Université d'Ottawa • University of Ottawa

Patrick BEAULIEU
AUTEUR DE LA THÈSE - AUTHOR OF THESIS

M. Sc. (Chemistry)
GRADE - DEGREE

Department of Chemistry
FACULTÉ, ÉCOLE, DÉPARTEMENT - FACULTY, SCHOOL, DEPARTMENT

TITRE DE LA THÈSE - TITLE OF THE THESIS
Approach to the Synthesis of Spiroiridal-type Triperpenoids via and Ireland-Claisen Rearrangement

W. Ogilvie
DIRECTEUR DE LA THÈSE - THESIS SUPERVISOR

CO-DIRECTEUR DE LA THÈSE - THESIS CO-SUPERVISOR
EXAMINATEURS DE LA THÈSE - THESIS EXAMINERS

L. Barriault

K. Fagnou

J.-M. De Koninck, Ph.D.
LE DOYEN DE LA FACULTÉ DES ÉTUDES SUPERIEURES ET POSTDOCTORALES
DEAN OF THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
APPROACH TO THE SYNTHESIS OF SPIROIRIDAL-TYPE TRITERPENOIDS
VIA AN IRELAND-CLAISEN REARRANGEMENT

By

PATRICK BEAULIEU

B.Sc. Université de Sherbrooke, 2000

A thesis submitted to the School of Graduate Studies and Research
In partial fulfillment of the requirements for the degree of
Master of Science

Ottawa-Carleton Chemistry Institute
Department of Chemistry
University of Ottawa
Ottawa, Ontario
Canada

Candidate

Patrick Beaulieu

Supervisor

Dr. William W. Ogilvie

University of Ottawa

April 2004

© Patrick Beaulieu
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.
ABSTRACT

The formation of carbon-carbon bonds in an asymmetric manner is a central goal of modern synthetic chemistry. Many methods have been developed to form a variety of linkages and substitutions, however the asymmetric formation of quaternary carbons of spirocycles is still a formidable challenge. These compounds represent special challenges because of the requirement of double ring formation together with the control of facial selectivity during the formation of a quaternary carbon centre. The present work demonstrates our efforts towards establishing a strategy based on the Ireland-Claisen rearrangement as the key step for the synthesis of the quaternary spiro-fused ring system such as those found in iridal triterpenoids. 28-Deacetylbelamcandal, a spiroiridal-type triterpenoid, is a representative compound found in iridaceous plants and shows important biological activities in tumor promotion. The synthesis of this compound has been planned from the methodology currently in progress in our group.
TABLE OF CONTENTS

Table of contents ... 2
List of schemes ... 4
List of figures .. 6
List of tables .. 7
List of abbreviations ... 8
Abstract ... 11
Acknowledgements ... 12
Chapter 1 ... 14
 1.1 Introduction ... 14
 1.2 Biosynthesis of iridals ... 16
 1.3 Novel methodologies for the synthesis of spirocyclic compounds 18
 1.3.1 Intramolecular radical cyclization of (alkoxycarbonylamino)methyl 18
 1.3.2 Tandem [1,5]-hydrogen atom abstraction/cyclization strategy 19
 1.3.3 Sequential ring-opening of (halomethyl)cyclopropanes/ring-closing metathesis 20
 1.3.4 Ring expansion of cyclopropanes .. 21
 1.3.5 [3 + 2] sigmatropic cycloaddition .. 23
 1.3.6 Claisen/ring-closing metathesis ... 24
 1.3.7 Iodo-carbocyclization of α-iodo cycloalkanones ... 25
 1.3.8 Meyers’ bicyclic lactams ... 26
 1.4 Aim of this project ... 28
Chapter 2 ... 29
 2.1 Introduction ... 29
 2.2 Ireland-Claisen rearrangement .. 30
 2.2.1 The transition state .. 30
 2.2.2 Solvent effects in the stereoselective formation of silyl ketene acetals 34
 2.2.3 Variant of the Ireland-Claisen rearrangement .. 35
 2.2.4 Ireland-Claisen rearrangement mediated ring contraction of macrocyclic lactones .. 37
 2.3 Synthesis of the macrolactone precursor ... 40
 2.4 Macrolactonization ... 42
 2.5 Conclusion and general remarks .. 45
Chapter 3 ... 47
 3.1 Introduction ... 47
 3.2 Ring-closing metathesis .. 48
 3.2.1 Mechanism .. 48
 3.2.2 Alkylidene structure and reactivity .. 50
 3.3 Results and discussion ... 51
 3.3.1 Preparation of esters of type 103 ... 51
LIST OF SCHEMES

Scheme 1. Proposed biosynthesis of iridals and 10-desoxyiridal by Marner 16
Scheme 2. Synthesis of 10-desoxyiridal used as synthetic standard 17
Scheme 3. Stereoselective (alkoxy carbonylamino)methyl radical cyclization 18
Scheme 4. Synthesis of pyrrolidin-2-ones by Storey 20
Scheme 5. Ring opening of (bromomethyl)cyclopropanes 21
Scheme 6. Ring expansion of cyclopropanes by aldimes 22
Scheme 7. Mechanistic pathway for MgI$_2$ catalyzed ring expansion of cyclopropanes .. 22
Scheme 9. First total synthesis of (−)-Hinesol by Lu in 2003 24
Scheme 10. Claisen/ring-closing metathesis based approach to the synthesis of spirocyclic cyclopentanes and cyclohexanes ... 25
Scheme 11. Syntheses of spirocyclic ketones via an ionic iodo-carbocyclization of α-iodo cycloalkanones .. 26
Scheme 12. Asymmetric synthesis of spirocyclic systems via dialkylation of Meyers’ auxiliary followed by ring-closing metathesis 27
Scheme 13. Ireland-Claisen of 10-membered ring macrolactone 28
Scheme 14. Retrosynthetic analysis of Iridotectoral B ... 29
Scheme 15. Ireland-Claisen rearrangement in the enantioselective total synthesis of Aspidophytine by Corey ... 32
Scheme 16. Zimmerman-Traxler transition states of esters deprotonation 35
Scheme 17. Claisen rearrangement of malonate-derived allylic trimethylsilyl ketene acetics ... 36
Scheme 18. Claisen Rearrangement of enol phosphates 37
Scheme 19. Alicyclic Ireland-Claisen rearrangement of medium-sized ring macrolactones .. 38
Scheme 20. Stereoselective construction of the Ingenane ring system via an Ireland-Claisen ring contraction ... 39
Scheme 21. Synthesis of macrolactone precursor 92 ... 40
Scheme 22. Luche reduction of 89 in various alcoholic solvents 41
Scheme 23. Luche reduction of enones under acidic condition 42
Scheme 24. Alkene precursor for the macrolactonization methodology 46
Scheme 25. Ring contraction of 12-membered ring macrolactone 46
Scheme 26. Retrosynthesis analysis based on a sequential Ireland-Claisen/ring-closing metathesis strategy ... 47
Scheme 27. Influence of steric hindrance on catalyst insertion onto double bonds 50
Scheme 28. Regioselective RCM in the synthesis of Coleophomone B 51
Scheme 29. Ester precursors for RCM and Ireland-Claisen rearrangements 52
Scheme 30. Ring-closing metathesis of silyl ketene acetics 57
Scheme 31. Sequential Ireland-Claisen/ring-closing metathesis 58
Scheme 32. Decomposition pathway of 103a with Lewis acid .. 60
Scheme 33. Possible reaction pathways of 120d during RCM .. 65
Scheme 34. Regioselective ring-closing metathesis ... 66
Scheme 35. Regioselective bromolactonization ... 69
Scheme 36. Towards spirovetivanes syntheses ... 70
Scheme 37. Novel ring-closing metathesis of silyl ketene acetal phosphates 71
Scheme 38. Retrosynthetic analysis of 28-deacetylbelamcandal based upon an Ireland-
Claisen and ring-closing metathesis strategy ... 72
Scheme 39. Stereoselective alkylation of bicyclic lactones ... 74
Scheme 40. Kinetically controlled protonation .. 75
Scheme 41. Consequence of added steric hindrance on the Ireland-Claisen
rearrangement ... 77
Scheme 42. Synthesis of tricyclic lactones via ring-closing metathesis 78
LIST OF FIGURES

Figure 1. Protein Kinase C .. 14
Figure 2. Iridal-type triterpenoids .. 15
Figure 3. Chair and boat transition state in the Ireland-Claisen rearrangement 31
Figure 4. Idealized transition states according to the substitution patterns 33
Figure 5. Proposed transition states of Ireland-Claisen rearrangement of cyclohexenyl esters by Houk following computational results ... 33
Figure 6. Metathesis reactions .. 49
Figure 7. Possible six-membered ring complex of Grubbs catalyst with esters 54
Figure 8. Ring-closing metathesis based upon silyl ketene acetal strategy 54
Figure 9. 13C NMR of silyl ketene acetals ... 56
Figure 10. Diastereoselectivity observed in the Ireland-Claisen rearrangement of cyclohexenyl esters derivatives .. 67
Figure 11. Key NOE interaction observed in the spirocycle product derived from 135 68
LIST OF TABLES

Table 1. Macrolactonization with aldrithiolTM-2 ... 43
Table 2. Yamaguchi macrolactonization .. 44
Table 3. 10-Membered macrolactone by olefin metathesis ... 53
Table 4. Stereoselective generation of ester enolates ... 55
Table 5. Effect of base on the Ireland-Claisen rearrangement of \textbf{103a} .. 59
Table 6. Effect of solvent and silyl reagent on the Ireland-Claisen rearrangement of \textbf{103a} .. 61
Table 7. Effect of Lewis acids on the Ireland-Claisen rearrangement of \textbf{103a} 62
Table 8. Influence of substrate structures on the Ireland-Claisen rearrangement 63
Table 9. Ring-closing metathesis of \textbf{120} .. 64
Table 10. Claisen of \(\beta\)-hydroxy esters .. 76
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>AIBN</td>
<td>2,2’-azobisisobutyronitrile</td>
</tr>
<tr>
<td>HOAc</td>
<td>acetic acid</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>CI</td>
<td>chemical ionization</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>DBU</td>
<td>1.8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DMAP</td>
<td>(N,N)-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>(N,N)-dimethylformamide</td>
</tr>
<tr>
<td>Dibal-H</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>DIPA</td>
<td>diisopropylamine</td>
</tr>
<tr>
<td>DIPEA</td>
<td>(N,N)-diisopropylethylamine</td>
</tr>
<tr>
<td>dr</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact</td>
</tr>
<tr>
<td>eq</td>
<td>equivalent</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethyl alcohol</td>
</tr>
</tbody>
</table>
Et$_2$O diethylether
HMPA hexamethylphosphoramid
HRMS high resolution mass spectrum
Hz hertz
IPA isopropyl alcohol
IR infrared spectrometry
KHMD potassium hexamethyldisilazide
LAH lithium aluminum hydride
LDA lithium diisopropylamide
LiHMDS lithium hexamethyldisilazide
m multiplet
Me methyl
MeOH methanol
MHz megahertz
mmol millimoles
MS mass spectrometry
NaHMDS sodium hexamethyldisilazide
NBS N-bromosuccinimide
n-BuLi n-butyllithium
NMR nuclear magnetic resonance
NOE nuclear overhauser effect
Ph phenyl
PPh$_3$ triphenylphosphine
ppm parts per million
PTSA \(p \)-toluenesulfonic acid
Py pyridine
q quartet
RCM ring-closing metathesis
rt room temperature
s singlet
SM starting material
t triplet
TBAF tetrabutylammonium fluoride
TBS \(t \)-butyldimethylsilyl
TBSCI \(t \)-butyldimethylsilyl chloride
TBSOTf \(t \)-butyldimethylsilyl trifluorosulfonate
\(t \)-BuLi \(t \)-butyllithium
TMS trimethylsilyl
TMSCI trimethylsilyl chloride
TMSOTf trimethylsilyl trifluorosulfonate
TEA triethylamine
THF tetrahydrofuran
TIPS triisopropylsilyl
TIPSOTf triisopropylsilyl trifluorosulfonate
TLC thin layer chromatography
ABSTRACT

The formation of carbon-carbon bonds in an asymmetric manner is a central goal of modern synthetic chemistry. Many methods have been developed to form a variety of linkages and substitutions, however the asymmetric formation of quaternary carbons is still a formidable challenge. Spirocycles represent a special case of quaternary carbon with added synthetic difficulties found in many natural products. These compounds represent special challenges because of the requirement of double ring formation together with the control of facial selectivity during the formation of a quaternary carbon centre.

The present work demonstrates our efforts towards establishing a strategy based on the Ireland-Claisen rearrangement as the key step for the synthesis of the quaternary spiro-fused ring system such as those found in iridal triterpenoids.

28-Deacetylbelamcandal, a spiroiridal-type triterpenoid, is a representative compound found in iridaceous plants and shows important biological activities in tumor promotion. The synthesis of this compound has been planned from the methodology currently in progress in our group.
REMERCIEMENTS

D’abord je voudrais sincèrement remercier Dr William W. Ogilvie pour m’avoir accepté dans son groupe de recherche. Ses précieux conseils et son dévouement pour la chimie ont rendu possible ce projet de recherche et m’ont permis d’acquérir des compétences essentielles dans mon cheminement personnel et de chercheur scientifique en chimie organique.

Je tiens également à remercier mes collègues de travail et amis pour leur soutien prodigué tout au long de mes deux années à l’Université d’Ottawa. Un remerciement spécial pour Joseph Jebreen pour m’avoir fait découvrir le département de chimie dans les débuts de ma maîtrise et sans qui ce travail aurait été plus ardu. Je veux également remercier Josée Cloutier pour ses encouragements et de son souci continuel de mes états d’âmes ainsi que de mon nouveau surnom que je n’aurais jamais pensé et qui sent « bon ». À Mathieu « M-Material » Lemay pour son aide, nos discussions intéressantes sur la chimie et le golf ainsi que sur notre chanteur préféré D-Natural! Il ne faudra pas aussi oublier notre concours un dollar la verge à un moment donné au « driving range ». Un gros merci à Ami Jun-Yee Chin, Alison Lemay et Livia Aumand pour leurs aides et leurs précieux conseils sur la langue de Shakespeare. Je désire remercier tous les anciens et présents étudiants sous-gradués qui ont travaillé dans notre laboratoire pour la motivation qu’ils ont apportée : Marc, Valérie, Myra, Heather et Joseph numéro deux. Je vous souhaite la meilleure des chances dans votre vie personnelle et professionnelle.

Par ailleurs, je remercie Louis « LUMO » Morency pour tous les trucs de chimie que l’on a partagés ensemble; Julie Farand, Roxanne Clément et Danny Gauvreau ainsi que tout le groupe du Professeur Barriault et tout ceux qui m’ont aidé dans les moments opportuns dans le département de chimie.

Finalement, je ne peux oublier de remercier les membres de ma famille qui m’ont encouragé inconditionnellement au cours de ces dernières années passées à l’université. Malgré la distance qui nous a séparés, j’ai toujours ressenti que vous étiez près de moi.
« À mes parents, Andrée et Claude ainsi que mes sœurs Christine et Nancy »
CHAPTER 1

1.1 Introduction

The enzyme protein kinase C (PKC) is a calcium and phospholipids-dependent protein. Its activation by the lipophilic second messenger sn-1,2-diacylglycerol (DAG) allows PKC to phosphorylate serine and threonine containing proteins which are responsible for growth control and cellular differentiation (figure 1).
The well known 12-\textit{O}-tetradecanoylphorbol-13-acetate (TPA, 2) is a ligand acting through the diacylglycerol signalling pathway and it is a potent tumor promoter. Upon treatment with a small dose of a carcinogen, TPA induces cancer cell proliferation by increasing the protein kinase C response. In the last decade, iridal-type triterpenoids (figure 2), isolated from iridaceous plants and rhizomes of \textit{Belamcanda chinensis}, have gained wide interest in medicinal chemistry.3-6 More than forty isomers have been isolated so far and it is known that this class of compound exhibits important biological properties such as antiulcer and antimalarial activities. Even more interesting, it has been found recently that selected iridals have the property of binding to and activating protein kinase C in a similar fashion as do phorbol esters like 12-\textit{O}-tetradecanoylphorbol-13-acetate.7-9 This makes iridal compounds potent tumor promoters in second stage carcinogenesis. Although the chemical structures of these compounds are significantly different from TPA, iridals such as 28-deacetylbelamcandal (4) and NSC 631939 (5) represent new leads in medicinal chemistry and cancer investigations.

Iridotectoral B (3): R\textsubscript{1} = CHO, R\textsubscript{2} = Me
28-Deacetylbelamcandal (4): R\textsubscript{1} = Me, R\textsubscript{2} = CHO

\textbf{Figure 2.} Iridal-type triterpenoids
1.2 Biosynthesis of Iridals

The biosynthesis of iridal triterpenoids has been intensively investigated by Marner and co-workers.10 They proposed that 10-desoxyiridal (6) plays a central role in iridal biosynthesis after observing this key metabolite in cell cultures of \textit{Iris pseudacorus} Linn (scheme 1).

\begin{center}
\textbf{Scheme 1.} Proposed biosynthesis of iridals and 10-desoxyiridal by Marner
\end{center}
These researchers showed that 6 could be prepared from the natural product 7 which in turn could be isolated from extracts of *I. sibirica*. The synthesis of 6 began with the reduction of the methyldene aldehyde group with sodium borohydride followed by selective protection of the two primary hydroxyl groups as benzoate esters (scheme 2). The secondary alcohol 8 was dehydrogenated in a two step sequence by converting the alcohol into a bromide and then reducing it with lithium aluminum hydride. In the same step, the two benzoate esters were removed to recover both primary alcohols. Finally, the remaining allylic hydroxyl moiety on 9 was selectively oxidized with manganese (IV) oxide to give 6. With a reasonable amount of synthetic standard of 10-desoxyiridal, the Marner group was able to study the biosynthetic pathways of the iridals in cell culture extracts.

![Scheme 2. Synthesis of 10-desoxyiridal used as synthetic standard](image-url)
1.3 Novel methodologies for the synthesis of spirocyclic compounds

Spirocycle compounds with a quaternary center11 at the spiro-fused ring are encountered in a wide variety of natural products such as spiroiridal-type triterpenoids. Syntheses of quaternary spiro-fused ring compounds have been well reviewed.12 Newer approaches and novel methodologies were discovered recently in that field of study and are discussed in this section.

1.3.1 Intramolecular radical cyclization of (alkoxycarbonylamino)methyl

The alkaloid (-)-Sibirine was synthesized13 by Koreeda \textit{et al.} in 11\% overall yield (scheme 3), by using an highly regio- and stereoselective (alkoxycarbonylamino)methyl radical cyclization. The generation of a radical α to a nitrogen atom could readily be

\begin{figure}
\centering
\includegraphics[width=\textwidth]{sibirine_cyclization.png}
\caption{Scheme 3. Stereoselective (alkoxycarbonylamino)methyl radical cyclization}
\end{figure}
achieved due to the stabilizing interaction between the incipient radical and the nitrogen lone pair. Such stabilization could be further enhanced by an electron-withdrawing group attached to the nitrogen atom. Therefore, treatment of phenyl selenide 11 with tri(n-butyl)tin hydride in the presence of a catalytic amount of AIBN generated a radical which gave a mixture of products 12 and 13 when \(R = H \). The formation of both products was explained by a competitive 6-exo and 7-endo cyclization modes which result in poor regioselectivity. By analysing the two possible reacting pathways, the 7-endo radical cyclization process could be suppressed by a careful choice of the \(R \) substituent. The easy removable sulfone group was chosen to control the regioselectivity of the reaction to give exclusively 10. The sterically demanding sulfone disfavoured the approach of the alkyl side chain at the 7 position and stabilized the resulting radical formed after the spirocyclization. The stereoselectivity of the reaction was simply controlled by steric interactions imposed by the \(t \)-butyldimethylsilyloxy group which dictated the facial approach of the radical onto the alkene.

1.3.2 Tandem [1,5]-hydrogen atom abstraction/cyclization strategy

With the aim of synthesizing spirocyclic pyrrolidin-2-ones (14), Storey 14 reported a novel tandem intramolecular hydrogen atom transfer reaction/cyclization methodology that produces spirocyclic compounds in high yield (scheme 4). Treatment of 15 under standard radical conditions generated an highly reactive aryl radical which underwent 1,5-hydrogen atom transfer to produce the tertiary radical 16. The latter radical then took part in a 5-exo trig cyclization which gave spirocyclic products 17. Removal of the \(p \)-methoxyphenyl protecting/radical translocating group with ceric ammonium nitrate gave the pyrrolidin-2-one system. The above strategy was successfully used to prepare spirocycles of 4- to 7-membered size rings.
Scheme 4. Synthesis of pyrrolidin-2-ones by Storey

1.3.3 Sequential ring-opening of (halomethyl)cyclopropanes/ring-closing metathesis

Stereocontrolled synthesis of gem-diallyl compounds could be done on xanthate derivatives from (bromomethyl)cyclopropanes to produce spirocycles with a quaternary chiral center (scheme 5).15 Reaction of spirocyclopropylmethyl bromide 18 with methallyltributyltin and AIBN gave rise to 3-deoxy-3-C-allyl-3-C-methallyl derivative 19 stereoselectively which was treated with first generation Grubbs’ catalyst to provide in good yield spirocyclopentenyl product 20. The versatile methodology was also applied with success in the synthesis of 21, an interesting scaffold for the development of potent angiotensin converting enzyme.
Scheme 5. Ring opening of (bromomethyl)cycloproanes

1.3.4 Ring expansion of cyclopropanes

Carreira et al. had recently developed a novel methodology for the synthesis of spiro[pyrrolidin-3,3'-oxindoles] via a catalyzed ring expansion reaction of cyclopropanes by aldimines. The process involves the reaction of an oxindole such as 22 with an aldimine of type 23 to furnish spirocyclic pyrrolidine-3,3'-oxindoles in excellent diastereoselectivity (scheme 6). The reaction was successful for both classes of electron-rich and electron-deficient aldimines and usually proceed at temperature below 80 °C.
Scheme 6. Ring expansion of cyclopropanes by aldimes

The proposed mechanistic pathway leading to the formation of the pyrrolidine ring is illustrated in scheme 7. It is believed that MgI$_2$ had a dual nucleophilic and electrophilic activity due to the critical role of the halide in the success of the reaction. Thus, treatment of 24 with a catalytic amount of MgI$_2$ might afford in situ the iodo enolate 25. The resulting enolate could react with an imine to give the intermediate 26 which can in turn undergo alkylation intramolecular cyclization to provide product 27 that could be used for the total synthesis of (±)-Strychnofoline in 9 steps.

Scheme 7. Mechanistic pathway for MgI$_2$ catalyzed ring expansion of cyclopropanes
The relative stereochemistry of 27 has been suggested to result from thermodynamic consideration where the lactam carbonyl group is placed in a way to avoid unfavourable stereoelectronic interactions between the tertiary nitrogen and carbonyl lone pairs.

1.3.5 [3 + 2] sigmatropic cycloaddition

An highly regioselective [3 + 2] cycloaddition was developed by Lu and Du for the synthesis of spiro[4.4]alkanes. In this strategy, a phosphine ligand was reacted with an electron-deficient allene or alkyne such as 29 to produce a 1,3-dipole which then adds to an alkene such as 28 to give cyclopentane carbocycles 30 and 31 (scheme 8). Regioselectivity was improved when the dipolarophile bore a large tert-butyl group to give 30 and could be further improved by replacing the allene 29b with the alkyne 29c.

![Scheme 8. Synthesis of spirocycles via phosphine-catalyzed [3 + 2] cycloaddition](image)

The first total synthesis of (-)-Hinesol was recently accomplished with the aforementioned approach (scheme 9). Alkyne 29c in the presence of tributylphosphine afforded a 1,3-dipole which was reacted with compound 32 via the less sterically hindered transition state 33 to give 34 in good yield and high diastereomeric ratio. Then, product 34 could be converted into (-)-Hinesol in five steps.
Scheme 9. First total synthesis of (-)-Hinesol by Lu in 2003

1.3.6 Claisen/ring-closing metathesis

An efficient approach to the synthesis of cyclopentanes and cyclohexanes was reported by Srikrishna based upon a Claisen/ring-closing metathesis (scheme 10). The methodology allows constructing rapidly spirocycle products from various cyclic ketones as starting materials.19 Allyl alcohol 36 were prepared from ketone 35 in a two step sequence via a Horner-Wadsworth-Emmons reaction followed by reduction of the resulting ester. Product 36 was then rearranged by a one pot Claisen protocol with ethyl vinyl ether to furnish in moderate yield 37. The resulting aldehyde was alkylated with the desired nucleophile to give substrates such as 38 which were then submitted to ring-closing
metathesis to afford in high yield spirocarbocycles 39. The approach was used successfully in the racemic formal synthesis of sesquiterpenes like isoacorone and acorane.

Scheme 10. Claisen/ring-closing metathesis based approach to the synthesis of spirocyclic cyclopentanes and cyclohexanes

1.3.7 Iodo-carbocyclization of α-iodo cycloalkanones

A new procedure was developed by Sha et al.20 to produce in good yield spirocyclic ketones via an ionic iodo-carbocyclization of α-iodo cycloalkanones (scheme 11). The key step of the reaction involves the generation of an enolate from the α-iodo ketone 40 with a Lewis acid and simultaneous activation of the terminal acetylenic moiety with ICl to give spirocycle 41. In all cases tried, the stereochemistry of the vinyliodide moiety was assigned as Z. Performing the same reaction without the use of ICl resulted in a decrease in the yield of the reaction. The mechanism of the reaction is not yet fully understood but might involve transfer of I⁺ to the acetylenic group with subsequent cyclization of the resulting enolate. The method is general and allows the preparation of spirocycles of various sizes in good to excellent yield without the use of toxic tin reagents.
Scheme 11. Syntheses of spirocyclic ketones via an ionic iodo-carbocyclization of α-iodo cycloalkanones

1.3.8 Meyers’ bicyclic lactams

Meyers’ bicyclic lactams\(^\text{21}\) such as 42 have proved to be efficient tools for the construction of quaternary chiral centers (scheme 12). This strategy is based on the highly predictable chemistry that could be achieved on cyclic frameworks. Alkylation on this type of structure takes place from the concave face away from the isopropyl and methyl groups. A methodology developed by Meyers and co-workers uses 42 as a chiral template in combination with ring-closing metathesis to synthesize, in an asymmetric fashion, spirocyclic compounds.\(^\text{22}\) At this moment, this approach might be the most efficient and straightforward protocol to produce spirocyclic compounds with fused rings directly attached to four carbons.
Scheme 12. Asymmetric synthesis of spirocyclic systems via dialklylation of Meyers’ auxiliary followed by ring-closing metathesis

Bicyclic lactam 42 was doubly alkylated with the appropriate electrophiles to give 43 in 95 % diastereoselectivity and good yields. The reaction of 43 with the first generation Grubbs’ catalyst in refluxing toluene afforded in 95 % yield product 44 that was stereoselectively reduced with Crabtree’s iridium catalyst to 45. The stereochemical outcome of the reduction was explained by a coordinating effect between the carbonyl oxygen electron lone pair and the catalyst to deliver the hydrogen to one face of the alkene. Finally, the lactam carbonyl of 45 was reduced to form a carbonolamine. Subsequent hydrolyzation with Bu₄NH₂PO₄ and submission of the resulting keto-aldehyde to an aldol cyclization with potassium hydroxide gave spirocarboycle 46. This strategy was also successfully applied to the asymmetric construction of spirocycles of different ring sizes.
1.6 Aim of this project

In the first part of the present work we surveyed the feasibility of using an Ireland-Claisen rearrangement mediated ring contraction of macrocyclic lactones such as 47 to give access to spirocyclic compounds 48 which can in turn be used for the synthesis of spiroiridoidal-type triterpenoids (scheme 13). Careful analysis of the four possible transition states suggests that 48a might be the major diastereomer formed after the [3 + 3] sigmatropic rearrangement independently of the geometry of the resulting enolate. In the case of the generation of an E-enolate, we believe that transition state 47d is disfavoured over 47c due to severe transannular interactions between the 10-membered ring and the cyclohexenyl framework and also for conformational strain. The same conclusion was made with Z-enolates where transition state 47a is favoured because 47b suffers from transannular interactions between the silyl-oxy group of the ketene acetal and the six-membered ring. Therefore, to gain insight into this project, an efficient route to the synthesis of this unprecedented macrolactone was required.

Scheme 13. Ireland-Claisen of 10-membered ring macrolactone

The second subject of this thesis shows the research progress in the development of a new strategy for the construction of spirocarbocycles with four carbons at the spiro-fused ring system using an Ireland-Claisen/ring-closing metathesis approach. The scope and the limitations of this methodology are also discussed for the synthesis of iridals.
CHAPTER 2

2.1 Introduction

The syntheses of spiroiridal-type triterpenoids represent a challenging endeavour for synthetic organic chemists. The most striking feature of this class of compounds is the presence of an asymmetric quaternary center surrounded by three stereogenic centers like those found in Iridotectoral B (3). The installation of such crowded chiral centers requires novel methods and good strategies. To the best of our knowledge, syntheses of iridals are unprecedented. Due to the recent interest in this class of products in medicinal chemistry, a systematic study towards their synthesis was undertaken. A retrosynthetic analysis of 3 is presented in scheme 14.

Scheme 14. Retrosynthetic analysis of Iridotectoral B
Disconnection of the unsaturated alkyl side chain in 3 and functional group interconversions gives aldehyde 49. Introduction of the tertiary alcohol at C-27 could be achieved via a Wittig/epoxidation strategy or by nucleophilic addition of methylthiium to the corresponding ketone. Homologation of the side chain at C-6 might be done using a stabilized Wittig type reaction on aldehyde 51 to produce 50 after reduction. Product 51 was expected to be the major compound resulting from hydrogenation of lactone 52 or its parent structure, with a protected hydroxyl group at C-26, from the less hindered face of the alkene. Bromolactonization of 53 followed by DBU mediated elimination of the resulting bromide should give the lactone 52. Ozonolysis of 54 and intramolecular aldol condensation of the resulting dialdehydes under basic condition should afford the α,β-unsaturated aldehyde 53. Our key intermediate 54 might come from an Ireland-Claisen mediated ring contraction of macrolactone 55.

2.2 Ireland-Claisen rearrangement

2.2.1 The transition state

The silyl ketene acetal variant of the Claisen rearrangement is a [3 + 3] suprafacial sigmatropic shift well described by frontier molecular theory. It was first introduced in 1972 by Ireland and co-workers23 and has found wide application in synthetic organic chemistry due to the lower reaction temperature required for the pericyclic process.24 This feature has allowed chemists to perform, in some cases, the modified Claisen rearrangement on thermally sensitive substrates. The relative activation energy for the rearrangement of silyl ketene acetals has been estimated to be approximately 9 kcal/mol lower than the parent Claisen rearrangement on allyl vinyl ether.25 The pericyclic reaction has a strong preference to go through a chair-like transition state in which there are no severe steric interactions, as does the Cope rearrangement. One reasonable and accepted explanation for this result is realized from frontier orbital molecular theory in which the boat-like transition state suffers from unfavourable secondary orbital interactions between orbitals on atoms 2 and 5 (figure 3, 56).26 Thus, this conformational preference allows one to easily predict the stereochemistry of the final product from the starting material.
Figure 3. Chair and boat transition state in the Ireland-Claisen rearrangement

Cyclohexenyl esters and derivatives are well known substrates for [3 + 3] sigmatropic rearrangements. They are mainly used to control the stereochemistry of the rearrangement reaction via a ring template. A good example of this application was found in the remarkable enantioselective total synthesis of Aspidophytine (58) done by Corey and co-workers in 1999 (scheme 15). They used a suprafacial Ireland-Claisen rearrangement on a five-membered ring template to install the key quaternary center on 57 which controlled all the subsequent stereochemical outcomes of the synthesis.
Scheme 15. Ireland-Claisen rearrangement in the enantioselective total synthesis of Aspidophytine by Corey.

While the diastereoselectivity of the Ireland-Claisen is well controlled by a chair-like transition state in the acyclic rearrangement of silyl ketene acetics, the diastereoselectivity of the reaction on cyclic substrates is lower and more complicated to predict than the parent Cope or Claisen rearrangements. This arises from the fact that boat and chair-like transition states are now nearly equal in energy. Calculations done by the Houk group, with Gaussian98 using the RB3LYP functional and the 6-31G basis set, have shown that three possible competing transition states could explain results obtained by Ireland and Neier (figures 4 and 5). The syn and the anti terms in figure 4 refer to chair and boat conformations with respect to the cyclohexenyl framework. Their calculations showed that the addition of a R₁ substituent leads to the preference for syn-chair (59a) and anti-chair (59b and 62c) transition states. In the absence of a substituent at R₁, the syn-boat (59c) tends to be the lowest energy conformation for the rearrangement of Z silyl ketene acetics while the anti-boat (59d) is uncommon as the favoured transition state.
Figure 4. Idealized transition states according to the substitution patterns

Figure 5. Proposed transition states of Ireland-Claisen rearrangements of cyclohexenyl esters by Houk according to computational results
Ireland-Claisen rearrangements of compounds such as 60a and 60b are known to proceed with low diastereoselectivity.31, 32 In the case of compound 60a, a relative energy preference of 1.0 kcal/mol was estimated for the syn-boat over the syn-chair conformation. In comparison, the major transition state of compound 60b had a relative energy preference of 1.4 kcal/mol for the anti-chair over the anti-boat conformation. The latter conformation was found to be the more favourable transition state to give the minor diastereomer of 60b. This is in agreement with Ireland’s results where compound 60a was rearranged with a diastereomeric ratio of 2.6 : 1 while compound 60b rearranged with a 5.3 : 1 ratio. It was important to note that the same diastereomer 61 was obtained for both silyl ketene acetics 60a and 60b.

The diastereoselectivity was enhanced when a substituent (R\textsubscript{3}) was cis to the Z silyl ketene acetics. That was illustrated by compounds such as 62a that exhibits a 12.5 : 1 diastereomeric ratio after a [3 + 3] sigmatropic shift. The transition state 62c was preferred over 62b due to destabilizing interactions of the silyloxy group and the methyl substituent at R\textsubscript{1}.

\textbf{2.2.2 Solvent effects in the stereoselective formation of silyl ketene acetics}

Stereoselective deprotonation of esters is an important part of the Ireland-Claisen rearrangement.33, 34 Deprotonation in THF with LDA leads only to the formation of the E-(O) enolate 63 whereas a mixture of THF and a dipolar solvent such as hexamethylphosphoramide (HMPA) or \textit{N,N'}-dimethyl-\textit{N,N'}-propyleneurea (DMPU) produces mostly the Z-(O) enolate 64 (scheme 16). DMPU gives better stereoselectivity in ester deprotonation than HMPA because the solvent ratio of DMPU/THF can be higher than the HMPA/THF system. At high concentration, HMPA has the tendency to freeze in THF when the reaction mixture is chilled to -78 °C or below.

The geometry of the ester enolate can be easily understood from consideration of a six-membered cyclic transition state. With a mixture of LDA in THF only, it is believed that deprotonation occurs through an early transition state in which the R substituent is placed pseudo-equatorial. In this case, the 1,3-diaxial interaction between one isopropyl group of the
amide base overrides the destabilizing A_{1,3} strain between R and OR'. Steric interaction in 65 with the OR' of the Z ester is minimal since an oxygen lone pair is relatively small compared to the isopropyl group in 66. In the case of deprotonation in a solvent system such as DMPU/THF, the greater solvation of the lithium cation makes the lithium oxygen bond much longer and weaker and makes the process proceed probably via a loose transition state. The 1,3-diaxial interaction between R and one of the isopropyl groups of the amide base diminishes and the conformation of the deprotonation is believed to go through a late transition state such as 68. Conformation 67 is disfavoured in DMPU/THF due to the developing A_{1,3} strain between R and the OR' group.

![Diagram showing the reaction of esters deprotonation](image)

Scheme 16. Zimmerman-Traxler transition states of esters deprotonation

2.2.3 Variant of the Ireland-Claisen rearrangement

Lithium ester enolates are usually trapped with a silyl reagent before performing an Ireland-Claisen rearrangement. Ester enolate anions have limited use due to their instability at higher reaction temperatures compared to silyl ketene acetals for [3 + 3] shifts. The most often cited silyl reagent used is tert-butylidimethylchlorosilane (TBSCI). This compound is preferred to trimethylchlorosilane because C-silylation becomes competitive in some cases with TMSCI.23
Ireland-Claisen rearrangements of ester acetates often suffer from low reaction yields under standard conditions. An interesting variation of the present pericyclic reaction is the use of malonate-derived allylic trimethylsilyl ketene acetals. This methodology was developed by Fehr and Galindo for the synthesis of jasmonate derivatives (scheme 17).

Scheme 17. Claisen rearrangement of malonate-derived allylic trimethylsilyl ketene acetals

Compound \(\text{69} \) was deprotonated under mild conditions with sodium hydride and silylated with TMSCl to give an equilibrium mixture of intermediates \(\text{70a} \) and \(\text{70b} \). Product \(\text{71} \) was isolated upon heating \(\text{70a} \) and \(\text{70b} \) and then converted to compound \(\text{72} \) after a desilylation/decarboxylation sequence in 72% overall yield. This methodology has an advantage over the Ireland-Claisen process due to better yields, and no harsh base was required because of the enhanced acidity of malonate protons. Also, the reaction is more practical than the Johnson-Claisen pericyclic reaction because the latter requires excess of orthoesters making industrial applications rather difficult.
The Claisen rearrangement of enol phosphates was also found to be an attractive modification of the usual Ireland-Claisen protocol. In this reaction, tert-butyldimethylsilylchloride was replaced by a phosphoryl chloride reagent to give a dialkoxyphosphinyketene acetal (scheme 18). The sigmatropic [3 + 3] rearrangement of 73 was reported by Funk to be easier than the trialkyl silyl counterpart, sometimes with an increase of diastereoselectivity. The acyl phosphate 74, the product of the rearrangement reaction, is a versatile group that could be converted into a wide variety of carboxylic acid derivatives upon quenching with nucleophiles like MeOH, EtSH or Me(MeO)NH. The latter nucleophile gave rapid access to the versatile Weinreb amide 75.

Scheme 18. Claisen Rearrangement of enol phosphates

2.2.4 Ireland-Claisen rearrangement mediated ring contraction of macrocyclic lactones

Pioneering work was done by the Funk group on alicyclic Ireland-Claisen rearrangements to synthesize complex carbocycles via ring-contraction strategies. During the course of their research, they studied a wide range of different sized macrolactones as substrates for [3 + 3] sigmatropic rearrangements (scheme 19).
Scheme 19. Alicyclic Ireland-Claisen rearrangement of medium-sized ring macro lactones

Macrolactones such as 76 were prepared by conventional methods using the Mukaiyama protocol in 41 to 53 % yield. Those products were submitted to standard Ireland-Claisen procedures to form ketene acetals such as 77. In all cases studied, the [3 + 3] sigmatropic rearrangement of 76 proceeded exclusively through a boat-like conformation to yield cis-disubstituted carbocycles such as 78. The success of those alicyclic rearrangements was due to several factors: (i) the conformation of the medium-sized ring allows control of the geometry of the ester enolate; (ii) high asymmetric induction could be achieved through transannular interactions; (iii) the rigidity of the system imposes double bond proximity to facilitate the pericyclic rearrangement. This elegant strategy was applied successfully to the racemic synthesis of N-Benzoylmeroquinene methyl ester (81), an important intermediate in quinine synthesis.42 Medium ring 79 was rearranged via an Ireland-Claisen procedure giving the exclusive formation of cis-3,4-disubstituted heterocycle 80, presumably via a boat-like conformation. The power of the ring contraction of macrocyclic lactones through an Ireland-Claisen rearrangement was demonstrated in the synthesis of an advanced intermediate of the
Ingenol (85) core (scheme 20). In that strategy, developed by Funk, eleven-membered ring macrolactone 82 was submitted to a ring contraction via an Ireland-Claisen reaction to form rapidly the ingenane ring system 84 in 88% yield and 19:1 diastereomeric ratio. One sigmatropic carbon of intermediate 83 is exocyclic to the macrocyclic ring and, therefore, a chair-like transition state was proposed to explain the stereochemical outcome of the reaction.

Scheme 20. Stereoselective construction of the Ingenane ring system via an Ireland-Claisen ring contraction
2.3 Synthesis of the macrolactone precursor

Before undertaking the synthesis of macrolactones such as \textit{55}, an investigation with a simpler model was carried out (scheme 21).

\textbf{Scheme 21. Synthesis of macrolactone precursor 92}

The synthesis of hydroxy acid \textit{92} commenced with the preparation of the Normant Grignard of \textit{86}. Thus, 6-chlorohexan-1-ol was first reacted with isopropylmagnesium chloride to deprotonate the free hydroxyl group and then treated with solid magnesium under refluxing conditions to produce the corresponding Grignard of \textit{86} which was titrated with salicylaldehyde phenylhydrazone before use. The production of the Grignard was shown to be sluggish when it was performed in small quantity but worked better on 25 milimole scale or larger. With compound \textit{88} in hand after alkylation of the known enone \textit{87}, the free hydroxyl group on the side chain was quantitatively oxidized using a catalytic amount of chromium trioxide and periodic acid as co-oxidant to give \textit{89}. The latter oxidation worked very well if the solvent used for this reaction was distilled before use. Reduction of enone \textit{89} with sodium borohydride and cerium chloride was initially investigated to give directly hydroxy acid \textit{92} (scheme 22).
Scheme 22. Luche reduction of 89 in various alcoholic solvents

This type of reaction is known to be highly chemoselective. However, when submitting 89 to the Luche procedure the expected hydroxy acid 92 was never isolated. Instead, alcoholsysis of 89 with methanol or ethanol was observed to give, in high yield, 93 and 94 respectively. The same reaction in isopropanol was slow and only starting material was observed. Alcoholsysis of cyclic allylic alcohols with cerium (IV) is well documented. The reaction usually proceeds in refluxing conditions in alcoholic solvent to give an alkyl ether. Therefore, it was really surprising to observe a one pot reduction/etherification at 4 °C. Replacing the alcoholic solvent for the non-nucleophilic THF was not suitable since Cerium (IV) is not soluble in that solvent. A survey of this reaction using 3-methyl-2-cyclohexen-1-one (95) with an external source of organic acid in methanol or in ethanol to get an insight of
the reaction mechanism was fruitless (scheme 23). Those results suggest that the allylic alcohol \textbf{92} might be a highly unstable substrate due to the ease of the substitution.

![Scheme 23. Luche reduction of enones under acidic condition](image)

To pursue our goal to synthesize macrolactones such as \textbf{55}, product \textbf{89} was therefore esterified with diazomethane before reducing the enone moiety. With \textbf{90} in hand, chemoselective reduction of the enone was achieved under Luche conditions to give in high yield the hydroxy ester \textbf{91} which was saponified under standard conditions to provide \textbf{92}. Compound \textbf{92} was found to be highly unstable and precise pH control was necessary to extract it from the reaction mixture. Thus, the basic lithium hydroxide solution was first neutralized with a 2M phosphonate buffer adjusted to pH= 4 and the mixture was then carefully acidified to pH= 3.5 with a 10 % HCl solution. At pH = 3, the formation of side products was observed and at pH lower than 2 only the product of elimination of the hydroxyl group was formed according to TLC results.

\subsection*{2.4 Macrolactonization}

Different reaction conditions were screened for the macrolactonization of the hydroxyl acid \textbf{92}. The first reagent surveyed was 2,2’-dipyridyl disulfide (AldrithiolTM2).55 The conditions used and results obtained are summarized in table 1.
1) PPh₃, pySSpy, CH₂Cl₂
2) Toluene, temperature, additive

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature</th>
<th>Additive</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110 °C</td>
<td>15 mol% AgClO₄</td>
<td>Side product</td>
</tr>
<tr>
<td>2</td>
<td>110 °C</td>
<td>10 mol% AgClO₄</td>
<td>Side product</td>
</tr>
<tr>
<td>3</td>
<td>70 °C</td>
<td>-</td>
<td>Side product</td>
</tr>
<tr>
<td>4</td>
<td>110 °C</td>
<td>2 eq DMAP</td>
<td>Decomposition</td>
</tr>
</tbody>
</table>

Table 1. Macrolactonization with aldrithiol™-2

Reaction of the 2-pyridinethiol ester of the parent carboxylic acid of 92 failed to give any macrolactonization products. The reaction was followed by TLC and it was observed that 92 was completely converted to the intermediate 2-pyridinethiol ester. The latter product was then heated in toluene in various conditions to give one compound after flash chromatography. Proton NMR demonstrated the addition of two pyridinethiol moieties on 92 and 97 was believed to be the product formed.
1,1'-carbonyldiimidazole56 (CDI) and 2-chloro-1-methylpyridinium iodide57-59 are also known to be efficient reagents for macrolactonization. However, under those conditions substrate 92 was decomposed or no reaction occurred. The last reagent surveyed to accomplish the macrocyclization of 92 was 2,4,6-trichlorobenzoyl chloride.60-62 The conditions and results obtained with the Yamaguchi reagent are summarized in table 2.

![Chemical Reaction Diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature</th>
<th>Eq of DMAP</th>
<th>Rate of addition (final concentration)</th>
<th>Results (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 °C</td>
<td>10</td>
<td>233 μmol/h (2.7 mmol/L)</td>
<td>99 (50 %) + polymers</td>
</tr>
<tr>
<td>2</td>
<td>rt</td>
<td>10</td>
<td>88 μmol/h (2.6 mmol/L)</td>
<td>99 (42 %) + polymers</td>
</tr>
<tr>
<td>3</td>
<td>70 °C</td>
<td>12</td>
<td>88 μmol/h (2.2 mmol/L)</td>
<td>99 (40%) + polymers</td>
</tr>
<tr>
<td>4</td>
<td>110 °C</td>
<td>10</td>
<td>41 μmol/h (0.9 mmol/L)</td>
<td>99 (37 %) + polymers</td>
</tr>
<tr>
<td>5</td>
<td>rt</td>
<td>3</td>
<td>22 μmol/h (3.6 mmol/L)</td>
<td>99 (42 %) + polymers</td>
</tr>
<tr>
<td>6</td>
<td>rt</td>
<td>7</td>
<td>88 μmol/h (3.3 mmol/L)</td>
<td>99 + polymers</td>
</tr>
<tr>
<td>7</td>
<td>rt</td>
<td>7</td>
<td>24 μmol/h (3.1 mmol/L)</td>
<td>99 (58 %) + polymers</td>
</tr>
</tbody>
</table>

Table 2. Yamaguchi macrolactonization
Reaction of hydroxy acid 92 with the Yamaguchi reagent was quantitative as was demonstrated by TLC analysis of the crude reaction mixture to provide 98. Then, the resulting mixed anhydride was added via a syringe pump at different rates and temperatures to a solution of DMAP in toluene. Close monitoring of the reaction indicated that dimer 99 was the sole product formed, contaminated with trace amounts of polymers of different molecular weights, for every condition tested. Even at very high dilution (entry 4), no trace of monomer 96 could be detected. The yield of 99 ranged from 37 % to 58 % and the amount of polymers was reduced when the reaction was performed at lower temperature. The structure of 99 was assigned according with the results of NMR, GC-MS and MS of the pure isolated product.

2.5 Conclusion and general remarks

Syntheses of macrolactones of sizes between 8 and 12-membered rings constitute a challenging task for organic chemists. Usually, to accomplish such macrolactonizations, the substrate must have a specific conformation that forces the carboxylic acid and the hydroxyl group to be close together. For example, the introduction of a cis-alkene on the carboxylic side chain of 92 should favor the macrocyclization by reducing the free entropy of it. This strategy is based on the Thorpe-Ingold effect, however the instability of the free allylic hydroxyl group on substrate 92 makes this methodology rather difficult to develop and optimize. In the aforementioned study, the alcohol group should adopt preferentially the equatorial position on the cyclohexenol framework. This conformation makes the cyclization very difficult. Therefore, a double bond precursor might be a solution to circumvent those difficulties (scheme 24).
Scheme 24. Alkene precursor for the macrolactonization methodology

An alternative approach to reach the 10-membered ring macrolactone comes from the ring contraction of a 12-membered ring macrolactone via ring-closing metathesis or the McMurry reaction (scheme 25). The formation of macrolactone 96 should be easier to achieve due to the absence of the six-membered framework which disfavoured the macrolactonization.

Scheme 25. Ring contraction of 12-membered ring macrolactone
CHAPTER 3

3.1 Introduction

The study presented in the following chapter will describe the research progress on the asymmetric synthesis of spirocyclic compounds via a sequential Ireland-Claisen/ring-closing metathesis approach that produces spirocyclic cyclopentanes and cyclohexanes. The formation of the quaternary center of the spiro-fused ring was envisaged to be set by an Ireland-Claisen rearrangement that controls the configuration of the quaternary center by virtue of suprafacial migration. The configuration of the quaternary carbon would be dictated by the configuration of the starting allylic alcohol such as 104 (scheme 26).

Scheme 26. Retrosynthesis analysis based on a sequential Ireland-Claisen/ring-closing metathesis strategy
When designing this strategy, we first expected to establish the configuration of the carbon α to the carbonyl group in the final product via a ring contraction of macrocyclic lactones of type 102. The enantioselective synthesis of alcohol 104 could be achieved from reduction of the corresponding enone with the Corey-Bakshi-Shibata (CBS) reagent or optically active N-methylephedrine and provides stereochemical information to set the absolute configuration of the spiro center. Acylation of 104 would give esters such as 103. With compounds 103 in hand, various conditions and approaches were tried to get macrolactones 102 via ring-closing metathesis. Unfortunately, compounds 103 have proved to be unreactive and did not afford any macrocyclic compounds with the use of ruthenium Grubbs catalyst (1st and 2nd generation) under various conditions. As an alternative route, compounds 103 were submitted to an Ireland-Claisen rearrangement to form 101 which underwent smoothly ring-closing metathesis to give 100.

3.2 Ring-closing metathesis

3.2.1 Mechanism

The ruthenium-based catalyst, which exhibits an excellent tolerance towards a wide variety of functional groups, is actually the most useful and versatile reagent for metathesis reactions (figure 6). Such transformations include ring-closing metathesis (RCM) and ring-opening metathesis (ROM), ring-opening metathesis polymerization (ROMP) and acyclic diene metathesis polymerization (ADMET) and finally cross-metathesis reactions (CM).
The mechanism of metathesis reactions is believed to involve carbenes and metallacyclobutane complexes via a reversible series of [2 + 2] cycloadditions onto olefins. This widely accepted mechanism is known as the “Chauvin mechanism”. Among all metathesis reactions, ring-closing metathesis has emerged to be a powerful tool in the synthesis of natural products. It is a reversible reaction, usually under thermodynamic control, which can produce in principle an equilibrium mixture of alkenes. Therefore, to accomplish such transformations in a quantitative manner, the substrate must be chosen in a way to drive the reaction to the desired product. This is done when the catalyst reacts onto terminal alkenes to produce ethene or other volatile by-products thus increasing the entropy of the system.
3.2.2 Alkylidene structure and reactivity

Kinetic studies done by Grubbs and co-workers have demonstrated that metathesis reactions are very sensitive towards the steric environment of the reacting center (scheme 27). When the terminal alkylidene moiety was bearing a small methyl (105) or ethyl (106) group, the insertion of the ruthenium catalyst (109) was fast and quantitative at room temperature. However, when this terminal alkene was substituted with an isopropyl (107) group the reaction was slow and not complete and no reaction was observed within 12 h even with an excess of 3,3-dimethyl-1-butene (108).

Scheme 27. Influence of steric hindrance on catalyst insertion onto double bonds

Steric hindrance could be exploited with success to perform regioselective RCM when more than two alkenes could be involved in the reaction process. This is well illustrated in the total synthesis of Coleophomone B (111) by Nicolaou and co-workers (scheme 28). In the RCM reaction of 110, alkenes 2 and 3 were not reacting together to give a 5-membered ring due to steric hindrance. However, the catalyst preferred to insert first onto alkene 1 and then, the resulting carbene reacted with alkene 2 to form an 11-membered ring which is usually more difficult to form than a cyclopentene derivative. Such preferences might be exploited for the synthesis spirocyclic compounds.
3.3. Results and discussion

3.3.1 Preparation of esters of type 103

The esters required for this work were prepared as shown in scheme 29. Allylmagnesium chloride was added to known enol ethers 112 following procedure A when \(R = H \) or Me and procedure B in presence of cerium trichlororide \(^{27}\) when \(R = Br \). \(\alpha,\beta \)-Unsaturated ketones 113 were isolated after mild acidic workup. Selective 1,2-reduction under Luche conditions resulted in the clean formation of the corresponding allylic alcohols 104 in almost quantitative yield. Acylation \(^{72, 73}\) of the hydroxyl group was done under standard conditions with 4-pentenoyl chloride (procedure C) and catalytic amounts of DMAP or under coupling conditions (procedure D) when acid sensitive substrates like 103d, 103e and 103f were used. Those transformations proceeded extremely well and the required esters 103 were obtained in 61 to 86 % overall yield from the ketones 112.
Scheme 29. Ester precursors for RCM and Ireland-Claisen rearrangements

3.3.2 Medium-sized ring macrolactones via ring-closing metathesis

In order to synthesize macrolactones such as 102 or 96, ring-closing metathesis was surveyed as a strategy to get the medium-sized ring. Therefore, 103a and 103f were chosen to study the RCM under various reaction conditions. The results obtained are listed in table 3. As shown in table 3, all attempts were fruitless to get the desired 10-membered ring product 102. Changing solvent conditions and catalyst loading gave always the same results. In all cases tried, the starting material was recovered with traces of by-products seen by NMR. The reactions were conducted with high dilution techniques and no cross metathesis compounds and double bond isomerization were observed in 13C NMR.
Table 3. 10-Membered macrolactone by olefin metathesis

In the system studied, the ruthenium catalyst could be inactivated by complexing the ester moiety to form a stable six-membered ring complex 114 (figure 7). Lewis acids had been reported to break chelates between ruthenium catalysts 109. Therefore, it was thought that titanium(IV) isopropoxide used in catalytic amounts should help the RCM reaction in the present system. Unfortunately, the use of such catalyst also failed to give any products (table 3, entry 4). It was clear that RCM reactions on substrates such as 103 would be very challenging as a result of the inherent ring strain.
3.3.3 Ring-closing metathesis on silyl ketene acetal templates

The formation of 8- to 11-membered rings is particularly difficult. This fact was observed in the unsuccessful macrolactonization of compound 92 where only dimers were isolated and in the ring-closing metathesis of compounds such as 103 that experience too much strain to afford macrolactone 102. Therefore, we planned to use ketene acetals such as 115a and 116 (figure 8) as potential candidates for ring-closing metathesis. These were chosen for these factors: (i) introduction of a double bond should reduce the free entropy of the alkyl side chain; (ii) it eliminates any possible coordination of the carbonyl of the ester moiety and the ruthenium catalyst to shut down the catalytic cycle; (iii) with proper geometry of the enolate, the alkyl side chain should point inwards to favour the RCM process; (iv) the R2 group should be large enough to avoid any reaction of the ruthenium catalyst with the new enolate formed; (v) the R2 group must be easily removable or transformed into other functional groups.

Figure 8. Ring-closing metathesis based upon silyl ketene acetal strategy
Ring-closing metatheses of enol silanes75, enol phosphates and phosphate ketene acetics76 are well preceded. However, to the best of our knowledge, there is no example of silyl and phosphate ketene acetics used as template for the formation of macrolactones.

Before undertaking the present study, it was required to know if ketene acetics such as 115 could be generated in high yield and good diastereoselectivity. Therefore, ester 103a was chosen due to its ease of preparation and submitted to various deprotonation conditions. The resulting enolates were trapped with TIPSOTf to measure the diastereomeric ratio of the enolates formed by 1H NMR (300 MHz). The results obtained are summarized in table 4.

\[\text{103a} \xrightarrow{1) \text{Solvent, base, -78 \degree C, 2) TIPSOTf}} \text{115a} + \text{115b} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Base</th>
<th>Results</th>
<th>115a : 115b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toluene</td>
<td>KHMDS</td>
<td>Quantitative</td>
<td>12 : 1</td>
</tr>
<tr>
<td>2</td>
<td>Toluene</td>
<td>NaHMDS</td>
<td>Not clean</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Ether</td>
<td>KHMDS</td>
<td>Quantitative</td>
<td>23 : 1</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>KHMDS</td>
<td>Not clean</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Ether/23% HMPA</td>
<td>LDA</td>
<td>SM recovered</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>THF/23% HMPA</td>
<td>LDA</td>
<td>Moderate conversion</td>
<td>1 : 4</td>
</tr>
<tr>
<td>7</td>
<td>Toluene/23% HMPA</td>
<td>KHMDS</td>
<td>Not clean</td>
<td>-</td>
</tr>
</tbody>
</table>

\textbf{Table 4. Stereoselective generation of ester enolates}
The choice of base and solvent was critical to achieve complete conversion of ester 103a into the E enolate 115a. Deprotonation with KHMDS in ether was the optimal condition surveyed (entry 3) and the reaction was very clean. THF and HMPA were not suitable solvents due to their propensity to react with TIPSOTf (entry 4 and 7). Therefore, enolates generated in THF/HMPA were trapped with TBSCI (entry 6) to give in moderate yield 115b in a 4 : 1 ratio. Attempts to identify the enolate structure by NOE measurement were fruitless. Therefore, the geometry of the major silyl ketene acetal was assigned by 13C NMR (300 MHz). The chemical shift of the carbon of E enolates such as 115a is known to be downfield to the carbon of Z enolates such as 115b which is more shielded (figure 9).20

Figure 9. 13C NMR of silyl ketene acetals
With good conditions to generate the E ester enolate from substrate 103a, ring-closing metathesis on substrate 115a was investigated. When submitting the latter E silyl ketene acetal to metathesis reactions with second generation Grubbs catalyst, one major product, with contamination, was observed by TLC. However, the NMR of the crude reaction mixture demonstrated that the new product formed was an acid as evidenced by the characteristic chemical shift of the carboxylic acid proton. Thus, it was concluded that the silyl ketene acetal was unstable under metathesis conditions and the substrate was not appropriate for this kind of reaction. Also, due to the ring strain of the macrocycle compound, forcing conditions were required for cyclization. It was found later that substrates such as 103a were sensitive towards Lewis acids such as TiCl₄ and triflates giving elimination of the ester moiety. Therefore, it is reasonable to expect that the derived silyl ketene acetal of 103a should be even more unstable and this could explain the isolation of a carboxylic acid in the reaction mixture. The enolate 116 was also tested as a substrate for ring-closing metathesis. Its reaction with second generation Grubbs catalyst gave one product following TLC analysis. Unfortunately, the exact structure of the final compound was not assigned since it decomposed on silica gel even with the use of triethylamine as buffer. To be sure that the present methodology was not limited by the choice of our substrate, simpler molecules were also synthesized. 117 and 118 were deprotonated with KHMDS in ether and the resulting enolates trapped in high yield with TIPSOTf or ClP(0)(OPh)₂ ⁷⁷ and submitted to RCM reactions (scheme 30). One major product was observed by TLC that was less polar than the starting material and again, traces of carboxylic acid by-products were seen by ¹H NMR. Therefore, to pursue that methodology, different silyl and phosphate reagents with different stereoelectronic properties must be screen to favor the reaction.

![Scheme 30. Ring-closing metathesis of silyl ketene acetals](image-url)
3.3.4 Synthesis of spirocyclic cyclopentanes and cyclohexanes

With the unsuccessful outcome to get any 10-membered ring macrolactones of type 96 or 102, we planned to control the stereochemistry of the carbon α to the ester on the basis of the geometry established during the enolate stage, together with a chair-like transition state on 103 (scheme 31). In considering this latter method, we were aware of the fact that related endocyclic Ireland-Claisen rearrangements were reported with considerable variation in yields and diastereoselectivities.31, 34 We therefore needed to find conditions that would improve the reliability and efficiency of this transformation to make the process practical. Final cyclization to give the spiro system would employ olefin metathesis to give 100. We expected that the endocyclic olefin formed from the rearrangement would not react in the metathesis reaction because of the steric encumbrance of the neighboring quaternary centre. This hypothesis was supported by the results of Grubbs and co-workers which showed that the insertion of the ruthenium catalyst was not observed at room temperature on olefins bearing a t-butyl group (chapter 3, scheme 27).

![Scheme 31](image)

Scheme 31. Sequential Ireland-Claisen/ring-closing metathesis

Considerable difficulties arose with the enolization of 103a. Application of standard conditions33 gave the desired product 119a in modest yield and variable recoveries. Therefore, optimization of the rearrangement was necessary. After considerable experimentation, we found that the counter ion of the amide base was critical and KHMDS was essential to realize synthetically useful yields (table 5, entry 4).78
1.2 eq. base
1.6 eq. TMSCl/Et3N
toluene

-78 °C to reflux

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LDA</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>LiHMDS</td>
<td>12</td>
<td>2.1:1</td>
</tr>
<tr>
<td>3</td>
<td>NaHMDS</td>
<td>44</td>
<td>1.4:1</td>
</tr>
<tr>
<td>4</td>
<td>KHMDS</td>
<td>76</td>
<td>3:2</td>
</tr>
<tr>
<td>5</td>
<td>DIPEA/TIPSOTf</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

*Estimate on 300 MHz \(^1\)H NMR

Table 5. Effect of base on the Ireland-Claisen rearrangement of 103a

The use of LDA, LiHMDS or NaHMDS gave significantly decreased recoveries with a mixture of starting material and by-products (entries 1-3). Attempts to form the silyl ketene acetal using silyl triflates and Hunig’s base resulted in decomposition due to the sensitive nature of 103a to strong Lewis acid (entry 5). In that case, the silyl ester derivative of 4-pentenoic acid was isolated as the sole product in quantitative yield following proton and carbon NMR (scheme 32). Replacing Hunig’s base by stronger KHMDS gave better results even in the presence of triflates (see table 6, p. 61).
Scheme 32. Decomposition pathway of 103a with Lewis acid

Toluene was superior to THF or THF/HMPA as rearrangement solvent. However, selectivities were slightly higher when THF or ether were used as solvents for deprotonation. These were removed in vacuo to complete the rearrangement in refluxing toluene (table 6, entries 1-3). It is also worthy of note that deprotonation occurred rapidly and better conversion was achieved when the silyl reagent was added after a short period of time (usually within 10 minutes). Among the silyl reagents used, TMSCl with TEA gave best yields and reproducibility. Surprisingly, the most often reported TBSCI gave no product at all and often, only starting material was recovered when it was used (table 6, entries 9 and 10). That may be a consequence of the difficulty of trapping the enolate formed. HMPA was therefore required when TBSCI was used to get in moderate yield any silyl ketene acetals (entry 8). THF and HMPA must be avoided when TIPSOTf or any triflates are used (entry 6 and 11). Lithium salts were reported to increase the E/Z ratio in ketone enolization by the formation of mixed aggregates with the amide base thus influencing the transition state of deprotonation. In our case, the addition of lithium salts gave a small increase in yield with the loss of diastereoselectivity during the rearrangement (entry 2). The selectivity after rearrangement was slightly increased when deprotonation was done at elevated temperatures, however the yield was lower due, maybe, to Claisen cross condensation (entry 4 and 5).
<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Trapping reagent</th>
<th>Yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF<sup>a</sup></td>
<td>TMSCl/Et<sub>3</sub>N</td>
<td>47</td>
<td>4.5:1</td>
</tr>
<tr>
<td>2</td>
<td>THF<sup>a,b</sup></td>
<td>TMSCl/Et<sub>3</sub>N</td>
<td>52</td>
<td>2.3:1</td>
</tr>
<tr>
<td>3</td>
<td>Ether<sup>a</sup></td>
<td>TMSCl/Et<sub>3</sub>N</td>
<td>79</td>
<td>2:1</td>
</tr>
<tr>
<td>4</td>
<td>Toluene</td>
<td>TMSCl/Et<sub>3</sub>N</td>
<td>76</td>
<td>3:2</td>
</tr>
<tr>
<td>5</td>
<td>Toluene<sup>c</sup></td>
<td>TMSCl/Et<sub>3</sub>N</td>
<td>49</td>
<td>3.5:1</td>
</tr>
<tr>
<td>6</td>
<td>Toluene/HMPA</td>
<td>TIPSOTf</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>THF/HMPA<sup>d</sup></td>
<td>TMSCl/Et<sub>3</sub>N</td>
<td>44</td>
<td>4:1</td>
</tr>
<tr>
<td>8</td>
<td>THF/HMPA<sup>d</sup></td>
<td>TBSCI</td>
<td>38</td>
<td>4:1</td>
</tr>
<tr>
<td>9</td>
<td>THF<sup>d</sup></td>
<td>TBSCI</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Toluene</td>
<td>TBSCI</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>THF</td>
<td>TIPSOTf</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Toluene<sup>e</sup></td>
<td>TIPSOTf</td>
<td>79</td>
<td>1.9:1</td>
</tr>
<tr>
<td>13</td>
<td>Toluene</td>
<td>CIPO(OCH<sub>2</sub>CCl<sub>3</sub>)<sub>2</sub></td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

^a Solvent for silyl ketene acetal formation. Rearrangement performed in toluene.
^b 0.4 eq of LiCl was added before base. ^c KHMDS was added at 0 °C.
^d LDA was used as base. ^e Yield after deprotection of the TIPS ester with aqueous HF in CH₃CN.

Table 6. Effect of solvent and silyl reagents on the Ireland-Claisen rearrangement of 103a
Rearrangement of dialkoxyporphosphiny ketene acetals36 derived from \textbf{103a} was unsuccessful (entry 13). Finally, we expected that the size of the silyl group could in principle destabilize one transition state in favour of the boat-like transition state on substrate \textbf{103a}. Although the yield of reaction was as good as with TMSCl, we observed only a small increase in diastereoselectivity when the bulky TIPSOTf was used (entry 4 compare to entry 12). The result suggests that the transition state could be biased by an anti-chair conformation like \textbf{59b} (chapter 2, figure 4). The TIPS silyl ketene acetal proved to be stable toward flash chromatography which allowed us to purify the intermediate, in quantitative yield, if warranted. Brief exposure to HF in acetonitrile was necessary in those cases after the pericyclic process in order to obtain the desired carboxylic acids. We also observed that TIPSOTf, even if it is a very bulky protecting group, seemed to speed up the rate of the rearrangement compared to TMSCl. Due to the Lewis acid nature of TIPSOTf, we therefore investigated the addition of various Lewis acids to facilitate the reaction.

\[
\begin{array}{cccc}
\textbf{Entry} & \textbf{Lewis acid} & \textbf{Yield (%)} & \textbf{dr} \\
1 & \text{none} & 75 & 3:2 \\
2 & \text{TiCl}_4 & 47 & 1.9:1 \\
3 & \text{BF}_3\text{Et}_2\text{O} & 64 & 3:1 \\
4 & \text{Ti(Oi-Pr)}_4 & 48 & 4.5:1 \\
5 & \text{ZnCl}_2 & 57 & 1.7:1 \\
6 & \text{AlCl}_3 & 51 & 3.5:1 \\
7 & \text{TIPSOTf} & 79 & 1.9:1 \\
\end{array}
\]

\textbf{Table 7. Effect of Lewis acids on the Ireland-Claisen rearrangement of \textbf{103a}}
Lewis acids had been reported recently to improve Ireland-Claisen processes on acyclic substrates (table 7). The use of other Lewis acids afforded slight improvements in selectivity but gave lower overall yields (table 7, entries 2-6). TiCl₄ was published to be the best Lewis acid as catalyst for Ireland-Claisen rearrangements on acyclic substrates to give very high diastereoselectivity. In our case, it was found that TiCl₄ was too harsh and decomposed the substrate instead of having a full catalytic effect. Among the Lewis acids used, BF₃·OEt₂ and AlCl₃ offered the best compromise between yield and diastereoselectivity.

Having now good conditions for rearrangement with the use of KHMDS and TMSCl in toluene, we were able to rearrange substrates 103 to obtain acids 119 and verify the effect of the R group on yield and diastereoselectivity. As was expected, rearrangements on five and six membered rings when R = H could be achieved in good yields but with low diastereoselectivities (table 8, entries 1 and 4).

![Reaction scheme]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103a R = H, n = 1</td>
<td>76</td>
<td>3:2</td>
</tr>
<tr>
<td>2</td>
<td>103b R = Me, n = 1</td>
<td>51</td>
<td>1.6:1</td>
</tr>
<tr>
<td>3</td>
<td>103c R = Br, n = 1</td>
<td>47</td>
<td>1.9:1</td>
</tr>
<tr>
<td>4</td>
<td>103d R = H, n = 0</td>
<td>74</td>
<td>1.3:1</td>
</tr>
<tr>
<td>5</td>
<td>103e R = Me, n = 0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>103f R = Br, n = 0</td>
<td>41</td>
<td>4.6:1</td>
</tr>
</tbody>
</table>

Table 8. Influence of substrate structures on the Ireland-Claisen rearrangement
Then, it was planned to change the R group into a bromo substituent for the following reason: (i) this group was required for the enantioselective reduction of enones 113 into 104, (ii) it is easy removable and offers also possibilities for further transformation, (iii) it was also expected that it could destabilize the boat-like transition state and therefore improve diastereoselectivity. When R = Br, the diastereoselectivity on the five-membered ring series was 3.5 times higher than when R = H. It had however little effect on 2-cyclohexenol derivatives (entries 3 and 6). The rearrangement of 103d and 103e proved to be challenging. The former must be reacted immediately after its isolation and the latter was notably unstable and quickly decomposed under the mild acidic conditions required for the isolation of the product. Lower yields were observed when R was a methyl or a bromide group. That might be the consequence of adding steric effects during the sigmatropic shift. With substrates 119a-d and 119f in hand we then explored the feasibility of using RCM to synthesize various spirocyclic cores after treating 119 with an excess of diazomethane (table 9).

![Chemical structures](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Catalyst loading (mol %)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120a</td>
<td>7</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>120b</td>
<td>7</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>120c</td>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>120d</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>120f</td>
<td>5</td>
<td>96</td>
</tr>
</tbody>
</table>

RCM was performed at room temperature in DCM or benzene without any notable difference in yield

Table 9. Ring-closing metathesis of 120

64
The metathesis reactions proceed extremely rapidly and cleanly giving the desired products 121 in 82 to 97 % yields. In all cases except 120d the endocyclic olefins of the starting materials were untouched and we observed the formation of the desired spirocycle only. Compound 120d however gave a mixture of two products resulting from opening of the five-membered ring with first or second generation Grubbs catalysts (scheme 33).

Pathway 1:

Pathway 2:

Scheme 33. Possible reaction pathways of 120d during RCM

Compound 120d could react with the ruthenium catalyst via the terminal alkene 2 to produce carbene 122 which could produce products 124 or 125. The former compound was never isolated because the production of metallacyclobutane 123 must involve the formation of a highly strain cyclobutane ring. However, the ruthenium catalyst could also insert into alkene 3. In that case, the intermediate 126 could afford the desired compound 125 or 127 via its reaction with alkene 1 to produce a tandem ring-opening/ring-closing metathesis. This result
was presumably a consequence of increased ring strain in the five-membered ring system or the carbene 126 was suffering less from steric hindrance due to the intramolecular process to give 127. This result was somewhat unexpected due to the excellent regioselectivity observed for the other substrates. As metathesis is an equilibrium process, we tried to control the selectivity of the reaction by using very short reaction times to maintain some kinetic control. Therefore, NMR experiments were performed to determine how rapidly the equilibration was occurring. It was found that the ring-closing metathesis on 120d was too fast at room temperature (< 2 minutes) to permit monitoring the reaction by NMR. Therefore, a reaction was performed at -78°C and quenched after 10 minutes with a 10% HCl solution. NMR of the crude mixture after extraction and isolation showed that after 64% of conversion, the ratio 125:127 remained unchanged. Finally, substrate 120f, possessing a more sterically demanding endocyclic double bond, did not suffer ring-opening metathesis under the conditions employed, and gave the desired product only.

In the goal of producing products such as 125, compound 128 was synthesized according to the same procedure for compound 103, submitted to an Ireland-Claisen rearrangement, esterified to give 129 and the latter successfully cyclized via ring-closing metathesis (scheme 34). In that strategy, the ruthenium catalyst preferred to insert first into the less stERICALLY demanding exocyclic double bond and as it was demonstrated in the previous scheme 33, the ring-closing metathesis was completed via the pathway 1 to give exclusively product 125.

![Scheme 34. Regioselective ring-closing metathesis](image-url)
To the best of our knowledge, there is no example of RCM with TIPS esters. We therefore explored that possibility. We observed that the use of TIPS esters in the metathesis reaction with substrate 120 produced side products that proved to be difficult to characterize. Thus, we concluded it was more convenient to do the rearrangement with TMSCl to avoid the extra step necessary to cleave the stable TIPS ester.

3.3.5 Diastereoselectivity of the Ireland-Claisen rearrangement

It is well known that the RS,SR isomer is the favored product of rearrangement of both geometric silyl ketene acetalts 60a and 60b (chapter 2, figure 5). Therefore, assuming that the Z enolate 130 and the E enolate 131 rearrange respectively through boat-like and chair-like transition states to afford the same RS,SR isomer, we believed that the major product after the Ireland-Claisen rearrangement of substrate 103a would be the epimer 134 no matter which conditions were used for deprotonation (figure 10). 29, 31 Higher energy transition states 132 and 133 obtained after the rotation of the silyl ketene acetal around the carbon-oxygen bond will give the minor epimer 135.

![Diagram](image)

Figure 10. Diastereoselectivity observed in the Ireland-Claisen rearrangement of cyclohexenyl ester derivatives
Also, after careful NMR analysis, we have been able to conclude that the same isomer was obtained independently of the Lewis acid used as catalyst. The final structure of the major epimer 134 was confirmed indirectly by NOE interactions observed in the resulting spirocyclic compound of the minor epimer 135 after its ring-closing metathesis (figure 11).

\[\text{Figure 11. Key NOE interaction observed in the spirocycle product derived from 135} \]

The proton \(\alpha \) to the ester in the spectrum of the minor spirocyclic epimer showed couplings of 9.9 Hz and 5.4 Hz. These results suggest that the ester moiety is pseudo-equatorial. Therefore, a possible structure which explains the NOE interaction between \(H_a \) and one hydrogen on one alkene is the spirocycle product derived from 135. The same observations and conclusion were made with the RCM product 121b.

The mixture of diastereomers of 121a was saponified in refluxing ethanol with an aqueous solution of sodium hydroxide and the resulting carboxylic acid was treated with N-bromosuccinimide to produce a mixture of bromolactone 136 and 137 (scheme 35). To ensure that compound 121a did not epimerize during the saponification reaction, the major epimer 138 was isolated and submitted under the same reaction conditions as described above to give exclusively product 136. From those results, we were able to confirm again that 134 was the major diastereomer obtained after the Ireland-Claisen rearrangement of 103a using NOE interactions and we also demonstrated that the bromolactonization could be regioselective.
Scheme 35. Regioselective bromolactonization

3.3.6 Towards spirovetivanes

Ireland-Claisen rearrangements were tried on more complex substrates such as 141 (scheme 36), that product might potentially give access to spirovetivane84 cores. Unfortunately, as it is seen in table 8, rearrangements on compounds where a bromo substituent was involved in the sigmatropic shift were too demanding and afforded only partial conversion to the desired product.
Scheme 36. Towards spirovetivanes syntheses

3.3.7 Conclusion and general remarks

The sequential Ireland-Claisen/ring-closing metathesis approach constitutes a rapid and simple method for the construction of spirocyclic compounds. The stereochemistry at the spiro-fused ring could be set by a suprafacial sigmatropic rearrangement on a cyclic framework. The aforementioned study also demonstrated that the ring-closing metathesis proceeded in excellent yield and could be highly regioselective by modifying the steric encumbrance of the reacting alkenes.

Ring-closing metathesis of silyl ketene acetals or ketene acetal phosphates for the synthesis of medium-sized rings had never been used to the best of our knowledge. The development of such strategies could potentially become an alternative route to macrocycles when macrolactonizations fail. With the proper geometry of the ester enolate, the ketene acetal phosphate side chain like in 143 should point inwards the system to favour the RCM
process (scheme 37). Application of such methodology might be useful in the synthesis of large cyclic ether rings such as 142. 77

Nicolaou's macrolactonization approach

Ring-closing metathesis approach

Scheme 37. Novel ring-closing metathesis of silyl ketene acetal phosphates
CHAPTER 4

4.1 Introduction

Attempts towards the synthesis of the core of spiro-iridal products will be discussed in the present chapter using an Ireland-Claisen rearrangement and ring-closing metathesis as key steps. The following work has been inspired from the retrosynthetic analysis of 28-deacetylbelamcandal (4) shown below (scheme 38) and previously on page 29.

Scheme 38. Retrosynthetic analysis of 28-deacetylbelamcandal based upon an Ireland-Claisen and ring-closing metathesis strategy
The unsaturated alkyl side chain of 4 could be placed using a Wittig type olefination on related structures of 144. Introduction of the tertiary alcohol at C-27 might be done via an epoxidation strategy or by selective oxymercuration of the more electron-rich double bond. The formation of the six-membered ring could be achieved by ring-closing metathesis after proper functionalization of 145 with terminal alkenes to produce 144. Stereoselective hydrogenation of 146 and opening the resulting saturated lactone with N,O-dimethylhydroxylamine85 should install the C-26 hydroxyl moiety with the requisite stereochemistry. Alkylation of the resulting Weinreb amide86 would allow the introduction of one terminal alkene required for RCM. The bicyclic lactone 146 should be easily synthesized from an Ireland-Claisen rearrangement on 149 and subsequent ozonolysis/aldol methodology. In the aforementioned retrosynthesis, 146 or related structures are key substrates to reach the completion of the synthesis of 4. Also, it is required to verify if the stereochemistry at the C-6 carbon could be fixed with high diastereoselectivity from the Ireland-Claisen rearrangement or by epimerization on lactone 146.

4.2 Results and discussion

4.2.1 The cyclopentenyl esters series

Rearrangements of cyclopentenyl esters were first surveyed for the construction of related bicyclic lactones of type 146 since they give rapid access to 5,5-bicyclic templates (scheme 39). Therefore, alkylation of enone 112d with [(methoxymethoxy)methyl]tributylstannane87 followed by Luche reduction of the resulting enone gave a secondary alcohol which was acylated under standard conditions to give the cyclopentenyl ester 150. Ireland-Claisen rearrangement of the silyl ketene acetal of 150 afforded in low yield the desire carboxylic acid 151 which was treated with N-bromosuccinimide to provide the bicyclic lactone 152. Attempts to optimize the yield of the pericyclic reaction were fruitless. It was found later that ester acetates are not good substrates for Ireland-Claisen rearrangements since they usually rearrange in low yield.
Scheme 39. Stereoselective alkylation of bicyclic lactones

It was planned that alkylation of the lactone enolate of 152 should proceed from the less sterically congestedexo face as opposed to Meyer's bicyclic lactams which are known to alkylate from the endo face.\(^{21}\) Therefore, treatment of 152 with LDA and subsequent addition of acrolein gave surprisingly the product 153 as a single diastereomer in moderate yield with trace of elimination product. Indeed, in one single step, the stereochemistry at C-6 and C-7 was fixed. The exact origin of the stereoselective installation of the secondary alcohol at C-7 remains unclear and its final configuration is not yet defined. However, we think that 153 might be the anti-aldol product resulting from the condensation of the ester onto acrolein via a Zimmerman-Traxler transition state. Finally, protection of the secondary alcohol as a silyl ether was unsuccessful under standard conditions with TBSCl and imidazole. At this stage, it was concluded that ester 150 was not a suitable substrate for pursuing the following strategy due to the difficulty arising from the scale up of compound 151. Therefore, it was decided to install at the beginning of the synthesis the exo alkyl chain at the C-6 position with an Ireland-Claisen on a substrate such as 154 (scheme 40).
Cyclopentenyl ester 154 was rearranged in high yield under modified Ireland-Claisen protocol to afford the carboxylic acid 155 in a 1.2 : 1 diastereomeric ratio. Acid 155 was reacted with NBS to give the bromolactone 156 in 77 % overall yield as a mixture of diastereomers. It was expected that we could correct the absolute stereochemistry at C-6 by kinetic protonation from the less sterically congested exo face. Such a strategy for stereocontrol has been employed in number of similar systems. Therefore, it was expected that treating 156 with LDA and quenching the enolate with a source of protons should provide compound 158 as the major epimer. Unfortunately, it was observed that the kinetic protonation on bicyclic lactone 156 afforded 157 in slight excess instead of 158, accompanied by an important amount of by-products resulting from the reaction of the alkyl bromide. The latter alkyl bromide was however necessary to recover the masked double bond by treating the bromolactone with zinc or related reagents. In the aim to find a solution to that problem, it was decided to replace the bromolactonization step by a phenylselenolactonization, where the resulting phenylselenyl substituent should be stable towards elimination with LDA. Unfortunately, this strategy has not been pursued yet.
4.2.2 The cyclohexenyl ester series

The syntheses of cyclohexenyl esters were found to be much easier than their cyclopentenyl ester counterparts. Also, the stability of the former products and the low cost of the starting materials for their preparation make them suitable substrates for pursuing the present study. Initially, it was explored to place at the beginning of the synthesis an hydroxyl group at C-7 (scheme 38, 4) since it was required for the installation of the methyldiene aldehyde functionality. Thus, compounds 159 and 160 were chosen as substrates for the Ireland-Claisen rearrangement (table 10). β-hydroxy esters are well known in acyclic dianionic Claisen rearrangements 90 and they are usually used because the stereochemistry of the ester deprotonation is well controlled through a cyclic six-membered ring transition state to afford in high yield Z (O)-enolates. In our case, we wanted to verify if the C-7 hydroxyl or silyloxy group could influence the chair/boat-like transition state in favor of one conformation.

![Chemical structure diagram]

\[R = H \textbf{159} \]
\[R = \text{OTBS} \textbf{160} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>KHMDS</th>
<th>Silyl reagent</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>159</td>
<td>2.6 eq</td>
<td>Me_2SiCl_2</td>
<td>No reaction</td>
</tr>
<tr>
<td>2</td>
<td>159</td>
<td>2.3 eq</td>
<td>TMSCl</td>
<td>No reaction</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
<td>1.3 eq</td>
<td>TMSCl</td>
<td>No reaction</td>
</tr>
</tbody>
</table>

Table 10. Claisen of β-hydroxy esters
Therefore, 159 and 160 were submitted under various deprotonation protocols and conditions and then refluxed to promote the [3 + 3] rearrangement. Unfortunately, production of 161 arising from the Claisen rearrangement was not observed. This lack of reactivity was probably due to added steric congestion during the sigmatropic rearrangement. Later, it was found that the Ireland-Claisen was also sensitive to steric hindrance at C-27 on similar systems (scheme 41). While substrate 154 rearranged in excellent yield, ester 164 did not afford any Ireland-Claisen product after refluxing overnight.

Scheme 41. Consequence of added steric hindrance on the Ireland-Claisen rearrangement

Based on our success to install properly the right configuration at C-6 and C-7 in one aldol process (scheme 39, structure 153), it was decided to explore that reaction on a six-membered ring template. Cyclohexenyl ester 165 was prepared under standard conditions and submitted to an Ireland-Claisen rearrangement to provide in low yield 166 (scheme 42). Regioselective 5-exo-trig bromolactonization afforded in high yield the bromolactone 167 which was stereoselectively alkylated via its ester enolate with acrolein to give 168 as a single diastereomer (probably the anti-aldol product).
Scheme 42. Synthesis of tricyclic lactones via ring-closing metathesis

The only detectable by-product of the reaction resulted from the elimination of the alkyl bromide group as suggested by the observation of new olefinic protons by NMR. β-Hydroxy lactone 168 was successfully cyclized via ring-closing metathesis to give in excellent yield the tricyclic lactone 169. From this product, it was planned to reduce the remaining double bond and recover the masked alkene after a reverse bromolactonization to afford product such as 170. By looking the structure of 170, we can see that only carbon C-27 needs to be functionalized from the present strategy to reach an advanced template for the synthesis of the core of spiroiridal-type triterpenoids in an asymmetric fashion.
4.3 Conclusion

The study presented in the last chapter demonstrated our efforts towards the synthesis of spiroiridal cores. It was shown that the success of the Ireland-Claisen rearrangement is highly structural dependent. Also, we have found that the alkylation of bicyclic lactones such as 152 and 167 could afford in one single step two new stereogenic centers with defined stereochemistry. Such results gave new possibilities and new routes towards the synthesis of iridals. Finally, it was recommended to pursue this survey via the cyclohexenyl ester series since they are more stable than their cyclopentenyl homologues and less expensive to synthesize.
CHAPTER 5

5.1 Experimental

5.1.1 General

All reactions were performed under nitrogen atmosphere with oven-dried glasswares. All anhydrous solvents were distilled prior to use: ether and tetrahydrofuran (THF) over sodium/benzophenone ketyl; toluene, benzene, hexamethylphosphoramide (HMPA) and dichloromethane (DCM) were distilled over calcium hydride. Trimethylsilylchloride (TMSCl), diisopropylamine (DIPA) and triethylamine (TEA) were distilled over calcium hydride prior to use. All other starting materials and reagents were obtained commercially and used as such. Column chromatographies were performed with silica gel 60 (230-400 mesh, Merck). 1H NMR and 13C NMR were recorded on Bruker AMX instruments at 300 MHz and 75 MHz, respectively, except where noted. Chemical shifts are reported in ppm δ units relative to chloroform (7.26 ppm for 1H NMR and 77.0 ppm for decoupled 13C NMR) as internal standard. Melting points are uncorrected. IR spectra were recorded with a Bomen Michaelson 100 FTIR instrument. Low-resolution and high-resolution mass spectra were recorded at The University of Ottawa Mass Spectrum Center.

5.1.2 Procedures and characterizations of compounds relative to chapter 2

![Compound 88: 3-(6-Hydroxyhexyl)-2-cyclohexen-1-one](image)

To a solution of 6-chlorohexanol (3.437 g, 25.2 mmol) in 35 mL of THF was added slowly, keeping internal temperature below -30 °C during the addition, a solution of 1.8 M of iPrMgCl in THF (14.0 mL, 25.2 mmol) under nitrogen. After 30 min of stirring, the solution was allowed to warm up slowly to room temperature. Magnesium (0.990 g, 40.7 mmol) was quickly added and the resulting mixture put under reflux. Two portions of dibromoethane (0.043 mL, 0.5 mmol) were added in one hour interval. After 3 h of refluxing, the reaction mixture was cooled at 30 °C. The Grignard
was titrated at 0.45 M with salicylaldehyde phenylhydrazone. To known enone 87 (2.80 g, 18.2 mmol), dissolved in 30.0 mL of THF, was added dropwise at room temperature to the previous prepared Grignard reagent (40.0 mL, 18.0 mmol). The solution was then refluxed for 90 min. The green-black mixture was cooled at room temperature and quenched with 10% HCl. The resulting yellow solution was extracted with ether (3x100 ml). The combined organic was washed with a saturated aqueous solution of sodium bicarbonate and brine. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to obtain 4.49 g of red-orange crude material. The crude product was purified on silica gel eluting with 20% to 40% of EtOAc in hexanes. 2.18 g (61%) of product 88 was obtained as an orange oil. IR (film) 3431 (br), 2929, 2859, 1660, 1622 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 5.87 (s, 1H), 3.64 (t, J = 6.0 Hz, 2H), 2.39-2.17 (m, 6H), 2.04-1.92 (m, 2H), 1.55-1.34 (m, 9H); ¹³C NMR (50 MHz, CDCl₃) δ 200.1(s), 166.9(s), 125.4(d), 62.5(t), 37.8(t), 37.1(t), 32.4(t), 29.5(t), 28.9(t), 26.7(t), 25.4(t), 22.5(t); MS (El) 196, 123, 110, 95, 82, 67, 55, 41; HRMS (El) calcd for C₁₂H₂₀O₂: 196.14633, found 196.14580.

Compound 89: 6-(3-Oxo-1-cyclohexenyl)hexanoic acid

Compound 89 was synthesized following a modified procedure.⁴⁷ A solution of H₃IO₆/CrO₃ in wet acetonitrile was prepared as follow. H₃IO₆ (20.0 g, 87.7 mmol) and CrO₃ (0.040 g, 0.40 mmol) were dissolved in 200.0 mL of wet acetonitrile. To a solution of enone 88 (7.80 g, 39.7 mmol) in 50.0 ml of wet acetonitrile was added over 1 h the previous prepared solution of H₃IO₆/CrO₃ at 0 °C. A white-yellow precipitate was formed. The resulting mixture was aged at 0 °C for 30 min more after the addition was completed. A solution of 5% HCl was added until all precipitates had dissolved and the product was quickly extracted with ether (3x 125 mL). The organic layer was washed with 1:1 brine/water twice, with a solution of 2.0 g of NaHSO₃ diluted in 25 mL of water and then brine. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford 7.953 g (95%) of crude carboxylic acid as a yellow oil. IR (film) 3500-2350 (COOH), 1738, 1713, 1667, 1635, 1422, 1255, 1197 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 5.87 (s, 1H), 2.40-2.18 (m, 8H), 2.04-1.92 (m, 2H), 1.73-1.32 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 200.3(s), 179.3(s), 166.6(s), 125.6(d), 37.7(t), 37.2(t), 33.8(t), 29.6(t), 28.6(t), 81
26.4(t), 24.3(t), 22.6(t); MS (EI) 210, 123, 110, 95, 82, 67, 53, 41; HRMS (EI) calcd for C_{12}H_{18}O_{3}: 210.12560, found 210.12652.

Compound 90: 6-(3-Oxo-1-cyclohexenyl)hexanoic acid methyl ester
The resulting crude product 89 was dissolved in 100.0 mL of ether and esterified with an excess of diazomethane at 0 °C. The organic solvent was carefully removed in vacuo and the crude product was purified on silica gel eluting with 5% to 25% EtOAc in hexanes to obtain 7.633 g (86%) of 90 as a yellow oil. IR (film) 2939, 2865, 1737, 1669, 1625, 1436, 1254, 1191 cm\(^{-1}\); \(^1\)H NMR (200 MHz, CDCl\(_3\)) δ 5.81 (s, 1H), 3.62 (s, 3H), 2.34-2.14 (m, 8H), 2.00-1.88 (m, 2H), 1.68-1.21 (m, 6H); \(^1^3\)C NMR (50 MHz, CDCl\(_3\)) δ 199.9(s), 173.9(s), 166.2(s), 125.6(d), 51.4(q), 37.7(t), 37.3(t), 33.8(t), 29.5(t), 28.6(t), 26.4(t), 24.6(t), 22.6(t); MS (EI) 224, 193, 165, 123, 110, 95, 82, 67, 41; HRMS (EI) calcd for C\(_{13}\)H\(_{20}\)O\(_3\): 224.14125, found 224.14099.

Compound 91: 6-(3-Hydroxy-1-cyclohexenyl)hexanoic acid methyl ester
To a solution of enone 90 (2.015 g, 8.99 mmol) and CeCl\(_3\) heptahydrate (3.683 g, 9.88 mmol) in 25.0 mL of MeOH was added at 0 °C NaBH\(_4\) (0.428 g, 11.3 mmol) in small portions over 5 min. After stirring 30 min, 20.0 mL of a saturated aqueous solution of ammonium chloride was added. The reaction mixture was stirred during 5 min and water was added until all salts formed had dissolved. The product was extracted with ether (3x 100 mL). The combined organic layers were washed with water (3x 50.0 mL) and brine, dried over MgSO\(_4\) and evaporated under reduced pressure to give 2.030 g (100%) of 91 as a yellow oil. IR (film) 3390 (br), 2933, 2860, 1739, 1437, 1361, 1260, 1197, 1172, 1063, 1018 cm\(^{-1}\); \(^1\)H NMR (200 MHz, CDCl\(_3\)) δ 5.44 (br s, 1H), 4.13 (br s, 1H), 3.62 (s, 3H), 2.26 (t, J = 7.0 Hz, 2H), 1.95-1.87 (m, 4H), 1.75-1.47 (m, 7H), 1.42-1.16 (m, 4H); \(^1^3\)C NMR (50 MHz, CDCl\(_3\)) δ 174.2(s), 141.9(s), 123.8(d), 65.7(d), 51.4(q), 37.1(t), 33.8(t), 31.8(t), 28.6(t), 28.3(t), 26.9(t), 24.6(t), 19.1(t), MS (EI) 208.
Compound 92: 6-(3-hydroxy-1-cyclohexenyl)hexanoic acid

Ester 91 (0.737 g, 3.26 mmol) was dissolved in a mixture of THF/MeOH/H₂O (6.0 mL/2.0 mL/2.0 mL) and cooled with an ice bath. LiOH monohydrate (0.226 g, 5.39 mmol) was added and the resulting solution was allowed to warm up slowly at room temperature and stirred 17 h. 10.0 mL of water and 20.0 mL of a 2M buffer of H₃PO₄ adjusted at pH 3.5 with NaOH were added. The pH of the resulting solution was carefully adjusted with 10% HCl at pH 3.5 with a pH meter. The solution was extracted with ether (5x) and the combined organic phases were washed with water (2x) and brine. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo* to obtain 0.673 g (97%) of 92 as a colorless oil. IR (film) 3709-2350 (COOH), 1712, 1417, 1273 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 6.57 (br s, COOH), 5.48 (s, 1H), 4.20 (br s, 1H), 2.33 (t, J = 7.4 Hz, 2H), 2.00-1.83 (m, 4H), 1.78-1.50 (m, 7H), 1.47-1.24 (m, 4H); ¹³C NMR (50 MHz, CDCl₃) δ 179.2(s), 142.2(s), 123.6(d), 65.9(d), 37.1(t), 33.9(t), 31.7(t), 28.4(t), 28.3(t), 26.8(t), 24.4(t), 19.0(t); MS (EI) 194, 107, 97, 79.

Compound 99: 2,14-Dioxaatricycl[19.1¹²¹.1⁹⁹³]hexacosa-9(26), 21(25)-diene-3,15-dione

To a solution of hydroxy acid 92 (0.081 g, 0.384 mmol) in 17.0 mL of THF were added DIPEA (250 μL, 1.44 mmol) and 2,4,6-trichlorobenzoyl chloride (200 μL, 1.28 mmol). The reaction mixture was stirred 24 h under N₂ at room temperature and then added over 17 h with a syringe pump (24 μmol/h) to a solution of DMAP (0.373 g, 3.05 mmol) in 500.0 mL of toluene. The solution was kept stirring 5 h more after the addition was completed. The solution was concentrated to one third volume and 500.0 mL of EtOAc was added. The solution was washed with a saturated aqueous solution of sodium bicarbonate, water, brine and dried over MgSO₄ and filtered. The organic layer was concentrated *in vacuo* and the crude product was purified on silica gel with 2% EtOAc in hexanes to give 0.040 g (54%) of 99 as a colorless oil. ¹H NMR (200 MHz, CDCl₃) δ 5.42-5.34 (m, 2H), 5.33-5.19 (m, 2H), 2.37-2.21 (m, 4H), 2.17-1.17 (m, 28H); ¹³C NMR (50 MHz, CDCl₃) δ 173.7(s), 173.5(s), 143.5(s), 143.3(s), 120.6(d), 120.4(d), 68.9(d), 68.6(d), 36.9(t), 36.6(t), 34.2(t), 34.1(t),
28.3(t), 28.2(t), 27.6(t), 27.5(t), 27.3(t), 27.0(t), 25.7(2C, t), 24.6(t), 24.5(t), 19.5(t), 19.4(t); MS (ci/iso) 389, 294, 224, 211, 195, 177.

5.1.3 Procedures and characterizations of compounds relative to chapter 3

Compound 113a: 3-Allylcyclohex-2-enone

Isopropoxy-cyclohex-2-enone (10.05 g, 65.2 mmol) was dissolved in THF (100 mL) and the resulting solution chilled to -78 °C. A 2M solution of allylmagnesium chloride (40.0 mL, 80.0 mmol) was added dropwise over 30 min and the reaction mixture was allowed to warm slowly to room temperature. After 1h of stirring at room temperature, ether was added (200 mL) and the solution quenched with 10% HCl (100 mL). The resulting mixture was extracted with ether (3 x 100 mL). The combined organic extracts were washed with a saturated aqueous solution of sodium bicarbonate (75 mL), water (50 mL), brine (50.0 mL) and dried over MgSO₄ to afford the desired enone 113a. IR (film) 2942, 1667, 1638 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.90 (t, J = 1.3 Hz, 1H), 5.79 (ddt, J = 16.8, 10.3, 6.8 Hz, 1H), 5.18-5.09 (m, 2H), 2.94 (d, J = 6.8 Hz, 2H), 2.36 (t, J = 6.7 Hz, 2H), 2.29 (t, J = 6.0 Hz, 2H), 2.04-1.93 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 199.8(s), 164.1(s), 133.2(d), 126.3(d), 118.3(t), 42.2(t), 37.3(t), 29.4(t), 22.6(t); MS (EI) 136, 108, 79; HRMS (EI) m/z (M⁺) calcd for C₉H₁₂O: 136.08882, found 136.08924.
Compound 113c: 3-Allyl-2-bromocyclohex-2-enone

Anhydrous CeCl₃ (Aldrich, 99%, 1.59 g, 6.45 mmol) was quickly ground to a fine powder in a mortar and placed in a 100 mL flask equipped with a stirring bar. The flask was immersed in an oil bath and heated gradually to 140-145 °C under reduced pressure. The CeCl₃ was then stirred under those conditions for 4 h. The flask was cooled to room temperature under a stream of nitrogen. THF (30 mL) was added slowly with vigorous stirring and ice-bath cooling. The ice-bath was then removed and the white milky suspension was stirred at room temperature 12 h. A solution of 2-bromo-3-ethoxycyclohex-2-enone (1.209 g, 5.55 mmol) in THF (20 mL) was added and the resulting mixture was stirred at room temperature for 3 h. A solution of allylmagnesium chloride (2M, 3.4 mL, 6.8 mmol) in THF was added dropwise at 0 °C over 15 minutes using a syringe pump. After 20 minutes of stirring, the reaction mixture was quenched with 10 mL of a saturated aqueous solution of NH₄Cl. 10 mL of 10% HCl was added to dissolve all salts formed. The resulting solution was extracted with ether (4 x 50 mL). The combined organic extracts were washed with water (3 x 20 mL) and brine, dried with MgSO₄ and filtered. The filtrate was concentrated under reduced pressure to obtain a crude material that was subjected to flash chromatography (15% EtOAc in hexanes) to give the desired product 113c as a colorless oil (1.136 g, 95%). IR (film) 3080, 2950, 1686, 1598 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.79 (ddt, J = 17, 10, 6.7 Hz, 1H) 5.23-5.15 (m, 2H), 3.25 (d, J = 6.7 Hz, 2H), 2.62-2.57 (m, 2H), 2.50 (t, J = 6.0, 2H), 2.04-1.95 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 191.2(s), 160.9(s), 131.5(d), 123.1(s), 118.3(t), 43.4(t), 37.8(t), 32.1(t), 21.9(t); MS (EI) 214, 186, 162, 135, 107, 91, 79; HRMS (EI) m/z (M⁺) calcd for C₉H₁₉BrO 213.99933, found 214.00155.

Compound 113e: 3-Allyl-2-methylcyclopent-2-enone

To a solution of 3-Isopropoxy-2-methyl-cyclopent-2-enone (1.093 g, 7.09 mmol) in THF (40 mL) was added a 2M solution of allylmagnesium chloride (5.0 mL, 10.0 mmol) via a syringe pump over 15 minutes at -78 °C. After stirring for 25 minutes, the reaction mixture was allowed to warm slowly to 0 °C over 15 minutes and then quenched with 10 mL of 10% HCl. The aqueous phase was
extracted with ether (3x) and the combined organic extracts were washed with water and a saturated aqueous solution of sodium bicarbonate, dried over Na₂SO₄, filtered and concentrated in vacuo. Flash chromatography (30 % of EtOAc in hexanes) gave the desired enone 113e as a colorless oil (0.878 g, 91%). IR (film) 3080, 2921, 1694, 1650, 1442, 1337 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.87-5.73 (m, 1H), 5.15-5.14 (m, 1H), 5.11-5.09 (m, 1H), 3.16 (d, J = 6.6 Hz, 2H), 2.51-2.50 (m, 2H), 2.37 (t, J = 3.9 Hz, 2H), 1.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 210.1(s), 170.6(s), 136.6(s), 132.7(d), 117.5(t), 35.7(t), 34.1(t), 29.3(t), 7.9(q); MS (EI) 136, 121, 93, 79; HRMS (EI) m/z (M⁺) calcd for C₇H₁₂O 136.08882, found 136.08723.

Compound 113f: 3-Allyl-2-bromocyclopent-2-enone

Anhydrous CeCl₃ (Aldrich, 99%+, 1.118 g, 4.54 mmol) was quickly ground to a fine powder then placed in a 100 mL flask equipped with a stirring bar. The flask was immersed in an oil bath and heated gradually to 140-145 °C under reduced pressure. The CeCl₃ was stirred under those conditions for 4 h. The flask was cooled to room temperature under a stream of nitrogen before 30.0 mL of THF was added slowly with vigorous stirring and ice-bath cooling. The ice-bath was removed and the white milky suspension was stirred at room temperature for 8 h. A solution of 2-bromo-3-ethoxycyclopent-2-enone⁹² (0.869 g, 4.26 mmol) in THF (15 mL) was added and the resulting suspension stirred at room temperature for 11 h. A 2M solution of allylmagnesium chloride (2.5 mL, 5.0 mmol) in THF was then introduced dropwise at 0 °C and the resulting mixture allowed to warm up slowly to room temperature. After 10 minutes of stirring, the reaction was quenched with 10 mL of a saturated aqueous solution of ammonium chloride and 15 mL of 10% HCl was added to dissolve all salts formed. The resulting solution was extracted with EtOAc (4 x 50 mL). The combined organic extracts were washed with water (2 x 20 mL), brine (20.0 mL), dried with MgSO₄ and filtered. The filtrate was concentrated under reduced pressure to obtain a red oil. Flash chromatography (15% EtOAc in hexanes) gave compound 113f (630 mg, 74%) as a yellowish oil. IR (film) 3081, 3010, 2979, 2925, 1726, 1613 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.78 (ddt, J = 16.7, 9.2, 6.8 Hz, 1H), 5.19 (d, J = 9.2 Hz, 1H), 5.15 (s, 1H), 3.26 (d, J = 6.8 Hz, 2H), 2.63 (t, J = 5.6 Hz, 2H), 2.51 (t, J =
5.6 Hz, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 201.5(s), 174.1(s), 131.0(d), 123.1(s), 118.9(t), 37.1(t), 33.1(t), 30.2(t); MS (EI) 200, 189, 119, 91, 79.

Compound 104a: 3-Allylcyclohex-2-enol

The crude material 113a so obtained (9.67g) was dissolved in MeOH (250 mL) and CeCl$_3$·7H$_2$O (24.78 g, 66.5 mmol) was introduced. The solution was cooled to 0 °C and sodium borohydride (1.75 g, 46.3 mmol) was introduced in small portions over 5 min. CAUTION: gas evolution. The solution was stirred for 15 minutes and then quenched by the addition of a saturated aqueous solution of ammonium chloride (20 mL). The resulting mixture was concentrated under reduced pressure to one third volume and water was added until all salts had dissolved. The solution was extracted with ether (3 x 150 mL). The combined organic extracts were washed with water (3 x 75.0 mL), brine, dried over MgSO$_4$ and filtered to give 104a. IR (film) 3342, 3077, 2936, 1667, 1637; 1H NMR (200 MHz, CDCl$_3$) δ 5.88-5.68 (m, 1H), 5.54-5.50 (m, 1H), 5.09-5.04 (m, 1H), 5.00-4.99 (m, 1H), 4.19 (br s, 1H), 2.70 (d, J = 7.0 Hz, 2H), 1.96-1.51 (m, 7H); 13C NMR (50 MHz, CDCl$_3$) δ 140.7(s), 135.9(d), 124.7(d), 116.3(t), 65.9(d), 41.9(d), 31.8(d), 28.4(d), 19.1(d); MS (EI) 137, 105, 97, 91, 79; HRMS (EI) m/z (M$^+$-1) Calcd for C$_6$H$_{14}$O: 137.09664, found 137.09376.

Compound 104b: 3-Allyl-2-methylcyclohex-2-enol

3-Ethoxy-2-methyl-cyclohex-2-enone (3.54 g, 23.0 mmol) was dissolved in THF (100 mL) and the resulting solution cooled to 0 °C. A solution of 2M allylmagnesium chloride (15.0 mL, 30.0 mmol) was added via a syringe pump over 30 minutes and the resulting mixture was then stirred for 2 h. Ether was added (150 mL) and the solution was quenched with 50 mL of 10% HCl. The resulting mixture was extracted with ether (3 x 100 mL). The combined organic extracts were washed with a saturated solution of NaHCO$_3$ (50 mL), water (25 mL), brine (25 mL) and dried over MgSO$_4$, filtered and concentrated in vacuo to give the desired enone as a yellowish oil. The crude product so obtained (3.60 g) was dissolved in MeOH (100.0 mL) to which was added CeCl$_3$·7H$_2$O (9.56 g, 25.7 mmol). The solution was cooled to 0 °C and
sodium borohydride (0.609 g, 16.1 mmol) was introduced in small portions over 5 min. CAUTION: gas evolution. The solution was stirred for 15 min and then quenched with 20 mL of a saturated aqueous solution of NH₄Cl. The resulting mixture was concentrated under reduced pressure to one third volume. Water (20 mL) was introduced until all the salts had dissolved. The solution was extracted with ether (3 x 100 mL). The combined organic extracts were washed with water (3 x 50 mL), brine, dried over MgSO₄ and filtered to give the desired (3.39 g, 97%) material after removal of solvent in vacuo. IR (film) 3331 br, 3077, 2929, 1822, 1669, 1637 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.72 (ddt, J = 16.7, 9.9, 6.2 Hz, 1H), 5.02-4.94 (m, 2H), 3.95 (br s, 1H), 2.73 (d, J = 6.2 Hz, 2H), 2.00-1.86 (m, 2H), 1.74-1.51 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 135.5(d), 132.7(s), 129.1(s), 115.0(t), 69.6(d), 37.9(t), 32.1(t), 29.7(t), 18.3(t), 16.0(q); MS (ci/iso) 151, 135, 119, 111, 105, 91.

Compound 104c: 3-Allyl-2-bromocyclohex-2-enol

The product 113c (1.112 g, 5.20 mmol) was dissolved in MeOH (15.0 mL) to which was introduced CeCl₃·7H₂O (2.00 g, 5.37 mmol). The solution was chilled using an ice bath and sodium borohydride (0.138 g, 3.65 mmol) was carefully added. CAUTION: gas evolution. The reaction mixture was stirred for 15 minutes and then quenched with 10 mL of a saturated aqueous solution of ammonium chloride. Water was added until all salts had dissolved. The solution was extracted with ether (4 x 50 mL). The combined organic extracts were washed with water (3 x 25 mL), brine, dried over MgSO₄, filtered and concentrated in vacuo to give the crude material as colorless oil that was used as such. IR (film) 3377, 3078, 2940, 1650, 1636 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.75 (ddt, J = 17, 10, 6.7 Hz, 1H), 5.13-5.04 (m, 2H), 4.28 (br, t, J = 4.4, 1H), 2.95 (d, J = 6.6 Hz, 2H), 2.23-2.01 (m, 3H), 1.91-1.58 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 138.5(s), 133.5(d), 123.6(s), 116.6(t), 71.1(d), 41.6(t), 31.9(t), 31.2(t), 18.3(t); MS (ci/iso) 217, 199, 175, 137, 119, 109, 93.
Compound 104e: 3-Allyl-2-methylcyclopent-2-enol

The enone 113e (0.808 g, 5.94 mmol) was dissolved in MeOH (15 mL) containing CeCl₃·7H₂O (2.60 g, 6.98 mmol). The solution was cooled with an ice bath while sodium borohydride (0.185 g, 4.89 mmol) was introduced. The solution was stirred for 15 minutes then quenched with 20 mL of a saturated aqueous solution of ammonium chloride. Water was added until all salts had dissolved. The solution was extracted with ether (3 x 50 mL). The combined organic extracts were washed with water (3 x 25 mL), brine, dried over MgSO₄ and filtered. The crude material 104e (671 mg) was obtained as a colorless oil after evaporation of methanol in vacuo. IR (film) 3333 (br), 3078, 2916, 2850, 1690, 1637, 1434 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.82-5.68 (m, 1H), 5.05-4.97 (m, 2H), 4.61 (br, s, 1H), 2.83 (d, J = 6.5, 2H), 2.43-2.17 (m, 3H), 1.69 (s, 3H), 1.66-1.57 (m, 1H), 1.40 (d, J = 3.8, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 137.3(s), 135.4(d), 134.2(s), 115.4(t), 81.5(d), 33.4(t), 32.9(t), 32.6(t), 11.0(q); MS (EI) 138, 123, 105, 97, 91, 79; HRMS (EI) m/z (M⁺) calcd for C₉H₁₄O₁ 138.10477, found 138.10671.

Compound 104f: 3-Allyl-2-bromocyclopent-2-enol

Enone 113f (0.630 g, 3.15 mmol) was dissolved in MeOH (20 mL) and CeCl₃·7H₂O (1.283 g, 3.44 mmol) added. The solution was cooled with an ice bath and sodium borohydride (0.081 g, 2.14 mmol) added in small portions. The solution was stirred for 15 minutes then quenched with 20 mL of a saturated aqueous solution of ammonium chloride. The resulting mixture was extracted with ether (3 x 75 mL). The combined organic phases were washed with water (3x 50 mL), brine, dried over MgSO₄ and filtered. Removal of solvent in vacuo afforded 104f as a yellowish oil (553 mg, 87%). IR (film) 3344 (br), 3079, 2975, 2914, 2849, 1653, 1638 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.80-5.67 (m, 1H), 5.12-5.04 (m, 2H), 4.73-4.70 (m, 1H), 2.93 (d, J = 6.7 Hz, 2H), 2.49-2.14 (m, 4H), 1.89-1.78 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 142.8(s), 133.2(d), 120.7(s), 116.8(t), 79.8(d), 34.7(t), 32.1(t), 31.0(t); MS (EI) 200, 187, 162, 143, 131, 121, 105, 91, 78; HRMS (EI) m/z (M⁺) calcd for C₈H₁₁BrO₁ 201.9993, found 201.9844.
Compound 103a: (3-Allylcyclohex-2-enyl)-4-pentenoate

The crude material 104a obtained after concentration in vacuo was dissolved in dry benzene (250 mL). Pyridine (50.0 mL, 618 mmol) and DMAP (0.310 g, 2.54 mmol) were added and the resulting mixture stirred until all materials had dissolved. A solution of 4-pentenoyl chloride (9.47 g, 79.9 mmol) diluted in benzene (50 mL) was added dropwise via an addition funnel over 30 minutes. After the addition was complete, the reaction mixture was stirred for 3 h, quenched by the introduction of a saturated bicarbonate solution then extracted with EtOAc (3 x 125 mL). The combined organic extracts were washed with a 5% HCl solution, a saturated aqueous solution of NaHCO₃, water and brine. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (4% EtOAc in hexanes) afforded the desired product 103a as a colorless oil (11.1 g, 78% for 3 steps). IR (film) 1727, 1668, 1640 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.86-5.72 (m, 2H), 5.48-5.46 (m, 1H), 5.32-5.24 (m, 1H), 5.07-4.95 (m, 4H), 2.72 (d, J = 6.9 Hz, 2H), 2.39-2.35 (m, 4H), 1.99-1.92 (m, 2H), 1.80-1.61 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 172.8(s), 142.9(s), 136.7(d), 135.6(d), 120.5(d), 116.5(t), 115.4(t), 68.6(d), 42.0(t), 33.8(t), 29.0(t), 28.3(t), 28.2(t), 19.1(t); MS (ci/iso) 179, 161, 147, 137, 121, 105.

Compound 103b: (3-Allyl-2-methylcyclohex-2-enyl)-4-pentenoate

104b (2.06 g, 13.5 mmol) was dissolved in dry benzene (40 mL) containing pyridine (15.0 mL, 185 mmol) and DMAP (0.120 g, 0.982 mmol). A solution of 4-pentenoyl chloride (2.24 g, 18.9 mmol) diluted in benzene (15 mL) was added dropwise via an addition funnel over 30 minutes. After the addition was complete, the reaction mixture was stirred for 1 h, quenched with a saturated aqueous solution of NaHCO₃ solution and extracted with EtOAc (3x 100 mL). The combined organic extracts were washed with a solution of 5% HCl, a saturated solution of NaHCO₃, water and brine. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography on silica gel (5% EtOAc in hexanes) afforded the desired material 103b (2.83 g, 86% for 3 steps) as a colorless oil. IR (film) 3079, 2977, 2937, 2866, 1731, 1638 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.86-5.64 (m, 2H), 5.20-5.19 (m, 1H), 5.06-4.95 (m, 4H), 2.75 (d, J = 6.4, 2H), 2.42-2.31 (m, 4H), 2.03-1.88 (m, 2H),
1.79-1.50 (m, 7H); 13C NMR (75 MHz, CDCl$_3$) δ 172.9(s), 136.6(d), 135.1(s), 135.0(d), 125.5(s), 115.3(t), 115.1(t), 72.0(d), 37.9(t), 33.8(t), 29.5(t), 29.0(t), 28.9(t), 18.6(t), 15.7(q); MS (EI) 234, 193, 134, 119, 91, 77, 55, 41; HRMS (EI) m/z (M$^+$) calcd for C$_{13}$H$_{22}$O$_2$: 234.16198, found 234.15760.

Compound 103c: (3-Allyl-2-bromocyclohex-2-ethyl)-4-pentenoate

The crude alcohol 104c (1.057 g, 4.89 mmol) was dissolved in dichloromethane (40 mL). Diisopropylethylamine (2.5 mL, 14.6 mmol), a catalytic amount (15 mg) of DMAP, 4-pentenoic acid (0.979 g, 9.78 mmol) and EDCI (1.50 g, 7.83 mmol) were added in that order. After 14 h of stirring, the resulting mixture was diluted in EtOAc (125 mL) and washed with a saturated aqueous solution of NaHCO$_3$ (2 x 25 mL) and brine. The organic layer was dried over MgSO$_4$, filtered and concentrated *in vacuo*. Flash chromatography (10% ether in hexanes) afforded ester 103c (1.312 g, 90 % for 2 steps) as a colorless oil. IR (film) 3079, 2945, 1737, 1638 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 5.91-5.69 (m, 2H), 5.50 (t, J = 3.8 Hz, 1H), 5.14-4.99 (m, 4H), 2.99 (d, J = 6.7, 2H), 2.50-2.39 (m, 4H), 2.26-2.02 (m, 2H), 1.90-1.84 (m, 2H), 1.72-1.66 (m, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 172.4(s), 141.4(s), 136.6(d), 133.4(d), 117.6(s), 116.8(t), 115.5(t), 72.7(d), 41.6(t), 33.7(t), 30.9(t), 30.2(t), 28.9(t), 18.1(t); MS (ci/iso) 299, 255, 237, 219, 199, 173, 159, 137, 119.
Compound 103d: 3-Allylcyclopent-2-enyl-4-pentenoate

A solution of 3-Ethoxy-cyclopent-2-enone (0.631 g, 5.00 mmol) in THF (50 mL) was cooled to -78 °C and treated with a 2M solution of allylmagnesium chloride (7.0 mL, 14.0 mmol) over 20 minutes. The resulting mixture was stirred for 45 minutes, treated with 10 mL of a saturated aqueous solution of ammonium chloride and 10 mL of 10% HCl then allowed to warm up to room temperature. The resulting mixture was extracted with ether and the combined organic extracts were washed with a saturated aqueous solution of sodium bicarbonate, water and brine. The organic phase was dried over MgSO₄, filtered and concentrated in vacuo to obtain a yellowish oil. The crude product so obtained was dissolved in MeOH (15 mL) and CeCl₃·7H₂O (2.00 g, 5.37 mmol) was introduced. The solution was cooled to 0 °C before sodium borohydride (0.130 g, 3.44 mmol) was added in one portion. The solution was stirred for 15 minutes then quenched by the addition of 10 mL of a saturated aqueous solution of ammonium chloride. Water (approx. 10 mL) was added until all salts had dissolved. The solution was extracted with ether (3 x 50 mL) and the combined organic extracts were washed with water, brine, dried over MgSO₄ and filtered. Concentration under reduced pressure gave a yellowish oil which was diluted in 30.0 mL of dichloromethane. A catalytic amount (1 crystal) of 4-dimethylaminopyridine (DMAP), 4-pentenoic acid (1.00 g, 10.0 mmol) and EDCI (1.25 g, 6.52 mmol) were added in that order with stirring. After 20 h, the resulting mixture was diluted with 100 mL of EtOAc then washed with a saturated aqueous solution of sodium bicarbonate (2 x 25 mL), water, and brine. The organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (5% ether in hexanes) afforded the unstable ester 103d (778 mg, 75% for 3 steps) as a colorless oil which must be used immediately after its isolation. IR (film) 3079, 2978, 2922, 2851, 1731, 1641 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.89-5.77 (m, 2H), 5.68-5.66 (m, 1H), 5.48 (d, J = 1.6 Hz, 1H), 5.11-4.97 (m, 4H), 2.89-2.86 (m, 2H), 2.45-1.79 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 173.0(s), 150.6(s), 136.7(d), 134.9(d), 123.3(d), 116.4(t), 115.3(t), 80.8(d), 35.7(t), 33.7(t), 33.4(t), 30.4(t), 28.9(t); MS (EI) 107, 91.
Compound 103e: (3- Allyl-2-methylcyclopent-2-enyl)-4-pentenoate

The product 103e was synthesized following the same procedure as for product 103d from 104e. Flash chromatography (3% ether in hexanes with 5% of triethylamine) afforded 103e as an unstable colorless oil (217 mg, 75% for 3 steps). IR (film) 3079, 2919, 2853, 1732, 1639 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 5.88-5.67 (m, 2H), 5.64-5.62 (m, 1H), 5.08-5.05 (m, 1H), 5.02-4.98 (m, 3H), 2.85 (d, \(J = 6.1\) Hz, 2H), 2.45-2.18 (m, 7H), 1.71-1.61 (m, 4H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 173.2(s), 140.1(s), 136.7(d), 135.0(d), 130.5(s), 115.6(t), 115.4(t), 83.9(d), 33.8(t), 33.3(t), 33.2(t), 29.4(t), 29.0(t), 11.2(q); MS (EI) 220, 120, 105, 91, 77.

Compound 103f: (3- Allyl-2-bromocyclopent-2-enyl)-4-pentenoate

Compound 103f was synthesized following the same procedure as for product 103d from 104f. Flash chromatography (7% ether in hexanes) afforded compound 103f as a colorless oil (700 mg, 61% for 3 steps). IR (film) 3080, 2979, 2920, 2851, 1737, 1640 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 5.90-5.68 (m, 3H), 5.14-4.99 (m, 4H), 2.98 (d, \(J = 6.7\) Hz, 2H), 2.51-2.24 (m, 7H), 1.88-1.78 (m, 1H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 172.7(s), 146.1(s), 136.6(d), 133.0(d), 117.1(t), 115.5(t), 115.3(s), 81.8(d), 34.8(d), 33.7(d), 32.4(d), 29.3(d), 28.9(d); MS (EI) 283, 219, 201, 187, 173, 121, 105.

Compound 119a: 2-(1-Allylcyclohex-2-enyl)-4-pentenoic acid

Ester 103a (0.660 g, 3.00 mmol) was dissolved in toluene (7.0 mL) and the resulting solution cooled to -78 °C. To this mixture was added KHMDS (7.0 mL, 0.5M in toluene, 3.5 mmol) dropwise over 5 min. The resulting yellow solution was stirred for 10 minutes before a mixture of TMSCl (0.61 mL, 4.81 mmol) with Et\(_3\)N (0.84 mL, 6.03 mmol) in toluene (3.0 mL) was added via a canula. The solution was allowed to warm up slowly with stirring to room temperature and then brought to reflux. After refluxing for 15 h, the reaction mixture was cooled to room temperature and 20.0 mL of 10% HCl added. The mixture was stirred for 10 minutes then
extracted with dichloromethane (4 x 50 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to give a yellowish oil. Flash chromatography on silica gel (7% EtOAc in hexanes with 1% AcOH) afforded Ireland-Claisen product **119a** (0.50 g, 75%) as a colorless oil as a 3:2 mixture of diastereomers. IR (film) 3700-2300 (COOH), 1703, 1640 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 10.1 (br s, COOH), 5.89-5.62 (m, 3H), 5.34 (d, J = 10.2 Hz, 1H), 5.10-4.98 (m, 4H), 2.57-2.19 (m, 5H), 1.95-1.93 (m, 2H), 1.79-1.53 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ major: 180.82(s), 135.86(d), 134.37(d), 132.16(d), 128.93(d), 117.99(t), 116.56(t), 52.92(d), 43.17(t), 39.81(s), 32.06(t), 29.19(t), 24.62(t), 18.94(t); minor: 180.78(s), 135.77(d), 134.67(d), 131.79(d), 128.36(d), 117.80(t), 116.68(t), 52.83(d), 42.62(t), 39.36(s), 31.14(t), 29.53(t), 24.62(t), 18.72(t); MS (ci/iso) 221, 203, 179, 175, 161, 133, 121.

Compound 119b: 2-(1-Allyl-2-methylcyclohex-2-enyl)-4-pentenoic acid

Ester **103b** (0.242 g, 1.03 mmol) was dissolved in 7.0 mL of toluene and cooled at -78 °C under a stream of nitrogen. KHMDS (2.30 mL, 0.5M in toluene, 1.15 mmol) was added dropwise over 2 min. The resulting solution was stirred 15 min and a mixture of TMSCl (0.20 mL, 1.58 mmol) with Et₃N (0.275 mL, 2.00 mmol) diluted in 3.0 mL of toluene added via canula. The solution was allowed to warm up slowly at room temperature and then brought to reflux. After stirring 15 h, the reaction mixture was cooled a room temperature and 20.0 mL of 10% HCl added. The mixture was stirred for 10 min and extracted with dichloromethane (4x 50.0 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to give a yellowish oil. Flash chromatography on silica gel (10% EtOAc in hexanes with 2% AcOH) afforded 123 mg (51%) of Ireland-Claisen product **119b** as a colorless oil and a mixture of 1.6:1 of diastereomers. IR (film) 3700-2200 (br), 3077, 2938, 1704, 1641 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.80-5.60 (m, 3H), 5.13-4.97 (m, 4H), 2.71-2.61 (m, 1H), 2.50-2.02 (m, 5H), 1.91-1.46 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 181.17(s), 180.53(s), 136.10(d), 135.86(d), 135.67(s), 135.64(d), 135.54(d), 134.52(s), 128.91(d), 127.81(d), 116.77(t), 116.72(t), 116.65(t), 116.36(t), 53.40(d), 52.73(d), 43.76(t), 43.38(t), 42.87(s), 42.82(s), 32.93(t), 30.95(t), 29.58(t), 29.12(t), 25.25(t), 25.13(t), 19.94(2C, t), 94.
19.53(q), 18.83(q); MS (EI) 234, 193, 175, 147, 135, 105, 93, 79; HRMS (EI) m/z (M⁺) calcd for C₁₅H₂₂O₂ 234.16198, found 234.18284.

Compound 119e: 2-(1- Allyl-2-bromocyclohex-2-enyl)-4-pentenoic acid

To a solution of ester 103e (0.155 g, 0.52 mmol) in toluene (7.0 mL) at 78 °C was added KHMDS (1.2 mL, 0.5M in toluene, 0.60 mmol) dropwise over 2 minutes. The resulting yellow solution was stirred for 15 minutes before adding a mixture of TMSCl (0.1 mL, 0.788 mmol) and Et₃N (0.14 mL, 1.0 mmol) in toluene (3.0 mL) via canula. The resulting solution was allowed to warm up to room temperature and then refluxed for 12 h. The reaction mixture was cooled to room temperature and 20 mL of 10% HCl was added. The mixture was stirred for 10 minutes and then extracted with dichloromethane. The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Flash chromatography (10 % EtOAc in hexanes with 2% AcOH) afforded Ireland-Claisen product 119e as a yellowish oil (62 mg, 40 %) as a 2:1 mixture of diastereomers. IR (film) 3555-2200, 3077, 2938, 1704, 1640 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.38 (t, J = 4.4 Hz, 0.7H), 6.29 (t, J = 4.4 Hz, 0.3H), 5.89-5.69 (m, 2H), 5.13-5.01 (m, 4H), 2.93-2.86 (m, 1H), 2.61 (dd, J = 14.3, 5.8 Hz, 0.7H), 2.51 (dd, J = 13.6, 5.8 Hz, 0.3H) 2.45-1.93 (m, 7H), 1.80-1.54 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 179.72(s), 179.10(s), 135.52(d), 135.46(d), 135.33(d), 134.54(d), 134.48(d), 130.04(s), 129.77(s), 117.99(t), 117.85(t), 117.19(t), 116.94(t), 53.53(d), 53.27(d), 45.75(s), 45.39(s), 44.26(t), 43.40(t), 33.02(t), 30.91(t), 29.87(t), 29.40(t), 27.56(t), 27.39(t), 19.68(t), 19.27(t); MS (EI) 299, 281, 257, 233, 219, 201, 177, 159, 149, 119, 105.
Compound 119d: 2-(1-Allylcyclopent-2-enyl)-4-pentenoic acid

Ester 103d (0.193 g, 0.936 mmol) was dissolved in 8.0 mL of toluene and cooled at -78 °C under a stream of nitrogen. KHMDS (2.0 mL, 0.5M in toluene, 1.05 mmol) was added dropwise. The resulting solution was stirred 15 min and was added TMSCl (0.19 mL, 1.5 mmol). The solution was allowed to warm up slowly at room temperature and then refluxed 13 h. The reaction mixture was cooled to a room temperature and 20.0 mL of 10% HCl added. The mixture was stirred for 10 min and extracted with dichloromethane (4 x 50.0 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated under reduced pressure. Flash chromatography on silica gel (2% EtOAc in hexanes with 1% AcOH) afforded 142 mg (74%) of Ireland-Claisen product 119d as a mixture of 1.3 : 1 of diastereomers. IR (film) 3600-2300 (COOH), 2952, 1705, 1639; ¹H NMR (300 MHz, CDCl₃) δ 5.83-5.65 (m, 3.5H), 5.44-5.41 (m, 0.5H), 5.09-4.98 (m, 4H), 2.55 (dd, J = 11.5, 3.4 Hz, 1H), 2.40-1.90 (m, 7H), 1.77-1.60 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 181.11(s), 181.03(s), 135.72(d), 135.63(d), 135.30(d), 134.86(d), 134.71(d), 134.69(d), 131.85(d), 131.48(d), 117.73(t), 117.69(t), 116.64(t), 116.56(t), 54.54(s), 54.32(s), 53.33(d), 52.48(d), 43.15(t), 43.04(t), 32.50(t), 32.41(t), 32.15(t), 32.09(t), 31.09(t), 30.15(t); MS (ci/iso) 207, 107.

Compound 119f: 2-(1-Allyl-2-bromocyclopent-2-enyl)-4-pentenoic acid

Ester 103f (0.142 g, 0.50 mmol) was dissolved in toluene (7.0 mL) and the resulting solution was cooled to -78 °C under a stream of nitrogen. KHMDS (1.2 mL, 0.5M in toluene, 0.60 mmol) was then added dropwise. The resulting solution was stirred for 15 minutes before a mixture of TMSCl (0.10 mL, 0.79 mmol) and Et₃N (0.14 mL, 1.0 mmol) diluted in 3.0 mL of toluene was added via canula. The solution was allowed to warm up slowly to room temperature and then refluxed 7 h. The reaction mixture was cooled to room temperature and 20 mL of 10% HCl was added. The mixture was stirred for 10 minutes then extracted with dichloromethane (4 x 50 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to give 137 mg of crude product. Flash chromatography afforded Ireland-Claisen product 119f as a colorless oil (58 mg, 41%) and a mixture of 4.6:1 of diastereomers. IR
(film) 3500-2300 (br), 3077, 2926, 2853, 1706, 1641 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.99 (t, J = 2.5 Hz, 0.82H), 5.89 (t, J = 2.5 Hz, 0.18H), 5.83-5.60 (m, 2H), 5.14-5.00 (m, 4H), 2.72 (dd, J = 8.7, 6.2 Hz, 0.82H), 2.67-2.61 (m, 0.18H), 2.48-2.00 (m, 7H), 1.85-1.76 (m, 1H); major diastereomer ¹³C NMR (75 MHz, CDCl₃) δ 179.1(s), 135.0(d), 133.6(d), 133.2(d), 126.7(s), 118.7(t), 117.3(t), 56.5(s), 52.0(d), 41.2(t), 31.6(t), 30.9(t), 26.4(t); MS (ci/iso) 285, 267, 245, 221, 205, 187, 159, 117.

Compound 120a: 2-(1-Allylcyclohex-2-enyl)-4-pentenoic acid methyl ester

Acid 119a (0.107 g, 0.486 mmol) was dissolved in ether, reacted with an excess of diazomethane and stirred for 30 min. The solution was concentrated under reduced pressure to obtain 0.107 g of 120a in quantitative yield as a yellowish oil and a mixture of 3:2 of diastereomers: IR (film) 3077, 3016, 2937, 2838, 1740, 1640, 1436, 1360, 1159 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.87-5.59 (m, 3H), 5.32-5.28 (m, 0.7H), 5.07-4.94 (m, 4.3H), 3.64 and 3.60 (2s, 3H), 2.57-2.17 (m, 5H), 1.95-1.89 (m, 2H), 1.78-1.44 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 174.68(2C, s), 136.19(d), 136.14(d), 134.82(d), 134.58(d), 132.42(d), 132.05(d), 128.68(d), 128.01(d), 117.67(t), 117.60(t), 116.35(t), 116.26(t), 52.99(q), 52.76(q), 51.00(d), 50.92(d), 43.19(t), 42.66(t), 39.91(s), 39.44(s), 32.25(t), 31.28(t), 29.57(t), 29.18(t), 24.65(t), 18.94(t), 18.72(t); MS (ci/iso) 235, 203, 193, 175, 161, 149, 133.
Compound 120b: 2-(1- Allyl-2-methylcyclohex-2-enyl)-4-pentenoic acid methyl ester

Treatment of 119b with an excess of diazomethane in ether gave 120b as a mixture of 1.6:1 of diastereomers in quantitative yield. IR (film) 3077, 2947, 1734, 1640, 1436, 1355, 1158 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 5.72-5.65 (m, 3H), 5.08-4.93 (m, 4H), 3.66 and 3.57 (2s, 3H), 2.70-2.60 (m, 1H), 2.50-1.79 (m, 7H), 1.73-1.47 (m, 6H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 175.03(s), 174.40(s), 136.40(d), 136.25(d), 136.04(s), 135.71(d), 135.68(d), 134.79(s), 128.66(d), 127.35(d), 116.60(t), 116.51(t), 116.43(t), 116.10(t), 53.50, 52.61, 51.15, 50.90, 43.77(t), 43.35(t), 42.96(s), 42.67(s), 33.16(t), 31.16(t), 29.71(t), 28.97(t), 25.27(t), 25.15(t), 19.96(t), 19.88(t), 19.49(q), 18.81(q); MS (ci/iso) 249, 207, 189, 175, 147, 135, 119, 105.

Compound 120c: 2-(1- Allyl-2-bromocyclohex-2-enyl)-4-pentenoic acid methyl ester

Acid 119c was dissolved in ether and treated with an excess of diazomethane. The solution was concentrated under reduced pressure to obtain ester 120c as a yellowish oil in quantitative yield as a 1.9:1 mixture of diastereomers. IR (film) 3078, 2948, 1734, 1640 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 6.35 (t, \(J = 4.3\) Hz, 0.7H), 6.25 (t, \(J = 4.3\) Hz, 0.3H), 5.88-5.63 (m, 2H), 5.14-4.96 (m, 4H), 3.66 (s, 2.1H), 3.62 (s, 0.9H), 2.90-2.85 (m, 1H), 2.56 (dd, \(J = 14.3, 5.6\) Hz, 0.7H), 2.45 (dd, \(J = 9.9, 5.6\) Hz, 0.3H), 2.40-2.34 (m, 1H), 2.24-2.10 (m, 2H), 2.02-1.87 (m, 3H), 1.76-1.59 (m, 3H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 174.31(s), 174.96(s), 135.79(d), 135.67(d), 135.21(d), 134.69(d), 134.56(d), 134.07(d), 130.41(s), 130.15(s), 117.77(t), 117.71(t), 116.81(t), 116.64(t), 53.44(d), 53.35(d), 51.29(q), 51.07(q), 45.85(s), 45.38(s), 44.22(t), 43.47(t), 33.23(t), 31.15(t), 29.97(t), 29.27(t), 27.59(t), 27.41(t), 19.69(t), 19.23(t); MS (ci/iso) 313, 299, 271, 253, 233, 213, 201, 173, 159, 121, 105, 91.
Compound 120d: 2-(1-Allylcyclopent-2-enyl)-4-pentenoic acid methyl ester

Treatment of 119d with an excess of diazomethane in ether gave 120d as a mixture of 1.3:1 of diastereomers in quantitative yield. IR (film) 3077, 2950, 1735, 1641, 1437, 1193, 1168 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.78-5.64 (m, 3.5H), 5.40-5.37 (m, 0.5H), 5.05-4.94 (m, 4H), 3.65 (s, 1.7H), 3.61 (s, 1.3H), 2.59-2.52 (m, 1H), 2.40-1.88 (m, 7H), 1.66-1.57 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 174.98(s), 174.87(s), 136.04(d), 135.99(d), 135.48(d), 135.09(d), 134.88(d), 134.85(d), 131.64(d), 131.18(d), 117.52(t), 117.43(t), 116.30(t), 116.24(t), 54.71(s), 54.46(s), 53.16(d), 52.47(d), 51.07(q), 50.96(q), 43.17(t), 43.09(t), 32.58(t), 32.50(t), 32.20(t), 32.11(t), 30.99(t), 30.06(t); MS (EI) 179, 119, 107, 91, 79.

Compound 120f: 2-(1-Allyl-2-bromocyclopent-2-enyl)-4-pentenoic acid methyl ester

Treatment of 119f with an excess of diazomethane gave 120f in quantitative yield as a mixture of 4.6:1 of diastereomers. IR (film) 3077, 2980, 2948, 2852, 1735, 1436, 1194, 1167 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.97 (t, J = 2.5 Hz, 0.2H), 5.86 (t, J = 2.5 Hz, 0.8H), 5.78-5.61 (m, 2H), 5.15-4.97 (m, 4H), 3.67 (s, 0.6H), 3.59 (s, 2.4H), 2.72 (dd, J = 10.5, 4.3 Hz, 0.8H), 2.67 (dd, J = 11.8, 3.1 Hz, 0.2H), 2.52-2.06 (m, 7H) 1.93-1.74 (m, 1H); major diastereomer ¹³C NMR (75 MHz, CDCl₃) δ 174.0(s), 135.4(d), 133.7(d), 132.9(d), 127.0(s), 118.5(t), 116.9(t), 56.5(s), 52.1, 51.0, 41.3(t), 31.8(t), 30.8(t), 26.5(t); MS (ci/iso) 299, 257, 219, 206, 187, 177, 159, 145, 117, 105.
Compound 121a: Spiro[5.5]undeca-3,7-diene-1-carboxylic acid methyl ester
Ester 120a (93 mg, 0.397 mmol) was dissolved in benzene (40.0 mL). This solution was sparged with nitrogen for 15 min and Grubbs’ catalyst (23 mg, 27.9 μmol) added. After stirring for 3 h at room temperature, the solvent was removed under reduced pressure to obtain a black oil. The crude product was purified on silica gel (3% ether in hexanes) to give 121a (75 mg, 91%) as a mixture of diastereomers: IR (film) 3025, 2926, 1737 cm⁻¹; Major diastereomer: ¹H NMR (300 MHz, CDCl₃) δ 5.74 (dt, J = 9.9, 3.1 Hz, 1H), 5.68 (br s, 1H), 5.64 (br s, 2H), 3.65 (s, 3H), 2.54-2.49 (m, 1H), 2.43-2.17 (m, 3H), 1.97-1.90 (m, 3H), 1.71-1.48 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 175.22(s), 131.26(d), 127.56(d), 125.31(d), 123.62(d), 51.25(q), 48.22(d), 37.82(t), 34.73(s), 34.55(t), 25.90(t), 25.16(t), 18.71(t). MS (EI) 206, 174, 152, 91, 79; HRMS (EI) m/z (M⁺) calcld for C₁₃H₁₈O₂: 206.13068, found 206.13153. Minor diastereomer: ¹H NMR (300 MHz, CDCl₃) δ 5.70-5.63 (m, 2H), 5.61-5.56 (m, 1H), 5.46 (ddd, J = 10.1, 3.1, 2.0 Hz, 1H), 3.60 (s, 3H), 2.57 (dd, J = 9.9, 5.4 Hz, 1H), 2.41-2.30 (m, 1H), 2.19-2.06 (m, 2H), 1.94-1.83 (m, 3H), 1.76-1.48 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 174.88(s), 134.45(d), 127.03(d), 125.16(d), 124.66(d), 51.02(q), 47.78(d), 36.39(t), 35.54(s), 26.22(d), 25.09(d), 25.02(d), 18.73(d).

Compound 121b: 7-Methylspiro[5.5]undeca-3,7-diene-1-carboxylic acid methyl ester
Ester 120b (181 mg, 0.773 mmol) was dissolved in 30.0 mL of CH₂Cl₂. The solution was sparged with nitrogen for 15 min and Grubbs’ catalyst added (44 mg, 53.5 μmol). The resulting solution was refluxed 16 h under N₂ and then the solvent was evaporated under reduced pressure to obtain a black oil. The crude product was purified on silica gel with 0% to 5% of ether in hexanes to give 155 mg (91%) of 121b as a mixture of diastereomers. The mixture of diastereomers was flashed again with 0% to 2% of ether in hexanes to isolate both diastereomers as pure products. IR (film) 3026, 2923, 1746, 1660, 1435, 1364, 1172 cm⁻¹; MS (EI) 220, 166, 138, 119, 93; Major diastereomer: ¹H NMR (300 MHz, CDCl₃) δ 5.79-5.75 (m, 1H), 5.62-5.52 (m, 1H), 5.47 (br s, 1H), 3.64 (s, 3H), 2.72-2.63 (m, 2H), 2.34-
2.27 (m, 1H), 2.17-2.11 (m, 1H), 2.00 (br s, 2H), 1.87-1.80 (m, 1H), 1.75-1.58 (m, 6H), 1.38-1.26 (m, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 176.35(s), 138.49(s), 126.34(d), 125.30(d), 122.47(d), 51.46, 45.21, 37.28(t), 34.65(t), 33.37(t), 26.61(t), 25.40(t), 20.89(q), 17.97(t). Minor diastereomer: 1H NMR (300 MHz, CDCl$_3$) δ 5.70-5.65 (m, 1H), 5.62-5.55 (m, 1H), 5.52 (m, 1H), 3.62 (s, 3H), 2.88 (dd, J = 11.8, 5.0, 1H), 2.45-2.31 (m, 1H), 2.27-2.12 (m, 2H), 1.95-1.84 (m, 4H), 1.72-1.67 (m, 4H), 1.63-1.39 (m, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 174.90(s), 137.60(s), 125.76(d), 125.74(d), 124.60(d), 51.15, 45.08, 38.69(t), 33.89(t), 25.74(t), 25.63(t), 25.52(t), 18.88(t), 18.79(q). HRMS (EI) m/z (M$^+$) calcd for C$_{14}$H$_{20}$O$_2$ 220.14633, found 220.14435.

Compound 121c: 7-Bromospiro[5.5]undeca-3,7-diene-1-carboxylic acid methyl ester

Ester 120c (45 mg, 0.146 mmol) was dissolved in CH$_2$Cl$_2$ (50.0 mL) and the resulting solution was sparged with nitrogen for 15 minutes. After adding Grubbs’ catalyst (12 mg, 15 µmol) the solution was stirred for 3 h at room temperature then stripped of solvent to obtain a black oil. The product was purified by flash chromatography (5 % of ether in hexanes) to obtain the major diastereomer of 121c (33 mg, 82 %). IR (film) 3028, 2944, 1737, 1436, 1204, 1163 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 6.22 (t, J = 3.7 Hz, 1H), 5.78-5.74 (m, 1H), 5.62-5.58 (m, 1H), 3.68 (s, 3H), 3.04-2.98 (m, 1H), 2.75 (d, J = 6.8 Hz, 1H), 2.29-2.03 (m, 5H), 1.76-1.42 (m, 4H); 13C NMR (75 MHz, CDCl$_3$) δ 175.00(s), 133.1(d), 130.6(s), 125.4(d), 122.0(d), 51.9, 44.5, 40.4(s), 34.9 (2xCH$_2$), 28.2(t), 26.3(t), 17.6(t); MS (EI) 205, 173, 151, 131, 91; HRMS (EI) m/z (M$^+$) calcd for C$_{13}$H$_{17}$BrO$_2$ 284.04119, found 284.04129.

Compound 121f: 1-Bromospiro[4.5]deca-1,8-diene-6-carboxylic acid methyl ester

Ester 120f (30 mg, 0.101 mmol) was dissolved in 10.0 mL of CH$_2$Cl$_2$. Nitrogen was sparged through the solution for 15 minutes and then Grubbs’ catalyst was added (4 mg, 12 µmol). The resulting solution was refluxed 5 h under nitrogen and then stripped of solvent to obtain a black oil. The crude
product was purified by flash chromatography (3% ether in hexanes) to recover the major diastereomer of 121lf (26 mg, 95%). IR (film) 3028, 2948, 2926, 2850, 1733, 1162 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.88 (t, J = 2.5 Hz, 1H), 5.71-5.62 (m, 2H), 3.63 (s, 3H), 2.84 (dd, J = 10.8, 6.3 Hz, 1H), 2.51-2.26 (m, 6H) 1.80-1.66 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 174.6(s), 131.4(d), 128.8(s), 125.1(d), 124.9(d), 52.2(s), 51.3, 44.1, 36.5(t), 29.7(t), 28.3(t), 26.5(t); MS (ci/iso) 271, 239, 211, 191, 171, 131, 117, 105.

Compound 128: (3-Allylcyclopent-2-ynyl)-5-methyl-4-hexenoate

The crude alcohol 104dl (0.530 g, 4.89 mmol) was dissolved in dichloromethane (40 mL). Diisopropylethylamine (1.5 mL, 8.61 mmol), a catalytic amount (15 mg) of DMAP, 5-methyl-hex-4-enoic acid (0.747 g, 5.83 mmol) and EDCI (1.27 g, 6.62 mmol) were added in that order. After 14 h of stirring, the resulting mixture was diluted in EtOAc (125 mL) and washed with a saturated aqueous solution of NaHCO₃ (2 x 25 mL) and brine. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (3% ether in hexanes with 2% of Et₃N) afforded ester 128 (0.604 g, 59%) as a colorless oil. IR (film) 3078, 2957, 1730, 1640; ¹H NMR (300 MHz, CDCl₃) δ 5.89-5.70 (m, 1H), 5.63 (br s, 1H), 5.46 (m, 1H), 5.07-5.01 (m, 3H), 2.84 (br s, 2H), 2.46-2.15 (m, 7H), 1.84-1.76 (m, 1H), 1.64 (s, 3H), 1.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.3(s), 150.4(s), 134.9(d), 132.7(s), 123.3(d), 122.4(d), 116.4(t), 80.6(d), 35.7(t), 34.6(t), 33.4(t), 30.3(t), 25.6(q), 23.6(t), 17.6(q); MS (ci/iso) 107, 91.
Compound 129: 2-(1-Allylcyclopent-2-enyl)-5-methyl-4-hexenoic acid methyl ester

Ester 128 (0.604 g, 2.58 mmol) was dissolved in toluene (7.0 mL) and the resulting solution cooled to -78 °C. To this mixture was added KHMDS (6.0 mL, 0.46M in toluene, 2.8 mmol) dropwise over 2 min. The resulting yellow solution was stirred for 10 minutes before a mixture of TMSCI (0.46 mL, 3.6 mmol) with Et₃N (0.72 mL, 5.2 mmol) in toluene (5.0 mL) was added via canula. The solution was allowed to warm up slowly with stirring to room temperature and then brought to reflux. After refluxing for 15 h, the reaction mixture was cooled to room temperature and 20.0 mL of 10% HCl added. The mixture was stirred for 10 minutes then extracted with dichloromethane (4 x 50 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to give a yellowish oil. Flash chromatography on silica gel (7% EtOAc in hexanes with 1% AcOH) afforded Ireland-Claisen product (0.442 g, 73%) as a colorless oil. Treatment of the pure acid in ether with diazomethane gave ester 129 as a colorless oil. IR (film) 3077, 2955, 1733, 1194, 1172; Mixture of diastereomers ¹H NMR (300 MHz, CDCl₃) δ 5.76-5.67 (m, 2H), 5.64-5.61 (m, 0.53H), 5.39-5.36 (m, 0.47H), 5.03-4.93 (m, 3H), 3.61 (s, 1.6H), 3.57 (s, 1.4H), 2.47-2.40 (m, 1H), 2.32-1.92 (m, 7H), 1.67-1.54 (m, 7H); mixture of diastereomers ¹³C NMR (75 MHz, CDCl₃) δ 175.30(s), 175.17(s), 135.60(d), 135.22(2C, d), 134.90(d), 133.18(2C, s), 131.31(d), 130.90(d), 121.54(d), 121.50(d), 117.35(t), 117.27(t), 54.64(s), 54.41(s), 53.63(d), 52.97(d), 50.97(q), 50.85(q), 43.13(t), 43.02(t), 32.43(t), 32.05(t), 30.93(t), 30.11(t), 26.52(t), 26.70(t), 25.70(2C, q), 17.58(2C, q); MS (EI) 248, 207, 139, 107; HRMS (EI) m/z (M⁺) calcd for C₁₆H₂₄O₂ 248.17763, found 248.18039.

Compound 125: Spiro[4.5]deca-1,8-diene-6-carboxylic acid methyl ester

Ester 129 (96 mg, 0.387 mmol) was dissolved in 30.0 mL of CH₂Cl₂. Nitrogen was sparged through the solution for 15 minutes and then 2nd generation Grubbs’ catalyst was added (31 mg, 36 µmol). The resulting solution was stirred 30 min under nitrogen and then stripped of solvent to obtain a black oil. The crude product was purified by flash chromatography (3% ether in hexanes) to give 125
as a mixture of diastereomers (42 mg, 56%). IR (film) 3024, 2927, 1734; 1H NMR (300 MHz, CDCl$_3$) δ 5.75 (s, 1H), 5.73-5.54 (m, 3H), 3.64 (s, 1.7H), 3.60 (s, 1.3H), 2.70 (dd, J = 10.3, 5.4 Hz, 0.42H), 2.59 (dd, J = 7.3, 6.2Hz, 0.58H), 2.60-1.86 (m, 7H), 1.70-1.54 (m, 1H); mixture of diastereomers 13C NMR (75 MHz, CDCl$_3$) δ 175.08(s), 174.96(s), 137.54(d), 135.49(d), 130.68(d), 129.96(d), 126.02(d), 125.65(d), 125.28(d), 124.47(d), 51.42(d), 51.06(d), 50.18(s), 49.50(s), 47.39(q), 46.38(q), 37.62(t), 37.09(t), 35.94(t), 31.05(t), 31.00(t), 29.56(t), 26.59(t), 26.08(t); MS (EI) 192, 160, 138, 106, 79; HRMS (EI) m/z (M$^+$) calcd for C$_{12}$H$_{16}$O$_2$ 192.11503, found 192.1171.

Compound 136: (1^R*, 2S^*, 6S^*, 7R^*)-2-Bromo-1,6-[6,7-(2H)-furan-12-one] spiro[5.5]-9-undecene

Ester 138 was dissolved in 8.0 mL of ethanol and 2.0 mL of a 10 M solution of NaOH added. The resulting mixture was refluxed 2 h and then cooled at room temperature. The solution was acidified with 10 % HCl until pH ≤ 2 and extracted with dichloromethane. The combined organic extracts were dried over MgSO$_4$, filtered and concentrated under reduced pressure. The crude was purified by flash chromatography with 10 % ether with 1 % AcOH in hexanes to obtain 34 mg (72 %) of pure carboxylic acid as a colorless oil. IR (film) 3560-2160 (br), 3027, 2926, 1698, 1422, 1218 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 11.40 (br s, COOH), 5.78-5.61 (m, 4H), 2.53 (t, J = 6.5 Hz, 1H), 2.38-2.21 (m, 3H), 1.96-1.91 (m, 3H), 1.65-1.48 (m, 4H); 13C NMR (75 MHz, CDCl$_3$) δ 181.43(s), 131.26(d), 127.86(d), 125.42(d), 123.31(d), 48.17(d), 37.40(t), 34.51(s), 34.24(t), 25.68(t), 25.13(t), 18.72(t); MS (EI) 192, 162, 138, 105; HRMS (EI) m/z (M$^+$) calcd for C$_{12}$H$_{16}$O$_2$ 192.11503, found 192.11486. The resulting acid (82.0 mg, 0.427 mmol) was dissolved in a mixture of 5.0 mL of THF with 1.0 mL of water. Solid sodium bicarbonate (72.3 mg, 0.857 mmol) was added followed by NBS (85.1 mg, 0.478 mmol) at 0 °C. The resulting mixture was stirred 1 hour and then poured into 50.0 mL of ether. The organic layer was washed with water twice, brine and dried (MgSO$_4$) to give 110 mg of crude material.

The crude was purified on silica gel with 10% EtOAc in hexanes to give 99 mg (93%, 2 steps from the ester 138) of pure bromolactone 136. IR (film) 2961, 1772, 1651; 1H NMR (300 MHz, CDCl$_3$) δ 5.65-5.57 (m, 2H), 4.20 (d, J = 8.8 Hz, 1H), 4.00-3.92 (m, CHBr, 2.71-2.68
(m, 1H), 2.59-2.53 (m, 1H), 2.34-2.20 (m, 3H), 2.07-2.02 (m, 1H), 1.95-1.88 (m, 1H), 1.84-1.67 (m, 2H), 1.54-1.35 (m, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 177.2(s), 123.6(d), 123.4(d), 88.3(d), 50.2(d), 41.5(s), 37.9(t), 34.6(t), 34.4(t), 31.6(t), 21.5(t), 20.5(t); MS (EI) 270, 191, 169, 145, 91; HRMS (EI) m/z (M$^+$) calcd for C$_{12}$H$_{15}$BrO$_2$: 270.02554, found 270.02735.

Compound 139: 2-Bromo-3-isopropenylcyclopent-2-enone

Anhydrous CeCl$_3$ (Aldrich, 99%+, 1.56 g, 6.33 mmol) was quickly ground to a fine powder then placed in a 100 mL flask equipped with a stirring bar. The flask was immersed in an oil bath and heated gradually to 140-145 °C under reduced pressure. The CeCl$_3$ was stirred under these conditions for 4 h. The flask was cooled to room temperature under a stream of nitrogen before 40.0 mL of THF was added slowly with vigorous stirring and ice-bath cooling. The ice-bath was removed and the white milky suspension was stirred at room temperature for 12 h. A solution of 2-bromo-3-ethoxycyclopent-2-enone (1.00 g, 4.90 mmol) in THF (15 mL) was added and the resulting suspension stirred at room temperature 4 h. A 0.5M solution of isopropenylmagnesium bromide (12.0 mL, 6.00 mmol) in THF was then introduced dropwise at 0 °C over 10 minutes and the resulting mixture allowed to warm up slowly to room temperature. After 10 minutes of stirring, the reaction mixture was quenched with 10 mL of a saturated aqueous solution of ammonium chloride and 10 mL of 10% HCl was added to dissolve all salts formed. The resulting solution was extracted with ether (2 x 50 mL). The combined organic phases were washed with water (2 x 20 mL), a saturated aqueous solution of sodium bicarbonate, brine, dried with MgSO$_4$ and filtered. The filtrate was concentrated under reduced pressure to obtain a red oil. Flash chromatography (15% EtOAc in hexanes) gave compound **139** (671 mg, 68%) as a yellowish oil. IR (film) 3010, 2977, 1723; 1H NMR (300 MHz, CDCl$_3$) δ 5.67 (br s, 1H), 5.45 (br s, 1H), 2.81 (t, J = 4.3 Hz, 2H), 2.56 (t, J = 4.3 Hz, 2H), 2.19 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 202.0(s), 168.6(s), 139.4(s), 121.7(t), 121.5(s), 32.1(t), 29.9(t), 21.6(q); MS (EI) 200, 187, 159, 123, 91; HRMS (EI) m/z (M$^+$) calcd for C$_8$H$_9$BrO: 199.98368, found 199.98377.
Compound 141: (2-Bromo-3-isoprenylcyclopent-2-enyl)-5-hexenoate

Enone 139 (0.500 g, 2.50 mmol) was dissolved in MeOH (10 mL) and CeCl₃·7H₂O (1.00 g, 2.68 mmol) added. The solution was cooled with an ice bath and sodium borohydride (0.100 g, 2.64 mmol) added in small portions. The solution was stirred for 15 minutes then quenched with 20 mL of a saturated aqueous solution of ammonium chloride. Water was added until all salts had dissolved and the resulting mixture was extracted with EtOAc (3 x 75 mL). The combined organic phases were washed with water (3x 50 mL), brine, dried over MgSO₄ and filtered. Removal of solvent in vacuo afforded 140 as a yellowish oil (489 mg, 97%). ¹H NMR (300 MHz, CDCl₃) δ 5.19 (br s, 1H), 5.15 (br s, 1H), 4.72 (t, J = 6.2 Hz, 1H), 2.68-2.58 (m, 1H), 2.48-2.26 (m, 3H), 2.05 (s, 3H), 1.87-1.77 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 142.2(s), 139.3(s), 120.0(s), 117.5(t), 81.0(d), 32.8(t), 30.3(t), 21.9(q). The crude alcohol 140 (0.479 g, 2.37 mmol) was dissolved in dichloromethane (20 mL). DIPEA (0.83 mL, 4.76 mmol), a catalytic amount (15 mg) of DMAP, 5-hexenoic acid (0.375 g, 3.29 mmol) and EDCI (0.727 g, 3.79 mmol) were added in that order. After 36 h of stirring, the resulting mixture was diluted in EtOAc (125 mL) and washed with a saturated aqueous solution of NaHCO₃ (2 x 25 mL), water and brine. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography (2% ether in hexanes) afforded ester 141 (0.647 g, 92%) as a colorless oil. IR (film) 3076, 2943, 1734, 1641; ¹H NMR (300 MHz, CDCl₃) δ 5.84-5.71 (m, 2H), 5.22 (br s, 1H), 5.17 (br s, 1H), 5.05-4.96 (m, 2H), 2.70-2.58 (m, 1H), 2.51-2.32 (m, 4H), 2.14-2.06 (m, 5H), 1.87-1.70 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.1(s), 145.1(s), 139.0(s), 137.6(d), 118.0(t), 115.4(t), 114.5(s), 82.7(d), 33.7(t), 33.1(t), 33.0(t), 28.7(t), 24.1(t), 21.9(q); MS (EI) 219, 186, 123, 105; HRMS (EI) m/z (M⁺) calcd for C₁₄H₁₉BrO₂: 298.05684, found 298.05421.
5.1.4 Procedures and characterizations of compounds relative to chapter 4

Compound 150: 3-Methoxymethoxymethylcyclopent-2-enyl acetate

To a solution of Bu$_3$SnCH$_2$OMOM 87 (1.82 g, 4.98 mmol) in THF at -78 °C was added dropwise n-BuLi (2.35 M in hexanes, 2.1 mL, 4.94 mmol) under a stream of nitrogen. After stirring 10 minutes, a solution of enone 112d (0.617 g, 4.89 mmol) in 5.0 mL of THF was added and the resulting mixture was stirred 30 min. The reaction was deemed complete by TLC (EtOAc:hexanes 1:1) and quenched with 1.0 mL of glacial acetic acid. The cooling bath was removed and the mixture allowed to warm up slowly at room temperature. The solution was diluted in 75.0 mL of ether, washed with 10.0 mL of 5% HCl, a saturated aqueous solution of NaHCO$_3$ and then brine. The organic layer was dried over Na$_2$SO$_4$, filtered and concentrated under reduced pressure. The crude material was flashed on silica gel with 30% to 50% of EtOAc in hexanes to give 487 mg (63%) of a colorless oil which was reduced following Luche protocol in quantitative yield. The crude so obtained after reduction was diluted in 10.0 mL of dry dichloromethane. Triethylamine (0.620 mL, 4.45 mmol) and a catalytic amount of DMAP (25 mg) were charged followed by acetic anhydride (0.310 mL, 3.29 mmol). The resulting solution was stirred 16 h and then quenched with 1.0 mL of MeOH and stirred 30 min more. 30.0 mL of dichloromethane was added and the organic phase was washed with 15.0 mL of a saturated aqueous solution of NaHCO$_3$ and brine. The organic layer was dried over MgSO$_4$, filtered and concentrated in vacuo to obtain 418 mg (70%) of 150 as a colorless oil. IR (film) 2941, 1717 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ 5.74 (s, 1H), 5.66 (br s, 1H), 4.63 (s, 2H), 4.13 (s, 2H), 3.36 (s, 3H), 2.52-2.22 (m, 3H), 2.00 (s, 3H), 1.91-1.83 (m, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 170.9(s), 148.3(s), 124.7(d), 95.9(t), 80.2(d), 65.6(t), 55.3(q), 31.2(t), 30.2(t), 21.2(q); MS (EI) 138, 119, 96, 79.
Compound 151: 1-(Methoxymethoxymethylcyclopent-2-ene) acetic acid

Ester 150 (0.212 g, 1.06 mmol) was dissolved in 7.0 mL of toluene and cooled at -78°C under a stream of nitrogen. KHMDS (2.4 mL, 0.49 M in toluene, 1.18 mmol) was added in one portion. The resulting solution was stirred 10 min and was added TMSCl (0.175 mL, 1.38 mmol). The solution was allowed to warm up slowly at room temperature over an hour and then refluxed 90 min. The reaction mixture was cooled to room temperature and 2 mL of glacial acetic acid added. The mixture was stirred for 10 min and then concentrated under reduced pressure. The crude was purified on silica gel with 5% to 15% EtOAc in hexanes with 2% of AcOH to afford 79 mg (37%) of Ireland-Claisen product 151 as a colorless oil with 85 mg of starting material 150. IR (film) 3683-2299 (br), 2937, 1706, 1044 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.83 (dt, J = 5.6, 2.5 Hz, 1H), 5.69 (dt, J = 5.6, 1.9 Hz, 1H), 4.63 (s, 2H), 3.49 (s, 2H), 3.36 (s, 3H), 2.56 (s, 2H), 2.41-2.36 (m, 2H), 1.89-1.84 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 178.0(s), 134.5(d), 132.3(d), 96.6(t), 73.2(t), 55.2(q), 51.7(s), 40.8(t), 32.4(t), 31.4(t); MS (ci/iso) 201, 183, 169, 151, 139, 125, 107.

Compound 152: (1R⁺, 2S⁺, 5R⁺)-2-Bromo-5-(methoxymethoxymethyl)-8-oxabicyclo[3.3.0]octan-7-one

Acid 151 (91 mg, 0.455 mmol) was dissolved in a mixture of 5.0 mL of THF with 1.0 mL of a saturated aqueous solution of sodium bicarbonate. NBS (135 mg, 0.758 mmol) was added and the resulting mixture was stirred 1 hour at room temperature. The reaction mixture was diluted in EtOAc and washed with water and brine, dried over MgSO₄ and filtered. The residue (185 mg) isolated after concentration in vacuo was purified on silica gel with 20% EtOAc in hexanes to give 115 mg (91%) of pure bromolactone 152. IR (film) 2932, 1778; ¹H NMR (300 MHz, CDCl₃) δ 4.95 (s, 1H), 4.67 (s, 2H), 4.39 (d, J = 5.0Hz, 1H), 3.67 and 3.66 (2s, 2H), 3.39 (s, 3H), 3.01 (d, J = 18.6 Hz, 1H), 2.41 (d, J = 18.6Hz, 1H), 2.33-2.24 (m, 1H), 2.19-2.08 (m, 2H), 1.84-1.76 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 175.5(s), 96.4(t), 91.6(d), 72.2(t), 55.5(q), 52.1(d), 49.8(s), 38.4(t), 35.1(t), 33.0(t), MS (ci/iso) 279.
Compound 153: (1R*, 2S*, 5R*, 6R*)-2-Bromo-6-[(1S*)-1-hydroxy-1-allyl]-5-(methoxymethoxymethyl)-8-oxabicyclo[3.3.0]octan-7-one

To a solution of DIPA (75 μL, 0.53 mmol) in 4.0 mL of THF was added at 0°C n-BuLi (2.35 M in hexanes, 190 μL, 0.45 mmol) under a stream of nitrogen and stirred 5 min. The resulting mixture was then cooled at -78°C and a solution of ester 152 (112 mg, 0.403 mmol) in 10 mL of THF was added via a canula dropwise. The solution was kept stirring for 10 min and freshly distilled acrolein (30 μL, 0.45 mmol) added neat with a syringe. After stirring 15 min, the reaction mixture was quenched with 0.5 mL of AcOH, then allowed to warm up slowly at room temperature and diluted in 50 mL of ether. The organic phase was washed with 10 mL of 5% HCl, a saturated aqueous solution of NaHCO₃, brine and dried over MgSO₄. The organic was concentrated in vacuo to give 116 mg of crude which was purified on silica gel with 25% to 40% ethyl acetate in hexanes to afford 70 mg (52%) of 153 as a single diastereomer. IR (film) 3447 (w), 2948, 2887, 1771, 1152, 1109, 1040 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.16 (ddd, J = 16.7, 10.5, 5.0 Hz, 1H), 5.41 (dt, J = 16.7, 1.2 Hz, 1H), 5.27 (dt, J = 10.5, 1.9 Hz, 1H), 4.85 (d, J = 2.5 Hz, 1H), 4.71-4.65 (m, 3H), 4.31-4.27 (m, 1H), 4.01 (d, J = 9.9 Hz, 1H), 3.73 (d, J = 9.9 Hz, 1H), 3.40 (s, 3H), 3.20 (d, J = 6.8 Hz, OH), 2.68 (d, J = 6.2 Hz, 1H), 2.42-2.29 (m, 1H), 2.19-2.09 (m, 2H), 1.93-1.84 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 175.1(s), 138.2(d), 116.0(t), 96.7(t), 91.4(d), 70.3 (d), 70.3 (t), 56.1(d), 54.4(q), 52.4(s), 51.0(d), 36.0(t), 34.0(t); MS (ci/iso) 335, 319, 305, 287, 274.

Compound 154: 3-[(methoxymethoxymethyl)cyclopent-2-enyl]-5-benzzyloxypentanoate

To 3-methoxymethoxymethyl-cyclopent-2-enol (2.35 mmol, theoretical yield) was dissolved in 20 mL of dichloromethane (see synthesis of 150). DIPEA (0.85 mL, 4.8 mmol), a catalytic amount (1 crystal) of DMAP, 5-benzzyloxy-pentanoic acid (0.624 g, 3.00 mmol) and EDCI (0.500 g, 2.61 mmol) were added in that order. After 24 h of stirring at room temperature, the resulting mixture was diluted in 100 mL of EtOAc and washed with a saturated aqueous solution of NaHCO₃ (2 x 25 mL), water and brine. The organic layer was dried over MgSO₄, filtered and concentrated in
vacuo. Flash chromatography (10% to 20% of EtOAc in hexanes) afforded ester 154 (510 mg, 62 %) as a colorless oil. IR (film) 3071, 3005, 2928, 1732; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.28 (m, 5H), 5.74 (br s, 1H), 5.69 (br s, 1H), 4.64 (s, 2H), 4.48 (s, 2H), 4.11 (s, 2H), 3.45 (t, J = 6.2 Hz, rotamer, 2H), 3.35 (s, 3H), 2.52-2.26 (m, 5H), 1.90-1.82 (m, 1H), 1.76-1.62 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 177.4(s), 148.2(s), 138.5(s), 128.3(d), 127.5(d), 127.4(d), 124.8(d), 95.9(t), 80.1(d), 72.8(t), 69.8(t), 65.6(t), 55.3(q), 34.2(t), 31.2(t), 30.3(t), 29.1(t), 21.7(t); MS (ci/iso) 287 (-OMOM).

Compound 155: 2-[1-(methoxymethoxymethyl)cyclopent-2-enyl]-5-benzyloxypentanoic acid
Ester 154 (0.463 g, 1.33 mmol) was dissolved in toluene (7.0 mL) and the resulting solution was cooled to -78 °C under a stream of nitrogen. KHMDS (3.2 mL, 0.5M in toluene, 1.6 mmol) was then added rapidly. The resulting solution was stirred for 15 minutes before a mixture of TMSCl (0.27 mL, 2.1 mmol) and Et₃N (0.37 mL, 2.7 mmol) diluted in 3.0 mL of toluene was added via a canula. The solution was allowed to warm slowly to room temperature and then refluxed 15 h. The reaction mixture was cooled at 0 °C and 20 mL of 10% HCl was added. The mixture was stirred for 5 minutes then extracted with dichloromethane (4 x 50 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to give 600 mg of crude product. Flash chromatography with 10 % to 20 % EtOAc in hexanes with 1 % of acetic acid afforded Ireland-Claisen product 155 (392 mg, 85%) as a mixture of 3:2 of diastereomers. IR (film) 3350-2350, 1702; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 5.84-5.79 (m, 1H), 5.71-5.69 (m, 0.5H), 5.54-5.52 (m, 0.5H), 4.60 (d, J = 3.1 Hz, 2H), 4.49 (s, 2H), 3.51-3.38 (m, 4H), 3.34 and 3.33 (2s, 3H), 2.70-2.68 (m, 1H), 2.45-2.32 (m, 2H), 2.11-1.90 (m, 1H), 1.79-1.58 (m, 5H); MS (ci/iso) 349, 317, 299, 287, 269, 255, 241, 209, 197, 179, 165, 149, 131, 119, 107.
Compound 156: \((1R^*, 2S^*, 5R^*, 6R\) and 6S)-6-(3-benzoxycarbonyl)-2-bromo-5-(methoxymethoxymethyl)-8-oxabicyclo[3.3.0]octan-7-one

Acid 155 (335 mg, 0.964 mmol) was dissolved in a mixture of 10.0 mL of THF with 1.0 mL of a saturated aqueous solution of sodium bicarbonate. NBS (186 mg, 1.04 mmol) was added and the resulting mixture was stirred 1 hour at room temperature. The reaction mixture was diluted in 75 mL of EtOAc and washed with a saturated aqueous solution of sodium bicarbonate (2x), water, brine and dried over MgSO₄ and filtered. The residue obtained after concentration *in vacuo* was purified on silica gel with 20% EtOAc in hexanes to give 371 mg (90%) of pure bromolactone 156 as a mixture of diastereomers.

\[
\text{IR (film) 3005, 2975, 2935, 1772.} \quad ^1\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 7.34-7.24 (m, 5H), 4.78 (d, J = 3.1 Hz, 1H), 4.57 (s, 2H), 4.46 (s, 2H), 4.22-4.18 (m, 1H), 3.71 (d, J = 9.3 Hz, rotamer, 1H), 3.56-3.43 (m, 3H), 3.32 (s, 3H), 2.39 (t, J = 6.8 Hz, 1H), 2.33-2.22 (m, 1H), 2.12-1.65 (m, 7H);
\]

\[
\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 177.5(s), 138.3(s), 128.3(d), 127.6(d), 127.5(d), 96.7(t), 91.8(d), 73.0(t), 70.4(t), 69.9(t), 55.8(q), 51.9(s), 51.2(CHBr), 46.7(d), 34.4(t), 33.8(t), 27.8(t), 22.7(t); MS (ci/iso) 427, 397, 367, 319, 305, 275, 259, 241.
\]

\[
\text{IR (film) 3002, 2965, 2935, 1776.} \quad ^1\text{H NMR (300 MHz, CDCl}_3\text{)} \delta 7.37-7.28 (m, 5H), 4.91 (s, 1H), 4.66 (d, J = 6.8 Hz, rotamer, 1H), 4.62 (d, J = 6.8 Hz, rotamer, 1H), 4.50 (s, 2H), 4.38-4.37 (m, 1H), 3.75 (d, J = 9.9 Hz, rotamer, 1H), 3.56 (d, J = 9.9 Hz, rotamer, 1H), 3.53-3.46 (m, 2H), 3.37 (s, 3H), 3.00 (t, J = 6.8 Hz, 1H), 2.34-2.09 (m, 2H), 1.99-1.89 (m, 2H), 1.86-1.51 (m, 4H);
\]

\[
\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 177.6(s), 138.3(s), 128.3(d), 127.6(2xCH), 96.4(t), 88.8(d), 72.9(t), 71.3(t), 69.8(t), 55.5(q), 53.8(s), 51.6(CHBr), 42.3(d), 33.5(t), 27.8(t), 27.7(t), 23.7(t); MS (ci/iso) 427, 397, 367, 319, 305, 275, 263, 241.
\]
Compound 159: 3-Hydroxy-4-pentenoic acid 3-allylcyclohex-2-enyl ester

Silyl ether 160 was dissolved in 10.0 mL of THF and TBAF (2.0 mL, 1 M in THF, 2.0 mmol) added at 0°C. The reaction mixture was kept stirring 1 h at 0°C and then diluted in 50.0 mL of ether, washed with water (2x) and brine. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo to afford 209 mg of crude alcohol. Flash chromatography with 10 % to 30 % EtOAc in hexanes with 1 % TEA gave 192 mg (92 %) of pure 159 as a colorless oil. Mixture of diastereomers: IR (film) 3450 (br), 3079, 2938, 1727, 1668 cm⁻¹; °H NMR (300 MHz, CDCl₃) δ 5.94-5.70 (m, 2H), 5.48 (br s, 1H), 5.35-5.28 (m, 2H), 5.16 (dt, J = 10.5, 1.9 Hz, 1H), 5.09-5.03 (m, 2H), 4.58-4.49 (m, 1H), 3.05 (dd, J = 8.1, 4.3 Hz, 1H), 2.73 (d, J = 6.8 Hz, 2H), 2.63-2.46 (m, 2H), 2.06-1.90 (m, 2H), 1.81-1.59 (m, 4H); °C NMR (75 MHz, CDCl₃) δ 171.99(s), 143.53(s), 143.44(s), 138.72(d), 135.41(d), 120.07(d), 120.02(d), 116.62(t), 115.30(t), 69.29(d), 68.92(d), 68.88(d), 41.95(t), 41.33(t), 41.30(t), 28.23(t), 28.07(t), 18.98(t), 18.95(t); MS (ci/iso) 238, 195, 168, 154, 145, 121, 112.

Compound 160: 3-(tert-Butyldimethylsilyloxy)-4-pentenoic acid 3-allylcyclohex-2-enyl ester

Allylic alcohol 104a (0.197 g, 1.43 mmol) was dissolved in 12.0 mL of dichloromethane. Diisopropylamine (0.42 mL, 2.41 mmol), a catalytic amount (10 mg) of 4-dimethylaminopyridine (DMAP), 3-(tert-Butyldimethylsilyloxy)-4-pentenoic acid 94 (0.276 g, 1.20 mmol) and EDCI (0.368 g, 1.92 mmol) were added in that order. After 26 h of stirring under nitrogen, the resulting mixture was diluted in 100.0 mL of ether and washed with a saturated aqueous solution of sodium bicarbonate (2x 20.0 mL), water/brine 1:1, and brine. The organic layer was dried over MgSO₄, filtered and concentrated in vacuo. Flash chromatography on silica gel with 5 % of ether in hexanes afforded 311 mg (74 %) of 160 as a colorless oil. IR (film) 3079, 2951, 2857, 1731, 1638 cm⁻¹; °H NMR (300 MHz, CDCl₃) δ 5.89-5.71 (m, 2H), 5.48 (br s, 1H), 5.27-5.19 (m, 2H), 5.07-5.02 (m, 3H), 4.61-4.55 (m, 1H), 2.72 (d, J = 6.8 Hz, 2H), 2.57-2.38 (m, 2H), 2.05-1.86 (m, 2H), 1.81-1.58 (m, 4H), 0.87 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); °C NMR (75 MHz, CDCl₃) δ 170.80(s), 142.88(s), 142.82(s), 140.35(d), 140.33(d), 135.57(d), 112.
120.63(d), 120.57(d), 116.51(t), 114.55(t), 70.92(d), 70.88(d), 68.86(d), 68.83(d), 43.94(t), 43.92(t), 42.0(t), 28.28(t), 28.26(t), 28.18(t), 28.15(t), 25.75 (3xCH₃), 19.11(t), 18.09(s), 18.07(s), -4.4(q), -5.1(q); MS (ci/iso) 231, 213, 196, 173, 137, 121.

Compound 162: 3-Bromo-1-(tert-butyldimethylsilyloxy)-2-cyclopentene

3-Bromo-cyclopent-2-enol⁹⁵,⁹⁶ (0.327 g, 2.02 mmol) was dissolved in 7 ml of DMF with imidazole (0.275 g, 4.04 mmol) and DMAP (1 crystal). TBSCI (0.375 g, 2.49 mmol) was then added and the resulting mixture stirred overnight. The solution was first poured into 75 mL of water and extracted with hexanes (3x 75 mL). The combined organic layers was washed with water and brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography eluting with 2% of ether in hexanes to obtain 342 mg (62%) of a colorless oil. IR (film) 3071, 2932, 1621; ¹H NMR (300 MHz, CDCl₃) δ 5.85 (dd, J = 4.3, 1.9 Hz, 1H), 4.83-4.80 (m, 1H), 2.81-2.69 (m, 1H), 2.55-2.45 (m, 1H), 2.38-2.27 (m, 1H), 1.86-1.75 (m, 1H), 0.89 (s, 9H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 134.1(d), 125.8(s), 76.8(d), 38.3(t), 34.5(t), 25.9(5xCH₃), 18.2(s). HRMS (EI) m/z (M⁺) calcd for C₁₁H₂₁BrOSi: 276.05450, found 276.05641.

Compound 163: 1-(tert-Butyldimethylsilyloxy)3-(1-methoxymethoxyallyl)-2-cyclopentene

Compound 162 (185 mg, 0.673 mmol) was dissolved in THF and cooled at -78 °C. A 1.4 M solution of t-BuLi in pentane (1.0 mL, 1.4 mmol) was added dropwise and the resulting solution stirred 30 min under nitrogen atmosphere. Acrolein (50 μL, 0.749 mmol) was added and the reaction stirred 10 min before to be quenched with a saturated aqueous solution of ammonium chloride. The mixture was extracted with ethyl acetate (3x) and the combined organic phases were washed with water, brine and dried over MgSO₄ and filtered. The filtrate was concentrated under reduced pressure to give 135 mg of crude material. The residue was dissolved in 5 mL of DCM and DIPEA (0.230 mL, 1.32 mmol) was added followed by chloromethyl methyl ether⁹⁷ (75 μL,
0.987 mmol). After stirring 20 h at room temperature, the reaction mixture was diluted in 30 mL of dichloromethane then washed with a saturated aqueous solution of sodium bicarbonate, water and brine. The organic layer was dried over MgSO$_4$, filtered and concentrated in vacuo to obtain a residue which was purified by flash chromatography (2.5% to 5% ether in hexanes) to give 117 mg (58%, 2 steps) of product 163. IR (film) 3072, 2928, 1641; 1H NMR (300 MHz, CDCl$_3$) δ 5.83-5.70 (m, 1H), 5.67-5.61 (m, 1H), 5.30-5.19 (m, 2H), 4.91 (m, 1H), 4.68-4.65 (m, 1H), 4.62-4.59 (m, 2H), 3.36 (s, 3H), 2.46-2.38 (m, 1H), 2.31-2.09 (m, 2H), 1.75-1.64 (m, 1H), 0.88 (s, 9H), 0.06 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 145.60(s), 145.45(s), 136.23(d), 136.16(d), 130.21(d), 129.99(d), 117.45(t), 117.31 (t), 93.51(t), 93.42(t), 77.92(d), 77.84(d), 75.50(d), 55.40 (q), 34.03(t), 33.96(t), 30.16(t), 29.96(t), 25.96(3xCH$_3$), -4.59(2xCH$_3$); MS (ci/iso) 297, 253, 237, 211, 179, 167, 149, 135, 119, 105.

Compound 164: 3-[1-(methoxymethoxyallyl)cyclopent-2-enyl]-5-benzyloxypentanoate

To a solution of compound 163 (120 mg, 0.402 mmol) in 5 ml of THF was added TBAF (1 M in THF, 0.5 mL, 0.500 mmol). The solution was stirred 2 h under nitrogen atmosphere and then poured into 25 mL of water. The product was extracted three times with ethyl acetate and the combined organics were washed with water, brine, dried over MgSO$_4$ and filtered to give 97 mg of a yellowish oil after concentration in vacuo. The crude alcohol so obtained (0.402 mmol, theoretical yield) was dissolved in 7 mL of dichloromethane. DIPEA (0.14 mL, 0.80 mmol), a catalytic amount (1 crystal) of DMAP, 5-benzyloxy-pentanoic acid (0.167 g, 0.802 mmol) and EDCI (0.125 g, 0.652 mmol) were added in that order. After 18 h of stirring at room temperature, the resulting mixture was diluted in EtOAc (75 mL) and washed with a saturated aqueous solution of NaHCO$_3$ (25 mL), water and brine. The organic layer was dried over MgSO$_4$, filtered and concentrated in vacuo. Flash chromatography (5% ether in hexanes buffered with 5% of triethylamine) afforded ester 164 (150 mg, 100 %) as a colorless oil. IR (film) 3069, 2975, 1728; 1H NMR (300 MHz, CDCl$_3$) δ 7.34-7.26 (m, 5H), 5.82-5.73 (m, 2H), 5.71-5.67 (m, 1H), 5.32-5.23 (m, 2H), 4.70-4.67 (m, 2H), 4.60 (dd, J = 6.8, 2.5 Hz, 1H), 4.49 (s, 2H), 3.47 (t, J = 6.2 Hz, 2H), 3.37 (s, 3H), 2.55 (m, 5H), 1.87-1.80 (m, 1H), 1.76-1.60 (m, 4H);
13C NMR (75 MHz, CDCl$_3$) δ 173.45(s), 150.09(s), 150.07(s), 138.47(s), 135.84(d), 135.76(d), 128.32(d), 127.56(d), 127.48(d), 125.20(d), 125.17(d), 117.96(t), 117.81(t), 93.50(t), 80.01(d), 79.99(d), 75.25(d), 75.20(d), 72.83(t), 69.78(t), 55.44(q), 34.18(t), 30.27(t), 30.16(t), 30.09(t), 29.10(t), 21.72(t); MS (ci/iso) 313 (-OMOM).

Compound 165: (3-allylcyclohex-2-enyl) acetate

3-Isopropoxy-cyclohex-2-enone (3.717 g, 24.1 mmol) was dissolved in 50.0 mL of THF and cooled at -78 °C with an acetone dry-ice bath. A solution of 2M allylmagnesium chloride (15.0 mL, 30.0 mmol) was added dropwise over 30 min and the reaction mixture allowed to warm up slowly at room temperature. After 30 min of stirring at room temperature, 100.0 mL of ether was added and the solution quenched with 25 mL of 10% HCl. The resulting mixture was extracted with ether (3x 50.0 mL). The combined organic extracts were washed with a saturated aqueous solution of sodium bicarbonate, water, brine and dried over MgSO$_4$, filtered and concentrated under reduced pressure. The crude so obtained as a yellowish oil was dissolved in 60.0 mL of MeOH and CeCl$_3·7$H$_2$O (8.94 g, 24.1 mmol) added. The solution was cooled with an ice bath and sodium borohydride (0.636 g, 16.8 mmol) added by small portions over 5 min to control gas evolution. The solution was kept stirring for 15 min, concentrated under reduced pressure to one third volume then quenched with 20.0 mL of a saturated aqueous solution of ammonium chloride. Water was added until all salts formed had dissolved and the product was extracted with ether (3x 100 mL). The combined organic extracts were washed with water (3x 25 mL), brine, dried over MgSO$_4$ and filtered to give 3.75 g of a yellowish oil after concentration in vacuo. 1.835 g (approx. 12.0 mmol) of crude was dissolved in 20.0 mL of dry dichloromethane. Triethylamine (2.5 mL, 18.0 mmol) and DMAP (0.150 g, 1.22 mmol) were added and the resulting mixture stirred to dissolve all materials. Acetic anhydride (1.40 mL, 14.8 mmol) was added and the solution was stirred 7 h under a stream of nitrogen. The reaction was quenched with 1 mL of methanol and stirred 10 min. The organic phase was washed with a saturated aqueous solution of sodium bicarbonate, dried over MgSO$_4$ and concentrated in vacuo. The crude product was purified on silica gel with 5 % to 10 % EtOAc in hexanes to afford 1.704 g (80% for 3 steps) of 165 as a colorless
oil. IR (film) cm⁻¹ 3077, 2938, 1725; ¹H NMR (300 MHz, CDCl₃) δ 5.84-5.71 (m, 1H), 5.49-5.48 (m, 1H), 5.27-5.26 (m, 1H), 5.08-5.06 (m, 1H), 5.03-5.02 (m, 1H), 2.73 (d, J = 6.8 Hz, 2H), 2.04 (s, 3H), 1.98-1.59 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8(s), 142.9(s), 135.5(d), 120.5(d), 116.5(t), 68.7(d), 42.0(t), 28.2(t), 28.1(t), 21.4(q), 19.1(t); MS (EI) 180, 162, 139, 120, 105, 97, 91, 79; HRMS (EI) m/z (M⁺) calcd for C₁₁H₁₆O₂: 180.11503, found 180.11499.

Compound 167: (1R*, 2S*, 6S*)-6-Allyl-2-bromo-9-oxabicyclo[4.3.0]nonan-8-one

Ester 165 (0.490 g, 2.72 mmol) was dissolved in toluene (7.0 mL) and the resulting solution was cooled to -78 °C under a stream of nitrogen. KHMDS (6.4 mL, 0.5M in toluene, 3.1 mmol) was then added rapidly. The resulting solution was stirred for 15 minutes before TMSCl (0.45 mL, 3.5 mmol) was added via a canula. The solution was allowed to warm up slowly to room temperature and then refluxed 18 h. The reaction mixture was cooled at 0 °C and 20 mL of 10% HCl was added. The mixture was stirred for 5 minutes then extracted with dichloromethane (4 x 50 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Flash chromatography with 5% EtOAc in hexanes with 3% of acetic acid afforded Ireland-Claisen product 166 (175 mg, 36%). Acid 166 (108 mg, 0.605 mmol) was dissolved in a mixture of 5.0 mL of THF with 1.0 mL of a saturated aqueous solution of sodium bicarbonate. NBS (115 mg, 0.646 mmol) was added and the resulting mixture was stirred 1 hour at room temperature. The reaction mixture was diluted in EtOAc and washed with 10 mL of water and brine, dried over MgSO₄ and filtered. The residue obtained after concentration in vacuo was purified on silica gel with 25% EtOAc in hexanes to give 173 mg (75%) of pure bromolactone 167. IR (film) 2957, 1777, 1642; ¹H NMR (300 MHz, CDCl₃) δ 5.83-5.69 (m, 1H), 5.22-5.13 (m, 2H), 4.40 (d, J = 5.6 Hz, 1H), 4.22-4.17 (m, 1H), 2.48-2.29 (m, 4H), 2.22-2.12 (m, 1H), 1.96-1.76 (m, 2H), 1.69-1.42 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.8(s), 132.2(d), 120.2(t), 85.7(d), 48.9(d), 43.0(s), 42.2(t), 39.4(t), 31.6(t), 30.4(t), 18.7(t); MS (ci/iso) 259, 219, 179, 119, 109.
Compound 168: (1R*, 2S*, 6S*, 7R*)-6-allyl-2-bromo-7-[(15*)-1-hydroxy-1-allyl]-9-oxabicyclo[4.3.0]nonan-8-one
To a solution of DIPA (0.12 mL, 0.86 mmol) in 5 mL of THF was added at 0 °C a 2.25 M solution of n-BuLi in hexanes (0.32 mL, 0.72 mmol) dropwise. After stirring 5 minutes under nitrogen atmosphere, the resulting mixture was cooled at -78 °C and the bromolactone 167 (173 mg, 0.67 mmol) diluted in 4 mL of THF was added via a canula. The solution was kept stirring 15 minutes before the addition of freshly distilled acrolein neat (50 μL, 0.75 mmol). The reaction mixture was stirred 30 minutes and then quenched with 0.5 mL of acetic acid and diluted in 50 mL of ether. The organic phase was washed with 10 mL of 10% HCl, a saturated aqueous solution of sodium bicarbonate and then brine. The ethereal layer was dried over MgSO₄ and concentrated in vacuo to obtain 206 mg of crude material. The residue was purified by flash column chromatography with 25% EtOAc in hexanes to obtain 2 products. The more polar compound isolated (97 mg, 46%) corresponded to the desire product 168. IR (film) 3442, 2947, 1777, 1643; ¹H NMR (300 MHz, CDCl₃) δ 6.29-6.18 (m, 1H), 5.88-5.74 (m, 1H), 5.40 (d, J = 17.4 Hz, 1H), 5.28-5.13 (m, 3H), 4.58-4.56 (m, 1H), 4.35 (d, J = 8.6 Hz, 1H), 3.95-3.87 (m, 1H), 2.77 (d, J = 7.4 Hz, 1H), 2.41 (d, J = 7.4 Hz, 2H), 2.25-2.14 (m, 3H), 1.79-1.42 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 175.1(s), 138.6(d), 132.4(d), 120.6(t), 116.2(t), 84.7(d), 69.6(d), 51.2(d), 50.1(d), 48.1(s), 38.4(t), 34.2(t), 29.6(t), 21.0(t); MS (ci/iso) 315, 299, 269, 253, 235, 217, 199, 173, 137, 119.
Compound **169**: (1R*, 2S*, 6S*, 7R*, 8S*)-2-Bromo-1,6-[6,7-(2H)-furan-12-one] spiro[5.5]-9-undecen-8-ol

The bromolactone **168** (71 mg, 0.226 mmol) was dissolved in 20.0 mL of degassed DCM and the second generation Grubbs’ catalyst added (13 mg, 0.015 mmol). After stirring overnight at room temperature, the solution was concentrated under reduced pressure. The residue so obtained was purified by flash chromatography with 5% to 40% EtOAc in hexanes to give 59 mg (91%) of ring-closing metathesis product **169** as a colorless oil. IR (film) 3445, 2939, 1775, 1641; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 5.79-5.73 (m, =CH), 5.22-5.15 (m, =CH), 4.36 (d, J = 10.5 Hz, OH), 4.10-4.04 (m, H-COH), 3.76 (d, J = 8.7 Hz, -CH-), 3.19-3.10 (m, H-CBr), 2.40 (d, J = 6.2 Hz, -CH-), 1.81 (dq, J = 19, 3.1 Hz, 1H), 1.66-1.59 (m, 1H), 1.22-1.11 (m, 3H), 0.88-0.76 (m, 1H), 0.60-0.41 (m, 2H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 176.9(s), 129.1(d), 126.0(d), 88.5(d), 63.5(d), 49.3(d), 44.3(d), 44.1(s), 35.3(t), 33.9(t), 32.8(t), 20.8(t); MS (ci/iso) 287, 271, 225, 217.
CLAIMS TO ORIGINAL RESEARCH

1. Developed a new approach to the synthesis of spirocyclic compounds via an Ireland-Claisen/ring-closing metathesis strategy.

2. Studied the production of medium-sized ring macrolactones as templates for the synthesis of spirocyclic compounds via an Ireland-Claisen ring contraction.

4. Studied towards the synthesis of spiroiridal-type triterpenoids like Iridotectoral B and 28-deacetylbelamcandal via an Ireland-Claisen rearrangement.

PUBLICATION

ORAL PRESENTATIONS

REFERENCES

82. The insertion of the ruthenium catalyst was not observed on 3,3-dimethyl-1-butene at room temperature. See reference 70.
83. A test reaction was prepared in a NMR tube in chloroform and acquisition of the spectrum was done immediately after adding the catalyst.

STANDARD 1H OBSERVE
Pulse Sequence: s2pul
Solvent: CDCl3
Ambient temperature
GEMINI-200 "gemini200"
PULSE SEQUENCE
Pulse 45.0 degrees
Acq. time 3.002 sec
Width 3000.0 Hz
16 repetitions
OBSERVE H2, 199.8659286 MHz
DATA PROCESSING
Resol. enhancement -0.0 Hz
FT size 65536
Total time 8 min, 50 sec

[Chemical structure diagram]

9 8 7 6 5 4 3 2 1
0 ppm

1.01 2.29 7.21 2.59 11.50
STANDARD 1H OBSERVE

Pulse Sequence: s2pul
Solvent: CDCl3
Ambient temperature
GEMINI-200 "gemini200"

PULSE SEQUENCE
Pulse 45.0 degrees
Acq. time 3.092 sec
width 3880.0 Hz
16 repetitions
OBSERVE H1, 199.9659297 MHz
DATA PROCESSING
Resol. enhancement -0.8 Hz
FT size 65536
Total time 0 min, 0 sec
STANDARD 1H OBSERVE
Pulse Sequence: s2pul
Solvent: CDCl3
Ambient temperature
GEMINI-300 "gminizoo"

PULSE SEQUENCE
Pulse 45.0 degrees
Acq. time 3.002 sec
Width 3800.0 Hz
32 repetitions
OBSERVE H1, 199.9655256 MHz
Data PROCESSING
Resol. enhancement -0.0 Hz
FT size 65536
Total time 0 min, 0 sec

![Chemical Structure Image]
Pulse Sequence: s2p3u1
Solvent: CDCl3
Ambient temperature
GEMINI-200 "gemini200"
PULSE SEQUENCE
Pulse 45.0 degrees
Acq. time 3.002 sec
Width 3800.0 Hz
16 repetitions
OBSERVE H1, 199.9659205 MHz
DATA PROCESSING
Resol. enhancement -0.0 Hz
FT size 65536
Total time 6 min, 50 sec
Current Data Parameters
NAME
EXPNO
PROCNO
F2 - Acquisition Parameters
Date_ 2002/11/15
Time 19.21
INSTRUM av300
PRBDOS 5 mm GNP 1H/1
PULPROG zg30
TD 30720
SOLVENT CDCl3
NS 16
DS 0
SWH 5081.301 Hz
FIDRES 0.165407 Hz
AG 3.0229880 sec
RG 456.1
DM 98.400 usec
DE 6.00 usec
TE 300.0 K
DI 1.00000000 sec

********** CHANNEL f1 **********
MOC1 1H
P1 9.75 usec
PL1 -3.00 dB
SF01 300.1319477 MHz

F2 - Processing parameters
ST 69536
SF 300.1299999 MHz
MDM EM
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

2D NMR plot parameters
EX 20.00 cm
CY 10.00 cm
F1P 8.000 ppm
F1 2451.04 Hz
F2P -0.500 ppm
F2 -150.06 Hz
PPMCH 0.42500 ppm/cm
HCON 127.55524 Hz/cm
STANDARD 1H OBSERVE
Pulse Sequence: s2pul
Solvent: CDC13
Ambient temperature
GEMINI-200 "gemini1200"
PULSE SEQUENCE
Pulse 45.0 degrees
Acq. time 3.092 sec
Width 3800.0 Hz
16 repetitions
OBSERVE: H1, 199.6659300 MHz
DATA PROCESSING
Resol. enhancement -0.0 Hz
FT size 65536
Total time 9 min, 50 sec
Current Data Parameters
NAME ps-02-96
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20021119
Time 20.54
INSTRUM av300
PRBSNO 5 nm (NP 1H/1)
PULPROG zg30
TD 30720
SOLVENT CDCl3
NS 16
DS 0
SWH 5081.301 Hz
FIDRES 0.165407 Hz
AG 3.0229809 sec
RG 362
DW 96.400 nsec
DE 6.00 nsec
TE 300.0 K
DI 1.0000000 sec

----------- CHANNEL f1 -----------
NUCI 1H
P1 9.75 nsec
PL1 -3.00 dB
SF01 300.1319477 MHz

F2 - Processing parameters
SI 65536
SF 300.1399441 MHz
NDW EM
SSB 0
LB 0.10 Hz
SR 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 10.00 cm
F1P 8.000 ppm
F1 2401.04 Hz
F2P -0.500 ppm
F2 -150.06 Hz
PHCM 0.42500 ppm/cm
HZCM 127.3524 Hz/cm
Current Data Parameters
NAME pb-02-57
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20020120
Time 15.49
INSTRUM av360
PROBHO 5 mm GNP 1H/1
PULPROG zg30
TD 30720
SOLVENT CDC13
NS 16
DS 0
SWH 5001.301 Hz
FIDRES 0.165407 Hz
AG 3.0528880 sec
RG 812.7
DW 98.400 usec
DE 6.00 usec
TE 300.0 ms
DI 1.00000000 sec

************ CHANNEL f1 ************
MUC1 1H
PI 9.75 usec
PL1 3.00 dB
SD01 300.1319477 MHz

F2 - Processing parameters
SI 80536
SF 300.1299541 MHz
MDW EM
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

ID NMR plot parameters
CX 20.00 cm
CY 10.00 cm
F1P 8.000 ppm
IT 2401.04 Hz
F2P 0.500 ppm
F2 -150.06 Hz
PRMCH 0.42500 ppm/cm
HZCM 127.55324 Hz/cm
Current Data Parameters
NAME: po-02-71
FRQMOD: 1
POWCON: 1

F2 - Acquisition Parameters
Date: 20021008
Time: 14:05
INSTRM: aX300
PRESRO: 5 m GNP 1H/1
PULPROG: 2030
TD: 30720
SOLVENT: CDCl3
NS: 16
DS: 0
SW1: 5081.301 Hz
FIDRES: 0.165407 Hz
AG: 3.0229980 sec
DG: 512
DM: 98.406 usec
DE: 5.00 usec
TE: 300.0 K
DI: 1.00000000 sec

---------- CHANNEL 11 ----------
MCI: 1H
P1: 9.75 usec
P2: -3.00 dB
SFO1: 300.1315477 MHz

F2 - Processing parameters
SI: 69536
SF: 300.1298941 MHz
DG: 0
SSB: 0
LB: 0.10 Hz
GB: 0
PC: 1.00

1D NMR plot parameters
CX: 20.00 cm
CY: 20.00 cm
F1P: 8.000 ppm
F1: 2491.04 Hz
F2P: -9.500 ppm
F2: -150.06 Hz
RPMON: 0.42500 ppm/cm
H2ON: 127.55524 Hz/cm
Current Data Parameters
NAME pb-02-71
EXPMOD 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20030519
Time 17 57
INSTRUM av300
PROBHD 5 mm QNP H/1
PULPROG 1930
TD 30720
SOLVENT CDCl3
NS 16
DS 0
SWH 5081.301 Hz
FIDRES 0.165407 Hz
AQ 3.0228960 sec
AD 71.8
DW 98.400 usec
DE 6.00 usec
TE 300.0 K
DI 1.00000000 sec

********** CHANNEL f1 **********
MUC1 1H
P1 10.50 usec
PL1 -3.00 dB
SFD1 300.1319477 MHz

F2 - Processing parameters
SI 65536
SF 300.1295941 MHz
WDN EM
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 10.00 cm
F1P 8.000 ppm
F1 2401.04 Hz
F2P -0.500 ppm
F2 -150.06 Hz
PMXCM 0.42500 ppm/cm
WXCM 127.995824 Hz/cm
Current Data Parameters
NAME pb-04-38
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20040923
Time 20.44
INSTRUM av390
PBIDO 5 nm GNP 1/1
PULPROG 1g30
TD 30720
SOLVENT CDC13
NS 8
DS 0
SWH 5081.30 Hz
FIDRES 0.165467 Hz
AG 3.029680 Hz
RG 143.7
DW 98.400 usec
DE 5.00 usec
TE 300.0 usec
D1 1.00000000 sec

********** CHANNEL 1 **********
NUC1 1H
P1 10.50 usec
PL1 -3.00 dB
SF01 300.1319477 MHz

F2 - Processing parameters
S1 60536
SF 300.1299841 MHz
WM EM
SSB 0
LB 0.10 Hz
GR 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 10.00 cm
F1P 8.000 ppm
F1 2401.04 Hz
F2P -0.500 ppm
F2 -150.06 Hz
PPMCM 0.42500 ppm/cm
HZN 127.95524 Hz/cm
Current Data Parameters
NAME 06-03-08
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20030314
Time 19.11
INSTRUM av:300
PRBD05 5 mm GNP 1H/1
PULPROG r930
TD 30720
SOLVENT CDC13
NS 16
DS 0
SWH 5081.301 Hz
FORES 0.105407 Hz
AQ 3.0200980 sec
RG 161.3
GM 98.400 usec
DE 6.000 usec
TE 300.0 K
D1 1.00000000 sec

********** CHANNEL f1 **********
MCI 1H
P1 10.50 usec
L1 -3.00 dB
SF01 300.1319477 MHz

F2 - Processing parameters
S1 60536
SF 300 13000000 Hz
DM EM
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 10.00 cm
F1P 0.000 ppm
F1 2491.04 Hz
F2P -9.500 ppm
F2 -150.06 Hz
DRNMH 0.42500 ppm/cm
HZCM 127.55524 Hz/cm

ppm 7 6 5 4 3 2 1 0
Current Data Parameters
NAME db-03-B3major
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20030507
Time 16.36
INSTRM av300
PULPROG 5 mm GNP HV/1
PULPROG zg30
TD 30720
SOLVENT CDCl3
NS 16
DS 0
SW 5081.701 Hz
F1NES 0.160437 Hz
AQ 3.0229880 sec
RG 71.8
DM 98.400 usec
DE 5.00 usec
TE 300.0 K
DI 1.00000000 sec

********** CHANNEL f1 **********
NUCI 1H
P1 10.50 usec
P11 -3.00 dB
SF01 300.1319477 MHz

F2 - Processing parameters
SI 65536
SF 300.1300000 MHz
MOW EM
SMM 0
LB 0.10 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 10.00 cm
F1P 8.0000 ppm
F1 2401.04 Hz
F2P -0.500 ppm
F2 -150.06 Hz
PPCM 0.42500 ppm/cm
HzCM 127.55524 Hz/cm
Current Data Parameters
NAME pb-04-20
EXPO 1
PROCND 1

F2 - Acquisition Parameters
Data_ 20030510
Time 22.14
INSTRUM av300
PROB/E 5 mm QNP 1H/1
PULPROG zg30
TD 30720
SOLVENT CDC13
NS 16
DS 0
SWF 5081.301 Hz
FIDRES 0.165467 Hz
AQ 3.0226980 sec
RG 912.3
DW 98.400 usec
DE 6.00 usec
TE 300.0 Hz
D1 1.00000000 sec

**************** CHANNEL f1 ****************
NUC1 1H
PF1 10.50 usec
PL1 -3.00 dB
SFQ1 300.1315477 MHz

F2 - Processing parameters
SI 65536
SF 300.1299942 MHz
MOD EN
SSB 0
LB 0.10 Hz
GB 0
PC 1.00

1D NMR plot parameters
CX 20.00 cm
CY 200.00 cm
F1P 6.000 ppm
F1 2401.14 Hz
F2P -0.500 ppm
F2 -450.06 Hz
PPMCM 0.42500 ppm/cm
HzCM 127.55254 Hz/cm