Sherine RAHAL
AUTEUR DE LA THÈSE - AUTHOR OF THESIS

M. Sc. (Cellular and Molecular Medicine)
GRADE - DEGREE

Department of Cellular and Molecular Medicine
FACULTÉ, ÉCOLE, DÉPARTEMENT - FACULTY, SCHOOL, DEPARTMENT

TITRE DE LA THÈSE - TITLE OF THE THESIS
The Role of Prostaglandin EP Receptors in a Model of Glomerulonephritis

C. Kennedy
DIRECTEUR DE LA THÈSE - THESIS SUPERVISOR

CO-DIRECTEUR DE LA THÈSE - THESIS CO-SUPERVISOR
EXAMINATEURS DE LA THÈSE - THESIS EXAMINERS

S. Gee ...
 ...
 ...

R. Hebert ...
 ...
 ...

L.-M. De Koninck, Ph.D
LE DOYEN DE LA FACULTÉ DES ÉTUDES SUPÉRIEURES ET POSTDOCTORALES
DEAN OF THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
THE ROLE OF PROSTAGLANDIN EP RECEPTORS IN A MODEL OF GLOMERULONEPHRITIS

Sherine S. Rahal

Thesis submitted to the Department of Cellular and Molecular Medicine in partial fulfillment of the requirements for the degree of Master of Science

©Sherine S. Rahal
Faculty of Medicine
University of Ottawa
Ottawa, Ontario, Canada
August 2004
NOTICE: The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS: L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni les extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
ABSTRACT

Prostaglandin E\textsubscript{2} (PGE\textsubscript{2}) interacts with four E-Prostanoid (EP) receptor subtypes - designated EP\textsubscript{1-4}. In glomerulonephritis (GN), a renal inflammatory disease, inhibition of enhanced renal PGE\textsubscript{2} synthesis by nonsteroidal-anti-inflammatory drugs (NSAIDs), results in both beneficial anti-proteinuric effects and deleterious side effects on renal blood flow (RBF) and Na+ homeostasis, implying that one or more EP subtypes may mediate these actions. We set out to investigate the role of the EP\textsubscript{1} receptor in GN since it localizes to the collecting duct, where it may regulate Na+ homeostasis, in podocytes and mesangial cells, where it could alter the permeability of the glomerulus, and in arterioles, where EP\textsubscript{1} receptors may induce vasoconstriction thereby reducing RBF. A mouse model of GN was induced in wildtype (wt) and EP\textsubscript{1}-/- mice using an anti-rat-glomerular basement membrane (anti-GBM) antibody. Proteinuria was similar in GN wt and GN EP\textsubscript{1}-/- groups thereby negating a role for this subtype in modulating filtration barrier permeability. However, the severity of renal impairment was more profound in GN EP\textsubscript{1}-/- mice as compared to GN wt animals, as serum creatinine, urea, and K+ levels were each significantly greater in GN EP\textsubscript{1}-/- mice. GN EP\textsubscript{1}-/- mice exhibited higher cortical EP\textsubscript{4} receptor mRNA expression levels (a subtype that promotes afferent vasodilatation) compared to GN wt mice, suggesting that this subtype might temper reduced RBF in GN. In contrast, GN wt but not GN EP\textsubscript{1}-/- mice exhibited elevated EP\textsubscript{4} receptor mRNA levels in the papilla (where it contributes to water reabsorption) being reflected in a more
pronounced reduction in urine osmolality and greater body weight loss for GN EP₁⁺/⁻
mice. Increased severity of renal impairment seen in GN EP₁⁺/⁻ mice suggests that the EP₁
receptor subtype tempers GN progression, and that it may be a downstream target of
NSAID-induced renal side effects manifested during the course of this disease.
DEDICATION

To my parents, Samih and Thérèse, my brother and sisters,
Nissreen, Ramsey, Rana, and Lara and also to my dear friends whose support,
interest and enthusiasm has motivated me to do my best.
ACKNOWLEDGMENTS

I would like to thank my supervisor Dr. Chris Kennedy for his ongoing support, advice, and encouragement throughout my research. I could not have been more fortunate in finding such a mentor. Thank you.

In addition, I am grateful to Dr. Richard Hébert and Dr. William Staines for serving as members of my advisory committee. Their insightful suggestions were valuable in helping to focus my research.

Also, a special thanks to Dr. Wissam Faour, Jean-Louis Michaud and Lyne McVeigh, whose assistance was deeply appreciated and whose presence in the lab made the work more enjoyable.

I would also like to thank the Animal Care staff, especially Kim and Eileen for their individual help.

Finally, I would like to thank the entire Kidney group for their ongoing support.
DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree in any university. To the best of my knowledge this thesis does not contain material previously written by another except where due reference is made in the text.

I authorize the University of Ottawa to reproduce this thesis in whole or in part at the request of another institution for the purpose of academic research.

Shérine S. Rahal
TABLE OF CONTENTS

ABSTRACT -i-

DEDICATION -iii-

ACKNOWLEDGMENT -iv-

DECLARATION -v-

TABLE OF CONTENTS -vi-

LIST OF FIGURES -ix-

LIST OF TABLES -xi-

LIST OF ABBREVIATION -xii-

1 INTRODUCTION -1-

1.1 THE NEPHRON -2-

1.1.1 The Renal Corpuscle -2-

1.1.2 Glomerular Filtration Rate -8-

1.1.3 Renal Tubule -9-

1.2 GLOMERULONEPHRITIS -12-

1.2.1 Anti GBM Disease -12-

1.2.2 Glomerulonephritis and NSAIDs -16-

1.3 THE ARACHIDONIC ACID CASCADE -16-
1.4 THE FUNCTION OF PGE$_2$ RECEPTORS -17-

1.4.1 The EP$_1$ Receptor -18-

1.4.2 The EP$_2$ Receptor -20-

1.4.3 The EP$_3$ Receptor -20-

1.4.4 The EP$_4$ Receptor -21-

2 RATIONALE -28-

3 HYPOTHESIS -30-

4 OBJECTIVES -31-

5 MATERIALS AND METHODS -32-

5.1 INDUCTION OF GN: EXPERIMENTAL DESIGN -32-

5.2 GLOMERULAR ISOLATION -34-

5.3 REAL TIME RT-PCR -34-

5.4 URINE AND SERUM ANALYSIS -40-

5.5 DIETARY SODIUM EXPERIMENTS -41-

5.6 BP STUDIES -41-

5.7 HISTOPATHOLOGY -42-

5.8 STATISTICAL ANALYSIS -42-

6 RESULTS -45-

6.1 GN EP$_1^{-/-}$ MICE EXHIBITED INCREASED SEVERITY IN RENAL FUNCTION -45-

6.1.1 Successful Induction of GN in Mice -45-
6.1.2 The Role of the EP₁ Receptor During the Progression of GN

6.1.3 GN EP₁⁻/⁻ Mice Display Impaired Ability to Maintain ECFV

6.1.4 EP₁⁺/+ Mice Exhibit Normal Na⁺ Excretion in Response to Changes in Dietary Na⁺

6.2 GN INDUCES DIFFERENTIAL REGULATION OF EP₄ RECEPTOR EXPRESSION IN WT AND EP₁⁻/⁻ MICE

6.2.1 Elevated EP₄ Receptor Expression in GN wt and GN EP₁⁻/⁻ Mice

6.2.2 Localization of Elevated EP₄ Receptor Expression Under GN Conditions in WT and EP₁⁻/⁻ Mice

7 DISCUSSION

7.1 INDUCTION OF GN IN WT MICE

7.2 PROGRESSION OF GLOMERULONEPHRITIS IN EP₁⁻/⁻ MICE

7.2.1 The Role of the EP₁ Receptor in the Glomerulus under GN Conditions

7.2.2 GN EP₁⁻/⁻ Mice Displayed Reduced Blood Pressure

7.2.3 GN EP₁⁻/⁻ Mice Display an Impaired Ability to Maintain ECFV

7.2.4 EP₁⁺/+ Mice Exhibit Normal Na⁺ Excretion in Response to Changes in Dietary Na⁺

7.2.5 GN Mice Display Enhanced EP₄ Receptor Expression in a Tissue-Specific Manner: Outer Medullary and Papillary Regions

7.2.6 Severe Hyperkalemia in GN EP₁⁻/⁻ Mice

7.2.7 GN Mice Display Enhanced EP₄ Receptor Expression in a Tissue-Specific Manner: Cortical Region

7.3 FUTURE STUDIES

8 REFERENCES
LIST OF FIGURES

Figure 1.1 The Kidney, Nephron and Glomerulus
-5-

Figure 1.2 The Podocyte
-7-

Figure 1.3 Na⁺ and K⁺ Transport in the Principal Cell
-15-

Figure 1.4 Prostaglandin Synthesis
-25-

Figure 1.5 PGE₂ Couples to Multiple Signalling Pathways
-27-

Figure 5.1 Glomerular Isolation
-39-

Figure 5.2 Metabolic Mouse Cages
-44-

Figure 6.1 Anti-GBM Antibody Immunofluorescence
-48-

Figure 6.2 Urinary Albumin Levels for WT and GN WT Mice
-50-

Figure 6.3 Serum Analysis of WT and GN WT Mice
-52-

Figure 6.4 Serum Urea and Creatinine Levels in WT and GN WT Mice
-54-

Figure 6.5 H&E and PAS Staining of Kidneys from WT and GN WT Mice
-56-

Figure 6.6 Systolic Blood Pressure of GN WT and GN EP₁⁻/⁻ Mice
-60-

Figure 6.7 Urinary Albumin Levels of Control and GN Groups
-62-

Figure 6.8 Kidney H&E Staining of WT and EP₁⁻/⁻ Mice
-64-

Figure 6.9 Serum Potassium Levels in GN WT and GN EP₁⁻/⁻ Mice
-66-

Figure 6.10 Serum Aldosterone Levels in GN WT GN and GN EP₁⁻/⁻ Mice
-68-

Figure 6.11 Enhanced Elevations in Serum Urea and Creatinine Levels in GN EP₁⁻/⁻ Mice
-70-

Figure 6.12 Urine Osmolality Levels in GN WT and GN EP₁⁻/⁻ Mice
-74-
Figure 6.13 Serum and Urinary Na\(^+\) Concentration in GN WT and GN EP\(_1\)\(^{-/-}\) Mice

Figure 6.14 Percent Change in Body Weight for GN WT and GN EP\(_1\)\(^{-/-}\) Mice

Figure 6.15 WT and EP\(_1\)\(^{-/-}\) Mice- Phenotypic Characteristics on a Low Sodium Diet

Figure 6.16 Phenotypic Characteristics of Na\(^+\) and Water Deprived WT and EP\(_1\)\(^{-/-}\) Mice

Figure 6.17 WT and EP\(_1\)\(^{-/-}\) Mice-Phenotypic Characteristics on a High Sodium Diet

Figure 6.18 Total Kidney EP Receptor mRNA Expression Levels in WT and EP\(_1\)\(^{-/-}\) Mice Under GN Conditions

Figure 6.19 Spatial EP\(_4\) Receptor mRNA Expression Levels in Control and GN Mice Kidneys

Figure 6.20 Physiological Events Involved in the Induction of GN in EP\(_1\)\(^{-/-}\) Mice
LIST OF TABLES

Table 5.1
A Description of the Primers and Probes Employed for Real-Time RT-PCR Experiments
-37-

Table 7.1
GN Phenotypic Characteristic in WT Mice
-98-

Table 7.2
GN Phenotypic Characteristic in WT and EP_{1+} Mice
-116-
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>arachidonic acid</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin-converting enzyme</td>
</tr>
<tr>
<td>AChE</td>
<td>aldosterone-acetylcholinesterase</td>
</tr>
<tr>
<td>ADH</td>
<td>antidiuretic hormone</td>
</tr>
<tr>
<td>Ang</td>
<td>angiotensin</td>
</tr>
<tr>
<td>ANOVA</td>
<td>ANalysis Of VAriance</td>
</tr>
<tr>
<td>ANP</td>
<td>atrial natriuretic peptide</td>
</tr>
<tr>
<td>AQP2</td>
<td>aquaporin-2</td>
</tr>
<tr>
<td>AVP</td>
<td>arginine vasopressin</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>°C</td>
<td>degree celsius</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>COX</td>
<td>cyclooxygenase</td>
</tr>
<tr>
<td>cPLA2</td>
<td>cytoplasmic phospholipase A2</td>
</tr>
<tr>
<td>Cr</td>
<td>creatinine</td>
</tr>
<tr>
<td>CT</td>
<td>threshold cycle</td>
</tr>
<tr>
<td>ECFV</td>
<td>extracellular fluid volume</td>
</tr>
<tr>
<td>EIA</td>
<td>enzyme immunoassays</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunoassay</td>
</tr>
<tr>
<td>EP</td>
<td>E-Prostanoid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>EP<sub>1</sub><sup>−/−</sup></td>
<td>EP<sub>1</sub> knockout</td>
</tr>
<tr>
<td>EP<sub>2</sub><sup>−/−</sup></td>
<td>EP<sub>2</sub> knockout</td>
</tr>
<tr>
<td>EP<sub>3</sub><sup>−/−</sup></td>
<td>EP<sub>3</sub> knockout</td>
</tr>
<tr>
<td>EP<sub>4</sub><sup>−/−</sup></td>
<td>EP<sub>4</sub> knockout</td>
</tr>
<tr>
<td>ESRD</td>
<td>end stage renal disease</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FSGS</td>
<td>focal segmental glomerular sclerosis</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GBM</td>
<td>glomerular basement membrane</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>G<sub>i</sub></td>
<td>inhibitory G protein</td>
</tr>
<tr>
<td>GN</td>
<td>glomerulonephritis</td>
</tr>
<tr>
<td>G-Protein</td>
<td>guanine nucleotide binding proteins</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>G<sub>s</sub></td>
<td>stimulatory G protein</td>
</tr>
<tr>
<td>H&E</td>
<td>hematoxylin and eosin</td>
</tr>
<tr>
<td>HRP</td>
<td>horse radish peroxidase</td>
</tr>
<tr>
<td>Hrs</td>
<td>hours</td>
</tr>
<tr>
<td>HS</td>
<td>high salt</td>
</tr>
<tr>
<td>IL-1</td>
<td>interleukin-1</td>
</tr>
<tr>
<td>IM</td>
<td>inner medullary</td>
</tr>
<tr>
<td>JGA</td>
<td>juxtaglomerular apparatus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>log</td>
<td>logarithm</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>LS</td>
<td>low salt</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimeters of mercury</td>
</tr>
<tr>
<td>mmol</td>
<td>millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribo-nucleic acid</td>
</tr>
<tr>
<td>Mx1-Cre</td>
<td>myxovirus resistance-1-Cre</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>OM</td>
<td>outer medullary</td>
</tr>
<tr>
<td>PAS</td>
<td>periodic acid schiff</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>pg</td>
<td>picograms</td>
</tr>
<tr>
<td>PGD<sub>2</sub></td>
<td>prostaglandin D<sub>2</sub></td>
</tr>
<tr>
<td>PGE<sub>2</sub></td>
<td>prostaglandin E<sub>2</sub></td>
</tr>
<tr>
<td>PGF<sub>2α</sub></td>
<td>prostaglandin F<sub>2α</sub></td>
</tr>
<tr>
<td>PGG</td>
<td>prostaglandin G</td>
</tr>
<tr>
<td>PGH<sub>2</sub></td>
<td>prostaglandin H<sub>2</sub></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RBF</td>
<td>renal blood flow</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription-polymerase chain reaction</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>S.E.M</td>
<td>standard error mean</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TxA₂</td>
<td>thromboxane A₂</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>µmol</td>
<td>micromolar</td>
</tr>
<tr>
<td>WD</td>
<td>water deprived</td>
</tr>
<tr>
<td>wt</td>
<td>wild type</td>
</tr>
</tbody>
</table>
INTRODUCTION

Over a century ago the French physiologist Claude Bernard (1813-1878) first proposed that cells of multicellular organisms flourish because they live in the relative constancy of “le milieu interieur” (the internal environment) despite changing conditions in the external environment. The ability of cells, tissues and organs to maintain an internal balance (that is, homeostasis) is achieved, in part, through communication by auto-, para -, and endocrine signaling.

The kidney (Figure 1.1) is one such organ that contributes to the regulation of the internal environment. This complex collection of tissue and cells is responsible for regulating blood pressure, extracellular fluid volume as well as its electrolyte composition in a way that can be adjusted according to the body’s needs. Homeostasis is maintained in large part through the kidney’s functional units known as nephrons (Figure 1.1). Each kidney contains on average, 1-1.5 million nephrons. Blood vessels and nephrons are organized in such a way to facilitate secretion and reabsorption of key plasma constituents – including glucose, sodium, chloride, urea, potassium etc. These small tubular structures are composed of a renal corpuscle, where blood is filtered, and a renal tubule into which the filtrate passes.
1.1 THE NEPHRON

1.1.1 The Renal Corpuscle

The renal corpuscle consists of the glomerulus and Bowman’s capsule (Figure 1.1). Bowman’s capsule is an epithelial cup that surrounds the glomerulus. During filtration, blood entering through the afferent arteriole is filtered by the glomerulus to produce an ultrafiltrate of renal plasma that flows into Bowman’s space and then into the proximal tubule.

The glomerulus (Figure 1.1) consists of several components that work together to form a molecular sieve to restrict the passage of large molecular weight proteins. Between the capillary loops are mesangial cells and extracellular matrix. Mesangial cells have contractile properties believed to play a role in the regulation of glomerular filtration that may modulate blood flow through each capillary (78). These cells also exhibit phagocytic properties and participate in the clearance of macromolecules from the mesangium (57).

The innermost layer consists of fenestrated endothelial cells. They form the initial barrier between the capillary lumen and Bowman’s space. Under normal conditions, the cellular elements of blood, including erythrocytes, leukocytes, and platelets, do not gain access to the Bowman’s space. The endothelial cells are attached to the glomerular basement membrane (GBM). The GBM possess fixed, negatively charged sites that influence the filtration of macromolecules. Caulfield and
Farquhar demonstrated that when dextrans of different molecular weights were infused into rats, filtration depended on the size of the molecule and that the basement membrane was the main barrier to filtration (19). The GBM is a meshwork of type IV collagen, laminin and fibronectin as well as a number of negatively charged heparin sulfate proteoglycans. Collagen IV is the major constituent and mutations in the isomeric chains, specifically the $\alpha 3$, $\alpha 4$, and $\alpha 5$ cause glomerular disorders, such as Alport Syndrome (43). The outermost layer of the glomerular capillary is covered with epithelial cells, known as podocytes. Podocytes are highly specialized cells equipped with a complex cellular architecture which enables them to contribute to the formation of the final barrier to protein (Figure 1.2). In particular, podocyte differentiation results in cells extending numerous foot processes that establish filtration slits to restrict the passage of large proteins (> 70kD) in the glomerulus. Each foot process is attached to its neighbor along its length by an intercellular adherens-type junction modified for filtration (the slit diaphragm). A specialized cytoskeleton is necessary for maintaining proper morphology of each podocyte. Highly organized arrays of intermediate filaments, actin filaments and microtubule processes work together to provide the scaffolding needed for the formation of the extracellular slit pores through which filtration occurs.

Acting in concert, the endothelial cells of the glomerular capillaries, the GBM and podocytes form the filtration barrier responsible for producing a protein-free ultrafiltrate of renal plasma. Importantly, a nearly protein-free ultrafiltrate passes into the Bowman's capsule from the glomerular capillaries and enters the proximal tubule.
Figure 1.1 The Kidney, Nephron and Glomerulus

Illustration of the human kidney with an enlarged nephron and a glomerulus (From: Somso Modelle, Directed Learning, Elora, ON)
Glomerulus:
1. Proximal tubule
2. Afferent arteriole
3. Efferent arteriole
4. Glomerulus
5. Distal tubule
6. Juxtaglomerular cells
7. Macula densa
8. Mesangial region
9. Bowmans Capsule

Nephron:
1. Glomerulus
2. Proximal tubule
3. Thin ascending limb of Henle’s loop
4. Thick ascending limb
5. Distal convoluted tubule
6. Connecting tubule
7. Initial collecting tubule
8. Cortical collecting duct
9. Medullary collecting duct
10. Vasa recta
11. Arcuate vessels
12. Interlobular vessels

Kidney:
1. Cortex
2. Outer medulla
3. Inner medulla
4. Papilla
Figure 1.2 The Podocyte

Scanning electron microscope image of a podocyte cell embracing the capillary of the glomerulus. The main cell body (P) sends off primary processes (1), which in turn send off secondary processes (2) which interdigitate with similar foot processes of neighboring podocytes (arrow). Magnification ~ 6000X.
1.1.2 Glomerular Filtration Rate

Glomerular function may be assessed on the basis of the kidney’s ability to filter the waste products and to retain essential macromolecules such as plasma proteins. In humans, the average glomerular filtration rate (GFR) is 180L/day. Homeostasis of body fluids requires that the kidneys maintain a constant GFR. A high GFR may cause key substances to pass too quickly through the renal tubules resulting in their loss in the urine. A low GFR will cause much of the filtrate to be reabsorbed, without adequately excreting toxic waste products.

There are two main mechanisms that directly regulate GFR. First, adjusting blood flow through the glomerulus; and second, altering the glomerular capillary surface area available for filtration. GFR is elevated as renal blood flow through the glomerular capillaries increases. A coordinated control of diameter between the afferent and efferent arterioles finely regulates the passage of blood flow. The tone of the afferent arterioles can be modulated by a number of factors, such as nitric oxide, prostaglandins and angiotensin II (Ang II). Ang II, a potent vasoconstrictor of the afferent arteriole is regulated by renin release from the granular cells of the juxtaglomerular apparatus (JGA). Under circumstances of reduced renal perfusion brought about by renal disease, reduced blood volume or reduced blood pressure, renin release by the JGA is stimulated where it acts on angiotensinogen to form angiotensin I (Ang I). Angiotensin converting enzyme (ACE) in turn will convert Ang I to Ang II. The vasoconstrictive actions of Ang II are of great significance in the renal vasculature as well as at the peripheral vasculature, where its actions have been
linked to elevations in blood pressure (70). Prostaglandins have been shown to have both vasoconstrictive and vasodilatory effects on the renal vasculature (37).

1.1.3 Renal Tubule

The renal tubule can be grossly divided into four segments: the proximal tubule, the loop of Henle, the distal convoluted tubule and the collecting duct. Together, these segments maintain electrolyte homeostasis by promoting reabsorption and secretion of fluid, electrolytes and other key molecules required for homeostasis.

The proximal tubule begins at the pole of the glomerulus. It possesses a system of channels and pumps which direct transport of molecules from the lumen to the basolateral side where they are taken up by the circulation. These channels have been shown to be responsible for the bulk of solute reabsorption. This includes, NaCl, H₂O, glucose, amino acids, protein and bicarbonate. The proximal tubule however, is also the only site of organic acid secretion.

The transition from the proximal tubule to the descending limb of the loop of Henle occurs quite suddenly. The limbs of the loop of Henle play an important role in the countercurrent multiplication process that is responsible for the maintenance of a hypertonic medullary interstitium and for the dilution and concentration of the urine. The loop of Henle can be subdivided into 3 portions: (1) the descending thick limb; (2) the thin loop and (3) the ascending thick limb. The descending thick limb is a straight continuation of the proximal tubule which is permeable to water. This is
followed by the thin ascending limb which is relatively impermeable to water but highly permeable to sodium and urea. The thin loop turns back towards the cortex and is continuous with the ascending thick limb of Henle's loop. The cells of the ascending thick limb are also impermeable to water and urea, but do actively transport sodium, chloride and potassium which creates a dilute luminal fluid, while generating a high osmolality within the renal medullary interstitium. Subsequently, as the tubular fluid flows through the distal convoluted tubule its osmolality progressively decreases since the walls of the limbs are virtually impermeable to water. By the time the fluid reaches the end of the distal convoluted tubule, 95% of the filtered solutes and water have been reabsorbed.

The transition from the distal convoluted tubule to the collecting duct is gradual. There are two cell types that make up the collecting duct: principal and intercalated cells. Intercalated cells are key sites in acid base regulation, whereas the principal cells are the main site of salt and water transport. The principal cells (Figure 1.3) contain epithelial sodium channels (eNaC) localized at the apical side to allow the reabsorption of sodium from the lumen. Intracellular sodium levels remain low (intracellular: 12 mEq/L vs. plasma: 143mEq/L) because the sodium/potassium ATPase actively pumps Na⁺ across the basolateral membrane. This causes a lumen-negative potential difference which facilitates the escape of potassium from the principal cells. As a result, intracellular K⁺ concentration (intracellular: 140 mEq/L vs. plasma: 5 mEq/L) levels remain high.
Aldosterone promotes Na\(^+\) and water reabsorption and K\(^+\) secretion by the principal cells. Upon binding to its receptor, it enhances the activity and insertion of existing sodium channels into the luminal membrane, while driving the synthesis of new channels and pumps. Several factors control the release of aldosterone from the adrenal cortex, including Ang II, adrenocorticotropic hormone (ACTH) and increased plasma K\(^+\) concentrations. As a consequence increased distal tubular K\(^+\) secretion occurs, returning the plasma K\(^+\) concentration to normal levels.

In addition to aldosterone, Ang II, arginine vasopressin (AVP) and atrial natriuretic peptide (ANP), have important roles in regulating water and electrolyte composition. Ang II affects the kidney by enhancing Na\(^+\), Cl\(^-\), and water reabsorption in the proximal convoluted tubule by stimulating Na\(^+\)/H\(^+\) antiporters. Ang II stimulates the release of aldosterone as well as AVP. AVP regulates water reabsorption by increasing the permeability of principal cells by promoting the insertion of aquaporin-2 (AQP2) water channels into the apical membrane. In contrast to the function of AVP, ANP inhibits the reabsorption of Na\(^+\) and water in the collecting duct and suppresses the secretion of AVP and aldosterone. As the tubular fluid flows through the collecting duct it passes through the papillary region and collects within the papillary duct. The final fine tuning of tubular fluid osmolality occurs in this region of the kidney.

The kidney has a remarkable ability to dilute or concentrate urine, according to the organism's changing physiological needs. Impaired renal function has adverse effects on removal of metabolic waste products, blood pressure, fluid balance,
nutrient retention, each of which greatly impact upon an organism’s general state of health.

1.2 GLOMERULONEPHRITIS

Disease processes that damage the kidney have a significant impact upon glomerular filtration and renal tubular reabsorption and secretion. These diseases, classified as nephropathies, are brought about by a number of etiologies of both primary and secondary origin. Examples of such diseases include focal (not all glomeruli are affected) and segmental (only a part of each glomerulus is damaged) glomerulosclerosis (FSGS), diabetic nephropathy and glomerulonephritis (GN). GN is a common autoimmune renal disorder, which makes up 10-15% of all cases with end-stage renal disease (ESRD) (49). This inflammatory condition is characterized by haematuria (blood in the urine), proteinuria, hyperkalemia, and reduced GFR occasionally associated with hypertension, and edema (83). The pathology involves glomerular inflammation and cellular proliferation (83). The term GN defines a group of kidney diseases which include membranous GN, IgA nephropathy, membranoproliferative GN, post-infectious GN, and anti-GBM disease.

1.2.1 Anti-GBM Disease

Anti-GBM disease is a well characterized variant of GN. Patients produce antibodies against the α3 chain of type IV collagen found in the GBM (68). Anti-GBM disease has an estimated incidence of one case per 2 million per year in
European Caucasian populations (49). The disease occurs across all racial groups and all ages, however, its incidence peaks in the third decade of young men with a second peak in the sixth to seventh decades affecting men and woman equally (49). In addition to the elevated serum creatinine levels, haematuria, proteinuria and hypertension, patients have reduced renal blood flow (RBF). Significant reductions in RBF seems to be due to predominant afferent arteriolar vasoconstriction, with subsequent reduction in renal perfusion pressure and GFR. Patients initially demonstrate sodium retention with a low fractional excretion of sodium. With clinical progression of the disease however, sodium wasting with high fractional excretion is observed (48). This may likely be due to the onset of tubular damage initiated by the abnormally high albumin levels within the luminal fluid. Further reductions in GFR alter the rate by which Na\(^+\) and K\(^+\) are transported. Thus, many patients with this renal disorder present with hyperkalemia.

Histology may show glomerular necrosis and inflammation. Inflammation is initiated at the level of the glomerulus by immunologic reactants that trigger the synthesis of secondary mediators (49). Rapid glomerular neutrophil infiltration accompanied by complement activation, leukotriene synthesis and generation of oxygen radicals predominates during the early phase of inflammation (59). The inflammatory process activates podocyte phospholipase A2 and cyclooxygenase isoforms (COX), resulting in the formation of prostaglandins (PG) (Figure 1.4). Elevated PG synthesis can induce many of the major pathophysiologic events that characterize the inflammatory process.
Figure 1.3 Na⁺ and K⁺ Transport in the Principal Cell

Illustration represents the reabsorption of Na⁺ and secretion of K⁺ by principal cells in the collecting duct. Na⁺ passes through the apical membrane via Na⁺ channels and is then actively transported through the basolateral membrane in exchange for K⁺ by the Na⁺/K⁺ ATPase pump. Positively charged K⁺ is secreted to the apical side by K⁺ leakage channels.
1.2.2 Glomerulonephritis and NSAIDs

Indirect evidence that the arachidonate pathway may play a critical role in glomerulonephritis comes from clinical and experimental observations. Arisz et al. have demonstrated that the urinary protein excretion rate is reduced by treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and indomethacin, which block prostaglandin synthesis (3). The mechanism by which this antiproteinuric process occurs is currently unknown. However, NSAID use is precluded in many glomerular diseases due to their renal side effects, which include alterations of sodium homeostasis, hyperkalemia, and reduced RBF/GFR brought about by unopposed renal vasoconstriction, and which can exacerbate renal failure and aggravate preexisting hypertension.

1.3 THE ARACHIDONIC ACID CASCADE

NSAIDs target the COX enzymes, which mediate prostaglandin synthesis from arachidonic acid. Previous studies have demonstrated important physiological roles for one such PG – PGE₂, acting through its four E Prostanoid (EP) receptors (EP₁-₄) in maintaining vascular tone, fluid and electrolyte balance and blood pressure. However the renal correlates of these observations remain poorly defined within the context of GN. Depending on the site of action and the specific EP receptor(s) involved, the production of PGE₂ might be either contributing to, or preventing the
adverse effects observed in GN. Thus, it is important to define actions of individual receptors under GN conditions.

Synthesis of prostanoids (Figure 1.4) by the COX isoforms is dependent upon the availability of its arachidonic acid (AA) substrate. In response to specific stimuli, elevation in intracellular calcium concentration causes cytosolic phospholipase A₂ (cPLA₂) to translocate from the cytosol to the phospholipid membrane of the endoplasmic reticulum in order to release AA from membrane phospholipids. Upon release, COX isoforms catalyze the conversion of AA to prostaglandin G/H₂ (PGG/H₂) to provide substrate for generating five bioactive prostanoids: PGI₂, PGE₂, PGF₂α, PGD₂, and thromboxane A₂ (TXA₂) (14). These prostanoids are abundantly produced in the kidney, where they act locally through specific transmembrane G protein-coupled receptors designated EP, FP, DP, IP, and TP, respectively (14). Each prostanoid receptor exhibits a unique expression pattern within the kidney.

1.4 THE FUNCTION OF PGE₂ RECEPTORS

PGE₂ is a major product of COX-initiated arachidonic acid metabolism in the kidney and is synthesized at high levels within the glomerulus and along the nephron. Its production is crucial to maintenance of normal kidney function through events including constriction/relaxation of smooth muscle and blood vessels (73). In the kidney it dilates the glomerular microcirculation (62, 73), and regulates salt/water transport in the collecting duct (33). The signaling mechanisms by which PGE₂ mediates its effects are transmitted through the four G-protein coupled EP receptors,
designated EP₁, EP₂, EP₃ and EP₄ (Figure 1.5). The EP₂ and EP₄ receptors promote the activation of adenylate cyclase through a stimulatory G-protein (Gₛ). Conversely, Gq couples the EP₁ receptor to increases of intracellular Ca²⁺. Lastly, the EP₃ receptor inhibits adenylate cyclase through a Gᵢ (inhibitory G-protein) protein. The intrarenal distribution and function of EP receptors have only been partially characterized.

1.4.1 The EP₁ Receptor

The EP₁ receptor was originally described as a smooth muscle constrictor found predominantly in the kidney, gastric muscularis mucosae, and adrenal gland (20, 84). Furthermore, EP₁ selective antagonists, such as AH-6809, SC-19220, and SC-53122, have suggested that the EP₁ receptor plays an important role in prostaglandin–mediated pain (15). These antagonists could be useful tools to study the role of the EP₁ receptor; unfortunately, they're not absolutely selective and may thus block other eicosanoid receptors at high concentrations. The generation of a mouse model lacking the EP₁ receptor subtype has provided useful information regarding the role of this receptor. Studies by Stock and colleagues, demonstrated that EP₁−/− mice have reduced pain-sensitivity responses and exhibit hypotension, supporting a role for this receptor in regulating pain perception and maintaining blood pressure (77).
Within the kidney, *in situ* hybridization studies localized EP₁ receptor mRNA primarily in the collecting duct with increasing expression from the cortex to the papilla (15). Activation of the EP₁ receptor increases intracellular calcium levels and inhibits Na⁺ reabsorption in the isolated perfused rabbit collecting duct suggesting that renal EP₁ receptors may contribute to diuretic and natriuretic effects of PGE₂ (30). Conversely, EP₁⁻/⁻ mice fed a low sodium diet experienced extracellular fluid volume (ECFV) loss, which the authors interpret to imply that these animals may have a reduced ability to reabsorb Na⁺ (77), however direct evidence to prove this hypothesis is lacking.

The EP₁ receptor may also have a role in glomerular function. Recent studies have detected the EP₁ receptor in podocytes (10) where it might be involved in regulating the permeability barrier during podocyte injury. Expression has also been detected in cultured glomerular mesangial cells (39) were it may play a role as a vasoconstrictor. Finally, Purdy and colleagues demonstrated that PGE₂ stimulated-EP₁ receptor, localized in glomerular blood vessels, can produce transient vasoconstriction (62).

Studies have also implicated the EP₁ receptor in mediating changes during the progression of certain renal disorders. Specifically, an EP₁ antagonist significantly reduced both proteinuria and glomerular lesions in two separate rat models of hypertension and diabetes suggesting that the EP₁ receptor contributes to the progression of renal injury (55, 80).
1.4.2 The EP\textsubscript{2} Receptor

Prior to 1995, the EP\textsubscript{2} receptor was misclassified as the EP\textsubscript{2} receptor (63). The EP\textsubscript{2} receptor is pharmacologically defined as being sensitive to the PGE\textsubscript{2} analogue, butaprost (45). Northern blot analysis revealed EP\textsubscript{2} receptor mRNA expression to be high in the uterus, lung and spleen, with only low levels of expression in the kidney (thought to be mainly vasculature) (45). However, significant expression is found in macrophages (44) and neutrophils (85) that are known to infiltrate the kidney under GN conditions. The cAMP activation associated with this receptor helps mediate the relaxation of smooth muscle induced by PGE\textsubscript{2} (63). Studies by Kennedy et al. using female knockout mice demonstrated reduced litter size suggesting a critical role for the EP\textsubscript{2} receptor in ovulation and fertilization (47). Furthermore, loss of the EP\textsubscript{2} receptor may be involved in salt-sensitive hypertension suggesting an import role in protecting systemic blood pressure, likely through its vasodilator effects on salt excretion (47).

1.4.3 The EP\textsubscript{3} Receptor

The EP\textsubscript{3} receptor generally acts a constrictor of smooth muscle (21). Northern blotting localized its expression to the kidney, uterus, adrenal gland, and stomach (50). This receptor is unique in that it has multiple splice variants encoding proteins with predicted molecular masses ranging from 35 to 40 kDa. The EP\textsubscript{3} receptor is also
known to mediate the pyretic effects of PGE₂ (81). In EP₃⁻/⁻ mice, neither PGE₂, interleukin (IL-1), or lipopolysaccharide (LPS) could generate a febrile response (81).

In the kidney, in situ hybridization localized abundant EP₃ receptor mRNA expression in the thick ascending limb and collecting duct where PGE₂ inhibits salt and water absorption (1, 74). This mechanism is highlighted by studies showing that NSAIDs transiently enhance urine concentration (1). It is likely that PGE₂-mediated antagonism of vasopressin-stimulated salt reabsorption in the thick ascending limb and water absorption in the collecting duct contributes to such diuretic effects. Based on these studies, one would expect that EP₃⁻/⁻ mice would exhibit enhanced urine concentration. However, this was not the case. Fleming and colleagues demonstrated that AVP-treated EP₃⁻/⁻ mice exhibited similar urinary concentrations to that of wt mice (25, 36). These findings suggest that the renal actions normally mediated by the EP₃ may have been taken over by other receptors (such as the EP₁). However, this concept remains untested.

1.4.4 The EP₄ Receptor

Like the EP₂ receptor, ligand bound EP₄ receptors promote cAMP generation (17). The EP₄ receptor may be pharmacologically distinguished from the EP₁ and EP₃ receptors by its insensitivity to sulprostone and from EP₂ receptors by its insensitivity to butaprost (36). The EP₄ receptor is more highly expressed and more widely distributed than the EP₂ receptor. Northern blot analysis revealed EP₄ receptor mRNA expression in the thymus, ileum, lung, spleen, adrenal gland and kidney (18).
Targeted deletion of the EP₄ receptor shows that its expression is crucial for the perinatal closure of the pulmonary ductus arteriosus (60). Interestingly, when bred on to a mixed genetic background, 80% of the EP₄⁺⁻ mice died compared to 100% on a pure background. Preliminary studies from the survivors of the colony support an important role for the EP₄ receptor as a systemic vasodilator (5).

Intrarenal EP₄ receptors are expressed in the collecting duct, the glomerulus, including mesangial cells and podocytes, and vascular tissue (10, 18, 44, 62). Using cultured mesangial cells, PGE₂ stimulation caused relaxation, likely mediated by the EP₄ receptor (39). RT-PCR studies have also localized the EP₄ receptor to podocytes (10) and as such may regulate the filtration barrier. Currently, direct evidence for such a role is lacking. Furthermore, the role of collecting duct EP₄ receptors can only be implied by data showing that PGE₂ stimulates water reabsorption in isolated rabbit collecting ducts in a cAMP-dependent manner (67, 74).

Purdy and colleagues detected the EP₄ receptor, but not the EP₂ receptor, in preglomerular vessels, thereby suggesting a role for the EP₄ receptor in mediating vasodilator effects of PGE₂ in these arterioles (62). Specifically, they demonstrated that the EP₂ agonist, butaprost, had no effect on cAMP, whereas misoprostol, a pan-specific EP₂,₃,₄ agonist, significantly increased cAMP (62). Therefore by default, it was suggested that EP₄ receptor may be the primary receptor mediating renal vasodilatation in the afferent arterioles (62). Afferent arteriolar EP₄ receptor expression suggests that it is a key player in regulating RBF and subsequently GFR-major determinants of renal function.
Lastly, a role for the EP₄ receptor in regulating blood pressure has been suggested. Studies have demonstrated that PGE₂ induces renin release in the juxtaglomerular apparatus (JGA) and that EP₄ receptor expression has been detected in microdissected JGA (40), supporting the possibility that renal EP₄ receptor activation contributes to the enhanced renin release.
Figure 1.4 Prostaglandin Synthesis

Arachidionate is metabolized by COX$_1$ or COX$_2$ to PGG$_2$ and then PGH$_2$. PGH$_2$ is enzymatically converted, by PGD synthase, PGE synthase, PGF synthase, PGI synthase, and thromboxane synthase, to prostanoids: PGD$_2$, PGE$_2$, PGF$_2$, PGI$_2$, or TxA$_2$, respectively. Each prostanoid interacts with distinct G protein-coupled receptors. PGD$_2$ activates the DP receptor, PGF$_2$ activates the FP receptor, PGI$_2$ activates the IP receptor and TxA$_2$ activates the TP receptor. PGE$_2$ interacts with four EP receptor subtypes, designated EP$_{1-4}$, each of which also couples to distinct signalling pathways.
Arachidonate

[Diagram showing the pathways of arachidonate metabolism, including COX1 & 2, TP receptor, IP receptor, PGIS, PGD₂, PGH₂, PGES, PGF₂α, and FP receptor.]

EP2 and EP4 receptors

EP1 and EP3 receptors

↑ cAMP / Relaxant Receptors

Ca²⁺ or ↑ cAMP / Constrictor Receptors

(Breyer and Breyer 2001)
Figure 1.5 PGE\textsubscript{2} Couples to Multiple Signalling Pathways

PGE\textsubscript{2} interacts through 4 EP receptors. EP\textsubscript{2} and EP\textsubscript{4} receptors can couple to a G\textsubscript{s} protein in order to activate AC thereby increasing cytosolic cAMP levels. The EP\textsubscript{1} receptor signals through a Gq protein to elicit phosphatidylinositol turnover and intracellular Ca2+ elevations. The EP\textsubscript{3} receptor inhibits cAMP production by activating a G\textsubscript{i} protein which blocks the activity of AC.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed for their anti-pyretic, anti-inflammatory, and analgesic effects. A large proportion of the population acquires them over-the-counter to gain relief from non-specific aches and pains. Their use is considered safe, well tolerated and their most common side effects involve gastrointestinal tract toxicity, such as gastric erosions, ulcerations, and perforations. The therapeutic effects of NSAIDs stem from their ability to inhibit the activity of the prostaglandin forming enzymes COX-1 and -2, the enzymes that mediate prostaglandin synthesis from arachidonic acid.

Initially, the use of NSAIDs in the treatment of renal disorders seemed promising. Arisz et al. demonstrated that patients with nephrotic syndrome, on long-term indomethacin (non selective COX inhibitor) showed decreased urinary protein excretion (3). As NSAID use became increasingly common however, nephrotoxicity emerged as a potentially devastating contraindicator. NSAID-nephrotoxicities include: acute renal failure, hemodynamic changes in the kidney, tubulointerstitial nephritis, glomerular lesions, hypertension, reduced sodium and water excretion, and hyperkalemia.

Since the diverse renal actions of prostaglandins are frequently opposing (eg., vasodilatory vs. vasoconstrictive; proinflammatory vs. anti-inflammatory, diuretic vs. antidiuretic, etc.) the NSAID-induced renal side effects may emerge upon inactivity of one or more of the EP receptor subtypes.
Renal insufficiency due to enhanced vasoconstriction and sodium transport inhibition can be considered as unwanted renal side effects of NSAIDs. In glomerulonephritis, sodium excretion is altered and RBF decreases, two major events mediated by PGE₂/EP₁ signaling. Therefore we sought to investigate the role of the EP₁ receptor in a mouse model of this glomerular disease. Knowledge of the site of action and specific EP receptor(s) involved during GN is therefore of critical importance for anticipating pharmacological manipulations that would provide novel therapies for proteinuric diseases such as glomerulonephritis.
3

HYPOTHESIS

It is hypothesized that PGE$_2$ acting through the EP$_1$ receptor is involved in the progression of glomerulonephritis.
4 OBJECTIVES

1) To successfully induce GN in mice using an anti-GBM antibody.

2) To determine whether the expression of EP receptor subtypes change under GN conditions.

3) To assess the role of the EP₁ receptor under GN conditions.
5 MATERIALS AND METHODS

5.1 INDUCTION OF GN: EXPERIMENTAL DESIGN

GN was induced using sheep anti-rat GBM nephrotoxic serum (a generous gift from Drs. K. Munger and K. Badr, Emory University). The antibody was raised according to the technique of Sraer et al., with minor modifications. In short, renal cortex from 2 Sprague Dawley rats was minced, passed through a 106 mesh screen and suspended in 10 ml of phosphate-buffered saline (PBS). The suspension was tritiated through a 25 gauge needle several times and then centrifuged at 3000 rpm for 90 sec. The pellet was resuspended in PBS, re triturated, and centrifuged. This cycle was repeated 5 times to obtain the final glomerular preparation. GBM was purified from isolated glomeruli by sonicating with a Vibra Cell sonifier (Sonicis & Materials Inc., Danbury CT) (5 pulses of 60 sec). GBM fragments were washed by centrifugation (3000 rpm for 10 min) 5 times with PBS. The final pellet was dissolved in 0.5% SDS + 0.25M NaOH. Protein concentration was determined using the Bradford method (Bio-Rad Corp., Philadelphia, PA) and read at 595 nm using spectrophotometer (Fluostar Galaxy BMG Lab., Durham, NC). This procedure was repeated until a total of 5 mg of GBM protein was isolated and pooled. Anti-GBM antibodies were raised in sheep. Approximately 200 μg of GBM in PBS mixed with an equal volume of complete Freund’s adjuvant was injected once every two weeks for a total of 12 weeks into one sheep. The final preparation contained approximately 1 mg/ml of protein. To assess the specificity of the antibody, kidneys were processed
for immunofluorescence staining. Paraformaldehyde (PFA) - fixed mouse tissue sections were deparaffinized with xylene and rehydrated with graded ethanols. The sections were then rinsed in PBS and incubated for 24hr at 4°C with the anti-GBM antibody (1:500) (Bethyl Lab. Inc, Montgomery, TX). After washing with PBS, the sections were incubated with FITC-conj anti-rabbit IgG (Jackson ImmunoResearch Laboratories Inc., West Grove, PA) for 1 hr at room temperature. Sections were then washed, mounted with fluorescence mounting media (Vector Laboratories, Inc. Burlingame, CA) and coverslipped. Immunofluorescence was visualized using a Zeiss Axioskop 2 fluorescence microscope (Zeiss Axioskop 2 MOT, Zeiss Germany), and digital images were captured with a Zeiss AxioCam.

Induction of glomerulonephritis was carried out according to the protocol of Bird et al. (2000). Briefly, adult mice were immunized by a subcutaneous injection of 0.25 mg Sheep IgG (Sigma Co., St. Louis, MO) in 100 μl of PBS emulsified with an equal volume of complete Freund's adjuvant (Sigma). On day 0 of nephritis, four days post IgG immunization, 100 μl of normal sheep serum (Sigma) or sheep anti-rat GBM nephrotoxic serum was administered through the tail vein to wild-type (wt) and EP^{−/−} mice (n=12). Serum was diluted in PBS so that each mouse received a total volume of 150 μl. Both nephrotoxic serum and sheep serum were heat inactivated by heating to 56°C for 45 minutes and kept frozen (-80°C) until needed.

On days 0, 1, 3, 5, and 7, spot urine samples were collected and analyzed. On day 7, mice were anesthetized with halothane and sacrificed, and blood was collected in heparinized syringes by cardiac puncture. One kidney was used to dissect the
cortex, outer medulla, inner medulla and papilla and subsequently frozen in liquid N₂, and stored at -80°C. The second kidney was used for isolation of glomeruli. In some studies, kidneys were cut in half in a cross section, and fixed in 4% paraformaldehyde for histology.

5.2 GLOMERULAR ISOLATION

Glomeruli were isolated by a protocol originally described by Takemoto et al. Briefly, adult mice were perfused through the heart with 4.5 μm diameter magnetic Dynabeads (Dynal, Brown Deer, WI). Kidneys were minced into small pieces, digested by collagenase, filtered using a 100 μm cell strainer (VWR, Mississauga, ON), and collected using a magnet. Almost all glomeruli isolated were lacking Bowman's capsule with a low degree of contaminating tissue (i.e. nephron segments) (Figure 5.1).

5.3 REAL TIME RT-PCR

Total RNA was isolated from whole kidney, glomeruli, cortex, inner medulla, outer medulla and papilla using an RNeasy kit (Qiagen Inc., Valencia, CA). Briefly, a small amount of tissue (<0.3g) in 350 μl of lysis buffer was homogenized for 3 minutes and an equal volume of 70% ethanol was added to the lysate. This mixture was passed through a Qiagen RNA column by centrifuging at 13,000 rpm for 15 sec. The eluant was discarded and the column was treated with RNase-free DNase I and later washed 3 times with buffers supplied with the kit. The RNA was eluted into an
eppendorf tube using RNase free water and centrifuging at 13,000 rpm for 2 min. The concentration and purity of RNA was determined by measuring the absorbance at 260/280 nm in a spectrophotometer (Thermo Spectronic, Rochester, NY).

The probes and primers used in the TaqMan® (Applied Biosystems, Foster City, CA) analysis are listed in Table 5.1. Real time TaqMan RT-PCR was performed using the ABI PRISM 7000 Sequence Detection System (Applied Biosystems). GAPDH was amplified along with the target gene as an endogenous control with VIC-labeled probe to normalize expression between different samples. The probes and primers for target gene and GAPDH were diluted in the TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems) and 25 μl of the reaction mix was added to each reaction tube. Reactions were performed with an initial reverse transcription step at 48.0°C for 30 min followed by denaturation at 95°C for 10 min. PCR cycles were carried out at 95°C for 15 sec and 60°C for 1 min for 45 cycles. Output data generated by the instrument on-board software Sequence Detector Version 1.6.3 (Applied Biosystems) were transferred to a Microsoft Excel template (spread sheet) for analysis. Briefly, a relative standard curve method (log [] vs. threshold cycle, C_T) is used to assess the amount of a particular transcript in a group of samples. A template dilution series of a cDNA standard is included for each gene on a plate. Quantities interpolated from the resulting standard curve are used to calculate relative mRNA levels in each unknown sample. The relative mRNA expression of each studied gene is then normalized to the endogenous control, GAPDH.
Table 5.1 Real Time RT-PCR Primers and Probes

A Description of the Primers and Probes Employed for Real Time RT-PCR Experiments
<table>
<thead>
<tr>
<th>Target</th>
<th>Reverse Primer</th>
<th>Forward Primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP₁</td>
<td>5'-CCGGAAACTACGCA GTGAA-3'</td>
<td>5'-AGTGGCAAGGGTGTGC CAA-3'</td>
<td>5'-6FAM-TGGCCCTAACAAAGTGGCTG TAMRA</td>
</tr>
<tr>
<td>EP₂</td>
<td>5'-GAGCTCGAGGCTCC CACITTTT-3'</td>
<td>5'-TGGCTCTTTCCCTCCCTTTTCCCAA TCTGGT-3'</td>
<td>5'-6FAM-TTGCTACATGAATGTGGCTGTTG TAMRA</td>
</tr>
<tr>
<td>EP₃</td>
<td>5'-CCITTCTTTCCCTTTTCCCAA TCTGGT-3'</td>
<td>5'-GCGGTATTTGAAATG ATGTTGAA-3'</td>
<td>5'-6FAM-TCAATCATGTGGCTGTTG TAMRA</td>
</tr>
<tr>
<td>EP₄</td>
<td>5'-CCITTCTTTCCCTTTTCCCAA TCTGGT-3'</td>
<td>5'-GTGACCATCTATCTTCCAT CGCCAC-3'</td>
<td>5'-6FAM-CATCTGTCATCTTCCATCG TAMRA</td>
</tr>
</tbody>
</table>
Figure 5.1 Glomerular Isolation

Photograph of isolated glomeruli by Dynabead technique. Final isolation is of high purity, lacking the presence of tubular segments. Magnification ~200x.
5.4 URINE AND SERUM ANALYSIS

Serum samples were analyzed for cholesterol, triglycerides, albumin, creatinine and urea using a Beckman LX-20 instrument (Ottawa Hospital Core Service). Serum concentrations of aldosterone were measured by aldosterone EIA (Cayman, Ann Arbor, MI). Briefly, serum was incubated with an aldosterone-acetylcholinesterase (AChE) conjugate and aldosterone-specific rabbit antiserum for 18 hrs at 4°C to allow efficient binding to the precoated mouse monoclonal anti-rabbit IgG. This was followed by 5 washes with a buffer supplied with the kit. The plate was developed in the dark on an orbital shaker for ~ 2 hrs using the reagent provided with the kit. The plate was read at a wavelength of 405 nm using a spectrofluorometer (Fluostar Galaxy BMG Lab., Durham, NC).

Urinary albumin levels were measured using the Albuwell M competitive ELISA (Exocell Inc., Philadelphia, PA). Briefly, diluted urine samples were incubated with 100 μl of rabbit anti murine albumin antibody for 30 minutes. The plate was washed thoroughly 10 times with the wash buffer provided. The plate was incubated with anti-rabbit HRP conjugate for an additional 30 min and then washed 10 times. 100μl of color developer was added to the plate and incubated for < 10 min. Color stopper was added to the plate and read at 450 nm. Values were determined using a semi-logarithmic plot of standard dilutions with the log [murine serum albumin] vs. absorbance.
Urinary Na\(^+\) and K\(^+\) concentrations were analyzed by flame photometry (Instrumentation Laboratory model IL 943, Milan, Italy), and urine osmolality was determined by freezing point depression (Advanced Instruments Inc. model 3MO plus, Norwood, MA).

5.5 DIETARY SODIUM EXPERIMENTS

Adult mice were housed in metabolic cages (Nalge Nunc International) (Figure 5.2) and had free access to food and water. Mice were first fed a control diet containing 0.4% NaCl. This was followed by a 7 day period in which the animals were fed a low salt (LS) (0.02% NaCl) or a high salt (HS) (4.0% NaCl) diet (Harlan-Teklad Laboratory, Madison, WI). Some groups of the LS treated mice were water deprived (WD) on days 8 and 9 prior to sacrifice. In each experiment, urine spot samples, urine volume output, water intake, body weight, and blood pressure were taken daily. Urinary Na\(^+\) and K\(^+\) concentrations were analyzed by flame photometry (Instrumentation Laboratory model IL 943), and urine osmolality was determined by freezing point depression (Advanced Instruments Inc. model 3MO plus).

5.6 BP STUDIES

Systolic blood pressure (BP) was measured daily by tail-cuff plethysmography (BP-2000; Visitech Systems, Apex, NC). The system measures BP by determining the cuff pressure at which blood flow to the tail is eliminated. Briefly, mice are placed on a preheated platform of 39°C to allow efficient dilatation of blood
vessels in the tail. Their tails are passed through a cuff and immobilized by adhesive tape between a light source above and a photoresistor below the tail. Evaluated photoelectrically, blood flow in the tails produces oscillating waveforms that are digitally sampled 200 times per second per channel. The waveforms, displayed in real time on a monitor, are computer analyzed before and during a programmable routine of cuff inflation and deflation. Mice were trained for an initial period of 5 consecutive days, and measurements were subsequently collected for an additional 5 days. Values were compared among wt (n=12), and EP1−/− mice (n=12).

5.7 HISTOPATHOLOGY

Kidneys were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned at 7 μm, and stained with hematoxylin-eosin (H&E) or periodic acid-Schiff (PAS) reagent to assess differences between WT and EP1−/− groups.

5.8 STATISTICAL ANALYSIS

The values are presented as means ± SEM. Statistical comparisons between 2 groups were performed using an unpaired student t-test. Comparisons between 3 or more groups were carried out using an ANOVA, followed by a Newman - Keuls post test. p<0.05 was considered statistically significant.
Figure 5.2 Metabolic Mouse Cages

Metabolic mouse cages allow separation of urine and feces. Urine is collected in a graduated tube. In addition, the specially designed feeding and drinking water bottle assemblies allow for the quantification of consumed food and water during the experiment.
6 RESULTS

6.1 GN EP1- MICE EXHIBIT INCREASED SEVERITY IN RENAL IMPAIRMENT

6.1.1 Successful Induction of GN in Mice.

A mouse model of GN was induced using an anti-rat-GBM antibody. This model of nephrotoxic nephritis has previously been employed in mice (11). The specificity of the antibody for GBM is indicated by immunofluorescence (Figure 6.1) showing anti-GBM binding at the basement membranes of glomeruli and tubules of wt mice.

In order to determine the suitability of this model, mice were sacrificed on day 7 after receiving the anti-GBM antibody and the following parameters were measured: serum cholesterol, triglycerides, albumin, creatinine, and urea (Figures 6.3, 6.4), along with urine albumin (Figure 6.2). In addition, glomerular pathology was assessed histologically. Consistent with a nephritic phenotype, GN mice displayed albuminuria (GN wt: 1003 ± 33 μg/ml, n=11 vs. wt: 33 ± 11 μg/ml, n=11; *p<0.05) indicating an increase in glomerular permeability. Serum cholesterol (GN wt: 4.4 ± 0.6 mmol/L, n=16 vs. wt: 1.4 ± 0.1 mmol/L, n=16; *p<0.05), triglycerides (GN wt: 2.4 ± 0.3 mmol/L, n=17 vs. wt: 0.8 ± 0.1 mmol/L, n=17; *p<0.05), urea (GN wt: 25.6 ± 10.8 mmol/L, n=11 vs. wt: 6.1 ± 0.3 mmol/L, n=11; *p<0.05) and creatinine (GN wt: 33.8 ± 8.0 μmol/L, n=11 vs. wt: 15.6 ± 1.9 μmol/L, n=11; *p<0.05) levels were significantly higher compared to those of vehicle-treated
animals. Serum albumin levels were reduced in GN wt mice to below 10 g/L, $p<0.0005$. Elevated serum levels of both creatinine and urea indicate a decrease in renal function. Histologically, PAS and H&E staining revealed an increased mesangial matrix and dilated tubules containing proteinaceous material in GN mice (Figure 6.5). These results demonstrate that the use of the anti-GBM antibody was successful in inducing a model of GN similar to that seen in humans.
Figure 6.1 Anti-GBM Antibody Immunofluorescence

Figure 6.2 Urinary Albumin Levels for WT and GN WT Mice.

On day 7, GN wt mice displayed significant albuminuria compared to wt littermates (p < 0.05). The data presented are the means ± S.E.M in μg/ml.
Figure 6.3 Serum Analysis of WT and GN WT Mice.

Day 7 following anti-GBM injections, serum obtained by cardiac puncture was analyzed for cholesterol and triglycerides using a Beckman LX-20 instrument. GN wt mice displayed elevated A. serum cholesterol (*p<0.05) and B. serum triglycerides (*p< 0.05) levels compared to pre immune serum treated animals. Values presented are the means ± S.E.M in mmol/L.
Figure 6.4. Serum Urea and Creatinine Levels in WT and GN WT Mice.

Day 7 following anti-GBM injections, serum obtained by cardiac puncture was analyzed for urea and creatinine levels using a Beckman LX-20 instrument. GN wt mice displayed elevated serum urea (mmol/L) (*p<0.05) and serum creatinine (μmol/L) (*p< 0.05) levels compared to pre immune serum treated animals. Values presented are the means ± S.E.M.
Figure 6.5 H&E and PAS Staining of Kidneys from WT and GN WT Mice.

Photomicrograph of the cortical region from 7µm sections of paraffin embedded mouse kidneys stained with H&E and PAS. Staining revealed increased mesangial matrix and dilated tubules containing proteinaceous material (indicated by arrows) in GN wt mice which is absent in pre immune serum treated animals (n=12).
6.1.2 The Role of the EP₁ Receptor During the Progression of GN

In order to assess the role of the EP₁ receptor subtype in the progression of GN, the mouse model of GN was induced in mice with gene-targeted deletion of the EP₁ receptor. The EP₁ receptor is expressed primarily in the vasculature, podocytes and the collecting duct, with increasing levels from the cortex to the papillae (30). If the EP₁ receptor has a role in regulating the permeability barrier, salt reabsorption and/or vasoconstriction of renal vasculature, then its absence in gene-targeted mice may alter the progression of glomerular damage, alter tubular maintenance of sodium homeostasis and/or perturb renal vascular resistance.

Blood pressure measurements were taken daily following anti-GBM injections. GN EP₁⁻/⁻ mice showed a slight decline in systolic blood pressure compared to GN wt mice (GN EP₁⁻/⁻: 89 ± 2 mmHg, n=5 vs. GN wt: 100 ± 1 mmHg n=5; p<0.05) (Figure 6.6). However, control EP₁⁻/⁻ mice also exhibited a similar decline, rendering ambiguous any interpretation of the effects of GN and the role of the EP₁ subtype.

In order to assess renal function and glomerular permeability, mice were sacrificed on day 7 following anti-GBM injections. Urinalysis revealed no significant differences in albuminuria between EP₁⁻/⁻ GN mice compared to wt GN animals (GN wt: 1495 ± 243 µg/ml, n=10 vs. GN EP₁⁻/⁻: 1364 ± 228 µg/ml, n=8) (Figure 6.7). There were no histological differences between GN wt and GN EP₁⁻/⁻; both showed increased mesangial matrix, and dilated tubules containing proteinaceous material.
(Figure 6.8). In contrast however, hyperkalemia was significantly more profound in GN EP₁⁻/⁻ mice than GN wt animals (GN EP₁⁻/⁻: 8.9 ± 0.6 mmol/L, n=12 vs. GN wt: 7.4 ± 0.3 mmol/L, n=17; *p<0.05) and control littermates (wt: 6.1 ± 0.2 mmol/L n=12; EP₁⁻/⁻: 6.0 ± 2.7 mmol/L n=12, *p<0.05) (Figure 6.9). Aldosterone is a major regulator of serum potassium (61). Serum aldosterone levels (Figure 6.10), measured 7 days following anti-GBM injections, were suppressed equally in both GN wt (GN wt: 366 ± 129 pg/ml, n=5 vs. wt: 729.1 ± 75.78 pg/ml, n=5; *p<0.05) and GN EP₁⁻/⁻ (GN EP₁⁻/⁻: 381 ± 49 pg/ml, n=5 vs. EP₁⁻/⁻: 719 ± 159 pg/ml, n=5; *p<0.05). The reduction in serum aldosterone is likely not accounting for the enhanced hyperkalemia observed in the GN EP₁⁻/⁻ mice. However, the observed elevations in serum potassium could be explained by reductions in GFR (12). Accordingly, serum creatinine levels (GN EP₁⁻/⁻: 37.8 ± 4.7 μmol/L, n=12 vs. GN wt: 30.6 ± 3.7 μmol/L, n=12; *p<0.05) and urea levels (GN EP₁⁻/⁻: 30.9 ± 4.1 mmol/L, n=12 vs. GN wt: 15.5 ± 2.3 mmol/L, n= 12; *p<0.05) were significantly greater in GN EP₁⁻/⁻ mice compared to GN wt mice and control littermates (creatinine: wt: 14 ± 1 μmol/L; EP₁⁻/⁻: 14 ± 1 μmol/L, n=12, *p<0.05; urea: wt: 6.8 ± 0.3 mmol/L ; EP₁⁻/⁻: 7.7 ± 0.4, mmol/L, n=12, *p<0.05) (Figure 6.11), together indicating renal impairment due to a decline in GFR. Taken together these results suggest that the EP₁ receptor is not involved in the appearance of proteinuria in GN. Nevertheless nephritic EP₁⁻/⁻ mice display greater renal dysfunction that GN wt mice.
Figure 6.6 Systolic Blood Pressure of GN WT and GN EP₁⁺ Mice.

Systolic blood pressure was measured by tail-cuff plethysmography. Blood pressure measurements were taken daily both prior to and for the 7 days following anti-GBM injections. GN EP₁⁺ mice showed a slight drop in systolic blood pressure levels compared to GN wt littermates over the 7 day period. (p<0.05) Values presented are the means ± S.E.M in mmHg.
Figure 6.7 Urinary Albumin Levels of Control and GN Groups

Seven days after administration of the anti-GBM antibody, GN groups showed significant urinary albumin compared to pre immune serum treated animals. There were no differences between GN EP1⁺ and GN wt mice. Values presented are the means ± S.E.M in µg/ml.
Figure 6.8 Kidney H&E Staining of WT and EP₁⁻/⁻ Mice.

Photomicrographs of 7μm sections of paraffin embedded mouse kidneys stained with H&E. Staining revealed increased mesangial matrix and dilated tubules containing pertinacious material (indicated by arrows) in GN mice which was absent in pre-immune serum-treated animals (n=10).
Figure 6.9 Serum Potassium Levels in GN WT and GN EP¹ Mice.

Day 7 following anti-GBM injections, serum obtained by cardiac puncture was analyzed for potassium levels using a Beckman LX-20 instrument. GN EP¹ revealed significantly elevated serum potassium compared to GN wt mice and control littermates (*p<0.05). Values presented are the means ± S.E.M in mmol/L.
Figure 6.10 Serum Aldosterone Levels in GN WT and GN EP1+/− Mice.

Day 7 following anti-GBM injections, serum obtained by cardiac puncture was purified from organic contaminants and assayed for aldosterone using the Cayman Aldosterone EIA kit. GN wt and GN EP1+/− mice revealed equally reduced serum aldosterone levels compared to control groups (*p<0.05). Values presented are the means ± S.E.M in pg/ml.
Figure 6.11 Enhanced Elevations in Serum Urea and Creatinine Levels in EP1−/− GN Mice.

Day 7 following anti-GBM injections, serum obtained by cardiac puncture was analyzed for urea and creatinine levels using a Beckman LX-20 instrument. A. GN EP1−/− mice displayed significantly higher serum urea levels (mmol/L) compared to GN wt mice and control littermates (*p<0.05). Furthermore, B. serum creatinine (μmol/L) was significantly higher in GN EP1−/− compared to GN wt (*p<0.05). Values presented are the means ± S.E.M.
6.1.3 GN EP₁^{−/−} Mice Display Impaired Ability to Maintain ECFV

Urine concentration is significantly altered under GN conditions. At day 7 following anti-GBM injections, GN EP₁^{−/−} mice displayed significantly lower urine osmolality levels compared to GN wt mice (GN EP₁^{−/−}: 340 ± 38, n=5 vs. GN wt: 701 ± 55 mmol/L, n=5; *p<0.05) and control littermates (wt: 2255 ± 59, n=5; EP₁^{−/−}: 1701 ± 57 mmol/L, n=5) (Figure 6.12). Furthermore, GN EP₁^{−/−} mice had significantly elevated serum sodium concentrations compared to GN wt mice (GN EP₁^{−/−}: 150 ± 1.0 vs. GN wt: 147.0 ± 1 mmol/L, n=10, *p<0.05) and control littermates (wt: 144 ± 1, n=9; EP₁^{−/−}: 144 ± 1 mmol/L, n=10) (Figure 6.13). Under conditions requiring greater sodium reabsorption, the activity of collecting duct epithelial sodium channels (ENaC) increases. Guan and colleagues demonstrated that PGE₂ activation of the EP₁ receptor inhibits sodium reabsorption (30). In contrast, Stock et al., showed that when mice lacking the EP₁ receptor were placed on sodium deficient diet, they observed additional drop in blood pressure, suggesting that the EP₁ receptor promotes sodium reabsorption in order to maintain ECFV (77). Our data show that under GN conditions, EP₁^{−/−} mice have elevated sodium levels in their urine compared to their GN wt mice (GN EP₁^{−/−}: 145 ± 48 mmol/L, n=11 vs. GN wt: 46 ± 5 mmol/L, n=11; *p<0.05) and control groups (wt: 109 ± 12 mmol/L, n=11 ; EP₁^{−/−}: 81 ± 18, mmol/L, n=11, *p<0.05) (Figure 6.13). Decreased sodium reabsorption, and consequently elevated serum potassium, suggests that GN EP₁^{−/−} mice are unable to maintain their ECFV, thus contributing to the decline in their GFR. Consistent with this notion, GN EP₁^{−/−} mice exhibited greater weight loss than did GN wt (GN EP₁^{−/−}: -11.0± 1.2 %, n=17 vs. GN wt: -1.8 ± 1.0 %, n=17; *p<0.05) and control mice (wt: 0.4 ± 0.5 %
n=11; EP1\(^{-/-}\): 4.4 ± 1.6 %, n=11, *p<0.05) (Figure 6.14). These results provide further
evidence for increased severity of renal impairment in GN EP1\(^{-/-}\) mice and imply a
role for this receptor subtype in tempering the progression of GN.
Figure 6.12 Urine Osmolality Levels in GN WT and GN EP1+/− GN Mice.

Day 7 following anti-GBM injections, urine osmolality was determined by freezing point depression. GN wt and GN EP1+/− mice displayed significantly lower urine osmolality levels compared to control groups (*p<0.05). Furthermore, GN EP1+/− mice demonstrated significantly lower osmolality levels than GN wt mice (*p<0.05). Values presented are the means ± S.E.M in mmol/L.
Figure 6.13 Serum and Urinary Na⁺ Concentration in GN WT and GN EP₁⁻/⁻ Mice.

Day 7 following anti-GBM injections, A. spot urine samples were analyzed for Na⁺ content by flame photometry. GN EP₁⁻/⁻ mice displayed significantly higher urinary Na⁺ levels than GN wt mice and control groups (*p<0.05). B. Day 7 following anti-GBM injections, serum obtained by cardiac puncture was analyzed for potassium using a Beckman LX-20 instrument. GN EP₁⁻/⁻ mice displayed significantly higher serum Na⁺ concentration than GN wt and control mice (*p<0.05). Values presented are the means ± S.E.M in mmol/L.
Figure 6.14 Percent Change in Body Weight for GN WT and GN EP¹ Mice.

Body weights were measured daily following anti-GBM injections. Values are expressed as the percent change in body weight between day 0 and the maximal body weight loss. This day was usually day 5. Results revealed that GN EP¹ mice displayed significantly greater body weight loss compared to GN wt mice and control groups (*p<0.05). Values presented are the means ± S.E.M. in percent change.
6.1.4 EP−/− Mice Exhibit Normal Na+ Excretion in Response to Changes in Dietary Na+

To determine if EP−/− mice have a defect in their ability to maintain sodium balance, wt and EP−/− mice were fed control, low sodium (LS) and high sodium (HS) diets. Initially mice were fed a normal diet containing 0.4% sodium content. This was followed by a period of 7 days during which the mice were restricted to a LS diet containing <0.02% sodium. In some experiments LS fed mice were water deprived (WD) for up to 48 hrs after day 7. Throughout the period of study, mice were monitored in metabolic cages for urine output, urine osmolality, blood pressure, and urine sodium levels.

Urine output (LS wt: 0.04 ± 0.01 ml/g, n=12 vs. LS EP−/−: 0.05 ± 0.01 ml/g, n=12), water intake (LS wt: 0.38 ± 0.02, ml/g, n=12 vs. LS EP−/−: 0.38 ± 0.02 ml/g, n=12), and blood pressure (LS wt: 104 ± 1 mmHg, n=9 vs. LS EP−/−: 101 ± 1 mmHg, n=9) did not differ between LS wt and LS EP−/− mice (Figure 6.15). Serum aldosterone levels were equally elevated in both LS groups, as expected (LS wt: 376 ± 50 pg/ml, n=5 vs. LS EP−/−: 396 ± 142 pg/ml, n=5) compared to control mice (wt: 136 ± 90 pg/ml, n=5 vs. EP−/−: 139 ± 19 pg/ml, n=5). Urine sodium content (LS EP−/−: 9.3 ± 2.3 mmol/L, n=16 vs. LS wt: 4.6 ± 1.3 mmol/L, n=16; *p<0.05) was slightly higher in the LS EP−/− group (Figure 6.15). However, urine osmolality in LS EP−/− mice (EP−/−: 2241 ± 90 mmol/L, n=10 vs. LS EP−/−: 2098 ± 103 mmol/L n=10, *p<0.05) did not increase as in LS wt mice (wt: 2375 ± 62 mmol/L, n=10 vs. LS wt: 2914 ± 99 mmol/L, n=10, *p<0.05) (Figure 6.16).
When mice were water deprived for 24hrs, urine osmolalities rose dramatically (LS wt: 2914 ± 99 n=10 vs. WD wt: 3825 ± 107, n=10, mmol/L *p<0.05). However, urine osmolalities in WD EP₁⁻/⁻ did not reach levels achieved by WD wt mice (WD wt: 3825 ± 107 n=10 vs. WD EP₁⁻/⁻: 3047 ± 161 n=10, mmol/L *p<0.05). Body weights decreased equally among WD wt and WD EP₁⁻/⁻ mice (WD wt: -9.5 ± 0.5 %, n=10 vs. WD EP₁⁻/⁻: -8.0 ± 0.5 %, n=10) (Figure 6.16).

Mice were then placed on a HS diet containing 4% NaCl for 7 days. Mice were monitored in metabolic cages for urine output, urine osmolality, blood pressure, and urine sodium levels. Throughout the 7 day study on the HS diet, wt and EP₁⁻/⁻ mice showed similar changes in water intake (HS wt: 0.27 ± 0.02 ml/g, n=6 vs. HS EP₁⁻/⁻: 0.29 ± 0.03 ml/g, n=6) and urine output levels (HS wt: 0.08 ± 0.02 ml/g, n=8 vs. HS EP₁⁻/⁻: 0.07 ± 0.02, ml/g, n=8) (Figure 6.17). Urine osmolality decreased in both groups on a HS diet, however no significant differences were observed between them (HS wt: 1847 ± 115 mmol/L, n=6 vs. HS EP₁⁻/⁻: 1822 ± 84 mmol/L, n=6) (Figure 6.17). Furthermore, urine sodium content increased equally as expected, among HS wt and HS EP₁⁻/⁻ mice (HS wt: 317 ± 27 mmol/L, n=10 vs. HS EP₁⁻/⁻: 291 ± 28 mmol/L, n=10) (Figure 6.17). Equal but small elevations in blood pressure were seen suggesting that both groups are able to adapt equally to changes in sodium diet (HS wt: 101 ± 1 mmHg, n=10 vs. HS EP₁⁻/⁻: 99 ± 1 mmHg, n=10) (Figure 6.17). Lastly, serum aldosterone levels were reduced equally between the two groups compared to control groups (wt: 165 ± 81 pg/ml, n=6 vs. HS wt: 90 ± 15 pg/ml, n=6;
EP₁⁻: 166 ± 17, n=5 vs. HS EP₁⁻: 54 ± 11 pg/ml, n=6; *p<0.05) as expected (Figure 6.17).
Figure 6.15 WT and EP1 † Mice - Phenotypic Characteristics on a Low Sodium Diet.

LS fed EP1 † mice displayed significantly higher urine Na⁺ concentrations compared to LS wt mice (*p<0.05). However there was no significant differences observed in blood pressure (mmHg), urine output (ml/g), and water intake (ml/g) between LS EP1 † and LS wt mice. Serum aldosterone levels were equally elevated in both groups compared to control fed mice (*p<0.05). Values presented are the means ± S.E.M.
Figure 6.16 Phenotypic Characteristics of Na+ and Water Deprived WT and EP\textsubscript{1}−/− Mice.

LS wt and WD wt mice displayed A. significantly higher urine osmolality (mmol/L) compared to wt mice (*p<0.05). Furthermore, WD EP\textsubscript{1}−/− mice displayed significantly higher urine osmolality (mmol/L) compared EP\textsubscript{1}−/− and LS EP\textsubscript{1}−/− mice (*p<0.05). B. Changes in body weight were equally reduced in WD mice compared to control mice (*p<0.05). Values presented are the means ± S.E.M.
A
urine osmolality

![Graph showing urine osmolality for different genotypes.](image)

B
body weight

![Graph showing body weight change for different genotypes.](image)
Figure 6.17 WT and EP₁⁺/⁻ Mice - Phenotypic Characteristics on a High Sodium Diet.

HS EP₁⁺/⁻ mice displayed no significant differences in urine output (ml/g), water intake (ml/g), urine osmolality (mmol/L), urine Na⁺ concentration (mmol/L) and blood pressure (mmHg) compared to HS wt mice. HS wt and HS EP₁⁺/⁻ mice displayed equally reduced serum aldosterone (pg/ml) compared to control groups (*p<0.05). Values presented are the means ± S.E.M.
6.2 GN INDUCES DIFFERENTIAL REGULATION OF EP₄ RECEPTOR EXPRESSION IN WT AND EP₁⁻/⁻ MICE.

6.2.1 Elevated EP₄ Receptor Expression in GN wt and GN EP₁⁻/⁻ Mice

Changes in EP receptor expression levels may underlie some of the effects seen in GN in response to PGE₂ production such as glomerular damage, proteinuria and reduced GFR. In order to determine whether altered expression of EP receptor subtypes accompanies the onset of GN, total kidney EP receptor mRNA expression levels in both control and nephritic mice were quantified by real-time RT-PCR using EP-specific TaqMan probes. Results indicate that when normalized to GAPDH mRNA, EP₁, EP₂ and EP₃ receptor mRNA expression levels were not significantly different between control and GN mice groups (GN wt: EP₁, 1.5 ± 0.3 fold above control; EP₂, 1.7 ± 0.3 fold above control, EP₃, 0.7 ± 0.1 fold of control; n=12; GN EP₁⁻/⁻: EP₂, 1.6 ± 0.2 fold above control; EP₃, 0.6 ± 0.1 fold of control, n=12). In contrast, EP₄ mRNA levels were significantly elevated in the kidney of GN wt mice (EP₄, 4.1 ± 0.4 fold above control, n=12; *p<0.05) compared to control (Figure 6.18). Furthermore, kidney EP₄ receptor mRNA expression levels in GN EP₁⁻/⁻ mice were significantly higher compared to GN wt mice (GN EP₁⁻/⁻: 8.6±0.2 fold above control, vs. GN wt: 4.1 ±0.4 fold above control, n=9; *p<0.05) (Figure 6.18). These results suggest a potential role for the renal induction of the EP₄ receptor in mice under nephritic conditions.
Figure 6.18 Total Kidney EP Receptor mRNA Expression Levels in WT and EP$_1^{-/-}$ Mice Under GN Conditions.

Total kidney mRNA was isolated from adult mice seven days after receiving the anti-GBM antibody. When normalized to GAPDH GN wt and GN EP$_1^{-/-}$ mice exhibited significant elevations in kidney mRNA EP$_4$ receptor expression levels compared to control groups. Furthermore, GN EP$_1^{-/-}$ mice displayed significantly higher EP$_4$ receptor mRNA expression than GN wt mice ($^*p<0.05$). However, EP$_1$, EP$_2$ and EP$_3$ receptor mRNA expression was no different among GN groups. Values presented are the means ± S.E.M.
6.2.2 Localization of Elevated EP$_4$ Receptor Expression Under GN Conditions in Wt and EP$_{1^{-/-}}$ Mice

In order to localize EP$_4$ receptor elevations, different kidney regions, including cortex, outer medulla, inner medulla and papilla, were dissected from kidneys of control and GN mice. EP$_4$ receptor mRNA expression levels in both control and GN groups were quantified by real-time RT-PCR. Results indicate that there were no significant elevations in EP$_4$ receptor mRNA expression in outer medullary regions (GN wt: 0.9 ± 0.1 fold of control, n=5; GN EP$_{1^{-/-}}$: 1.2 ± 0.1 fold above control, n=5) and isolated glomeruli (GN wt: 0.5 ± 0.1 fold of control, n=5; GN EP$_{1^{-/-}}$: 0.6 ± 0.1 fold of control, n=5) of both groups (Figure 6.19). In contrast, increases in EP$_4$ receptor expression were found in both GN groups in the inner medullary region (GN wt: 1.6 ± 0.1 fold above control, n=5 *p<0.05; GN EP$_{1^{-/-}}$: 1.9 ± 0.2 fold above control, n=5; *p<0.05) (Figure 6.19). Furthermore, significant elevations in EP$_4$ receptor mRNA expression were found in the papillary region of the kidney in GN wt mice but not in GN EP$_{1^{-/-}}$ mice (GN wt: 2.2 ± 0.4 fold above control, n=5 vs. GN EP$_{1^{-/-}}$: 0.5± 0.1 fold of control, n=5; *p<0.05) (Figure 6.19). Furthermore, EP$_4$ receptor mRNA expression levels were significantly elevated in cortical regions of GN EP$_{1^{-/-}}$ mice compared to GN wt mice (GN EP$_{1^{-/-}}$: 2.7 ± 0.5 fold above control, n=5 vs. GN wt: 1.5 ± 0.2 fold above control, n=5; *p<0.05) (Figure 6.19). Elevated EP$_4$ receptor mRNA expression in the inner medulla, papillary and cortical regions of both GN groups suggests that these sites may be involved in mediating some of the effects seen in GN.
Figure 6.19 Spatial EP₄ Receptor mRNA Expression Levels in Control and GN Mouse Kidneys.

Day 7 following anti-GBM injection A. GN EP₁⁻/⁻ mice displayed increased cortical EP₄ receptor mRNA levels (*p<0.05*). B. In contrast, EP₄ receptor mRNA levels were significantly elevated in the papillary region of GN wt mice compared to GN EP₁⁻/⁻ mice (*p<0.05*). C. Furthermore, significant EP₄ receptor expression elevations were observed in the inner medullary regions of GN mice compared to control groups (*p<0.05*) However, there were no significant changes of EP₄ receptor expression in the outer medullary regions D. and glomeruli E. of both groups. Values presented are the means ± S.E.M.
7.1 INDUCTION OF GN IN WT MICE

Over the past forty years, several species, including sheep (8, 75), rat (8), and mouse (4), have been used to develop models of glomerulonephritis induced by the injection of antibodies raised against the glomerular basement membrane. Original studies by Steblay (1962) demonstrated that sheep immunized with isolated human GBM developed crescentic glomerulonephritis (75). The induction of experimental anti-GBM glomerulonephritis in mice has proved to be an excellent model of the human disease. Avisthi et al. first showed that mice immunized with bovine GBM in Freund’s complete adjuvant developed circulating and deposited anti-GBM antibodies on the GBM, accompanied by crescentic GN (crescent-shaped abnormalities) (7, 75).

The model currently used in our laboratory has been previously characterized by other investigators (11, 65) correlating several key disease parameters with those of the human disease, including proteinuria, mesangial cell matrix accumulation, and elevated prostaglandin synthesis (46, 76). The induction of GN in preimmunized c57Bl6 mice was achieved by a single injection of anti-GBM antibody (kindly provided by Drs. Munger and Badr, Emory University). The onset of nephritis led to albuminuria (Figure 6.2) accompanied by elevated serum cholesterol, triglycerides, creatinine, urea (Figures 6.3, 6.4), and a decrease in serum albumin. Elevated urinary albumin, combined with decreased serum albumin, are indications of a defective
glomerular permeability barrier – a classic hallmark of renal glomerular disorders. Furthermore, elevated serum cholesterol and triglycerides reflect impairment of enzymes controlling their biosynthesis (72, 82).

The measurement of GFR is commonly used to assess renal function. GFR is an indication of the renal clearance of a given substance from plasma and is calculated according to the following formula:

\[GFR = \frac{[\text{Urinary Cr}] \times [\text{Vol. urine}]}{[\text{Plasma Cr}]} \]

When an adequate volume of urine is obtained, creatinine (Cr) clearance is routinely used to measure GFR in clinical practice. However, under nephritic conditions where urine output is minimal, calculating GFR using the above formula is not possible. We therefore used serum levels of creatinine and urea as indirect indices of GFR. Elevated levels of both markers suggest a decreased GFR. Indeed, the study of kidney function began with the measurement of urea. In 1827, Richard Bright observed that urea accumulated in the blood of patients with decreased urine concentration, proteinuria and diseased kidneys. Serum [urea] is a semi-quantitative estimate of GFR (64). With a molecular weight of 60 Da, urea is freely filtered through the glomerulus; however it can also be readily reabsorbed along the nephron back into the circulation, resulting in underestimation of the true GFR. Creatinine, a small (113 Da) metabolic product of creatine and phosphocreatine, is also freely
filtered by the glomerulus. Small amounts of creatinine are secreted by the nephron resulting in an overestimation of GFR. Although an ideal endogenous marker for accurately measuring GFR has yet to be discovered, the large elevations in serum urea and creatinine (as observed in our mouse model of GN), are adequate semi-quantitative indicators of a reduced GFR.

Histological changes were also observed in GN animals. The presence of increased mesangial matrix and dilated tubules containing proteinaceous material were found upon examination of kidneys from GN mice (Figure 6.5). As in the human disease, the presence of protein accumulation in tubular sites in GN mice suggests severe disruption of the permeability barrier.

In summary, our in vivo murine model of GN was successfully induced in mice. Because of its simplicity, reproducibility, and phenotypic similarity to the human disease, we believe this model to be a valuable tool enabling in vivo analysis of this disease, including an investigation of the role of PGE₂ acting through the EP receptor subtypes.
Table 7.1 GN-Induced Phenotypic Characteristic in WT Mice.

Qualitative summary of the relevant findings in our anti-GBM model in WT mice.
GN-Induced Phenotypic Characteristics in WT Mice

<table>
<thead>
<tr>
<th></th>
<th>GN wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>body weight</td>
<td>↓</td>
</tr>
<tr>
<td>serum creatinine</td>
<td>↑</td>
</tr>
<tr>
<td>serum urea</td>
<td>↑</td>
</tr>
<tr>
<td>serum K⁺</td>
<td>↑</td>
</tr>
<tr>
<td>serum Na⁺</td>
<td>↑</td>
</tr>
<tr>
<td>urine osmolality</td>
<td>↓</td>
</tr>
<tr>
<td>albuminuria</td>
<td>Yes</td>
</tr>
</tbody>
</table>
7.2 PROGRESSION OF GLOMERULONEPHRITIS IN EP$_1$ MICE

During the pathogenesis of glomerulonephritis, the biosynthesis of PGE$_2$ has important implications for renal function including the regulation of glomerular permselectivity, fluid/electrolyte balance, RBF and GFR (53, 54). The significance of this eicosanoid in the nephritic kidney is illustrated by the occurrence of both beneficial and undesirable renal effects associated with the use of NSAIDs, which block prostaglandin synthesis. For example, NSAIDs (such as aspirin, ibuprofen etc.) are known to reduce glomerulopathy-associated proteinuria, however their use is precluded due to their propensity to severely reduce RBF/GFR and alter Na$^+$ reabsorption along the nephron. Since PGE$_2$ levels rise in GN, it is reasonable to suggest that one or more EP receptor subtypes might underlie some of the effects seen in the disease. Therefore, identifying which EP receptor subtype(s) contribute either for or against preservation of renal function will allow the development and implementation of more powerful and specific therapeutic strategies.

In order to begin to assess the role of the EP receptor subtypes in the progression of GN, anti-GBM GN was induced in mice with gene-targeted deletion of the EP$_1$ receptor (obtained from Dr. Matthew Breyer, Vanderbilt University).
7.2.1 The Role of the EP₁ Receptor in the Glomerulus under GN Conditions

The EP₁ receptor is expressed in mouse podocytes, as detected by RT-PCR (10). The podocytes are equipped with an elaborate intracellular contractile apparatus and are thought to respond to vasoactive hormones thereby altering the permeability of the glomerulus. Due to its vasoconstrictive actions, the EP₁ receptor may mediate potential effects of PGE₂ upon the size selectivity of the permeability barrier. Coupled with the fact that NSAIDs have well-known anti-proteinuric effects in glomerulonephritis, we tested the hypothesis that GN mice lacking the EP₁ receptor would demonstrate increased glomerular permeability damage. However, we observed that urinary albumin levels were elevated similarly in both GN EP₁^{−/−} and GN wt mice (Figure 6.7) while histological analysis revealed equal glomerular damage (mesangial matrix accumulation) within both groups (Figure 6.8). We therefore conclude that glomerular expression levels of the EP₁ receptor are not sufficient to mediate any PGE₂-induced permeability changes and glomerular damage in GN (10, 15).

In contrast to our findings, other studies have suggested that the PGE₂/EP₁ signaling pathway contributes to the pathogenesis of some renal disorders (55, 80). Makino and colleagues showed that an EP₁ antagonist prevented renal injury, including proteinuria, in streptozotocin (STZ)-induced diabetic rats (55). Furthermore, Suginami et al., demonstrated significantly reduced glomerular injury, including improvements in serum creatinine and proteinuria, in spontaneously hypertensive rats (SHR) treated with an EP₁ antagonist (80). The discrepancies
between these studies and ours may be due to incompatible disease-specific etiologies and/or species differences. It is interesting to note that both the diabetic and SHR models are characterized by glomerular hyperfiltration, while anti-GBM GN displays no such elevation in glomerular capillary pressures.

7.2.2 GN EP1−/− Mice Displayed Reduced Blood Pressure

The expression of the EP1 receptor in the peripheral vasculature suggests that it plays an important role in regulating blood pressure. Changes in blood pressure initiated by vasoconstrictive or vasodilatory effects can directly influence GFR. In the kidney, PGE2 is known to exert both vasodilatory (24, 62) and vasoconstrictive actions (62). Furthermore, by inhibiting the synthesis of PGE2, NSAIDs exacerbate hypertension in some individuals (13). The ability of PGE2 to induce opposing effects on renal blood flow suggests the involvement of multiple EP receptors coupled to specific signaling pathways (62). Using a pharmacological approach with isolated rat preglomerular (afferent arteriole) vascular smooth muscle cells (VSMC), Purdy and Arendshorst showed that EP4 receptors likely mediate the vasodilatory effects of PGE2. Since EP1 receptor expression was absent in preglomerular VSMC (62), it is likely that the EP1 receptor is expressed preferentially in other renal vascular segments, including the efferent arterioles. Studies of EP1−/− mice demonstrating reduced resting blood pressure (77) are consistent with the known vasoconstrictive actions of the EP1 receptor.
7.2.3 **GN EP₁⁻/⁻ Mice Display an Impaired Ability to Maintain ECFV**

As discussed earlier, NSAIDs, which block prostaglandin synthesis, can reduce proteinuria associated with a number of renal disorders. However, use of these drugs is restricted due to their undesirable renal side effects — including those contributing to the regulation of body fluid and electrolyte balance. Consistent with the notion of NSAID-induced blockade of PGE₂ biosynthesis contributing to these unwanted renal side effects, our data show that GN EP₁⁻/⁻ mice display greater decreases in body weight compared to GN wt mice (Figure 6.14). The dramatic loss of body weight in GN EP₁⁻/⁻ mice could be due to impairment of Na⁺ / water reabsorption along the collecting tubule resulting in significant fluid loss. Maintenance of ECFV depends in part upon net renal Na⁺ reabsorption and excretion. Since Na⁺ is the major electrolyte in the body, its presence in the luminal fluid as well as the renal interstitium controls the transport of water. For example, excessive urinary loss of Na⁺ results in a significant diuretic effect. Our results demonstrate that GN EP₁⁻/⁻ mice displayed lower urine osmolalities (Figure 6.12) accompanied by elevated urinary and serum Na⁺ concentrations (Figure 6.13). This hypovolemic hypernatremia in GN EP₁⁻/⁻ mice was surprising given that the putative role of this receptor subtype in relation to Na⁺ balance is thought to be natriuretic.

In vitro studies by Stokes and Kokko, were the first to demonstrate that PGE₂ decreases Na⁺ reabsorption using isolated-perfused rabbit collecting duct (79). These studies were later corroborated by Hebert et al., who showed that Na⁺ reabsorption by isolated-perfused rabbit collecting ducts is inhibited by PGE₂ (34). Furthermore, this
inhibitory action of PGE$_2$ on Na$^+$ transport is mediated by a calcium-coupled mechanism consistent with an EP$_1$-mediated signal transduction pathway (34). Lastly, Guan and colleagues showed that an EP$_1$ receptor antagonist abrogated PGE$_2$-stimulated increases in intracellular calcium in isolated rabbit collecting ducts thereby suggesting that the EP$_1$ receptor functions to inhibit Na$^+$ transport, and further supporting the notion of a natriuretic role for this receptor subtype (30).

In contrast to such in vitro studies, limited in vivo studies suggest an anti-natriuretic role for the EP$_1$ receptor (77). EP$_1^{-/-}$ mice fed a low Na$^+$ diet displayed reduced blood pressure and elevated plasma renin activity – consistent with a reduced extracellular fluid volume (77), implying an impaired ability to reabsorb Na$^+$ and hence water. In agreement with the hypovolemic hypernatremia observed in our GN EP$_1^{-/-}$ mice, Stock et al., suggest that the EP$_1$ receptor functions to promote Na$^+$ reabsorption (77). However such conclusions must be tempered by the possibility that under GN conditions, the putative natriuretic influence of the EP$_1$ receptor subtype may be superseded by other downstream mechanisms designed to promote water/sodium retention in the face of deteriorating tubular function. Irrespective of the precise relation of the EP$_1$ receptor to sodium homeostasis, nephritis in mice lacking this receptor subtype presented a serious challenge to these animals' capacity to maintain ECFV and urine concentrating ability.
7.2.4 EP₁⁻/⁻ Mice Exhibit Normal Na⁺ Excretion in Response to Changes In Dietary Na⁺.

Our observation that GN EP₁⁻/⁻ mice were unable to maintain adequate ECFV prompted us to directly investigate whether these mice could adapt to changes in dietary Na⁺. Activation of the EP₁ receptor increases intracellular calcium levels and inhibits Na⁺ reabsorption by in vitro microperfused rabbit collecting duct (30, 34), suggesting that renal EP₁ receptor activation might contribute to the natriuretic effects of PGE₂. On the basis of these findings, one would expect healthy, non-nephritic EP₁⁻/⁻ mice to exhibit inappropriately enhanced urinary concentration. However, our data revealed that EP₁⁻/⁻ mice maintained blood pressure and exhibited similar urinary Na⁺ excretion as wt mice on a Na⁺ restricted diet (Figure 6.15). In fact, the only clear difference was that EP₁⁻/⁻ mice displayed a lower urine osmolality that remained unchanged in response to a Na⁺-restricted diet (Figure 6.16). Furthermore, when mice were water deprived for 24hrs to assess if they could maximally concentrate their urine, urine osmolality did not rise to the same extent as their wt littermates (Figure 6.16). Taken together, these findings suggest a subtly impaired concentrating mechanism in otherwise healthy EP₁⁻/⁻ mice. When allowed free access to drinking water, EP₁⁻/⁻ mice may compensate to allow normal renal water excretion. Since the EP₃ receptor can also promote natriuresis and diuresis, this subtype might take over the function of the EP₁ receptor, thereby obscuring the phenotype. Evidence for this derives from studies showing that PGE₂ directly inhibits sodium transport in microperfused thick ascending limb and salt/water transport in collecting duct (29, 34, 35). These effects can be blocked by the G₁ inhibitor, pertussis toxin – consistent with an EP₃-mediated signaling pathway (29). Taken together, the accumulated data
support a role for the EP₃ receptor as a natriuretic and diuretic effector - similar to that of the EP₁ receptor. It is interesting to note however, that mice lacking the EP₃ receptor exhibit normal urinary concentrating/diluting responses – suggesting that the EP₁ receptor assumes the natriuretic/diuretic role in the face of EP₃ receptor ablation.

Cyclooxygenase expression changes in different regions of the kidney with dietary salt intake (16, 32, 86). Studies by Yang et al., demonstrated using rats placed on varying Na⁺ diets, that cortical COX-2 production is upregulated during volume depletion (i.e. low salt intake), whereas medullary COX-2 production increases in volume expansion (i.e. high salt in take), thus promoting the excretion of Na⁺ and water (86).

Because COX-2 increases in the medullary collecting duct region under high salt conditions and that EP₁ receptor expression increases from cortex to the papilla, we assessed Na⁺-fluid volume homeostasis in EP₁⁻/⁻ mice fed a high salt diet. Our results showed that with high dietary sodium content, EP₁⁻/⁻ mice increased urinary Na⁺ levels, decreased urinary osmolality and maintained blood pressure similar to wt mice (Figure 6.17). As previously suggested it is likely that the renal actions of PGE₂ normally mediated by the EP₁ receptor have been co-opted by the EP₃ receptor in EP₁⁻/⁻ mice in order to sustain natriuretic and diuretic actions demanded by a high salt diet.

On the basis of these results we conclude that healthy, non-nephritic mice lacking the EP₁ receptor are able to adequately maintain normal Na⁺ homeostasis, but
display a subtle urinary concentrating defect. This concentrating defect may however, predispose EP₁^{−/−} mice to a more severe renal phenotype with the induction of nephritis — rendering them extremely dehydrated and hypernatremic, not unlike the renal side effects encountered with NSAID usage in the context of GN.

7.2.5 GN Mice Display Enhanced EP₄ Receptor Expression in a Tissue-Specific Manner: Outer Medullary and Papillary Regions

Since the EP₁^{−/−} mice displayed a physiologically relevant defect in urine concentrating ability, we investigated what might account for this difference. Our attention focused on the EP₄ receptor since a major role for this subtype in regulating renal water transport has been suggested (35, 67). PGE₂ stimulates water reabsorption in isolated rabbit collecting ducts (35, 67). These stimulatory effects of PGE₂ on water transport were not mimicked by butaprost, an EP₂ agonist, and could therefore be attributed to activation of the EP₄ receptor (67).

On the basis of the preceding functional considerations, we expected that GN mice would display elevated EP₄ receptor expression to stimulate water reabsorption and thereby compensate for the observed natriuresis and diuresis. The inner medullary and papillary regions of the kidney consist of cAMP-responsive nephron segments (i.e., collecting duct). It is well established that cAMP acts as the second messenger in response to EP₄ coupled Gₛ stimulated adenylyl cyclase activation (10, 18, 63). Interestingly, the EP₄-cAMP signaling pathway is shared with arginine-vasopressin (AVP) in the activation and insertion of AQP2 water channels to promote
water reabsorption along the collecting duct (23, 51, 67). Our data show that EP4 receptor expression is significantly elevated in the inner medullary region of the kidney of GN wt and GN EP1−/− mice (Figure 6.19). These findings imply that GN mice are likely responding to promote water reabsorption through EP4- cAMP signaling pathway in order to correct for their concentrating defect brought about by nephritis-induced tubular necrosis and reduced GFR.

Interestingly, we also observed significant differences in papillary EP4 receptor expression between GN wt and GN EP1−/− mice. The papillary region of the collecting duct, where the highest expression of EP1 receptors is found, regulates the final fine tuning of urine osmolality. Like the medullary collecting duct, the papillary collecting duct is composed predominately of cAMP-responsive principal cells (41). One would expect that part of the mechanism for maintaining ECFV in GN would be to employ a cAMP-activating EP4 response along this segment to promote water reabsorption. This seemed to be the case in GN wt mice but not in GN EP1−/− mice (Figure 6.19). This lack of papillary EP4 receptor induction in GN EP1−/− mice could account for their additional drop in urine osmolality.

How would the absence of EP1 receptor expression negate a nephritis-induced papillary EP4 receptor elevation? The expression of the EP4 receptor may depend on EP1 receptor stimulation. This interconnected relationship has been observed in other signaling pathways (31). Hamelink et al., demonstrated that the signaling activity of a neuropeptide found during brain development requires the coincident activation of two different second-messenger pathways, calcium influx and elevated cAMP.
Hypothetically speaking, in mice lacking the EP₁ receptor, PGE₂ would be unable to drive expression of the EP₄ gene, either directly or indirectly, thereby reducing the ability of PGE₂ to promote urine concentrating activities in the papilla. However, at this time there is no evidence to support this claim and further studies will be needed to uncover the precise mechanism (see Future Studies section).

7.2.6 Severe Hyperkalemia in GN EP₁⁻/⁻ Mice

Acute renal insufficiency brought about by GN is often associated with reduced GFR and hyperkalemia. Rare cases of hyperkalemia associated with NSAIDs have been reported for human patients with GN (24, 27). Our GN EP₁⁻/⁻ mice displayed severe hyperkalemia compared to GN wt mice (Figure 6.9). Maintenance of extracellular potassium balance is vital. High intracellular and low extracellular potassium concentrations are required to maintain normal cell excitability and muscle contraction, including that of the heart. In fact, hyperkalemia in human patients requires immediate intervention to prevent life-threatening heart arrhythmias. Several physiological systems are known to regulate K⁺ homeostasis, including the renin-angiotensin system as well as serum [K⁺] (28). Additionally, seminal studies by August and colleagues first demonstrated that K⁺ excretion increases while Na⁺ excretion decreases after subjects were given aldosterone injections (6). Aldosterone is secreted from the adrenal cortex in response to either angiotensin II or adrenocorticotropic hormone (ACTH) stimulation, acting upon the late distal nephron to stimulate Na⁺ reabsorption at the expense of luminal K⁺ secretion.
ACTH is stored in the anterior pituitary and its release is triggered in response to inflammatory stress. Studies assessing the effects of bacterial endotoxin in mice lacking the EP$_1$ receptor revealed that EP$_1^{-/-}$ mice had an impaired ACTH response (56). One hour after receiving LPS injections, EP$_1^{-/-}$ mice demonstrated significantly reduced plasma ACTH levels. We hypothesized that GN EP$_1^{-/-}$ mice may have an impaired ACTH response yielding low aldosterone levels, since previous studies identified the presence of endotoxin in anti-GBM serum (42). Although we did not test the anti-GBM antiserum used in the current studies for LPS content, our data nevertheless shows that serum aldosterone levels were suppressed to similar levels in GN wt and GN EP$_1^{-/-}$ animals (Figure 6.10). Thus, although reduced serum aldosterone levels likely contribute to elevated serum K$^+$ observed in both GN groups, they cannot account for the severe hyperkalemia observed in GN EP$_1^{-/-}$ mice.

Hyperkalemia has been associated with changes in vascular tone that control RBF and consequently GFR. Angiotensin II is a potent vasoconstrictor that is involved in mediating GFR (2). However recent studies have also implicated the vasoconstrictive and vasodilatory actions of prostaglandins in RBF and GFR regulation (38, 62). Using in vivo renal blood flow studies, PGE$_2$-treated rats displayed immediate vasoconstriction followed by a prolonged dilatory phase (62). Treatment with various EP$_{1,4}$ agonists suggested that the EP$_1$ receptor is the primary receptor mediating transient renal vasoconstriction, whereas the EP$_4$ receptor elicits vasodilatation in the renal vasculature (62). Interestingly, nephritic patients treated with NSAIDs, exhibited significant declines in GFR accompanied by hyperkalemia (52). Such observations are consistent with our data showing that GN EP$_1^{-/-}$ mice
displayed enhanced creatinine and urea levels as compared to GN wt mice (Figure 6.11), implying a greater drop in GFR and thus a more severe state of renal dysfunction. These effects on GFR suggest a role for the EP$_1$ receptor in adequately maintaining RBF under GN conditions.

7.2.7 GN Mice Display Enhanced EP$_4$ Receptor Expression in a Tissue-Specific Manner: Cortical Region

The preglomerular afferent and postglomerular efferent resistance vessels can respond to vasoconstrictive and vasodilatory hormones to modulate RBF and GFR. However, the available evidence indicates that the afferent arteriole has the greatest role in the control of the intrarenal hemodynamics (9, 22). The severe reduction in GFR observed in GN EP$_1^{/-}$ mice prompted us to assess whether these mice maximize their intrarenal vasodilatory capacity through elevated EP$_4$ receptor expression in order to sustain GFR. Our results indicate that GN EP$_1^{/-}$ mice had significant elevations in cortical EP$_4$ receptor expression compared to GN wt mice (Figure 6.19). Although we do not yet have direct evidence, by process of elimination (since EP$_4$ receptor expression does not change in the glomeruli of GN mice (Figure 6.19)), the afferent arteriole is the likely location of elevated EP$_4$ receptor expression. Studies by Ruan et al., showed that PGE$_2$ produces an increase in cAMP levels from isolated rat VSMC, suggesting a dominance of vasodilator EP receptors coupled to G$_s$ proteins (66). Furthermore, studies of second messenger signal transduction indicate the presence of EP$_4$ and absence of EP$_2$ receptors in the afferent arteriole of rats (62), making the EP$_4$ receptor the primary vasodilatory receptor. The elevated expression of EP$_4$ receptors
in the cortex of GN EP₁⁺⁺ mice suggests that it is a key player in regulating RBF and consequently GFR in nephritic conditions. Our results also support the notion that the NSAID-induced reduction of RBF, frequently exhibited by patients with compromised renal function (e.g. glomerulonephritis) may be due to reduced stimulation of EP₁ receptors.

With a high probability that the EP₄ receptor transduces the protective vasodilator signal in the afferent arteriole, it is tempting to speculate that mice lacking the EP₁ receptor require enhanced vasodilatation to help maintain RBF and by extension - GFR.

Previous studies have shown that PGE₂ exerts a dilator effect on the afferent arteriole but not on the efferent arteriole of rabbit glomeruli (9, 22). Furthermore, Purdy et al., demonstrated that while the EP₁ receptor is also present in the afferent arteriole, it plays a weaker role compared with that of the prolonged vasodilatation mediated by EP₄ (62). These observations imply that the EP₁ receptor may have a more dominant role in other segments of the renal vasculature. One likely location would be at the efferent arteriole where it might act as a vasoconstrictor, buffering the drop in GFR during the progression of GN.

GFR is markedly reduced with the onset of glomerulonephritis (26, 58). The kidney counters this condition by increasing vasodilatation at the afferent arteriole, allowing RBF to increase. Simultaneously, vasoconstriction is triggered at the efferent arteriole in order to enhance filtration through the glomerulus in an attempt to
sustain GFR. Our data suggest that GN causes reductions in GFR that are more profound in GN EP₁ −/− mice (Figure 6.13). Such differences may be reflective of an inability to constrict efferent arterioles and consequently counter the drop in GFR. We believe that mice lacking the EP₁ receptor may respond to this exacerbated GFR by promoting vasodilatation at the afferent arteriole, likely through the EP₄ receptor. If so, this would explain the elevated cortical EP₄ receptor expression observed in GN EP₁ −/− mice and not GN wt mice (Figure 6.19).
7.3 FUTURE STUDIES

Our present study has assessed changes in mRNA expression, however the activity and function of the EP₄ receptor within the context of GN remains to be addressed. Three main approaches could be employed: 1) EP₄ protein expression/localization; 2) pharmacological blockade of this receptor subtype; and 3) the use of gene-targeted EP₄⁻/⁻ mice.

EP₄ mRNA levels may not reflect the protein expression of this gene. At this time, the available EP₄ antibodies are inadequate in their specificity and are unable to detect the protein in kidney lysates - either by western, or through immunohistochemical approaches. Future work will require the development of more powerful and specific antibodies against this GPCR.

Similarly, the available EP₄ receptor antagonists exhibit limited specificity as well as questionable bio-efficacy – rendering them inappropriate for testing the role of this receptor subtype in vivo. Once again, future studies will require the synthesis of better agonists and antagonists.

Currently, the most powerful approach to assess the role of the EP₄ receptor in the progression of GN is through the use of gene-targeted knockout mice. However, the majority of EP₄⁻/⁻ mice die shortly after birth from patent duc tus arteriosus (71), making it impossible to address the function of such a gene in the adult mouse. To avoid such developmental defects our lab is currently generating podocyte-specific
deletion of the EP₄ receptor using the Cre/loxP system. Concurrent with the development of this line, our lab will also employ Myxovirus resistance-1-Cre recombinase mice (MxI-Cre) (commercially available from Jackson Labs). Widespread Cre activity can be induced in a temporal manner upon injection of these mice with γ-interferon. Such an approach will facilitate the deletion of the EP₄ receptor in the glomeruli, vasculature as well as collecting duct (69).

As a continuation of my project, this future endeavor should address several questions that remain unanswered: 1) During the onset of glomerulonephritis, is the EP₄ receptor required to dilate the afferent arteriole and thus sustain GFR? 2) Does PGE₂, acting via the EP₄ receptor, promote urinary concentrating processes in the late collecting duct in order to counter the loss of tubular function as GN progresses?

Taken together, our data strengthen the argument that an understanding of the role of PGE₂ and its receptors in the nephritic kidney is an important area of research. Since NSAIDs (such as aspirin, ibuprofen etc.) reduce glomerulopathy-associated proteinuria – they would appear to be potentially useful therapeutics. However – as discussed repeatedly, their use is precluded by unwanted effects on RBF/GFR and Na⁺ reabsorption. Therefore, identifying which EP receptor subtype(s) contribute either for or against preservation of renal function will allow for the development and implementation of more powerful and specific therapeutic strategies.
Table 7.2 GN Phenotypic Characteristics in WT and EP₁^{+/−} Mice

Qualitative summary comparing the relevant findings in our anti-GBM model in both wt and EP₁^{+/−} mice.
GN Phenotypic Characteristics in WT and EP\textsubscript{1}^{-/-} Mice

<table>
<thead>
<tr>
<th></th>
<th>GN wt</th>
<th>GN EP\textsubscript{1}^{-/-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>body weight</td>
<td>↓</td>
<td>↓↓↓↓</td>
</tr>
<tr>
<td>serum creatinine</td>
<td>↑</td>
<td>↑↑↑↑</td>
</tr>
<tr>
<td>serum urea</td>
<td>↑</td>
<td>↑↑↑↑</td>
</tr>
<tr>
<td>serum K+</td>
<td>↑</td>
<td>↑↑↑↑</td>
</tr>
<tr>
<td>serum Na+</td>
<td>↑</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>urine osmolality</td>
<td>↓</td>
<td>↓↓↓↓</td>
</tr>
<tr>
<td>albuminuria</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Figure 6.20 Physiological Events Involved in the Induction of GN in EP1−/− Mice

GN EP1−/− mice displayed elevated EP4 receptor expression in the afferent arteriole possibly to enhance vasodilatation in order to sustain GFR. GN EP1−/− mice displayed significantly reduced urine osmolality perhaps due to their inability to elevate EP4 receptor expression in the papillary region. Water reabsorption may be mediated by AQP2 channels through EP4 signaling.
Absent EP4 elevations
Inability reabs. water
Additional drop in osmolality

Elevated EP4
Increase vasodilatation
Help sustain GFR

5. **Audoly LP, Tilley SL, Goulet J, Key M, Nguyen M, Stock JL, McNeish JD, Koller BH, and Coffman TM.** Identification of specific EP receptors

