Université d’Ottawa • University of Ottawa

FACULTÉ DES ÉTUDES SUPÉRIEURES ET POSTDOCTORALES

FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

Julie FARAND
AUTEUR DE LA THÈSE - AUTHOR OF THESIS

M. Sc. (Chemistry)
GRADE - DEGREE

Department of Chemistry
FACULTÉ, ÉCOLE, DÉPARTEMENT - FACULTY, SCHOOL, DEPARTMENT

TITRE DE LA THÈSE - TITLE OF THE THESIS

Studies on the tandem oxy-cope/ene/claisen reaction. Applications of the hydroxy-directed diels-alder reaction towards the total synthesis of havellockate and synthesis of isovelleral analogues

L. Barriault
DIRECTEUR DE LA THÈSE - THESIS SUPERVISOR

CO-DIRECTEUR DE LA THÈSE - THESIS CO-SUPERVISOR

EXAMINATEURS DE LA THÈSE - THESIS EXAMINERS

T. Durst
K. Fagnou

I.-M. De Koninck, Ph.D.
LE DOYEN DE LA FACULTÉ DES ÉTUDES SUPÉRIEURES ET POSTDOCTORALES
DEAN OF THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
STUDIES ON THE TANDEM OXY-COPE/ENE/CLAISEN REACTION. APPLICATIONS OF THE HYDROXY-DIRECTED DIELS-ALDER REACTION TOWARDS THE TOTAL SYNTHESIS OF HAVELLOCKATE AND SYNTHESIS OF ISOVELLERAL ANALOGUES

By

JULIE ALINE FARAND

B.Sc. (Honours), University of Ottawa, 2002

A Thesis submitted to the School of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science

Ottawa-Carleton Chemistry Institute
Department of Chemistry
University of Ottawa
Ottawa, Ontario
Canada

Candidate
Julie Aline Farand

Supervisor
Dr. Louis Barriault

University of Ottawa
April 2004
© Julie Aline Farand
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni les extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
TABLE OF CONTENTS

LIST OF SCHEMES 4
LIST OF FIGURES 6
LIST OF TABLES 7
LIST OF ABBREVIATIONS 8
ABSTRACT 10
ACKNOWLEDGEMENTS 11
Chapter 1: Introduction 14
 1.1 History of the Tandem Oxy-Cope/Ene Reaction 14
 1.2 The Diels-Alder Reaction 17
 1.2.1 Stereoselectivity, Regioselectivity and Diastereoselectivity 18
 1.2.2 Lewis Acids and Temporary Tethers 20
 1.2.3 The Hydroxy-Directed Diels-Alder Reaction (HDDA) 22
 1.3 Application of the Diels-Alder Reaction Towards the Synthesis of Marasmic Acid and Isovelleral 25
Chapter 2: Studies on the Tandem Oxy-Cope/Ene/Claisen Reaction 30
 2.1 Background 30
 2.2 Preparation of the Allyl Ethers 31
 2.3 The Tandem oxy-Cope/Ene/Claisen Reaction: Results and Discussion 35
 2.4 The Tandem Oxy-Cope/Ene/Claisen Reaction of Propargyl Ethers 46
 2.5 Conclusion 50
Chapter 3: Applications of the Hydroxy-Directed Diels-Alder Reactions Towards the Synthesis of Isovelleral Analogues 51
 3.1 Background and Biological Activity 51
 3.2 Previous Total Syntheses of Isovelleral 52
 3.3 Retrosynthetic Analysis 53
 3.4 Synthesis of Various Dienes and Hydroxy-Directed Diels-Alder Results 55
 3.5 Conclusion 68
Chapter 4: Studies Towards the Total Synthesis of Havellockate 69
 4.1 Background 69
 4.2 Synthesis of Various Dienes and Hydroxy-Directed Diels-Alder Results 73
 4.3 Towards the Synthesis of the Tetracyclic Core of Havellockate 83
 4.4 Installation of the Side Alkyl Chain of Havellockate via a Claisen Rearrangement 88
 4.5 Conclusion 93
Chapter 5: Experimental 95
 5.1 General Methods and Materials 95
 5.2 General Procedure A for the Horner-Wadsworth-Emmons Reaction 98
 5.3 General Procedure B for the DIBAL-H Reduction 101
 5.4 General procedure C for bromination of allylic alcohols 103
 5.5 General Procedure D for the preparation of propargyl alcohols 107
 5.6 General Procedure E for Etherification between diol 2.13 and allylbromides 2.17 109
 5.7 General Procedure F for the Tandem Reactions 116
LIST OF SCHEMES

Scheme 1.1: Total synthesis of (+)-Artemisinin M via the tandem oxy-Cope/ene reaction 16
Scheme 1.2: Syn/anti selectivity with α-allylic substitution on semicyclic dienes 20
Scheme 1.3: Tamao and co-workers’ temporary silicon tether 21
Scheme 1.4: Ward’s use of magnesium tethers in the Diels-Alder reaction 22
Scheme 1.5: The hydroxy-directed Diels-Alder reaction 24
Scheme 1.6: Wilson and Turner’s Diels-Alder reaction towards marasmic acid 26
Scheme 1.7: Installation of the cyclopropane via a 1,3-dipolar cycloaddition 26
Scheme 1.8: Greenlee and Woodward’s Diels-Alder reaction towards marasmic acid 28
Scheme 1.9: Intramolecular Diels-Alder reaction by Wickberg et al 29
Scheme 2.1: Microwave irradiation of the trisubstituted allyl ether 2.6 31
Scheme 2.2: Preparation of 1,2-divinylcyclohexanol 2.13 32
Scheme 2.3: General procedure for the synthesis of allyl bromides 2.17 32
Scheme 2.4: Synthesis of trisubstituted allyl bromide 2.17c 33
Scheme 2.5: Synthesis of trisubstituted allyl bromide 2.17d 34
Scheme 2.6: Synthesis of cis allyl bromide 2.17h 35
Scheme 2.7: The highly diastereoselective transannular ene reaction 39
Scheme 2.8: Isomerization and recombination of the radical pairs 42
Scheme 2.9: Highly diastereoselective oxy-Cope/ene reaction 46
Scheme 2.10: Preparation of propargyl bromide 2.39 47
Scheme 2.11: Preparation of propargyl bromide 2.44 48
Scheme 3.1: Heathcock’s approach towards the tricyclic core of isovelleral 52
Scheme 3.2: Wijnberg’s approach towards (+)-isovelleral 53
Scheme 3.3: Hydroxy-Directed Diels-Alder Reaction with semicyclic dienes B 54
Scheme 3.4: Retrosynthetic analysis of isovelleral analogues 55
Scheme 3.5: Attempted synthesis of type B Diels-Alder diene 55
Scheme 3.6: Synthesis of the hydroxy-directed Diels-Alder dienes 3.25 and 3.26 57
Scheme 3.7: Synthesis of the hydroxy-directed Diels-Alder dienes 3.28 and 3.29 57
Scheme 3.8: Successful HDDA reaction with NPM using vinylmagnesium bromide 62

Scheme 3.9: Attempts towards the cyclopropanation 63

Scheme 3.10: Garratt and Porter's cyclopropanation with diester 3.39 64

Scheme 3.11: Attempted alkylations α to the lactone 65

Scheme 3.12: HDDA reaction with N-benzylmaleimide and attempted esterification 67

Scheme 3.13: Selenoxide elimination proposal 68

Scheme 4.1: Mehta's approach towards the tetracyclic core of havellockate 70

Scheme 4.2: The HDDA reaction with a type A diene 72

Scheme 4.3: Retrosynthetic analysis of havellockate via the HDDA reaction 73

Scheme 4.4: Synthesis of dienes 4.21, 4.22, 4.23 and 4.24 for the HDDA reaction 74

Scheme 4.5: ¹H NOESY correlation of diene 4.21 74

Scheme 4.6: Synthesis of diene 2.28 without the secondary alcohol 80

Scheme 4.7: Synthesis of dienes 4.31 and 4.32 81

Scheme 4.8: HDDA reaction between diene 4.31 and methylacrylate 82

Scheme 4.9: Successful HDDA reaction between diene 4.31 and acrolein 82

Scheme 4.10: Synthesis of the tricyclic core of havellockate and attempted hydroboration 83

Scheme 4.11: First hydroboration attempt with cycloadduct 4.34 85

Scheme 4.12: Synthesis of the tetracyclic core of havellockate 86

Scheme 4.13: X-ray structure of lactone 4.43 87

Scheme 4.14: Claisen attempts to install the alkyl chain 89

Scheme 4.15: Preparation of the allylic alcohol 4.54 via a SmI₂-induced reduction 90

Scheme 4.16: Attempts to prepare the mesylate and tosylate activated electrophiles 91

Scheme 4.17: Synthesis of the electrophilic allyl bromide 4.60 92

Scheme 4.18: Attempts of O-alkylation with bromine-activated electrophile 4.60 93
LIST OF FIGURES

Figure 1.1: The tandem oxy-Cope/transannular ene reaction 15
Figure 1.2: Mechanism and transition state of the tandem oxy-Cope/transannular ene 15
Figure 1.3: Approach towards the total synthesis of agelasimine A 16
Figure 1.4: Stabilization of the endo transition state with secondary orbital overlapping 18
Figure 1.5: Size and sign of orbitals govern the regioselectivity 19
Figure 1.6: Type A and B semicyclic dienes used by Barriault et al 23
Figure 1.7: Marasmic acid and isovelleral 25
Figure 1.8: (±)-Isomarasmic acid 27
Figure 2.1: The Tandem Oxy-Cope/Ene/Claisen Reaction 30
Figure 2.2: Proposed oxaallyl-allyl radical pair mechanism 40
Figure 2.3: Gajewski’s model 40
Figure 2.4: Energy diagram of the oxy-Cope/ene/Claisen and 1,3-shift reaction 41
Figure 2.5: Epimerization at C-11 via a boat-like transition state 45
Figure 2.6: Formation of enol ethers 2.32 and 2.34 via transition states A and B 46
Figure 2.7: Thermodynamic control of the 5-exo dig cyclization 49
Figure 4.1: Havellockate, isomandapamate and mandapamate 69
Figure 4.2: Proposed biosynthesis of mandapamate via a transannular Diels-Alder 70
Figure 4.3: Type A and B semicyclic dienes used by Barriault et al. 71
LIST OF TABLES

Table 2.1: Preparation of the tandem reaction precursors 36
Table 2.2: Tandem Oxy-Cope/Ene/Claisen reaction of allyl-1,2-divinylcyclohexanols 37
Table 2.3: Denissova’s deuterium and temperature study 44
Table 2.4: The tandem oxy-Cope/ene/Claisen/exo-dig cyclization 49
Table 3.1: The hydroxy-directed Diels-Alder reaction between diene 3.25 and activated dienophiles 58
Table 3.2: The hydroxy-directed Diels-Alder reaction between diene 3.26 and activated dienophiles 60
Table 3.3: The hydroxy-directed Diels-Alder reaction between various 5-membered dienes and activated dienophiles 61
Table 4.1: Attempted Diels-Alders with dienes 4.21 and 4.22 with various dienophiles 76
Table 4.2: Attempted Diels-Alders with diene 4.23 and various dienophiles 78
Table 4.3: Attempted Diels-Alders with dienes 4.24, 4.28, 4.30 and 4.31 with dienophiles 79
Table 4.4: Attempted hydroborations to generate the cis-ring junction 84
LIST OF ABBREVIATIONS

Bn benzyl
BuLi butyl lithium
Boc₂O \textit{tert}-butoxy carbonyl anhydride
DBU 1,8-diazobicyclo[5.4.0]undec-7-ene
DCM dichloromethane
DIBAL-H diisobutylaluminum hydride
DMAE N,N-dimethylaminoethanol
DMAP 4-dimethylaminopyridine
DMF N,N-dimethylformamide
Eq. equivalents
EtOAc ethyl acetate
Et₂O diethyl ether
Et₃N triethyl amine
GC gas chromatography
GC/MS gas chromatography/mass spectrometry
HPLC high pressure liquid chromatography
HRMS high resolution mass spectrometry
HDDA hydroxy-directed Diels-Alder
HMDS hexamethyldisilazane
HMPA hexamethyl phosphoramide
IR infrared
\textit{i}PrOH isopropanol
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>lithiumdiisopropylamide</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MgBr₂OEt₂</td>
<td>magnesium bromide diethyletherate</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>molecular sieves</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear overhauser and exchange spectroscopy</td>
</tr>
<tr>
<td>NPM</td>
<td>N-phenylmaleimide</td>
</tr>
<tr>
<td>ON</td>
<td>overnight</td>
</tr>
<tr>
<td>PG</td>
<td>protecting group</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Pyr</td>
<td>pyridine</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PTSA</td>
<td>para-toluene sulfonic acid</td>
</tr>
<tr>
<td>RP</td>
<td>reaction pathway</td>
</tr>
<tr>
<td>SAR</td>
<td>structure activity relationship</td>
</tr>
<tr>
<td>SM</td>
<td>starting material</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyldiphenylsilyl</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
</tbody>
</table>
ABSTRACT

The synthesis of decalin systems possessing a quaternary carbon at C-9 was achieved via the tandem oxy-Cope/ene/Claisen rearrangement. Depending on the substitution pattern of the allyl ether 1, different reaction pathways may be followed to generate the decalin cores. In the case of 1,2-divinylcyclohexanol having a 1,2-disubstituted allyl ether, the tandem reaction afforded the decalin system in good yield. However, trisubstituted allyl ethers produced unique decalin products via a radical 1,3-shift. In addition, microwave irradiation of 1,2-divinylcyclohexanol propargyl ethers generated tetracyclic acetals via the tandem oxy-Cope/ene/Claisen/5-exo dig cyclization.

The scope and limitations of the hydroxy-directed Diels-Alder (HDDA) reaction were studied on 5-membered semicyclic dienes possessing secondary or tertiary allylic alcohols. A temporary magnesium tether provided by MgBr₂OEt₂ or vinylmagnesium bromide was utilized to regio- and stereoselectively control the Diels-Alder reaction. This methodology was applied towards the synthesis of the hydrindane moiety of isovelleral 2 in order to construct its analogues.

As well, the HDDA reaction was applied towards the total synthesis of havellockate 3. The bicyclic core of the natural product was prepared with high regio- and stereocontrol and good yield.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my professor and supervisor Dr Louis Barriault for giving me the opportunity to be a member of his group. Your dynamism, contagious motivation and passion for this science are tremendous assets to the University of Ottawa and the scientific community.

On the personal side, I could not have achieved my goals without my parents’ unlimited love and support. You allowed me to choose my own path and I will be forever grateful for standing by my side along the way. I would also like to thank my late grandfather for your faith and confidence in education. With your help, you allowed all six of us to pursue our dreams. To the love of my life, Graham, for all your support, love and words of encouragement. You are my rock and I am looking forward to sharing our dreams and goals together. Congratulations on your master’s degree!

The next thank you goes out to all the present and past Barriault members with whom I have had the privilege to work beside. To my honours project mentor, Irina, we shared many things during the last three years (fume hood, paper, graduation...). You always made time during our busy days to help others and you will never be forgotten (see you in Montreal!). A big thank you to my “bay mate” Effie (don’t worry, I won’t write down what I have already told you...but you are...and be proud of it!! Effie and Julie’s boom-boom saloon...), Pat (to our hockey playoff nights at ZamPub...Go Sens go!), Danny, Jermaine and Ross (the Barriault boys), LUMO and Steve (you guys literally fight like brothers), Roxanne (you initiated girls’ night out), Jeff (our personal pop and goodies vendor), Rachel, Maxime, Roch, Natalie and Christiane (enjoy your
graduate studies at U of O!). I wish you all the best in your future endeavours. Last but not least, I would like to express my sincerest gratitude to Dr Tony Durst for believing in my capabilities and devoting much effort and time to the biopharmaceutical program.
« Dédié à mes parents, Raymond et Ginette Farand,
et à mon grand-père Farand... »
Chapter 1: Introduction

1.1 History of the Tandem Oxy-Cope/Ene Reaction

The rapid construction of new carbon-carbon bonds has challenged many organic chemists. A variety of reactions have been developed, namely the pericyclic, ring closing metathesis polymerisation and metal-catalyzed cross-coupling reactions, and have been applied to devise distinctive synthetic strategies towards total syntheses. With these valuable and efficient reactions, the synthetic chemist must limit the number of steps without losing stereoselective and regioselective control. Reactions in tandem, where two or more reactions occur consecutively without purification, are remarkable tools for generating new carbon-carbon bonds and limiting the number of synthetic steps.

During a study on the construction of 8-membered rings, Sutherland et al.1 observed the tandem oxy-Cope/transannular ene product as an unanticipated by-product of the oxy-Cope rearrangement. Paquette2 and Rajagoplan3 also reported observing the undesired tandem product as a result of a tandem anionic oxy-Cope/transannular ene reaction. Barriault and Warrington capitalized on these previous observations and studied the tandem oxy-Cope/transannular ene reaction of 1,2-divinylcyclohexanols.4 When heated in a sealed tube for 5 h, the 1,2-divinylcyclohexanols 1.1 undergo a diastereoselective tandem oxy-Cope/ene reaction to rapidly afford bi- and tricyclic skeletons 1.2 in 44-86\% yield (Figure 1.1).

3 Rajagopalan, K.; Janardhanam, S.; Balakumar, A. J. Org. Chem. 1993, 58, 5482
As illustrated in Figure 1.2, the thermally induced oxy-Cope rearrangement of 1.3 affords enol 1.4, which rapidly tautomerizes to the stable ketone 1.5. A consecutive transannular ene reaction occurs via a chair-like transition state and brings the hydrogen and oxygen atoms of the macrocycle 1.6 in close proximity. The resulting bi- or tricyclic core 1.7 possessing up to five contiguous stereogenic centers may be created via the tandem reaction.

A few years later, Barriault and Deon applied this methodology towards the total synthesis of (+)-artemannin M 1.11. Isolated from Artemisia annua L. in the Sichuan province of China, artennniun M shares a similar skeleton with the anti-malaria drug

\[\text{Figure 1.1: The tandem oxy-Cope/transannular ene reaction.}\]

\[\text{Figure 1.2: Mechanism and transition state of the tandem oxy-Cope/transannular ene.}\]

\[\text{5 Terada, Y.; Yamamura, S. Tetrahedron Lett. 1979, 20, 1623.}\]

endoperoxide artemisin. The total synthesis of the natural product was completed in 10 steps via the tandem oxy-Cope/transannular ene reaction with high diastereo- and enantiomeric excess.

Scheme 1.1: Total synthesis of (+)-Artemnin M via the tandem oxy-Cope/ene reaction.

The total synthesis of agelasimine A 1.12 was also attempted by Barriault and Denissova via the tandem approach (Figure 1.3). Bearing a trans-decalin system with a tertiary alcohol at the ring junction and four contiguous stereogenic centers, the tandem oxy-Cope/transannular ene reaction could offer an additional application in synthetic organic chemistry.

Figure 1.3: Approach towards the total synthesis of agelasimine A.

During this study, the tandem oxy-Cope/transannular ene/Claisen reaction was discovered as an efficient method of generating diastereoselective decalin skeletons with quaternary carbon centers.\(^8\) The scope and limitations of this methodology, including new discoveries, will be discussed in the following chapter.

1.2 The Diels-Alder Reaction

Since its discovery in 1928, the Diels-Alder reaction has been widely applied towards the total synthesis of numerous natural products. This cycloaddition has been extensively studied on various levels by many disciplines, ranging from the quantum chemist to the synthetic organic chemist. The shared curiosity and fascination for the Diels-Alder reaction primarily exists since improvement is still possible on many facets. Although it is a powerful synthetic tool, high regio- and diastereoselectivity has not been perfected with every diene and dienophile. Thus, the reaction conditions are highly dependent on the nature of the reacting partners.

Many organic chemists, namely Woodward and Hoffman,\(^9\) have concentrated their efforts in order to rationalize the selectivity during the course of this reaction. More recently, Lewis acids and temporary tethers have been examined to improve the rate and selectivity of the Diels-Alder reaction. A brief overview regarding the frontier molecular orbital theory, use of Lewis acids and temporary tethers will be discussed. As well, the hydroxy-directed Diels-Alder reaction will be introduced as a powerful methodology for the construction of bicyclic skeletons from semicyclic dienes possessing tertiary alcohols.

1.2.1 Stereoselectivity, Regioselectivity and Diastereoselectivity

The stereoselectivity of the Diels-Alder reaction is governed by steric factors, but mainly electronic factors when sterically hindering diene and dienophile are not involved. Even though the exo adduct is the thermodynamic product during the Diels-Alder reaction, the endo product is more quickly obtained, and is therefore the kinetic product. The preferred endo product can be explained by the presence of secondary orbital interactions during the transition state (Figure 1.4).

![Figure 1.4: Stabilization of the endo transition state with secondary orbital overlapping.](image)

During the reaction between cyclopentadiene 1.13 and maleic anhydride 1.14, secondary orbital overlapping, represented by the dashed lines in Figure 1.4, are responsible for stabilizing and lowering the energy of the transition state, thus rendering the cycloaddition stereoselective. Although the exo product 1.16 can be observed, the endo product 1.15 is ultimately present in larger ratios. On similar grounds, the regioselectivity is determined by pairing the coefficients of the atomic orbitals between diene 1.17 and dienophile 1.18 that are similar in size and identical in sign (Figure 1.5). Many chemists prefer to rationalize the regioselectivity by allocating partial charges to
each atom concerned, however the frontier molecular orbital theory is preferred by theoreticians and numerous organic chemists.10

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.5.png}
\caption{Size and sign of orbitals govern the regioselectivity}
\end{figure}

The diastereoselectivity (or facial selectivity) of the Diels-Alder reactions has been particularly studied by Overman11 and Frank12 during the last fifteen years. Overman illustrated that α-allylic substitutions on the semicyclic diene 1.19 a,b,c can control the facial selectivity during the Diels-Alder reaction (Scheme 1.2). When diene 1.19a was treated with NPM at room temperature in toluene, 1.20a and 1.21a were respectively observed by HPLC in a 1.8:1 ratio. However, after 5 hours and upon purification, 1.20a was converted into 1.22a to yield 1.21a and 1.22a in 28\% and 53\% yield. However, when the reaction was performed in methanol, the syn/anti selectivity of 1.20a and 1.21a was obtained in a 1:4 mixture by HPLC. In addition, THF slightly afforded a smaller anti preference (syn/anti = 1: 1.8) when utilized as solvent.

Scheme 1.2: Syn/anti selectivity with α-allylic substitution on semicyclic dienes.

Interestingly, when 1.19b (R = CH₃) or 1.19c (R = SiBuMe₂) were used as dienes, the anti products 1.21b and 1.21c were obtained as the sole diastereomers (anti/syn >25:1) in both cases in 73% and 84% yields, respectively. When toluene was substituted with methanol or THF, diene 1.19b and NPM still provided 1.21b in 73% yield. Thus, Overman demonstrated that heteroatomic substitution in the α-allylic position of the semicyclic diene and the solvent can control the facial selectivity of the cycloaddition without additional reagents.

1.2.2 Lewis Acids and Temporary Tethers

The use of Lewis acids in the Diels-Alder reaction has been extensively studied.¹³ In addition to their rate accelerating effect, Lewis acids can act as temporary tethering units. Their ability to complex to heteroatoms can be advantageous in order to control the regio- and facialselectivity during the Diels-Alder reactions. Aluminium,¹⁴ silicon,¹⁵ boron¹⁶ and zinc¹⁴b tethers have been widely used and all display particular advantages and disadvantages. Pioneer work by Tamao et al. illustrated that the regio- and stereoselectivity of an intramolecular Diels-Alder reaction could be controlled via a

covalent bond between the silicon and oxygen atoms of diene 1.23 and dienophile 1.24 (Scheme 1.3). Cycloadduct 1.26 was generated during reflux in xylene after 40 hours.

![Scheme 1.3: Tamao and co-workers' temporary silicon tether.](image)

An additional reaction was required to cleave the Si-O bond and presented a drawback to this methodology. However, the stereochemistry was retained during this process and oxidative desilylation afforded 1.27 in 75% yield as the sole isomer. Stork13 and Ward17 have illustrated the use of magnesium as temporary tethering unit and Lewis acid. As depicted in Scheme 1.4, Ward applied Vedejs' methodology by using MgBr\textsubscript{2}OEt\textsubscript{2} and triethylamine,18 or a Grignard reagent as source of magnesium. The desired cycloadduct 1.29 was obtained in 75% yield with high regio- and stereocontrol from sorbic alcohol 1.28.

17 Vedejs, E.; Daugulis, O. J. Org. Chem. 1996, 61, 5702.
1.2.3 The Hydroxy-Directed Diels-Alder Reaction (HDDA)

As mentioned previously, Overman studied the use of semicyclic dienes with symmetrical dienophiles, such as N-phenylmaleimide. However, when a non-symmetrical dienophile is used, it is difficult to control both the facial and regioselectivity of the cycloaddition. Semicyclic dienes bearing a tertiary alcohol at the α-allylic position were of particular interest in our laboratory. With the intention of applying such dienes in future total syntheses, a method needed to be developed in order to accommodate such sensitive precursors and control both the regio- and stereoselectivity of the Diels-Alder reaction.

Barriault, Thomas and Clément19 have recently developed a highly stereoselective hydroxy-directed Diels-Alder reaction using semicyclic dienes possessing tertiary alcohols. The use of magnesium tethers allows the dienophiles, both symmetrical or asymmetrical, to add syn to the tertiary alcohol in the α-allylic position of the diene. In

19 Barriault, L.; Thomas, J.D.O.; Clément, R. J. Org. Chem. \textbf{2003}, \textit{68}, 2317
addition, the regioselectivity was controlled when asymmetric dienophiles were utilized. Their studies were concentrated on two types of 6-membered semicyclic dienes, types A and B (Figure 1.6).

![Figure 1.6: Type A and B semicyclic dienes used by Barriault et al.](image)

In the presence of MgBr₂·OEt₂ and triethylamine, the tertiary alcohol 1.30 forms a magnesium alkoxide 1.31 (Scheme 1.5). After the addition of the dienophile 1.32, the same magnesium unit complexes to, the oxygen of the carbonyl group from the dienophile, and lowers the LUMO of the latter. This temporary tethering unit allows the dienophile 1.32 to add syn to the hydroxyl group of diene 1.30, hence the hydroxy-directed Diels-Alder reaction. During this process, the regio- and facialselectivity of cycloadduct 1.33 are respectively controlled (dr >25:1) by the favourable overlapping of atomic orbitals and the presence of the magnesium tethering unit.
Scheme 1.5: The hydroxy-directed Diels-Alder reaction.

Various Lewis acids were examined in order to optimize the yield of the reaction. Even though the halogens on the magnesium were varied, i.e. Cl and I, and other metals were scanned, such as Zn, B and V, the MgBr₂·OEt₂/Et₃N combination afforded the best yields. Depending on the diene (type A or B) and dienophile used, such as NPM, methylacrylate, acrolein and methacrolein, the desired cycloadducts 1.33 were obtained in 30-89% yield. More details on this methodology will be provided in the following chapters which will illustrate the use of the HDDA reaction with 5-membered semicyclic dienes.
1.3 Application of the Diels-Alder Reaction Towards the Synthesis of Marasmic Acid and Isovelleral

Many fungal metabolites, such as marasmic acid 1.34 and isovelleral 1.35, have been isolated from the mushroom Basidiomycetes (Figure 1.7).\(^{20,21}\) Due to their antibacterial properties, these natural products rapidly became synthetic targets in many laboratories.\(^{22}\) Although various synthetic strategies have been published, the Diels-Alder reaction was frequently chosen as a key step for the construction of the cis-hydrindane ring skeleton. Thus, a brief summary of the Diels-Alder reaction applied towards the total synthesis of marasmic acid and isovelleral follows.

![Figure 1.7: Marasmic acid and isovelleral.](image)

Wilson and Turner\(^{23}\) attempted to achieve the first stereospecific synthesis of the marasmic acid skeleton via a Diels-Alder reaction (Scheme 1.6). When diene 1.36 and dimethylacetylene dicarboxylate 1.37 were heated in a glass tube under vacuum, the desired cycloadduct 1.38 was obtained in >95% purity. If the precursors were refluxed in

benzene overnight, or stirred neat for 3 days under N₂, products 1.39 and 1.40 were obtained in 60% yield and 40% yield respectively.

Scheme 1.6: Wilson and Turner's Diels-Alder reaction towards marasmic acid.

In this example, the selective formation of stereogenic centers during the Diels-Alder reaction was not problematic since the symmetrical alkyne 1.37 was utilized as dienophile. Furthermore, they envisioned creating the cyclopropane via a 1,3-dipolar cycloaddition with diazomethane, followed by photolysis (Scheme 1.7). Due to steric interactions, Wilson and Turner anticipated the exo product to be the predominant cycloadduct. Stereospecific decomposition of pyrazoline 1.41 presumably afforded the desired cyclopropane 1.42.

Scheme 1.7: Installation of the cyclopropane via a 1,3-dipolar cycloaddition.
Over a period of seven years, Wilson and Turner believed that they had constructed the first stereospecific skeleton of marasmic acid. During that time frame, Greenlee and Woodward22a were also actively attempting the total synthesis of marasmic acid via the same approach as described above.

![Figure 1.8: (±)-Isomarasmic acid](image)

NMR studies with a lanthanide shift reagent showed that Wilson and Turner’s stereochemical assignment was questionable and their cycloadduct is currently believed to be the (±)-isomarasmic acid skeleton 1.43 (Figure 1.8). The selectivity during the Diels-Alder reaction puzzled both groups since they both anticipated the cycloaddition to occur from the least hindered face.

With that result in hand, Greenlee and Woodward successfully synthesized both (±)-isomarasmic acid 1.43 and (±)-marasmic acid 1.34. The former was achieved by reproducing Wilson and Turner’s Diels-Alder and 1,3-dipolar cycloadditions and correctly assigning the resulting stereochemistry. The total synthesis of (±)-marasmic acid 1.34 was achieved via an endo-selective Diels-Alder reaction (Scheme 1.8). Using diene alcohol 1.44 and bromomethylmaleic anhydride 1.45, a non-symmetrical dienophile, cycloadducts 1.46 (39\%) and 1.47 (61\%) were obtained after 20 hours. Due to the preferred endo selectivity, the bromomethylene group was conveniently located cis to the ring junction proton. Upon treatment with potassium tert-butoxide, bromines 1.48 and 1.49 were displaced to afford the cyclopropane 1.50 in 47\% overall yield (from 1.44).
Scheme 1.8: Greenlee and Woodward's Diels-Alder reaction towards marasmic acid.

A parallel approach can also give rise to the hydrindane ring skeleton of (+)-isovelleral 1.35. Wickberg et al. utilized a sophisticated intramolecular Diels-Alder approach to construct the tricyclic core of isovelleral 1.35 (Scheme 1.9). Treatment of Weinreb amide 1.51 with methylcyclopropenyl-lithium 1.52 in ether at -70°C formed intermediate 1.53. As the reaction mixture was warmed to room temperature, a spontaneous intramolecular Diels-Alder reaction afforded the pentacyclic ketone 1.54 in 65% yield. Similar to Wilson and Turner's approach, the exo-selectivity was preferred and afforded a diastereomer of the isovelleral core. The efficiency of this total synthesis was diminished since additional steps were required to transform 1.54 into isovelleral 1.35.
Scheme 1.9: Intramolecular Diels-Alder reaction by Wickberg et al.

As demonstrated above, the Diels-Alder reaction is a powerful tool for the construction of polycyclic skeletons bearing stereogenic centers. The hydroxy-directed Diels-Alder reaction will be studied towards the synthesis of isovelleral analogues and the total synthesis of havellockate, and will therefore be discussed in the corresponding chapters.
Chapter 2: Studies on the Tandem Oxy-Cope/Ene/Claisen Reaction

2.1 Background

The construction of asymmetric quaternary carbon centers has perplexed synthetic chemists for numerous years. Several methods have been developed²⁴ in order to generate these challenging quaternary centers during carbon-carbon bond formation. Denissova and Barriault⁸ have recently reported a method to construct decalin skeletons possessing quaternary carbon centers (Figure 2.1). This domino reaction is triggered by an oxy-Cope rearrangement of allyl-1,2-divinylcyclohexanol 2.1 followed by tautomerization to provide the 10-membered cycle 2.2. The successive stereoselective transannular ene reaction of 2.2 gives exclusively E enol ether 2.3, which can subsequently undergo a Claisen rearrangement to afford lactol 2.4.

![Figure 2.1: The Tandem Oxy-Cope/Ene/Claisen Reaction.](image)

In cases using *trans*-disubstituted allyl ethers, lactols 2.4 were obtained in good chemical yields and high diastereoselectivity at C-5, C-9 and C-11. When R₁ and R₂ = Me, the desired lactol 2.4 and enol ether 2.3 were afforded in 76% and 15% yield respectively. Surprisingly, when trisubstituted allyl ether 2.6 was irradiated with microwaves, decalin 2.8 was not produced. Instead, lactol 2.7 was isolated in 75% yield (Scheme 2.1). In addition, isomerization of the trisubstituted olefin (E/Z = 89:11) was observed during the course of the reaction. These results suggest that a competing radical 1,3-shift is involved in the thermal process.

Scheme 2.1: Microwave irradiation of the trisubstituted allyl ether 2.6.

The scope and limitations of this method have been studied to elucidate mechanistic pathways and competing reactions. The substitution pattern of the terminal alkene has been varied and the precursors have been subjected to microwave irradiation and conventional heating in a sealed tube immersed in a wax bath.

2.2 Preparation of the Allyl Ethers

The 1,2-divinylcyclohexanol 2.13 was prepared via a series of Grignard and oxidation reactions (Scheme 2.2). Initially, cyclohexene oxide 2.9 was treated with copperbromide dimethylsulfide and isopropenylmagnesium bromide to afford alcohol 2.10 in 94% yield. The alcohol subsequently underwent a Swern oxidation to provide ketone 2.11 in 80% yield. A second Grignard reaction was performed on 2.11 in order to
introduce an equatorial vinyl group adjacent to the isopropenyl group to give alcohol 2.12 in 64% yield. Allylic oxidation of 2.12 with selenium dioxide afforded the desired 1,2-divinylcyclohexanol 2.13 in 45% yield.

Scheme 2.2: Preparation of 1,2-divinylcyclohexanol 2.13.

At this stage, various allylbromides were prepared according to Schemes 2.3, 2.4, 2.5 and 2.6. Exposure of ketones (2.14a,b,e-g,i) to triethylphosphonoacetate and sodium hydride in THF afforded di- and trisubstituted alkenes 2.15a,b,e-g,i in 10%-93% yields (Scheme 2.3). Following reduction of the ethyl ester groups with DIBAL-H, the allylic alcohols 2.16a,b,e-g,i were transformed into the corresponding allyl bromides 2.17a,b,e-g,i using CBr₄ and PPh₃ and were used without purification towards the next step.

Scheme 2.3: General procedure for the synthesis of allyl bromides 2.17.
Trisubstituted allyl bromides 2.17c and 2.17d were synthesized using different procedures described in Scheme 2.4 and Scheme 2.5. According to Dvorak’s methodology25, hydroalumination and subsequent palladium-catalyzed coupling of butynol 2.18 and 4-iodobenzoic acid 2.19 generated allylic alcohol 2.16c in 15% yield (Scheme 2.4). Exposure of allylic alcohol 2.16c to CBr\textsubscript{4} and PPh\textsubscript{3} afforded allylic bromide 2.17c which was used without purification towards the next step.

\textbf{Scheme 2.4: Synthesis of trisubstituted allyl bromide 2.17c.}

Stereoselective addition of the organocopper reagent to acetylenic ester 2.20 afforded the olefin 2.15d in 77% yield (Scheme 2.5).26 The conjugated ester 2.15d subsequently underwent a reduction and bromination to provide the crude allylic bromide 2.17d.

Scheme 2.5: Synthesis of trisubstituted allyl bromide 2.17d.

In order to prepare cis alkene 2.17h bearing an electron withdrawing group on the aryl, a different procedure was also required (Scheme 2.6). A modified Corey-Fuchs27 reaction with 4-trifluoromethylbenzaldehyde 2.21 afforded dibromo 2.22 (80% yield) and the latter was reacted with 2 equivalents of n-BuLi. After the formation of the acetylenic anion, dimethylformamide was added to generate aldehyde 2.23. After reduction with sodium borohydride, the alkyne 2.24 was reduced to cis alkene 2.16h using Lindlar's catalyst and H\textsubscript{2}. In order to control the reaction and avoid complete reduction to the alkane, the catalyst was poisoned with quinoline. As previously described, the resulting allylic alcohol 2.16h was converted to allyl bromide 2.17h and was used without purification for the etherification of diol 2.13.

2.3 The Tandem oxy-Cope/Ene/Claisen Reaction: Results and Discussion

Exposure of 1,2-divinylcyclohexanol 2.13 to various allylbromides 2.17a-i and sodium hydride in THF afforded the desired allyl ethers 2.1a-h in yields ranging from 46% to 95% (Table 2.1). Surprisingly, etherification reaction of 2.13 with allyl bromide 17i gave a complex mixture from which no allyl ether 2.1i was isolated.
Table 2.1: Preparation of the tandem reaction precursors.

![Reaction scheme]

<table>
<thead>
<tr>
<th>entry</th>
<th>allyl bromide</th>
<th>R₁</th>
<th>R₂</th>
<th>product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.17a</td>
<td>Me</td>
<td>Ph</td>
<td>2.1a</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>2.17b</td>
<td>Ph</td>
<td>Ph</td>
<td>2.1b</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>2.17c</td>
<td>4-(CO₂Me)C₆H₄</td>
<td>Me</td>
<td>2.1c</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>2.17d</td>
<td>Bu</td>
<td>Me</td>
<td>2.1d</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>2.17e</td>
<td>4-(OMe)C₆H₄</td>
<td>H</td>
<td>2.1e</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>2.17f</td>
<td>4-(Me)C₆H₄</td>
<td>H</td>
<td>2.1f</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>2.17g</td>
<td>4-(CF₃)C₆H₄</td>
<td>H</td>
<td>2.1g</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>2.17h</td>
<td>H</td>
<td>4-(CF₃)C₆H₄</td>
<td>2.1h</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>2.17i</td>
<td>4-(NO₂)C₆H₄</td>
<td>H</td>
<td>2.1i</td>
<td>degradation</td>
</tr>
</tbody>
</table>

The allyl-1,2-divinylcyclohexanols 2.1a-h were dissolved in toluene in the presence of 5 equivalents of base (Et₃N or DBU). After degassing the solution with argon for 15 minutes, the reaction mixture was irradiated with microwaves in a quartz cell at 210°C for 1h (method A) or heated at 210°C in a sealed tube immersed in a wax bath for 18-24h (method B). The results are summarized in Table 2.2. All resulting lactols 2.4a-e and 2.5a,b were oxidized to the lactones with TPAP to correctly identify the isomerization and epimerization ratios.
Table 2.2: Tandem Oxy-Cope/Ene/Claisen Reaction of Allyl-1,2-divinylcyclohexanols.

![Chemical structures](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>method</th>
<th>product</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.1a</td>
<td>Me</td>
<td>Ph</td>
<td>A<sup>a</sup></td>
<td>2.5a and 2.3a</td>
<td>34% (E/Z = 56:44) and 51%</td>
</tr>
<tr>
<td>2</td>
<td>2.1b</td>
<td>Ph</td>
<td>Ph</td>
<td>A<sup>a</sup></td>
<td>2.5b<sup>e</sup></td>
<td>24%</td>
</tr>
<tr>
<td>3</td>
<td>2.1b</td>
<td>Ph</td>
<td>Ph</td>
<td>B<sup>b</sup></td>
<td>2.5b and 2.3b</td>
<td>13% and 10%</td>
</tr>
<tr>
<td>4</td>
<td>2.1c</td>
<td>4-(CO<sub>2</sub>Me)C<sub>6</sub>H<sub>4</sub></td>
<td>Me</td>
<td>A<sup>b</sup> or B<sup>b</sup></td>
<td>degradation</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>2.1d</td>
<td>Bu</td>
<td>Me</td>
<td>A<sup>b</sup></td>
<td>2.3d</td>
<td>24%</td>
</tr>
<tr>
<td>6</td>
<td>2.1d</td>
<td>Bu</td>
<td>Me</td>
<td>B<sup>b</sup></td>
<td>2.3d</td>
<td>51%</td>
</tr>
<tr>
<td>7</td>
<td>2.1e</td>
<td>4-(MeO)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>A<sup>b</sup></td>
<td>degradation</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>2.1e</td>
<td>4-(MeO)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>B<sup>b</sup></td>
<td>2.4e</td>
<td>50% (dr = 9:1)<sup>f</sup></td>
</tr>
<tr>
<td>9</td>
<td>2.1e</td>
<td>4-(MeO)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>B<sup>c</sup></td>
<td>degradation</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>2.1e</td>
<td>4-(MeO)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>B<sup>d</sup></td>
<td>degradation</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>2.1f</td>
<td>4-(Me)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>A<sup>b</sup></td>
<td>2.4f</td>
<td>36% (dr = 4:1)<sup>f</sup></td>
</tr>
<tr>
<td>12</td>
<td>2.1f</td>
<td>4-(Me)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>A<sup>d</sup></td>
<td>2.4f</td>
<td>63% (dr >25:1)<sup>f</sup></td>
</tr>
<tr>
<td>13</td>
<td>2.1f</td>
<td>4-(Me)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>B<sup>d</sup></td>
<td>degradation</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>2.1g</td>
<td>4-(CF<sub>3</sub>)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>A<sup>b</sup></td>
<td>degradation</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>2.1g</td>
<td>4-(CF<sub>3</sub>)C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>B<sup>b</sup></td>
<td>2.4g</td>
<td>98% (dr >25:1)<sup>f</sup></td>
</tr>
<tr>
<td>16</td>
<td>2.1h</td>
<td>H</td>
<td>4-(CF<sub>3</sub>)C<sub>6</sub>H<sub>4</sub></td>
<td>A<sup>b</sup></td>
<td>2.4h</td>
<td>99% (dr >25:1)<sup>f</sup></td>
</tr>
<tr>
<td>17</td>
<td>2.1h</td>
<td>H</td>
<td>4-(CF<sub>3</sub>)C<sub>6</sub>H<sub>4</sub></td>
<td>B<sup>b</sup></td>
<td>2.4h</td>
<td>51% (dr >25:1)<sup>f</sup></td>
</tr>
</tbody>
</table>

^a DBU. ^b Et₃N. ^c2,6-Lutidine. ^d No base. ^e The dimer (2.26b) (C(Ph)₂=CHCH₂)₂ was isolated in 20%. ^f Diastereomeric ratios at C-11 were determined by 300 MHz ¹H NMR spectrum of the corresponding lactone.
Microwave irradiation of 2.1a, bearing a Z-trisubstituted alkene, afforded the 1,3-shift product 2.5a (E/Z = 56:44) and E-enol ether 2.3a in 34% and 51% yields respectively (entry1). This result was slightly different than the reaction depicted in Scheme 2.1. When the corresponding E-trisubstituted alkene 2.6 was irradiated with microwaves, lactol 2.7 was obtained with isomerization (E/Z = 89:11) and the enol ether intermediate nor the 3,3-shift product 2.8 were never observed. Isolation and characterization of E-enol ether 2.3a by NOE demonstrated the high diastereoselectivity of the transannular ene process (Scheme 2.7).

After the oxy-Cope reaction, macrocyclic ketone 2.2a can adopt two reactive conformations at the transition state, A and B. A close examination of transition state A reveals that the O-allyl group is oriented in the pseudo-equatorial position where as in transition state B, it is in the pseudo-axial position. This causes severe steric interactions which favours an energetically lower transition state, such as A. The formation of 2.3a over 2.25 is then readily explained.
Irradiation of 2.1b also gave the 1,3-shift product 2.5b along with dimer 2.26b in 24% and 20% yield respectively (entry 2). Irradiation or heating of 2.1d afforded exclusively E-enol ether 2.3d in 24% (method A) and 51% (method B) (entries 5 and 6). In order to drive the reaction to completion, enol ether intermediates 2.3d were subjected to prolonged heating, which unfortunately led to degradation. In both cases, no products resulting from a 1,3- or 3,3-shift were observed in the crude reaction mixture.

Much to our delight, the formation of dimer 2.26b and decalins 2.5a and 2.7 confirmed our assumption that the 1,3-shift implied formation of an oxaaallyl-allyl radical pair (Figure 2.2).

Figure 2.2: Proposed oxaallyl-allyl radical pair mechanism.

As illustrated in Figure 2.3, Gajewski’s model depicts that the Claisen rearrangement occurs via an early chair-like transition state. During his study, the use of kinetic isotope effects demonstrated that the C₄-O bond breaks faster than the formation of the C₁-C₆ bond when radical stabilizing substituents are present on the carbon skeleton 2.27. These results indicate the formation of an oxaallyl-allyl radical pair may be preferred over the traditional concerted mechanism.

Figure 2.3: Gajewski’s model.

Homolytic cleavage of the C-O bond in 2.3 would produce the oxallyl-allyl radical intermediate A which can recombine to form the 3,3-, 1,3- or dimer products (2.4, 2.5 and 2.26) respectively via three energetically distinct reaction pathways RP1, RP2 and RP3 (Figure 2.2).
In the case of disubstituted allyl ethers 2.1e-h, the substrate undergoes the tandem oxy-Cope/ene/Claisen reaction to afford the desired lactols 2.4e-h. Since the terminal alkene of the enol ether 2.3e-h of this process does bear radical stabilizing substituents, the 3,3-shift may involve a radical pair which recombines via RP1 to generate decalins 2.4a-h. In contrast, when the precursors to the tandem reaction carry sterically demanding substituents, i.e. trisubstituted allyl ethers (entries 1-6), the energetically lower 1,3-shift competes with the 3,3-shift to afford 2.5 via RP2. In the case of trisubstituted allyl ether 2.1b having gem-diphenyl (R₁=R₂=Ph), the formation of dimer 2.26 via RP3 was also observed. As illustrated in Figure 2.2, severe steric interactions are developed between the enol ether rings 2.3 and substituents R₁ and R₂ in the transition state. These interactions are responsible for increasing the energy level of the [3,3]-sigmatropic rearrangement and thus favouring the 1,3-shift (Figure 2.4).

Figure 2.4: Energy diagram of the oxy-Cope/ene/Claisen and 1,3-shift reaction.
During this sequence of events, homolytic cleavage of the C-O bond in 2.3a generates two radical species 2.28a and 2.29a (Scheme 2.8). The oxygen radical quickly rearranges to afford a stabilized tertiary radical and lactol 2.28a. During this time, the allyl radical 2.29a can isomerizes to 2.29b before recombining with the radical decalin 2.28a. Due to the fact that both decalins 2.30a and 2.30b are not obtained with an identical E/Z ratio (89:11 vs 56:44), this result indicates that the recombination rate of the oxaaallyl-allyl radical pairs competes with the allyl radical isomerization rate. In other words, if this reaction followed Curtin-Hammett’s principle29 and the isomerization equilibrium of the allyl radicals was fast, both allyl ethers 2.3a and 2.6 should have given decalins 2.5a and 2.7 in identical E/Z ratios.

\begin{center}
\begin{tikzpicture}
\begin{scope}
\node at (0,0) (2.3a) {2.3a};
\node at (2.75,0) (2.28a) {2.28a};
\node at (5.5,0) (2.28b) {2.28b};
\node at (8,0) (2.29a) {2.29a};
\node at (10.5,0) (2.30a) {2.30a};
\node at (13,0) (2.30b) {2.30b};
\node at (0.5,0.75) (1,3-shift) {1,3-Shift};
\node at (5.25,0.75) (recombination) {Recombination};
\node at (7.75,0.75) (isomerization) {Isomerization};
\draw[->] (2.3a) -- (2.28a);
\draw[->] (2.28a) -- (2.28b);
\draw[->] (2.28b) -- (1,3-shift);
\draw[->] (1,3-shift) -- (2.29a);
\draw[->] (2.29a) -- (recombination);
\draw[->] (recombination) -- (isomerization);
\draw[->] (isomerization) -- (2.30a);
\draw[->] (2.30a) -- (2.30b);
\end{scope}
\end{tikzpicture}
\end{center}

\textit{Scheme 2.8: Isomerization and recombination of the radical pairs.}

As mentioned previously, isolation of dimer 2.26b, which was created by the recombination of both allyl radical moieties, also indicated the presence of radical

29 Curtin, D.Y. Rec. Chem. Prog. 1954, 15, 111.
intermediates. These general results demonstrated that the reaction pathway is highly dependent on the degree of substitution of the allyl moiety.

In addition to steric interactions, the heating source greatly influenced the outcome of the reaction. Irradiation of 2.1b with microwaves afforded 2.5b (24%) and the dimer 2.26b (20%) whereas heating 2.1b in the sealed tube generated 2.5b (13%) and enol ether 2.3b (10%). Interestingly, enol ether 2.3b was diluted in dichloromethane with catalytic trimethylaluminum and afforded the 1,3-shift product 2.5b at room temperature.

Irradiation of 2.1e with microwaves gave a complex mixture from which no decalin 2.4e was isolated (entry 7). In contrast, heating of 2.1e in a sealed tube at 210°C gave the desired product 2.4e in 50% yield as a mixture of diasteromers (9:1) at C-11 (entry 8). When triethylamine was replaced by 2,6-lutidine (entry 9) or performing the reaction without base (entry 10), starting material 2.1e degraded without observing a trace of product. In the case of allyl ether 2.1f, decalin 2.4f was only obtained when microwave irradiation was used as source of heating (method A) (entries 11-13). Interestingly, trans-allyl ether 2.1g was completely converted to desired decalin 2.4g in 98% yield (dr > 25:1) using method B (entries 14 and 15). On the other hand, method A was required to convert 2.1h to 2.4h in quantitative yield (entry 16), since method B afforded 2.4h in 51% yield (entry 17).

In some cases, a loss of selectivity was observed at C-11 (entries 8 and 11). It was initially hypothesized that the epimerization was due to the presence of base. Therefore, an experiment was conducted without base (entry 12) and the resulting lactol 2.4f was generated in excellent diastereoselectivity (dr > 25:1). These results were
puzzling because the presence of electron donating substituents on the aryl group should decrease stabilization of the anion at C-11 and thus disfavoured epimerization.

On the other hand, when electron withdrawing substituents were present on the aryl group (entries 15-17), the diastereoselectivity observed was surprisingly excellent (dr > 25:1). One would expect greater epimerization in these cases since the anion created on C-11 during epimerization would be stabilized by the withdrawing effect of trifluoromethane.

Table 2.3: Denissova’s deuterium and temperature study.

![Chemical structures](2.31_2.33_2.35)

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>T °C</th>
<th>Yield<sup>a</sup></th>
<th>Ratio A:B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.31a</td>
<td>Ph</td>
<td>D</td>
<td>220<sup>b</sup></td>
<td>44%</td>
<td>2 : 1</td>
</tr>
<tr>
<td>2</td>
<td>2.31a</td>
<td>Ph</td>
<td>D</td>
<td>220</td>
<td>N.D.</td>
<td>2 : 1</td>
</tr>
<tr>
<td>3</td>
<td>2.31b</td>
<td>Ph</td>
<td>H</td>
<td>200</td>
<td>40%</td>
<td>11 : 1</td>
</tr>
<tr>
<td>4</td>
<td>2.31b</td>
<td>Ph</td>
<td>H</td>
<td>180</td>
<td>55%<sup>c</sup></td>
<td>13 : 1</td>
</tr>
<tr>
<td>5</td>
<td>2.31b</td>
<td>Ph</td>
<td>H</td>
<td>160</td>
<td>N.R.</td>
<td>--</td>
</tr>
</tbody>
</table>

^a Yield after oxidation of the lactol with TPAP. ^bEquiv. of triethylamine were used. ^cReaction not complete, 35% of 2.31b was recovered.

In order to explain the formation of minor epimer 2.35 at C-11, Denissova conducted as series of experiments (Table 2.3).³⁰ Deuterium allyl ether 2.31a was irradiated for 1h at 220°C with and without triethylamine (entries 1 and 2, Table 2.2). In both cases, decalins 2.33a and 2.35a were isolated in a ratio of 2:1 and no exchange of deuterium at C-11 was observed. These results were a clear indication that the base was not responsible for the epimerization. When the irradiation temperatures were varied

³⁰Farand, J.A.; Denissova, İ.; Barriault, L. *Heterocycles* 2004, 62, 735.
(entries 3-5), the diastereoselectivity of the Claisen was found to be dependent on the reaction temperature. This suggests that at high temperatures, the boat-like transition state B competes with the chair-like transition state A, to afford decalins 2.33b and 2.35b (Figure 2.5). In other words, less epimerization is observed at lower temperatures since the boat-like transition state, which would afford the undesired epimer 2.35b, is energetically inaccessible.

![Diagram of Claisen rearrangement](image)

Figure 2.5: Epimerization at C-11 via a boat-like transition state.

As depicted in Figure 2.6, energetically higher transition state B may afford Z-enol ether 2.34 to provide epimer 2.35. In order to provide evidence that the latter reaction pathway is not followed, ether 2.36 was heated at 220°C for 1 h (Scheme 2.10). 1H NMR of the crude reaction mixture indicated the formation of only one enol ether 2.37 ($E/Z > 98\%$). These results confirm that the epimerization occurs during the boat-like transition state of the Claisen rearrangement.
2.4 The Tandem Oxy-Cope/Ene/Claisen Reaction of Propargyl Ethers

In addition to allyl ethers, propargyl ethers can also undergo the tandem oxy-Cope/ene/Claisen reaction. The preparation of the allylic bromides required for the etherification is depicted in Scheme 2.10 and Scheme 2.11.
Scheme 2.10: Preparation of propargyl bromide 2.39.

Exposure of the commercially available alkyne 2.38 to carbon tetrabromide and triphenylphosphine in CH\textsubscript{2}Cl\textsubscript{2} afforded propargyl bromide 2.39 (Scheme 2.10). The product was subsequently utilized without additional purification. As well, \textit{p}-anisaldehyde 2.40 was treated overnight with carbon tetrabromide, triphenylphosphine and triethylamine in CH\textsubscript{2}Cl\textsubscript{2} to yield dibromo 2.41 in 18% yield (Scheme 2.11). The lengthy reaction time was responsible for the degradation of the majority of the product and should therefore not exceed 5 hours. Dibromo 2.41 reacted with \textit{n}-BuLi and the intermediate was quenched with DMF to afford aldehyde 2.42 in 48% yield. Reduction of aldehyde 2.42 with sodium borohydride in ethanol generated alcohol 2.43 in 84% yield. Bromination of alcohol 2.43 afforded propargyl bromide 2.44 and was used without purification towards the etherification with diol 2.13.
Scheme 2.11: Preparation of propargyl bromide 2.44.

Etherification of 1,2-divinylcyclohexanol 2.13 and propargyl bromides 2.39 and 2.44 in the presence of sodium hydride afforded the precursors to the tandem reaction 2.45a and 2.45b in 59% and 80% yields respectively. Propargyl ethers 2.45a-e were irradiated with microwaves for 1h to provide decalins 2.46a,b and 2.47c-e in high yield (dr > 25:1) (Table 2.4). The formation of tetracyclic acetal 2.47 was observed when R was a withdrawing or aromatic group (entries 3-5). In the presence of these substituents, the allene intermediate A is activated and the hydroxyl group cyclizes onto the sp-hybridized carbon to afford the desired acetal 2.47 (Figure 2.7). The other lactol B cannot cyclize to the \textit{trans} acetal due to the formation of a highly strained 5-membered ring. Since this process is under thermodynamic control and an equilibrium exists between A and B, the 5-exo \textit{dig} cyclization solely affords tetracyclic acetal 2.47.
Table 2.4: The tandem oxy-Cope/ene/Claisen/exo-dig cyclization.

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>R</th>
<th>product</th>
<th>Yield % (dr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>a</sup></td>
<td>2.45a</td>
<td>H</td>
<td>2.46a</td>
<td>98 (>25:1)</td>
</tr>
<tr>
<td>2<sup>a</sup></td>
<td>2.45b</td>
<td>Me</td>
<td>2.46b</td>
<td>68 (>25:1)</td>
</tr>
<tr>
<td>3<sup>a</sup></td>
<td>2.45c</td>
<td>CH₂OBn</td>
<td>2.47c</td>
<td>81 (>25:1)</td>
</tr>
<tr>
<td>4</td>
<td>2.45d</td>
<td>Ph</td>
<td>2.47d</td>
<td>85 (>25:1)</td>
</tr>
<tr>
<td>5</td>
<td>2.45e</td>
<td>4-(MeO)C₆H₄</td>
<td>2.47e</td>
<td>81 (>25:1)</td>
</tr>
</tbody>
</table>

^a These experiments were performed by Irina Denissova

![Chemical Structure](image)

Figure 2.7: Thermodynamic control of the 5-exo dig cyclization.
2.5 Conclusion

In conclusion, the scope and limitations of the tandem oxy-Cope/transannular ene/Claisen reaction were studied. Disubstituted allyl ethers afforded the desired lactols via a 3,3-shift whereas trisubstituted allyl ethers afforded lactols through a 1,3-shift. Due to sterically demanding substituents, the latter followed an energetically lower oxaallyl-allyl radical pair transition state. The presence of radical intermediates was supported by the isolation of a dimer and observation of isomerization at the resulting terminal alkene during the 1,3-shift. Propargyl ethers were also utilized to synthesize allenes and tetracyclic acetals via the tandem oxy-Cope/ene/Claisen and 5-exo dig cyclization. The acetals were generated when the allene intermediate was activated by electron withdrawing groups or aromatics. Since the reaction is under thermodynamic control, only the cis tetracyclic acetal was observed. These tandem reactions efficiently afforded decalin structures possessing a quaternary carbon at C-9 and they are currently being applied towards the total synthesis of natural products.
Chapter 3: Applications of the Hydroxy-Directed Diels-Alder Reactions Towards the Synthesis of Isovelleral Analogues

3.1 Background and Biological Activity

As the study on the oxy-Cope/ene/Claisen reaction was being finalized, the synthesis of isovelleral analogues was pursued in collaboration with AstraZeneca. Due to the intriguing biological activity of isovelleral 3.1, the synthesis of its analogues was undertaken to ultimately conduct structure activity relationship (SAR) studies. Isovelleral is a mutagenic sesquiterpene dialdehyde found in the chemical defence mechanism of many basidiomycetes. This compound formed enzymatically in the fruit bodies of *Lactarius vellereus* is the result of a response to injury.

In addition to displaying a wide range of biological activities\(^{31}\), such as strong antibiotic and antifeedant properties, isovelleral 3.1 has a high affinity for the dopamine D1 and vanilloid receptors\(^{32}\). Sterner et al have reported IC\(_{50} = 0.29\) µM for the binding of \(^3\)H-SCH 23390 to the dopamine receptor and IC\(_{50} = 2.7\) µM for the binding of \(^3\)H-resiniferatoxin to the vanilloid receptor. Due to its high affinity for the vanilloid receptor, this natural product is responsible for activation of the receptor, and subsequently creates a painful response to the organism in question. Sterner’s group also established that the biological activity of isovelleral mainly focused on the presence of the dialdehyde moiety. In order to determine by structure activity relationship (SAR)

studies whether other functional groups, such as the cyclopropane, are crucial for such biological activity, the synthesis of isovelleral analogues was attempted.

3.2 Previous Total Syntheses of Isovelleral

In addition to Wickberg et al., two other groups have been successful with the total synthesis of isovelleral. Heathcock and Wijnberg’s synthetic strategies differ from the traditional Diels-Alder route for the construction of the cis-hydrindane core. In Heathcock’s racemic approach, keto-acid 3.3 afforded enol lactone 3.4 after treatment with oxalyl chloride. The cis ring junction was created when 3.4 was exposed to the lithium enolate of methyl acetate followed by methanesulfonic acid. Using Corey-Chaykovsky’s reagent with alkene 3.5, cyclopropane 3.6 was quickly generated on the most accessible face.

![Scheme 3.1: Heathcock’s approach towards the tricyclic core of isovelleral.](image)

Wijnberg’s enantioselective approach towards the total synthesis of isovelleral involved a MgI₂-induced rearrangement-cyclopropanation reaction (Scheme 3.2). Optically active mesylate 3.7 afforded intermediate 3.8 upon quick addition of MgI₂ and HMDS. It is believed that MgI₂ induces ionization of the sulfonate ester bond in
refluxing benzene or toluene to afford homoallylic cation 3.8 which cyclizes to ketone 3.10. Thus, cyclopropane 3.10 was created diastereoselectively in 82% yield from 3.7.

Scheme 3.2: Wijnberg’s approach towards (+)-isovelleral.

3.3 Retrosynthetic Analysis

Although many total syntheses of isovelleral have been completed in the past fifteen years, our principal goal was to generate isovelleral analogues to conduct SAR studies. During the last two years, our laboratory has focused much attention onto the hydroxy-directed Diels-Alder reaction (HDDA). In 2003, Thomas and Clément demonstrated a highly regio- and stereoselective Diels-Alder reaction of semicyclic dienes in the presence of a temporary magnesium tethering unit. This method consists of an in situ formation of pseudo-cyclic complexes 3.12 using MgBr₂·OEt₂ and Et₃N in dichloromethane. The magnesium acts as both a Lewis acid and a temporary tethering unit between dienes, such as diene 3.11, and dienophile. Mild reaction conditions were utilized in reactions involving sensitive tertiary alcohols to afford 3.13 as a sole diastereomer (Scheme 3.3). Since the magnesium tether binds to both the alcohol of
diene 3.11 and carbonyl of the dienophile, the facial selectivity is dictated as the
dienophile is delivered syn to the hydroxyl group. In addition to methyl acrylate, other
dienophiles such as N-phenylmaleimide (NPM) and various type B dienes gave the
corresponding cycloadducts in 57-80% yield and dr > 25:1.

Scheme 3.3: Hydroxy-Directed Diels-Alder Reaction with semicyclic dienes B.

The synthesis of the bicyclo[4.3.0]nonane core of isovelleral analogues was
envisioned using the regio- and stereoselective hydroxy-directed Diels-Alder reaction.
By applying the methodology presented in Scheme 3.3 to a 5-membered cyclic diene, the
desired cycloadduct was visualized as the core of the natural product. The retrosynthetic
analysis took cognizance of a Diels-Alder reaction between diene 3.16 and dimethyl
acetylenedicarboxylate 3.17 (Scheme 3.4) to generate the hydrindane core of isovelleral.
The alkyne 3.17 was chosen as dienophile since it would create an electrophilic alkene in
3.15 that should react with the Corey-Chaykovsky reagent to install the cyclopropane.
Scheme 3.4: Retrosynthetic analysis of isovelleral analogues.

3.4 Synthesis of Various Dienes and Hydroxy-Directed Diels-Alder Results

The initial synthesis of diene 3.16 was attempted by reacting commercially available 1,3-cyclopentadione 3.18 with a catalytic amount of \(p \)-toluenesulfonic acid in methanol (Scheme 3.5) to afford enol ether 3.19 in 55% yield. Vinylstannane 3.20 underwent tin-lithium exchange in the presence of \(n \)-butyllithium. This solution was cannulated into a heterogeneous solution containing anhydrous cerium trichloride and enol ether 3.19. Even though thin layer chromatography revealed the formation of tetrabutylstannane, which indicated a successful tin-lithium exchange, the desired diene 3.22 was never observed. Therefore, vinyl iodide 3.21 was also subjected to a iodine-lithium exchange with \(n \)-butyllithium. Unfortunately, addition of the vinyllithium to the enol ether 3.19 did not afford the desired product 3.22.

Scheme 3.5: Attempted synthesis of type B Diels-Alder diene.
The problem was overcome by initially treating 1,3-cyclopentadione 3.18 with phosphorus tribromide in refluxing dichloromethane for 24 hours to give vinyl bromide 3.23 in 57% yield (Scheme 3.6). In the meantime, alkenylcatecholborane 3.24 was prepared by hydroboration between tert-butyl-dimethyl-prop-2-ynyloxy-silane and catecholborane. With vinyl bromide 3.23 and boronic ester 3.24 in hand, diene 3.22 was synthesized via a Suzuki coupling reaction mediated by (Ph3P)2PdCl2 and sodium acetate in 85% yield. At this stage, ketone 3.22 was used to generate hydroxy dienes 3.25 and 3.26. Thus, ketone 3.22 was quantitatively reduced to alcohol 3.25 using Luche’s conditions and ketone 3.22 was treated with methyl lithium in THF to give diene 3.26 in 84% yield.

In the absence of an alkyl chain, diene 3.28 and 3.29 required an alternative procedure for their synthesis (Scheme 3.7). Enol ether 3.19 was cooled to -78°C, then treated with vinylmagnesium bromide in THF to produce the corresponding 1,2-addition product. The latter was subjected to an acidic work-up giving enone 3.27 in 100% yield. Reduction of 3.27 gave the volatile secondary alcohol 3.28 and treatment with vinylmagnesium bromide afforded volatile alcohol 3.29 in 41% yield.

34 Itatani, H.; Bailar, J.C.Jr. American Oil Chemist’s Society, 1967, 44, 147

Scheme 3.7: Synthesis of the hydroxy-directed Diels-Alder dienes 3.28 and 3.29.

The hydroxy-directed Diels-Alder reaction was attempted with dienes 3.25, 3.26, 3.28 and 3.29 with various dienophiles. Two reaction conditions were tried to generate the corresponding magnesium alkoxide diene, MgBr₂OEt₂ and Et₃N in DCM

57
(method A) or vinylmagnesium bromide in toluene (method B). The results are summarized in Tables 3.1, 3.2 and 3.3.

Table 3.1: The hydroxy-directed Diels-Alder reaction between diene 3.25 and activated dienophiles.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene</th>
<th>Dienophile</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>A²</td>
<td>Decomposition</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>A²</td>
<td>Decomposition</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>A²</td>
<td>Decomposition</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>A</td>
<td>Decomposition</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>B</td>
<td>Mixture of esters and lactones</td>
</tr>
</tbody>
</table>

*a*2,6-Lutidine was used as base.
Diene 3.25 was treated with MgBr₂·OEt₂ and Et₃N in dichloromethane followed by the addition of dimethylacetylene dicarboxylate 3.17 (entry 1, Table 3.1). Surprisingly, alkene 3.30 was generated within minutes with no trace of desired product in the crude mixture. Since alkyne 3.17 was an excellent Michael acceptor, triethylamine quickly acted as a nucleophile onto the conjugated system to generate the undesired product 3.30 after loss of ethylene. In order to overcome this problem, triethylamine was substituted with bulkier base 2,6-lutidine, but no product was isolated and diene 3.25 readily decomposed under these conditions (entry 2).

Methyl acrylate and N-phenylmaleimide with MgBr₂·OEt₂ and 2,6-lutidine (entries 3 and 4) and methylacrylate with MgBr₂·OEt₂/Et₃N (entry 5) were unsuccessfully scanned with diene 3.25 possessing a secondary alcohol. A cycloaddition did occur between diene 3.25 and dimethyl maleate when vinylmagnesium bromide was used as base and source of magnesium (entry 6). However, a mixture of esters and lactones gave rise to a complex ^1H NMR spectrum from which no desired cycloadducts were isolated. Even though dienophiles and bases were varied, all these reactions were unsuccessful and led to decomposition of the starting material.
Table 3.2: The hydroxy-directed Diels-Alder reaction between diene 3.26 and activated dienophiles.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene</th>
<th>Dienophile</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
<td>Decomposition</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>B</td>
<td>Decomposition</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>B</td>
<td>No desired product</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>B</td>
<td>Possible structure</td>
</tr>
</tbody>
</table>

Tertiary alcohol 3.26 was utilized with MgBr₂·4Et₂O/Et₃N and methyl acrylate, however this very acid sensitive diene decomposed in the reaction mixture (entry 1, Table 3.2). The use of vinylmagnesium bromide as source of magnesium and base was tried with diene 3.26 and dimethyl maleate, dimethyl fumarate and dimethyl acetylenedicarboxylate as dienophiles (entry 2-4). The results of these reactions were respectively decomposition of the diene, a mixture of unknown products and the possible formation of diester 3.31. The latter was isolated on a small scale and further NMR studies were abandoned.
In every case presented above, dienes bearing an alkyl chain were unsuccessfully scanned with Grignards and MgBr₂OEt₂/Et₃N. In order to determine whether the alkyl chain was responsible for the lack of success, diene 3.28 and 3.29 were subjected to similar reaction conditions (entries 1-5, Table 3.3).

Table 3.3 The hydroxy-directed Diels-Alder reaction between various 5-membered dienes and activated dienophiles.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene</th>
<th>Dienophile</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td> 3.28</td>
<td></td>
<td>A</td>
<td> 3.32 32%, dr > 25:1</td>
</tr>
<tr>
<td>2</td>
<td> 3.28</td>
<td></td>
<td>A</td>
<td> 3.33 54%, dr > 25:1</td>
</tr>
<tr>
<td>3</td>
<td> 3.29</td>
<td></td>
<td>A</td>
<td> 3.34 23%, dr > 25:1</td>
</tr>
<tr>
<td>4</td>
<td> 3.29</td>
<td></td>
<td>A<sup>a</sup></td>
<td>No reaction</td>
</tr>
<tr>
<td>5</td>
<td> 3.29</td>
<td></td>
<td>B<sup>b</sup></td>
<td>Decomposition</td>
</tr>
</tbody>
</table>

^a 36 hours at 21°C. ^b Reflux.
After much anticipation, reaction between diene 3.28, methyl acrylate or N-phenylmaleimide and MgBr₂OEt₂/Et₃N afforded desired cycloadducts 3.32 (32% yield) and 3.33 (54% yield) in excellent diastereomeric ratio (>25:1) (entries 1 and 2). Due to the presence of the magnesium tether, the facial selectivity was governed as the activated dienophile was delivered syn to the alcohol of diene 3.28. The regioisoselectivity was controlled by the preferred overlap of the frontier molecular orbitals between diene and dienophile and their corresponding coefficients. Tertiary alcohol 3.29 also generated the preferred cycloadduct 3.34 in 23% yield with methyl acrylate as dienophile (entry 3). No reaction was observed when diene 3.29 and dimethyl maleate, a less activated dienophile, were stirred with MgBr₂OEt₂/ Et₃N for 36 hours. When vinylmagnesium bromide was employed as base and source of magnesium, no HDDA occurred at room temperature and heating at 110°C resulted in degradation of diene 3.29.

Scheme 3.8: The successful HDDA reaction with NPM using vinylmagnesium bromide.
As a last attempt, diene 3.26 was reacted with N-phenylmaleimide and vinylmagnesium bromide (Scheme 3.8). Due to its exceptional reactivity, this dienophile afforded cycloadducts 3.35 and 3.36. After treatment of imide 3.36 with DBU, lactonisation provided cycloadduct 3.35 in 84% yield from diene 3.26 (dr > 25:1). As predicted, the regio- and stereoselectivity were controlled when the magnesium is tethered to both the alcohol of diene 3.26 and the carbonyl group of the dienophile.

In general, dienes 3.25 and 3.26 were not compatible with this methodology, unless a powerful dienophile such as N-phenylmaleimide was chosen. Even though the reaction medium was alkaline, the presence of a Lewis acid may have promoted the decomposition of the sensitive diene. In contrast, dienes 3.28 and 3.29 which reflect those used by Thomas and Clément, displayed a wider range of applications and are useful precursors for the synthesis of cycloadducts using the HDDA reaction.

Since the HDDA was not successful with dimethyl acetylenedicarboxylate 3.17 as dienophile, the acidic protons at C-1 and C-2 in 3.35 were the remaining useful structural feature on the cycloadduct for the installation of the cyclopropane (Scheme 3.9).

Scheme 3.9: Attempts towards the cyclopropanation.
Since the cycloprotonation step required the use of LDA, protection of amide 3.35 was attempted using various conditions. Protection of amide 3.35 with Boc₂O was unsuccessful and the product seemed to be sensitive to the basic work-up conditions. In addition, iodomethane and sodium hydride failed to protect amide 3.35. Protection with allylbromide and sodium hydride afforded the desired product 3.37b in 65% accompanied with unknown byproducts (Scheme 3.9). During a modification of this reaction, using tetakis-triphenylphosphine palladium (0), allylbromide and triethylamine, the starting material was recovered. The desired amide 3.37a was successfully protected in quantitative yield in the presence of benzyl bromide and potassium hydride\(^{37}\).

According to Garratt and Porter,\(^{38}\) cyclopropanes can be generated in the presence of a diester 3.39, LDA and the electrophilic dibromo- or diiodomethane (Scheme 10).

Scheme 3.10: Garratt and Porter’s cyclopropanation with diester 3.39.

Subjecting 3.37a or 3.37b, bearing a lactone and amide to the same reaction conditions with CH₂I₂ or CH₂Br₂, did not afford the desired cyclopropane 3.38. When the protection of amide 3.35 towards amide 3.37a was repeated on a larger scale, an excess of potassium hydride was utilized and product 3.42 was obtained in 73% yield (Scheme 3.11). With an excess of base, the most acidic proton of the amide 3.35 was initially

removed, followed by removal of the proton α to the lactone. As the electrophile was added to the reaction medium, the last anion formed acted as the first nucleophile to afford α-lactone alkylation. This result seemed promising because benzylbromide could be substituted with dibromo- or diiodomethane in order to install the cyclopropane after additional treatment with base. As depicted in scheme 3.11, these reactions were ineffective.

\[\text{Scheme 3.11: Attempted alkylations α to the lactone.} \]

Since the acidic protons were α to a lactone and an amide, and Garratt’s study illustrated the use of acidic protons α to esters, transformation of the amide to an ester was envisioned to increase the acidity of proton on C-2 (Scheme 3.12). According to Charetté’s methodology, \(^{39}\) primary and secondary amides with a methylene group next to the nitrogen (C(O)NH\textsubscript{2}R) can be transformed into a methyl ester in the presence of triflic anhydride, pyridine and methanol. Since the methylene group seemed to be crucial

\(^{39}\) Charetté, A.B.; Chua, P. Synlett. 1998, 163.
for such transformation, a hydroxy-directed Diels-Alder reaction was conducted using N-benzylimaleimide as dienophile. The mixture of diene 3.26, dienophile and vinylmagnesium bromide solely afforded cycloadduct 3.45 in 74% yield (dr > 25:1). In this particular case, lactonisation was not observed. Since Charette’s methodology required primary or secondary amides, tertiary amide 3.45 was therefore subjected to basic conditions (NaH, DBU and n-BuLi) to drive the lactonisation towards amide 3.46. These attempts were not successful and can be rationalized using pKa concepts. During lactonisation, an anion would be developed on the nitrogen of the amide. Due to the presence of the benzyl group, the anion is not as stabilized as was the case with N-phenylmaleimide. The additional methylene group increased the pKa, destabilized the charge on the nitrogen and rendered lactonisation unfavorable. Nevertheless, Charette’s esterification was tried with tertiary amide 3.45. No reaction occurred and the starting material was recovered.
Scheme 3.12: HDDA reaction with N-benzylimaleimide and attempted esterification.

In addition to these reactions, selenium chemistry was undertaken to insert an endocyclic alkene 3.50 between the lactone and amide (Scheme 3.13). Treating cycloadduct 3.35 with an excess of potassium hydride and phenylselenyl chloride resulted in decomposition of the starting material. A similar reaction was conducted with the N-allyl amide, LDA, HMPA and PhSeCl, which yielded a mixture of undesired products.
Scheme 3.13: Selenoxide elimination proposal.

3.5 Conclusion

In conclusion, the scope and limitations of the HDDA reaction applied towards 5-membered cyclic dienes were investigated. Dienes 3.25 and 3.26 bearing an alkyl chain were unreactive unless a powerful dienophile, such as N-phenylmaleimide or N-benzylmaleimide, were employed with a Grignard as source of magnesium and base. Dienes 3.28 and 3.29, which resembled the previously studied 6-membered semicyclic dienes, were compatible with N-phenylmaleimide and methylacrylate when MgBr₂OEt₂ and Et₃N were utilized as tethering agent. Reaction between diene 3.25 and dimethyl acetylenedicarboxylate 3.17 was most likely unfavorable due to a resulting ring strain in the product, caused by two endocyclic alkenes and an sp²-hybridized carbon at the ring junction. All attempts towards cyclopropanation failed. Dimethyl cyclopropene 1,2-dicarboxylate is currently being studied as dienophile as a route to the tricyclic core of isovelleral.
Chapter 4: Studies Towards the Total Synthesis of Havellockate

4.1 Background

Marine origin diterpenes are particularly interesting as synthetic targets due to their complex structures and numerous stereochemical centers. During their search for bio-active secondary metabolites in 1998, Anjaneyulu et al. discovered a novel diterpenoid, havellockate 4.1, from the soft coral Sinularia granosa, located on the Havellock Island of the Andaman and Nicobar group of Islands of the Indian Ocean (Figure 4.1). Structure elucidation of the diterpenoid was conducted using spectral data and X-ray analysis. Interestingly, havellockate has structural resemblance with the recently isolated tetracyclic diterpenoids isomandapamate 4.2 from Sinularia maxima and mandapamate 4.3 from Sinularia dissecta.

![Chemical structures](image)

Figure 4.1: Havellockate, isomandapamate and mandapamate.

The complex skeleton of mandapamate 4.3 is believed to be the result of a biosynthetic transannular Diels-Alder reaction (Figure 4.2). Therefore, the application

of a Diels-Alder reaction towards the synthesis of these complex cores presents an attractive and feasible synthetic route.

![Chemical Structures](image)

Figure 4.2: Proposed biosynthesis of mandapamate via a transannular Diels-Alder.

Amongst the three natural products, the key structural features which render havellockate 4.1 synthetically challenging and compatible with our developed methodology are: the eight stereogenic centers, a *cis*-fused hydridane moiety and two *γ*-lactones, where one of them is spiro-fused. Since its isolation, Mehta *et al.* have been, to the best of our knowledge, the only group to attempt the total synthesis of havellockate.\(^{42}\)

The synthesis of the tetracyclic core 4.7 of the diterpenoid was accomplished from 1,4-dioxa-spiro[4.4]nonane 4.5, via an *endo*-dicyclopentadienone-10-ethylene ketal 4.6 to afford 4.7 in 23 synthetic steps (Scheme 4.1). With the intention of efficiently completing the total synthesis of havellockate, we chose to apply the hydroxy-directed Diels-Alder reaction to stereoselectively construct the hydridane moiety of havellockate.

![Chemical Structures](image)

Scheme 4.1: Mehta's approach towards the tetracyclic core of havellockate.

In addition to type B dienes, Barriault, Thomas and Clément also studied the compatibility of various type A dienes 4.8 with many dienophiles, such as acrolein, methacrylate and N-phenylmaleimide, in the hydroxy-directed Diels-Alder reaction (39-89% yield, dr > 25:1) (Figure 4.3 and Scheme 4.2). As previously discussed, cycloadducts 4.10 were obtained regio- and stereoselectively due to the presence of a magnesium tethering unit which is responsible for delivering the dienophile syn to the hydroxyl group of the diene. Using this methodology, a retrosynthetic analysis of havellockate was designed and is depicted in Scheme 4.3.
Scheme 4.2: The HDDA reaction with a type A diene.

The side alkyl chain of havellockate 4.1 was envisioned to be installed via a Claisen rearrangement. Ketone 4.12 would be prepared via a hydroboration and subsequent oxidation of alkene 4.13. The tricyclic core 4.13 can be regio- and stereoselectively constructed via the hydroxy-directed Diels-Alder reaction between diene 4.14 and methacrylate. The lactone would spontaneously be generated during the course of the reaction to afford the carbon skeleton of havellockate 4.1.
Scheme 4.3: Retrosynthetic analysis of havellockate via the HDDA reaction.

4.2 Synthesis of Various Dienes and Hydroxy-Directed Diels-Alder Results

The synthesis of various dienes began by refluxing commercially available furfuryl alcohol 4.15\(^{43}\) in water in a controlled pH environment to afford enone 4.16 (Scheme 4.4).\(^{44}\) The secondary alcohol was protected with TBDMSCl, triethylamine and DMAP to generate silylether 4.17. The crude vinyl iodide 4.18,\(^{45}\) obtained upon treatment of 4.17 with iodine and a mixture of ether and pyridine (1:1), underwent a Suzuki coupling reaction with alkenylboronic ester 4.19 to provide diene 4.20 in 42% yield over two steps. Nucleophilic attack of methyllithium onto the least hindered face of ketone 4.20 afforded HDDA reaction precursor 4.21. The stereochemistry of 4.21 was proven by a \(^1\text{H}\) NMR NOESY experiment which illustrated a syn relationship between the hydrogen at 4.61 ppm and the methyl hydrogens at 1.35 ppm (Scheme 4.5).

Since precursor 4.21 possessed three oxygen atoms to which magnesium could create a tether, the protection pattern of diene 4.21 was varied to explore the scope and limitation of the HDDA reaction. The masked hydroxyl groups 4.21 were initially

\(^{43}\) 250g/10.50$ from Aldrich
deprotected with three equivalents of TBAF. The resulting triol 4.22 was treated with TBDPSCI to selectively protect the primary alcohol in 47% yield. Since a trace of di-protected product was beginning to appear by TLC, the uncompleted reaction was quenched with saturated ammonium chloride. Finally, secondary alcohol 4.23 was protected with iodomethane and sodium hydride to provide methylether 4.24 in 72% yield.

Scheme 4.4: Synthesis of dienes 4.21, 4.22, 4.23 and 4.24 for the HDDA reaction.

Scheme 4.5: 'H NOESY correlation of diene 4.21.
With the Diels-Alder precursors in hand, the dienes were reacted with various dienophiles and MgBr₂OEt₂/Et₃N in DMC (method A) or vinylmagnesium bromide in toluene (method B) (Table 4.1, 4.2 and 4.3).
<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene</th>
<th>Dienophile</th>
<th>Conditions</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
<td>SM</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>B</td>
<td>SM</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>B</td>
<td>SM</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>B</td>
<td>SM</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>B<sup>a</sup></td>
<td>SM</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>B<sup>a</sup></td>
<td>SM</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>B<sup>a</sup></td>
<td>SM</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>A</td>
<td>Decomposition</td>
</tr>
</tbody>
</table>

^a THF was used as solvent.
As listed in Table 3.1, diene 4.21 was treated with methyl acrylate and MgBr₂OEt₂/ Et₃N (entry 1). In contrast with previous HDDA reactions, no reaction occurred and the starting material was recovered. The source of magnesium was changed from the Lewis acid salt to vinylmagnesium bromide with hope of undergoing a HDDA reaction (entry 2-4). Methyl acrylate, N-phenylmaleimide and ethyl (Z)-3-bromo-2-propenoate⁴⁶ were scanned as dienophiles with diene 4.21 and vinylmagnesium bromide without success. Ethyl (Z)-3-bromo-2-propenoate was chosen as an activated dienophile, bearing an electron withdrawing halogen and ester, with the potential of installing the endocyclic alkene of havellockate 4.1 after elimination. Since diene 4.21 was not offering results, triol 4.22 was considered as diene. Interestingly, one, two or all three hydroxyls could tether to the magnesium unit and facilitate the HDDA process. However, the solubility of 4.22 was one variable that had not immediately been considered. Therefore, non-polar toluene was substituted with tetrahydrofuran when the reaction conditions required vinylmagnesium bromide. The change in solvents could have possibly been responsible for the lack of productivity between diene 4.22 and methyl acrylate, ethyl (Z)-3-bromo-2-propenoate and N-phenylmaleimide (entries 5-7).

Knowing that triol 4.22 was partially soluble in dichloromethane, the reaction was attempted between triol 4.22, ethyl (Z)-3-bromo-2-propenoate and MgBr₂OEt₂/Et₃N but led to decomposition of the starting material (entry 8).

At this point in time, the primary alcohol of triol 4.22 was selectively protected with TBDPSCI to focus the magnesium tethering onto the resulting accessible secondary and tertiary alcohols. The hydroxy-directed Diels-Alder reaction (HDDA) was tried between diene 4.23, methyl acrylate, dimethyl maleate, MgBr₂OEt₂/Et₃N and

⁴⁶ For the preparation, see Ma, S; Lu. X. Organic Syntheses, 1995, 72, 112
vinylmagnesium bromide (entries 1-4, Table 3.2). These esters were chosen as
dienophiles in order to directly afford a cycloadduct bearing the 5-membered γ-lactone.
Since these reactions were not productive, diol 4.23 was lastly reacted with methyl
acrylate and an aggressive Lewis acid (entry 5). Not surprisingly, the diene decomposed
in the presence of dimethylaluminum chloride.

Table 4.2: Attempted Diels-Alders with diene 4.23 and various dienophiles.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene</th>
<th>Dienophile</th>
<th>Conditions</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
<td>SM</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>B</td>
<td>SM</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>A</td>
<td>SM</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>B</td>
<td>SM</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>(CH₃)₂AlCl Toluene</td>
<td>Decomposition</td>
</tr>
</tbody>
</table>

At this point, the protecting groups were changed from the initial diene 4.21.
Instead of protecting 1° and 2° alcohols with tert-butyldimethylsilyl groups, the 1° alcohol
was protected with tert-butyldiphenylsilyl and the 2° alcohol was protected as a less
hindering methyl ether. Only recovered starting material was obtained when diene 4.24 was treated with methyl acrylate, the MgBr_2OEt_2/Et_3N or vinylmagnesium bromide (entry 1 and 2, Table 4.3).

Table 4.3: Attempted Diels-Alders with dienes 4.24, 4.28, 4.31 and 4.32 with dienophiles.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene</th>
<th>Dienophile</th>
<th>Conditions</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
<td>SM</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>B</td>
<td>SM</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>B</td>
<td>Decomposition</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>A</td>
<td>SM</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>A</td>
<td>SM</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Aa</td>
<td></td>
</tr>
</tbody>
</table>

a 2,6-Lutidine was used as base.
Due to the fact that all dienes bearing a secondary alcohol were not compatible with the chosen dienophiles, a diene lacking the secondary alcohol was synthesized. α-iodination of commercially available enone 2.25 followed by a Suzuki coupling reaction afforded diene 2.27 (Scheme 4.6). Tertiary alcohol 2.28 was obtained by treating the resulting ketone 2.27 with methyllithium in 25% yield. These products were obtained in low yields given that they are susceptible to decomposition with an excess of base.

\[
\text{Scheme 4.6: Synthesis of diene 2.28 without the secondary alcohol.}
\]

The HDDA reaction was attempted between diene 2.28, dienophile (methyl acrylate and ethyl (Z)-3-bromo-2-propenoate) with vinylmagnesium bromide to respectively afford an inseperable mixture of regioisomers 4.29 in >90% yield and decomposition of diene 4.28 (entries 3 and 4). With all these attempts, it was clear that dienes 4.21, 4.22, 4.23, 4.24 and 4.28 were not compatible with the chosen dienophiles and reaction conditions to afford the desired cycloadducts. Mimicking the 6-membered semicyclic dienes of Barriault, Thomas and Clément and the successful 5-membered semicyclic dienes (Table 3.3), dienes 4.31 and 4.32 were synthesized (Scheme 4.7).
Palladium-catalyzed cross-coupling of vinyl iodide 4.18 under Negishi conditions47 afforded diene 4.30 in 56\% over 2 steps. Next, nucleophilic attack with methyllithium was anticipated to occur \textit{anti} to the silyl ether. Tertiary alcohol 4.31 was obtained in 53\% yield with a diastereomeric \textit{anti/syn} ratio of 9:1. Upon deprotection with TBAF, diol 4.32 was also generated in 78\% yield.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {TBDMsO};
\node (b) at (1,0) {4.18};
\node (c) at (2,0) {$1) \text{ZnBr}_2, \text{CH}_2=\text{CHMgBr},$}
\node (d) at (3,0) {$\text{THF, -78 }^\circ\text{C to 21 }^\circ\text{C}$}
\node (e) at (4,0) {$2) \text{Enone, Pd(PPH}_3)_4,$}
\node (f) at (5,0) {DMF}
\node (g) at (6,0) {56% over 2 steps}
\node (h) at (7,0) {TBDMsO};
\node (i) at (8,0) {4.30};
\node (j) at (9,0) {$\text{CH}_3\text{Li, THF}$}
\node (k) at (10,0) {$-78 }^\circ\text{C to 0 }^\circ\text{C}$
\node (l) at (11,0) {53%}
\node (m) at (0,-1) {TBDMsO};
\node (n) at (1,-1) {4.31}
\node (o) at (2,-1) {dr = 9:1}
\node (p) at (3,-1) {TBAF, THF}
\node (q) at (4,-1) {78%}
\node (r) at (5,-1) {HO};
\node (s) at (6,-1) {4.32};
\end{tikzpicture}
\end{center}

\textbf{Scheme 4.7: Synthesis of dienes 4.31 and 4.32.}

Diene 4.32, bearing a diol, was envisioned reacting with methylacrylate and MgBr\textsubscript{2}OEt\textsubscript{2}/Et\textsubscript{3}N to directly afford the tricyclic core of havellockate 4.1 after spontaneous lactonisation (Table 4.3, entry 5). The lack of product can possibly be explained by the presence of the diols, which can create unfavorable aggregates with magnesium and can promote difficulties during the reaction. In order to overcome this problem, the monoprotected diene 4.31 was reacted with methyl acrylate and MgBr\textsubscript{2}OEt\textsubscript{2}/Et\textsubscript{3}N without success (entry 6).

Scheme 4.8: HDDA reaction between diene 4.31 and methylacrylate.

However, visualization of the transition state of this reaction offers insight on the lack of reaction. As illustrated in Scheme 4.8, when the dienophile is delivered syn to the alcohol during the HDDA, steric interactions are developed between the bulky TBDMS group and the methylester. This unfavorable interaction is a plausible explanation for the absence of product 4.33. In order to decrease the steric bulk of the dienophile, acrolein was tested as dienophile with MgBr₂·OEt₂/2,6-lutidine (Table 4.3, entry 7). As demonstrated by Thomas and Clément, 2,6-lutidine was required as base when acrolein was used as dienophile to decrease the epimerization at the vulnerable C-1. Much to our delight, the HDDA reaction regio- and stereoselectively afforded bicyclic core 4.34 of havellockate 4.1 in 80% yield (α/β = 9:1) (Scheme 4.9).

Scheme 4.9: Successful HDDA reaction between diene 4.31 and acrolein.
4.3 Towards the Synthesis of the Tetracyclic Core of Havellockate

With the bicyclic core of havellockate in hand, the next challenge was the formation of the γ-lactone followed by a stereoselective hydroboration of the endocyclic alkene. Deprotection of silyl ether 4.34 with TBAF afforded a mixture of alcohol 4.35 and lactol 4.36 in a combined yield of 89% (Scheme 4.10). Oxidation of the mixture with NMO, 4Å MS and catalytic TPAP provided lactone 4.37 in 70% yield.

![Scheme 4.10: Synthesis of the tricyclic core of havellockate and attempted hydroboration.](image)

In order to control the stereogenic centers found on havellockate 4.1, a stereoselective hydroboration was envisioned to, primarily afford the required cis ring junction, and secondly insert an alcohol on C-4. The facial selectivity of the hydroboration would hopefully be controlled by steric factors and afford the desired cis ring junction. However, there was the possibility of a complexation between the tertiary alcohol and the borane reagent to provide the trans ring junction. If this were the case, one could simply protect the alcohol to avoid such problems. The regioselectivity of the hydroboration would be dictated by the anti-Markovnikov addition of the boron onto the
less substituted carbon of the alkene. As illustrated in Table 3.4, many hydroboration conditions were scanned with alkene 4.37. Unless otherwise indicated, no reaction occurred and the starting material was recovered and purified.

Table 4.4: Attempted hydroboration to generate the cis-ring junction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Hydroboration</th>
<th>Conditions</th>
<th>Oxidation</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>BH₃,DMS</td>
<td>CH₂Cl₂, reflux for 2 hrs RT for 18 hrs</td>
<td>NaOH, H₂O₂, EtOH</td>
<td>RT 18 hrs</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>BH₃,DMS</td>
<td>hexanes, RT for 1 hr</td>
<td>NaOH, H₂O₂, EtOH</td>
<td>RT 18 hrs, Reflux 1 hr</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>BH₃,DMS</td>
<td>THF, reflux for 18 hrs</td>
<td>NaOH, H₂O₂, EtOH</td>
<td>Reflux for 2 hrs, RT 18 hrs</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>BH₃,DMS</td>
<td>THF, RT for 6 hrs</td>
<td>NaOH, H₂O₂, EtOH</td>
<td>RT for 18 hrs, Reflux for 1 hr</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>9-BBN dimer</td>
<td>THF, reflux for 6 hrs RT for 18 hrs</td>
<td>NaOH, H₂O₂</td>
<td>Reflux for 1 hr</td>
</tr>
<tr>
<td>6</td>
<td>TMS</td>
<td>BH₃,DMS</td>
<td>THF, reflux for 3 hrs</td>
<td>NaOH, H₂O₂, EtOH</td>
<td>RT for 18 hrs</td>
</tr>
<tr>
<td>7</td>
<td>TMS</td>
<td>9-BBN,THF</td>
<td>THF, RT for 30 minutes RT for 18 hrs</td>
<td>Solvent evaporated</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>TMS</td>
<td>BH₃,THF</td>
<td>THF, 0°C for 1 hr RT for 18 hrs</td>
<td>NaOH, H₂O₂</td>
<td>Decomposed</td>
</tr>
<tr>
<td>9</td>
<td>TMS</td>
<td>Catecholborane</td>
<td>THF, reflux for 8 hrs</td>
<td>NaOH, H₂O₂</td>
<td>RT for 18 hrs</td>
</tr>
</tbody>
</table>

In entries 1 to 4, alkene 4.37 and borane DMS were combined in various solvents such as dichloromethane, hexanes and THF. Even though the length and temperature of the reaction were varied, no reaction occurred. As expected, alkene 4.37 and the bulky 9-BBN dimer did not afford the desired alcohol due to the size and inaccessibility of the borane towards the reactive site on the substrate (entry 5). Bearing in mind that the free
tertiary alcohol might be responsible for the lack of results, the later was protected with TMSCl and KHMD in 94% yield (Scheme 4.10). The resulting alkene 4.38 was treated with various borane reagents, such as BH₃THF, 9-BBN'THF, BH₃DMS and catecholborane, with THF as solvent without success (entries 6-9). Since the substrate is polyoxegenated, an excess of borane would always be used to insure the presence of the reactive reagent after possible complexation to the oxygen atoms.

After many hydroboration attempts, it was apparent that the synthetic strategy would require some modifications. Instead of deprotecting alcohol 4.34 and generating γ-lactone 4.37, the hydroboration was directly attempted with the HDDA cycloadduct 4.34 and BH₃THF, followed by oxidation of the trialkylborane with NaOH/H₂O₂ (Scheme 4.11). After oxidation, the heterogeneous mixture was refluxed for 1 hour and afforded the desired triol 4.41 in 46% yield and diol 4.42 in 28% yield.

Scheme 4.11: First hydroboration attempt with cycloadduct 4.34.
In order to drive the reaction to completion, the procedure was modified and the oxidation mixture was refluxed overnight. Astonishingly, hydroboration of 4.34 provided 4.41 in 81% yield as the sole isomer (Scheme 4.12). In addition to the hydroboration, the aldehyde was reduced in situ to the primary alcohol. Close examination of the progression of the reaction showed that the aldehyde was first reduced, followed by the hydroboration of the resulting product. After this accomplishment, the main focus was the construction of the spirolactone.

Scheme 4.12: Synthesis of the tetracyclic core of havellockate.

Secondary alcohol 4.41 was oxidized to the ketone with NMO and TPAP (cat.). In addition, the primary alcohol of 4.41 was oxidized to the aldehyde, whereupon the tertiary alcohol and aldehyde cyclized to form the lactol. The resulting lactol was further
oxidized to provide lactone 4.43 in 70% yield. The generation of this rigid product confirmed the presence of a cis ring junction and protected in situ the tertiary alcohol as a lactone. The X-ray structure of lactone 4.43 is illustrated in Scheme 4.13.

Scheme 4.13: X-ray structure of lactone 4.43.

Ketone 4.43 was treated with vinylmagnesiumbromide and the reaction was quenched with acetic anhydride to afford acetate 4.45 in 50% yield over two steps. The acetalisation reaction did no go to completion and the tertiary alcohol 4.44, resulting from the Grignard addition, was recovered in 26% yield. Due to the presence of the lactone and the cis ring junction, the Grignard reagent is believed to selectively attack on the top face. Even in the presence of an excess of vinylmagnesium bromide, TLC and 1H NMR
never indicated a second product (attack from the bottom face) or opening of the lactone. Ozone was bubbled into a solution of 4.45 in dichloromethane to transform the terminal alkene into aldehyde 4.46 in 75% yield.

The closure of the spirolactone was envisioned via an intramolecular aldol condensation without elimination to afford the secondary alcohol of the spiro-lactone on havellockate 4.1. Acetate 4.46 was initially treated with LDA but the desired product was not observed by 1H NMR. KHMDS and DBU afforded the starting material whereas freshly sublimed potassium tert-butoxide hydrolyzed the acetate. However, treatment of acetate 4.46 with NaH, followed by deprotection of the secondary alcohol afforded the aldol product with elimination and the 5-membered γ-lactone 4.47 (Scheme 4.12). Upon deprotection, the secondary alcohol spontaneously attacks the rigid 6-membered lactone to relieve strain and liberate the tertiary alcohol. In addition to obtaining the desired spirolactone 4.49 in 24% over two steps, the hydrolyzed acetate 4.48 bearing the 5-membered lactone was also isolated in 46% yield. After observing the facile elimination of the hydroxyl after condensation, it was established that the spirolactone would be installed after the addition of the side alkyl chain during the total synthesis of havellockate 4.1.

4.4 Installation of the Side Alkyl Chain of Havellockate via a Claisen Rearrangement

According to Nakai,48 a palladium-catalyzed Claisen reaction can occur via an in situ enol ether exchange in the presence of TFA. This methodology was attempted in order to install the side alkyl chain on the tricyclic core of havellockate. In addition,

since the 6-membered lactone was hindering the bottom face of the complex, the Claisen rearrangement would occur from the top face to afford the desired stereogenic center on C-12. The enol ether 4.50 was obtained from ketone 4.43 with KHMDS and dimethylsulfate in 77% yield (Scheme 4.14).

\[\text{Scheme 4.14: Claisen attempts to install the alkyl chain.} \]

Allylic alcohol 4.54 was prepared in three steps starting with a Horner-Wadsworth-Emmons reaction between triethylphosphonoacetate and commercially available methacrolein 4.51 (Scheme 4.15).\(^{49}\) The most electron rich alkene of ester 4.52 underwent epoxidation in the presence of \(m\)CPBA to afford epoxide 4.53 in 52% yield. The highly regioselective samarium(II) iodide-induced reduction of \(\gamma,\delta\)-epoxy-\(\alpha,\beta\)-unsaturated ester 4.53 with HMPA and DMAE afforded the allylic alcohol 4.54 in 49% yield. Unfortunately, the anticipated Claisen reaction via the enol ether exchange between methylenol ether 4.50 and allylic alcohol 4.54 was not successful. Upon many attempts, the methyl enol ether 4.50 would simply hydrolyze to ketone 4.43 with addition of allylic alcohol 4.54.

\(^{49}\) Etemad-Moghadam, G.; Seyden-Penne, J. Tetrahedron, 1984, 40, 5153
Scheme 4.15: Preparation of the allylic alcohol 4.54 via a SmI₂-induced reduction.

In order to overcome this problem, O-alkylation of ketone 4.43 with the tosylated version of allylic alcohol 4.54 was suggested. This would have directly created the enol ether which could subsequently undergo a Claisen rearrangement to afford the desired side alkyl chain 4.55 of havellockate. Activation of allylic alcohol 4.54 was considered using tosyl chloride and base (Scheme 4.16). To avoid the unfavoured elimination product 4.52, 2,6-lutidine was chosen as a hindered base, but no reaction occurred. A similar result was obtained with mesyl chloride and pyridine. Allylic alcohol 4.54 was activated with tosyl chloride and triethylamine, however the undesired conjugated system 4.52 was isolated due to elimination.
Scheme 4.16: Attempts to prepare the mesylate and tosylate activated electrophiles.

Due to the fact that allylic alcohol 4.54 readily eliminated to the conjugated ester 4.52 with tosylchloride, allyl bromide 4.60 was considered as an electrophile (Scheme 4.17). However, in order to avoid elimination, the ester needed to be reduced to the primary alcohol. The primary alcohol 4.54 was protected with TBDMSCl to provide silyl ether 4.56. Crude ester 4.56 was reduced in the presence of DIBAL-H to afford alcohol 4.57 in 50% yield over two steps. The later was protected with benzylbromide and the silyl protecting group was subsequently removed with TBAF to generate allylic alcohol 4.59 in 97% yield over two steps. In the presence of carbon tetrabromide and triphenylphosphine, bromine-activated electrophile 4.60 was afforded in 90% yield.
Scheme 4.17: Synthesis of the electrophilic allyl bromide 4.60.

Although some C-alkylation was anticipated, the bromine-activated electrophile was tested with ketone 4.43 and KHMDS to provide the Claisen precursor 4.61 (Scheme 4.18). When THF and DME were used as solvents, no reaction occurred and the starting materials were recovered. As a final attempt, allyl bromide 4.60 was used with a catalytic amount of sodium iodide in THF, but under such conditions, ketone 4.43 decomposed.
Scheme 4.18: Attempts of O-alkylation with bromine-activated electrophile 4.60.

4.5 Conclusion

In conclusion, the scope and limitations of the hydroxy-directed Diels-Alder reaction were established during the course of this study. In general, dienes which bear the alkyl chain are not compatible with the HDDA reaction. In addition, polyoxygenated precursors are not well-suited with this methodology due to, their insolubility in nonpolar solvents and, the difficulty of the magnesium to tether the diene and dienophile in an organized fashion. However, semicyclic diene 4.31 afforded the desired regio- and stereoselective Diels-Alder cycloadduct with acrolein. With this result in hand, the tetracyclic core of havelockate was obtained in 12 steps from furfuryl alcohol. The formation of the 6-membered lactone was unexpected but proved to be helpful in the subsequent reactions in terms of selectivity and protecting the tertiary alcohol. Since the
aldol condensation afforded the enone after spontaneous elimination, installation of the side alkyl chain will be performed before functionalizing the spirolactone. The Claisen reaction is currently being studied as a route for adding the alkyl chain with the desired stereogenic center.
Chapter 5: Experimental

5.1 General Methods and Materials

All reactions were carried out under dry atmospheres in flame-dried glassware or sealed tubes equipped with a magnetic bar and a rubber septum, unless otherwise indicated. THF and Et₂O were freshly distilled from sodium/benzophenone. Dichloromethane, DMF, toluene and triethylamine were freshly distilled from CaH₂. MgBr₂·OEt₂ was prepared in our laboratory and stored in the glove box. The other commercially available reagents were used without purification, unless otherwise indicated.

Reactions were monitored by TLC analysis of aliquots, using aluminum sheets precoated (0.2 mm layer thickness) with silica gel 60 F₂₅₄ (E. Merck). Flash chromatography was carried out on 230-400 mesh silica gel 60. TLC plates were viewed under UV light and stained with p-anisaldehyde staining solution. GC (Agilent 6890 Series) was equipped with a crosslinked 5% PH ME siloxane column (30 m x 0.32 mm, 0.25 μm film). ¹H and ¹³C NMR spectra were recorded on Bruker Avance 300 MHz and Bruker AMX 500 MHz spectrometers. IR spectra were recorded on a Bomen Michaelson 100 FTIR spectrometer. HRMS spectra were obtained on a Kratos Analytical Concept instrument. Melting points were recorded on a Gallenkamp Melting Point Apparatus P 1106G. X-ray crystallographs were performed on a Bruker AX SMART 1k CCD diffractometer.

Microwave reactions were conducted in a CEM Model ESP-1500 Plus oven equipped with a pressure monitoring device and an EST-300 Plus fibre optic temperature probe. All experiments were performed in a quartz tube (previously washed with
aqueous iPrOH/NaOH solution, water and acetone). When using non-polar solvents such as toluene, a carboflon™ bar was added.

2-isopropenyl-cyclohexanol (2.10) A dry 500 mL round bottom flask was charged with CuBr-DMS (1.05 g, 5.09 mmol) and THF (150 mL). The solution was cooled to -30°C followed by the addition of isopropenylmagnesium bromide (132.4 mL, 66.23 mmol). The mixture was stirred for 15 minutes. Cyclohexene oxide 2.9 (5.00 g, 50.9 mmol) was added and the solution was warmed to 0°C and stirred for 1.5 hours. The reaction mixture was quenched with saturated NH₄Cl (200 mL) and extracted with ether (3x). The combined organic phases were dried over anhydrous MgSO₄, concentrated in vacuo and purified by flash column chromatography (20% EtOAc in hexanes) to provide alcohol 2.10 as a yellow oil (7.14 g, 94%). Spectral data: Warrington, J. M.; Yap, G. P. A.; Barriault, L. Org. Lett. 2000, 2, 663.

2-isopropenyl-cyclohexanone (2.11) A 500 mL dry round bottom flask was charged with oxalyl chloride (5.33 mL, 61.1 mmol) and dichloromethane (200 mL). The solution was cooled to −78°C, and DMSO (8.67 mL, 122 mmol) was slowly added. After 20 minutes of stirring, alcohol 2.10 (7.136 g, 50.90 mmol) was added to give an opaque white mixture. The later was stirred at −78°C for 1.5 hours, followed by the addition of triethylamine (35.47 mL, 254.5 mmol). The solution was again stirred at 0°C for an additional hour and quenched with saturated NH₄Cl. The aqueous layer was extracted with CH₂Cl₂ (3x) and the combined organic phases were dried over anhydrous MgSO₄. The solution was concentrated and purified by flash column chromatography (20% EtOAc in hexanes) to afford ketone 2.11 as a yellow oil.

2-isopropenyl-1-vinyl-cyclohexanol (2.12)

To a dry 500 mL round bottom flask was added 2-isopropenylcyclohexanone 2.11 (3.90 g, 28.2 mmol) and THF (150 mL). The solution was cooled to −78°C, followed by the addition of vinylmagnesium bromide (84.0 mL, 84.6 mmol). The mixture was stirred at −78°C for 30 minutes. The solution was subsequently stirred at 0°C for 1 hour. The reaction was quenched with saturated NH₄Cl, and the aqueous phase was extracted with ethyl acetate (3x). The solution was dried over anhydrous MgSO₄, concentrated and purified by flash column chromatography (10% EtOAc in hexanes), to afford alcohol 2.12 as a yellow oil (2.98 g, 64%). Spectral data: Warrington, J. M.; Yap, G. P. A.; Barriault, L. Org. Lett. 2000, 2, 663.

2-(1-hydroxymethyl-vinyl)-1-vinyl-cyclohexanol (2.13)

A solution of 2-isopropenyl-1-vinyl-cyclohexanol 2.12 (2.98 g, 17.92 mmol) in CH₂Cl₂ (50 mL) was canulated into a dry 250 mL round bottom flask. Selenium dioxide (0.994 g, 8.96 mmol) and t-BuOOH 70% (9.22 mL, 71.7 mmol) were added and the mixture was stirred overnight. The reaction mixture was diluted with CH₂Cl₂ and water. The organic layer was washed with saturated sodium bicarbonate (2 x 30 mL), brine (30 mL), water (30 mL) and another 30 mL of brine. The organic layer was dried over MgSO₄ and the solvent was evaporated in vacuo. The crude product was purified by flash column chromatography (35% EtOAc in hexanes) to afford diol 2.13 as colorless crystals (1.48 g, 45%). IR (cm⁻¹) 3310 (br), 3201 (br), 3073 (m), 3010 (m),
2978 (m), 2934 (s), 2855 (s), 1638 (m), 1448 (m). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 5.83 (dd, $J = 17.2$ Hz, $J = 10.7$ Hz, 1H), 5.14 (d, $J = 17.2$ Hz, 1H), 5.03 (s, 1H), 4.96 (d, $J = 10.7$ Hz, 1H), 4.86 (s, 1H), 4.03 (d, $J = 12.5$ Hz, 1H), 3.90 (d, $J = 12.5$ Hz, 1H), 3.46 (bs, 2H), 2.21 (dd, $J = 3.1$ Hz, $J = 12.8$ Hz, 1H), 1.92-1.19 (m, 8H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 149.8 (C$_4$), 146.4 (CH), 116.7 (CH$_2$), 111.7 (CH$_2$), 73.3 (C$_4$), 65.1 (CH$_2$), 52.4 (CH), 38.7 (CH$_2$), 27.2 (CH$_2$), 26.4 (CH$_2$), 21.5 (CH$_2$). HRMS (EI), m/z (M$^+$-H$_2$O) calculated for C$_{11}$H$_{16}$O 164.1247 found 164.1223. mp = 77.9-80.1°C.

5.2 General Procedure A for the Horner-Wadsworth-Emmons Reaction

(Z)-3-Phenyl-but-2-enoic acid ethyl ester (2.15a)

To a dry 250 mL round bottom flask was added NaH (4.996 g, 124.9 mmol) and THF (125.0 mL). The mixture was cooled to 0°C followed by the addition of triethylphosphonoacetate (16.52 mL, 83.24 mmol). The solution was stirred for 40 minutes. After adding acetophenone 2.14a (5.00 g, 41.6 mmol) to the solution, the reaction mixture was warmed to room temperature (21°C) and stirred overnight. The solution was quenched with saturated NH$_4$Cl (100 mL), and the aqueous phase was extracted with ether (3 x 50 mL). The combined organic layers were dried over anhydrous MgSO$_4$, and the organic solvent was evaporated. The E and Z isomers were separated by column chromatography (10% EtOAc in hexanes) to afford the Z isomer 2.15a (0.79 g, 10%). Spectral analysis: Kobayashi, Y.; William, A. D.; Mizojiri, R. J. Organomet. Chem. 2002, 653(1-2), 91.
3,3-Diphenyl-acrylic acid ethyl ester (2.15b)

To a dry round bottom flask was added NaH (0.823 g, 34.3 mmol) and THF (35.0 mL) under an atmosphere of nitrogen. Triethylphosphonoacetate was slowly added to the solution. The mixture was refluxed for 15 minutes and a solution of benzophenone 2.14b (1.25 g, 6.86 mmol) in THF (5.0 mL) was slowly cannulated into the solution. The reaction mixture was refluxed for an additional 3 hours, cooled to room temperature and poured into 200 mL of 1 N aqueous citric acid. The aqueous phase was extracted with ether (3 x 25 mL) and the combined organic layers were washed with water and brine. The organic phase was dried over anhydrous MgSO₄ and the solvent was evaporated. The crude product was purified by flash column chromatography (35% EtOAc in hexanes) to yield ester 2.15b as a colorless oil (1.86 g, >98%). Spectral analysis: Groundwater, P. W.; Garnett, I.; Morton, A. J.; Sharif, T.; Coles, S. J.; Hursthouse, M. B.; Nyerges, M.; Anderson, R. J.; Bendell, D.; McKillop, A.; Zhang, W. J. Chem. Soc., Perkin Trans. 1 2001, 2781.

trans-3-(4-Methoxy-phenyl)-acrylic acid ethyl ester (2.15c)

Prepared using general procedure A

Sodium hydride (1.10 g, 27.5 mmol); triethylphosphonoacetate (4.12 mL, 18.4 mmol); p-anisaldehyde 2.14c(1.25 g, 9.18 mmol) in THF (30.0 mL) to provide ester 2.15c as a colorless oil (1.76 g, 93%). Spectral data: Huang, Z-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320.
trans-3-p-Tolyl-acrylic acid ethyl ester (2.15f)

Prepared using general procedure A

Sodium hydride (1.25 g, 31.2 mmol); triethylphosphonoacetate (4.13 mL, 20.8 mmol); p-tolualdehyde 2.14f (1.25 g, 10.4 mmol) in THF (60.0 mL) to provide ester 2.15f as a colorless oil (1.76 g, 89%). Spectral data: Huang, Z-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320.

trans-3-(4-Trifluoromethyl-phenyl)-acrylic acid ethyl ester (2.15g)

Prepared using general procedure A

Sodium hydride (0.696 g, 17.4 mmol); triethylphosphonoacetate (2.30 mL, 11.6 mmol); p-(trifluoromethyl)benzaldehyde 2.14g (1.01 g, 5.80 mmol) in THF (30.0 mL) to provide ester 2.15g as colorless crystals (1.22 g, 86%). Spectral data: Huang, Z-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320.

trans-3-(4-Nitro-phenyl)-acrylic acid ethyl ester (2.15i)

Prepared using general procedure A

Sodium hydride (15.9 mg, 0.398 mmol); triethylphosphonoacetate (0.05 mL, 0.3 mmol); p-nitrobenzaldehyde 2.14i (20.0 mg, 0.132 mmol) in THF (5.0 mL) to provide ester 2.15i as a colorless crystals (15.3 mg, 52%). Spectral data: Masllorens, J.; Moreno-Manas, M.; Pla-Quintana, A.; Roglans, A. Org. Lett. 2003, 5, 1559.
5.3 General Procedure B for the DIBAL-H Reduction

\[(Z)-3\text{-Phenyl-but-2-en-1-ol (2.16a)}\]

\[
\begin{array}{c}
\text{H}_2\text{C} \\
\text{H} \\
\text{OH}
\end{array}
\]

A solution of (Z)-3-phenyl-but-2-enoic acid ethyl ester 2.15a (0.793 g, 4.17 mmol) in THF (60.0 mL) was cannulated into a dry 250 mL round bottom flask. The mixture was cooled to -78°C. DIBAL-H (7.11 mL, 12.5 mmol) was added, and the solution was stirred at 0°C for 2.5 hours. The reaction was quenched with a 0.1 M aqueous solution of sodium tartrate and was stirred overnight. The clear aqueous layer was extracted with EtOAc (3 x 50 mL), dried over MgSO\textsubscript{4}, and the solvent was evaporated to afford alcohol 2.16a as a colorless oil (0.60 g, 97%). Spectral data: Carruthers, W.; Evans, N.; Pooranamoorthy, R. J. Chem. Soc., Perkin Trans. 1 1975, 76.

\[
\begin{array}{c}
\text{3,3-Diphenyl-prop-2-en-1-ol (2.16b)}
\end{array}
\]

Prepared using general procedure B

\[
\begin{array}{c}
\text{H} \\
\text{OH}
\end{array}
\]

3,3-Diphenyl-acrylic acid ethyl ester 2.15b (1.86 g, 7.38 mmol); DIBAL-H (14.8 mL, 22.2 mmol) in THF (100 mL) to afford alcohol 2.16b as a colorless oil (1.17 g, 75%). Spectral data: Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63, 3099.

\[
\begin{array}{c}
\text{MeO} \\
\text{H} \\
\text{OH}
\end{array}
\]

\[
\text{trans-3-(4-Methoxy-phenyl)-prop-2-en-1-ol (2.16e)}
\]

Prepared using general procedure B

\[
\begin{array}{c}
\text{H} \\
\text{OH}
\end{array}
\]

trans-3-(4-methoxy-phenyl)-acrylic acid ethyl ester 2.15e (1.76 g, 8.52 mmol); DIBAL-H (17.0 mL, 25.5 mmol) in THF (100 mL) to afford alcohol 2.16e as colorless crystals (1.25 g, 90%). Spectral data: Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001, 123, 12168.
trans-3-p-Tolyl-prop-2-en-1-ol (2.16f)

Prepared using general procedure B

trans-3-p-tolyl-acrylic acid ethyl ester 2.15f (1.76 g, 9.23 mmol); DIBAL-H (18.5 mL, 27.7 mmol) in THF (100 mL) to afford alcohol 2.16f as colorless crystals (1.09 g, 80%). Spectral data: Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. 2001, 123, 9525.

trans-3-(4-Trifluoromethyl-phenyl)-prop-2-en-1-ol (2.16g)

Prepared using general procedure B

trans-3-(4-Trifluoromethyl-phenyl)-acrylic acid ethyl ester 2.15g (0.323 g, 1.32 mmol); DIBAL-H (2.65 mL, 3.97 mmol) in THF (50.0 mL) to afford alcohol 2.16g as yellow crystals (0.266 g, 99%). Spectral data: Imai, N.; Nomura, T.; Yamasoto, S.; Ninomiya, Y.; Nakami, J. Tetrahedron: Asymmetry 2002, 13, 2433.

trans-3-(4-Nitro-phenyl)-prop-2-en-1-ol (2.16i)

Prepared using general procedure B

trans-3-(4-Nitro-phenyl)-acrylic acid ethyl ester 2.15i (0.934 g, 4.22 mmol); DIBAL-H (8.44 mL, 12.7 mmol) in THF (60.0 mL) to afford alcohol 2.16i as a colorless oil (0.399 g, 53%). Spectral data: Malet, R.; Moreno-Manas, M.; Parella, T.; Pleixats, R. Organometallics 1995, 14, 2463.
5.4 General procedure C for bromination of allylic alcohols

\[
\text{H}_3\text{C} \quad \text{H} \quad \text{Br}
\quad \text{C}_6\text{H}_5 \quad \text{C}_6\text{H}_5
\]

\[\text{(Z)-(3-Bromo-1-methyl-propenyl)-benzene (2.17a)}\]

To a dry 100 mL round bottom flask was added (Z)-3-phenyl-but-2-en-1-ol 2.16a (792.7 mg, 5.349 mmol) in 100.0 mL of dichloromethane at room temperature (21°C). Carbon tetrabromide (2.217 g, 6.686 mmol) was added and the mixture was stirred for 5 minutes. A solution of triphenylphosphine (2.104 g, 8.023 mmol) in dichloromethane (10.0 mL) was cannulated into the reaction mixture which subsequently became yellow. The solution was stirred at room temperature for one hour, followed by the removal of dichloromethane in vacuo. The residue was diluted with hexanes, and the triphenylphosphine oxide precipitated from solution. The mixture was filtered through celite (3x), and the organic solvent was evaporated on the rotary evaporator to provide 2.17a. The product was used in the following reaction without further purification.

\[
\text{H}_3\text{C} \quad \text{H} \quad \text{Br}
\quad \text{C}_6\text{H}_5 \quad \text{C}_6\text{H}_5
\]

\[\text{1-Bromo-3,3-diphenyl-prop-2-ene (2.17b)}\]

Prepared using general procedure C

3,3-Diphenyl-prop-2-en-1-ol 2.16b (509.6 mg, 2.423 mmol); carbon tetrabromide (100.0 mg, 3.029 mmol); triphenylphosphine (953.3 mg, 3.635 mmol) in CH\(_2\)Cl\(_2\) (50.0 mL). The product was used in the following reaction without further purification.

\[
\text{MeO}
\quad \text{H} \quad \text{Br}
\quad \text{C}_6\text{H}_5 \quad \text{C}_6\text{H}_5
\]

\[\text{trans-1-(3-Bromo-propenyl)-4-methoxy-benzene (2.17e)}\]

Prepared using general procedure C

\[\text{trans-3-(4-Methoxy-phenyl)-prop-2-en-1-ol 2.16e (150.0 mg, 0.914 mmol); carbon tetrabromide (378.7 mg, 1.142 mmol); triphenylphosphine (359.4 mg,}\]
1.370 mmol) in CH₂Cl₂ (25.0 mL). The product was used in the following reaction without further purification.

trans-1-(3-Bromo-propenyl)-4-methyl-benzene (2.17f)

![Chemical structure](image)

Prepared using general procedure C

trans-3-p-Tolyl-prop-2-en-1-ol 2.16f (304.8 mg, 2.057 mmol); carbon tetrabromide (852.5 mg, 2.571 mmol); triphenylphosphine (809.1 mg, 3.085 mmol) in CH₂Cl₂ (30.0 mL). The product was used in the following reaction without further purification.

trans-1-(3-Bromo-propenyl)-4-trifluoromethyl-benzene (2.17g)

![Chemical structure](image)

Prepared using general procedure C

trans-3-(4-Trifluoromethyl-phenyl)-prop-2-en-1-ol 2.16g (100.0 mg, 0.495 mmol); carbon tetrabromide (205.1 mg, 0.6185 mmol); triphenylphosphine (194.6 mg, 0.7419 mmol) in CH₂Cl₂ (10.0 mL). The product was used in the following reaction without further purification.

trans-1-(3-Bromo-propenyl)-4-nitro-benzene (2.17i)

![Chemical structure](image)

Prepared using general procedure C

trans-3-(4-Nitro-phenyl)-prop-2-en-1-ol 2.16i (200.0 mg, 1.116 mmol); carbon tetrabromide (462.7 mg, 1.395 mmol); triphenylphosphine (439.1 mg, 1.674 mmol) in CH₂Cl₂ (30.0 mL). The product was used in the following reaction without further purification.
(Z)-3-((4-Methoxycarbonylphenyl)but-2-en-1-ol (2.16c)

Sodium methoxide (3.5 mg, 0.065 mmol) was added to a 1 M solution of LiAlH₄ (34.4 mg, 0.901 mmol) in THF (0.9 mL). The mixture was cooled to 0°C, and a solution of but-2-yn-1-ol 2.18 (60.3 mg, 0.860 mmol) in THF (1.0 mL) was slowly added. The reaction mixture was stirred for 4 h at room temperature. After hydroalumination was completed, the reaction was cooled to 0°C; dimethylcarbonate (0.08 mL, 0.1 mmol) was added, and the mixture was stirred for 10 minutes without cooling. 4-Iodobenzoic acid 2.19 (157.7 mg, 0.6018 mmol), Pd₂dba₃·CHCl₃ (15.6 mg, 0.0151 mmol), ArPH₃ (18.4 mg, 0.0601 mmol) and zinc (II) chloride (49.2 mg, 0.361 mmol) were added to the reaction mixture under an argon atmosphere. The reaction was stirred for 3 h at room temperature followed by heating at 50°C for 1.5 h. Methanol (1 mL) was then added, and after 2 h at room temperature, the reaction mixture was poured into brine/water (1:1), acidified with 5% hydrochloric acid to become slightly acidic (pH = 5-6), and extracted with ether (3x). The combined organic layers were dried over MgSO₄ and the solvent was evaporated in vacuo. The crude product was purified by flash column chromatography (petroleum ether/ether/acetone 8:1:1) to afford alcohol 2.16c (44.0 mg, 35%). Spectral data: Havranek, M.; Dvorak, D. J. Org. Chem. 2002, 67, 2125.
(Z)-4-(3-Bromo-1-methyl-propenyl)-benzoic acid methyl ester

(2.17c)

Prepared using general procedure C

(Z)-3-(4-Methoxycarbonylphenyl)but-2-en-1-ol 2.16c (58.1 mg, 0.282 mmol); carbon tetrabromide (116.8 mg, 0.3522 mmol); triphenylphosphine (110.8 mg, 0.4224 mmol) in CH₂Cl₂ (10.0 mL). The product was used in the following reaction without further purification.

(Z)-3-Methyl-hept-2-enoic acid ethyl ester (2.15d)

To CuI suspended in dry THF (8.0 mL) at −40°C under an atmosphere of N₂ was added n-BuLi (1.46 mL, 2.97 mmol). The solution was stirred for 30 minutes, followed by cooling to −78°C. A solution of ethyl 2-butyroate 2.20 (0.30 g, 2.68 mmol) in THF (2.0 mL) was cannulated dropwise into the reaction mixture. After 1.5 hours, the reaction was quenched by dropwise addition of 1 mL of methanol. The mixture was warmed to −20°C and 2 mL of saturated NH₄Cl (aq) was added with stirring. The solution was filtered through a celite pad and the remaining gray solid was washed with ether. The aqueous phase was extracted with ether (3x). The combined organic layers were washed with brine and dried over anhydrous MgSO₄. The solvent was evaporated and the crude product was purified by flash column chromatography (10% EtOAc in hexanes) to yield ester 2.15d as a colorless oil (0.352 g, 77.3%). Spectral data: Anderson, R.J.; Corbin, V.L.; Cotterell, G.; Cox, G.R.; Henrick, C.A.; Schaub, R.; Siddall, J.B. J. Am. Chem. Soc. 1975, 97, 1197.
(Z)-3-Methyl-hept-2-en-1-ol (2.16d)
Prepared using general procedure B

(Z)-3-Methyl-hept-2-enoic acid ethyl ester 2.15d (352.0 mg, 2.068 mmol); DIBAL-H (4.14 mL, 6.20 mmol) in THF (40.0 mL) to afford alcohol 2.16d as a colorless oil (209.2 mg, 79%). Spectral data: Hu, T.; Schaus, J.V.; Lam, K.; Palfreyman, M.G.; Wuonola, M.; Gustafson, G.; Panek, J.S. J. Org. Chem. 1998, 63, 2401.

(Z)-1-Bromo-3-methyl-hept-2-ene (2.17d)
Prepared using general procedure C

(Z)-3-Methyl-hept-2-en-1-ol 2.16d (120.6 mg, 0.9406 mmol); carbon tetrabromide (389.9 mg, 1.176 mmol); triphenylphosphine (370.1 mg, 1.411 mmol) in CH$_2$Cl$_2$ (20.0 mL). The product was used in the following reaction without further purification.

5.5 General Procedure D for the preparation of propargyl alcohols

1-(2,2-Dibromo-vinyl)-4-trifluoromethyl-benzene (2.22)
Carbon tetrabromide (1.943 g, 5.858 mmol) was dissolved in dichloromethane (10.0 mL) under N$_2$, and the solution was stirred at -20°C for 10 minutes. A solution of triphenylphosphine (1.537 g, 5.858 mmol) in dichloromethane (8.0 mL) was slowly cannulated into the reaction mixture. The yellow solution was stirred at -20°C for one hour. A solution of p-(trifluoromethyl)-benzaldehyde 2.21 (0.4 mL, 3 mmol) with triethylamine (0.41 mL, 3.0 mmol) and dichloromethane (5.0 mL) was cannulated into the reaction mixture. The latter was stirred at room temperature (21$^\circ$C) for 4 hours. The mixture was diluted with petroleum ether and triphenylphosphine oxide
precipitated out of the solution. The mixture was filtered through a silica pad, concentrated in vacuo and purified by flash column chromatography (5% EtOAc in hexanes) to provide dibromo 2.22 as a light yellow oil (0.966 g, >98%). Spectral data: Huh, D.H.; Jeong, J.S.; Lee, H.B.; Ryu, H.; Kim, Y.G. Tetrahedron 2002, 58, 9925.

(4-Trifluoromethyl-phenyl)-propynal (2.23)

1-(2,2-Dibromo-vinyl)-4-trifluoromethyl-benzene 2.22 (1.710 g, 5.193 mmol) was dissolved in dry THF (50.0 mL) under an atmosphere of nitrogen and the solution was cooled to -78°C. After addition of n-BuLi (5.71 mL, 10.9 mmol), the solution was stirred at -78°C for 40 minutes. A solution of dry DMF (0.94 mL, 7.8 mmol) in dry THF (10.0 mL) was cannulated into the reaction mixture and the latter was stirred at -78°C for 20 minutes, followed by 40 minutes at room temperature (21°C). The reaction was quenched with saturated NH₄Cl (aq) and the aqueous layer was extracted with ether (3x). The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuo. The crude volatile aldehyde 2.23 (288.2 mg, 28%) was used towards the next reaction.

3-(4-Trifluoromethyl-phenyl)-prop-2-yn-1-ol (2.24)

To a round bottom flask was added (4-trifluoromethyl-phenyl)-propynal 2.23 (288.2 mg, 1.455 mmol) and EtOH (30.0 mL). The solution was cooled to 0°C and sodium borohydride (275.1 mg, 7.273 mmol) was slowly added. The solution was stirred for one hour and was quenched with saturated NH₄Cl (aq). The aqueous layer was extracted with ether (3x) and the combined organic layers were dried over anhydrous MgSO₄ and concentrated. The residue was purified by flash column chromatography (20% EtOAc in hexanes) to yield alcohol 2.24 as a volatile brown oil (220.2 mg, 76%).

3-(4-Trifluoromethyl-phenyl)-cis-prop-2-en-1-ol (2.16h)

To a solution of 3-(4-trifluoromethyl-phenyl)-prop-2-yn-1-ol 2.24 (100.8 mg, 0.5036 mmol) in dry hexanes (3.0 mL) was added 3 drops of quinoline and a crystal of Lindlar's catalyst. The flask was initially purged with H₂, followed by a constant presence of H₂ in the atmosphere. The reaction was monitored by TLC. If the reaction was not complete, another crystal of the catalyst was added to the reaction mixture. When the TLC revealed no presence of starting material, the reaction mixture was filtered through a silica pad and the flask was rinsed with DCM and its contents was poured onto the pad. The yellow solution was concentrated to afford the crude alkene 2.16h as brownish orange crystals (162.5 mg, 88%).

1-(3-Bromo-propenyl)-4-trifluoromethyl-benzene (2.17h)

Prepared using general procedure C

3-(4-Trifluoromethyl-phenyl)-cis-prop-2-en-1-ol 2.16h (162.5 mg, 0.804 mmol); carbon tetrabromide (333.2 mg, 1.005 mmol); triphenylphosphine (316.2 mg, 1.206 mmol) in CH₂Cl₂ (15.0 mL). The product was used in the following reaction without further purification.

5.6 General Procedure E for Etherification between diol 2.13 and allylbromides 2.17

2-[1-(3-Phenyl-1-but-2-enyloxy)methyl]-vinyl]-cyclohexanol (2.1a)

To a dry round bottom flask was added NaH (in 60% oil) (0.218 g, 5.46 mmol) and THF (10.0 mL) under an atmosphere of nitrogen. A
solution of diol 2.13 (0.200 g, 1.09 mmol) in THF (5.0 mL) was cannulated into the reaction mixture. The solution was stirred for 5 minutes, which was followed by the addition of the crude allyl bromide 2.17a (>2 eq). The mixture was stirred overnight, quenched with saturated NH₄Cl and extracted with ether (3x). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography (15 % EtOAc in Hexanes) and provided 2.1a as a yellowish oil (0.22 g, 65%). IR (neat) 3402 (m), 2931 (s), 2855 (m), 1648 (w), 1442 (m), 1093 (m), 1050 (m), 975 (w), 915 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ ppm 7.37-7.13 (m, 5H), 5.80 (dd, J = 17.2, 10.7 Hz, 1H), 5.68-5.62 (m, 1H), 3.60 (d, J = 17.2, 1.68 Hz, 1H), 4.95-4.88 (m, 3H), 3.96-3.87 (m, 2H), 3.82-3.74 (m, 2H), 3.60 (d, J = 12.6, 3.15 Hz, 1H), 2.23 (dd, J = 11.6 Hz, 1H), 2.07 (s, 3H), 2.04-1.21 (m, 8H). ¹³C NMR (300 MHz, CDCl₃) δ ppm 146.5 (CH), 146.1 (C₄), 141.4 (C₄), 140.8 (C₄), 128.0 (2 x CH), 127.7 (2 x CH), 127.1 (CH), 122.9 (CH), 118.0 (CH₂), 110.9 (CH₂), 72.5 (C₄), 72.1 (CH₂), 67.5 (CH₂), 51.9 (CH), 38.2 (CH₂), 26.5 (CH₂), 26.1 (CH₂), 25.3 (CH₃), 21.2 (CH₂). HRMS m/z (M⁺ - C₁₁H₁₇O₂) calc 131.0861 found 131.0859.

2-[1-(3,3-Diphenyl-allyloxy)methyl]-vinyl]-1-vinyl-cyclohexanol
(2.1b)

Followed using general procedure E

Sodium hydride (109.0 mg, 2.729 mmol); 1,2-divinylcyclohexanol 2.13 (100.0 mg, 0.5460 mmol); 1-bromo-3,3-diphenyl-prop-2-ene 2.17b (theoretically 661.9 mg, 2.423 mmol) to afford 2.1b as a light yellow oil (124.5 mg, 68%). IR (neat) 3399 (m), 3058 (w), 2931 (s), 2852 (m), 1654 (w), 1685 (w), 1590 (w), 1494 (m), 1444 (m), 1274 (w),

110
1062 (s), 965 (m), 917 (m), 753 (m), 700 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ ppm 7.36-7.13 (m, 10H), 6.18 (t, J = 6.8 Hz, 1H), 5.82 (dd, J = 17.2, 10.7 Hz, 1H), 5.17 (dd, J = 17.2, 1.65 Hz, 1H), 5.00-4.89 (m, 3H), 4.09-3.91 (m, 3H), 3.67 (d, J = 14.2 Hz, 1H), 3.65 (s, 1H), 2.25 (dd, J = 12.9, 3.23 Hz, 1H), 1.90-1.18 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 146.5 (CH), 146.1 (C₄), 145.2 (C₄), 141.6 (C₄), 139.1 (C₄), 129.8 (2 x CH), 128.1 (4 x CH), 127.6 (2 x CH), 127.5 (2 x CH), 124.5 (CH), 118.0 (CH₂), 111.0 (CH₂), 72.5 (C₄), 72.3 (CH₂), 67.8 (CH₂), 51.8 (CH), 38.2 (CH₂), 26.6 (CH₂), 26.1 (CH₂), 21.2 (CH₂). HRMS m/z (M⁺ - C₁₁H₁₇O₂) calcd 193.1017 found 193.1042.

![Chemical Structure](image)

4-{3-[2-(2-Hydroxy-2-vinyl-cyclohexyl)-allyloxy]-1-methyl-propenyl}-benzoic acid methyl ester (2.1c)

Followed using general procedure E

Sodium hydride (19.0 mg, 0.469 mmol); 1,2-divinylcyclohexanol 2.13 (17.2 mg, 0.0949 mmol); (Z)-4-(3-bromo-1-methyl-propenyl)-benzoic acid methyl ester 2.17c (theoretically 75.8 mg, 0.282 mmol) to afford 2.1e as a light yellow oil (16.1 mg, 46%) and a trace of the Z isomer. IR (neat) 3402 (w), 3080 (w), 2929 (m), 2853 (w), 1724 (s), 1639 (w), 1608 (w), 1436 (m), 1278 (s), 1177 (w), 1105 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃), δ ppm 8.00 and 7.99 (2d, J = 8.3 Hz and 8.4 Hz, 2H), 7.27 and 7.23 (2d, J = 8.4 Hz and 8.0 Hz, 2H), 5.88-5.77 and 5.79 (m and dd, J = 17.2 Hz, 10.7Hz, 1H), 5.70 (dt, J = 7.1, 1.3 Hz, 1H), 5.14 and 5.11 (2dd, J = 17.2, 1.6 Hz and J = 17.2, 1.6 Hz, 1H), 5.01-4.87 (m, 3H), 3.90 and 3.90 (2s, 3H), 2.25-2.16 (m, 1H), 2.08 and 2.07 (2s, 3H), 1.86-0.80 (m, 13H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 166.9 (C₄), 146.5 (CH), 146.1 (CH), 140.5 (C₄), 129.4 and 129.0 (2 x CH), 127.8 (2 x CH),
124.2 (CH), 117.9 (CH₂), 110.9 (CH₂), 72.5 and 72.4 (CH₂), 67.3 (CH₂), 52.1 and 51.8 (2 x CH₃), 38.2 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 25.0 (CH₃), 21.2 (CH₂). HRMS m/z M⁺-(C₁₁H₁₇O₂) calcd 189.0915 found 189.0939.

\[
\text{2-}[\text{1-(3-Methyl-hept-2-enyloxyethyl)-vinyl]}\text{-1-vinyl-cyclohexanol (2.1d)}
\]

Followed using general procedure E

Sodium hydride (94.1 mg, 2.35 mmol); 1,2-divinylcyclohexanol 2.13 (86.1 mg, 0.470 mmol); (Z)-1-bromo-3-methyl-hept-2-ene 2.17d (theoretically 179.8 mg, 0.9406 mmol) to afford 2.1d as a colorless oil (0.104 g, 76%). IR (CDCl₃) 3402 (m), 2929 (s), 2859 (m), 1629 (w), 1436 (m), 1088 (m), 1056 (m), 979 (m), 914 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ ppm 5.82 (dd, J = 17.2, 10.6 Hz, 1H), 5.28 (t, J = 6.6 Hz, 1H), 5.16 (dd, J = 17.2, 1.4 Hz, 1H), 5.03 (s, 1H), 4.94-4.90 (m, 2H), 4.00-3.83 (m, 4H), 3.66 (d, J = 11.5 Hz, 1H), 2.26 (dd, J = 12.8, 3.0 Hz, 1H), 1.97 (t, J = 7.1 Hz, 2H), 1.92-1.14 (m, 15H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 146.5 (CH), 146.2 (C₄), 141.1 (C₄), 119.7 (CH), 118.2 (CH₂), 110.9 (CH₂), 72.4 (C₄), 71.6 (CH₂), 66.5 (CH₂), 52.2 (CH), 39.2 (CH₂), 38.3 (CH₂), 29.8 (CH₂), 26.6 (CH₂), 26.1 (CH₂), 22.3 (CH₂), 21.2 (CH₂), 16.4 (CH₃), 13.9 (CH₃). HRMS m/z M⁺-(C₁₁H₁₇O₂) : 111.0596.

\[
\text{2-}[\text{1-[3-(4-Methoxy-phenyl)-allyloxyethyl]-vinyl]}\text{-1-vinyl-cyclohexanol (2.1e)}
\]

Followed using general procedure E

Sodium hydride (60.9 mg, 1.52 mmol); 1,2-divinylcyclohexanol 2.13 (55.8 mg, 0.305 mmol); trans-1-(3-bromo-propenyl)-4-
methoxy-benzene 2.17e (theoretically 207.5 mg, 0.9135 mmol) to afford 2.1e as a light yellow oil (71.1 mg, 71.1%). IR (neat) 3400 (m), 3084 (w), 2933 (s), 2855 (m), 1648 (m), 1603 (s), 1583 (w), 1572 (s), 1463 (m), 1352 (w), 1300 (m), 1249 (s), 1175 (m), 1100 (m), 1036 (m), 971 (m), 916 (m), 840 (m), 802 (m) cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)), \(\delta_{ppm}\) 7.30 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 15.9 Hz, 1H), 6.11 (dt, J = 15.9, 6.3 Hz, 1H), 5.86 (dd, J = 17.2, 10.7 Hz, 1H), 5.20 (dd, J = 17.2, 1.7 Hz, 1H), 5.09 (s, 1H), 4.99 (d, J = 1.6 Hz, 1H), 4.96 (dd, J = 10.7, 1.7 Hz, 1H), 4.17-3.98 (m, 3H), 3.79 (s, 3H), 3.68 (d, J = 2.2 Hz, 1H), 2.28 (dd, J = 12.7, 3.1 Hz, 1H), 2.02-1.19 (m, 9H). \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 159.3 (C\(_4\)), 146.5 (C\(_4\)), 146.1 (CH), 132.8 (CH), 129.2 (C\(_4\)), 127.7 (2 x CH), 122.8 (CH), 118.1 (CH\(_2\)), 113.9 (2 x CH), 111.0 (CH\(_2\)), 72.6 (CH\(_3\)), 71.8 (CH\(_2\)), 70.8 (CH\(_2\)), 55.3 (CH), 52.0 (CH), 38.3 (CH\(_2\)), 26.7 (CH\(_2\)), 26.1 (CH\(_2\)), 21.2 (CH\(_2\)). HRMS m/z M\(^+\) (C\(_{21}\)H\(_{28}\)O\(_3\)) : 328.2033.

![2-[1-(3-p-Tolyl-allyloxymethyl)-vinyl]-1-vinylcyclohexanol](image)

(2.1f)

Followed using general procedure E

Sodium hydride (205.7 mg, 5.142 mmol); 1,2-divinylcyclohexanol 2.13 (188.3 mg, 1.028 mmol); trans-1-(3-bromo-propenyl)-4-methyl-benzene 2.17f (theoretically 434.2 mg, 2.056 mmol) to afford 2.1f as a light yellow oil (241.6 mg, 75%). IR (neat) 3554 (w), 3402 (s), 3084 (w), 3020 (w), 2929 (s), 2855 (s), 1899 (w), 1835 (w), 1638 (m), 1513 (s), 1446 (s), 1410 (m), 1352 (m), 1287 (w), 1204 (w), 1101 (m), 1056 (m), 971 (s), 916 (s), 830 (m), 792 (m) cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 7.27 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.55 (d, J = 15.9 Hz, 1H), 6.20 (dt, J = 15.9, 6.2 Hz, 1H), 5.87 (dd, J = 17.2, 10.7 Hz, 1H), 5.21 (dd, J
= 17.2, 1.6 Hz, 1H), 5.10 (s, 1H), 5.01 (d, J = 1.8 Hz, 1H), 4.97 (dd, J = 10.7, 1.6 Hz, 1H), 4.18-4.02 (m, 3H), 3.77 (d, J = 11.7 Hz, 1H), 3.67 (d, J = 2.2 Hz, 1H), 2.32 (s, 3H), 2.29 (dd, J = 12.9, 3.3 Hz, 1H), 2.03-1.22 (m, 8H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 146.5 (CH), 146.1 (C$_4$), 137.5 (C$_4$), 133.6 (C$_4$), 133.0 (CH), 129.2 (2 x CH), 126.4 (2 x CH), 123.9 (CH), 118.1 (CH$_2$), 111.0 (CH$_2$), 72.5 (C$_4$), 71.8 (CH$_2$), 70.6 (CH$_2$), 51.9 (CH), 38.2 (CH$_2$), 26.7 (CH$_2$), 26.1 (CH$_2$), 21.2 (CH$_2$), 21.1 (CH$_3$). HRMS m/z M$^+$ - (C$_{11}$H$_7$O$_2$) calcd 131.0861 found 131.0849.

2-{1-[3-(4-Trifluoromethyl-phenyl)-trans-allyloxymethyl]-vinyl}-1-vinyl-cyclohexanol (2.1g)

Followed using general procedure E

Sodium hydride (33.0 mg, 0.825 mmol); 1,2-divinylcyclohexanol 2.13 (30.2 mg, 0.165 mmol); trans-1-(3-bromo-propenyl)-4-trifluoromethyl-benzene 2.17g (theoretically 131.1 mg, 0.4946 mmol) to afford 2.1g as a light yellow oil (57.0 mg, 95%). IR (neat) 3411 (m), 3080 (w), 2934 (m), 2855 (m), 1639 (w), 1616 (m), 1444 (w), 1415 (m), 1326 (s), 1166 (s), 1124 (s), 1068 (s), 1016 (m), 972 (m), 919 (m), 857 (m) cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 7.54 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 6.62 (d, J = 16.0 Hz, 1H), 6.33 (dt, J = 16.0, 5.69 Hz, 1H), 5.86 (dd, J = 17.2, 10.7 Hz, 1H), 5.19 (dd, J = 17.2, 1.59 Hz, 1H), 5.12 (s, 1H), 5.02 (d, J = 1.73 Hz, 1H), 4.96 (dd, J = 10.7, 1.59 Hz, 1H), 4.21-4.02 (m, 3H), 3.78 (d, J = 11.8 Hz, 1H), 3.49 (d, J = 2.2 Hz, 1H), 2.28 (dd, J = 12.8, 3.3 Hz, 1H), 1.94-1.20 (m, 8H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 146.5 (CH), 146.0 (C$_4$), 140.0 (C$_4$), 131.0 (CH), 128.0 (CH), 126.6 (2 x CH), 125.5 (q, J = 3.8 Hz, 2 x CH), 118.1 (CH$_2$), 111.0 (CH$_2$), 72.6 (C$_4$),
72.4 (CH₃), 70.1 (CH₂), 51.8 (CH), 38.3 (CH₂), 26.8 (CH₂), 26.1 (CH₂), 21.2 (CH₂).

HRMS m/z M⁺ - (C₁₁H₁₃O₂) calcd 185.0578 found 185.0572.

Followed using general procedure E

Sodium hydride (80.4 mg, 2.01 mmol); 1,2-divinylcyclohexanol 2.13 (73.6 mg, 0.402 mmol); 1-(3-bromo-propenyl)-4-trifluoromethyl-benzene 2.17h (theoretically 213.1 mg, 0.8038 mmol) to afford 2.1h as a colorless oil (87.3 mg, 55%). IR (neat) 3411 (w), 3083 (w), 2938 (m), 2859 (w), 1607 (w), 1406 (w), 1322 (s), 1164 (m), 1121 (s), 1067 (m), 915 (w), 854 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ ppm 7.57 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 6.61 (d, J = 11.8 Hz, 1H), 5.97-5.89 (m, 1H), 5.81 (d, J = 17.2, 10.7 Hz, 1H), 5.13 (d, J = 17.2, 1.6 Hz, 1H), 5.02 (s, 1H), 4.96 (d, J = 1.6 Hz, 1H), 4.87 (dd, J = 10.7, 1.6 Hz, 1H), 4.23 (ddd, J = 12.6, 6.1, 1.7 Hz, 1H), 4.11 (ddd, J = 12.5, 6.5, 1.6 Hz, 1H), 4.03 (dd, J = 11.7, 0.7 Hz, 1H), 3.72 (d, J = 11.8 Hz, 1H), 3.49 (d, J = 2.2 Hz, 1H), 2.25 (dd, J = 13.0, 3.3 Hz, 1H), 1.90-1.16 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 146.4 (CH), 145.8 (C₄), 139.9 (C₄), 130.7 (CH), 130.2 (CH), 129.4 (2 x CH), 125.1 (q, J = 3.8 Hz, 2 x CH), 118.1 (CH₂), 110.9 (CH₂), 72.6 (C₄), 72.5 (CH₂), 66.4 (CH₂), 51.7 (CH), 38.2 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 21.2 (CH₂). HRMS m/z M⁺ - (H₂O) calcd 348.1701 found 348.1694.
5.7 General Procedure F for the Tandem Reactions

Method A. A solution of allyl ether 2.1a (133.0 mg, 0.4257 mmol) in dry deoxygenated toluene (12.0 mL) and DBU (196 mg, 1.20 mmol) was heated in a quartz tube for 60 min at 210°C. The solution was cooled to room temperature and concentrated in vacuo. The residue was purified by flash column chromatography (20% EtOAc in hexanes) to afford lactol 2.5a (45.0 mg, 34%) and enol ether 2.3a (66.5 mg, 51%) as colorless oils. In order to determine the diastereomeric ratios, lactols were oxidized with TPAP to afford the corresponding lactones.

Method B. A solution of allyl ether 2.1b (119.0 mg, 0.3177 mmol) in dry deoxygenated toluene (5.0 mL) and triethylamine (97.1 mg, 0.960 mmol) was heated in a sealed tube for 18 h at 210°C. The solution was cooled to room temperature and concentrated in vacuo. The residue was purified by flash column chromatography (20% EtOAc in hexanes) to afford lactol 2.5b (15.9 mg, 13%) and enol ether 2.3b (12.4 mg, 10%) as colorless oils. In order to determine the diastereomeric ratios, lactols were oxidized with TPAP to afford the corresponding lactones.

5.8 General Procedure G for the Oxidation of the Lactols

![Chemical structure of 7-(3-Phenylbut-2-enyl)-10-oxatricyclo[5.3.3.0^1,6]tridecan-8-one (Lactone from 2.5a).]

Lactol 2.5a was prepared using general procedure F: method A.

To a solution of lactol 2.5a (13.2 mg, 0.04 mmol) in DCM (1.0 mL) was respectively added 4 Å molecular sieves (21.1 mg), 4-methylmorpholine N-oxide (7.5 mg, 0.06 mmol) and TPAP (0.7 mg, 0.002 mmol). After completion, the reaction mixture was poured over a pad of silica and the later was washed with 5%MeOH in EtOAc. The organic
solvent was evaporated and flash column chromatography (20% EtOAc in hexanes) afforded lactone of 2.5a as a colorless oil (11.2 mg, 90%). IR (neat, cm$^{-1}$) 3053 (w), 2929 (s), 2856 (m), 1770 (s), 1444 (m), 1261 (m), 1168 (m), 1128 (m), 1025 (w), 948 (m), 915 (m). 1H NMR (300 MHz, CDCl$_3$), δ_{ppm} 7.68-7.08 (m, 10H), 5.64 (t, J = 7.07 Hz, 1H), 5.40 (t, J = 7.31 Hz, 1H), 2.55-0.75 (m, 40H). 13C NMR (300 MHz, CDCl$_3$) δ_{ppm} 181.0 (C$_4$), 180.9 (C$_4$), 144.2 (C$_4$), 141.9 (C$_4$), 139.9 (C$_4$), 138.2 (C$_4$), 128.6 (2 x CH), 128.2 (2 x CH), 127.3 (2 x CH), 127.1 (CH), 126.1 (2 x CH), 122.7 (CH), 121.6 (CH), 83.6 (C$_4$), 83.4 (C$_4$), 77.6 (CH), 53.5 (C$_4$), 53.2 (C$_4$), 49.5 (CH), 49.5 (CH), 36.1 (CH$_2$), 33.6 (CH$_2$), 32.5 (CH$_2$), 32.2 (CH$_2$), 30.2 (CH$_2$), 30.1 (CH$_2$), 29.7 (CH$_2$), 26.4 (CH$_3$), 24.8 (CH$_2$), 24.5 (CH$_2$), 24.2 (CH$_2$), 24.2 (CH$_2$), 21.2 (CH$_2$), 19.8 (CH$_2$), 16.7 (CH$_3$). LRMS (El) m/z (M$^+$) calcd for C$_{21}$H$_{26}$O$_2$ 310, found 310.

1-(3-Phenylbut-2-enyloxymethylene) octahydronaphthalene -4a-ol (2.3a).

IR (neat, cm$^{-1}$) 3554 (w), 3052, (w), 2929 (s), 2859 (m), 1674 (m), 1493 (w), 1448 (m), 1377 (w), 1255 (w), 1229 (w), 1159 (s), 1094 (m), 1030 (m), 953 (m), 830 (w), 760 (m), 708 (m). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 7.36-7.14 (m, 5H), 5.66 (dt, J = 6.91, 1.32 Hz, 1H), 5.57 (s, 1H), 4.13 (d, J = 6.93 Hz, 2H), 2.85 (d, J = 10.6 Hz, 1H), 2.09 (s, 3H), 1.91-1.18 (m, 15H). 13C NMR (300 MHz, CDCl$_3$) δ_{ppm} 142.1 (C$_4$), 141.0 (C$_4$), 139.9 (CH), 128.6 (2 x CH), 128.1 (2 x CH), 127.7 (CH), 123.4 (CH), 118.9 (C$_4$), 71.3 (C$_4$), 69.6 (CH$_2$), 47.4 (CH), 40.3 (CH$_2$), 38.5 (CH$_2$), 26.4 (CH$_2$), 26.4 (CH$_2$), 25.8 (CH$_3$), 23.7 (CH$_2$), 22.9 (CH$_2$), 21.7 (CH$_2$). LRMS (El) m/z (M$^+$ - C$_{11}$H$_{17}$O$_2$) calcd for C$_{10}$H$_{11}$ 131, found 131.
7-(3,3-Diphenylallyl)-11-oxatricyclo[5.3.2.0\(^1,6\)]dodecan-12-ol (2.5b)

Prepared using general procedure F: method A.

2.1b (104.5 mg, 0.28 mmol), DBU (127.9 mg, 0.84 mmol) and toluene (12 mL) to give
2.5b (25.0 mg, 24%) and dimer 2.26b (20.0 mg, 20%) as colorless oils. 10b : IR (neat, cm\(^{-1}\)) 3374 (m), 3058 (w), 2928 (s), 2852 (m), 1944 (w), 1880 (w), 1719 (w), 1667 (w), 1596 (w), 1494 (m), 1444 (m), 1358 (w), 1255 (w), 1107 (m), 968 (m), 911 (m), 760 (m), 699 (s). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 7.39-7.07 (m, 10H), 6.08-6.05 (t, \(J = 7.4\) Hz, 1H), 5.28 and 5.08 (2d, \(J = 4.6\) and 2.8 Hz, 1H), 3.04 and 2.82 (2 br s, 1H), 2.40-2.16 (m, 2H), 1.84-0.81 (m, 15H). \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 143.1 (C\(_4\)), 142.9 (C\(_4\)), 140.2 (C\(_4\)), 130.0 (CH), 129.9 (CH), 128.3 (C\(_4\)), 128.2 (CH), 128.1 (CH), 128.1 (CH), 127.2 (CH), 127.1 (CH), 126.9 (CH), 126.8 (CH), 126.8 (CH), 126.7 (CH), 125.9 (CH), 104.1 (CH), 101.7 (CH), 83.7 (C\(_4\)), 82.1 (C\(_4\)), 51.0 (C\(_4\)), 50.5 (CH), 49.4 (C\(_4\)), 48.9 (CH), 39.2 (CH\(_2\)), 38.6 (CH\(_2\)), 34.5 (CH\(_2\)), 34.1 (CH\(_2\)), 32.0 (CH\(_2\)), 31.6 (CH\(_2\)), 31.4 (CH\(_2\)), 30.7 (CH\(_2\)), 29.7 (CH\(_2\)), 25.8 (CH\(_2\)), 24.9 (CH\(_2\)), 24.6 (CH\(_2\)), 23.8 (CH\(_2\)), 23.6 (CH\(_2\)), 22.6 (CH\(_2\)), 21.6 (CH\(_2\)), 21.3 (CH\(_2\)), 19.5 (CH\(_2\)). HRMS (EI) \(m/\ell\) (M\(^+\) - C\(_{11}\)H\(_{17}\)O\(_2\)) calcd for C\(_{15}\)H\(_{13}\) 193.1017 found 193.1038.

1,1,6,6-Tetraphenylhexa-1,5-diene (2.26b) : IR (neat, cm\(^{-1}\)) 3080 (w), 3062 (w), 3028 (w), 2957 (w), 2920 (w), 2853 (w), 1494 (m), 1444 (m), 762 (m), 697 (s). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 7.37-7.12 (m, 20H), 6.06-6.01 (m, 2H), 2.24 (d, \(J = 7.2\) Hz, 4H). \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 142.6 (C\(_4\)),
142.0 (C₄), 140.1 (C₄), 129.9 (2 x CH), 129.0 (CH), 128.1 (2 x CH), 127.2 (2 x CH), 126.9 (CH), 126.8 (CH), 30.1 (CH₂). HRMS (El) m/z (M⁺ - C₁₃H₁₃) calcd for C₁₃H₁₃ 193.1017, found 193.1011.

![7-(3,3-Diphenyl-allyl)-11-oxa-tricyclo[5.3.2.0^1,6]dodecan-12-one (Lactone from 2.5a)](image)

Prepared using general procedure G

Lactol 2.5a (12.4 mg, 0.0331 mmol); 4 Å molecular sieves (16.6 mg); NMO (5.8 mg, 0.050 mmol) and TPAP (0.6 mg, 0.002 mmol) in dry dichloromethane (1.0 mL) provided lactone of 2.5a (9.3 mg, 75%) as a yellow oil. IR (neat) 3050 (w), 3020 (w), 2936 (m), 2859 (m), 1764 (s), 1590 (w), 1494 (w), 1436 (m), 1352 (w), 1236 (w), 1152 (w), 1126 (m), 920 (m), 759 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ ppm 7.36-7.11 (m, 10H), 6.02 (t, J = 7.4 Hz, 1H), 2.48-2.31 (m, 2H), 2.00 (d, J = 11.6 Hz, 1H), 1.87-0.79 (m, 14H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 180.2 (C₄), 144.4 (C₄), 142.6 (C₄), 139.5 (C₄), 129.8 (2 x CH), 128.3 (2 x CH), 128.1 (2 x CH), 127.2 (2 x CH), 127.6 (CH), 127.2 (CH), 123.7 (CH), 83.1 (C₄), 53.0 (C₄), 49.3 (CH), 35.6 (CH₂), 33.2 (CH₂), 32.1 (CH₂), 30.4 (CH₂), 24.3 (CH₂), 23.8 (CH₂), 20.8 (CH₂), 19.5 (CH₂). HRMS m/z M⁺ (C₂₆H₂₈O₂) calcd 372.2089 found 372.2128.

1-(3,3-Diphenylallyloxymethylene)octahydro-naphthalene-4a-ol (2.3b)

Prepared using general procedure F: method B.

Allyl ether 2.1b (119.4 mg, 0.3188 mmol), triethylamine (97.1 mg, 0.960 mmol) and toluene (5.0 mL) to give (2.5b) (12.4 mg, 13%) and (2.3b) (15.9 mg, 10%) as colorless oils. 2.3b: IR (neat, cm⁻¹) 3354 (w), 3065 (w), 3026 (w), 2923 (s), 2846 (m), 1673 (w),
1487 (w), 1435 (m), 1364 (w), 1145 (s), 1087 (m), 1029 (w), 952 (m), 843 (w). 1H NMR (500 MHz, CDCl$_3$) δppm 7.39-7.31 (m, 3H), 7.29-7.23 (m, 5H), 7.17-7.14 (m, 2H), 6.20 (t, J = 3.8 Hz, 1H), 5.64 (s, 1H), 4.27 (d, J = 6.8 Hz, 2H), 2.90 (ddd, J = 9.1, 8.8, 4.1 Hz, 1H), 1.92 (d, J = 11.9 Hz, 1H), 1.75-1.17 (m, 14H). 13C NMR (75 MHz, CDCl$_3$) δppm 145.3 (C$_4$), 141.5 (C$_4$), 139.4 (CH), 138.9 (C$_4$), 129.7 (2 x CH), 128.2 (2 x CH), 128.2 (2 x CH), 127.7 (CH), 127.7 (CH), 127.6 (2 x CH), 124.5 (CH), 118.8 (C$_4$), 71.0 (C$_4$), 69.6 (CH$_2$), 47.0 (CH), 39.9 (CH$_2$), 38.1 (CH$_3$), 26.0 (CH$_2$), 26.0 (CH$_2$), 23.3 (CH$_2$), 22.5 (CH$_2$), 21.2 (CH$_3$). HRMS (EI) m/z M$^+$ - (C$_{11}$H$_{17}$O$_2$) calcd for C$_{13}$H$_{13}$ 193.1017, found 193.0960.

1-(3-Methylhept-2-enyloxymethylene)octahyronaphthalen-4a-ol (2.3d)

Prepared using general procedure F: method A and B

Reagent and quantities for A: Allyl ether 2.1d (19.0 mg, 0.0650 mmol), triethylamine (18.2 mg, 0.180 mmol) and toluene (12.0 mL) to afford (2.3d) (4.5 mg, 24%) as a colorless oil. Reagents and quantities for B: Allyl ether 2.1d (26.2 mg, 0.0896 mmol), triethylamine (29.0mg, 0.269 mmol) and toluene (5.0 mL) to afford (2.3d) (13.3 mg, 51%) as a colorless oil. IR (neat, cm$^{-1}$) 3388 (m), 2927 (s), 2858 (m), 1723 (w), 1663 (w), 1453 (m), 1371 (w), 1242 (w), 1144 (m), 1074 (m), 1031 (m), 944 (w). 1H NMR (500 MHz, CDCl$_3$) δppm 5.70 (s, 1H), 5.34-5.30 (m, 1H), 4.22 (d, J = 6.8 Hz, 2H), 2.85 (dt, J = 8.9, 2.0 Hz, 1H), 2.01 (t, J = 7.4 Hz, 2H), 1.92 (dd, J = 12.6, 3.6 Hz, 1H), 1.81-1.20 (m, 19H), 0.88 (t, J = 7.3 Hz, 5H). 13C NMR (125 MHz, CDCl$_3$) δppm 141.3 (C$_4$), 139.5 (CH), 120.0 (CH), 118.5 (C$_4$), 70.9 (C$_4$), 68.4 (CH$_2$), 47.1 (CH), 40.0 (CH$_3$), 39.3 (CH$_2$), 38.1 (CH$_2$), 29.8 (CH$_2$), 26.1 (CH$_2$), 26.0 (CH$_2$), 23.4 (CH$_2$), 22.6 (CH$_2$), 22.3
(CH₂), 21.3 (CH₂), 16.4 (CH₃), 13.9 (CH₃). HRMS (EI) m/z (M⁺ - C₈H₁₆O) calcd for C₁₁H₁₆O 164.1201, found 164.1184.

7-[1-(4-Methoxyphenyl)allyl]-11-oxatricyclo[5.3.2.0₁₆]dodecan-12-ol (2.4e)

Prepared using general procedure F: method B.

Allyl ether 2.1e (26.5 mg, 0.0807 mmol), Et₃N (24.3 mg, 0.240 mmol) and toluene (5.0 mL) to provide lactol (2.4e) (16.4 mg, 50%) as a light yellow oil. IR (neat, cm⁻¹) 3373 (m), 3075 (w), 2928 (s), 2854 (w), 1610 (m), 1511 (s), 1449 (m), 1297 (w), 1247 (s), 1180 (m), 1107 (m), 1032 (s), 978 (m), 907 (m), 826 (m). ¹H NMR (300 MHz, CDCl₃) δ ppm 7.22 and 7.15 (2d, J = 9.4 and 8.5 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 6.38 and 6.23-6.12 (dt and m, J = 16.9, 9.7 Hz, 1H), 5.50 and 5.24 (2d, J = 4.8 and 3.3 Hz, 1H), 5.10-4.91 (m, 2H), 3.98 and 3.56 (2d, J = 7.1 and 9.2 Hz, 1H), 3.77 (2s, 3H), 3.01 (br s, 1H), 2.31-0.81 (m, 15H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 157.9 (C₄), 139.9 (CH), 139.6 (CH), 133.6 (C₄), 133.4 (C₄), 131.5 (2 x CH), 131.5 (2 x CH), 130.1 (CH), 116.6 (CH₂), 115.3 (CH₂), 113.4 (CH), 113.2 (CH), 112.9 (CH), 103.7 (CH), 101.4 (CH), 83.9 (C₄), 82.2 (C₄), 55.1 (CH₃), 54.6 (C₄), 52.7 (C₄), 50.9 (CH), 50.1 (CH), 48.9 (CH), 47.8 (CH), 39.4 (CH₂), 38.5 (CH₂), 34.8 (CH₂), 34.5 (CH₂), 30.5 (CH₂), 28.6 (CH₂), 24.9 (CH₂), 24.8 (CH₂), 24.6 (CH₂), 23.3 (CH₂), 21.4 (CH₂), 21.4 (CH₂), 19.7 (CH₂), 19.6 (CH₂). HRMS (EI) m/z (M⁺ - C₁₁H₁₇O₂) calcd for C₁₀H₁₁O 147.0810, found 147.0825.
7-[1-(4-Methoxyphenyl)allyl]-11-oxatricyclo[5.3.2.0^{1,6}]dodecan-12-one (Lactone from 2.4e)

Prepared using general procedure G

Lactol 2.4e (13.5 mg, 0.0411 mmol); 4 Å molecular sieves (20.6 mg); NMO (7.2 mg, 0.062 mmol) and TPAP (0.7 mg, 0.002 mmol) in dry dichloromethane (1.0 mL) provided lactone of 2.4e (8.7 mg, 65%) as a colorless oil. IR (neat, cm\(^{-1}\)), 3082 (w), 2933 (m), 2861 (w), 1764 (s), 1610 (m), 1512 (s), 1448 (w), 1301 (w), 1248 (s), 1182 (m), 1157 (m), 1124 (m), 1075 (w), 1035 (m), 949 (m), 925 (m). \(^1\)H NMR (300 MHz, CDCl\(_3\)), \(\delta_{ppm}\) 7.16 (d, J = 8.3 Hz, 2H), 6.82 (d, J = 8.2 Hz, 2H), 6.71-6.60 (m, 1H), 5.11 and 5.02 (2d, J = 10.4 and 10.2 Hz, 1H), 4.88 and 4.64 (2d, J = 17.4 and 17.4 Hz, 1H), 3.78 (s, 3H), 3.74 (d, J = 3.9 Hz, 1H), 52.15-0.82 (m, 15H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 179.5 (C\(_4\)), 158.1 (C\(_4\)), 139.5 (CH), 132.2 (C\(_4\)), 131.1 (2 x CH), 116.7 (CH\(_2\)), 113.5 (2 x CH), 82.5 (C\(_4\)), 55.9 (C\(_4\)), 55.2 (CH\(_3\)), 50.9 (CH), 48.6 (CH), 35.9 (CH\(_2\)), 33.5 (CH\(_2\)), 29.5 (CH\(_2\)), 24.2 (CH\(_2\)), 23.9 (CH\(_2\)), 20.7 (CH\(_2\)), 20.0 (CH\(_2\)). HRMS (El) \(m/z\) (M\(^+\)) calcd for C\(_{21}\)H\(_{26}\)O\(_3\) 326.1882, found 326.1843.

7-(1-p-Tolylallyl)-11-oxatricyclo[5.3.2.0^{1,6}]dodecan-12-ol (2.4f).

Prepared using general procedure F: method A.

Allyl ether 2.1f (19.6 mg, 0.0631 mmol) and toluene (12.0 mL) to afford lactol 2.4f (12.3 mg, 63 %) as a colorless oil. IR (neat, cm\(^{-1}\)) 3385 (m), 3078 (w), 3014 (w), 2927 (s), 2855 (m), 1635 (w), 1513 (w), 1449 (w), 1339 (w), 1262 (w), 1115 (m), 979 (m), 911 (m). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 7.21-7.07 (m, 4H), 6.45-6.33 and 6.26-6.14 (2m, 1H), 5.50 and 5.23 (2d, J = 4.8 and 3.1 Hz, 1H), 5.12-4.94 (m, 2H), 3.99 and 3.57 (2d, J = 9.3 and 7.5, 1H), 2.76-2.72 (m, 1H), 2.31 and 2.30 (2s, 3H), 2.18-
0.76 (m, 15H). 13C NMR (75 MHz, CDCl$_3$) δppm 139.7 (CH), 139.6 (CH), 138.6 (C$_4$), 138.5 (C$_4$), 138.4 (C$_4$), 135.8 (C$_4$), 135.8 (C$_4$), 130.1 (2 x CH), 129.0 (2 x CH), 128.8 (2 x CH), 128.6 (2 x CH), 116.8 (CH$_2$), 115.4 (CH$_2$), 103.7 (CH), 101.5 (CH), 83.9 (C$_4$), 82.2 (C$_4$), 54.5 (C$_4$), 52.7 (C$_4$), 50.8 (CH), 50.5 (CH), 48.9 (CH), 48.3 (CH), 39.3 (CH$_2$), 38.4 (CH$_2$), 34.8 (CH$_2$), 34.5 (CH$_2$), 30.5 (CH$_2$), 29.7 (CH$_2$), 28.6 (CH$_2$), 24.9 (CH$_2$), 24.8 (CH$_2$), 24.6 (CH$_2$), 23.3 (CH$_2$), 21.4 (CH$_2$), 21.4 (CH$_2$), 21.0 (CH$_3$), 19.7 (CH$_2$). HRMS (El) m/z (M$^+$ - C$_{11}$H$_{17}$O$_2$) calcd for C$_{10}$H$_{11}$ 131.0861, found 131.0868.

7-(1-p-Tolylallyl)-11-oxatricyclo[5.3.2.016]dodecan-12-one

(Lactone from 2.4f)

Prepared using general procedure G

Lactol 2.4f (8.0 mg, 0.026 mmol); 4 Å molecular sieves (12.9 mg); NMO (4.5 mg, 0.039 mmol) and TPAP (0.5 mg, 0.001 mmol) in dry dichloromethane (1.0 mL) provided lactone of 2.4f (6.0 mg, 75%) as a colorless oil. IR (neat, cm$^{-1}$) 3084m (w), 3020 (w), 2931 (m), 2859 (m), 1766 (s), 1629 (w), 1513 (w), 1448 (w), 1352 (w), 1236 (w), 1159 (w), 1124 (m), 946 (m), 920 (w). 1H NMR (500 MHz, CDCl$_3$) δppm 7.13 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 6.68-6.62 (m, 1H), 5.11 (d, J = 1.6 Hz, 1H), 4.66 (dd, J = 17.3, 1.6 Hz, 1H), 3.75 (d, J = 5.4 Hz, 1H), 2.31 (s, 3H), 2.15 (dd, J = 12.1, 3.9 Hz, 1H), 1.95 (d, J = 13.1 Hz, 1H), 1.86-0.05 (m, 13H). 13C NMR (125 MHz, CDCl$_3$) δppm 179.4 (C$_4$), 139.4 (CH), 137.2 (C$_4$), 136.2 (C$_4$), 130.0 (2 x CH), 129.0 (2 x CH), 116.7 (CH$_2$), 82.5 (C$_4$), 55.8 (C$_4$), 51.0 (CH), 49.2 (CH), 36.0 (CH$_2$), 33.6 (CH$_2$), 29.6 (CH$_2$), 24.2 (CH$_2$), 23.9 (CH$_3$), 21.0 (CH$_3$), 20.7 (CH$_2$), 20.0 (CH$_2$). HRMS (El) m/z (M$^+$) calcd for C$_{21}$H$_{26}$O$_2$ 310.1933 found 310.1949.

123
7-[1-(4-Trifluoromethylphenyl)allyl]-11-oxatricyclo[5.3.2.0\(^1,6\)]dodecan-12-ol (2.4 g)

Prepared using general procedure F: method B.

Allyl ether 2.1 g (15.2 mg, 0.0415 mmol), Et\(_3\)N (12.1 mg, 0.120 mmol) and toluene (5.0 mL) to provide lactol 2.4 g (14.9 mg, 98%) as colorless crystals. mp 122.3-125.1°C. IR (neat, cm\(^{-1}\)) 3387 (w), 2930 (m), 2859 (w), 1616 (w), 1448 (w), 1410 (w), 1326 (s), 1159 (m), 1120 (s), 1069 (m), 908 (w). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta_{\text{ppm}}\) 7.53 and 7.52 (2d, \(J = 8.1\) Hz and 8.1 Hz, 2H), 7.43 and 7.34 (2d, \(J = 8.2\) Hz and 8.3 Hz, 2H), 6.45-6.38 and 6.21-6.14 (2m, 1H), 5.52 and 5.26 (2d, \(J = 4.7\) Hz, and 3.2 Hz, 1H), 5.14 and 5.09 (dt and dd, \(J = 10.4\), 1.4 Hz and 10.1, 1.7 Hz, 1H), 4.99 and 4.93 (2dt, \(J = 16.9\), 2.88 Hz and 17.2, 1.5 Hz, 1H), 4.12 and 3.68 (2d, \(J = 7.1\) Hz, and 9.1 Hz, 1H), 2.88 and 2.82 (2 br s, 1H), 2.31-0.79 (m, 15H). \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta_{\text{ppm}}\) 145.9 (CH\(_4\)), 145.6 (C\(_4\)), 138.8 (CH), 138.5 (CH), 130.6 (2 x CH), 129.4 (2 x CH), 125.0-124.8 (q, \(J = 6.5\) Hz, 2 x CH), 117.6 (CH\(_2\)), 116.3 (CH\(_2\)), 103.4 (CH), 101.2 (CH), 84.0 (C\(_4\)), 82.4 (C\(_4\)), 54.4 (C\(_4\)), 50.8 (CH), 48.9 (CH), 39.3 (CH\(_2\)), 38.3 (CH\(_2\)), 34.7 (CH\(_2\)), 34.4 (CH\(_2\)), 29.6 (CH\(_2\)), 29.2 (CH\(_2\)), 24.8 (CH\(_2\)), 24.8 (CH\(_2\)), 24.7 (CH\(_2\)), 23.4 (CH\(_2\)), 21.4 (CH\(_2\)), 21.3 (CH\(_2\)), 19.6 (CH\(_2\)), 19.5 (CH\(_2\)). HRMS (EI) \(m/z\) (M\(^+\) - C\(_{11}\)H\(_{17}\)O\(_2\)) calcd for C\(_{10}\)H\(_{8}\)F\(_3\) 185.0578, found 185.0576.

7-[1-(4-Trifluoromethylphenyl)allyl]-11-oxatricyclo[5.3.2.0\(^1,6\)]dodecan-12-one (Lactone from 2.4 g)

Prepared using general procedure G

Lactol 2.4 g (10.3 mg, 0.0281 mmol); 4 Å molecular sieves (14.1 mg); NMO (4.9 mg, 0.042 mmol) and TPAP (0.5 mg, 0.001 mmol) in dry
dichloromethane (2.0 mL) provided lactone of 2.4g (9.8 mg, 96%) as a colorless oil. IR (neat, cm⁻¹) 3078 (w), 2929 (s), 2854 (m), 1760 (s), 1617 (w), 1450 (w), 1324 (s), 1164 (w), 1124 (s), 1072 (m), 1009 (w), 946 (w). ¹H NMR (300 MHz, CDCl₃) δ ppm 7.54 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 6.6 Hz, 2H), 6.71-6.59 (m, 1H), 5.15 (dd, J = 10.5, 1.5 Hz, 1H), 4.61 (dd, J = 17.3, 1.5 Hz, 1H), 3.86-3.85 (m, 1H), 2.18-2.11 (m, 1H), 1.97 (d, J = 13.3 Hz, 1H), 1.91-0.63 (m, 11H). ¹³C NMR (125 MHz, CDCl₃) δ ppm 178.9 (C₄), 144.7 (C₄), 138.6 (CH), 130.4 (2 x CH), 125.2 (q, J = 3.5 Hz, 2 x CH), 117.5 (CH₂), 82.6 (C₄), 55.7 (C₄), 51.0 (CH), 49.7 (CH), 35.9 (CH₂), 33.5 (CH₂), 29.9 (CH₂), 24.5 (CH₂), 23.8 (CH₂), 20.6 (CH₂), 20.0 (CH₂). HRMS (El) m/z (M⁺) calcd for C₂₁H₂₃F₃O₂ 364.1650, found 364.1633.

7-[1-(4-Trifluoromethylphenyl)allyl]-11-oxatricyclo[5.3.2.0¹,⁶]dodecan-12-ol (2.4h)

Prepared using general procedure F: method A and B.

Reagents and quantities for method A: Allyl ether 2.1h (19.6 mg, 0.0535 mmol), triethylamine (15.2 mg, 0.161 mmol) and toluene (12.0 mL) to provide lactol 2.4h (19.4 mg, 99%) as colorless crystals. Reagents and quantities for method B: Allyl ether 2.1h (47.8 mg, 0.131 mmol), triethylamine (36.3 mg, 0.391 mmol) and toluene (5.0 mL) to provide lactol 2.4h (24.3 mg, 51%) as colorless crystals. mp 126.6-128.5°C. IR (CDCl₃, cm⁻¹) 3371 (w), 3073 (w), 2930 (m), 2855 (w), 1623 (w), 1451 (w), 1411 (w), 1326 (s), 1164 (m), 1124 (m), 1070 (m), 986 (w). ¹H NMR (300 MHz, CDCl₃) δ ppm 7.51-7.48 and 7.28 (m and d, J = 8.1 Hz, 4H), 6.34-6.16 (m, 1H), 5.53, 5.19-5.03 and 4.75 (d, m and s, J = 4.4 Hz, 3H), 4.14 and 3.64 (2d, J = 9.2 Hz and 8.5 Hz, 1H), 2.98 and 2.52 (2s (br), 1H), 2.15-0.81 (m, 15H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 146.5 (C₄), 137.5 and 136.9 (CH),
130.9 and 127.7 (2 x CH), 124.9-124.4 (q, J = 3.8 Hz, 2 x CH), 117.9 (CH$_2$), 102.6 and 101.0 (CH), 84.0 and 81.8 (C$_4$), 54.2 and 52.5 (C$_4$), 50.9 (CH), 49.0 (CH), 47.7 (CH), 39.3 and 38.4 (CH$_2$), 34.7 and 34.5 (CH), 29.7 and 28.8 (CH), 26.6 (CH), 24.9 (CH), 24.7 (CH), 23.9 (CH), 22.5 (CH), 21.6 (CH), 19.3 (CH). HRMS (EI) m/z (M$^+$) calcd for C$_{21}$H$_{25}$F$_3$O$_2$ 366.1807, found 366.1691.

7-[1-(4-Trifluoromethylphenyl)allyl]-11-oxatricyclo[5.3.2.01,6]dodecan-12-one (Lactone from 2.4h)

Prepared using general procedure G

Lactol 2.4h (9.4 mg, 0.026 mmol); 4 Å molecular sieves (12.9 mg); NMO (4.5 mg, 0.039 mmol) and TPAP (0.5 mg, 0.001 mmol) in dry dichloromethane (2.0 mL) provided lactone of 2.4h (9.3 mg, 99%) as a colorless oil. IR (neat, cm$^{-1}$) 3076 (w), 2932 (m), 2860 (m), 1770 (s), 1617 (w), 1454 (m), 1326 (s), 1162 (s), 1123 (s), 1068 (m), 1018 (m), 939 (m). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 7.55 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 6.26-6.14 (m, 1H), 5.10 (dt, J = 10.4, 1.3 Hz, 1H), 4.93 (dt, J = 17.1, 1.4 Hz, 1H), 3.85 (d, J = 7.8 Hz, 1H), 2.07-1.92 (m, 3H), 1.79-0.81 (m, 12H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 178.2 (C$_s$), 144.2 (C$_4$), 137.6 (CH), 130.8 (2 x CH), 124.8 (q, J = 3.5 Hz, 2 x CH), 117.6 (CH$_2$), 82.4 (C$_4$), 55.8 (C$_4$), 51.5 (CH), 50.7 (CH), 35.7 (CH$_2$), 33.6 (CH$_2$), 30.6 (CH$_2$), 25.7 (CH$_2$), 24.1 (CH$_2$), 20.8 (CH$_2$), 19.3 (CH$_2$). HRMS (EI) m/z (M$^+$) calcd for C$_{21}$H$_{25}$F$_3$O$_2$ 364.1650, found 364.1653.

(3-Bromo-prop-1-ynyl)-benzene (2.39)

Prepared using general procedure C

Commercially available 3-phenyl-prop-2-yn-1-ol 2.38 (210.5 mg, 1.593 mmol); carbon tetrabromide (660.0 mg, 1.991 mmol); triphenylphosphine (626.6 mg, 2.389 mmol) in
CH$_2$Cl$_2$ (30.0 mL). The product was used in the following reaction without further purification.

![1-(2,2-Dibromo-vinyl)-4-methoxy-benzene (2.41)]

Prepared using general procedure D

Carbon tetrabromide (24.34 g, 73.39 mmol); triphenylphosphine (19.25 g, 73.39 mmol); p-anisaldehyde 2.40 (5.00 g, 36.72 mmol); triethylamine (5.12 mL, 36.7 mmol) in DCM (80.0 mL). The reaction was stirred overnight to afford 2.41 as yellow crystals (1.96 g, 18%). Spectral data: Huh, D.H.; Jeong, J.S.; Lee, H.B.; Ryu, H.; Kim, Y.G. *Tetrahedron* 2002, 58, 9925.

(4-Methoxy-phenyl)-propynal (2.42)

![1-(2,2-Dibromo-vinyl)-4-methoxy-benzene 2.41 (1.96 g, 6.71 mmol); n-BuLi (5.8 mL, 13 mmol); DMF (0.53 mL, 6.8 mmol) in THF (60.0 mL) provided aldehyde 2.42 as yellow crystals (0.52 g, 48%). Spectral data: Wadsworth, D.H.; Geer, S.M.; Detty, M.R. *J. Org. Chem.* 1987, 52, 3662.

3-(4-Methoxy-phenyl)-prop-2-yn-1-ol (2.43)

(4-Methoxy-phenyl)-propynal 2.42 (0.469 g, 2.92 mmol); NaBH$_4$ (0.552 g, 14.6 mmol) in EtOH (50.0 mL) to generate alcohol 2.43 as light yellow crystals (0.40 g, 84%). Spectral data: Wadsworth, D.H.; Geer, S.M.; Detty, M.R. *J. Org. Chem.* 1987, 52, 3662.

![1-(3-Bromo-prop-1-yynyl)-4-methoxy-benzene (2.44)]

3-(4-Methoxy-phenyl)-prop-2-yn-1-ol 2.43 (396.3 mg, 2.443 mmol); carbon tetrabromide (1.01 g, 3.05 mmol); triphenylphosphine (0.962 g, 3.67
mmol) in DCM (50.0 mL). The product was used in the following reaction without further purification.

2-[1-(3-Phenyl-prop-2-ynyloxy methyl)-vinyl]-1-vinyl-cyclohexanol (2.45d)

Followed using general procedure E

Sodium hydride (109.0 mg, 2.729 mmol); 1,2-divinylcyclohexanol 2.13 (100.0 mg, 0.5460 mmol); (3-bromo-prop-1-ynyl)-benzene 2.39 (theoretically 310.7 mg, 1.593 mmol) to afford 2.45d as a colorless oil (95.0 mg, 59%). IR (neat) 3426 (m), 3078 (w), 2931 (s), 2855 (m), 2228 (w), 1637 (w), 1490 (m), 1443 (m), 1355 (w), 1256 (w), 1068 (s), 972 (m), 916 (s), 757 (s), 691 (m) cm⁻¹. ¹H NMR (300 MHz, CDCl₃), δ ppm 7.45-7.39 (m, 2H), 7.33-7.27 (m, 3H), 5.87 (dd, J = 17.2, 10.7 Hz, 1H), 5.24-5.15 (m, 2H), 5.05-4.95 (m, 2H), 4.30 (dd, J = 29.6, 15.7 Hz, 2H), 4.14 (dd, J = 11.9, 0.9 Hz, 1H), 3.93 (d, J = 12.1 Hz, 1H), 3.11 (d, J = 2.15 Hz, 1H), 2.28 (dd, J = 12.7, 3.3 Hz, 1H), 1.94-1.16 (m, 8H). ¹³C NMR (300 MHz, CDCl₃) δ ppm 146.8 (CH), 146.2 (C₄) 132.1 (2 x CH), 128.9 (CH), 128.7 (2 x CH), 122.9 (C₄), 118.4 (CH₂), 111.5 (CH₂), 87.0 (C₄), 84.9 (C₄), 73.0 (C₄), 72.2 (CH₂), 58.0 (CH₂), 51.5 (CH), 38.7 (CH₂), 27.2 (CH₂), 26.5 (CH₂), 21.6 (CH₂).

HRMS m/z (M⁺ - C₁₁H₁₇O₂) calcd 115.0548 found 115.0521.

2-[1-[3-(4-Methoxy-phenyl)-prop-2-ynyloxy methyl]-vinyl]-1-vinyl-cyclohexanol (2.45e)

Followed using general procedure E

Sodium hydride (109.0 mg, 2.729 mmol); 1,2-divinylcyclohexanol 2.13 (100.0 mg, 0.5460 mmol); 1-(3-bromo-prop-1-ynyl)-4-methoxy-benzene 2.44 (theoretically 549.2 mg, 2.440 mmol) to afford 2.45e as a colorless oil (142.8 mg, 80%). IR (Ether) 3423
(m), 3071 (w), 2932, (s), 2859 (m), 2228 (w), 1607 (s), 1510 (s), 1442 (w), 1292 (m), 1249 (s), 1174 (m), 1062 (m), 917 (m), 833 (s) cm⁻¹. \(^1\)H NMR (300 MHz, CDCl₃, \(\delta_{ppm}\) 7.34 (d, J = 8.56 Hz, 2H), 6.79 (d, J = 8.56 Hz, 2H), 5.85 (dd, J = 17.2, 10.7 Hz, 1H), 5.21-5.12 (m, 2H), 5.02-4.93 (m, 2H), 4.26 (dd, J = 29.9, 15.6 Hz, 2H), 4.00 (dd, J = 63.8, 11.9 Hz, 2H), 3.75 (s, 3H), 3.14 (s, 1H), 2.25 (d, J = 12.8 Hz, 1H), 1.99-1.14 (m, 8H). \(^13\)C NMR (300 MHz, CDCl₃) \(\delta_{ppm}\) 169.1 (C₄), 146.8 (CH), 146.2 (C₄), 133.6 (2 x CH), 118.3 (CH), 115.0 (C₄), 114.3 (2 x CH), 111.4 (CH₂), 87.0 (C₄), 83.5 (C₄), 73.0 (C₄), 72.1 (CH₂), 58.0 (CH₂), 55.6 (CH₃), 51.5 (CH), 38.7 (CH₂), 27.2 (CH), 26.5 (CH₂), 21.7 (CH₂). HRMS m/z (M⁺) calcd 326.1882 found 326.

Tetracyclic acetal (2.47d).

Prepared using general procedure F: method A.

Propargyl ether **2.45d** (76.8 mg, 0.259 mmol), DBU (119 mg, 0.78 mmol) and toluene (12.0 mL) generated tetracyclic acetal **2.47d** (65.3 mg, 85%) as a colorless oil. IR (neat, cm⁻¹) 3030 (w), 2927 (s), 2859 (m), 1648 (m), 1445 (w), 1237 (w), 1208 (m), 1076 (m), 977 (m), 903 (m), 757 (m), 699 (m). \(^1\)H NMR (300 MHz, CDCl₃, \(\delta_{ppm}\) 7.33-7.12 (m, 5H), 5.82 (s, 1H), 1.96 (s, 3H), 1.93-1.16 (m, 15H). \(^13\)C NMR (75 MHz, CDCl₃) \(\delta_{ppm}\) 150.3 (C₄), 135.5 (C₄), 128.7 (2 x CH), 127.4 (2 x CH), 125.8 (CH), 113.8 (C₄), 112.7 (C₄), 89.3 (C₄), 62.4 (C₄), 52.1 (CH), 39.4 (CH₂), 33.9 (CH₂), 31.2 (CH₂), 25.3 (CH₂), 24.5 (CH₂), 21.7 (CH₂), 19.8 (CH₂), 13.4 (CH₃). LRMS (EI) m/z (M⁺) calcd for C₂₉H₂₄O₂ 296, found 296.

Tetracyclic acetal (2.47e).

Prepared using general procedure F: method A.

Propargyl ether **2.45e** (142.2 mg, 0.4356 mmol), DBU (201 mg,
1.32 mmol) and toluene (12.0 mL) afforded tetracyclic acetal 2.47e (115.0 mg, 81%) as colorless crystals. mp 102-104°C. IR (neat, cm⁻¹) 3045 (w), 2927 (s), 2865 (m), 1655 (w), 1609 (w), 1513 (s), 1442 (w), 1346 (w), 1288 (m), 1244 (s), 1178 (m), 978 (m). ¹H NMR (300 MHz, CDCl₃, δ ppm 7.04 (dd, J = 8.87, 2.10 Hz, 2H), 6.85 (dd, J = 6.83, 2.11 Hz, 2H), 5.80 (s, 1H), 3.78 (s, 3H), 1.92 (s, 3H), 1.88 (m, 15H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 157.9 (C₄), 149.1 (C₄), 128.6 (2 x CH), 127.8 (C₄), 114.2 (2 x CH), 113.2 (C₄), 112.6 (CH), 89.3 (C₄), 62.4 (C₄), 55.6 (CH₃), 51.9 (CH), 39.4 (CH₂), 33.9 (CH₂), 31.3 (CH₂), 25.3 (CH₂), 24.5 (CH₂), 21.7 (CH₂), 19.8 (CH₂), 13.2 (CH₃). HRMS (El) m/z (M⁺) calcd for C₂₁H₂₆O₃ 326.1883, found 326.1884.

3-methoxycyclopent-2-enone (3.19)

To a solution of 1,3-cyclopentadiene 3.18 (1.0688 g, 10.895 mmol) and methanol (15.0 mL) was added recrystallized PTSA (207.2 mg, 1.090 mmol). The solution was stirred for 2.5 hours. The reaction was quenched with saturated NaHCO₃ (aq) until a pH of 8 was obtained. The aqueous layer was extracted with ether (3x) and the organic layers were combined, dried over MgSO₄ and concentrated. Purification by flash column chromatography (70% EtOAc in hexanes) generated methylenol ether 3.19 (671.5 mg, 55%) as colorless crystals. Spectral data: House, H. O.; Rasmusson, G. H. J. Org. Chem. 1963, 28, 27.

3-Bromo-cyclopent-2-enone (3.23)

A 100 mL flame dried round bottom flask was charged with 1,3-cyclopentadiene 3.18 (0.750 mg, 7.65 mmol), phosphorus tribromide (15.3 mmol, 1.45 mL), and dichloromethane (40.0 mL). The solution was heated to reflux under N₂ for 24 hours. The reaction was cooled to room temperature, poured over ice water and extracted
with ether (3x). The organic layers were combined, dried over anhydrous MgSO₄ and concentrated \textit{in vacuo}. Flash column chromatography (40% EtOAc in hexanes) afforded \textit{3.23} as a colorless oil (0.69 g, 57\%). Spectral data: Shih, C.; Swenton, J. S. \textit{J. Org. Chem.} 1982, \textit{47}, 2825.

\begin{center}
3-[3-(tert-Butyl-dimethyl-silanyloxy)-propenyl]-cyclopent-2-enone \\
(3.22)
\end{center}

To a dry 25 mL round bottom flask with a magnetic stirrer were placed PdCl₂(PPh₃)₂ (19.7 mg, 0.0281 mmol) and NaOAc (11.5 mg, 0.141 mmol). The flask was flushed with N₂ and charged with dry methanol (1.0 mL), boronic ester \textit{3.24} (29.9 mg, 0.103 mmol) and 3-bromo-cyclopent-2-enone \textit{3.23} (15.0 mg, 0.0938 mmol). The reaction mixture was refluxed for 3 hours. The solution was cooled to room temperature and the boronate ester was oxidized by addition of 3 drops of 3 M NaOH (aq) and 3 drops of 30\% hydrogen peroxide. The aqueous layer was extracted with benzene (3x) and the combined organic layer was washed with a saturated solution of brine. The organic layer was dried over MgSO₄, concentrated and flash chromatography (20\% EtOAc/hexanes) generated \textit{3.22} as colorless crystals (20.12 mg, 85\%). IR (neat) 2923 (m), 2852 (m), 1700 (s), 1673 (s), 1646 (s), 1583 (m), 1441 (s), 1252 (m), 969 (s), 836 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ ppm 6.74 (d, J = 15.7 Hz, 1H), 6.34 (dt, J = 15.7, 4.2 Hz, 1H), 6.00 (s, 1H), 4.34 (dd, J = 4.1, 1.8 Hz, 2H), 2.74-2.71 (m, 2H), 2.45-2.42 (m, 2H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 209.7 (C₄), 171.9 (C₄), 138.7 (CH), 130.1 (CH), 124.7 (CH), 63.0 (CH₂), 34.8 (CH₂), 27.1 (CH₂), 2.59 (3 x CH₃), 18.4 (C₄), -5.36 (2 x CH₃). HRMS m/z M⁺ - (C₄H₉) calcd 195.0813 found 195.0866. mp 50.4-52.4 °C.
3-[3-(tert-Butyl-dimethyl-silyloxy)-propenyl]-cyclopent-2-enol

(3.25)

To a solution of ketone 3.22 (0.0400 mmol, 10.1 mg) in MeOH (1.5 mL) was added CeCl$_3$·7H$_2$O (0.0400 mmol, 14.9 mg) at 0°C, followed by NaBH$_4$ (0.0400 mmol, 1.51 mg). The solution was stirred for 5 minutes after which a TLC revealed no starting material. The reaction was quenched with saturated NH$_4$Cl (aq) and the MeOH was removed under vacuum. The solution was diluted with water and Et$_2$O and the aqueous layer was extracted with Et$_2$O (3x). The organic layers were combined, dried over anhydrous MgSO$_4$ and concentrated in vacuo. The crude product was purified by flash chromatography (30 % EtOAc in hexanes) to afford 3.25 as a colorless oil (10.2 mg) in a quantitative yield. 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 6.51 (d, 15.5 Hz, 1H), 5.66 (dt, J = 15.7 Hz, 4.8 Hz, 1H), 5.58 (s, 1H), 4.64 (s, 1H), 4.11 (d, J = 4.7 Hz, 2H), 2.43-2.36 (m, 1H), 2.12-1.99 (m, 2H), 1.63-1.54 (m, 1H), 0.98 (s, 9H), 0.06 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 144.4 (C$_4$), 132.3 (CH), 132.1 (CH), 126.2 (CH), 77.2 (CH), 63.7 (CH$_2$), 33.9 (CH$_2$), 29.8 (CH$_2$), 26.1 (3 x CH$_3$), 18.5 (C$_4$), -5.1 (2 x CH$_3$). IR (CHCl$_3$, cm$^{-1}$) 3342 (m), 2962 (s), 2923 (s), 2859 (s), 1603 (w), 1468 (m), 1242 (s), 1126 (m), 1056 (m), 966 (s), 837 (s), 772 (s). HRMS (EI) m/z (M$^+$) calc 236.1596 found 236.1574.

3-[3-(tert-Butyl-dimethyl-silyloxy)-propenyl]-1-methyl-cyclopent-2-enol (3.26)

To a solution of ketone 3.22 (0.137 mmol, 34.5 mg) in THF (4.0 mL) cooled at -78°C was added methyllithium (0.21 mmol, 0.13 mL). The reaction was stirred for 3 hours and monitored by TLC. The reaction was quenched at 0°C with water and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were
dried over anhydrous MgSO₄, concentrated, and purified by basified flash chromatography (Et₃N, 30% EtOAc in hexanes) to afford the tertiary alcohol 3.26 as a colorless oil (30.9 mg, 84%). ¹H NMR (300 MHz, C₆D₆) δ ppm 6.48 d, J = 15.4 Hz, 1H), 5.67 (dt, J = 15.6 Hz, 4.9 Hz, 1H), 5.63 (s, 1H), 4.13 (dd, J = 4.9 Hz, 1.4 Hz, 2H), 2.43-2.34 (m, 1H), 2.22-2.11 (m, 1H), 1.81 (t, J = 6.8 Hz, 2H), 1.27 (s, 3H), 0.99 (s, 9H), 0.07 (s, 6H). ¹³C NMR (75 MHz, C₆D₆) δ ppm 142.3 (C₄), 136.7 (CH), 131.7 (CH), 126.3 (CH), 83.6 (C₄), 63.7 (CH₂), 40.1 (CH₂), 30.0 (CH₂), 27.7 (CH₃), 26.1 (3 x CH₃), 18.5 (C₄), -5.1 (2 x CH₃). IR (C₆D₆, cm⁻¹) 3359 (w), 2958 (s), 2929 (s), 2854 (s), 1468 (m), 1383 (m), 1250 (s), 1106 (s), 1066 (s), 969 (m), 837 (s), 768 (m). HRMS (EI) m/z (M⁺) calcd 268.1859 found 268.1837.

3-Vinyl-cyclopent-2-ene (3.27)

Vinylmagnesium bromide (1.58 mL, 1.42 mmol) was added dropwise at -78°C to a solution of 3-methoxycyclopent-2-ene 3.19 (132.5 mg, 1.182 mmol) in dry THF (3.0 mL). The solution was stirred for 1 hour at -78°C and was subsequently allowed to warm up to room temperature. The solution was slowly poured over ice (16 g) and concentrated HCl (0.5 mL), and was stirred for 2 hours. The aqueous layers were dried over anhydrous MgSO₄ and concentrated to provide diene 3.27 (127.8 mg, >99%) as a yellow oil. No purification was required. Spectral data: Fisher, M. J.; Hehre, W. J.; Overman, L. E.; Kahn, S. D. J. Am. Chem. Soc. 1988, 110, 4625.

3-Vinyl-cyclopent-2-enol (3.28)

To a solution of enone 3.27 (0.971 mmol, 150 mg) in MeOH (5.0 mL) was added CeCl₃·7H₂O (0.971 mmol, 362 mg) at 0°C, followed by NaBH₄ (0.971 mmol, 36.7.
mg). The solution was stirred for 5 minutes after which a TLC revealed no starting material. The reaction was quenched with saturated NH₄Cl (aq) and the MeOH was removed under vacuum. The solution was diluted with water and Et₂O and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried over anhydrous MgSO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography (30 % EtOAc in hexanes) to afford 3.28 as a colorless oil (56.0 mg, 52%). Spectral data: Fisher, M.J.; Hehre, W.J.; Overman, L.E.; Kahn, S.D. *J. Am. Chem. Soc.* 1988, **110**, 4625.

1,3-Divinyl-cyclopent-2-enol (3.29)

A dry round bottom flask was charged with the ketone 3.27 (0.761 mmol, 82.3 mg) in THF (8.0 mL) and the solution was cooled to -78°C. Vinylmagnesium bromide (1.52 mmol, 1.69 mL) was added and the solution was stirred for 10 minutes. The reaction was quenched at 0°C with saturated NH₄Cl. The aqueous layer was extracted with EtOAc (3x), the combined organic layers were dried over MgSO₄ and were concentrated in vacuo. Purification by flash chromatography (20% EtOAc in hexanes) yielded 3.29 as a volatile colorless oil (42.1 mg, 41%). ¹H NMR (300 MHz, CDCl₃) δ ppm 6.54 (dd, J = 17.4 Hz, 10.6 Hz, 1H), 6.01 (dd, J = 17.3 Hz, 10.6 Hz, 1H), 5.58 (s, 1H), 5.24 (dd, J = 7.2 Hz, 0.7 Hz, 1H), 5.19 (s, 1H), 5.16 (dd, J = 7.0 Hz, J = 0.7 Hz, 1H), 5.02 (dd, J = 10.6 Hz, 0.7 Hz, 1H), 2.67-2.58 (m, 1H), 2.46-2.36 (m, 1H), 2.23-2.14 (m, 1H), 2.05-1.96 (m, 1H), 1.78 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 145.4 (C=), 142.5 (CH), 133.7 (CH), 133.0 (CH), 116.8 (CH₂), 111.7 (CH₂), 85.3 (C=), 38.9 (CH₂), 29.1 (CH₃). IR (CDCl₃, cm⁻¹) 3381 (m), 2932 (m), 2853 (w), 1761 (s), 1647 (w), 1447 (s), 1148 (s). HRMS (EI) m/z (M⁺) calcd 136.0888 found 136.0877.
5.9 General Procedure H for the Hydroxy-Directed Diels-Alder Reaction

3,4,6,7,7a,7b-Hexahydro-2aH-2-oxa-cyclopenta[cd]inden-1-one (3.32)

Method A. To a solution of MgBr₂·Et₂O (1.032 mmol, 266.6 mg) in CH₂Cl₂ (5.0 mL) at room temperature (21°C) was added Et₃N (1.7 mmol, 0.24 mL) under an atmosphere of nitrogen. The solution became pink and was stirred for 30 minutes. Diene 3.28 (0.344 mmol, 37.9 mg) in CH₂Cl₂ (3.0 mL) was subsequently cannulated into the reaction mixture and was stirred for and additional 30 minutes, during which the solution became orange. Dienophile (methylacrylate) (1.7 mmol, 0.16 mL) was added and the solution was stirred overnight. The solution was quenched with saturated NH₄Cl (aq), extracted with CH₂Cl₂ (3x), dried over anhydrous MgSO₄ and concentrated under vacuum. Purification by flash column chromatography (20% EtOAc in hexanes) afforded lactone 3.32 as a volatile colorless oil (18.2 mg, 32%). ¹H NMR (300 MHz, CDCl₃) δ ppm 5.64 (s, 1H), 4.84 (t, J = 5.8 Hz, 1H), 3.05-3.00 (m, 1H), 2.86 (broad s, 1H), 2.37 (t, J = 7.5 Hz and 8.4 Hz, 2H), 2.17-1.75 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 178.0 (C₄), 137.0 (C₄), 122.4 (CH), 82.6 (CH), 42.6 (CH), 39.1 (CH), 31.1 (CH₂), 28.8 (CH₂), 21.1 (CH₂), 18.8 (CH₂). IR (CHCl₃, cm⁻¹) 2942 (w), 2844 (w), 1761 (s), 1440 (w), 1303 (w), 1148 (m), 1022 (m), 953 (m), 896 (m). HRMS (EI) m/z (M⁺) calcd 164.0837 found 164.0837.

Reaction of 3.28 with N-phenylmaleimide (3.33)

Prepared using general procedure H: method A

MgBr₂·Et₂O (0.232 mmol, 59.8 mg); Et₃N (0.386 mmol, 0.05 mL); diene
3.28 (0.077 mmol, 8.5 mg); N-phenylmaleimide (0.386 mmol, 66.8 mg) in DCM (5.0 mL) afforded amide 3.33 as colorless crystals (11.9 mg, 54%). Spectral data: Fisher, M.J.; Hehre, W.J.; Overman, L.E.; Kahn, S.D. J. Am. Chem. Soc. 1988, 110, 4625.

2a-Vinyl-3,4,6,7,7a,7b-hexahydrop-2aH-2-oxa-cyclopenta[cd]inden-1-one (3.34)

Prepared using general procedure H: method A

MgBr$_2$:Et$_2$O (0.139 mmol, 35.8 mg); Et$_3$N (0.2 mmol, 0.03 mL); diene 3.29 (0.046 mmol, 6.3 mg); methylacrylate (0.2 mmol, 0.02 mL) in DCM (5.0 mL) afforded lactone 3.34 as a colorless oil (2.0 mg, 23%). 1H NMR (300 MHz, CDCl$_3$) δppm 5.93 (dd, J = 17.1 Hz, 10.8 Hz, 1H), 5.62 (broad s, 1H), 5.32 (dd, J = 17.1 Hz, 1.0 Hz, 1H), 5.16 (dd, J = 10.8 Hz, J = 1.0 Hz, 1H), 2.95 (dddd, J = 6.5 Hz, 5.2 Hz, 2.7 Hz, 1H), 2.72-2.69 (m, 1H), 2.51-2.35 (m, 2H), 2.19-1.96 (m, 5H), 1.83-1.71 (m, 1H). 13C NMR (75 MHz, CDCl$_3$) δppm 177.8 (C$_4$), 138.1 (CH), 137.8 (C$_4$), 122.4 (CH), 114.1 (CH$_2$), 92.2 (C$_4$), 47.0 (CH), 37.8 (CH), 34.4 (CH$_2$), 31.1 (CH$_2$), 21.0 (CH$_2$), 18.6 (CH$_2$). IR (neat, cm$^{-1}$) 2959 (w), 2922 (s), 2851 (m), 1775 (s), 1448 (w), 1158 (w). HRMS (EI) m/z (M$^+$) calcd 190.0994 found 190.0988.

6-(tert-Butyl-dimethyl-silanyloxy)methyl)-2a-methyl-1-oxo-1,2a,3,4,6,7,7a,7b-octahydro-2-oxa-cyclopenta[cd]inden-7-carboxylic acid phenylamide (3.35)

Method B. Vinylmagnesium bromide (0.56 mmol, 0.62 mL) was added dropwise to a solution of diene 3.26 (0.4675 mmol, 125.5 mg) in toluene (6.0 mL) cooled to -78°C under N$_2$. The reaction mixture was stirred for 30 minutes, followed by
cannulation of N-phenylmaleimide (1.403 mmol, 242.9 mg) in toluene (4.0 mL). The yellow solution was warmed up to room temperature and was stirred for 36 hours. A TLC revealed the presence of two products, the spontaneously lactonized amide and the free alcohol, and a trace of starting material. The orange solution was quenched with saturated NH₄Cl (aq), extracted with CH₂Cl₂ (3x), dried over anhydrous MgSO₄ and concentrated in vacuo. The crude products were purified by flash chromatography (20% EtOAc in hexanes) to afford the amide 3.35 with a trace of NPM as a light yellow oil (91.0 mg, 44%). The imide 3.36 was subsequently diluted in THF and 0.5 mL of DBU was added to the reaction flask. After stirring for 30 minutes, the organic solvent was removed under vacuum and the crude amide was purified by flash column chromatography (30% EtOAc in hexanes) to afford the pure amide 3.35 as a colorless foam (80.9 mg, 39%). The reaction yielded the amide (83%, dr > 25:1) after all manipulations. Amide 3.35: ¹H NMR (300 MHz, CDCl₃) δ ppm 9.98 (s, 1H), 7.55 (dd, J = 8.7 Hz, 0.8 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 5.70 (s, 1H), 3.74 (m, 2H), 3.43 (dd, J = 7.9 Hz, 4.9 Hz, 1H), 3.31 (dd, J = 6.7 Hz, 4.9 Hz, 1H), 2.84 (broad s, 1H), 2.73 (d, J = 7.8 Hz, 1H), 2.46 (t, J = 6.9 Hz, 2H), 2.28-2.17 (m, 1H), 2.04-1.97 (m, 1H), 1.55 (s, 3H), 0.83 (s, 9H), -0.02 (d, J = 4.0 Hz, 6H). ¹³C NMR (75 MHz, C₆D₆) δ ppm 178.8 (C₄), 170.1 (C₄), 140.1 (C₄), 138.2 (C₄), 128.9 (2 x CH), 124.0 (CH), 121.8 (CH), 120.0 (2 x CH), 92.6 (C₄), 63.8 (CH₂), 49.4 (CH), 44.7 (CH), 40.2 (CH), 39.5 (CH), 36.5 (CH₂), 31.2 (CH₂), 25.9 (3 x CH₃), 24.9 (CH₃), 18.2 (C₄), -5.4 (2 x CH₃). IR (neat, cm⁻¹) 3316 (w), 3052 (w), 2954 (m), 2930 (m), 2887 (m), 2853 (m), 1740 (s), 1681 (m), 1597 (s), 1555 (m), 1499 (m), 1440 (m), 1248 (m), 1098 (s), 838 (s). HRMS (EI) m/z (M⁺ - (CH₃)₃) calcd 384.1631 found 384.1624. mp 87.1-88.5°C.
Imide 3.36 1H NMR (300 MHz, CDCl$_3$) δ ppm 7.49-7.34 (m, 3H), 7.13 (d, J = 7.4 Hz, 2H), 5.55 (s, 1H), 4.96 (s, 1H), 4.18 (dd, J = 10.0 Hz, 7.1 Hz, 1H), 3.88 (t, J = 9.0 Hz, 1H), 3.64 (t, J = 7.6 Hz, 1H), 3.40 (t, J = 7.6 Hz, 1H), 2.51 (broad s, 1H), 2.40-2.28 (m, 3H), 1.97-1.79 (m, 2H), 1.40 (s, 3H), 0.89 (s, 9H), 0.07 (d, J = 1.5 Hz, 6H). 13C NMR (75 MHz, CDCl$_3$) δ ppm 180.6 (C$_4$), 176.0 (C$_4$), 146.4 (C$_4$), 131.5 (C$_4$), 129.2 (2 x CH), 128.9 (CH), 126.6 (2 x CH), 119.7 (CH), 79.0 (C$_4$), 63.0 (CH$_2$), 51.3 (CH), 42.5 (CH), 41.3 (CH), 41.1 (CH), 40.6 (CH$_2$), 29.2 (CH$_3$), 27.8 (CH$_2$), 25.9 (3 x CH$_3$), 18.3 (C$_4$), -5.3 (2 x CH$_3$). IR (neat, cm$^{-1}$) 3436 (w), 3050 (w), 2957 (m), 2932 (m), 2890 (w), 2856 (m), 1777 (w), 1695 (s), 1606 (w), 1500 (m), 1390 (m), 1253 (m), 1216 (m), 1110 (m), 838 (s). HRMS (EI) m/z (M$^+$ - (C(CH$_3$)$_3$) calcd 384.1631 found 348.1585.

6-(tert-Butyl-dimethyl-silyloxy)methyl)-2a-methyl-1-oxo-1,2a,3,4,5,6,7a,7b-octahydro-2-oxa-cyclopenta[cd]indene-7-carboxylic acid phenyl-vinyl-amide (3.37b)

A flame dried round bottom flask was charged with NaH (0.074 mmol, 3.0 mg). Amide 3.35 (0.0706 mmol, 31.2 mg) in THF (3.0 mL) was cannulated into the flask, followed by the addition of allylbromide (0.078 mmol, 7.0 μL). The reaction was stirred for 4 hours. The excess reagents were quenched with saturated NH$_4$Cl (aq). The aqueous layer was extracted with EtOAc (3x). The organic layers were combined, dried over anhydrous MgSO$_4$ and concentrated. The product was purified by flash column chromatography (20% EtOAc in hexanes) to afford 3.37b as a colorless oil (22.0 mg, 65%). 1H NMR (300 MHz, CDCl$_3$) δ ppm 7.39-7.29 (m, 5H), 5.91-5.82 (m, 1H), 5.63 (broad s, 1H), 5.05-
4.98 (m, 2H), 4.21 (d, J = 6.3 Hz, 2H), 3.63 (d, J = 7.5 Hz, 2H), 3.31-3.17 (m, 2H), 2.64-2.32 (m, 3H), 2.29-2.20 (m, 1H), 2.09 (broad s, 1H), 2.00-1.90 (m, 1H), 1.48 (s, 3H), 0.86 (s, 9H), 0.02 (d, J = 2.4 Hz, 6H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 176.6 (C$_4$), 170.8 (C$_4$), 143.1 (C$_4$), 141.9 (C$_4$), 133.5 (2 x CH), 129.3 (2 x CH), 128.6 (CH), 127.6 (CH), 121.9 (CH), 117.5 (CH$_2$), 91.7 (C$_4$), 64.4 (CH$_2$), 52.7 (CH$_2$), 48.6 (CH), 43.6 (CH), 42.7 (CH), 38.3 (CH), 38.2 (CH$_2$), 29.7 (CH$_2$), 26.0 (3 x CH$_3$), 25.6 (CH$_3$), 18.4 (C$_4$), -5.3 (2 x CH$_3$). IR (neat, cm$^{-1}$) 3067 (w), 2954 (m), 2927 (s), 2858 (m), 1764 (s), 1661 (s), 1599 (m), 1250 (s), 1103 (m). HRMS (EI) m/z (M$^+$) calcd 481.2648 found 481.2656.

7a-Benzy1-6-(tert-butyl-dimethyl-silanyloxymethyl)-2a-methyl-1-oxo-1,2a,3,4,6,7a,7b-octahydro-2-oxa-
cyclopenta[cd]indene-7-carboxylic acid phenylamide (3.42)

A solution of amide 3.35 (0.195 mmol, 85.7 mg) in THF (1.5 mL) was cannulated into a flask containing dried KH (1.14 mmol, 45.7 mg) and THF (1.5 mL). Benzy1bromide (0.21 mmol, 0.030 mL) was added to the solution and was stirred for 1.5 hours. The TLC revealed no starting material. The reaction was quenched with saturated NH$_4$Cl (aq), the aqueous layers were extracted with EtOAc (3x) and the combined organic layers were dried over anhydrous MgSO$_4$. The solution was concentrated and the product was purified by flash column chromatography (20 % EtOAc in hexanes) to afford amide 3.42 as yellow crystals (75.1 mg, 73%). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 8.14 (s, 1H), 7.39-7.22 (m, 9H), 7.03 (t, J = 7.3 Hz, 1H), 4.99 (d, J = 2.2 Hz, 1H), 4.06 (dd, J = 11.1 Hz, 6.2 Hz, 1H), 3.61 (t, J = 11.6 Hz, 1H), 3.34 (d, J = 13.0 Hz, 1H), 3.20 (d, J = 4.3 Hz, 1H), 2.79 (d, J = 13.0 Hz, 1H), 2.68 (broad s, 1H), 2.46 (s, 1H),
2.43-2.28 (m, 2H), 2.18-2.06 (m, 1H), 1.86-1.79 (m, 1H), 0.99 (s, 9H), 0.40 (s, 3H), 0.17 (d, J = 3.8 Hz, 6H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 180.2 (C$_4$), 168.8 (C$_4$), 146.4 (C$_4$), 137.6 (C$_4$), 135.4 (C$_4$), 131.0 (2 x CH), 128.9 (2 x CH), 128.7 (2 x CH), 127.6 (CH), 124.0 (CH), 120.0 (2 x CH), 113.9 (CH), 89.7 (C$_4$), 63.5 (CH$_2$), 53.4 (C$_4$), 51.5 (CH), 50.5 (CH), 44.1 (CH$_2$), 40.1 (CH), 39.8 (CH$_2$), 31.6 (CH$_2$), 25.9 (3 x CH$_3$), 25.1 (CH$_3$), 18.1 (C$_4$), -5.1 (2 x CH$_3$). IR (neat, cm$^{-1}$) 3345 (w), 3062 (w), 2953 (m), 2926 (w), 2883 (w), 2857 (m), 1754 (s), 1693 (s), 1600 (s), 1538 (s), 1497 (s), 1380 (w), 1309 (m), 1250 (s), 1092 (s), 1076 (s), 838 (s). HRMS (EI) m/z (M$^+$-(CH$_3$)$_3$) calcd 474 found 474. mp = 67.1-70.8°C.

6-(tert-Butyl-dimethyl-silyloxy)methyl)-2a-methyl-1-oxo-1,2a,3,4,6,7,7a,7b-octahydro-2-oxa-cyclopenta[ed]indene-7-carboxylic acid benzy limide (3.45)

Vinylmagnesium bromide (0.12 mmol, 0.14 mL) was added dropwise to a solution of diene 3.26 (0.0577 mmol, 15.5 mg) in toluene (2.0 mL) cooled to -78°C under N$_2$. The reaction mixture was stirred for 30 minutes, followed by cannulation of N-benzylmaleimide (0.173 mmol, 32.5 mg) in toluene (1.0 mL). The lightly green solution was warmed up to room temperature and was stirred overnight (14 hours). The pink solution was quenched with saturated NH$_4$Cl (aq), extracted with CH$_2$Cl$_2$ (3x), dried over anhydrous MgSO$_4$ and concentrated in vacuo. The crude product was purified by flash column chromatography (20% EtOAc in hexanes) to afford imide 3.45 as colorless crystals (19.6 mg, 74 %, $dr > 25:1$). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 7.27-7.18 (m, 5H), 5.38 (d, J = 2.5 Hz, 1H), 5.13 (s, 1H), 4.63 (d, J = 14.3 Hz, 1H), 4.53 (d, J = 14.3 Hz, 1H), 4.14 (dd, J = 10.0 Hz, 7.0 Hz, 1H), 3.81 (dd, J = 10.0 Hz, 8.1 Hz, 1H), 3.45 (dd, J =
8.3 Hz, 7.0 Hz, 1H), 3.23 (dd, J = 8.3 Hz, 6.6 Hz, 1H), 2.40 (broad s, 1H), 2.28 (d, J = 6.7 Hz, 1H), 2.20-2.00 (m, 2H), 1.70-1.61 (m, 2H), 1.33 (s, 3H), 0.89 (s, 9H), 0.07 (d, J = 1.7 Hz, 6H). 13C NMR (75 MHz, CDCl$_3$) δppm 181.1 (C$_4$), 176.7 (C$_4$), 146.2 (C$_4$), 135.4 (C$_4$), 128.5 (2 x CH), 128.0 (2 x CH), 127.8 (CH), 119.9 (CH), 78.9 (C$_4$), 63.0 (CH$_2$), 51.2 (CH), 42.4 (CH$_2$), 41.2 (CH), 41.1 (CH), 40.3 (CH$_2$), 29.3 (CH$_3$), 27.6 (CH$_2$), 26.0 (3 x CH$_3$), 18.4 (C$_4$), -5.3 (2 x CH$_3$). IR (neat, cm$^{-1}$) 3433 (w), 3036 (w), 2960 (m), 2033 (m), 2856 (w), 1767 (w), 1700 (s), 1687 (s), 1434 (m), 1397 (m), 1344 (m), 1254 (w), 834 (m). HRMS (El) m/z (M$^+$) calcd 398.1787 found 398.1789. mp 67.1-70.8°C.

4-Hydroxy-cyclopent-2-enone (4.16)

A solution of furfuryl alcohol 4.15 (0.102 mol, 10.0 g), KH$_2$PO$_4$ (3.670 mmol, 499.4 mg) in water (300.0 mL) at pH 4.1 (adjusted by addition of KOH and/or H$_3$PO$_4$) was refluxed for 48 hours. After cooling, the aqueous solution was saturated with NaCl, extracted with EtOAc (5x) and the combined organic phases were dried over MgSO$_4$. The organic solvent was removed in vacuo to afford the enone 4.16 as a brown oil and the crude product was used towards the next reaction.

4-(tert-Butyl-dimethyl-silyloxy)-cyclopent-2-enone (4.17)

A solution of 4-hydroxy-2-cyclopentenone 4.16 (52.30 mmol, 5.131 g) and triethylamine (83.2 mmol, 11.6 mL) in THF (30.0 mL) was treated with DMAP (1.046 mmol, 127.8 mg). The solution was cooled to 0°C and treated portionwise with TBDMSI (49.7 mmol, 7.49 g) to keep the temperature at or below 10°C (10 minutes). The resulting mixture was stirred at room temperature overnight. A 0.5 N solution of
HCl was poured into the reaction mixture. The aqueous phase was extracted with hexanes (3x). The combined organic phase was washed with HCl (0.5 N), 5% NaHCO₃, brine and were dried over anhydrous MgSO₄. The solvent was concentrated in vacuo and the product was purified by flash column chromatography (100% hexanes to 10% EtOAc/hexanes) to afford silyl ether 4.17 as a yellow oil (1.988 g, 9.1 % over 2 steps).

4-(tert-Butyl-dimethyl-silyloxy)-2-iodo-cyclopent-2-enone (4.18)

Iodine (12.997 mmol, 3.2986 g) dissolved in 1:1 Et₂O/pyridine (11.8 mL) was added dropwise, under an atmosphere of argon, to a solution of enone 4.17 (10.8 mmol, 2.30 g) in 1:1 Et₂O/pyridine (40.0 mL) at 0°C. The mixture was stirred for 1.5 hours at room temperature. The mixture was diluted with Et₂O and washed successively with H₂O, 1 N HCl (2x), H₂O, 20% aqueous Na₂S₂O₃ and the organic layer was dried over anhydrous MgSO₄. After concentration, the crude vinyl iodide 4.18 a yellow oil, (3.23 g, 88%) was used without further purification.

5.10 General procedure I for the Suzuki Coupling Reaction

4-(tert-Butyl-dimethyl-silyloxy)-2-[3-(tert-butyl-dimethyl-silyloxy)-propenyl]-cyclopent-2-enone (4.20)

To a dry 50 mL round bottom flask with a magnetic stirrer were placed PdCl₂(PPh₃)₂ (502.8 mg, 0.7164 mmol) and NaOAc (881.3 mg, 10.75 mmol). The flask was flushed with N₂ and charged with dry methanol (20.0 mL), boronic ester 4.19 (2.292g, 7.881
mmol) and vinyl iodide 4.18 (2.423 g, 7.164 mmol). The reaction mixture was refluxed for 1 hour. The solution was cooled to room temperature and the boronate ester was oxidized by addition of 3 M NaOH (aq) (3 mL) and 30% hydrogen peroxide (3 mL). The aqueous layer was extracted with benzene (3x) and the combined organic layer was washed with a saturated solution of brine. The organic layer was dried over MgSO₄, concentrated and flash column chromatography (100% hexanes to 5% EtOAc/hexanes) generated diene 4.20 as a yellow oil (1.159 g, 42.3%). ¹H NMR (300 MHz, CDCl₃) δppm 7.13 (d, J = 2.5 Hz, 1H), 6.80 (dt, J = 15.9, 4.3 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 4.90-4.88 (m, 1H), 4.27-4.26 (m, 2H), 2.78 (dd, J = 18.3, 6.0 Hz, 1H), 2.33 (dd, J = 18.3, 2.3 Hz, 1H), 0.90 (s, 9H), 0.89 (s, 9H), 0.10 (d, J = 3.8 Hz, 6H), 0.05 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δppm 204.7 (C₄), 156.6 (CH), 140.6 (C₄), 136.2 (CH), 117.8 (CH), 68.5 (CH), 63.3 (CH₂), 46.6 (CH₂), 25.9 (3xCH₃), 25.8 (3xCH₃), 18.4 (C₄), 18.1 (C₄), -4.7 (2xCH₃), -5.3 (2xCH₃). IR (neat, cm⁻¹) 2955 (m), 2930 (m), 2893 (w), 2856 (m), 1717 (s), 1471 (w), 1255 (m), 1073 (m), 833 (s). HRMS (EI) m/z (M⁺ - [C₄H₉]) calcd 325.1655 found 325.1640.

4-(tert-Butyl-dimethyl-silyloxy)-2-[3-(tert-butyl-dimethyl-silyloxy)-propenyl]-1-methyl-cyclopent-2-enol (4.21)

To a 10 mL flame-dried round bottom flask was canulated the ketone 4.20 (48.3 mg, 0.126 mmol) in THF (1.3 mL). The solution was cooled to -78 °C and methyllithium was added dropwise. The reaction mixture was stirred for 2 hours and was quenched with H₂O at 0°C. The aqueous layer was extracted with EtOAc (3x) and the combined organic
layers were dried over anhydrous MgSO₄. The product was purified by flash column chromatography (100% hexanes to 5% EtOAc/hexanes) to afford alcohol 4.21 (15.0 mg, 46%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ ppm 6.29 (dt, J = 16.1, 3.9 Hz, 1H), 6.17 (d, J = 16.3 Hz, 1H), 5.66 (s, 1H), 4.61 (bs, 1H), 4.24 (d, J = 3.7 Hz, 2H), 2.44 (dd, J = 13.2, 6.7 Hz, 1H), 1.84-1.79 (m, 2H), 1.35 (s, 3H), 0.88 (d, J = 6.9 Hz, 18 H), 0.06 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 147.6 (C₄), 132.8 (CH), 131.2 (CH), 121.6 (CH), 80.9 (C₄), 72.9 (CH), 63.8 (CH₂), 53.4 (CH₂), 26.1 (CH₃), 25.9 (3xCH₃), 25. (3xCH₃), 18.4 (C₄), 18.2 (C₄), -4.6 (2xCH₃), -5.2 (2xCH₃). IR (neat, cm⁻¹) 3422 (w), 2956 (s), 2930 (s), 2886 (m), 2857 (m), 1472 (m), 1463 (w), 1361 (m), 1256 (m), 1125 (m), 1075 (s), 836 (s). HRMS (EI) m/z (M⁺ - [C₄H₉]) calcd 341.1968 found 341.1926.

5-(3-Hydroxy-propenyl)-1-methyl-cyclopent-4-ene-1,3-diol
(4.22)

To a solution of diene 4.21 (0.2761 mmol, 110.1 mg) in THF (2.8 mL) was added TBAF (0.97 mmol, 0.97 mL). The solution was stirred for 2.5 hours, concentrated in vacuo and purified by flash column chromatography (10% MeOH in EtOAc) to afford triol 4.22 as a colorless oil (45.3 mg, 96%). ¹H NMR (300 MHz, acetone-d₆) δ ppm 6.39 (dt, J = 16.1, 5.2 Hz, 1H), 6.17 (d, J = 16.1 Hz, 1H), 5.64 (d, J = 1.7 Hz, 1H), 4.53 (t, J = 6.4 Hz, 1H), 4.11 (d, J = 7.1 Hz, 2H), 3.89 (bs, 2H), 2.93 (bs, 1H), 2.42 (dd, J = 12.7, 7.0 Hz, 1H), 1.81 (dd, J = 10.9, 4.4 Hz, 1H), 1.28 (s, 3H). ¹³C NMR (75 MHz, acetone-d₆) δ ppm 148.5 (C₄), 133.5 (CH), 131.4 (CH), 122.8 (CH), 80.3 (C₄), 72.2 (CH), 63.1 (CH₂), 53.6 (CH₂), 27.3 (CH₃). IR (neat, cm⁻¹) 3313 (s), 2967 (w), 2937 (w), 2864 (w), 1668 (w), 1608 (w), 1425 (w), 1371 (m), 1331 (m), 1271 (w), 1205 (w),
HRMS (El) m/z (M⁺) calc 170.0943 found 170.0947.

5-[3-(tert-Butyl-diphenyl-silyloxy)-propenyl]-1-methyl-cyclopent-4-ene-1,3-diol (4.23)

A solution of triol 4.22 (56.5 mg, 0.332 mmol) and triethylamine (0.06 mL, 0.4 mmol) in THF (3.3 mL) was treated with DMAP (1.6 mg, 0.013 mmol). The solution was cooled to 0°C and was treated protonwise with TBDPSCI (92.2 mg, 0.335 mmol). The resulting mixture was stirred at room temperature overnight. A 0.5 N solution of HCl was poured into the reaction mixture. The aqueous phase was extracted with hexanes (3x). The combined organic phase was washed with HCl (0.5 N), 5% NaHCO₃ and brine. The organic layer was dried over anhydrous MgSO₄, concentrated and purified by flash column chromatography (50% EtOAc in hexanes) to afford diol 4.23 as a colorless oil (63.3 mg, 47%). ¹H NMR (300 MHz, CDCl₃) δppm 7.66 (d, J = 7.5 Hz, 4H), 7.43-7.33 (m, 6H), 6.28-6.26 (s, 2H), 5.73 (d, J = 1.8 Hz, 1H), 4.59 (bs, 1H), 4.27 (d, J = 2.6 Hz, 2H), 2.74 (bs, 2H), 2.49 (dd, J = 13.9, 7.0 Hz, 1H), 1.85 (dd, J = 13.9, 4.2 Hz, 1H), 1.34 (s, 3H), 1.05 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δppm 148.5 (C₄), 135.5 (4xCH), 133.5 (C₄), 133.5 (C₄), 132.8 (CH), 130.2 (CH), 129.7 (2xCH), 127.6 (4xCH), 121.6 (CH), 81.0 (C₄), 72.7 (CH), 64.4 (CH₂), 52.2 (CH₂), 26.8 (3xCH₃), 26.7 (CH₃), 19.2 (C₄). IR (neat, cm⁻¹) 3360 (m), 3072 (w), 3051 (w), 2967 (m), 2929 (m), 2861 (m), 1468 (w), 1428 (m), 1112 (s). HRMS (El) m/z (M⁺ - [H₂O + (C₆H₅O)]) calc 333.1311 found 333.1304.
2-[3-(tert-Butyl-diphenyl-silanyloxy)-propenyl]-4-methoxy-1-methyl-cyclopent-2-enol (4.24)

To a solution of NaH (2.7 mg, 0.068 mmol) in THF (0.2 mL) was canulated the diol 4.23 (13.9 mg, 0.0340 mmol) in THF (0.75 mL) at room temperature. The solution immediately turned yellow. Iodomethane (2.3 µL, 0.037 mmol) was added and the solution was stirred at room temperature for 48 hours. The reaction was quenched with saturated NH₄Cl (aq), the aqueous layer was extracted with CH₂Cl₂ (3x) and the combined organic layers were dried over anhydrous MgSO₄. After concentration, the product was purified by flash column chromatography (30% EtOAc in hexanes) to generate methyl ether 4.24 as a colorless oil (10.3 mg, 72%) ¹H NMR (300 MHz, CDCl₃) δ ppm 7.66 (d, J = 6.8 Hz, 4H), 7.43-7.33 (m, 6H), 6.30-6.28 (m, 2H), 5.81 (d, J = 1.9 Hz, 1H), 4.27 (d, J = 2.5 Hz, 2H), 4.21-4.18 (m, 1H), 3.34 (s, 3H), 2.44 (dd, J = 13.5, 6.6 Hz, 1H), 1.88 (dd, J = 13.5, 4.7 Hz, 2H), 1.36 (s, 3H), 1.05 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 149.3 (C₄), 135.5 (4xCH), 133.6 (2xC₄), 132.8 (CH), 129.7 (2xCH), 127.7 (CH), 127.7 (4xCH), 121.5 (CH), 81.1 (CH), 80.8 (C₄), 64.3 (CH₂), 56.3 (CH₃), 49.2 (CH₂), 26.8 (3xCH₃), 26.4 (CH₃), 19.3 (C₄). IR (neat, cm⁻¹) 3430 (w), 3076 (w), 3045 (w), 2963 (m), 2932 (m), 2856 (m), 2822 (w), 1465 (w), 1431 (m), 1355 (m), 1115 (s). HRMS (EI) m/z (M⁺ - [C₄H₉]) calcd 365.1573 found 365.1569.
2-[3-(tert-Butyl-dimethyl-silyloxy)-propenyl]-cyclopent-2-enone (4.27)

Prepared using general procedure I

Vinyl iodide 4.26 (2.151g, 10.34 mmol), boronate ester 4.19 (3.3015 g, 11.375 mmol), PdCl₂(PPh₃)₂ (363.0 mg, 0.5170 mmol) and sodium acetate (1.272 g, 15.51 mmol). The product was purified by flash column chromatography (20% EtOAc in hexanes) to generate diene 4.27 (390.1 mg, 19%) as colorless crystals. ¹H NMR (300 MHz, CDCl₃) δ ppm 7.43 (dd, J = 2.9, 2.5 Hz, 1H), 6.76 (dt, J = 15.9, 4.5 Hz, 1H), 6.29 (d, J = 15.9 Hz, 1H), 4.26 (d, J = 4.4 Hz, 2H), 2.63-2.55 (m, 2H), 2.46-2.43 (m, 2H), 0.89 (s, 9H), 0.06 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 208.3 (C₄), 158.4 (CH), 140.5 (C₄), 133.7 (CH), 118.6 (C₄), 63.5 (CH₂), 35.7 (CH₂), 26.3 (CH₂), 25.9 (3xCH₃), 18.4 (C₄), -5.3 (2xCH₃).

IR (neat, cm⁻¹) 2954 (m), 2928 (m), 2896 (w), 2858 (m), 1706 (s), 1465 (w), 1347 (m), 1257 (m), 1087 (m), 984 (m), 840 (s), 775 (s). HRMS (EI) m/z (M⁺ - [C₄H₉]) calcd 195.0841 found 195.0855. mp = 50.8-52.3 °C.

2-[3-(tert-Butyl-dimethyl-silyloxy)-propenyl]-1-methyl-cyclopent-2-enol (4.28)

To a solution of ketone 4.27 (0.9124 mmol, 230.3 mg) in THF (9.1 mL) cooled at -78°C was added methylolithium (2.28 mmol, 1.42 mL). The reaction was stirred for 3 hours and monitored by TLC. The reaction was quenched at 0°C with water and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were dried over anhydrous MgSO₄ and concentrated. Two purifications by flash chromatography (20% EtOAc in hexanes) afforded alcohol 4.28 as a yellow oil (60.5 mg, 25%). ¹H NMR (300 MHz, CDCl₃) δ ppm 6.18 (s, 2H), 5.72 (t, J = 2.7 Hz, 1H), 4.22 (d,
1.3 Hz, 2H), 2.46-2.31 (m, 1H), 2.28-2.16 (m, 1H), 2.13-2.05 (m, 1H), 2.02-1.88 (m, 1H), 1.61 (s, 1H), 1.40 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm}

145.9 (C$_4$), 130.1 (CH), 129.7 (CH), 122.6 (CH), 83.3 (C$_4$), 64.0 (CH$_2$), 42.6 (CH$_2$), 28.6 (CH$_2$), 25.9 (3xCH$_3$), 25.8 (CH$_3$), 18.4 (C$_4$), -5.2 (2xCH$_3$). IR (neat, cm$^{-1}$) 3378 (w), 2957 (m), 2929 (m), 2860 (m), 1476 (m), 1371 (w), 1250 (m), 1114 (m). HRMS (EI) m/z (M$^+$ - [H$_2$O]) calcd 250.1753 found 250.1759.

4-(tert-Butyl-dimethyl-silanyloxy)-2-vinyl-cyclopent-2-enone

(4.30)

THF (20.0 mL) was degassed with one balloon of argon and was added to a 250 mL flask containing flame-dried ZnBr$_2$ (4.300 g, 19.10 mmol). Vinyl magnesium bromide (21.95 mL, 19.10 mmol) was added at -78°C and the mixture was warmed up to room temperature (21°C) over 1 hour. To the resulting white solution was canulated the iodoenone 4.18 (3.23 g, 9.55 mmol) and Pd(PPh$_3$)$_4$ (331.0 mg, 0.2865 mmol) in DMF (80.0 mL) degassed with argon. The orange solution was stirred for 1 hour, quenched with saturated NH$_4$Cl (aq), extracted with 1:1 hexanes/ether. The organic layer was washed with H$_2$O (2x) and the aqueous layer was extracted once again with 1:1 hexanes/ether. The combined organic layer was dried over anhydrous MgSO$_4$, concentrated and the product was purified by flash column chromatography (100% hexanes to 5% EtOAc/hexanes) to afford diene 4.30 as a colorless oil (1.5402 g, 56% over 2 steps). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 7.19 (d, J = 2.6 Hz, 1H), 6.34 (dd, J = 17.8, 11.2 Hz, 1H), 6.11 (dd, J = 17.8, 1.5 Hz, 1H), 5.38 (dd, J = 11.2, 1.6 Hz, 1H), 4.91-4.87 (m, 1H), 2.78 (dd, J = 18.3, 6.1 Hz, 1H), 2.32 (dd, J = 18.3, 2.3 Hz, 1H), 0.88 (s, 9H), 0.09 (d, J = 3.9 Hz, 6H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 204.4 (C$_4$), 157.1 (CH), 148
141.2 (C₄), 126.0 (CH), 121.1 (CH₃), 68.5 (CH), 46.4 (CH₂), 25.7 (3xCH₃), 18.1 (C₄), -4.7 (2xCH₃). IR (neat, cm⁻¹) 2957 (m), 2930 (m), 2893 (w), 2859 (m), 1723 (s), 1472 (w), 1348 (m), 1253 (m), 1077 (s), 834 (s). HRMS (EI) m/z (M⁺) calcd 238.1389 found 238.1379.

4-(tert-Butyl-dimethyl-silyloxy)-1-methyl-2-vinyl-cyclopent-2-enol (4.31)

To a 10 mL flame-dried round bottom flask was canulated ketone 4.30 (0.226 mmol, 53.9 mg) in THF (3.0 mL). The solution was cooled to -78 °C and methylthiylithium (0.90 mmol, 0.57 mL) was added dropwise. The reaction mixture was stirred for 2 hours and was quenched with H₂O at 0°C. The aqueous layer was extracted with EtOAc (3x) and the combined organic layers were dried over anhydrous MgSO₄. The product was purified by flash column chromatography (20% EtOAc in hexanes) basified with triethylamine to afford diene 4.31 as a colorless oil (30.3 mg, 53%, dr = 9:1). ¹H NMR (300 MHz, CDCl₃) δ ppm 6.28 (dd, J = 17.9, 11.3 Hz, 1H), 5.73-5.67 (m, 2H), 5.21 (dd, J = 16.3, 1.8 Hz, 1H), 4.64-4.59 (m, 1H), 2.45 (dd, J = 13.2, 6.7 Hz, 1H), 1.99 (s, 1H), 1.84 (dd, J = 13.3, 5.0 Hz, 1H), 1.36 (s, 3H), 0.87 (s, 9H), 0.06 (d, J = 0.8 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 148.3 (C₄), 131.8 (CH), 129.5 (CH), 117.8 (CH₂), 80.8 (C₄), 72.9 (CH), 53.3 (CH₂), 26.1 (CH₃), 25.9 (3xCH₃), 18.2 (C₄), -4.7 (2xCH₃). IR (neat, cm⁻¹) 3409 (w), 2962 (s), 2935 (s), 2897 (w), 2859 (m), 1468 (w), 1358 (m), 1255 (m), 1083 (s), 833 (s). HRMS (EI) m/z (M⁺-H₂O) calcd 236.1597 found 236.1564.
1-Methyl-5-vinyl-cyclopent-4-ene-1,3-diol (4.32)

To a solution of diene 4.31 (0.119 mmol, 30.3 mg) in THF (0.5 mL) was added TBAF (0.18 mmol, 0.18 mL). The solution was stirred for 2.5 hours, concentrated in vacuo and purified by flash column chromatography (100% EtOAc) to afford diol 4.32 as colorless crystals (13.0 mg, 78%). 1H NMR (300 MHz, acetone-d$_6$) δppm 6.30 (dd, J = 17.9, 11.2 Hz, 1H), 5.78-5.70 (m, 1H), 5.70 (d, J = 1.9 Hz, 1H), 5.13 (dd, J = 11.3, 2.3 Hz, 1H), 4.54 (dd, J = 12.2, 6.1 Hz, 1H), 3.93-3.89 (m, 1H), 2.92 (s, 1H), 2.42 (dd, J = 12.7, 6.7 Hz, 1H), 1.82 (ddd, J = 12.7, 6.3, 0.8 Hz, 1H), 1.29 (s, 3H). 13C NMR (75 MHz, acetone-d$_6$) δppm 149.0 (C$_4$), 132.5 (CH), 131.0 (CH), 116.9 (CH$_2$), 80.3 (C$_4$), 72.2 (CH), 53.6 (CH$_2$), 27.2 (CH$_3$). IR (neat, cm$^{-1}$) 3338 (m), 2957 (w), 2928 (w), 2860 (w), 1439 (m), 1261 (m), 1055 (s). HRMS (EI) m/z (M$^+$) calcd 140.0837 found 140.0857. m.p. 102.5-104.1°C.

3-(tert-Butyl-dimethyl-silyloxy)-1-hydroxy-1-methyl-2,3,3a,4,5,6-hexahydro-1H-indene-4-carbaldehyde (4.34a)

To a solution of MgBr$_2$-Et$_2$O (6.9564 mmol, 1.7964 g) in CH$_2$Cl$_2$ (10.0 mL) at room temperature (21°C) was added 2,6-lutidine (11.6 mmol, 1.35 mL) under an atmosphere of argon. The white heterogeneous solution was stirred for 30 minutes. Diene 4.31 (2.319 mmol, 590.0 mg) in CH$_2$Cl$_2$ (12.0 mL) was subsequently cannulated into the reaction mixture and was stirred for an additional 30 minutes. Acrolein (12 mmol, 0.78 mL) was added and the solution was stirred overnight. The solution was quenched with saturated NH$_4$Cl (aq), extracted with CH$_2$Cl$_2$ (3x), dried over anhydrous MgSO$_4$ and concentrated under vacuum. Purification by flash column
chromatography (20% EtOAc in hexanes) afforded the desired aldehyde 4.34a and epimer 4.34b (9:1) as colorless crystals (509.0 mg, 71%) and as a colorless oil (50.5 mg, 7%) respectively. 4.34a: 1H NMR (300 MHz, CDCl$_3$) δ$_{ppm}$ 9.78 (d, J = 5.2 Hz, 1H), 5.99 (dd, J = 6.6, 3.3 Hz, 1H), 4.36 (t, J = 3.6 Hz, 1H), 2.95 (s, 1H), 2.71-2.63 (m, 2H), 2.22-2.14 (m, 2H), 2.02-1.96 (m, 1H), 1.97 (dd, J = 14.0, 1.3 Hz, 1H), 1.90-1.81 (m, 1H), 1.82 (dd, J = 14.0, 3.5 Hz, 1H), 1.38 (s, 3H), 0.83 (s, 9H), 0.04 (d, J = 14.1 Hz, 6H). 13C NMR (75 MHz, CDCl$_3$) δ$_{ppm}$ 205.6 (CH), 147.4 (C$_4$), 121.0 (CH), 77.0 (C$_4$), 74.6 (CH), 49.4 (CH$_2$), 48.9 (CH), 45.8 (CH), 26.4 (CH$_2$), 25.9 (CH$_3$), 25.8 (3xCH$_3$), 21.9 (CH$_2$), 17.9 (C$_4$), -4.9 (CH$_3$), -5.4 (CH$_3$). IR (CHCl$_3$, cm$^{-1}$) 3481 (w), 2952 (m), 2931 (s), 2851 (m), 1713 (s), 1472 (m), 1360 (m), 1255 (m). HRMS (EI) m/z (M$^+$ - [C$_4$H$_9$]) calcd 253.1260 found 253.1278. mp = 68.6-69.0 °C.

4.34b: 1H NMR (300 MHz, CDCl$_3$) δ$_{ppm}$ 6.69 (d, J = 1.7 Hz, 1H), 5.93 (dd, J = 6.7, 3.1 Hz, 1H), 4.25 (t, J = 3.4 Hz, 1H), 2.86 (bs, 1H), 2.60-2.45 (m, 1H), 2.45-2.15 (m, 3H), 2.04-1.89 (m, 2H), 1.76 (dd, J = 13.9, 3.0 Hz, 1H), 1.33 (s, 3H), 0.85 (s, 9H), 0.06 (d, J = 6.6 Hz, 6H). 13C NMR (75 MHz, CDCl$_3$) δ$_{ppm}$ 203.9 (CH), 150.3 (C$_4$), 119.4 (CH), 76.6 (C$_4$), 74.4 (CH), 49.5 (CH$_2$), 46.8 (CH), 46.6 (CH), 26.3 (CH$_3$), 25.8 (3xCH$_3$), 24.7 (CH$_2$), 23.7 (CH$_2$), 18.1 (C$_4$), -4.8 (CH$_3$), -5.0 (CH$_3$). IR (neat, cm$^{-1}$) 2957 (m), 2927 (s), 2860 (m), 2714 (w), 1727 (s), 1475 (m), 1258 (m), 1115 (m), 1031 (m). HRMS (EI) m/z (M$^+$ - [C$_4$H$_9$ + H$_2$O]) calcd 235.1155 found 235.1139.
1,3-Dihydroxy-1-methyl-2,3,3a,4,5,6-hexahydro-1H-indene-4-carbaldehyde (4.35) and 4-Methyl-1,2a,3,4,6,7,7a,7b-octahydro-2-oxa-cyclopenta[cd]indene-1,4-diol (4.36) To a solution of silyl ether 4.34 (0.0725 mmol, 22.5 mg) in THF (1.0 mL) was added TBAF (0.11 mmol, 0.11 mL). The solution was stirred for 2.5 hours, concentrated in vacuo and purified by flash column chromatography (5% MeOH in EtOAc) to afford aldehyde 4.35 and lactol 4.36 as a colorless oil (13.1 mg, 92%). The mixture of products was used without full characterization towards the next step.

4-Hydroxy-4-methyl-3,4,6,7,7a,7b-hexahydro-2aH-2-oxa-cyclopenta[cd]inden-1-one (4.37)

To a solution of aldehyde 4.35 and lactol 4.36 (0.223 mmol, 43.7 mg) in CH₂Cl₂ (4.0 mL) was added 4Å MS (111.4 mg), NMO (0.341 mmol, 39.9 mg) and TPAP (0.011 mmol, 3.9 mg) respectively. The dark green solution was stirred for 3 hours, filtered through a pad of silica and the latter was washed with 5% MeOH in EtOAc. The organic solvent was evaporated in vacuo and the product was purified by flash column chromatography (80% EtOAc in hexanes) to generate lactone 4.37 as a colorless oil (31.5 mg, 73%). ¹H NMR (300 MHz, CDCl₃) δ ppm 5.88 (bs, 1H), 4.76 (t, J = 5.1 Hz, 1H), 3.07-3.02 (m, 2H), 2.30 (dd, J = 15.7, 6.2 Hz, 1H), 2.15-2.08 (m, 3H), 1.97 (d, J = 15.7 Hz, 1H), 1.98-1.76 (m, 2H), 1.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 177.8 (C₄), 143.5 (C₄), 120.4 (CH), 79.8 (CH), 78.8 (C₄), 46.6 (CH₂), 41.1 (CH), 39.0 (CH), 28.6 (CH₃), 20.5 (CH₂), 18.7 (CH₂). IR (neat, cm⁻¹) 3451 (w), 2973 (w), 2929 (w), 2843 (w), 1761
(s), 1440 (w), 1364 (m), 1241 (m), 1156 (m), 1101 (m), 965 (m). HRMS (EI) m/z (M+) calcd 194.0943 found 194.0971.

4-Methyl-4-trimethylsilylanyloxy-3,4,6,7,7a,7b-hexahydro-2aH-2-oxa-
cyclopenta[cd]inden-1-one (4.38)

To a solution of alcohol 4.37 (0.132 mmol, 25.6 mg) in THF (5.0 mL) at -78°C under argon was added freshly distilled TMSCl (0.7 mmol, 0.09 mL) and KHMDS (0.461 mmol, 92.0 mg). The solution was stirred at -78°C for 2 hours, warmed to room temperature (21°C) and was quenched with saturated NaHCO₃ (aq). The aqueous layer was extracted with dichloromethane (3x) and the combined organic layers were dried over anhydrous MgSO₄. The organic solvent was removed in vacuo and the product was purified by flash column chromatography (20% EtOAc in hexanes) to yield lactone 4.38 as colorless crystals (33.4 mg, 94%). ¹H NMR (300 MHz, CDCl₃) δ ppm 5.79 (s, 1H), 4.77 (t, J = 5.4 Hz, 1H), 3.00 (s, 2H), 2.23 (dd, J = 14.9, 6.6 Hz, 1H), 2.15-2.08 (m, 3H), 1.97 (d, J = 14.9 Hz, 1H), 1.86-1.78 (m, 1H), 1.32 (s, 3H), 0.11 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 117.7 (C₄), 141.8 (C₄), 119.7 (CH), 80.6 (C₄), 79.7 (CH), 46.1 (CH₂), 39.4 (CH), 38.6 (CH), 30.0 (CH₃), 20.4 (CH₂), 19.0 (CH₂), 2.2 (3xCH₃). IR (CHCl₃, cm⁻¹) 2958 (m), 2934 (w), 1766 (s), 1446 (w), 1299 (w), 1153 (s), 843 (m). HRMS (EI) m/z (M⁺) calcd 266.1338 found 266.1318. mp = 48.4-48.0 °C.

3-(tert-Butyl-dimethyl-silyloxy)-4-hydroxymethyl-1-methyl-
octahydro-indene-1,7-diol (4.41)

To a solution of alkene 4.34 (1.691 mmol, 524.6 mg) in THF (16.9 mL) was added BH₃-DMS (4 mmol, 0.4 mL) dropwise during which bubbles were
produced in solution. The jelly-like solution was stirred at room temperature (21°C) for 4 hours after which the borane was oxidized with 3N NaOH (1 mL) and 30% H₂O₂ (1 mL). The resulting solution was refluxed overnight and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were dried over anhydrous MgSO₄, concentrated in vacuo and the product was purified by flash column chromatography (60% EtOAc in hexanes) to afford triol 4.41 as colorless crystals (455.1 mg, 81%). ¹H NMR (300 MHz, CDCl₃) δppm 4.29 (t, J = 4.1 Hz, 1H), 4.22 (dt, J = 11.1, 4.7 Hz, 1H), 3.67-3.64 (m, 2H), 2.38 (bs, 2H), 2.14-2.09 (m, 1H), 2.01-1.79 (m, 4H), 1.71-1.50 (m, 3H), 1.35 (s, 3H), 1.32-1.21 (m, 2H), 0.87 (s, 9H), 0.05 (d, J = 3.8 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δppm 81.1 (C₄), 74.5 (CH), 70.2 (CH), 65.3 (CH₂), 57.4 (CH), 52.3 (CH), 45.1 (CH), 40.2 (CH), 33.1 (CH₂), 32.2 (CH₃), 25.9 (3xCH₃), 25.0 (CH₂), 17.7 (C₄), -3.9 (CH₃), -4.8 (CH₃). IR (CHCl₃, cm⁻¹) 3342 (m), 2961 (m), 2925 (s), 2861 (m), 1466 (m), 1333 (w), 1256 (m), 1099 (m), 1045 (s), 903 (w), 839 (m), 775 (m). HRMS (EI) m/z (M⁺ - [C₄H₉ + 2(H₂O)]) calcd 237.1309 found 237.1333. mp = 163.1-163.8 °C.

3-(tert-Butyl-dimethyl-silanyloxy)-4-hydroxymethyl-1-methyl-
2,3,3a,4,5,6-hexahydro-1H-inden-1-ol (4.42)

To a solution of alkene 4.34 (1.654 mmol, 513.1 mg) in THF (16.0 mL) was added BH₃·DMS (1.2406 mmol, 0.22 mL) dropwise during which bubbles were produced in solution. The solution was stirred at room temperature (21°C) for 1 hour after which the borane was oxidized with 3N NaOH (1 mL) and 30% H₂O₂ (1 mL). The resulting solution was refluxed for 1 hour and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were dried over anhydrous MgSO₄,
concentrated in vacuo and the product was purified by flash column chromatography (80% EtOAc in hexanes) to afford alcohol 4.42 as a colorless foam (145.5 mg, 28%) and triol 4.41 as colorless crystals (250.1 mg, 46%). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 5.86 (dd, J = 7.0, 3.5 Hz, 1H), 4.40 (dd, J = 8.5, 3.7 Hz, 1H), 3.83 (dd, J = 11.0, 6.9 Hz, 1H), 3.55 (dd, J = 11.0, 6.7 Hz, 1H), 2.61-2.55 (m, 1H), 2.48 (bs, 2H), 2.24-2.11 (m, 1H), 2.10-2.00 (m, 2H), 1.81 (d, J = 1.1 Hz, 2H), 1.80-1.70 (m, 1H), 1.59-1.51 (m, 1H), 1.30 (s, 3H), 0.86 (s, 9H), 0.10 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ_{ppm} 147.6 (C$_4$), 119.9 (CH), 76.3 (C$_4$), 74.5 (CH), 62.5 (CH$_2$), 50.0 (CH$_2$), 47.6 (CH), 37.0 (CH), 26.7 (CH$_3$), 25.9 (3xCH$_2$), 25.6 (CH$_2$), 22.3 (CH$_2$), 17.9 (C$_4$), -4.2 (CH$_3$), -5.0 (CH$_3$). IR (CHCl$_3$, cm$^{-1}$): 3401 (m), 2956 (s), 2930 (s), 2861 (s), 1474 (m), 1363 (m), 1249 (m), 1120 (m), 1094 (m), 1029 (s), 835 (s), 774 (s). HRMS (EI) m/z (M$^+$ [C$_{4}$H$_{9}$ + H$_2$O]) calcd 237.1311 found 237.1324.

![6-(tert-Butyl-dimethyl-silanyloxy)-4-methyl-3-oxa-tricyclo[5.4.0.0^4,8]undecane-2,9-dione (4.43)](image)

To a solution of triol 4.41 (0.027 mmol, 9.0 mg) in CH$_2$Cl$_2$ (2.0 mL) was added 4Å MS (13.6 mg), NMO (0.041 mmol, 5.0 mg) and TPAP (0.001 mmol, 0.5 mg) respectively. The dark green solution was stirred for 3 hours, filtered through a pad of silica and the latter was washed with 5% MeOH in EtOAc. The organic solvent was evaporated in vacuo and the product was purified by flash column chromatography (60% EtOAc in hexanes) to generate ketone 4.43 as colorless crystals (6.1 mg, 70%). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 4.43 (ddd, J = 9.2, 6.6, 2.8 Hz, 1H), 3.17 (s, 1H), 2.77-2.72 (m, 1H), 2.56 (dd, J = 16.3, 5.6 Hz, 1H), 2.43 (d, J = 4.8 Hz, 1H), 2.40-2.22 (m, 2H), 2.12 (dd, J =
14.7, 9.1 Hz, 1H), 2.00 (dd, J = 14.7, 2.7 Hz, 1H), 1.95-1.88 (m, 1H), 1.34 (s, 3H), 0.85 (s, 9H), 0.03 (s, 6H). 13C NMR (75 MHz, CD$_3$OD) δ_{ppm} 206.0 (C$_4$), 170.7 (C$_4$), 87.5 (C$_4$), 80.0 (CH), 57.5 (CH), 48.7 (CH$_2$), 47.4 (CH), 37.9 (CH$_2$), 37.5 (CH$_2$), 27.9 (CH$_2$), 25.8 (3xCH$_3$), 22.0 (CH$_3$), 18.1 (C$_4$), -4.8 (CH$_3$), -5.1 (CH$_3$). IR (CHCl$_3$, cm$^{-1}$) 2960 (m), 2935 (m), 2858 (w), 1747 (s), 1708 (m), 1466 (m), 1228 (m), 1094 (s). HRMS (EI) m/z (M^+-[C$_4$H$_9$]) calcd 267.1053 found 267.1048. mp = 104.8-105.4 °C.

Acetic acid 6-(tert-butyl-dimethyl-silanyloxy)-4-methyl-2-oxo-9-vinyl-3-oxa-tricyclo[5.4.0.0.4,8]undec-9-yl ester (4.45)

To a solution of ketone 4.43 (32.8 mg, 0.0992 mmol) in THF (4.0 mL) at -78°C was added vinylmagnesium bromide (0.25 mmol, 0.31 mL). The reaction mixture was stirred at -78°C for 30 minutes. Acetic anhydride (0.30 mmol, 30 μL) and triethylamine (0.298 mmol, 41.5 μL) were added and the yellow solution was warmed to room temperature. The reaction was quenched with saturated NH$_4$Cl (aq), the aqueous phase was extracted with CH$_2$Cl$_2$ (3x) and the combined organic phases were dried over anhydrous MgSO$_4$. The organic solvent was removed in vacuo and the product was purified by flash column chromatography (20% EtOAc in hexanes) to afford acetate 4.45 as colorless crystals (16.6 mg, 42%) and alcohol 4.44 as colorless crystals (9.0 mg, 26%). 1H NMR (300 MHz, CDCl$_3$) δ_{ppm} 6.18 (dd, J = 17.6, 10.9 Hz, 1H), 5.33 (d, J = 17.3 Hz, 1H), 5.29 (d, J = 10.7 Hz, 1H), 4.33 (ddd, J = 9.2, 6.6, 2.4 Hz, 1H), 4.01-4.06 (m, 1H), 2.85 (d, J = 2.8 Hz, 1H), 2.54 (d, J = 4.0 Hz, 1H), 2.38-2.33 (m, 1H), 2.30-2.25 (m, 1H), 2.19-2.07 (m, 1H), 2.03 (d, J = 6.4 Hz, 1H), 1.99-1.96 (m, 3H), 1.85 (dd, J = 14.9, 2.2 Hz, 1H), 1.68-1.58 (m, 1H), 1.47 (s, 3H), 0.84 (s, 9H), -2.6 (s, 6H). 13C NMR
(75 MHz, CDCl₃) δ_{ppm} 173.6 (C₄), 169.9 (C₄), 140.3 (CH), 116.3 (CH₂), 88.3 (C₄), 82.0 (C₄), 69.3 (CH), 51.0 (CH₂), 46.9 (CH), 45.5 (CH), 31.1 (CH₂), 26.8 (CH), 25.7 (3xCH₃), 22.4 (CH₃), 22.2 (CH₃), 17.9 (C₄), -4.8 (CH₃), -5.1 (CH₃). IR (CHCl₃, cm⁻¹)

1) 2952 (m), 2929 (s), 2891 (m), 2853 (m), 1739 (s), 1492 (m), 1375 (m), 1249 (s), 1219 (s), 1166 (m), 1112 (s), 975 (s), 835 (s), 774 (m). HRMS (EI) m/z (M⁺) calcd 394.2176 found 394.2208. mp = 141.5-142.5 °C.

[Chemical structure image]

6-(tert-Butyl-dimethyl-silanyloxy)-9-hydroxy-4-methyl-9-vinyl-3-oxa-tricyclo[5.4.0.4,8]undecan-2-one (4.44)

1H NMR (300 MHz, CDCl₃) δ_{ppm} 6.13 (dd, J = 17.3, 10.8 Hz, 1H), 5.33 (d, J = 17.4 Hz, 1H), 5.15 (d, J = 10.8 Hz, 1H), 4.33 (ddd, J = 9.2, 6.5, 2.3 Hz, 1H), 2.89 (d, J = 3.0 Hz, 1H), 2.35 (ddd, J = 7.1, 4.0, 4.0 Hz, 1H), 2.15-2.01 (m, 2H), 1.94 (dd, J = 13.8, 4.8 Hz, 1H), 1.88 (d, J = 2.2 Hz, 1H), 1.83-1.62 (m, 4H), 1.58 (s, 3H), 0.85 (s, 9H), 0.00 (s, 6H). 13C NMR (75 MHz, CDCl₃) δ_{ppm} 173.9 (C₄), 143.9 (CH), 113.4 (CH₂), 89.0 (C₄), 73.9 (C₄), 69.7 (CH), 51.1 (CH₂), 50.3 (CH), 45.6 (CH), 37.9 (CH), 32.9 (CH₂), 27.5 (CH₂), 25.7 (3xCH₃), 23.9 (CH₃), 18.0 (C₄), -4.8 (CH₃), -5.1 (CH₃). IR (CHCl₃, cm⁻¹) 3431 (w), 2952 (s), 2932 (s), 2888 (m), 2862 (m), 1737 (s), 1720 (s), 1469 (w), 1362 (m), 1248 (s), 1171 (s), 1060 (s), 934 (m), 829 (s). HRMS (EI) m/z (M⁺ - [C₄H₉]) calcd 295.1366 found 295.1396. mp = 133.2-135.5 °C.
Acetic acid 6-(tert-butyl-dimethyl-silyloxy)-9-formyl-4-methyl-2-oxo-3-oxa-tricyclo[5.4.0.0^4,8]undec-9-yl ester (4.46)

A solution of alkene 4.45 (0.0421 mmol, 16.6 mg) in CH₂Cl₂ (5.0 mL) was degassed with O₂ for 10 minutes at room temperature. The solution was cooled to -78°C and ozone was bubbled into the solution. After 5 minutes, dimethylsulfide (0.21 mmol, 15 µL) was added to the blue solution and the reaction mixture was warmed to room temperature. The solution was concentrated and the product was purified by flash column chromatography (30% EtOAc in hexanes) to yield aldehyde 4.46 as colorless crystals (12.2 mg, 73%). 1H NMR (300 MHz, CDCl₃) δ/ppm 9.27 (s, 1H), 4.39 (ddd, J = 9.3, 6.6, 2.5 Hz, 1H), 2.92-2.83 (m, 2H), 2.45 (d, J = 4.3 Hz, 1H), 2.15-1.95 (m, 6H), 1.86 (dd, J = 15.1, 2.4 Hz, 1H), 1.67-1.58 (m, 2H), 1.45 (s, 3H), 0.85 (s, 9H), 0.00 (s, 9H). 13C NMR (75 MHz, CDCl₃) δ/ppm 195.7 (CH), 173.0 (C₄), 170.8 (C₄), 88.6 (C₄), 83.9 (C₄), 69.5 (CH), 50.2 (CH₂), 44.9 (CH), 41.8 (CH), 37.2 (CH), 25.7 (3xCH₃), 25.6 (CH₂), 25.2 (CH₂), 22.7 (CH₃), 20.8 (CH₃), 17.9 (C₄), -4.9 (CH₃), -5.1 (CH₃). IR (CHCl₃, cm⁻¹) 2955 (m), 2832 (m), 2888 (w), 2857 (m), 2721 (w), 1740 (s), 1460 (w), 1370 (m), 1290 (w), 1252 (s), 1222 (m), 1169 (m), 1104 (s), 1060 (m), 979 (m), 942 (m), 836 (m), 777 (m). HRMS (EI) m/z (M⁺ - [TBDMS + H₂O + OAc]) calcd 193.0865 found 193.0880. mp = 113.7-116.1°C.

Tetracyclic Core (4.49)

To a solution of NaH (0.031 mmol, 1.2 mg) in THF (1.0 mL) at 0°C was cannulated the aldehyde 4.46 (0.021 mmol, 8.2 mg) in THF (2.0 mL). The solution was gradually warmed to room temperature and was quenched with H₂O. The
aqueous layer was extracted with EtOAc (3x), the combined organic layers were dried over anhydrous MgSO4 and the solvent was evaporated in vacuo. The crude product 4.47 was diluted in THF (2.0 mL) and TBAF (0.030 mmol, 30 µL) was added to the solution. After 1 hour, the reaction mixture was concentrated in vacuo and the product was purified by flash column chromatography (60% EtOAc in hexanes) using a Pasteur pipette to afford the tetracyclic core 4.49 (1.3 mg, 24%) as a colorless oil and tricyclic core 4.48 (2.3 mg, 46%) as a colorless oil. 1H NMR (300 MHz, CDCl3) δppm 7.71 (d, J = 5.7 Hz, 1H), 6.90 (d, J = 5.7 Hz, 1H), 5.00 (dd, J = 6.6, 4.9 Hz, 1H), 3.25 (dt, J = 10.5, 6.6 Hz, 1H), 2.90-2.84 (m, 1H), 2.68 (dt, J = 14.2, 4.6 Hz, 1H), 2.49-2.43 (m, 1H), 2.32 (d, J = 10.1 Hz, 1H), 1.94-1.76 (m, 3H), 1.68 (s, 1H), 1.50 (s, 3H), 1.44-1.37 (m, 1H).

13C NMR (75 MHz, CDCl3) δppm 176.9 (C4), 171.1 (C4), 159.1 (CH), 119.9 (CH), 89.4 (C4), 81.9 (C4), 81.6 (C4), 49.9 (CH2), 47.7 (CH), 41.6 (CH), 37.2 (CH), 29.6 (CH3), 28.8 (CH2), 21.4 (CH2). IR (neat, cm−1) 3443 (w), 2964 (w), 2930 (w), 2854 (w), 1750 (s), 1466 (w), 1372 (w), 1250 (w), 1182 (w), 1121 (m), 1026 (w), 946 (w), 923 (w). HRMS (EI) m/z (M+ - H2O) calcd 246.0892 found 246.0892.

4,5-Dihydroxy-4-methyl-1-oxo-decahydro-2-oxa-cyclopenta[cd]indene-5-carbaldehyde (4.48)

1H NMR (300 MHz, CDCl3) δppm 9.51 (s, 1H), 4.95 (t, J = 5.9 Hz, 1H), 3.49 (bs, 1H), 3.22 (dt, J = 10.7, 6.7 Hz, 1H), 2.87-2.80 (m, 1H), 2.30 (d, J = 3.4 Hz, 1H), 2.26 (s, 1H), 2.23-2.15 (m, 1H), 1.96 (dd, J = 15.3, 5.2 Hz, 1H), 1.91-1.84 (m, 1H), 1.81-1.59 (m, 2H), 1.48 (s, 3H), 1.23 (s, 1H). 13C NMR (75 MHz, CDCl3) δppm 202.8 (CH), 178.5 (C4), 82.7 (C4), 82.5 (CH), 78.2 (C4), 47.8 (CH2), 47.5 (CH2), 41.3 (CH), 37.8
(CH), 30.0 (CH₃), 28.7 (CH₂), 18.7 (CH₂). IR (neat, cm⁻¹) 3443 (m), 2969 (w), 2932 (m), 2869 (w), 1733 (s), 1454 (w), 1373 (m), 1231 (w), 1181 (m), 1112 (m), 1006 (m). HRMS (EI) m/z (M⁺ - [H₂O + CHO]) calcd 193.0865 found 193.0857.

6-(tert-Butyl-dimethyl-silyloxy)-9-methoxy-4-methyl-3-oxatricyclo[5.4.0.0⁴,8]undec-9-en-2-one (4.50)

To a solution of KHMDS (0.115 mmol, 23.0 mg) in THF (1.0 mL) at -78°C was canulated the ketone 4.43 (0.0660 mmol, 21.8 mg) in THF (2.0 mL). The solution became yellow and was stirred at -78°C for 20 minutes. Freshly distilled dimethylsulfate (0.1320 mmol, 12 μL) was added and the reaction was warmed to room temperature over a period of 30 minutes. The orange solution was quenched with H₂O, extracted with CH₂Cl₂ and dried over MgSO₄. After concentration, the product was purified by flash column chromatography (20% EtOAc in hexanes) basified with triethylamine to afford methyl enol ether 26 as colorless crystals (17.1 mg, 77%). ¹H NMR (300 MHz, acetone-d₆) δ ppm 4.82 (dd, J = 5.0, 2.3 Hz, 1H), 4.63 (ddd, J = 9.3, 6.7, 2.3 Hz, 1H), 3.53 (s, 3H), 2.95 (bs, 1H), 2.52-2.47 (m, 1H), 2.38-2.26 (m, 4H), 3.65 (dd, J = 14.7, 2.2 Hz, 1H), 1.30 (s, 3H), 0.88 (s, 9H), 0.06 (d, J = 1.3 Hz, 6H). ¹³C NMR (75 MHz, acetone-d₆) δ ppm 173.5 (C₄), 153.6 (C₄), 94.7 (CH), 88.8 (C₄), 71.2 (CH), 54.6 (CH), 49.6 (CH₂), 47.1 (CH), 44.7 (CH), 38.1 (CH), 30.1 (CH₂), 26.1 (3×CH₃), 22.7 (CH₃), 18.6 (C₄), -4.8 (CH₃), -5.0 (CH₃). IR (CHCl₃, cm⁻¹) 2957 (m), 2934 (s), 2900 (m), 2855 (m), 1736 (s), 1664 (m), 1470 (w), 1387 (m), 1252 (m), 1151 (s), 1091 (m), 1039 (s), 837 (s), 777 (m). HRMS (EI) m/z (M⁺ - [C₄H₉]) calcd 281.1209 found 281.1201. mp = 127.5-129.2°C.
4-Methyl-penta-2,4-dienoic acid ethyl ester (4.52)

A solution of triethylphosphonoacetate (29 mmol, 5.7 mL) in THF (200 mL) was cooled to -78°C. n-BuLi (37.1 mmol, 12.0 mL) was added dropwise and the solution was stirred for 15 minutes, during which the solution became light orange. Methacrolein 4.51 (28.5 mmol, 2.36 mL) was added dropwise and the solution became light green. The reaction mixture was stirred for 2 hours, quenched with saturated NH₄Cl (aq) and the aqueous layer was extracted with Et₂O (3x). The organic layer was dried over anhydrous MgSO₄ and the product was purified by flash column chromatography (10% EtOAc in hexanes) to generate a colorless oil (2.81 g, 70%).

3-(2-Methyl-oxiranyl)-acrylic acid ethyl ester (4.53)

To a solution of MCPBA (24.0548 mmol, 5.3911 g) in ether (32.0 mL) at 0°C was added dropwise alkene 4.52 (20.0457 mmol, 2.81 g) in EtOAc (43.0 mL). The solution was stirred and warmed gradually to room temperature during 24 hours. The reaction was quenched with sodium sulfite (80.18 mmol, 10.11 g), the aqueous layer was extracted with Et₂O (3x) and the combined organic layers were washed with 10% Na₂CO₃ (3x). The organic solvent was removed in vacuo and the product was purified by flash column chromatography (20% EtOAc in hexanes) to yield epoxide 4.53 as a yellow oil (1.64 g, 52%). ¹H NMR (300 MHz, CDCl₃) δ ppm 6.68 (d, J = 15.8 Hz, 1H), 6.04 (d, J = 15.8 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.88 (d, J = 5.3 Hz, 1H), 2.78 (d, J = 5.3 Hz, 1H), 1.48 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 165.8 (C=), 148.3 (CH), 122.6 (CH), 60.5 (CH₂), 55.9 (CH₂), 54.7 (C=), 18.9 (CH₃), 14.1 (CH₃). IR (neat, cm⁻¹) 2986 (s), 2937 (m), 1724 (s), 1660 (m), 1450 (m),
5-Hydroxy-4-methyl-pent-3-enoic acid ethyl ester (4.54)

To a solution of epoxide 4.53 (1.28 mmol, 0.200 g), HMPA (1.28 mL) and DMAE (2.6 mmol, 0.26 mL) was added SmI₂-THF (2.74 mmol, 27.4 mL) at room temperature. Every drop of blue samarium iodide disappeared upon contact with the solution, which in turn became yellow. The reaction mixture was stirred overnight and became brown. The solution was quenched with saturated NaHCO₃ (aq) and the aqueous layer was extracted with EtOAc (3x). The combined organic layers were dried over anhydrous MgSO₄, concentrated and the product was purified by flash column chromatography (40% EtOAc in hexanes) to afford alcohol 4.54 as a colorless oil (100.0 mg, 49%). ¹H NMR (300 MHz, CDCl₃) δ ppm 5.61 (t, J = 7.3 Hz, 1H), 4.12 (q, J = 7.4 Hz, 2H), 4.03 (s, 2H), 3.07 (d, J = 7.1 Hz, 2H), 1.67 (s, 3H), 1.51 (bs, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 172.0 (C₄), 138.4 (C₄), 117.1 (CH), 68.3 (CH₂), 60.7 (CH₂), 33.3 (CH₂), 14.2 (CH₃), 13.9 (CH₃). IR (neat, cm⁻¹) 3375 (s), 2922 (w), 2850 (w), 1733 (s), 1622 (m), 1444 (m), 1155 (s). HRMS (EI) m/z (M⁺-[H₂O + CH₂CH₃]) calcd 111.0446 found 111.0432.

5-(tert-Butyl-dimethyl-silyloxy)-4-methyl-pent-3-en-1-ol (4.57)

To a solution of alcohol 4.54 (0.120 mmol, 18.9 mg) in THF (1.0 mL) was added imidazole (0.359 mmol, 24.4 mg). The solution was stirred for 5 minutes and TBDMScI (0.143 mmol, 21.6 mg) was added and the reaction mixture was stirred for 1 hour. The reaction was quenched with saturated NH₄Cl (aq) and the aqueous layer
was extracted with ether (3x). The combined organic layers were dried over anhydrous MgSO₄, concentrated and the resulting ester 4.56 (colorless oil) was used without further purification. To a solution ester 4.56 (0.120 mmol, 32.5 mg) in THF (1.5 mL) at -78°C was added DIBAL-H (0.36 mmol, 0.24 mL). The solution was stirred at 0°C for 30 minutes, quenched with a 1:1 solution of 1M NaOH and 1M sodium tartrate (2.0 mL) and was stirred overnight. The aqueous layer was extracted with EtOAc (3x), the combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuo. The product was purified by flash column chromatography (40% EtOAc in hexanes) to afford alcohol 4.57 as a colorless oil (13.8 mg, 50% over 2 steps). ¹H NMR (300 MHz, CDCl₃) δ ppm 5.39 (t, J = 7.2 Hz, 1H), 4.01 (s, 2H), 3.63 (t, J = 6.5 Hz, 2H), 2.31 (q, J = 6.9 Hz, 2H), 1.61 (s, 3H), 1.48 (bs, 1H), 0.89 (s, 9H), 0.05 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 137.9 (C₄), 119.6 (CH), 68.3 (CH₂), 62.4 (CH₂), 31.1 (CH₂), 25.9 (3xCH₃), 18.4 (C₄), 13.6 (CH₃), -5.3 (2xCH₃). IR (neat, cm⁻¹) 3367 (w), 2956 (m), 2930 (m), 2892 (m), 2861 (m), 1466 (w), 1257 (m), 1109 (m), 1063 (s), 839 (s), 774 (m). HRMS (EI) m/z (M⁺-[C₄H₅]) calc 173.0998 found 173.1010.

5-Benzylxoy-2-methyl-pent-2-en-1-ol (4.59)

To a solution of NaH (1.30 mmol, 51.4 mg) in THF (1.0 mL) was canulated the alcohol 4.57 (0.300 mmol, 69.1 mg) in THF (2.0 mL). Benzylbromide (0.60 mmol, 70 µL) and NaI (cat.) were added and the solution was stirred at room temperature overnight. The reaction was quenched with saturated NH₄Cl (aq) and the aqueous layer was extracted with CH₂Cl₂. The organic layer was dried over anhydrous MgSO₄, concentrated and the silyl ether 4.58 (yellow oil) was used in the next reaction without further purification. The silyl ether 4.58 (0.300 mmol, 96.2
mg) was diluted in THF (3.0 mL) and TBAF (0.75 mmol, 0.75 mL) was added to the solution. After 1 hour, the solution was concentrated and the product was purified by flash column chromatography (50% EtOAc in hexanes) to yield alcohol 4.59 as a colorless oil (60.0 mg, 97% over 2 steps). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 7.36-7.26 (m, 5H), 5.43 (t, \(J = 7.1\) Hz, 1H), 4.50 (s, 2H), 3.99 (s, 2H), 3.47 (t, \(J = 6.9\) Hz, 2H), 2.36 (q, \(J = 6.8\) Hz, 2H), 1.66 (s, 3H), 1.46 (bs, 1H). \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 138.4 (C\(_4\)), 136.7 (C\(_4\)), 128.4 (2xCH), 127.7 (2xCH), 127.6 (CH), 122.0 (CH), 72.9 (CH\(_2\)), 69.7 (CH\(_2\)), 68.7 (CH), 28.3 (CH\(_2\)), 13.8 (CH\(_3\)). IR (neat, cm\(^{-1}\)) 3389 (m), 3066 (w), 3032 (w), 2922 (m), 2865 (s), 1493 (w), 1458 (w), 1360 (w), 1097 (s), 1002 (m), 732 (s), 691 (s). HRMS (EI) \(m/z\) (M\(^+\)) calcd 206.1307 found 206.1280.

![Structure of (5-Bromo-4-methyl-pent-3-enyloxymethyl)-benzene (4.60)](image)

(5-Bromo-4-methyl-pent-3-enyloxymethyl)-benzene (4.60)

To a solution of carbon tetrabromide (0.0891 mmol, 29.6 mg) in CH\(_2\)Cl\(_2\) (0.5 mL) was canulated the alcohol 4.59 (0.0713 mmol, 14.7 mg) in CH\(_2\)Cl\(_2\) (1.0 mL). The solution was stirred for 5 minutes and triphenylphosphine (0.107 mmol, 28.0 mg) in CH\(_2\)Cl\(_2\) (0.5 mL) was canulated into the solution. The reaction mixture was stirred for 4 hours and hexanes were added to precipitate the triphenylphosphine oxide from solution. The product was filtered through celite (3x), concentrated and purified by flash column chromatography (20% EtOAc in hexanes) to yield allyl bromide 4.60 as a colorless oil (17.3 mg, 90%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 7.36-7.26 (m, 5H), 5.63 (t, \(J = 7.1\) Hz, 1H), 4.50 (s, 2H), 3.96 (s, 2H), 3.47 (t, \(J = 6.8\) Hz, 2H), 2.34 (q, \(J = 6.9\) Hz, 2H), 1.76 (s, 3H). \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) \(\delta_{ppm}\) 137.7 (C\(_4\)), 133.8 (C\(_4\)), 128.4 (2xCH), 127.6 (2xCH), 127.6 (CH), 127.5
(CH), 72.9 (CH₂), 69.1 (CH₂), 41.4 (CH₂), 29.0 (CH₂), 14.8 (CH₃). IR (neat, cm⁻¹) 3033 (w), 2956 (m), 2930 (m), 2861 (m), 1726 (w), 1605 (w), 1496 (w), 1451 (m), 1100 (s).

HRMS (EI) m/z (M⁺-Br) calcd 189.1279 found 189.1259.
CLAIMS TO ORIGINAL RESEARCH

1. Studied the scope and limitations of the tandem oxy-Cope/ene/Claisen reaction applied towards allyl and propargyl ethers. By isolating a dimer, proved that a 1,3-radical shift competes with the Claisen reaction.

2. Studied the hydroxy-directed Diels-Alder reaction reaction with 5-membered semicyclic dienes and applied the methodology towards the construction of the isovelleral hydrindane core.

3. Applied the highly regio- and stereoselective hydroxy-directed Diels-Alder reaction towards the synthesis of the tetracyclic core of havellockate.

SPECTRA
Table 1. Crystal data and structure refinement for lb404.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>lb404</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C17 H28 O4 Si</td>
</tr>
<tr>
<td>Formula weight</td>
<td>324.48</td>
</tr>
<tr>
<td>Temperature</td>
<td>205(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>20.267(4) Å</td>
</tr>
<tr>
<td>b</td>
<td>7.4833(14) Å</td>
</tr>
<tr>
<td>c</td>
<td>12.041(2) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>β</td>
<td>95.913(4)°</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1816.4(6) Å</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.187 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.144 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>704</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.40 x 0.22 x 0.18 mm³</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.01 to 25.68°</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
</tr>
<tr>
<td>Reflections collected</td>
<td>9671</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3452 [R(int) = 0.0789]</td>
</tr>
<tr>
<td>Completeness to theta = 25.68°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.0 and 0.835</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3452 / 0 / 206</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.055</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0767, wR2 = 0.1391</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1426, wR2 = 0.1555</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.286 and -0.295 eÅ⁻³</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates \((x \times 10^4)\) and equivalent isotropic displacement parameters \((\text{Å}^2 \times 10^3)\) for lb404. \(U(\text{eq})\) is defined as one third of the trace of the orthogonalized \(U^0\) tensor.

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U(\text{eq}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>18(1)</td>
<td>4408(4)</td>
<td>-1355(2)</td>
<td>63(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>480(2)</td>
<td>5389(6)</td>
<td>-1036(3)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>405(2)</td>
<td>7370(6)</td>
<td>-994(3)</td>
<td>52(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>894(2)</td>
<td>8302(5)</td>
<td>-127(3)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>1593(2)</td>
<td>7530(5)</td>
<td>-142(3)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>1797(2)</td>
<td>7828(5)</td>
<td>-1299(3)</td>
<td>40(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>1970(1)</td>
<td>9247(4)</td>
<td>-1645(2)</td>
<td>63(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>1725(1)</td>
<td>6436(3)</td>
<td>-2033(2)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>1632(2)</td>
<td>4597(5)</td>
<td>-1646(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>1163(2)</td>
<td>4596(5)</td>
<td>-717(3)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>1600(2)</td>
<td>5586(5)</td>
<td>205(3)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>2283(2)</td>
<td>4687(5)</td>
<td>168(3)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>2277(2)</td>
<td>3948(5)</td>
<td>-1028(3)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>1395(2)</td>
<td>3567(6)</td>
<td>-2693(3)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(15)</td>
<td>2806(1)</td>
<td>5944(3)</td>
<td>435(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>Si(16)</td>
<td>3536(1)</td>
<td>5436(1)</td>
<td>1102(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>3419(2)</td>
<td>4170(5)</td>
<td>2399(3)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>4018(2)</td>
<td>4045(5)</td>
<td>190(3)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>3942(2)</td>
<td>7659(5)</td>
<td>1412(3)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>3512(2)</td>
<td>8796(6)</td>
<td>2108(4)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>4025(2)</td>
<td>8641(6)</td>
<td>318(3)</td>
<td>67(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>4629(2)</td>
<td>7403(5)</td>
<td>2065(3)</td>
<td>55(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 1b404.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(2)</td>
<td>1.220(4)</td>
<td>122.1(4)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.492(6)</td>
<td>119.6(4)</td>
</tr>
<tr>
<td>C(2)-C(10)</td>
<td>1.518(5)</td>
<td>118.2(3)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.531(5)</td>
<td>114.5(3)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.530(5)</td>
<td>110.8(3)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.510(5)</td>
<td>113.6(3)</td>
</tr>
<tr>
<td>C(5)-C(11)</td>
<td>1.513(5)</td>
<td>107.3(3)</td>
</tr>
<tr>
<td>C(6)-O(7)</td>
<td>1.206(4)</td>
<td>110.0(3)</td>
</tr>
<tr>
<td>C(6)-O(8)</td>
<td>1.364(4)</td>
<td>117.7(4)</td>
</tr>
<tr>
<td>O(8)-C(9)</td>
<td>1.471(4)</td>
<td>112.4(4)</td>
</tr>
<tr>
<td>C(9)-C(14)</td>
<td>1.513(5)</td>
<td>118.2(3)</td>
</tr>
<tr>
<td>C(9)-C(13)</td>
<td>1.515(5)</td>
<td>114.5(3)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.542(5)</td>
<td>110.8(3)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.538(5)</td>
<td>113.6(3)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.543(5)</td>
<td>107.3(3)</td>
</tr>
<tr>
<td>C(12)-O(15)</td>
<td>1.428(4)</td>
<td>110.0(3)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.542(5)</td>
<td>117.7(4)</td>
</tr>
<tr>
<td>O(15)-Si(16)</td>
<td>1.654(2)</td>
<td>112.4(4)</td>
</tr>
<tr>
<td>Si(16)-C(18)</td>
<td>1.861(4)</td>
<td>118.2(3)</td>
</tr>
<tr>
<td>Si(16)-C(17)</td>
<td>1.863(4)</td>
<td>114.5(3)</td>
</tr>
<tr>
<td>Si(16)-C(19)</td>
<td>1.877(4)</td>
<td>110.8(3)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.529(5)</td>
<td>113.6(3)</td>
</tr>
<tr>
<td>C(19)-C(21)</td>
<td>1.533(5)</td>
<td>107.3(3)</td>
</tr>
<tr>
<td>C(19)-C(22)</td>
<td>1.538(5)</td>
<td>110.0(3)</td>
</tr>
<tr>
<td>O(7)-C(6)-O(8)</td>
<td>117.7(4)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>O(7)-C(6)-C(5)</td>
<td>124.5(4)</td>
<td></td>
</tr>
<tr>
<td>O(8)-C(6)-C(5)</td>
<td>117.6(3)</td>
<td></td>
</tr>
<tr>
<td>C(6)-O(8)-C(9)</td>
<td>121.2(3)</td>
<td></td>
</tr>
<tr>
<td>O(8)-C(9)-C(14)</td>
<td>104.7(3)</td>
<td></td>
</tr>
<tr>
<td>O(8)-C(9)-C(13)</td>
<td>108.9(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(9)-C(13)</td>
<td>115.4(3)</td>
<td></td>
</tr>
<tr>
<td>O(8)-C(9)-C(10)</td>
<td>109.8(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(9)-C(10)</td>
<td>115.9(3)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(9)-C(10)</td>
<td>102.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(10)-C(11)</td>
<td>115.9(3)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(10)-C(9)</td>
<td>115.5(3)</td>
<td></td>
</tr>
<tr>
<td>C(11)-C(10)-C(9)</td>
<td>99.8(3)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(11)-C(10)</td>
<td>106.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(11)-C(12)</td>
<td>113.3(3)</td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)-C(12)</td>
<td>102.8(3)</td>
<td></td>
</tr>
<tr>
<td>O(15)-C(12)-C(13)</td>
<td>112.4(3)</td>
<td></td>
</tr>
<tr>
<td>O(15)-C(12)-C(11)</td>
<td>110.7(3)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(12)-C(11)</td>
<td>105.2(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)-C(13)-C(12)</td>
<td>105.5(3)</td>
<td></td>
</tr>
<tr>
<td>C(12)-O(15)-Si(16)</td>
<td>124.3(2)</td>
<td></td>
</tr>
<tr>
<td>O(15)-Si(16)-C(18)</td>
<td>109.88(15)</td>
<td></td>
</tr>
<tr>
<td>O(15)-Si(16)-C(17)</td>
<td>109.84(14)</td>
<td></td>
</tr>
<tr>
<td>C(18)-Si(16)-C(17)</td>
<td>109.29(18)</td>
<td></td>
</tr>
<tr>
<td>O(15)-Si(16)-C(19)</td>
<td>104.21(14)</td>
<td></td>
</tr>
<tr>
<td>C(18)-Si(16)-C(19)</td>
<td>111.54(17)</td>
<td></td>
</tr>
<tr>
<td>C(17)-Si(16)-C(19)</td>
<td>111.98(17)</td>
<td></td>
</tr>
<tr>
<td>C(20)-C(19)-C(21)</td>
<td>108.8(3)</td>
<td></td>
</tr>
<tr>
<td>C(20)-C(19)-C(22)</td>
<td>109.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(19)-C(22)</td>
<td>109.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(20)-C(19)-Si(16)</td>
<td>109.8(3)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(19)-Si(16)</td>
<td>109.8(2)</td>
<td></td>
</tr>
<tr>
<td>C(22)-C(19)-Si(16)</td>
<td>110.3(2)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å² × 10^3) for lb404. The anisotropic displacement factor exponent takes the form: \(-2\pi^2 [h^2 a^* b^* U_{11} + ... + 2 h k a^* b^* U_{12}]\)

<table>
<thead>
<tr>
<th></th>
<th>(U_{11})</th>
<th>(U_{22})</th>
<th>(U_{33})</th>
<th>(U_{12})</th>
<th>(U_{13})</th>
<th>(U_{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>36(2)</td>
<td>94(3)</td>
<td>56(2)</td>
<td>-14(2)</td>
<td>-3(1)</td>
<td>-21(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>35(2)</td>
<td>66(3)</td>
<td>32(2)</td>
<td>0(2)</td>
<td>3(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>30(2)</td>
<td>65(3)</td>
<td>58(3)</td>
<td>5(2)</td>
<td>2(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>39(2)</td>
<td>51(3)</td>
<td>56(3)</td>
<td>0(2)</td>
<td>4(2)</td>
<td>11(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>33(2)</td>
<td>40(2)</td>
<td>37(2)</td>
<td>-8(2)</td>
<td>1(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>30(2)</td>
<td>33(3)</td>
<td>57(3)</td>
<td>4(2)</td>
<td>3(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>O(7)</td>
<td>68(2)</td>
<td>37(2)</td>
<td>85(2)</td>
<td>14(2)</td>
<td>17(2)</td>
<td>-12(2)</td>
</tr>
<tr>
<td>O(8)</td>
<td>49(2)</td>
<td>40(2)</td>
<td>38(2)</td>
<td>5(1)</td>
<td>12(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>37(2)</td>
<td>35(2)</td>
<td>35(2)</td>
<td>-3(2)</td>
<td>1(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>37(2)</td>
<td>36(2)</td>
<td>38(2)</td>
<td>4(2)</td>
<td>1(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>29(2)</td>
<td>39(2)</td>
<td>27(2)</td>
<td>4(2)</td>
<td>2(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>32(2)</td>
<td>29(2)</td>
<td>41(2)</td>
<td>3(2)</td>
<td>-4(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>43(2)</td>
<td>33(2)</td>
<td>48(3)</td>
<td>-2(2)</td>
<td>3(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>62(3)</td>
<td>60(3)</td>
<td>39(3)</td>
<td>-12(2)</td>
<td>0(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>O(15)</td>
<td>33(1)</td>
<td>30(2)</td>
<td>45(2)</td>
<td>4(1)</td>
<td>-1(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>Si(16)</td>
<td>27(1)</td>
<td>29(1)</td>
<td>32(1)</td>
<td>0(1)</td>
<td>1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>47(2)</td>
<td>43(3)</td>
<td>48(3)</td>
<td>9(2)</td>
<td>5(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>53(3)</td>
<td>45(3)</td>
<td>48(3)</td>
<td>-9(2)</td>
<td>5(2)</td>
<td>12(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>37(2)</td>
<td>30(2)</td>
<td>34(2)</td>
<td>-5(2)</td>
<td>0(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>60(3)</td>
<td>46(3)</td>
<td>69(3)</td>
<td>-22(2)</td>
<td>-2(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>87(4)</td>
<td>50(3)</td>
<td>64(3)</td>
<td>13(2)</td>
<td>4(3)</td>
<td>-20(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>44(3)</td>
<td>49(3)</td>
<td>68(3)</td>
<td>-11(2)</td>
<td>-8(2)</td>
<td>-12(2)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (×10^4) and isotropic displacement parameters (Å^2×10^{-3}) for lb404.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(3A)</td>
<td>-47</td>
<td>7649</td>
<td>-830</td>
<td>62</td>
</tr>
<tr>
<td>H(3B)</td>
<td>461</td>
<td>7860</td>
<td>-1732</td>
<td>62</td>
</tr>
<tr>
<td>H(4A)</td>
<td>902</td>
<td>9585</td>
<td>-289</td>
<td>58</td>
</tr>
<tr>
<td>H(4B)</td>
<td>748</td>
<td>8147</td>
<td>617</td>
<td>58</td>
</tr>
<tr>
<td>H(5A)</td>
<td>1899</td>
<td>8203</td>
<td>400</td>
<td>44</td>
</tr>
<tr>
<td>H(10A)</td>
<td>1107</td>
<td>3347</td>
<td>-472</td>
<td>44</td>
</tr>
<tr>
<td>H(11A)</td>
<td>1433</td>
<td>5431</td>
<td>943</td>
<td>38</td>
</tr>
<tr>
<td>H(12A)</td>
<td>2328</td>
<td>3686</td>
<td>708</td>
<td>41</td>
</tr>
<tr>
<td>H(13A)</td>
<td>2657</td>
<td>4401</td>
<td>-1383</td>
<td>50</td>
</tr>
<tr>
<td>H(13B)</td>
<td>2293</td>
<td>2639</td>
<td>-1021</td>
<td>50</td>
</tr>
<tr>
<td>H(14A)</td>
<td>981</td>
<td>4076</td>
<td>-3028</td>
<td>81</td>
</tr>
<tr>
<td>H(14B)</td>
<td>1325</td>
<td>2326</td>
<td>-2504</td>
<td>81</td>
</tr>
<tr>
<td>H(14C)</td>
<td>1726</td>
<td>3638</td>
<td>-3218</td>
<td>81</td>
</tr>
<tr>
<td>H(17A)</td>
<td>3105</td>
<td>4797</td>
<td>2815</td>
<td>69</td>
</tr>
<tr>
<td>H(17B)</td>
<td>3841</td>
<td>4069</td>
<td>2855</td>
<td>69</td>
</tr>
<tr>
<td>H(17C)</td>
<td>3251</td>
<td>2986</td>
<td>2204</td>
<td>69</td>
</tr>
<tr>
<td>H(18A)</td>
<td>3772</td>
<td>2964</td>
<td>-20</td>
<td>72</td>
</tr>
<tr>
<td>H(18B)</td>
<td>4442</td>
<td>3733</td>
<td>590</td>
<td>72</td>
</tr>
<tr>
<td>H(18C)</td>
<td>4090</td>
<td>4714</td>
<td>-477</td>
<td>72</td>
</tr>
<tr>
<td>H(20A)</td>
<td>3735</td>
<td>9918</td>
<td>2299</td>
<td>88</td>
</tr>
<tr>
<td>H(20B)</td>
<td>3439</td>
<td>8159</td>
<td>2786</td>
<td>88</td>
</tr>
<tr>
<td>H(20C)</td>
<td>3089</td>
<td>9032</td>
<td>1680</td>
<td>88</td>
</tr>
<tr>
<td>H(21A)</td>
<td>4241</td>
<td>9782</td>
<td>483</td>
<td>101</td>
</tr>
<tr>
<td>H(21B)</td>
<td>3593</td>
<td>8839</td>
<td>-88</td>
<td>101</td>
</tr>
<tr>
<td>H(21C)</td>
<td>4294</td>
<td>7925</td>
<td>-133</td>
<td>101</td>
</tr>
<tr>
<td>H(22A)</td>
<td>4823</td>
<td>8562</td>
<td>2256</td>
<td>82</td>
</tr>
<tr>
<td>H(22B)</td>
<td>4914</td>
<td>6751</td>
<td>1608</td>
<td>82</td>
</tr>
<tr>
<td>H(22C)</td>
<td>4583</td>
<td>6735</td>
<td>2743</td>
<td>82</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for lb404.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(2)-C(3)-C(4)</td>
<td>153.6(3)</td>
</tr>
<tr>
<td>C(10)-C(2)-C(3)-C(4)</td>
<td>-29.2(5)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>43.2(5)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>60.0(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(11)</td>
<td>-64.0(4)</td>
</tr>
<tr>
<td>C(11)-C(5)-C(6)-O(7)</td>
<td>-162.5(3)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-O(7)</td>
<td>75.7(5)</td>
</tr>
<tr>
<td>C(11)-C(5)-C(6)-O(8)</td>
<td>23.7(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-O(8)</td>
<td>-98.1(4)</td>
</tr>
<tr>
<td>O(7)-C(6)-O(8)-C(9)</td>
<td>169.1(3)</td>
</tr>
<tr>
<td>C(5)-C(6)-O(8)-C(9)</td>
<td>-16.7(5)</td>
</tr>
<tr>
<td>C(6)-O(8)-C(9)-C(14)</td>
<td>165.6(3)</td>
</tr>
<tr>
<td>C(6)-O(8)-C(9)-C(13)</td>
<td>-70.4(4)</td>
</tr>
<tr>
<td>C(6)-O(8)-C(9)-C(10)</td>
<td>40.5(4)</td>
</tr>
<tr>
<td>O(1)-C(2)-C(10)-C(11)</td>
<td>-148.7(3)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(10)-C(11)</td>
<td>34.0(5)</td>
</tr>
<tr>
<td>O(1)-C(2)-C(10)-C(9)</td>
<td>95.0(4)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(10)-C(9)</td>
<td>-82.3(4)</td>
</tr>
<tr>
<td>O(8)-C(9)-C(10)-C(2)</td>
<td>58.1(4)</td>
</tr>
<tr>
<td>C(14)-C(9)-C(10)-C(2)</td>
<td>-60.2(5)</td>
</tr>
<tr>
<td>C(13)-C(9)-C(10)-C(2)</td>
<td>173.5(3)</td>
</tr>
<tr>
<td>O(8)-C(9)-C(10)-C(11)</td>
<td>-66.9(3)</td>
</tr>
<tr>
<td>C(14)-C(9)-C(10)-C(11)</td>
<td>174.8(3)</td>
</tr>
<tr>
<td>C(13)-C(9)-C(10)-C(11)</td>
<td>48.4(3)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(11)-C(10)</td>
<td>-54.5(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(11)-C(10)</td>
<td>65.8(4)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(11)-C(12)</td>
<td>57.5(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(11)-C(12)</td>
<td>177.8(3)</td>
</tr>
<tr>
<td>C(2)-C(10)-C(11)-C(5)</td>
<td>-50.6(4)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)-C(5)</td>
<td>74.2(3)</td>
</tr>
<tr>
<td>C(2)-C(10)-C(11)-C(12)</td>
<td>-169.7(3)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)-C(12)</td>
<td>-44.9(3)</td>
</tr>
<tr>
<td>C(5)-C(11)-C(12)-O(15)</td>
<td>32.6(4)</td>
</tr>
<tr>
<td>C(10)-C(11)-C(12)-O(15)</td>
<td>146.5(3)</td>
</tr>
</tbody>
</table>
C(5)-C(11)-C(12)-C(13) -89.0(3)
C(10)-C(11)-C(12)-C(13) 24.9(3)
O(8)-C(9)-C(13)-C(12) 82.7(3)
C(14)-C(9)-C(13)-C(12) -159.9(3)
C(10)-C(9)-C(13)-C(12) -33.3(4)
O(15)-C(12)-C(13)-C(9) -115.2(3)
C(11)-C(12)-C(13)-C(9) 5.3(4)
C(13)-C(12)-O(15)-Si(16) -95.8(3)
C(11)-C(12)-O(15)-Si(16) 146.9(2)
C(12)-O(15)-Si(16)-C(18) 69.6(3)
C(12)-O(15)-Si(16)-C(17) -50.6(3)
C(12)-O(15)-Si(16)-C(19) -170.7(2)
O(15)-Si(16)-C(19)-C(20) 58.4(3)
C(18)-Si(16)-C(19)-C(20) 176.9(3)
C(17)-Si(16)-C(19)-C(20) -60.3(3)
O(15)-Si(16)-C(19)-C(21) -61.3(3)
C(18)-Si(16)-C(19)-C(21) 57.2(3)
C(17)-Si(16)-C(19)-C(21) -179.9(3)
O(15)-Si(16)-C(19)-C(22) 178.6(2)
C(18)-Si(16)-C(19)-C(22) -62.9(3)
C(17)-Si(16)-C(19)-C(22) 60.0(3)

Symmetry transformations used to generate equivalent atoms:
Current Data Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>1af-33</td>
</tr>
<tr>
<td>EXPNO</td>
<td>1</td>
</tr>
<tr>
<td>PRECID</td>
<td>1</td>
</tr>
</tbody>
</table>

F2 - Acquisition Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2002012t</td>
</tr>
<tr>
<td>Time</td>
<td>10:16</td>
</tr>
<tr>
<td>INSTRUM</td>
<td>Av300</td>
</tr>
<tr>
<td>PROBDP</td>
<td>5 mm GNP + 1H/L</td>
</tr>
<tr>
<td>PULPROG</td>
<td>2q30</td>
</tr>
<tr>
<td>TD</td>
<td>30720</td>
</tr>
<tr>
<td>SOLVENT</td>
<td>CDC13</td>
</tr>
<tr>
<td>NS</td>
<td>16</td>
</tr>
<tr>
<td>US</td>
<td>0</td>
</tr>
<tr>
<td>SNH</td>
<td>5081 301 Hz</td>
</tr>
<tr>
<td>FIDFRE</td>
<td>0.165407 Hz</td>
</tr>
<tr>
<td>AG</td>
<td>3.0226986 sec</td>
</tr>
<tr>
<td>AG9</td>
<td>45.3</td>
</tr>
<tr>
<td>DW</td>
<td>98.400 usec</td>
</tr>
<tr>
<td>DE</td>
<td>6.00 usec</td>
</tr>
<tr>
<td>TE</td>
<td>300.0 K</td>
</tr>
<tr>
<td>D1</td>
<td>1.000000000 sec</td>
</tr>
</tbody>
</table>

F2 - Processing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>65536</td>
</tr>
<tr>
<td>SF</td>
<td>300 1300000 Hz</td>
</tr>
<tr>
<td>NQW</td>
<td>EM</td>
</tr>
<tr>
<td>SSR</td>
<td>0</td>
</tr>
<tr>
<td>LB</td>
<td>0 10 Hz</td>
</tr>
<tr>
<td>GA</td>
<td>0</td>
</tr>
<tr>
<td>PC</td>
<td>1 00</td>
</tr>
</tbody>
</table>

1D NMR plot parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX</td>
<td>20.70 cm</td>
</tr>
<tr>
<td>CY</td>
<td>10.00 cm</td>
</tr>
<tr>
<td>F1P</td>
<td>10.000 ppm</td>
</tr>
<tr>
<td>F1</td>
<td>3001.30 Hz</td>
</tr>
<tr>
<td>F2P</td>
<td>0.060 ppm</td>
</tr>
<tr>
<td>F2</td>
<td>0.00 Hz</td>
</tr>
<tr>
<td>PPMCM</td>
<td>0.50000 ppm/cm</td>
</tr>
<tr>
<td>HZCM</td>
<td>150.065500 Hz/cm</td>
</tr>
</tbody>
</table>
Current Data Parameters
NAME: jaf-03
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20020710
Time: 10:31
INSTRUM: av-300
PROBH0: 5 mm GNP 1H/1
PULPROG: zg30
TD: 33720
SOLVENT: CDCl3
NS: 16
DS: 0
SWH: 5001.301 Hz
F0RES: 0.165467 Hz
AT: 3.0229900 sec
RG: 161.3
DW: 98.400 usec
DE: 6.00 usec
TE: 300.0 K
DT: 1.00000000 usec

********** CHANNEL f1 **********
NUC1: 1H
P1: 26.00 usec
PJ: -3.00 dB
SFO1: 300.131977 MHz

F2 - Processing parameters
SI: 65936
SF: 300.130000 MHz
MIN: EM
SSB: 0
LB: 0.10 Hz
GE: 0
PC: 1.00

1D NMR plot parameters
CX: 20.00 cm
CY: 10.00 cm
FXP: 7.557 ppm
F1: 2271.07 Hz
F2P: 0.937 ppm
F2: 281.19 Hz
PPHCM: 0.33100 ppm/cm
HZCM: 99.49400 Hz/cm
Current Data Parameters
NAME: jaf-45s
EXPNO: 1
PROTOCOL: 1

F2 - Acquisition Parameters
Date: 20030801
Time: 10:16
INSTRUM: av300
PROBHD: 5 mm GNP H/1
PULPROG: zg30
TD: 30720
SOLVENT: CDCl3
NS: 16
GS: 0
SWH: 5081.301 Hz
FIDRES: 0.165407 Hz
AQ: 3.0220000 sec
RD: 101.5
DM: 99.400 usec
DE: 6.00 usec
TE: 300.0 K
DI: 100000000 sec

********** CHANNEL f1 **********
NUCI: 1H
P1: 10.50 usec
PL1: -3.00 dB
SF01: 300.131947 MHz

F2 - Processing parameters
SI: 65536
SF: 300.130000 MHz
NWM: EN
SSB: 0
LB: 0.10 Hz
GB: 0
PC: 1.00

1D NMR plot parameters
CX: 20.00 cm
CY: 20.00 cm
F1P: 6.173 ppm
F1: 2452.91 Hz
F2P: 0.440 ppm
F2: 131.92 Hz
PPMCH: 0.36667 ppm/cm
HzCM: 115.04988 Hz/cm
Current Data Parameters
NAME jaf-546pur
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 2003/11/27
Time 8.41
INSTRUM av300
PROBMD 5 mm GNP H1
PULPROG zg30
TD 30/720
SOLVENT CDCl3
NS 16
DS 0
SNH 5081.301 Hz
FIDRES 0.105407 Hz
AG 3.0288800 sec
DG 90.5
DW 99.400 usec
DE 6.00 usec
TE 300.0 K
D1 1.00000000 sec

********** CHANNEL t1 **********
NUCI 1H
P1 10.50 usec
PL1 -3.00 dB
SFO1 300.1319477 MHz

F2 - Processing parameters
SI 6536
SF 300.1300000 MHz
MDW EH
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 15.00 cm
F1P 7.613 ppm
F1 2284.77 Hz
F2P -0.527 ppm
F2 -158.02 Hz
PPCHN 0.40590 ppm/cm
HCHN 122.13970 Hz/cm
Current Data Parameters
NAME: Jaf-595proton
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 2004/02/04
Time: 16:12
INSTRUM: av300
PROBHDI: 5 mm GNP 1H/1
PULPROG: rz30
TD: 30720
SOLVENT: CDCl3
NS: 16
DS: 0
SNH: 5081.30 Hz
FIDRES: 0.105407 Hz
A0: 3.0289800 sec
RG: 724.1
DM: 98.400 usec
DE: 6.00 usec
TE: 300.0 K
DT: 1.0000000 sec

********** CHANNEL F1 **********
NUC1: 1H
F1: 10.50 usec
PL1: -3.00 dB
SF01: 300.1319477 MHz

F2 - Processing parameters
SL: 0.5536
SF: 300.1300000 Hz
MOM: 0.0
SSB: 0
LB: 0.10 Hz
GB: 0
PC: 1.00

1D NMR plot parameters
CX: 20.00 cm
C1: 10.00 cm
F1P: 7.500 ppm
F1: 2250.98 Hz
F2P: 0.000 ppm
F2: 0.00 Hz
PPMCM: 0.37530 ppm/cm
H2CM: 112.54875 Hz/cm
Current Data Parameters
NAME jef-609
EXPNO 1
PROCND 1

F2 - Acquisition Parameters
Date 20040219
Time 12:30
INSTRUM n-300
PROBHD 5 mm QNP 1H/1
PULPROD zg30
TD 30720
SOLVENT CDC13
NS 16
DS 0
SWH 5081.301 Hz
FIDRES 0.195407 Hz
AG 3.0288060 sec
NS 724.1
DN 98.400 usec
DE 6.00 usec
TE 300.0 K
DI 1.00000000 sec

************ CHANNEL f1 ************
NUC1 1H
P1 10.50 usec
PL1 -3.00 dB
SF01 300.1319477 MHz

F2 - Processing parameters
SI 0.9536
SF 300.1300000 MHz
QWH 0.0
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 10.00 cm
F1P 7.763 ppm
F1 2336.62 Hz
F2P -0.127 ppm
F2 -38.21 Hz
PPNMCH 0.39553 ppm/cm
HZNCH 118.71162 Hz/cm