSLMAP was over-expressed in the CBs of UAS-Slit transgene. Further, down-regulation of DSLMAP in the PCs of UAS-Robo-RNAi transgene, increased the number of non defective embryos, and reduced migration defects. Similar data was obtained in targeted down-regulation of DSLMAP in the PCs of UAS-Slit transgene. Altogether, these data suggest that DSLMAP may have a role in guiding cardiac cells migration the same as Slit and Robo, and may genetically interact with them to maintain normal heart tube development.

Furthermore, slit\(^2\) and robo\(^{189}\) loss of function mutants showed defects in cardiac cells alignment, and migration, which were observed at various stages throughout heart development. These defects include: delayed cell migration, large gaps, blisters in the midline alignment of cardiac cells, and clustering of cells. These data suggest a continuous requirement for regulated levels of Slit and Robo to maintain a normal cardiac cell alignment and migration, much in the same way as the requirement for DSLMAP expression. Since the targeted DSLMAP expression within the CBs, and the PCs was
found to partially reverse the heart tube defects observed in the *slit*2 and *robo*189 mutants. It is conceivable that DSLMAP may interact with the Slit/Robo pathway during *Drosophila* heart development.

Structural analysis of Slit and Robo showed that Slit is composed of four LRR domain (D1-D4) at the N-terminus, and six EGF repeats, then a laminin G-like domain, and a cysteine knot at the C-terminus; while Robo receptor consist of five immunoglobulin (Ig) repeats, and three fibronectin type III repeats, and polyproline stretch, the D2 of the LRR domain in Slit binds to the Ig-1 domain in Robo, and this binding will initiate the Slit/Robo signal (Chen *et al.*, 2001; Morlot, 2007, Hohenester, 2008).

Slit-Robo signaling was found to require Heparan sulfate (HS) which consist of a variably sulfated repeating disaccharide unit, (Lee and Chien, 2004). The disaccharide units in HS are connected to membrane associated proteins or secreted proteins to form the HS proteoglycans (HSPGs) (Hohenester, 2008). In *Drosophila* HSPG syndecan was found to control both the efficiency and distribution of Slit (Johnson *et al.*, 2004). While in the mammals the HSPG glypican-1 was able to recognize the cleavage products of Slit2 and it act as a receptor for the human Slit2 (Ronca *et al.*, 2001). Studies suggest that HSPGs binds to D2 LRR in Slit and to the Ig1-Ig2 in Robo and this binding is required for the slit-Robo signaling (Hohenester, 2008)

It is suggested that the Slit-Robo signaling is transmitted through the cell membrane by the use of the changes in the oligomeric status of Robo, because Robo ectodomains are similar to those of cell adhesion molecules (CAMs), and Robos in fact mediate homophilic binding (Hivert, 2002). Abelson tyrosine kinase (Abl) is a downstream target of Robo signaling (Bashaw *et al.*, 2000), and it was found that it has a significant role in
controlling the interactions of N-cadherin with Robo (Rhee et al., 2002). Abl interacts with several effectors one of which is capulet (CAP) and CLASP that plays a role in controlling cytoskeletal dynamics (Chédotal, 2008) (Fig. 37). It is thought that Abl is not responsible for all the activity downstream of Robo (Garbe et al., 2004), but there is a number of adaptors that bind to the cytosolic domain of Robo and their activity in some way is controlled by Slit (Hohenester, 2008). Further, it was found that the Slit–Robo Rho GTPase-activating protein 1(srGAP1) binds to the proline-rich CC3 motif of Robo 1 in the mammalian system. The Slit induced srGAP1-Robo1 interaction results in inactivated cell division via Cdc42 (Wong et al., 2001). In addition there is adaptor protein Dreadlocks Dock/Nck that binds to CC3 and also to CC2. Slit stimulation recruits Son of sevenless (Sos), and the p21-activated serine-threonine kinase (pak), cause an increase activity in the Rho GTPase Rac which will lead to axon replusion (Fan et al., 2003, Yang and Bashaw, 2006) (Fig. 37).

Previous studies in our lab had shown that DSLMAP genetically interacts with the Robo/Rac pathway in Drosophila CNS, and DSLMAP may play a role in axonal guidance (Dawood et al., 2007). DSLMAP possess a coiled-coil region that is involved in protein-protein interactions which appears similar in function to that of the Lucien Rich Repeat found in Slit.

While it seems clear that Slit and Robo have a significant role in the development of the Drosophila heart and CNS, and in guiding cell alignment and adhesion (Li et al., 2005,) question of: how DSLMAP may interact with the Slit/Robo pathway needs to be addressed. Since our data implies that there might be genetic interactions between
Figure 37. Slit and Robo signaling and axon repulsion

HSPG binds to Slit D2 and Ig1-Ig2 of Robo receptor, and is required for the Slit and Robo signalling, which is transmitted through the cell membrane, where the proline-rich motif downstream the Robo receptor interacts with different adaptor proteins; among these proteins Dock, which binds to both CC2, and CC3, and mediate the action of both Sos and PAK which in turn affect the Rac GTPase, and Pack will lead to actin filament reorganization which causes the repulsion signal. Abl also binds to CC3 in addition to CC1 and mediate the action of several effectors two of which were recognized, which are CAP that inhibit actin polymerization and CLASP that inhibit microtubule polymerization. (Adapted and modified Chédotal, 2008, Hohenester, 2008).
DSLMAP and both Slit/Robo pathway, and based on the structural features of DSLMAP we propose that DSLMAP may work as an adaptor protein, where the TM domain may bind to HSPG which binds to Slit D2 and to Robo Ig1-Ig2, since the disaccharides units in HS are connected to membrane associated proteins or to secreted proteins (Hohenester, 2008), or through binding the coiled-coil region with one of proline-rich motif since the Slit-Robo signal is transmitted through these motifs to other adapter protein like Dock. The FHA which is phosphopeptide signalling domain could interact with the adaptor protein Dock) which is affected by Rac GTPase that regulates PAK and Sos via Dock which binds to both CC2 and CC3 downstream Robo receptor (Fig. 38).

In summary, DSLMAP is a novel component expressed during heart tube development in CBs and PCs in Drosophila. Further, defects in heart tube development during the targeted deregulation of DSLMAP expression in the CBs or pericardial cell strongly implies a critical role for this molecule in normal heart development. The potential genetic interaction with the slit/robo pathway which is known to regulate cell guidance, migration, and adhesion suggests that DSLMAP may impact this pathway via its unique structural features encompassing membrane targeting, coiled-regions and the FHA domain. Further studies on the molecular interactions of DSLMAP will reveal whether it can signal downstream of the slit/Robo complex.
Figure 38. Putative molecular interaction of DSLMAP with the Slit/Robo pathway

Schematic representation shows suggested molecular interaction of DSLMAP with Slit, and Robo during their signal transduction through the cell membrane. DSLMAP may interact with both Slit and Robo by either binding the Tm domain at the C-terminus with HSPG, which also binds to Slit D2 and to Ig1-Ig2 of Robo, or via the coiled-coil region which may bind to one of the proline-rich motif, or by affecting the Rac pathway via the adaptor protein Dock which in turn binds to CC2 and CC3 downstream of the Robo, and mediate the affect of both Sos and PAK on filament reorganization which lead to repulsion.
References

Cohen.E.D. and Morrisey E. 2008. a house with many rooms how the heart get it chamberes with foxn4.Genes and Devel. 22: 706-710

Han Z, Bodmer R. 2003. Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the *Drosophila* heart, with or without cell division. Development; 130:3039–51.

Shinsuke Yuasa1, Keiichi Fukuda. 2008 Multiple roles for BMP signaling incardiac development, *Cell Dev* 10.1016

