Alkyne-Nitrone Cycloadditions for Functionalizing Cell Surface Proteins

by

Craig McKay

Thesis Submitted to the Faculty of Graduate and Postdoctoral Studies
In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Candidate

Craig McKay

Supervisor

Dr. John Paul Pezacki

Ottawa-Carleton Chemistry Institute
Faculty of Science
University of Ottawa

© Craig McKay, Ottawa, Canada, 2012
Alkyne-Nitrone Cycloadditions for Functionalizing Cell Surface Proteins

by
Craig McKay

Submitted to the Faculty of Graduate and Postdoctoral Studies
On July 31, 2012 in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
In Organic Chemistry

Abstract

Over the past decade, bioorthogonal chemistry has emerged as powerful tools used for tracking biomolecules within living systems. Despite the vast number of organic transformations in the literature, only select few reactions meet the stringent requirements of bioorthogonality. There is increasing demands to develop biocompatible reactions that display high specificity and exquisitely fast kinetics under physiological conditions. With the goal of increasing reaction rates as a means for reducing the concentrations of labelling reagents used for bioconjugation, we have developed metal-catalyzed and metal-free alkyne-nitrone cycloadditions as alternatives to azide-alkyne cycloadditions and demonstrate their applications for imaging cell surface proteins.

The copper(I)-catalyzed alkyne-nitrone cycloaddition, also known as the Kinugasa reaction, is typically conducted with a Cu(I) catalyst in the absence of air. We have developed highly efficient micelle promoted multicomponent Kinugasa reactions in aqueous media to make the reaction faster and more efficient. Despite good product yields, the slow kinetics, limited substrate scope and competing side-reaction pathways precludes its practical applicability for biological labelling. We have designed and synthesized β-lactam alkyne probes obtained from these reactions for activity-based protein profiling of the activities of membrane proteins. Additionally, we report that alkyne tethered β-lactams serve as surface enhanced Raman spectroscopy (SERS) reporters bound to silver nanoparticles, and demonstrated that alkyne bound silver nanoparticles can be used for SERS imaging cell surface proteins.

The strain-promoted alkyne-nitrone cycloaddition (SPANC) was also explored as a rapid alternative bioorthogonal reaction. We found that the reaction proceeded in high yield within aqueous media, and displayed rate enhancements that were 1-2 orders of magnitude faster than analogous reactions involving azides. The scope and kinetics of SPANC was evaluated in model reactions of various nitrones (acyclic and cyclic) with cyclooctynes, with the purpose of identifying stable nitrones that displayed intrinsically faster kinetics than azides in strain-promoted cycloadditions with cyclooctynes. Cyclic nitrones displayed good stability and exceptionally fast reactivity in these reactions. The SPANC reaction exhibited high selectivity in the presence of biological nucleophilic amino acid side chains and the presence of biological media did not adversely affect the reaction. We have utilized SPANC for highly specific labelling of proteins in vitro and for imaging ligand-receptor interactions on the surfaces of live cancer cells. The high selectivity, fast reaction rate, and aqueous compatibility of SPANC makes the reaction suitable for a variety of in vivo biological imaging applications.
Acknowledgements

Graduate studies at the University of Ottawa, and particularly research in the Pezacki Lab at the National Research Council of Canada, have been a truly wonderful experience. First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. John Paul Pezacki, for his skilled guidance and mentorship. John, you have maintained the fine balance of promoting independence while providing thoughtful direction. I admire your interest in investigating problems at the interface of chemistry and biology. Thank you for providing me with many opportunities to attend scientific conferences and for your influence on my scientific development. Also, thank you for hosting and always providing excellent food and swimming at the annual “Pezacki Lab Classic.” I would also like to acknowledge my committee members for taking time out of their busy schedules to be on my committee and for reading my thesis.

Much of the work presented in this thesis is the result of collaborations with colleagues in the Pezacki lab. To all the lab members that I have had the honour of working with, thank you for your friendship and making the lab a fun place to work. I thank my chemistry lab comrades with whom I worked for the majority of my graduate studies: Mr. Marc Legault, Dr. Joseph Moran, Dr. David Kennedy, Mrs. Mariya Chigrinova, Dr. Robert Faragher and Mr. Yiming Qian. I would also like to thank Dr. Selena Sagan, Mr. Ragunath Singaravelu and Mr. Rodney Lyn for sharing their knowledge of HCV biology and CARS microscopy. I am also thankful to past lab mates, particularly Dr. Bojana Rakic, Dr. Rajmohan Poondra, Dr. Stutti Srivastava and Dr. Jyoti Nandi for helping me with my first experiments in the synthetic chemistry lab. I am thankful to Mr. Donald M. Leek for assistance with NMR, and Mrs. Malgosia Daroszewska for her assistance with MS and RP-HPLC method development. To all the other graduate and undergraduates students, technicians and post-docs I have had the pleasure of working with, thank you for providing an exceptional environment in which to learn and grow.

My family has been tremendously supportive and encouraging throughout the course of my graduate studies and education in general. I thank my parents, Gordon and Lynn McKay, and my sister, Megan, for their support and encouragement, and most importantly for believing in my potential, even at times when I had difficulty believing in myself. I will never be able to thank them for everything that they have done for me and I will always be grateful. I would also like to express acknowledgments to my beautiful and loving wife, Jenny, whom I met at the National Research Council in Ottawa at the beginning of my graduate studies. She has been extremely patient and encouraging throughout. She is an amazing person, an excellent scientist and I am lucky to have her in my life.
Table of Contents

Abstract .. ii
Acknowledgements ... iii
List of Abbreviations ... vi
List of Figures ... xi
List of Schemes ... xii
List of Tables .. xiii

Chapter 1 : Click Chemistry and Bioorthogonal Reactions .. 1
Introduction .. 2
 Oxime/Hydrazone Ligations ... 7
 Staudinger Ligations ... 9
 Copper(I)-Catalyzed Azide-Alkyne Cycloadditions ... 10
 Strain-Promoted Azide-Alkyne Cycloadditions .. 12
 Cycloadditions of Azides with Strained Alkenes ... 18
 Cycloadditions of Nitrile-Oxides with Strained Alkenes .. 19
 Tetrazole-Alkene Cycloaddition Reactions ... 20
 Tetrazine-Based Inverse-Electron Demand Diels-Alder Reactions 22
 Olefin Metathesis on Proteins .. 25
 Palladium Catalyzed Cross-Coupling Reactions ... 26
 Quadricyclane Ligations ... 28
Conclusions .. 29
Thesis Outlook ... 30
References .. 32

Chapter 2 : Studies of Micelle-Promoted Kinugasa Reactions in Aqueous Media 38
Introduction .. 39
Hypothesis .. 47
Results and Discussion ... 48
 Multicomponent Kinugasa Reactions in Aqueous Media ... 48
 Mechanism of Micelle-Promoted Multicomponent Kinugasa Reactions 57
 The Origins of Amide By-Product Formation ... 59
Future Directions .. 61
Conclusions .. 62
Acknowledgements ... 62
Materials and Methods ... 63
References ... 75

Chapter 3 : Synthesis of β-Lactam Probes for Activity-Based Protein Profiling of
Rhomboid Proteases ... 77
Introduction .. 78
Hypothesis .. 86
Results and Discussion ... 86
 Design of β-lactam Activity-Based Probes ... 86
 Synthesis of β-lactam Activity-Based Probes .. 87
 Activity-Based Protein Profiling of Rhomboid Protease Activity 92
Future Directions ... 95
Conclusions .. 96
Acknowledgements ... 97
Materials and Methods ... 98
References .. 108

Chapter 4: Alkyne Functionalized Silver Nanoparticles for SERS Imaging of Cell
Surface Proteins ... 111
Introduction ... 112
Hypothesis ... 117
Results and Discussion ... 117
 Alkyne-Tethered β-Lactams as Reporter Ligands for SERS Imaging 117
 SERS Imaging of Cell Surface Proteins Using Alkyne Tethered Nanoparticles 121
Future Directions .. 124
Conclusion .. 124
Acknowledgements .. 124
Materials and Methods ... 125
References .. 130

Chapter 5: Strain-Promoted 1,3-Dipolar Cycloadditions of Cyclooctynes with
Nitrones and Diazoalkanes ... 132
Introduction .. 133
Hypothesis ... 135
Results and Discussion ... 135
 Kinetics of Strain-Promoted Alkyne-Nitrone Cycloadditions 136
 Kinetics of Strain-Promoted Alkyne-Diazoalkane Cycloadditions 144
Future Directions .. 147
Conclusions .. 147
Acknowledgements .. 148
Materials and Methods ... 149
References .. 170

Chapter 6: Strain-Promoted Alkyne-Nitrone Cycloadditions for Functionalizing
Cell Surface Proteins ... 173
Introduction .. 174
Hypothesis ... 176
Results and Discussion ... 176
 Synthesis of Cyclic Nitrones for SPANC Reactions ... 176
 Kinetics of SPANC Reactions of Cyclic Nitrones with Dibenzocyclooctynes 180
 Labelling of Cell Surface Proteins via SPANC ... 183
 Metabolic Incorporation of Nitrones into Cell Surface Glycans 186
Future Directions .. 191
Conclusions .. 191
Acknowledgements .. 192
Materials and Methods ... 193
References .. 222

Spectral Data .. 224
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABPP</td>
<td>activity-based protein profiling</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>Ag</td>
<td>silver</td>
</tr>
<tr>
<td>ALO</td>
<td>aryl-less cyclooctyne</td>
</tr>
<tr>
<td>Au</td>
<td>gold</td>
</tr>
<tr>
<td>BARAC</td>
<td>biaryl-aza-cyclooctynone</td>
</tr>
<tr>
<td>BCN</td>
<td>bicyclononyne</td>
</tr>
<tr>
<td>Bipy</td>
<td>bipyridine</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butyloxy carbonyl</td>
</tr>
<tr>
<td>BODIPY</td>
<td>boron-dipyromethene</td>
</tr>
<tr>
<td>BPS</td>
<td>bathophenanthroline disulfonate disodium salt</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BTTAA</td>
<td>2-[4-{(bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl]amino)methyl}-1H-1,2,3-triazol-1-yl]acetic acid</td>
</tr>
<tr>
<td>BTTES</td>
<td>2-[4-{(bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl]amino)-methyl}-1H-1,2,3-triazol-1-yl]ethyl hydrogen sulfate</td>
</tr>
<tr>
<td>CMPO</td>
<td>5-carboxy-5-methyl-1-pyrroline N-oxide</td>
</tr>
<tr>
<td>CuAAC</td>
<td>copper(I)-catalyzed azide-alkyne cycloaddition</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>DBA</td>
<td>dibenzylidene acetone</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N'-dicyclohexyl carbodiimide</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DIBAC</td>
<td>dibenzo-aza-cyclooctyne</td>
</tr>
<tr>
<td>DIBO</td>
<td>4-dibenzocyclooctynol</td>
</tr>
<tr>
<td>DIFO</td>
<td>difluorinated cyclooctyne</td>
</tr>
<tr>
<td>DIMAC</td>
<td>dimethoxy-aza-cyclooctyne</td>
</tr>
<tr>
<td>DIPA</td>
<td>diisopropylamine</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Medium</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMMB</td>
<td>d7-mercaptopmethylbenzene</td>
</tr>
<tr>
<td>DMPO</td>
<td>5,5-dimethyl-1-pyrroline-N-Oxide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>dppe</td>
<td>1,2-bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>dppp</td>
<td>1,2-bis(diphenylphosphino)propane</td>
</tr>
<tr>
<td>DSC</td>
<td>N,N'-disuccinimidyl carbonate</td>
</tr>
<tr>
<td>DTSP</td>
<td>3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester)</td>
</tr>
<tr>
<td>EA</td>
<td>ethanolamine</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>EDG</td>
<td>electron donating group</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EG₃SH</td>
<td>2-{2-(2-methoxy-ethoxy)-ethoxy]-ethanethiol</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EGFR</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>EMPO</td>
<td>5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide</td>
</tr>
<tr>
<td>EPPS</td>
<td>3-(4-(2-hydroxyethyl)-1-piperazinyl)-propanesulfonic acid</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>FA</td>
<td>formic acid</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FMO</td>
<td>frontier molecular orbital</td>
</tr>
<tr>
<td>FP</td>
<td>fluorophosphonate</td>
</tr>
<tr>
<td>GalNAz</td>
<td>N-azidogalactosamine</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-acetylglucosamine</td>
</tr>
<tr>
<td>HCV</td>
<td>hepatitis C virus</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HOBT</td>
<td>1-hydroxy-benzotriazole</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied orbital</td>
</tr>
<tr>
<td>HPG</td>
<td>homopropargylglycine</td>
</tr>
<tr>
<td>IEDDA</td>
<td>inverse-electron demand Diels-Alder reaction</td>
</tr>
<tr>
<td>KHMDMS</td>
<td>potassium hexamethyldisilazane</td>
</tr>
<tr>
<td>Lev</td>
<td>levulinoyl</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MALDI-MS</td>
<td>matrix-assisted laser desorption/ionization mass spectrometry</td>
</tr>
<tr>
<td>ManNAc</td>
<td>N-acetylmannosamine</td>
</tr>
<tr>
<td>ManNAz</td>
<td>N-azidomannosamine</td>
</tr>
<tr>
<td>MMBNO</td>
<td>4-mercaptopropionyl]nitrobenzene</td>
</tr>
<tr>
<td>MMByne</td>
<td>4-(mercaptopropionyl)ethynyl benzene</td>
</tr>
<tr>
<td>MOBO</td>
<td>monobenzocyclooctyne</td>
</tr>
<tr>
<td>MOFO</td>
<td>monofluorinated cyclooctyne</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MSA</td>
<td>murine serum albumin</td>
</tr>
<tr>
<td>NaBAr₄</td>
<td>Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate</td>
</tr>
<tr>
<td>NeuNAc</td>
<td>N-acetylneuraminic acid</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxy succinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NP</td>
<td>nanoparticle</td>
</tr>
<tr>
<td>OCT</td>
<td>cyclooctyne</td>
</tr>
<tr>
<td>PBP</td>
<td>penicillin binding protein</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PDC</td>
<td>pyridinium dichromate</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Pic</td>
<td>p-iodobenzyl cysteine</td>
</tr>
<tr>
<td>RLS</td>
<td>Rayleigh light scattering</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>reversed phase high performance liquid chromatography</td>
</tr>
<tr>
<td>SAR</td>
<td>structure-activity relationship</td>
</tr>
<tr>
<td>SDS PAGE</td>
<td>sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SERS</td>
<td>surface enhanced Raman scattering spectroscopy</td>
</tr>
<tr>
<td>SPAAC</td>
<td>strain-promoted azide-alkyne cycloaddition</td>
</tr>
<tr>
<td>SPADCl</td>
<td>strain-promoted alkyne-diazoalkane cycloaddition</td>
</tr>
<tr>
<td>SPANCl</td>
<td>strain-promoted alkyne-nitrone cycloaddition</td>
</tr>
<tr>
<td>SPANOC</td>
<td>strain-promoted alkyne-nitrile oxide cycloaddition</td>
</tr>
<tr>
<td>STCO</td>
<td>strained trans-cyclooctene</td>
</tr>
<tr>
<td>TAMRA</td>
<td>tetramethylrhodamine</td>
</tr>
<tr>
<td>TAPS</td>
<td>N-tris(hydroxymethyl)methyl-3-aminopropanesulfonate</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBDMSCl</td>
<td>tert-Butylchlorodimethylsilane</td>
</tr>
<tr>
<td>TBDPSCl</td>
<td>tert-Butylchlorodiphenylsilane</td>
</tr>
<tr>
<td>TBTA</td>
<td>tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine</td>
</tr>
<tr>
<td>TCEP</td>
<td>tris-(2-carboxyethyl)-phosphine</td>
</tr>
<tr>
<td>Tf</td>
<td>triflate</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>THPTA</td>
<td>tris-(hydroxypropyltriazolyl)-methylamine</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMDIBO</td>
<td>tetramethoxydibenzocyclooctynol</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TMTH</td>
<td>thiacycloheptyne</td>
</tr>
<tr>
<td>TPF</td>
<td>two photon fluorescence</td>
</tr>
<tr>
<td>TPPTS</td>
<td>triphenylphosphine-3,3',3''-trisulfonate</td>
</tr>
<tr>
<td>Tris</td>
<td>tris-(hydroxymethyl)-aminomethane</td>
</tr>
<tr>
<td>tRNA</td>
<td>transfer ribonucleic acid</td>
</tr>
<tr>
<td>UV-vis</td>
<td>ultraviolet-visible</td>
</tr>
</tbody>
</table>
List of Figures

Chapter 1

Figure 1-1. Bioorthogonal chemical reaction strategy for probing biological systems 3
Figure 1-2. Bioorthogonal reactions selectively form covalent bonds in the presence of the cellular components of a biological system ... 4
Figure 1-3. Step-by-step guide for developing bona-fide bioorthogonal reactions 5
Figure 1-4. Ligands commonly used in copper(I)-catalyzed azide-alkyne cycloadditions... 11
Figure 1-5. Cyclooctynes used in strain-promoted cycloadditions with benzyl azide and their associated rate constants ... 14
Figure 1-6. Comparison of various strategies for acceleration of SPAAC 16
Figure 1-7. Relationships between activation, distortion, and interaction energies in cycloaddition of azides with alkynes ... 17

Chapter 2

Figure 2-1. Classification of FMOs of 1,3-dipolar cycloadditions 42
Figure 2-2. Influence of lewis acid coordination to the dipolarophile or to the dipole during 1,3-dipolar cycloadditions ... 42
Figure 2-3. Ligands commonly used in Kinugasa reactions .. 46
Figure 2-4. Micelle-promoted multicomponent Kinugasa reactions in aqueous media 49
Figure 2-5. ORTEP plot of 2.56 with thermal ellipsoids drawn 51
Figure 2-6. Representative HPLC traces for micelle promoted multicomponent Kinugasa reactions in aqueous media ... 57
Figure 2-7. Plausible catalytic cycle of multicomponent Kinugasa reactions in aqueous media ... 58

Chapter 3

Figure 3-1. Important classes of antibacterial agents that contain the β-lactam moiety 78
Figure 3-2. 1,4-diaryl β-lactams possess an increasingly wide range of biological activities .. 80
Figure 3-3. Typical activity-based protein profiling experimental design 82
Figure 3-4. Structures of alkyne tethered β-lactam activity-based probes 83
Figure 3-5. Summary of structure-activity relationship results from a library of structurally modified β-lactam inhibitory effects on rhomboid proteases 85
Figure 3-6. Structures of the designed β-lactam activity-based probes 3.21 and 3.22 87
Figure 3-7. Rhomboid active-site labelling using β-lactam probes and fluorescent labelling via bioorthogonal CuAAC reaction ... 93
Figure 3-8. Activity-based protein profiling of wild type and mutant GlpG rhomboid protease from crude membrane extracts using β-lactam probes 95
Chapter 4

Figure 4-1. Raman reporter ligands and Ag-NPs with benzyl thiol based ligands for use in nanoparticle-based SERS imaging ... 114

Figure 4-2. Synthesis of functionalized nanoparticles and the basic premise for SERS imaging of coupled nanoparticles ... 116

Figure 4-3. Surface enhanced Raman scattering spectrum of phenylacetylene functionalized Ag NPs ... 118

Figure 4-4. Functionalization of silver NPs with alkyne-labelled β-lactams and resultant SERS spectrum ... 120

Figure 4-5. Raman spectrums for alkyne tethered β-lactam, β-lactam bonded to the surface of a Ag NP, and of particles after β-lactam hydrolysis 121

Figure 4-6. Brightfield and SERS image of a cluster of Huh7.5 liver cells functionalized with phenylacetylene and targeted with anti-occludin antibodies 123

Figure 4-7. Additional bright field and SERS image of Huh 7.5 cells showing a high abundance of occludin localized away from tight junctions 129

Chapter 5

Figure 5-1. Kinetics of strain-promoted alkyne-nitrore cycloaddition (SPANC) 166

Figure 5-2. Kinetics of strain-promoted alkyne-diazocompound cycloaddition (SPADC) 169

Chapter 6

Figure 6-1. SPANC reactions involving acyclic and cyclic nitrones ... 175

Figure 6-2. Functionalization of BSA and EGF via SPANC reactions 184

Figure 6-3. In situ pre-targeted labelling of EGF–EGFR interactions on the surface of breast cancer cells via SPANC ... 185

Figure 6-4. Sialic acid biosynthetic pathway ... 186

Figure 6-5. Hydrolysis studies of acyclic and cyclic nitrones at variable pH of solution... 187

Figure 6-6. Kinetics of SPANC with dibenzocyclooctyne by 1H NMR 214

Figure 6-7. Kinetics of SPANC with 4-dibenzocyclooctynol by 1H NMR 215

Figure 6-8. Kinetics studies of SPANC versus SPAAC by absorption spectroscopy 216

Figure 6-9. MALDI-MS/MS post-modification of BSA and EGF with 6.45 218

Figure 6-10. Fixed cell fluorecence imaging of EGFRs via SPANC 221
List of Schemes

Chapter 1

Scheme 1-1. Bioorthogonal reactions of ketones and aldehydes with aminoxyl or hydrazide-containing probes forms oxime or hydrazone products ... 8

Scheme 1-2. A) Staudinger ligation and the B) “traceless” Staudinger ligation ... 9

Scheme 1-3. Copper(I)-catalyzed alkyne-azole cycloaddction (CuAAC) ... 11

Scheme 1-4. Strain-promoted azide-alkyne cycloaddction (SPAAC) ... 13

Scheme 1-5. Two step oxanorbornadiene-alkyne cycloaddiction reaction to form triazoles ... 19

Scheme 1-6. In situ generation of nitrile oxide and subsequent 1,3-dipolar cycloaddition with norbornene or cyclooctyne probes ... 19

Scheme 1-7. Photo-induced 1,3-dipolar cycloadditions of 2,5-diaryltetrazoles and alkenes 20

Scheme 1-8. Inverse electron-demand Diels-Alder reactions (IEDDA) of tetrazines with trans-cyclooctenes ... 22

Scheme 1-9. IEDDA reactions of tetrazines with norbornene functionalized biomolecules. 23

Scheme 1-10. Second generation tetrazine IEDDA reactions with cyclobutenes, cyclooctynes, and cyclopropenes ... 24

Scheme 1-11. Protein functionalization by olefin cross-metathesis ... 25

Scheme 1-12. Protein functionalization by the Mizoruki-Heck reaction ... 26

Scheme 1-13. Protein functionalization by Sonagashira cross-coupling ... 27

Scheme 1-14. Copper-free Sonagashira cross-coupling reaction ... 27

Scheme 1-15. Protein functionalization by Suzuki-Miyuara cross-coupling ... 28

Scheme 1-16. Protein functionalization by quadricyclane ligation .. 29

Chapter 2

Scheme 2-1. [3+2] cycloaddtions of 1,3-dipoles with dipolarophiles .. 39

Scheme 2-2. Postulated mechanisms of 1,3-dipolar cycloaddtions ... 41

Scheme 2-3. Kinugasa reaction of Cu(I)-phenylacetylide with diaryl nitrones 43

Scheme 2-4. Mechanism of the Kinugasa reaction proposed by Ding and Irwin 44

Scheme 2-5. Alternative mechanism for the Kinugasa reaction proposed by Tang 44

Scheme 2-6. Mechanism of β-lactam formation by fragmentattion of 5-(trimethylsilyl)-isoxazolines .. 45

Scheme 2-7. Kinugasa reaction variant reported by Muira ... 46

Scheme 2-8. Multicomponent Kinugasa reactions in aqueous media ... 49

Scheme 2-9. Proposed mechanism for formation of amide by-product 2.56 59

Scheme 2-10. Attempts to trap the ketene intermediate in multicomponent Kinugasa reaction .. 60

Scheme 2-11. Desilylation of isoxazolines in aqueous HF ... 60

Chapter 3

Scheme 3-1. Covalent enzyme inhibition of an active-site serine residue by penicillin β-lactams .. 79

Scheme 3-2. Retrosynthetic analysis for β-lactam activity-based probes 3.21 and 3.22 87
Scheme 3-3. Synthesis of nitrone intermediate 3.25 ... 88
Scheme 3-4. Micelle-promoted Kinugasa reaction synthesis of β-lactam intermediate 3.23 89
Scheme 3-5. Desilylation of β-lactam intermediates cis-3.23 and trans-3.23 89
Scheme 3-6. Synthesis of β-lactams 3.26 by the Kinugasa reaction 90
Scheme 3-7. Synthesis of β-lactam activity-based probes cis-3.22 and trans-3.22 91
Scheme 3-8. Synthesis of β-lactams probes containing no substitution at C-3 96

Chapter 4

Scheme 4-1. Synthesis of alkyne tethered β-lactam ligand via the Kinugasa reaction. 119

Chapter 5

Scheme 5-1. Strain-promoted cycloadditions of cyclooctynes with azides, nitrile-oxides,
nitrones, and diazoalkanes ... 135
Scheme 5-2. Reagents and conditions for the synthesis of dibenzocyclooctyne 5.1 137
Scheme 5-3. Common strategies for preparation of nitrones .. 138
Scheme 5-4. Thermal decomposition of 5.14 .. 139

Chapter 6

Scheme 6-1. Synthesis of nitrone 6.2 .. 177
Scheme 6-2. Attempted nitrone formations by oxidation of proline and ω-methyl-proline 177
Scheme 6-3. Synthesis of prolinol nitrones 6.11, 6.12 and 6.17 178
Scheme 6-4. Synthesis of 5-carboxyethyl-5-methyl-pyrroline N-oxide 6.22 179
Scheme 6-5. Synthesis of ketonitrone 6.27 .. 179
Scheme 6-6. Synthesis of Ac₄ManNCMPO 6.55 ... 188
Scheme 6-7. Kinetics of SPANC versus SPAAC with nitrone or azide modified
Ac₄ManNAc derivatives ... 189
Scheme 6-8. Metabolic incorporation of nitrone modified ManNAc derivative into cell
surface glycans and fluorescence labelling by SPANC ... 190
Scheme 6-9. Prospective cyclic nitrone modified NeuNAc derivatives............................ 190
List of Tables

Chapter 2

Table 2-1. Classification of 1,3-dipoles .. 40
Table 2-2. Effect of Cu-catalyst loading on the multicomponent Kinugasa reaction 50
Table 2-3. Effect of ligand on the micelle catalyzed Kinugasa reaction........................ 52
Table 2-4. Effect of base on the multicomponent Kinugasa reaction 53
Table 2-5. Effect of nitrone to alkyne ratio on the multicomponent Kinugasa reaction..... 54
Table 2-6. Effect of reducing agent concentration on multicomponent Kinugasa reaction. 55
Table 2-7. Micelle-promoted multicomponent Kinugasa reaction scope 56

Chapter 3

Table 3-1. Attempted O-alkylation of β-lactam 3.32 .. 91

Chapter 5

Table 5-1. Solvent screen of strain-promoted alkyne-nitrocycleadditions 138
Table 5-2. Strain-promoted cycloadditions between acyclic nitrones 5.18-5.27 and 5.1 140
Table 5-3. Strain-promoted cycloadditions of cyclic nitrones with 5.1 141
Table 5-4. Kinetics of strain-promoted cycloadditions of nitrones or benzyl azide with dibenzocyclooctyne 5.1... 142
Table 5-5. Solvent screen for SPANC reaction between 5.40 and 5.1.......................... 143
Table 5-6. Kinetics of strain-promoted cycloadditions between diazo compounds 5.45-5.48 and 5.1 .. 145
Table 5-7. Solvent screen for reaction between 5.45 and dibenzocyclooctyne 5.1 146

Chapter 6

Table 6-1. Kinetics of strain-promoted cycloadditions between cyclic nitrones and 6.1 181
Table 6-2. Kinetics of strain-promoted cycloadditions between cyclic nitrones and 6.40 .. 182
Chapter 1: Click Chemistry and Bioorthogonal Reactions
Introduction

The ability to covalently modify biomolecules and track their involvement in cellular processes within living systems has long presented a significant challenge. This is due to the presence of the vast array of interacting biopolymers (proteins, DNA, RNA etc.), ions and metabolites that drive complex cellular processes using a diverse array of chemistry. Since biomolecules are not naturally endowed with special features that permit their direct detection within the complex milieu of a cell, there is increasing demand to develop selective tagging strategies for studying the dynamic structure, function, and localization of biomolecules within living cells and whole organisms.

The use of genetically-encoded fluorescent proteins (eg. green fluorescent protein, GFP) has been revolutionary in enabling the tracking of proteins through the use of fusion proteins as genetic tags. Research on fluorescent proteins has addressed the issue of residue-specific modifications, and has expanded the range of proteins that can be investigated in cellular systems.\(^1\) Despite these advances, genetic tagging is not without limitations, other classes of biomolecules such as nucleic acids, lipids, and glycans, either on their own or as post-translational modifications, are not yet amenable to conventional genetic tagging. Bioorthogonal chemistry has emerged, based on a few highly specific reactions, enabling the study of the dynamic structure, function, and localization of these biomolecules within living systems.\(^2\)

In 2001, Sharpless, Kolb and Finn introduced the concept of ‘click’ chemistry, defined as an efficient approach to the synthesis of diverse compounds based on a handful of “near perfect” carbon-heteroatom bond forming reactions.\(^3\) The philosophy of ‘click’ chemistry describes essentially any chemical process that is rapid under ambient conditions,
chemoselective, high yielding, wide in scope, and provide structures with desired function. This potent combination requires reactions that have a high thermodynamic driving force and are orthogonal to other functional groups that may be present. Chemical reactions that proceed efficiently and do not cross-react with biological functionality have far reaching applications that span chemistry, biology and materials science.2,4,5

Bioorthogonal chemistry was coined in 2003 by Bertozzi, and refers to a subset of ‘click’ reactions,6 describing any chemical reaction that can occur inside living systems without interfering with native biochemical processes.2,7,8 Since its inception, bioorthogonal chemistry has enabled the study of nucleic acids, lipids, and glycans, and post-translational modifications that are not accessible using conventional genetically encoded reporters. Bioorthogonal chemical reporters are non-native, non-perturbative, and can be modified in living systems through highly selective reactions with exogenously delivered probes bearing complementary bioorthogonal functionality (Figure 1-1).7

\textbf{Figure 1-1.} Bioorthogonal chemical reporter strategy for probing biological systems pioneered by Bertozzi et al.6,7 Firstly, a non-native functional group is incorporated into a biomolecule of interest either by a enzymatic or metabolic pathway. In the subsequent step, the modified biomolecule is tagged through a bioorthogonal reaction.

The bioorthogonal chemical reporter strategy typically proceeds in two steps. Firstly, a biomolecule precursor of interest (ie. nucleoside, amino acid, glycan or fatty acid) is modified with a bioorthogonal chemical reporter and introduced into the cell either by a
native or engineered biosynthetic pathway. Once incorporated in the target biomolecule, the chemical reporter undergoes reaction with an exogenously delivered chemical probe bearing the complementary functional group. Existing strategies for addressing the first step include, 1) amber codon suppression mutagenesis,\(^9\)–\(^{11}\) expressed protein ligation,\(^{12–17}\) metabolic engineering,\(^\text{8,18,19}\) and tagging-\(\text{via-substrate}\)^{20–25}(substrates include metabolites, enzyme inhibitors \text{etc.}).\(^5\) The second step can be accomplished by judicious choice of the reaction chemistry based on stringent bioorthogonal criteria.

There are several criteria that must be satisfied when developing bioorthogonal reactions (Figure 1-2). Requirements include: 1) the reaction partners must be mutually reactive and do not cross react with biological functionality (ie. nucleophilic side chains, electrophiles, etc.); 2) the reaction must be high yielding; 3) The reaction must be biocompatible and proceed under physiological settings (aqueous solution and neutral pH); 4) the reaction must display fast kinetics and occur on the time scale of biological processes (ie. minutes) to prevent competition with reactions that may diminish small signals produced by less abundant species; 5) reactants and products are stable and ideally non-toxic; and 6) the chemical reporter must not alter the structure of the substrate to avoid affecting its bioactivity.

\[
\text{Figure 1-2. Bioorthogonal reactions between reagents A and B selectively form covalent bonds in the presence of the cellular components of a biological system.}^{2,6,7}
\]
A major consideration when developing bioorthogonal reactions is that the reaction must proceed with fast enough rates under physiological settings to enable labelling at low reagent concentrations thereby minimizing background signal. Typical metal-free bioorthogonal reactions are bimolecular and bioconjugate formation is proportional to rate. From a practical point of view, reactions with larger k_2 values, and thus faster observed kinetics of bioorthogonal coupling reactions lead to shorter reaction times in biological systems. Also, larger k_2 values enable the reactions to reach completion at lower reagent concentrations as compared to slower reactions over the same reaction times. Larger k_2 values can allow bioorthogonal labelling reactions to take place efficiently in a wider variety of living systems including live animals where the amounts of bioorthogonal reagents required may be limiting.

Figure 1-3. Step-by-step guide for developing bona-fide bioorthogonal reactions. Figure was reproduced from the literature.

The process of developing a bioorthogonal reaction requires a multi-disciplinary approach involving mechanistic organic chemistry and biochemistry (Figure 1-3). This endeavour typically begins with analysis of the functionalities and reactions that are present in the cell and selecting reactions and reagents that are abiotic. A prototype reaction is identified, often from early 20th century literature, and functional groups are chosen such that
they are exquisitely stable toward biological moieties, such as nucleophiles, reducing agents, and water (Figure 1-3, step 1).

Once a prototype reaction is selected, analysis of the reaction and anticipation of undesired problems associated with application in biology are assessed to ensure that each step of the mechanism will be biocompatible (Figure 1-3, step 2). At this stage issues related to the stabilities of reactants and products in water, unwanted side reactivity with biological functionalities, and reaction kinetics are addressed. The reaction should be optimized so that the reaction proceeds at the fastest possible rate. Reactions that display second-order rate constants that are less than 10^{-4} \text{M}^{-1}\text{s}^{-1} are too slow for practical use at low concentrations of reagents required for biological labelling. Mechanistic modifications to reactants and products, and in some cases, the overall mechanism are explored to improve the kinetics of the reaction (Figure 1-3, step 3). Mechanistic modifications may include intercepting a reactive intermediate intramolecularly, addition of sterically encumbered groups to minimize cross-reactivity with biological nucleophiles, exchange of heteroatoms to optimize orbital interactions, or activation of reagents through ring strain or electronic perturbation, amongst other possibilities.

Once a prospective reaction is optimized, it is tested in a variety of biological environments, escalating in complexity from aqueous media to biomolecule solutions to cultured cells and for the most optimized transformations, within living organisms (Figure 1-3, steps 4-7). The reaction must be dependable in aqueous media in the presence of biological functionalities such as amino acid side chains (step 4), the reaction must be examined on biomolecules such as proteins (step 5), live cells (step 6), and ultimately in living organisms (step 7).
A true test of bioorthogonal reactivity requires one of the groups to be incorporated into a living system by native or engineered biosynthetic pathways (Step 8). Not all bioorthogonal reactions that are mentioned in the following section have been successfully employed in living animals or even live cells, albeit applications within living systems is the central goal. Given the stringent requirements listed above, it is not surprising that only select few organic reactions have proven to be bioorthogonal. There is an increasing demand to develop new bioorthogonal reactions that proceed at exceptionally fast rates and do not compromise the function and metabolic processing of biomolecules in living systems.

A number of chemical reactions have been developed that fulfill the requirements of bioorthogonality. This section describes bioorthogonal reactions that have found applications for bioconjugation. Reactions include: oxime/hydrazine condensations, Staudinger ligation, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), azide-oxabornadiene cycloaddition, strain-promoted cycloadditions of nitrile oxides with strained alkenes and alkynes, tetrazole-alkene photo ‘click’ reaction, inverse-electron demand Diels-Alder cycloaddition with strained alkenes and alkynes, olefin metathesis, palladium-mediated reactions, andquadricyclane ligation.

Oxime/Hydrazone Ligations

Ketone and aldehyde functionalities are attractive bioorthogonal reporters since they are easily incorporated into biomolecules via biosynthetic machinery,19,27 and are essentially inert towards endogenous functionalities at neutral pH. The reactivity between aldehydes and hydrazides was first demonstrated in 1986, by Rideout for the \textit{in-situ} drug assembly inside cancer cells.28 Under physiological conditions, biomolecules bearing ketones (1.1) or
aldehydes (1.2) react with aminooxy (1.3) or hydrazide (1.4) probes to form the corresponding oxime (1.5) or hydrazone (1.6), respectively (Scheme 1-1).

![Scheme 1-1](image)

Scheme 1-1. Bioorthogonal reactions of ketones and aldehydes with aminooxy or hydrazide containing probes form oxime or hydrazone products, respectively.

The lack of ketone or aldehydes present on cell surfaces, prompted the use of keto-sugars as metabolic precursors for labelling cell surface sialic acid residues, and capture was accomplished by treatment with a hydrazide-biotin probe following streptavidin chromatography. In this study, it was found that the rate of reaction of N-leucinoylmannosamine modified sialic acids with a hydrazide reagent proceeded with a rate constant of 0.033 M$^{-1}$s$^{-1}$. Additionally, the oxime-hydrazone ligation was been utilized for modifying biotin ligase, and proteins bearing genetically encoded aldehyde reporters within living systems.

In a different approach, Paulson and co-workers were able to introduce the aldehyde reporter into cell-surface sialic acids by mild periodate oxidation. Interestingly, the bioorthogonal reaction of the corresponding aldehyde with aminooxy-biotin was accelerated in the presence of aniline as a catalyst at neutral pH. This is a significant improvement over the typical acidic conditions (pH = 5-6) used for oxime formation. The hydrazone
ligation between 10 μM benzaldehyde and 10 μM 6-hydrizinopyridyl-modified peptide in the presence of 100 mM aniline at neutral pH proceeded with rate constants up to 170 M⁻¹s⁻¹.

Staudinger Ligations

A cornerstone reaction of bioorthogonal chemistry is the Staudinger ligation (Scheme 1-2A), developed by the Bertozzi group in 2001, based on the prototypical Staudinger reduction of phenyl azide with triaryl phosphines to yield aniline and phosphine oxide. Through modification of the triaryl phosphate with an ortho-methyl ester electrophilic trap (1.8), upon reaction with azide modified biomolecules (1.7) the ensuing aza-ylide intermediate (1.10), can be intercepted through nucleophilic attack of the nitrogen onto the ester moiety. Upon hydrolysis of the intermediate (1.11), a stable amide-linked product (1.12) is formed (Scheme 1-2A).

Scheme 1-2. A) Staudinger ligation and B) “traceless” Staudinger ligation.
Although the Staudinger ligation worked well in the presence of biological environments, the groups of Bertozzi and Raines simultaneously recognized that a further modification to form a native amide bond without leaving the bulky phosphine oxide in the ligated product would be advantageous. Modification of the phosphine reagent to create a cleavable linker between the acyl group and the phosphine that is expelled during the reaction resulted in the “traceless” Staudinger ligation (Scheme 1-2B).

The Staudinger reaction is highly specific, as evidenced from seminal studies in the presence of cellular lysates. The Staudinger ligation has been implemented for glycoproteomic studies, and for immobilization of azide-labelled proteins among other applications. Recently, the Staudinger ligation has also been used for modification of cell-surface glycans in live mice. The limitations of the Staudinger ligation include the susceptibility of the phosphine reagent to air oxidation catalyzed by cytochrome P450. Additionally, the kinetics of Staudinger ligation are rather slow proceeding with second-order rate constants up to 0.0020 M⁻¹s⁻¹. The inherent slow rate necessitates the use of high concentrations of phosphine reagents. This is problematic for in vivo imaging applications, since removal of the excess phosphine reagent is difficult and results in background fluorescence signals.

Copper(I)-Catalyzed Azide-Alkyne Cycloadditions

The 1,3-dipolar cyloaddition of linear alkynes with azides to yield triazoles was developed by Huisgen, and required extensive heating to overcome the activation barrier to deform the alkyne bond during the transition state. In 2002, the laboratories of Sharpless and Meldal, independently reported dramatic rate accelerations to the azide-alkyne cycloaddition upon using a copper(I) catalyst (Scheme 1-3). Since these ground breaking
reports, the scope of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been thoroughly investigated, including reaction rate acceleration, improved chemo- and regioselectivity, reaction scope and water compatibility, as well as mechanistic investigations.

Scheme 1-3. Copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC).

CuAAC has been applied broadly in diverse fields spanning bioconjugation in vitro and in cell lysates, polymer ligation, dendrimer synthesis, surface science and combinatorial organic synthesis. Effective labelling of biomolecules via CuAAC requires a ligand coordinated to copper to stabilize the Cu(I) oxidation state, enhance the reaction rate while preventing formation of undesired byproducts, and for sequestration of Cu(I) ions to prevent biomolecule damage and facilitate their removal.

Figure 1-4. Ligands commonly used in Cu(I)-catalyzed azide-alkyne cycloadditions.
Prototypical CuAAC ligands (Figure 1-4) include: bathophenanthroline disulfonate disodium salt (BPS, 1.21),46,66 tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (TBTA, 1.22),67,68 tris-(hydroxypropyltriazolyl)-methylamine (THPTA, 1.23),69 2-[4-{(bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl]amino)-methyl}-1H-1,2,3-triazol-1-yl]ethyl hydrogen sulfate (BTTES, 1.24),70,71 2-[4-{(bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl]amino)methyl}-1H-1,2,3-triazol-1-yl]acetic acid (BTTAA, 1.25),72 and L-histidine (1.26).73

With regards to bioorthogonal labelling, CuAAC has primarily been effective for in vitro biological labelling and at live cell surfaces, due to its reliance on delivery of the copper catalyst to the reaction site and the toxicity of the copper complexes at concentrations employed for labelling.51,74 CuAAC has been utilized for live-cell labelling of metabolically incorporated azide-containing or alkyne-containing N-acetylmannosamine derivatives into cell surface sialic acids.70,73,78 Attempts to move this versatile chemistry from cell culture to more complex physiological settings have proven challenging. Despite improvements to the Cu(I)-catalyst that require shorter labelling times and have thus exhibited fewer toxic effects when administered to cells,70,73 there is still a lack of options for in vivo labelling strategies where prolonged metal catalyst exposures cannot be avoided.

Strain-Promoted Azide-Alkyne Cycloadditions

In 1961, Wittig and Kreb reported that cyclooctyne, a small stable cycloalkyne reacted “like an explosion” with phenyl azide.79 The enhanced reactivity of the cyclooctyne is attributed to ~18 kcal/mol of ring strain associated with bond angle deformation in cyclooctyne that is released in the transition state. To improve upon the biocompatibility and kinetics of CuAAC, a copper-free variant, strain-promoted azide-alkyne cycloaddition
(SPAAC) was developed by Bertozzi et al. (Scheme 1-4).80 The cyclooctyne (1.27) was functionalized with biological probes (ie. fluorophores or affinity tags) and used to isolate azide (1.27) modified glycans on proteins, in cell lysates, and on the surface of live cells.81

![Scheme 1-4](image)

Scheme 1-4. Strain-promoted azide-alkyne cycloaddition (SPAAC).

A number of mechanism-based modifications to the strained alkyne component have been made to increase the kinetics of the reaction and improve bioavailability of SPAAC for applications *in vivo* (Figure 1-5). The first generation cyclooctyne (OCT, 1.30), displayed a second-order rate constant of 0.0024 M-1s-1 in model reaction with benzyl azide. It was found that removal of the aryl side chain, termed aryl-less cyclooctyne (ALO, 1.31), improved the water solubility however had marginal effect on the kinetics of SPAAC.80 Since the reaction involved the alkyne lowest unoccupied molecular orbital (LUMO) and the highest occupied orbital (HOMO) of the the azide, lowering the LUMO of the alkyne through incorporation of electron withdrawing fluorine at the propargylic position, monofluorinated cyclooctyne (MOFO, 1.32), resulted in a 3-fold enhancement in rate ($k_2 = 0.0043$ M-1s-1).81 Incorporation of a gem-difluoro group at the propargylic position, difluorinated cyclooctyne (DIFO, 1.33), increased the rate of SPAAC by 59-fold ($k_2 = 0.0076$ M-1s-1).82
Figure 1-5. Cyclooctynes used in strain-promoted cycloadditions with benzyl azide, and their associated rate constants in MeCN (OCT, ALO, MOFO, BARAC) or MeOH (DIBO, TMDIBO, keto-DIBO, DIBAC).

Subsequently, strain modulation was also investigated. In 2008, the laboratory of Boons demonstrated that 4-dibenzo[cyclooctynol (DIBO, 1.34, $k_2 = 0.056 \text{ M}^{-1}\text{s}^{-1}$) displayed kinetics that are similar to the DIFO. Despite the low water solubility of DIBO, the reagent is attractive due to its synthetic tractability. Modifications to employ a photo caged DIBO synthon, tetramethoxydibenzo[cyclooctynol (TMDIBO, 1.35, $k_2 = 0.094 \text{ M}^{-1}\text{s}^{-1}$), and keto-DIBO (1.36, $k_2 = 0.26 \text{ M}^{-1}\text{s}^{-1}$) were subsequently reported. It was evident that the number of sp^2-hybridized atoms in the ring correlated well with the rate of cycloaddition with benzyl azide.
Through incorporation of an exocyclic amide off of the cyclooctyne, DIBAC (1.37) was prepared independently by the labs of Van delft and Popik.86,87 In model reactions with benzyl azide it was found that DIBAC displayed rate constants of 0.31 M$^{-1}$s$^{-1}$ and had greater water solubility. The laboratory of Bertozzi returned to the forefront by incorporating an endocyclic amide, biaryl-aza-cyclooctynone (BARAC, 1.38, $k_2 = 0.96$ M$^{-1}$s$^{-1}$),88 that increased the reaction rate by another order of magnitude. Recent cyclopropane fusion distal to the alkyne reactive site was reported by Rutjes and van Delft.89 Bicyclononyne (BCN, 1.39, $k_2 = 0.140$ M$^{-1}$s$^{-1}$) shows reactivity that is comparable with DIBAC. Most recently, incorporation of a larger sulfur heteroatom has enabled the preparation of thiacycloheptyne (TMTH, 1.40, $k_2 = 4.0$ M$^{-1}$s$^{-1}$), the smallest cycloalkyne known to date.90 TMTH displays minimal steric hindrance surrounding the alkyne and exhibits a 4-fold enhancement in rate relative to BARAC.

In addition to captivating the chemical biology community, SPAAC has attracted the attention of physical organic chemists with the challenge of explaining the physical basis of the rate enhancement of cyclooctynes over linear alkynes in reactions with azides (ie. the effect of fluorination, aryl ring fusions, and other modifications to the cyclooctyne ring). Generally, there are two methods for activating alkynes; decrease the energy of the transition state or decrease the reactant stability (Figure 1-6). The decrease in activation energy is typical for reagents that are activated by reactant destabilization (ie. strain modulation), as is the case with DIBO, keto-DIBO, DIBAC, and BARAC. The lower stability of BARAC suggests that this approach is nearing the limit of practical applicability. Alternatively, activation of alkynes toward SPAAC, without sacrificing their stability or compromising functional group tolerance, can be accomplished by decreasing the transition state energy, either by minimizing unfavorable steric interactions (\textit{ortho}-hydrogens in DIBO, DIBAC and
BARAC,91 or by maximizing stabilizing effects in the transition state (ie incorporation of \textit{gem}-difluoro electron withdrawing groups at the propargylic position in DIFO).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Comparison of various strategies for acceleration of SPAAC. Figure was reprinted from the literature.92}
\end{figure}

Houk93 and Goddard91 have shown a ~2 kcal/mol decrease in the energy of activation for DIFO relative to cyclooctyne. Houk and co-workers have hypothesized that the rate acceleration of SPAAC can be attributed to minimization of distortion energy during the transition state.94 Goddard proposed the monobenzocyclooctyne (MOBO, $k_2 = 0.0095 \text{ M}^{-1}\text{s}^{-1}$)96 yields the optimal balance between strain-release and minimization of the steric hindrance of the alkyne moiety.91

According to the minimization of distortion model of SPAAC (Figure 1-7), the differences in the energy required to distort the azide and alkyne into the transition state geometries controls the activation energy for the reaction.94 The activation energy (ΔE), is the sum of the destabilizing distortions (E_{d}^{\dagger}) and stabilizing interactions (E_{i}^{\dagger}). Despite the azide functional group being the most significant source of distortions in SPAAC, the alkyne
is often the component that can easily be modified for higher reactivity in SPAAC. The calculated activation energy for the reaction of acetylene with phenyl azide is 16.2 kcal/mol, whereas the reaction of cyclooctyne with phenyl azide is 8.0 kcal/mol. This corresponds to a rate increase of 10^6. Additionally, the cyclooctyne requires less distortion energy (1.6 kcal/mol) relative to acetylene (4.6 kcal/mol) resulting in a lower activation energy despite smaller interaction energy.

\[\Delta E^\ddagger \]

\[\Delta E_d^\ddagger \]

\[\Delta E_i \]

\[\text{Non-Distorted} \]

\[\text{Distorted} \]

Figure 1-7. Relationships between activation, distortion, and interaction energies in cycloaddition of azides with alkynes. Figure was reproduced from the literature.\(^{96}\)

Also, it has been postulated that electron withdrawing groups such as fluorine increase the rate by decreasing LUMO energy and the HOMO-LUMO energy gap. This leads to greater charge transfer from the azide to the cyclooctyne during the transition state, increasing interaction energy and decreases the overall activation energy.\(^{96}\) The lowering of the LUMO, has recently been shown by Alabugin \textit{et al.} to be the result of hyperconjugative
stabilization of the transition state via electron donation from the alkyne in-plane π donor orbital to the C-F σ^* acceptor bond in DIFO.92

Applications of SPAAC for \textit{in vivo} imaging, has been achieved using the reaction of DIFO probes with cell surface sialosides bearing the azide reporter. Various DIBO-fluorophore conjugates have been used to monitor the spatial and temporal dynamics of cell surface glycosylation during the development of nematode, \textit{Caenorhabditis elegans}.97 and zebrafish embryos.98,99 SPAAC has also been used in a mouse model, where it was found that the water solubility of the DIFO caused the alkyne to be sequestered from tissue-resident azides, due to its high affinity for murine serum albumin (MSA).100 To address this issue of non-specific protein binding, the hydrophilic yet less reactive, dimethoxy-aza-cyclooctyne (DIMAC, $k_2 = 0.0030 \text{ M}^{-1}\text{s}^{-1}$)101 was employed. Unfortunately, DIMAC’s improved solubility did not compensate for its sluggish reactivity.100 There is need for further optimization of the cyclooctyne probes to find the optimal balance between their reactivity and stability, as well as improved pharmacokinetic properties.

Cycloadditions of Azides with Strained Alkenes

Azides modified biomolecules (\textbf{1.41}) have found additional applications in [3+2] cycloadditions with the alkyne surrogates, oxanorbornadiene probes (\textbf{1.42}), yielding regioisomeric triazole products (\textbf{1.44}) (Scheme 1-5).102 The initially formed triazoline cycloadduct (\textbf{1.43}) undergoes spontaneous retro-Diels-Alder reaction, releasing furan and \textbf{1.44}. Preliminary work has established its usefulness in peptide labelling experiments,102 and it has also been used in the generation of imaging compounds.104 The ring strain and electron deficiency in the oxanorbornadiene increases reactivity towards the cycloaddition. However, the reaction is limited by slow kinetics on the order of $10^{-4} \text{ M}^{-1}\text{s}^{-1}$.

18
Scheme 1-5. Two step oxanorbornadiene-azide cycloaddition reaction to form triazoles.104

Cycloadditions of Nitrile-Oxides with Strained Alkenes

The copper-free cycloaddition of \textit{in-situ} generated nitriles oxide with strained dipolarophiles has been reported (Scheme 1-6). The cycloaddition of nitrile oxide (1.45) with norbornene (1.46) proceeds effectively in a wide range of solvents, leading to a regioisomeric mixture of 2-isoxazolines (1.47), and has been employed for modification of oligonucleotides, yielding fluorescently labelled conjugates.105,106 Nitrile oxides can be easily and quantitatively generated by oxidation of oximes (1.48) with phenyl iodine bis(trifluoroacetate) (PIFA) under aqueous conditions,107 or by deprotonating the relatively stable arylchlorooximes (1.49) using a mild base.106

Scheme 1-6. \textit{In situ} generation of nitrile oxide and subsequent 1,3-dipolar cycloaddition with norbornene or cyclooctyne probes.
Nitrile oxides (1.45) have also been used in strain-promoted cycloadditions with cyclooctynes (1.50), yielding a mixture of isoxazole products (1.51), demonstrating rate constants that are approximately 10 times faster SPAAC.109 The strain-promoted alkyne-nitrile oxide cycloaddition (SPANOC) methodology has been employed for modification of a series of oxime containing nucleotides and peptides,107 as well as carbohydrates.108 Aside from the potential cross reactivity problems associated with \textit{in situ} generation of nitrile oxides, the attractiveness of SPANOC includes: 1) the ease of nitrile oxide formation; 2) the cycloaddition of nitrile oxides to alkynes is \textasciitilde6 kcal/mol lower than that for azides; and 3) the isoxazole product is stable.

Tetrazole-Alkene Cycloaddition Reactions

Photo inducible bioorthogonal reactions provide a time resolved chemical tool that can be used to study the spatial and temporal dynamics of biological processes. The photo triggered reaction between diaryl tetrazoles and alkenes was developed for bioconjugation by Lin \textit{et al.}109,110 The reaction follows a concerted mechanism whereby the diaryltetrazole (1.52) undergoes photo reversion releasing N\textsubscript{2} upon irradiation, thereby generating a nitrile imine dipole (1.53) that undergoes rapid 1,3-dipolar cycloaddition alkenes (1.54), yielding the corresponding pyrazoline cycloadduct (1.55) (Scheme 1-7).110,111

\begin{center}
\begin{align*}
\text{Ar}^2\text{N}^=\text{N} & \xrightarrow{\text{hv}} \text{Ar}^1\text{N}^=\text{N} \quad \text{(1.52)} \\
\nonfluorescent & \xrightarrow{-\text{N}_2} \text{Ar}^1\text{N}^=\text{N} & \text{(1.53)} \\
\text{Ar}^2 & \xrightarrow{[3+2]} \text{Ar}^2\text{N}^=\text{N}^\ominus \text{Ar}^1 & \text{(1.54)} \\
\end{align*}
\end{center}

\textbf{Scheme 1-7.} Photo-induced 1,3-dipolar cycloadditions of 2,5-diaryltetrazoles and alkenes.112
Studies have shown that tetrazole-alkyne reaction can be utilized for modifying proteins bearing tetrazoles. It was shown that in aqueous media (PBS pH = 7.5), upon photo irradiation at 302 nm, the nitrile imine undergoes facile 1,3-dipolar cycloaddition with alkenes with fast reaction kinetics (rate constants up to 11.0 M⁻¹s⁻¹). This rate constant is significantly faster than Staudinger ligation and is an order of magnitude faster than SPAAC. Subsequently, the bioorthogonality of the reaction was tested for residue-specific and site-specific modification of proteins. Fortuitously, the pyrazoline cycloadducts were also fluorescent, allowing direct in-gel fluorescence imaging during pyrazoline formation.

The utility of photo-induced nitrile imine-alkene cycloaddition for in-vivo labelling of protein was demonstrated with E. coli cells overexpressing an alkene-containing Z-domain protein. An important mechanistic modification was uncovered to optimize the orbital energies, where the tetrazole was functionalized with electron donating groups to increase the HOMO of the nitrile-imine leading to an increased reactivity with terminal alkenes. The reaction has been modified further to ensure utilization of longer wavelength light, to minimize biomolecule damage. Through the incorporation of conjugative groups into the diaryltetrazole, irradiation at longer wavelengths has enabled site specific labeling of homo-allyl glycine containing proteins in vitro and for spatiotemporally controlled imaging of newly synthesized proteins in E. coli and live mammalian cells. The majority of applications have been labelling of biosynthetically incorporated alkenes, however, recently, this methodology has been extended to genetic site-specific incorporation of tetrazole-amino acids into E. coli, and mammalian cells. The major advantage of the tetrazole-alkene ligation is the photo inducibility of the 1,3-dipole component, enabling spatial-temporal control over reaction initiation.
Tetrazine-Based Inverse-Electron Demand Diels-Alder Reactions

The Diels-Alder reaction is a particularly attractive bioorthogonal reaction, since it is known to proceed faster in water than in organic solvents due to the hydrophobic effect.117 Not surprisingly, the Diels-Alder reaction has been employed in bioconjugation for more than a decade.118-121 Recently, an extraordinarily fast inverse-electron demand Diels-Alder reaction (IEDDA) between \textit{trans}-cyclooctene122,123 (1.56) and 1,2,4,5-tetrazines (1.57) was reported by Fox \textit{et al.}124 In this reaction the tetrazine serves as the diene in reaction with \textit{trans}-cyclooctene to yield the dihydropyrazine cycloadduct (1.59) upon extrusion of nitrogen and tautomerization (Scheme 1-8). This reaction displays second-order rate constants up to 2000 \(\text{M}^{-1}\text{s}^{-1} \), which are several orders of magnitude greater than the other bioorthogonal reactions mentioned above. The reaction has undergone significant mechanistic modification to improve the kinetics of this reaction by optimizing the reactivity, stability, and cell permeability of the tetrazine125 and \textit{trans}-cyclooctene126 derivatives.

\begin{center}
\begin{tikzpicture}
\node[shape=circle,draw=blue] (1) at (0,0) {1.56};
\node[shape=circle,draw=blue] (2) at (3,0) {1.57};
\node[shape=rectangle,draw=black] (3) at (1.5,1) {[4+2]};
\node[shape=rectangle,draw=black] (4) at (4.5,1) {retro-[4+2] taut.};
\node[shape=rectangle,draw=red] (5) at (1.5,-1) {1.58};
\node[shape=rectangle,draw=red] (6) at (4.5,-1) {1.59} + regioisomer;
\draw[-latex] (1) -- (3);
\draw[-latex] (2) -- (3);
\draw[-latex] (3) -- (4);
\draw[-latex] (4) -- (5);
\draw[-latex] (5) -- (4);
\draw[-latex] (5) -- (6);
\end{tikzpicture}
\end{center}

\textbf{Scheme 1-8}. Inverse electron-demand Diels-Alder reactions of tetrazines with \textit{trans}-cyclooctenes.

Applications of tetrazine-\textit{trans}-cyclooctene ligations have included fluorescence labelling of cancer cells,127,128 \textit{in vivo} cancer imaging with 111\textit{In},129 and 18\textit{F} radionlabelling,130-132 cancer
cell detection, fluorescent imaging cytoskeletal proteins within living mammalian cells, and recently the methodology has been used with amino acids modified by tetrazine and trans-cyclooctene for genetic incorporation into proteins in vivo. The fast kinetics of tetrazine-trans-cyclooctene ligation will be particularly useful for tracking fast biological processes and for labelling low-abundance proteins.

Shortly after the inception of the tetrazine-trans-cyclooctene ligation, Hilderbrand and co-workers reported the reaction between norbornene (1.60) and monoaryltetrazine-tethered fluorophore (1.61) modified monoclonal antibody for pre-targeted imaging of live human cancer cells (Scheme 1-9). Subsequently, genetic incorporation of a norbornene amino acid using the pyrrolysyl tRNA synthetase/tRNA_{CUA} pair in E. coli and mammalian cells has enabled fluorescence labelling of newly synthesized proteins.

![Scheme 1-9](image)

Scheme 1-9. IEDDA reactions of tetrazines with norbornene functionalized biomolecules.

In yet other independent efforts, tetrazines (1.63-1.65) have been employed for bioconjugation with other dienophiles, including cyclobutene containing peptides (1.66), with proteins bearing genetically encoded cyclooctyne amino acids (1.67), and most recently with phospholipids containing a cyclopropene motif (1.68) (Scheme 1-10). The reactions of tetrazines with cyclooctynes or cyclopropenes provide rate constants up to 45 M$^{-1}$s$^{-1}$ and 13 M$^{-1}$s$^{-1}$, respectively. It has been demonstrated that the tetrazine-trans-cyclooctene displays superior reaction kinetics that are 3-7 orders of magnitude greater than many other
bioorthogonal reactions. The tetrazine-\textit{trans}-cyclooctene ligation proceeds with rates that are \~10-15 times faster than reactions of tetrazines with cyclooctynes, and \~1000 times faster than the tetrazine-norbornene cycloaddition.136 As bioorthogonal reagents, tetrazines are only limited by their bulky size. Attempts to improve the kinetics of the tetrazine-\textit{trans}-cyclooctene ligation have involved increasing the strain in the \textit{trans}-cyclooctene reagent through cyclopropyl fusion. The reactions of tetrazine with strained \textit{trans}-cyclooctene (sTCO, 1.65), were too fast for accurate measurement by stop flow and it was estimated that these reactions were \~50 times faster than analogous reactions with \textit{trans}-cyclooctene.136

Olefin Metathesis on Proteins

Another transformation that takes advantage of the alkene as a bioorthogonal reactive group is olefin metathesis, that has emerged as a viable bioorthogonal reaction for selective covalent modification on peptides and proteins, primarily due to its functional group tolerance (Scheme 1-11).142

![Scheme 1-11. Protein functionalization by olefin cross-metathesis.5](image)

Using the Hoveyda-Grubbs second generation catalyst in a screen of several alkene containing amino acids, it was found that S-allylcysteine (1.72) was an exceptional substrate in cross metathesis on proteins.143 S-allylcysteine can be easily introduced to proteins by conjugate addition of allyl thiol to dehydroalanine, direct allylation of cysteine, or by desulfurization of allyl disulfide. Through incorporation of S-allylcysteine on the surface of a single cysteine mutant of serine protease subtilisin \textit{Bacillus lentus} (SBL), olefin metathesis has been used to introduce modifications such as glycosylation and PEGylation (Scheme 1-11).143
Encouraged by the fact that S-allylcysteine can be metabolically incorporated into proteins, either as a methionine surrogate in methionine auxotrophic *E. coli*, or by reassignment of the amber stop codon, the true potential of allyl sulfides as a bioorthogonal reporter for cross-metathesis *in-vivo* remains to be reported.

Palladium Catalyzed Cross-Coupling Reactions

Palladium catalyzed cross-coupling reactions are amongst the most powerful and versatile organic transformations known today. They are particularly attractive for bioorthogonal reaction development because they display excellent functional group tolerance and compatibility with water.

Mizoruki-Heck reaction

Yokoyama and co-workers have recently used the Mizoruki-Heck reaction for modifying a genetically engineered Ras protein bearing an *p*-iodophenylalanine (1.75) with an alkene tethered to biotin (1.76) (Scheme 1-12). The reaction was facilitated by the water soluble Pd-TPPTS (triphenylphosphine-3,3’,3’’-trisulfonate) catalyst in a *N*-tris(hydroxymethyl)methyl-3-aminopropanesulfonate (TAPS) aqueous medium containing MgCl₂ and 5 °C.

![Scheme 1-12](image)

Scheme 1-12. Protein functionalization by the Mizoruki-Heck reaction.

The reaction has come with minimal success for protein modification, due to the requirement of 12 % DMSO to achieve minimal conversion after prolonged reaction time under argon gas.
Sonagashira reaction

The site specific modification of \(p \)-iodophenylalanine-encoded Ras proteins (1.78) with a propargyl-tethered biotin (1.79) under aqueous Sonagashira coupling conditions was subsequently reported (Scheme 1-13).\(^{149}\) The reaction still involved a complex mixture of reagents to achieve 25 % conversion, but in a significantly shorter reaction time than the previously reported Mizoruki-Heck reaction.

![Scheme 1-13. Protein functionalization by Sonagashira cross-coupling.\(^5\)](image)

In 2011, a breakthrough copper-free Sonagashira variant was reported by Lin *et al.* (Scheme 1-14).\(^{150}\) An aminopyrimidine-palladium(II) complex was used to ligate a genetically encoded homopropargylglycine (HPG) containing ubiquitin peptide (1.81) to a range of fluorophores and fluorinated aromatic compounds (1.82) in aqueous medium. The reaction can be conducted under much milder conditions than the previously reported Sonagashira coupling and provides good to excellent yields (55-93 %).

![Scheme 1-14. Copper-free Sonagashira cross-coupling.\(^{150}\)](image)
Suzuki-Miyuara cross-coupling reaction

In 2008, the Suzuki-Miyuara cross-coupling between a Z-domain protein bearing a genetically encoded p-boronophenylalanine and a BODIPY aryliodide probe in a basic buffered solution (pH=8.5) using a Pd0-dibenzylidene acetone (Pd-DBA) in 3-(4-(2-hydroxyethyl)-1-piperazinyl)-propanesulfonic acid (EPPS) buffer at 70 °C was reported by Schultz *et al.*5,151 Recently, Davis *et al.* have demonstrated protein modification via Suzuki-Miyaura cross-coupling reaction using a water soluble Pd-catalyst, containing the sodium salt of 2-amino-4,6-dihydroxypyrimidine.152 In the latter publication, subtilisin *Bacillus lentus* (SBL) bearing the S156C mutation was functionalized with p-iodobenzyl cysteine (Pic) (1.84) and coupled with various alkenyl and arylboronic acids (1.85) at 37 °C in aqueous media (Scheme 1-15). The reaction has also been used for modification of genetically encoded iodophenyl alanine153 on the cell surfaces of *E. coli*. 154

![Scheme 1-15. Protein functionalization by Suzuki-Miyuara cross-coupling.](image)

Quadricyclane Ligations

Recently, Bertozzi *et al.* have shown that highly strained quadricyclane (1.87) undergoes rapid [2+2+2] cycloaddition with the π-system of Ni-bis(dithiolene) reagents (1.88) with a rate constant of 0.25 M$^{-1}$s$^{-1}$ (Scheme 1-16).155 Quadricyclane modified bovine serum albumin (BSA) can be efficiently labelled in the presence of cell lysates. The reaction
is orthogonal to SPAAC and oxime ligation. Quadricyclane is abiotic, stable at r.t. in aqueous media at pH 7 and is not known to react with biomolecules.

![Scheme 1-16. Protein functionalization by quadricyclane ligation.](image)

Conclusions

The repertoire of bioorthogonal reactions has grown significantly in recent years. A number of water-compatible reactions based on nucleophilic additions, 1,3-dipolar cycloadditions, inverse-electron demand Diels-Alder reactions, olefin metathesis, palladium-mediated reactions, and quadricyclane reactions have been optimized for biomolecular substrates and each are at varying stages of bioorthogonal reaction development. As compared to conventional organic transformations, a much greater set of variables needs to be optimized concurrently (ie. bioorthogonality, reaction kinetics, inducibility, reactant encodability, etc.).

Amongst all known bioorthogonal reactions and depending on substrate structure, the tetrazine-trans-cyclooctene reaction demonstrates the fastest kinetics ($k_2 = 2000 - 6000 \text{ M}^{-1}\text{s}^{-1}$). While strain-promoted azide-alkyne cycloadditions displays slower kinetics (rate constants up to 4 M$^{-1}$s$^{-1}$), SPAAC has displays greater biocompatibility due to the small size
of the azide reporter. Transition metal catalyzed reactions are limited by high catalyst loadings and the toxicity of the catalysts. The slowest reactions exhibit rate constants on the order of $10^4 \text{ M}^{-1}\text{s}^{-1}$. The ability to genetically encode or metabolically incorporate bioorthogonal reporter groups is of paramount importance. In this regard, the most successful reagents are small and non-perturbative, usually consisting of 3-4 atoms (eg. azides, alkynes and simple alkenes).

Cycloadditions have been most well developed likely due to the fact that the reactions are typically water-compatible, often display rate enhancements under aqueous conditions, and lack reactive intermediates that can be intercepted by biological nucleophiles and electrophiles. Emerging strategies utilize combinations of these reactions (orthogonal to each other) to functionalize multiple biomolecules in vivo. This provides avenues for investigating multiple processes that are not possible using one reaction alone.

Thesis Outlook

The above examples affirm the power of bioorthogonal chemistry and the impact these chemistries have had on advancing biological research. A central theme to the field of bioorthogonal chemistry is the development of highly specific organic reaction methodologies in water that proceed at fast enough rates to permit biological labelling at low reagent concentrations. The goal of the work presented in this thesis is to develop rapid bioorthogonal reaction methodology, and apply the reactants and products as tools for in vivo imaging of cell surface proteins. Despite the tremendous effort to develop biocompatible ligands in CuAAC and optimize the strained alkyne component in SPAAC reactions, less attention has been focused on alternative 1,3-dipoles, exhibiting different reactivity. Here we
describe the development of nitrones as 1,3-dipoles in cycloadditions with alkynes, and their applications for biological labelling.

The onset of this dissertation describes the development of a Cu(I)-catalyzed alkyne-nitrone cycloadditions (Kinugasa reaction) as an alternative to CuAAC for biological labelling. The established Kinugasa reaction methodology is then utilized to develop ‘clickable’ activity-based probes that can be used for studying the function of rhomboid proteases and other non-conventional targets of β-lactams. Alkyne functionalized β-lactams products of the Kinugasa reaction are then exploited as ligands for silver (Ag) nanoparticles and alkyne bound nanoparticles are used for SERS imaging cell surface proteins.

To improve the kinetics and biocompatibility of the developed Kinugasa reaction under ‘click’ chemistry conditions, we have explored copper-free 1,3-dipolar cycloadditions between nitrones or diazoalkanes and cyclooctynes. A series of acyclic and cyclic nitrones as well as diazoalkanes were synthesized, and tested in model cycloadditions with cyclooctynes. The observed rates were compared with analogous reactions of benzyl azide.

Lastly, we describe the kinetics and scope of SPANC reactions involving cyclic nitrones, and applications of SPANC for protein functionalization in vitro and for imaging cell surface proteins.
References

(40) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. *Angew. Chem. Int. Ed.* **2002**, 41, 2596-2599.

Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152-9153.

Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152-9153.

Hong, V.; Steinmetz, N. F.; Manchester, M.; Finn, M. G. Bioconjugate Chem. 2010, 21, 1912-1916.

Chapter 2: Studies of Micelle-Promoted Kinugasa Reactions in Aqueous Media

A significant portion of the work presented in this chapter was published in:

Introduction

Azide-based cycloadditions have been used successfully in bioorthogonal chemistry for tracking biomolecules in living systems via the Staudinger ligation, Cu(I)-catalyzed azide-alkyne cycloaddition, and copper-free azide-alkyne cycloaddition. The 1,3-dipolar cycloaddition reactions between azides and alkynes has been particularly successful for labelling biomolecules at low reagent concentrations due to the fast kinetics when catalyzed by Cu(I) or by strain-release of the alkyne moiety. Despite significant advances to generate more efficient and biocompatible Cu(I)-catalysts or to optimize strained alkyne structures, less attention has been focused on more common 1,3 dipoles, such as nitrones, as a means for improving the kinetics of bioorthogonal 1,3-dipolar cycloaddition reactions with alkynes.

The general applications of 1,3-dipolar cycloadditions was first established by Huisgen in the 1960s. 1,3-dipolar cycloaddition reactions involve 4 π electrons from the dipole and 2 π electrons from the dipolarophile (Scheme 2-1). It is generally accepted that 1,3-dipolar cycloadditions follow a concerted mechanism, whereby three p_z orbitals from the dipole and two p_z orbitals from the dipolarophile combine suprafacially, with the description \([\sigma_{4s} + \sigma_{2s}]\) according to the Woodward-Hoffman rules.

Scheme 2-1. [3+2] cycloadditions of 1,3-dipoles with dipolarophiles.

1,3-dipoles can be classified into two different types: allyl anion type and propargyl/allenyl anion type. The allyl anion type 1,3-dipoles are bent and characterized by three p_z orbitals laying perpendicular to the plane of the dipole. The propargyl allenyl
anion type are linear and contain an extra π orbital in the plane orthogonal to the allenyl anion molecular orbital that is not involved in reactions of the dipole. The chemistry of 1,3-dipolar cycloaddition has evolved for more than 100 years and a variety of 1,3-dipoles have been discovered and are classified in Table 2-1.\(^4\)

Table 2-1. Classification of 1,3-dipoles. Table was reprinted from literature.\(^6\)

<table>
<thead>
<tr>
<th>Allyl anion type</th>
<th>Nitrogen in the middle</th>
<th>Oxygen in the middle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitro compounds</td>
<td>Nitrones</td>
<td>Carbonyl Ylides</td>
</tr>
<tr>
<td>Carboxyl Ylides</td>
<td>Azomethine Ylides</td>
<td>Carbonyl Imines</td>
</tr>
<tr>
<td>Azomethine Imines</td>
<td>Azomethine Ylides</td>
<td>Carbonyl Oxides</td>
</tr>
<tr>
<td>Azimines</td>
<td>Azomethine Imines</td>
<td>Nitrosimines</td>
</tr>
<tr>
<td>Nitrile Oxides</td>
<td>Azoxy Compounds</td>
<td>Nitrosoxides</td>
</tr>
<tr>
<td>Nitrosoxides</td>
<td>Nitro Compounds</td>
<td>Ozone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propargyl/allenyl anion type</th>
<th>Nitrile Ylides</th>
<th>Nitrile oxides</th>
<th>Nitrile Imines</th>
<th>Nitrile Oxides</th>
<th>Diazoalkanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrile Ylides</td>
<td>Nitrile Imines</td>
<td>Nitrile Oxides</td>
<td>Diazoalkanes</td>
<td>Nitrous Oxide</td>
<td>Nitrosimines</td>
</tr>
<tr>
<td>Nitrile Oxides</td>
<td>Nitrile Imines</td>
<td>Nitrile Ylides</td>
<td>Diazoalkanes</td>
<td>Nitrous Oxide</td>
<td>Nitrosimines</td>
</tr>
</tbody>
</table>

In the 1960’s, the reaction mechanism for 1,3-dipolar cycloadditions attracted a significant amount of attention (Scheme 2-2).\(^7\-9\) Rolf Huisgen proposed a detailed rationale for the concerted mechanism based on kinetic measurements, stereochemical results, as well
as solvent and substituent effects. On the other hand, Firestone considered that the reaction proceeded through a diradical intermediate, and presented a variety of challenges to the concerted mechanism. The 1,3-dipolar reaction of benzonitrile oxide with trans-dideuterated ethylene gave exclusively the 5-substituted trans-isoxazoline. Had a diradical intermediate been formed, 180° rotation of the terminal bond would have scrambled the stereochemistry yielding a mixture of the cis and trans isomers. On the basis of the stereospecificity of the 1,3-dipolar cycloaddition, the dispute was settled in favour of the concerted mechanism:

Scheme 2-2. Postulated mechanisms of 1,3-dipolar cycloadditions. Scheme was reprinted from the literature.

The transition state of the concerted 1,3-dipolar cycloadditions is controlled by the frontier molecular orbitals (FMO) of the substrates. The LUMO_{dipole} can interact with the HOMO_{dipolarophile}, and conversely the HOMO_{dipole} can interact with the LUMO_{dipolarophile}. As the HOMO-LUMO energy gap decreases the reactivity increases. Sustman has classified 1,3-dipolar cycloadditions into three types, on the basis of the relative FMO energies between the dipole and dipolarophile (Figure 2-1). Type I reactions are dominated by HOMO_{dipole}-LUMO_{dipolarophile} interactions. For type II, the similarity of the dipole and dipolarophile FMO energies indicate both HOMO-LUMO interactions are important. In type III, interactions between the LUMO_{dipole} and the HOMO_{dipolarophile} predominate.
The introduction of electron-donating or electron-withdrawing substituents on the dipole or dipolarophile has effects on the relative FMO energies. Additionally, the use of a transition metal catalyst alters both the orbital coefficients of the starting atoms and the energy of the FMOs of both the 1,3-dipole and dipolarophile depending on the electronic properties of the reactants. The catalytic effect of a Lewis acid on 1,3-dipolar cycloadditions can be accounted for by the FMOs of either the dipole, or the dipolarophile when coordinated to the metal (Figure 2-2).

In the absence of metal catalyst, linear alkynes react very slowly with nitrones. The dramatic rate acceleration of terminal alkyne-nitrone cycloaddition in the presence of copper-
(I) was first reported by Kinugasa and Hashimoto in 1972 (Scheme 2-3). In the seminal account, the reaction of Cu-phenyl acetylide (2.1) with α,N-diphenyl nitron (2.2), in anhydrous pyridine at r.t. under nitrogen atmosphere provided exclusively cis-1,3,4-triphenyl-2-azetidinone (cis-2.3) in 50-60% yield within 30 min.

\[
\begin{align*}
\text{Ph} & \quad \text{Cu} \\
2.1 & \quad + \\
\text{Ph} & \quad \text{N}^\text{Ph} \quad \text{O} \\
2.2 & \quad \overset{\text{1. pyridine, r.t.}}{\rightarrow} \quad \overset{\text{2. hydrolysis}}{\rightarrow} \\
& \quad \text{Ph} \\
2.3 & \quad \text{N}^1 \quad \text{O} \\
& \quad \text{Ph} \\
\end{align*}
\]

Scheme 2-3. Kinugasa reaction of Cu(I)-phenylacetylide with diaryl nitrones.

Four years later, Ding and Irwin reported a full paper on the scope and limitations of the Kinugasa reaction, and found that under the general reaction conditions, mixtures of cis-2.3 and trans-2.3 were consistently obtained in varying ratios, ranging from 1:1 to 12:1, with the cis-diastereomer being favored. This finding led them to propose the first mechanism for the Kinugasa reaction (Scheme 2-4). It was suggested that β-lactam formation proceeded through a highly strained bicyclic oxaziridinium intermediate (2.5), and that the initially formed cis-2.3 is the kinetic favored product, because the isoxazoline intermediate (2.4) preferred to be protonated from the less sterically hindered face of the molecule in the protonation step. The extent of formation of the trans-2.3 likely resulted from the ease of isomerization at C-3 under the basic reaction conditions.
Scheme 2-4. Mechanism of the Kinugasa reaction proposed by Ding and Irwin.15

An alternate path II was reported shortly thereafter by Tang \textit{et al.},16 whereby the isoxazoline 2.4 supposedly underwent ring opening fragmentation to the ketene (2.7),16-18 as in the Staudinger ligation, followed by intramolecular cyclization to give the enolate (2.8), and protonation to yield β-lactams 2.3 (Scheme 2-5). The stereochemical outcome of the Kinugasa reaction is dependent on the initial cycloaddition to form the isoxazoline derivative 2.4 (common for both mechanisms). The initial cycloaddition fixes the configuration at C-4, which in turn, influences the stereochemistry at C-3.

Scheme 2-5. Alternative mechanism for the Kinugasa reaction proposed by Tang.16
Although no definitive evidence exists to unambiguously prove or disprove either of the mechanisms, for example by trapping or isolating intermediates, the mechanism involving the ketene intermediate, appears to have gained support on the basis of the work of De Shong et al.17 In their studies, they were able to show formation of \(\beta \)-lactams (2.9) via the cycloaddition of nitrones (2.10) with trimethylsilylacetylene (2.11) followed by desilylation of the corresponding 5-(trimethylsilyl)-isoxazoline (2.12) with fluoride (Scheme 2-6).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Scheme2-6.png}
\caption{Mechanism of \(\beta \)-lactam formation by fragmentation of 5-(trimethylsilyl)-isoxazolines.}
\end{figure}

An interesting catalytic modification of the original Kinugasa reaction was reported by Muira et al.,19,20 based on the reaction between phenyl acetylene (2.6) and a \(\alpha,N \)-diphenyl nitrone (2.2) in the presence of catalytic CuI and potassium carbonate (Scheme 2-7). The terminal alkyne is converted into copper acetylide in the presence of Cu(I) and a base, and underwent Kinugasa reaction with diaryl nitrones. According to the conditions shown in Scheme 2-7, the ratio of \emph{cis}-2.3 to \emph{trans}-2.3 was dependent on the type of phosphorus or nitrogen containing ligands employed. They also noted the formation \(N \)-(1,3-diphenyl-2-propynylidene)aniline (2.15), \(N \)-benzylideneaniline (2.16), and phenylacetic acid (2.17), resulting from competing nitrone deoxygenation and nucleophilic additions of the Cu-acetylide. When the reaction was conducted with phosphines such as Ph\(_3\)P, Bu\(_3\)P, dppe or dppp, the \emph{trans}-\(\beta \)-lactam was the exclusively formed \(\beta \)-lactam product although in poor yield (6-36 \%). In the presence of nitrogen containing ligands such as pyridine or 1,10-
phenanthroline, the yield of β-lactams was significantly increased (55-71 %) and both cis-2.3 and trans-2.3 were obtained, in ratios of 2:1 for pyridine, and 1:1.2 when 1,10-phenanthroline was employed as a ligand.

Scheme 2-7. Kinugasa reaction variant reported by Muira.19

Since Muira’s report there have been several modifications to the reaction conditions that include: intramolecular,18,21 diastereo-22-26 and enantioselective16,18,19,27-29 versions that have been achieved by using chiral auxiliary groups and chiral ligands. Asymmetric induction in the Kinugasa reaction has also been accomplished in one of three ways: 1) use of a chiral ligand designed for chelation to Cu(I), 2) use of a chiral nitrone, or 3) use of a chiral acetylene.

Figure 2-3. Ligands commonly used in Kinugasa reactions.
Muira et al. were the first to explore the first strategy by using C_2-symmetric chiral bisoxazoline ligands (2.18-2.20). In the following years, C_2-symmetric bis(azaferrocene) (2.21) and mixed P,N-complexes (2.22-2.23), pseudo C_3-symmetric trisoaxazine (2.24), HETPHOX (2.25-2.27), and IndaBox C_2-symmetric chiral bis(oxazoline) ligands (2.28-2.30) have been used to coordinate copper catalysts during the Kinugasa reaction (Figure 2-3).

Although the Kinugasa reaction has been applied most exclusively to diarylnitrones, the reaction has also been extended to non-racemic chiral cyclic nitrones to generate the corresponding carbapenams with excellent cis-diastereoselectivity. Asymmetric induction in such systems has also been achieved using terminal acetylenes bearing chiral auxillaries.26,33

Towards using nitrones as bioorthogonal chemical reporters in cycloadditions with alkynes, this chapter describes development of multicomponent Kinugasa reactions in aqueous media. The attractive atom economy associated with Cu(I)-catalyzed alkyne-nitrone cycloadditions prompted us to explore the Kinugasa reaction as an alternative to CuAAC. The great potential of the Kinugasa reaction as an alternative bioorthogonal reaction includes: 1) the ease of nitrone preparation; 2) nitrones are typically stable and easily purified; 3) numerous alkynes with widely varying substituents are commercially available; and 4) the Kinugasa reaction is known to be tolerant to a wide range of functional groups (ie. alcohols, amines, halides and esters).

Hypothesis

Micelle-promoted multicomponent Kinugasa reactions proceed efficiently under aqueous conditions.
Results and Discussion

Multicomponent Kinugasa Reactions in Aqueous Media

The Copper-free cycloaddition of nitrones with terminal alkynes normally proceeds under refluxing conditions, but in the presence of Cu(I), the Kinugasa reaction takes place at r.t. or even at 0 °C. The notorious instability of Cu(I) in the presence of air has previously limited Kinugasa reactions to being conducted in organic solvents in the absence of air. We envisioned that by using sodium ascorbate to generate a reductive atmosphere thereby reducing Cu(II) to Cu(I), the Kinugasa reaction could be conducted in aqueous solution, and could ultimately be applied as a novel biological labelling reaction.

During the course of this work, Basak and co-workers reported a Kinugasa reaction variant to generate monocyclic β-lactams in aqueous solution using sub-stoichiometric copper catalyst.34 In their work, it was found that due to reagent solubility, DMF-H\textsubscript{2}O solvent combination (2:1) gave the best results in terms of yield (~70 %), and that performing the reaction in water as the sole solvent caused the reaction to work less efficiently. This caused us to re-evaluate our approach, and explore the possibility of using micelle catalysis to conduct multicomponent Kinugasa reactions in aqueous media. We anticipated that a micelle-promoted Kinugasa reaction would not only circumvent the requirement of organic co-solvents and avoid the requirement of pre-formation of nitrones, but would potentially lead to rate accelerations in the Kinugasa reaction.

Previously Chatterjee \textit{et al.} reported a convenient ‘single pot’ synthesis of isoazolidines that involved micelle surfactant catalyzed α,N-diaryl nitrone formation followed by [3+2] cycloaddition with ethyl acrylate in water at r.t., to generate trans-isoazolidines.35 Additionally, we had recently utilized similar methodology to functionalize
an unnatural amino acid containing a cyclic α,β-unsaturated ketone with *in situ* generated α,N-diphenyl nitro in aqueous media.36 Herein we report our studies of simultaneous micelle-promoted and copper-catalyzed multicomponent Kinugasa reactions in aqueous media (Scheme 2-8).

Scheme 2-8. Multicomponent Kinugasa reactions in aqueous media.

The proposed multicomponent Kinugasa reaction proceeds by a two-step reaction sequence involving micelle-promoted *in situ* nitrone formation from an aryl aldehyde (2.32-2.40) and N-phenyl hydroxyl amine (2.31) followed by the Cu(I)-catalyzed Kinugasa reaction with phenylacetylene 2.6 to yield a diastereomeric mixture of *cis* - and *trans*-β-lactams (2.3, 2.41-2.48) (Figure 2-4).

Figure 2-4. Micelle-promoted multicomponent Kinugasa reactions in aqueous media.

Toward establishing optimal reaction conditions for micelle promoted multicomponent Kinugasa reactions, firstly, the *in situ* nitrone formation was optimized. Dehydrative nitrone formation from N-phenyl hydroxyl amine (2.31) and benzaldehyde (2.32) in the presence of aqueous SDS micelle solution in degassed water at r.t. resulted in efficient formation of α,N-diphenyl nitro (2.2) within 30 min. It was found that brief
sonication of the reaction mixture decreased the time of nitrone formation, presumably by helping to effectively solubilize the reactants by the surfactant. This method of nitrone formation complements traditional approaches using organic solvents and dehydrating agents.\(^{22}\)

It was found that cooling the *in situ* generated nitrone to 0 °C prior to addition of the remaining reagents led to increased yields of the corresponding β-lactam. The solution of *in situ* generated \(\alpha,N\)-diphenyl nitrone (2.2) was reacted with phenylacetylene (2.6), (+)-sodium L-ascorbate, \(\text{Cu(SO}_4\text{)}\), pyridine and ethanolamine (EA) buffered at pH = 10. This mixture was allowed to react for 30 min at 0 °C and was then stirred at r.t. for 10 h. The reaction mixture consisted of three major products, the *cis*-2.3 and *trans*-2.3 in 46 % overall yield in a ratio of 1.2:1, respectively, along with an amide-linked product 2.56 in 36 % yield (Table 2-2).

Table 2-2. Effect of Cu-catalyst loading on the multicomponent Kinugasa reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cu catalyst (mol %)(^a)</th>
<th>Time (h)</th>
<th>Yield %</th>
<th>2.3 (cis:trans)</th>
<th>2.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>6</td>
<td>46</td>
<td>1.2:1</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>7</td>
<td>46</td>
<td>1.2:1</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>10</td>
<td>46</td>
<td>1.2:1</td>
<td>36</td>
</tr>
</tbody>
</table>

Reaction conditions: \([\text{PhCHO}] : [\text{PhNHOH}] : [\text{Ph}≡] : \text{ethanolamine (0.1 M, pH = 10)} : \text{pyridine} = 2 : 2.4 : 1 : 2 : 8\) in degassed SDS/H\(_2\)O (0.05 M) in dark from 0 °C to r.t. under Argon. \(^a\)Na-ascorbate : \(\text{CuSO}_4 = 2 : 1\).
Under the conditions listed in Table 2-2, the reaction was tolerant to sub-stoichiometric Cu-catalyst loadings without compromising the product composition and without sacrificing the yield. However, it was found that catalyst loading below 20 mol % caused the reaction to be sluggish and gave poor yields of 2.3. Amide 2.56 is not a typical by-product of the Kinugasa reaction or a common decomposition product of β-lactams. The structure 2.56 was confirmed by 1H NMR, 13C NMR, and X-ray crystallography (Figure 2-5).

![2.56](image)

Figure 2-5. ORTEP plot of 2.56 with thermal ellipsoids drawn. The crystal structure is in agreement with that reported previously.\(^{37}\)

In an effort to improve the yield and efficiency of the multicomponent Kinugasa reaction and minimize the formation of 2.56, we screened three nitrogen containing ligands: pyridine, 2,2'-bipyridine (bipy), and tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA)\(^{26}\) (Table 2-3). In accordance with the previous findings of Muira \textit{et al.},\(^{19}\) it was found that conducting the reaction with a 10-fold excess amount of pyridine gave the highest yield of 2.3 (46% overall). Decreasing the amount of pyridine below two equivalents resulted in a slow reaction and 2.3 was obtained in 15 % overall yield. Presumably, excess pyridine facilitated regeneration of the active Cu(I) catalyst. Alternatively, the bidentate ligand, bipy was found to be a more efficient ligand in the reaction and provided \textit{cis}-2.3 and \textit{trans}-2.3 and 2.56 in yields of 42 % and 29 %, respectively, with the addition of only one equivalent.
This is attributed to stronger Cu(I) binding of the bidentate ligand in solution. Lastly, we employed TBTA, a ligand commonly used in Cu(I)-catalyzed azide-alkyne cycloadditions. The reaction was slow and provided β-lactams 2.3 and 2.56 in reduced yields (31% and 22%, respectively) after extended reaction time. The lower yield may be due to the poor solubility of TBTA under the aqueous conditions of this system.

Table 2-3. Effect of ligand on the micelle catalyzed Kinugasa reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand (eq.)</th>
<th>Time (h)</th>
<th>Yield %</th>
<th>2.3 (cis:trans)</th>
<th>2.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pyridine (10)</td>
<td>9</td>
<td>46 (1.2:1)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>pyridine (8)</td>
<td>10</td>
<td>46 (1.2:1)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pyridine (2)</td>
<td>20</td>
<td>15(1:1)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,2’-bipyridine (1)</td>
<td>10</td>
<td>42 (1.4:1)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TBTA (0.2)</td>
<td>24</td>
<td>31 (1:1)</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Reaction conditions: [PhCHO] : [PhNHOH] : [Ph–] : sodium ascorbate : CuSO₄ : ethanolamine (0.1 M, pH = 10) = 2 : 2.4 : 1 : 0.4 : 0.2 : 2 in degassed SDS/H₂O (0.05 M) in dark from 0 °C to r.t. under argon.

Utilizing pyridine as a ligand to coordinate to Cu(I), we examined the influence of base on β-lactam yield and diastereoselectivity of the reaction. As shown in Table 2-4, all bases employed effectively promoted the reaction and formed the desired β-lactam 2.3 in 31-46% yield along with the amide by-product in 26-46% yield. The choice of the base for the reaction did not have significant effects on minimizing the side reaction. It was found that bulky secondary amines, DIPA and Cy₂NH, afforded the β-lactam products with moderately better cis-diastereoselectivity (Table 2-4, Entries 3, 4). This supports the proposed mechanism, suggesting that protonation at C-3 occurs from the less sterically hindered face of the isoxazoline intermediate leading to preferential formation of the cis-2.3 in the presence of bulkier amine bases.
Table 2-4. Effect of base on the multicomponent Kinugasa reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Time (h)</th>
<th>Yield %</th>
<th>2.3 (cis:trans)</th>
<th>2.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na₂CO₃</td>
<td>10</td>
<td>38 (1.2:1)</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NaHCO₃</td>
<td>8</td>
<td>44 (1.1:1)</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DIPA</td>
<td>11</td>
<td>42 (2.5:1)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cy₂NH</td>
<td>12</td>
<td>31 (2.8:1)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Et₃N</td>
<td>10</td>
<td>45 (1.6:1)</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tris</td>
<td>12</td>
<td>38 (1:1)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EA</td>
<td>10</td>
<td>46 (1.2:1)</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Reaction conditions: [PhCHO] : [PhNHOH] : [Ph≡] : sodium ascorbate : CuSO₄ : pyridine : base = 2 : 2.4 : 1 : 0.4 : 0.2 : 8 : 2 in degassed SDS/H₂O (50 mM) in dark from 0 °C to r.t. under argon.

During the course these studies it was found that after prolonged reaction times the reaction pH changed from basic to mildly acidic and gave lower β-lactam yields, presumably by the presence of pyridinium ion in solution. To address this issue, we tested the reaction under buffered conditions to maintain the pH throughout the course of the reaction. Interestingly, the multicomponent Kinugasa reaction proceeded in the presence of tris-(hydroxymethyl)-aminomethane (Tris) buffer at pH = 8, although with lower yield than when ethanolamine (EA) buffer at pH = 10 was employed (Table 2-4). It was found that keeping the pH of solution constant during the course of the Kinugasa reaction was beneficial in terms of minimizing side product formation during the formation of the β-lactam.

To further optimize the yield of the micelle-promoted multicomponent Kinugasa reaction, we varied the stoichiometry of nitrone to alkyne ratio (Table 2-5), since copper-mediated deoxygenation of nitrones and Glaser alkyne couplings are processes that could
have potentially been competing side reactions leading to lower yields of β-lactams. The yield of 2.3 was consistently higher when using an excess of nitrone relative to phenylacetylene. It is noteworthy that GC-MS analysis of the reaction mixture indicated that the *in situ* generated diphenyl nitrone 2.2 underwent Cu(I)-mediated deoxygenation leading to formation of the imine, and that Cu-mediated homo-coupling of phenylacetylene occurred after prolonged reaction times.

Table 2-5. Effect of nitrone to alkyne ratio on the multicomponent Kinugasa reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>PhCHO : PhNHOH : Ph≡ Buffer</th>
<th>Yield %</th>
<th>2.3 (cis:trans)</th>
<th>2.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 : 4.8 : 1 EA</td>
<td>44 (1:1:1)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 : 2.4 : 1 EA</td>
<td>46 (1.2:1)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 : 2.4 : 1 Tris</td>
<td>39 (1:1)</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 : 2.4 : 1 -</td>
<td>40 (2:1)</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 : 1.2 : 2 EA</td>
<td>24 (1:1)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 : 1.2 : 2 Tris</td>
<td>37 (1:1)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 : 1.2 : 2 -</td>
<td>33 (1.5:1)</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

Reaction conditions: sodium ascorbate : CuSO₄ : buffer : pyridine = 0.4 : 0.2 : 2 : 8 in degassed SDS/H₂O (0.05 M) in dark from 0 °C to r.t. under argon.

Next, we varied the ratio of sodium ascorbate to Cu-catalyst in hopes of minimizing side reactions (Table 2-6). It was hypothesized that non-ligated Cu(I) may have been partially oxidized during the course of the multicomponent reaction in water. In the absence of sodium ascorbate, the reaction did not work. This ruled out the involvement of Cu(II) in the Kinugasa reaction. It was found that maintaining an excess of reducing agent was essential to the successful outcome of the reaction. Having a 2-fold excess of sodium ascorbate provided satisfactory yields of the 2.3 and 2.56 in 46 % and 33 %, respectively.
Table 2-6. Effect of reducing agent concentration on multicomponent Kinugasa reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>sodium ascorbate : CuSO₄</th>
<th>Yield %</th>
<th>2.3 (cis:trans)</th>
<th>2.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:1</td>
<td></td>
<td>45 (1.2:1)</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>2:1</td>
<td></td>
<td>46 (1.2:1)</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>1:1</td>
<td></td>
<td>34 (1.2:1)</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>0:1</td>
<td>trace</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Reaction conditions: sodium ascorbate : CuSO₄ : ethanolamine (0.1 M, pH = 10) : pyridine = varied : 0.2 : 2 : 8 in degassed SDS/H₂O (0.05 M) in dark from 0 °C to r.t. under argon.

Having optimized the multicomponent reaction conditions, we investigated the generality of the micelle-promoted multicomponent Kinugasa reaction in aqueous media by testing a series of para- and meta-substituted benzaldehydes bearing electron withdrawing and electron donating groups (Table 2-7). The presence of benzaldehydes bearing EDGs resulted in lower yields of the corresponding cis- and trans-β-lactams (2.41 and 2.42) in slightly shorter reaction times relative to when EWGs were employed (2.43-2.48). The yield of amide by-product 2.56 was consistently lower when the EWGs were present on the benzaldehyde. There are three competing reactions that affect the product composition: formation of β-lactams, formation of 2.56, and decomposition of the in situ generated nitrone. Reactions of nitrones bearing EWGs (Table 2-7, Entries 4-9) resulted in a higher overall yield of β-lactam (2.43-2.48), a lower yield of 2.56, and less nitrone decomposition relative to reactions containing EDGs. Despite the longer reaction times for nitrones bearing EWGs, competing side reactions were less of a problem and resulted in increased yields of β-lactams.
Table 2-7. Micelle-promoted multicomponent Kinugasa reaction scope.

<table>
<thead>
<tr>
<th>Entry</th>
<th>X-PhCHO (X=)</th>
<th>Time (h)</th>
<th>Yield %</th>
<th>(cis/trans)</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H (2.32)</td>
<td>10</td>
<td>2.3</td>
<td>46 (1.2:1)</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>p-CH₃ (2.33)</td>
<td>13</td>
<td>2.41</td>
<td>45 (1.3:1)</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>p-OCH₃ (2.34)</td>
<td>8</td>
<td>2.42</td>
<td>62 (1.2:1)</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>m-OMe (2.35)</td>
<td>9</td>
<td>2.43</td>
<td>60 (1.2:1)</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>p-Br (2.36)</td>
<td>18</td>
<td>2.44</td>
<td>73 (1.6:1)</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>p-CO₂Me (2.37)</td>
<td>18</td>
<td>2.45</td>
<td>85 (1:1)</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>p-CN (2.38)</td>
<td>18</td>
<td>2.46</td>
<td>67 (1.2:1)</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>m-NO₂ (2.39)</td>
<td>18</td>
<td>2.47</td>
<td>79 (1.3:1)</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>p-NO₂ (2.40)</td>
<td>18</td>
<td>2.48</td>
<td>82 (1.1:1)</td>
<td>15</td>
</tr>
</tbody>
</table>

Reaction conditions: [X-PhCHO] : [PhNHOH] : [Ph≡] : Na-ascorbate : CuSO₄ : pyridine : ethanolamine (0.1 M, pH = 10) = 2 : 2.4 : 1 : 0.4 : 0.2 : 8 : 2 in degassed SDS/H₂O (50 mM) in dark from 0 °C to r.t. under argon.

The longer reaction times likely result from a modest substituent effect on the rate constant for cycloaddition between the in situ generated Cu(I) phenylacetylide and the in situ generated nitrone. Alternatively, the presence of EWGs stabilized the nitrone, and less decomposition over the first 10 h contributed to the much higher β-lactam yields. The ratio of cis:trans for all β-lactams prepared by the multicomponent Kinugasa reaction in aqueous media did not change significantly. A representative HPLC trace for reactions involving aldehydes 2.34 and 2.36 (Table 2-7, Entries 3 and 5) is shown in Figure 2-6.
Figure 2-6. Representative HPLC traces for micelle promoted multicomponent Kinugasa reactions in aqueous media.

Mechanism of Micelle-Promoted Multicomponent Kinugasa Reactions

A proposed catalytic cycle for the Cu(I)-catalyzed Kinugasa reaction in aqueous media is shown in Figure 2-7. The process begins with reduction of Cu(II) (2.57) to Cu(I) (2.58) using sodium-ascorbate, thereby allowing for coordination of the alkyne to Cu(I) species (2.1) to form a π-complex (2.59) in which the copper ion can be bound to other nucleophilic atoms (oxygen atom, nitrogen ligands, phenyl rings, etc.) and serves to increase the acidity of the terminal alkyne in aqueous media. Deprotonating 2.59 gives rise to the
Cu(I)-acetylide complex 2.1. In the presence of nitrone 2.2, the Cu(I)-phenyl acetylide complex undergoes stepwise or concerted [3+2] cycloaddition leading to the isoxazoline 2.4. The stepwise process is plausible in the case of the metal catalyzed reaction, and it may proceed through intermediates 2.60 and 2.61, in analogy to the mechanism of Cu(I)-catalyzed azide-alkyne cycloadditions proposed previously. The six membered copper-metallocycle intermediate 2.61 then contracts to the five-membered isoxazoline 2.4, and the isoxazoline contracts further and rearranges to the β-lactams 2.3, via the oxaziridinium intermediate 2.5.

Figure 2-7. Plausible catalytic cycle for multicomponent Kinugasa reactions in aqueous media.
The Origins of Amide By-Product Formation

To investigate the origins of the side product 2.56, we performed a series of control reactions. We systematically removed N-phenyl hydroxyl amine 2.31, benzaldehyde 2.32, and phenylacetylene 2.6, from the multicomponent reaction. None of these experiments led to the formation of 2.56. Additionally, we tested the reaction of nitroso benzene, a partially oxidized product from N-phenyl-hydroxylamine, with phenyl acetylene under our Kinugasa reaction conditions and the amide by-product was not observed. Additionally, to determine if 2.56 was a decomposition product of 2.3, we subjected cis-2.3 and trans-2.3 to an aqueous SDS solution of CuSO₄, sodium ascorbate, pyridine and ethanolamine. We did not observe any reaction of 2.3 under these conditions. Therefore, side product 2.56 clearly does not arise from decomposition of 2.3. Collectively these experiments supported a unique role of the nitrone in Cu(I)-catalyzed amide formation from phenylacetylene and diaryl nitrones.

Tang and coworkers rationalized the formation of an imine side product (2.16) to occur via a ketene intermediate 2.7.¹⁶ We speculated that a similar mechanism may be operative in formation of 2.56 (Scheme 2-9).

Scheme 2-9. Proposed mechanism for formation of amide by-product 2.56.
To determine if we could detect ketene intermediate 2.7 over the course of the multicompartment Kinugasa reaction in aqueous media, we performed a trapping experiment. We substituted 2-ethynyl aniline (2.64) in place of phenyl acetylene, under our reaction conditions and did not observe formation of the expected γ-lactam (2.65) (Scheme 2-10).

Scheme 2-10. Attempts to trap the ketene intermediate in the multicompartment Kinugasa reaction.

This result is in agreement with previous efforts by Deshong et al., where they had attempted to desilylate the isoxazoline 2.12 in aqueous HF solution (Scheme 2-11). In their case, protonation of the isoxazoline nitrogen and fluoride induced fragmentation did not lead to β-lactam, but rather the amino group initiated intermolecular polymerization. Under acidic conditions, β-elimination resulted in formation of the α,β-unsaturated amide (2.67).

Scheme 2-11. Desilylation of isoxazolines in aqueous HF.
On the basis of our efforts to improve the yield and overall efficiency of the Kinugasa reaction in water we discovered a new amide by-product and more insight into the reaction. A main reason for by-product formation and low yields in the Kinugasa reaction is likely a combination of factors such as its inherent slow rate and the dual character of the copper acetylide, which may react as either a dipolarophile or as a nucleophile. It has been proposed that the 1,3-dipolar cycloaddition is slow and reversible. The second step, rearrangement of the isoxazoline is also slow due to the high energy barrier of contraction of the five membered isoxazoline (2.4) to the four membered metal enolate (2.8) or oxaziridinium ion (2.5). Due to the low rates of these processes, side reactions become operative and involve multiple pathways involving both the nitrone and alkyne. For example, Cu(I)-mediated deoxygenation, as well as copper mediated Glaser alkyne couplings have been also observed in these reactions. While we established a new way for synthesizing β-lactams via a multicomponent Kinugasa reaction in water, this chemistry is not amenable to bioconjugation.

Future Directions

For the Kinugasa reaction to be useful as a bioorthogonal reaction, the reaction rate needs to be increased in order to minimize competing side reaction pathways. In the absence of faster catalytic systems, future work would focus on using different dipolarophiles that display increased reactivity with nitrones. Additionally, the β-lactam products and derivatives thereof from these reactions could find applications as biological probes for activity based protein profiling (ABPP) and as surface enhanced Raman spectroscopy (SERS) imaging contrast agents.
Conclusions

We have studied multicomponent Kinugasa reaction for the simultaneous micelle promoted and Cu(I)-catalyzed coupling of alkynes with \textit{in situ} generated diaryl nitrones to form 1,3,4-triaryl substituted β-lactams and an unprecedented amide-linked product. The reaction is tolerant to substituents at the α-aryl position of the nitrone, and β-lactams were prepared in 46–85 %. The highest yields were obtained when benzaldehydes bearing EWGs were employed. This reaction provides a convenient method for constructing the β-lactam ring in aqueous media. However, the slow kinetics of the developed reaction precludes its practical applicability as a bioorthogonal reaction, since the presence of biological functionality will likely complicate the reaction even further.

Acknowledgements

I would like to thank Kenneth Chan for MALDI-MS analysis of the products, Donald M. Leek for assistance with NMR, Malgosia Daroszewska for assistance with HPLC and mass spectrometry, and Dr. Gary Enright for X-ray analysis of the amide by-product. I would also like to thank Dr. David Kennedy for critical reading of the manuscript and useful discussions.
Materials and Methods

General

All chemical reagents were purchased from commercial suppliers and used without further purification. Water and buffers were degassed thoroughly and stored under argon prior to use. All reactions were carried out in oven dried glassware under an atmosphere of argon with magnetic stirring. Reactions were monitored by thin layer chromatography (TLC) pre-coated silica gel glass plates (60Å F254, layer thickness 250µm), using UV light and potassium permanganate stain to visualize the course of reaction. For Flash column chromatography technical grade solvents were used, and chromatographic purification was performed using silica gel (60 Å, particle size 40–63 µm). HPLC-MS/MS of the reaction mixtures was performed using a WATERS system consisting of a WATERS 996 Photodiode Array Detector, an Alliance HT – WATERS 2795 Separations Module, a WATERS Micromass ZQ 2000 unit equipped with a pneumatically assisted electrospray ionization source. Samples were ran on a WATERS Sunfire C\textsubscript{18} (100 mm x 2.10 mm x 3.5 µm) column. Standard conditions used, unless otherwise stated, were a gradient of 10-95% acetonitrile/0.1% formic acid in H\textsubscript{2}O/0.1% formic acid over 10 min with a flow rate of 0.2 mL/min. Eluent was directed first to the diode array detector and then to the mass spectrometer. The source temperature was set at 80°C, electrospray capillary set at 3.5 kV with cone voltage set at 10 V. Samples were introduced using loop injection (50:50/MeCN+0.1 % formic acid:H\textsubscript{2}O+0.1 % formic acid) operating in positive mode (scan range 150-1000 m/z). Data was collected in unit mass recording mode and processed using Mass lynx software. 1H NMR and 13C NMR spectra were recorded using a Bruker-DRX-400 spectrometer using a frequency of 400.13 MHz for 1H and 100.61 MHz for 13C and
processed using Bruker TOPSPIN 2.1 software. Chemical shifts are reported in parts per million (δ) using residual CHCl₃ resonance as an internal reference (7.26 and 77.0 ppm for ¹H and ¹³C NMR, respectively). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal and J = coupling constants in Hz.

Synthetic Procedures and Characterization Data:

N-phenylhydroxylamine (2.31): A mixture of nitrobenzene (10.8 mL, 0.105 mol), NH₄Cl (6.5 g, 0.12 mol) and degassed H₂O (200 mL) under argon at r.t. was stirred vigorously while zinc dust (15.4 g, 0.21 mol) was added portion wise over 20 min. After addition was complete, the reaction mixture was stirred for an additional 20 min. and was filtered while still warm. The resultant filter cake was washed with hot distilled water (50 mL) and the combined filtrate was saturated with NaCl, and cooled to 0°C. The resulting precipitate was collected by filtration and dried thoroughly under reduced pressure. The crude N-phenyl hydroxylamine was re-crystallized from petroleum ether/ethyl acetate (8.2 g, 72 %), dried thoroughly, and stored under an atmosphere of argon at -20°C. ¹H and ¹³C NMR spectra for 2.31 were identical to those previously reported in the literature.³⁵ ¹H NMR (400 MHz, CDCl₃): δ 7.29 (t, 2H), 7.02-6.98 (m, 3H), 6.80 (br s, 1H), 5.85 (br s, 1H).

General Procedure for Multicomponent by Kinugasa Reactions in Aqueous Media:

SDS (11.5 mg, 0.04 mmol) was dissolved into degassed H₂O (8 mL) in a 25mL pear shaped flask wrapped with aluminum foil. A substituted benzaldehyde (0.4 mmol) and N-phenyl hydroxylamine (55 mg, 0.5 mmol) were added sequentially at r.t. and the reaction mixture stirred vigorously for 5 min. after which it was sonicated for 5 min. and stirred at r.t. for 2 hrs. Nitrone formation was monitored by TLC for the disappearance of aldehyde. The in situ
generated nitrone was cooled to 0°C, and was added ethanolamine buffer pH = 10 (0.4 mL, 0.4 mmol from a 1 M degassed solution), pyridine (129 μL, 1.6 mmol), (+)-sodium-L-ascorbate (16 mg, 0.08 mmol), CuSO₄·5H₂O (10 mg, 0.04 mmol) and the mixture was stirred for 10 min. at this temperature. Then phenyl acetylene (22 μL, 0.2 mmol) was added in one portion and the reaction mixture was allowed to warm to r.t. over 30 min, and was stirred for the specified amount of time. Upon completion, the reaction mixture was diluted with brine (8 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude reaction mixtures were purified by silica gel flash column chromatography.

cis-1,3,4-triphenylazetidin-2-one (cis-2.3) and trans-1,3,4-triphenylazetidin-2-one (trans-2.3):

![cisl34triphenylazetidin2one cis2.3 and transl34triphenylazetidin2one trans2.3](image)

Purified by flash column chromatography eluting 95:5/hexanes:EtOAc. Spectral data corresponded to that previously described in the literature.¹⁵ *cis-2.3*: Isolated as a white solid (15 mg, 0.05 mmol, 25 %). Rᵣ = 0.29 (90:10/hexanes:EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.42 (m, 2H), 7.29 (m, 2H), 7.11-7.04 (m, 11H), 5.47 (d, J = 6.1 Hz, 1H), 5.02 (d, J = 6.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 137.7, 134.4, 132.1, 129.1, 128.9, 128.2, 128.1, 127.9, 127.1, 127.1, 124.0, 117.2, 60.3, 60.3. LRMS: Calculated for C₂₁H₁₈NO (M⁺) 300.1, Found 300.3. *trans-2.3*: Isolated as a white solid (13 mg, 0.04 mmol, 21 %). Rᵣ = 0.39 (90:10/hexanes:EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.05 (m, 15H), 4.96 (d, J =
2.6 Hz, 1H), 4.29 (d, J = 2.6 Hz, 1H). \(^{13} \text{C NMR} \) (100 MHz, CDCl\(_3\)): \(\delta \) 165.6, 137.7, 134.3, 132.1, 129.1, 128.9, 128.2, 128.1, 127.9, 127.1, 124.0, 117.2, 60.3, 60.3. \textbf{LRMS:} Calculated for C\(_{21}\)H\(_{18}\)NO (M\(^+\)) 300.1, Found 300.3.

\textit{cis-1,3-diphenyl-4-p-tolylazetidin-2-one} (\textit{cis-2.41}) and \textit{trans-1,3-diphenyl-4-p-tolylazetidin-2-one} (\textit{trans-2.41}):

\begin{align*}
\text{cis-2.41} & \quad \text{trans-2.41} \\
\text{mixture of diastereomers}
\end{align*}

Purified by flash column chromatography eluting 95:5/hexanes:EtOAc. Spectral data corresponded to that previously described in the literature.\(^{15}\) \textit{cis-2.41}: Isolated as a white solid (15 mg, 0.05 mmol, 25 \%). \(R_f = 0.31 \) (85:15/hexanes:EtOAc). \(^{1} \text{H NMR} \) (400 MHz, CDCl\(_3\)): \(\delta \) 7.41 (m, 2H), 7.28 (m, 2H), 7.10-7.06 (m, 6H), 6.96 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 8.1 Hz, 2H), 5.43 (d, J = 6.1 Hz, 1H), 4.99 (d, J = 6.1 Hz, 1H), 2.19 (s, 3H). \(^{13} \text{C NMR} \) (100 MHz, CDCl\(_3\)): \(\delta \) 165.8, 137.8, 137.6, 132.2, 131.2, 129.0, 128.9, 128.1, 127.1, 124.0, 117.2, 60.2, 60.2, 21.2. \textbf{LRMS:} Calculated for C\(_{22}\)H\(_{20}\)NO (M\(^+\)) 314.2, Found m/z=314.2.

\textit{trans-2.41}: Isolated as a white solid (12 mg, 0.04 mmol, 20 \%). \(R_f = 0.55 \) (90:10/hexanes:EtOAc). \(^{1} \text{H NMR} \) (400 MHz, CDCl\(_3\)): \(\delta \) 7.40-7.20 (m, 13H), 7.06 (m, 1H), 4.92 (d, J = 2.2 Hz, 1H), 4.26 (d, J = 2.1 Hz, 1H), 2.37 (s, 3H). \(^{13} \text{C NMR} \) (100 MHz, CDCl\(_3\)): \(\delta \) 165.7, 138.6, 137.5, 134.8, 134.5, 130.0, 129.1, 129.0, 127.8, 127.5, 125.9, 124.0, 117.2, 65.2, 63.6, 21.2. \textbf{LRMS:} Calculated for C\(_{22}\)H\(_{20}\)NO (M\(^+\)) 314.2, Found m/z=314.2.
cis-4-(4-methoxyphenyl)-1,3-diphenylazetidin-2-one (*cis*-2.42) and *trans*-4-(4-methoxyphenyl)-1,3-diphenylazetidin-2-one (*trans*-2.42):

Purified by flash column chromatography eluting 85:15/hexanes:EtoAc. Spectral data corresponded to that previously described in the literature.\(^\text{19}\) *cis*-2.42: Isolated as a white solid (20 mg, 0.06 mmol, 30 %). \(R_f = 0.26\) (85:15/hexanes:EtoAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.42\) (m, 2H), 7.28 (m, 2H), 7.13-7.06 (m, 6H), 6.99 (m, 2H), 6.64 (m, 2H), 5.42 (d, \(J = 6.0\) Hz, 1H), 4.98 (d, \(J = 6.0\) Hz, 1H), 3.67 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 165.7, 159.1, 137.7, 132.3, 129.0, 128.8, 128.3, 128.1, 127.1, 126.2, 123.9, 117.2, 113.6, 60.2, 59.9, 55.0\). \(^{LRMS}\): Calculated for C\(_{22}\)H\(_{20}\)NO\(_2\) (M\(^+\)) 330.2, Found 330.4. *trans*-2.42: Isolated as a white solid (17 mg, 0.05 mmol, 26 %). \(R_f = 0.31\) (85:15/hexanes:EtoAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.40-7.25\) (m, 11H), 7.06 (m, 1H) 6.93 (m, 2H), 4.91 (d, \(J = 2.4\) Hz, 1H), 4.26 (d, \(J = 2.4\) Hz, 1H), 3.82 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 165.8, 159.9, 137.5, 134.8, 129.4, 129.1, 129.0, 127.8, 127.4, 127.2, 124.0, 117.2, 114.7, 65.2, 63.4, 55.3\). \(^{LRMS}\): Calculated for C\(_{22}\)H\(_{20}\)NO\(_2\) (M\(^+\)) 330.2, Found 330.4.
cis-4-(3-methoxyphenyl)-1,3-diphenylazetidin-2-one (cis-2.43) and trans-4-(3-methoxyphenyl)-1,3-diphenylazetidin-2-one (trans-2.43):

Purified by flash column chromatography eluting 90:10/hexanes:EtOAc. Spectral data corresponded to that previously described in the literature.41 cis-2.43: Isolated as a white solid (19 mg, 0.06 mmol, 29 %). \(R_f = 0.26 \) (9:1/hexanes:EtOAc). \(^1\text{H NMR (400 MHz, CDCl}_3\)): \(\delta \) 7.43 (m, 2H), 7.29 (m, 2H), 7.13-7.02 (m, 7H), 6.71-6.57 (m, 3H), 5.42 (d, \(J = 6.1 \) Hz, 1H), 5.00 (d, \(J = 6.1 \) Hz, 1H), 3.60 (s, 3H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\)): \(\delta \) 165.6, 159.4, 137.7, 136.0, 132.1, 129.3, 129.0, 128.8, 128.1, 127.2, 124.0, 119.6, 117.2, 113.5, 112.7, 60.2, 60.2, 55.1. \textbf{HRMS:} Calculated for C\(_{22}\)H\(_{20}\)NO\(_2\) (M\(^+\)) 330.1494, Found 330.1479.

trans-2.43: Isolated as a white solid (16 mg, 0.05 mmol, 24 %). \(R_f = 0.32 \) (85:15/hexanes:EtOAc). \(^1\text{H NMR (400MHz, CDCl}_3\)): \(\delta \) 7.40-7.28 (m, 10H), 7.09-6.88 (m, 4H), 4.91 (d, \(J = 2.5 \)Hz, 1H), 4.29 (d, \(J = 2.5 \) Hz, 1H), 3.79 (s, 3H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\)): \(\delta \) 165.6, 160.3, 139.2, 137.5, 134.7, 130.4, 129.1, 129.0, 127.9, 127.5, 124.1, 118.1, 117.2, 113.9, 111.5, 65.0, 63.6, 55.3. \textbf{HRMS:} Calculated for C\(_{22}\)H\(_{20}\)NO\(_2\) (M\(^+\)) 330.1494, Found 330.1469.
cis-4-(4-bromophenyl)-1,3-diphenylazetidin-2-one (cis-2.44) and trans-4-(4-bromophenyl)-1,3-diphenylazetidin-2-one (trans-2.44):

Purified by flash column chromatography eluting 90:10/hexanes:EtOAc. Spectral data corresponded to that previously described in the literature.\(^\text{42}\) **cis-2.44**: Isolated as a white solid (31 mg, 0.08 mmol, 41 %). \(R_f = 0.21\) (9:1/hexanes:EtOAc,). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.38\) (d, 2H), 7.31-7.23 (m, 4H), 7.15-7.04 (m, 6H), 6.95 (d, 2H), 5.42 (d, \(J = 6.1\) Hz, 1H), 5.01 (d, \(J = 6.1\) Hz, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 165.3, 137.4, 133.6, 131.7, 131.4, 129.1, 128.8, 128.3, 127.5, 124.2, 121.9, 117.1, 60.3, 59.7\). HRMS Calculated for C\(_{21}\)H\(_{17}\)BrNO (M\(^+\)) 378.0493, Found 378.0467 and 380.0456. **trans-2.44**: Isolated as an off white solid (20 mg, 0.05 mmol, 27 %). \(R_f = 0.32\) (9:1/hexanes:EtOAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.54\) (m, 2H), 7.41-7.26 (m, 11H), 7.09 (m, 1H), 4.92 (d, \(J = 2.5\) Hz, 1H), 4.25-4.24 (d, \(J = 2.5\) Hz, 1H). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta 165.2, 137.2, 136.5, 134.3, 132.5, 129.2, 129.1, 128.0, 127.5, 127.4, 124.2, 122.6, 117.1, 65.1, 63.1\). HRMS Calculated for C\(_{21}\)H\(_{17}\)BrNO: 378.0493, Found 378.0453 and 380.0430.
methyl-4-(((cis)-4-oxo-1,3-diphenylazetidin-2-yl)benzoate (cis-2.45) and methyl-4-((trans)-4-oxo-1,3-diphenylazetidin-2-yl)benzoate (trans-2.45):

Purified by flash column chromatography eluting 85:15/hexanes:EtOAc. Spectral data corresponded to that previously described in the literature.19 cis-2.45: Isolated as a white solid (29 mg, 0.08 mmol, 41\%). \(R_f = 0.27 \) (85:15/hexanes:EtOAc). 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta \) 7.78 (d, \(J = 8.2 \) Hz, 2H), 7.38 (m, 2H), 7.29 (m, 2H), 7.15 (d, \(J = 8.2 \) Hz, 2H), 7.11-7.04 (m, 6H) 5.50 (d, \(J = 6.2 \) Hz, 1H), 5.05 (d, \(J = 6.2 \) Hz, 1H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta \) 166.5, 165.2, 139.8, 137.4, 131.6, 129.7, 129.5, 129.2, 128.8, 128.3, 128.2, 127.5, 127.1, 124.3, 117.1, 60.5, 60.0, 52.1. LRMS: Calculated for C\textsubscript{23}H\textsubscript{20}NO\textsubscript{3} (M+) 358.1, Found 358.4. trans-2.45: Isolated as a white solid (28 mg, 0.08 mmol, 40\%). \(R_f = 0.41 \) (85:15/hexanes:EtOAc). 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta \) 8.10 (d, \(J = 8.3 \) Hz, 2H), 7.50 (d, \(J = 8.3 \) Hz, 2H), 7.41-7.28 (m, 9H), 7.09 (m, 1H), 5.01 (d, \(J = 2.5 \) Hz, 1H), 4.27 (d, \(J = 2.5 \) Hz, 1H), 3.92 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta \) 166.5, 165.2, 142.6, 137.2, 134.3, 130.6, 130.6, 129.2, 129.1, 128.1, 127.4, 125.9, 124.3, 117.1, 104.6, 65.1, 63.3, 52.3. LRMS: Calculated for C\textsubscript{23}H\textsubscript{20}NO\textsubscript{3} (M+) 358.1, Found 358.4.
4-((cis)-4-oxo-1,3-diphenylazetidin-2-yl)benzonitrile (cis-2.46) and 4-((trans)-4-oxo-1,3-diphenylazetidin-2-yl)benzonitrile (trans-2.46):

Purified by flash column chromatography eluting 80:20/hexanes:EtOAc. *cis*-2.46: Isolated as a white solid (23 mg, 0.07 mmol, 34 %). \(R_f = 0.23 \) (8:2/hexanes:EtOAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.41-7.01 (m, 14H), 5.50 (d, \(J = 6.2 \) Hz, 1H), 5.07 (d, \(J = 6.2 \) Hz, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 164.9, 140.2, 137.2, 132.0, 131.2, 129.3, 128.7, 128.4, 127.8, 124.5, 118.3, 117.0, 111.8, 60.6, 59.7. HRMS: Calculated for C\(_{22}\)H\(_{17}\)N\(_2\)O (M\(^+\)) 325.1340, Found 325.1335. *trans*-2.46: Isolated as a white solid (19 mg, 0.06 mmol, 29 %). \(R_f = 0.29 \) (8:2/hexanes:EtOAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.71 (d, \(J = 8.0 \) Hz, 2H), 7.51 (d, \(J = 8.0 \) Hz, 2H), 7.42-7.26 (m, 9H), 7.11 (m, 1H), 5.01 (d, \(J = 2.5 \) Hz, 1H), 4.25 (d, \(J = 2.5 \) Hz, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 164.8, 142.9, 137.0, 133.9, 133.2, 129.3, 129.2, 128.3, 127.4, 126.6, 124.5, 118.2, 117.0, 112.7, 65.2, 63.0. HRMS: Calculated for C\(_{22}\)H\(_{17}\)N\(_2\)O (M\(^+\)) 325.1340, Found 325.1335.
(cis)-4-(3-nitrophenyl)-1,3-diphenylazetidin-2-one (cis-2.47) and (trans)-4-(3-nitrophenyl)-1,3-diphenylazetidin-2-one (trans-2.47):

Purified by flash column chromatography eluting 85:15/hexanes:EtOAc. Spectral data corresponded to that previously described in the literature.\(^\text{43}\) cis-2.47: Isolated as a white solid (28 mg, 0.08 mmol, 41 %). \(R_f = 0.29\) (85:15/hexanes:EtOAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.95 (m, 2H), 7.39-7.28 (m, 6H), 7.14-7.03 (m, 6H), 5.56 (d, \(J = 6.1\) Hz, 1H), 4.11 (d, \(J = 6.1\) Hz, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 164.8, 148.0, 137.1, 132.8, 131.3, 129.3, 128.7, 128.5, 127.7, 124.6, 123.0, 122.2, 117.0, 60.6, 59.4. HRMS: Calculated for C\(_{21}\)H\(_{17}\)N\(_2\)O\(_3\) (M\(^+\)) 345.1239, Found 345.1226.

trans-2.47: Isolated as a white solid (22 mg, 0.06 mmol, 32 %). \(R_f = 0.38\) (7:3/hexanes:EtOAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.27-8.23 (m, 2H), 7.75 (m, 1H), 7.62 (m, 1H), 7.43-7.28 (m, 9H), 7.11 (m, 1H), 5.07 (d, \(J = 2.5\) Hz, 1H), 4.30 (d, \(J = 2.5\) Hz, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 164.9, 148.9, 139.9, 136.9, 133.8, 131.6, 130.6, 129.4, 129.3, 128.3, 127.4, 124.6, 123.8, 121.2, 117.1, 65.3, 62.7. HRMS: Calculated for C\(_{21}\)H\(_{17}\)N\(_2\)O\(_3\) (M\(^+\)) 345.1239, Found 345.1221.
(cis)-4-(4-nitrophenyl)-1,3-diphenylazetidin-2-one \((cis-4.28)\) and \((trans-4-(4-nitrophenyl)-1,3-diphenylazetidin-2-one \((trans-2.48)\):

\[
\text{cis-2.48} \quad \text{trans-2.48}
\]

(1:1) mixture of diastereomers

Purified by flash column chromatography eluting 85:15/hexanes:EtOAc. Spectral data corresponded to that previously described in the literature.\(^{42}\) \textit{cis-2.48:} Isolated as an off-white solid (27 mg, 0.08 mmol, 39 \%). \(R_f = 0.33 \) (85:15/hexanes:EtOAc). \(^1\text{H NMR (400 MHz, CDCl}_3\):} \(\delta 7.98 \) (d, \(J = 8.6 \) Hz, 2H), 7.37-7.03 (m, 12H), 5.55 (d, \(J = 6.2 \) Hz, 1H), 5.10(d, \(J = 6.2 \) Hz, 1H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\):} \(\delta 164.8, 147.4, 142.2, 137.2, 131.1, 129.3, 128.7, 128.5, 128.0, 127.8, 124.6, 123.5, 117.0, 60.7, 59.5. \) \textbf{LRMS:} Calculated for \(\text{C}_{21}\text{H}_{17}\text{N}_{2}\text{O}_3 \) (M\(^+\)) 345.1, Found 345.1. \textit{trans-2.48:} Isolated as an off-white solid (24 mg, 0.07 mmol, 35 \%). \(R_f = 0.37 \) (85:15/hexanes:EtOAc). \(^1\text{H NMR (400 MHz, CDCl}_3\):} \(\delta 8.28 \) (d, \(J = 8.7 \) Hz, 2H), 7.58 (d, \(J = 8.7 \) Hz, 2H), 7.43-7.30 (m, 9H), 7.12 (m, 1H), 5.07(d, \(J = 2.5 \) Hz, 1H), 4.27 (d, \(J = 2.5 \) Hz, 1H). \(^{13}\text{C NMR (100 MHz, CDCl}_3\):} \(\delta 164.7, 148.1, 144.8, 136.9, 133.8, 129.4, 129.3, 128.4, 127.4, 126.8, 124.7, 124.6, 117.0, 65.3, 62.8. \) \textbf{LRMS:} Calculated for \(\text{C}_{21}\text{H}_{17}\text{N}_{2}\text{O}_3 \) (M\(^+\)) 345.1, Found 345.4.
N,2-diphenylacetamide (2.56):

![Chemical Structure](image)

Purified by flash column chromatography eluting 70:30/hexanes:EtOAc. The title compound **2.56** was obtained as a brown solid. The spectral data corresponded to that previously described in the literature.\(^4\) \(R_f = 0.31\) (7:3/hexanes:EtOAc). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.42-7.08 (m, 10H), 7.13 (br s, 1H), 3.74 (s, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 169.5, 138.0, 134.8, 130.0, 129.7, 129.4, 128.1, 124.9, 120.2, 45.3. LRMS: Calculated for C\(_{14}\)H\(_{14}\)NO (M\(^+\)) 212.1; found 212.3.
References

(39) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632-2657.
Chapter 3: Synthesis of β-Lactam Probes for Activity-Based Protein Profiling of Rhomboid Proteases

The cellular studies described herein were performed in collaboration with Dr. Allison Sherratt at the National Research Council of Canada in Ottawa.
Introduction

Having developed a multicomponent Kinugasa in aqueous media in the last chapter, the slow kinetics associated with β-lactam formation via the Kinugasa reaction precluded its application as a bioorthogonal reaction. However, the β-lactams themselves are useful biomolecular substrates. This chapter describes the synthesis of β-lactam activity-based probes using the Kinugasa reaction and applications of the probes for studying the structure and functions of rhomboid proteases.

β-lactams represent one of the best known and extensively studied classes of antibiotics, due to both their biological activity and utility as synthetic intermediates.\(^1,2\) Since the discovery of penicillin (3.1), antibacterial agents such as cephalosporins (3.2), carbapenams (3.3), monobactams (3.4), and nocardicins (3.5) have been developed. Their use worldwide continues to be a first line of defense against infectious bacterial pathogens (Figure 3-1).

![Chemical structures of penicillins, cephalosporins, carbapenams, monobactam, and nocardicins](image)

Figure 3-1. Important classes of antibacterial agents that contain the β-lactam moiety.
β-lactams halt bacterial growth by inhibiting penicillin binding proteins (PBPs) that are required for cross-linking during cell-wall biosynthesis.3,4 The powerful antibiotic activities of β-lactams stem from their reaction with a catalytically active serine residue in bacterial trans peptidases and carboxy-peptidases via a nucleophilic ring opening reaction of the β-lactam (Scheme 3-1).5 Ring opening of the β-lactam forms a stable covalently bound acyl-enzyme adduct, which effectively inhibits these enzymes. Only clavulanic acid and some of the cephalosporins deviate in their mechanism from the common scheme as they involve secondary chemical transformations following the initial cleavage of the lactam ring.6,7

\textbf{Scheme 3-1.} Covalent enzyme inhibition of an active-site serine residue by penicillin β-lactams.5

In recent years the effectiveness of the β-lactam antibiotics has slowed since bacteria often develop resistance to antibiotics, resulting from evolution of β-lactamase enzymes which effectively hydrolyze β-lactams without being inhibited.8 While the synthesis of new classes of β-lactam antibiotics and the development of β-lactamase inhibitors will likely extend the lifetime of β-lactams as effective antibiotics, many scientists have begun investigations of β-lactams for inhibition of other hydrolytic enzymes.

Recently, β-lactams have found other important therapeutic uses, such as inhibition of cholesterol absorption, serine proteases such as β-lactamases,9 cysteine proteases, human
cytomegalovirus protease, prostate-specific antigen, thrombin, chymases and elastases, and fatty acid synthase. Relevant to our recent studies of multicomponent Kinugasa reactions, the 3-alkyl-1,4-diaryl-2-azetidinones represent a class of compounds that exhibit interesting biological properties and share homology with structures that could be accessed by the Kinugasa reaction (Figure 3-2). N,4-diaryl substituted β-lactams have been shown to be potent cholesterol absorption inhibitors (3.6-3.9), whereas others exhibit antifungal (3.10), analgesic (3.11), and anticancer (3.12 and 3.13) activities. Recently, the Kinugasa reaction was employed in the formal synthesis of Ezitimibe (3.6).

Figure 3-2. 1,4-diaryl β-lactams possess an increasingly wide range of biological activities. Figure was adapted from the literature.
Several strategies have been developed to study the targets and off-targets of β-lactams, and for identifying mechanisms of antibiotic resistance. Early efforts utilized 125I radio-labelled β-lactams to profile penicillin binding proteins (PBPs), the main targets of many β-lactams. While radioisotope labelled β-lactams provide valuable insights into the cellular targets of these antibiotics, there are numerous limitations associated with radioisotope labelling (handling of radioactive material, instability, labour and expensive cost). Emerging strategies rely on fluorophore labelled β-lactam probes, that allowed for electrophoretic separation of the active enzymes that were targeted. Activity-based protein profiling (ABPP), utilizes β-lactam activity-based probes originating from several known antibiotics as well as synthetic analogs, to provide insight into the target preferences of these privileged scaffolds.

Protein expression and activity regulates complex processes in living organisms. A formidable challenge is to understand how protein activity regulates protein function. While classical genetic and proteomic strategies have provided valuable information for quantifying protein expression based on quantities of mRNA and protein present, the abundance of a given protein does not necessarily correlate with its activity. Post translational modifications are often responsible for spatial and temporal control of in situ enzyme activities. To overcome limitations associated with abundance based methods, activity-based protein profiling (ABPP) has emerged as a modern proteomic strategy that utilizes molecular probes to characterize and assign function to active enzyme families within complex proteomes and to discover novel customized enzyme inhibitors. The approach has been applied successfully to important problems related to human health, such as cancer, neurobiology, parasitology and virology. A variety of enzyme classes have
also been studied using this technique, including serine proteases, metalloproteases, kinases, phosphatases, lipid transferases, and histone deacetylases.40,42-45

The ABPP technology relies on active-site directed molecular probes with tailored specificity toward enzymes. The probes become covalently bound to the target, via diversion of the enzyme mechanism, enzyme inhibition mechanism, or by reversible inhibition followed by subsequent photo-cross-linking. The probes are equipped with a reporter tag for visualization or enrichment using fluorophores or biotin, respectively (Figure 3-3).40,42-45 Gel electrophoresis (SDS-PAGE) and fluorescence analysis allow visualization of the active enzymes that are bound to the probe. Selective enrichment of labelling events for target identification by MS/MS is achieved using the strong affinity of biotin for streptavidin. Inactive enzymes or those with blocked active sites are not labelled by the probe and thus are not visualized or enriched. A limitation of the single-step ABPP is that the bulky reporter (fluorescent dye or biotin) has an influence on target selectivity. This can be overcome by using bioorthogonal chemistry, in which the reporter tag is appended in a subsequent step using click chemistries (eg. Cu(I)-catalyzed azide-alkyne cycloaddition).46-48

\textbf{Figure 3-3.} Typical activity-based protein profiling experimental design. Activity based probes containing a reactive group (green circle) and reporter tag (red oval) react with their biological target in the proteome. Protein targets are visualized by fluorescence scanning. Figure was reprinted from the literature.5,39
The tag-free ABPP approach has recently been employed by Staub and Sieber, where they employed a series of alkyne tagged β-lactam probes. These probes comprised penam (ampicillin), cephem (cephalosporin), and monobactam (astreonam) drug scaffolds as well as a structurally diverse library of synthetic monocyclic β-lactam probes (Figure 3-4). Several high and low molecular weight PBPs were targeted by the penam and cephem probes. Interestingly, the targets of the synthetic β-lactam probes based around the monocyclic astreonam (Azt) structure did not include any PBPs, but rather these probes had preference for other enzymes such as β-ketoacyl acyl carrier protein III (KAS III), β-lactamase, lipase acylhydrolase, alkyl hydroperoxide reductase subunit C (AhpC), and the virulence-associated protein ClpP.

Figure 3-4. Structures of alkyne tethered β-lactam activity-based probes for ABPP of bacterial enzymes *in-vivo.* Figure was reproduced from the literature.
In a following publication, Staub and Sieber utilized the monocyclic β-lactam probes for the in situ comparative profiling of antibiotic-sensitive and multi-resistant Staphylococcus aureus strain (MSRA). With these probes, they were able to identify five unique resistance associated enzymes for the MRSA strain. MS analysis revealed enzyme targets as PBP2a, antibiotic sensing protein MCR1, and a previously uncharacterized serine protease SPD\textsubscript{b}, esterase E28, dipeptidase which displayed significant β-lactamase activity. The synthetic β-lactam probes provided useful tools to not only monitor these enzymes, but also to unravel the functions of yet uncharacterized MRSA specific enzymes with a potential for therapeutic intervention.

The application of ABPP for the characterization of membrane-embedded enzymes has not yet been exploited to its full potential. Rhomboids are a relatively recently discovered integral membrane serine proteases that are conserved throughout evolution, and utilize a serine protease mechanism within the lipid bilayer to cleave transmembrane substrates giving rise to a wide range of biological functions of which many are unknown. Rhomboids have been shown to play roles in diverse processes such as cell signaling, mitochondrial function, invasion of host cells by apicomplexan parasite, and activations of bacterial protein export. The active site of rhomboids is quite different from other serine proteases being formed by residues contributed by transmembrane helices buried within the hydrophobic lipid bilayer of cell membranes.

This hydrophobic environment places certain biophysical constraints on potential inhibitors and raises questions about the potential in vivo availability of inhibitors that may work in-vitro in a detergent micelle system where rhomboid are typically studied. Rhomboids have only been weakly inhibited by serine protease inhibitors such as isocourmarins and a few others. Recently, a series of monocyclic β-lactams were
identified as selective and potent inhibitors of rhomboid proteases. On the basis of a 58,000 small molecule screen, β-lactam structure 3.20 was identified as a potent inhibitor of rhomboids (Figure 3-5).

Figure 3-5. Summary of structure-activity relationship results from a library of structurally modified β-lactam inhibitory effects on rhomboid proteases. Positions of structural modifications are circled. Figure was reproduced from the literature.

Based on the structure-activity relationship (SAR) previously determined by Pierrat et al., structural changes were introduced at all four positions of the β-lactam and their effects are summarized: 1) the azetidinone C-2 carbonyl group was essential for activity, which supports the mechanism-based inhibition in accordance with other β-lactam serine protease inhibitors; 2) the N-phenyl-sulfonyl group greatly enhanced the reactivity of the β-lactam group and the ring opened form was inactive, suggesting that electron withdrawing groups present at N-1 are responsible for inhibitory activity; 3) an aryl group at C-4 was not required for activity, although para-substitution increased its potency; and 4) The C-3 methyl group was not essential, but the C-3 unsubstituted β-lactam was inactive.

On the basis of these SARs and our previously developed Kinugasa reaction methodology, we set out to design hydrophobic β-lactams that could be easily accessed with potentially even greater inhibitory effects. Furthermore, by appending a bioorthogonal alkyne reporter group, in situ ABPP via CuAAC reactions may shed light on the mechanism
of action of β-lactam rhomboid inhibitors and establish if the inhibitors form covalent complexes with the rhomboid. Furthermore, such probes could provide valuable information regarding other targets of the inhibitors in vivo. The designed probes therefore could be useful tools to correlate enzyme activity with function.

Hypothesis

Novel monocyclic β-lactams activity-based probes can be prepared via the Kinugasa reaction in aqueous media and can be used to study the function of rhomboid proteases.

Results and Discussion

Design of β-lactam Activity-Based Probes

With the goal of designing a hydrophobic β-lactam activity-based probe, we sought to replace the electron withdrawing N-sulfonyl-aryl group in β-lactam 3.20 with an aryl group. We anticipated that this modification could be accomplished without compromising the reactivity of the β-lactam toward ring opening by active site nucleophiles. We decided to append the alkyne reporter at the para-position of the C-4 aryl substituent of the β-lactam. This is supported by the structure-activity relationships done previously by Pierratt et al., where they found that increased inhibitory effects were observed for β-lactams bearing C-4 aryl substitution.65 Our initially designed probes contain a bulky phenyl ring at the C-3 position, but could be further modified to remove the aryl ring. It has been shown previously, that the Kinugasa reaction is amenable to aliphatic alkynes.26 The structures of the designed β-lactam activity-based probes are shown in Figure 3-6.
Synthesis of β-lactam Activity-Based Probes

Having optimized simple conditions for performing multicomponent Kinugasa reactions in aqueous media in Chapter 2, we sought to utilize the aforementioned methodology for the preparation of β-lactam activity based probes described here. We decided to append the alkyne bioorthogonal chemical reporter group to the β-lactam core by a late stage O-alkylation or by an amide forming reaction for the synthesis 3.21 and 3.22, respectively (Scheme 3-2).

Our initial efforts focused on synthesis of β-lactam 3.21. We hypothesized that the efficiency of the Kinugasa reaction could be improved by protecting the benzyl alcohol as a
TBDMS ether prior to β-lactam formation. Nitrone 3.25 was synthesized in 90 % over four steps, starting from commercially available (diethoxymethyl)benzaldehyde, 3.28 (Scheme 3-3). Reduction of the 3.28 with NaBH₄ provided 4-(diethoxymethyl)-benzenemethanol (3.29) which was subsequently protected using TBDMScI, in the presence of DMAP and triethylamine at r.t. for 4 hrs, affording the silylated product 3.30 in 70 % yield. Selective deprotection of the acetal was accomplished using the catalytic action of NaBARF₄ in excellent yield (95 %). The corresponding aldehyde 3.31 was reacted with N-phenyl hydroxyl amine in the presence of SDS micelles, affording the silylated nitrone 3.25 in 95 %.

![Scheme 3-3](image)

Scheme 3-3. Synthesis of nitrone intermediate 3.25.

The silylated nitrone 3.25 was reacted with phenylacetylene (3.24) under our previously developed aqueous Kinugasa reaction conditions, the β-lactam intermediates, *cis*-3.23 and *trans*-3.23, were obtained as a diastereomeric mixture (1.4 : 1) in a combined 60 % yield (Scheme 3-4).
Scheme 3-4. Micelle-promoted Kinugasa reaction synthesis of β-lactam intermediate 3.23.

Interestingly, upon desilylation of 3.23 using TBAF, a mixture of cis-3.32 and trans-3.32 in a ratio of 1 to 11.4 was obtained in a combined yield of 69 % (Scheme 3-5). This result suggests that under the basic reaction conditions, the substituent at C-3 was epimerized to the thermodynamically stable trans-β-lactam product via a carbanion intermediate. This is corroborated by desilylation of the trans-3.23, which similarly yielded a diastereomeric mixture of cis-3.32 and trans-3.32 in a ratio of 1 to 11.8, respectively, in a combined yield of 63 %.

Scheme 3-5. Desilylation of β-lactam intermediates cis-3.23 and trans-3.23.

To avoid issues with epimerization of the β-lactam during desilylation en route to 3.21, we attempted to avoid the use of protecting groups for the synthesis of the penultimate
β-lactam intermediate 3.32. Accordingly to Scheme 3-6, deprotection of 3.29 using aqueous HCl yielded the aldehyde 3.33 in quantitative yield,69 and micelle promoted nitrone formation proceeded smoothly furnishing 3.34 in 89 % yield. The Kinugasa reaction of nitrone 3.34 with phenylacetylene 3.24 yielded the corresponding β-lactams, cis-3.32 and trans-3.32, in a combined yield of 83 % and diastereomeric ratio of 1.3 to 1. The improved yield for the Kinugasa reaction involving 3.34 may be partially attributed to coordination of the hydroxyl group to the copper catalyst.

Next, we examined conditions for O-alkylation of the 3.32 with propargyl tosylate70 (3.35) (Table 3-1). We tested two bases, K$_2$CO$_3$ and NaH, neither of which yielded the O-alkylated β-lactam product 3.21. Instead, efficient ring opening yielded β-amino acid 3.36. Due to ring opening and possibility for epimerization of the stereochemistry at C-3 under the basic conditions required for O-alkylation, we decided that this approach was not compatible with the β-lactam ring system and that we would explore the possibility of installing the alkyne moiety through an amide forming reaction using β-lactam 3.26 bearing a carboxylic acid handle.

Scheme 3-6. Synthesis of β-lactams 3.26 by the Kinugasa reaction.
Table 3-1. Attempted O-alkylation of β-lactam 3.32.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>3.21</th>
<th>3.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K_2CO_3</td>
<td>trace</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>NaH</td>
<td>trace</td>
<td>76</td>
</tr>
</tbody>
</table>

With the given success of our prior Kinugasa reaction involving nitrone 3.34, bearing an unprotected benzyl alcohol, we reasoned that the presence of a carboxylic acid in 3.27 in place of the alcohol (3.34) may be compatible with the micelle promoted Kinugasa reaction conditions. Furthermore, the presence of the carboxylic acid in β-lactam 3.26 would enable facile coupling with alkyne terminated amines and would simplify the overall sequence.

According to Scheme 3-7, 4-carboxybenzaldehyde (3.37) was condensed with N-phenyl hydroxyl amine in ethanol, providing the corresponding nitrone intermediate 3.27 in 72 % yield. The reaction of nitrone 3.27 with phenylacetylene 3.24 under standard micelle-promoted Kinugasa reaction in aqueous media provided β-lactams, cis-3.26 and trans-3.26, in a ratio of 1.3 to 1 and a combined yield of 44 %. The end game involved amide coupling of the carboxylic acid of lactam 3.26 with propargylamine (3.37) using carbodiimide coupling conditions. The β-lactams cis-3.22 and trans-3.22 were obtained in 73 % and the configuration at C-3 remained unchanged.

Activity-Based Protein Profiling of Rhomboid Protease Activity

The laboratories of Goto and Pezacki have recently utilized a fluorophosphonate activity based probe (3.38) for highly specific labelling of GlpG rhomboid protein, and for screening its protease function in crude lipid extracts isolated from *E. coli*. The ABPP approach has enabled high throughput screening of the functional state of various rhomboid mutants in proteomic samples, relative to the purified GlpG. To assess the utility of the aforementioned β-lactam probes cis-3.22 and trans-3.22 to study rhomboid function, we performed preliminary *in-vitro* ABPP with the crude membrane fractions isolated from bacteria expressing wild-type GlpG. Crude membrane fractions were incubated with various concentrations of β-lactam probes, and were subsequently reacted with rhodamine azide (3.39) under CuAAC bioconjugation conditions. Fluorescence labelling was detected by in-gel fluorescence scanning and is shown in Figure 3-7.
Figure 3-7. Rhomboid active-site labelling using β-lactam probes and fluorescent labelling via bioorthogonal CuAAC reaction. A) ABPP of rhomboid protease activity. B) Fluorescent probe labelling of wild-type GlpG rhomboid protease in crude membrane proteome. β-lactam probes cis-3.22 (0.1, 1, 10 μM), trans-3.22 (0.1, 1, 10 μM), or 3.38 (0.01 μM), was incubated with crude membrane extracts in 50 mM HEPES pH 7.3, 0.1 % dodecyl maltoside (DDM), 200 mM NaCl, 10% glycerol and 100 μM EDTA for 1 h at 37 °C. The alkyne labelled proteome was reacted with 3.39 (100 μM) in the presence of CuSO₄ (0.5 mM), TCEP (0.5 mM) and TBTA (0.05 mM) for 2 h at r.t. The protein was acetone precipitated to isolate the protein fraction from unreacted probe, and the resultant sample separated on 15 % SDS-PAGE. Visualization of protein activities was accomplished by rhodamine fluorescence scan. WT refers to crude wild-type treated as above in the absence of 3.22 or 3.38. The expected position for full-length GlpG is indicated by the arrow. C) Chemical structures of β-lactam probes (cis-3.22 and trans-3.22), fluorophosphonate probe (3.38), and rhodamine azide probe (3.39).
Our preliminary results demonstrate concentration dependent increases in fluorescence signal for samples treated with cis-3.22 and trans-3.22 (Figure 3-7, lane 1-6), and we observe no fluorescence labelling in the absence of the β-lactam probes. We utilized FP-PEG-rhodamine,73 3.38 as a control to verify labelling and position of GlpG on the gel (Lane 8).71 Fluorescence labelling of GlpG was detected at as low as 10 μM concentration of β-lactam probes as compared with 3.38 (0.01 μM). Despite concentration dependent inhibition of the rhomboid protease by the β-lactam probes, we observe a number of additional enzymes that were potentially targeted. The designed β-lactam probes appear to display broad specificity for other proteases in the crude membrane fraction.

To show that the β-lactam probes were specific active-site inhibitors of GlpG, we performed a heat denatured negative control for the probe treat samples (Figure 3-8). For the cis-3.22 (10 μM) treated heat denatured sample, non-specific labelling is evident (lane 1 relative to 2). Alternatively, the trans-3.22 (10 μM) displayed highly specific reactivity with the crude membrane extracts at the concentration employed, and was not targeted by the non-active heat denatured proteome (lane 5 relative to 6). The specificity of the β-lactams for GlpG was evaluated by comparing the labelling efficiency obtained using the wild type with that of an active-site serine knockout S201A mutant71 (Figure 3-8, lanes 2 versus 3 and 7 versus 8). We observed labelling of both the wild type and S201A mutant, this demonstrates that cis-3.22 and trans-3.22 are non-specific inhibitors of residue S201 of GlpG. Had these β-lactam probes been specific for this GlpG residue, the S201A mutant would not have been labelled. However, it appears that trans-3.22 did target the active site of several other active enzymes in the crude membrane extract. The fluorescently tagged proteins will be separated by two-dimensional gel electrophoresis and will be identified by LC-MS/MS.
Figure 3-8. Activity-based protein profiling of wild type and mutant GlpG rhomboid protease from crude membrane extracts using β-lactam probes and fluorescent labelling via bioorthogonal CuAAC reaction. ΔWT refers to a crude wild-type that was heat-denatured at 100 °C for 10 min.

The FP-PEG-rhodamine probe will be used in competitive ABPP assays to screen for more potent/selective β-lactam inhibitors that are proposed in the future directions. Identification of new and more selective rhomboid inhibitors not only has a medical relevance in drug development against pathogens, but could also be used to speed progress in uncovering the biological roles of these intramembrane proteases.

Future Directions

Modifications to the β-lactam probes to increase their affinity for the GlpG rhomboid protease will be pursued. The first modification would be to remove the aryl ring at C-3, in accord with the SAR done previously by Pierrat et al. According to Scheme 3-8, β-lactam (3.40) can be prepared by 1,3-dipolar cycloaddition of 3.27 with ethynyltrimethylsilane (3.41), and subsequent desilylative fragmentation of TMS-isoxazoline (3.42) with TBAF yields the C-3 non-substituted β-lactam (3.43). The alkyne reporter tag in 3.40 can be installed through amide coupling between 3.43 with 3.37, similar to that done previously during the synthesis of 3.22.
Scheme 3-8. Synthesis of β-lactams probes containing no substitution at C-3.

We also intend to apply probes cis-3.22 and trans-3.22 for in vivo ABPP of other systems such as Hepatitis C virus (HCV). Since HCV relies on many interactions with host cell proteins for propagation, and successful HCV infection requires enzymatic activity of host cell enzymes for key posttranslational modifications. These β-lactam activity-based probes will be used in comparative ABPP experiments to identify previously unidentified active-enzymes that are differentially regulated in HCV-infected relative to non-infected liver proteomes.

Conclusions

The synthesis of β-lactam activity-based probes via the Kinugasa reaction has been described. The Kinugasa reaction offered an efficient, and atom economical method for constructing the β-lactam core structure. It was found that the conditions required for installing an ether linkage between the β-lactam and alkyne tag proved problematic and resulted in ring opening of the β-lactam 3.21. An amide bond forming reaction proved to be a simple and efficient approach for installing the alkyne handle in 3.22. Preliminary ABPP
experiments on crude membrane fractions containing the GlpG rhomboid demonstrate concentration dependent inhibition of rhomboid proteases in vitro. However, β-lactam 3.22 shows low specificity for GlpG. Future efforts are directed toward designing β-lactam probes that display greater affinity for GlpG, and we intend to apply these probes to other systems of interest as well.

Acknowledgements

Kathrine Bisgaard and Dr. Robert Faragher are acknowledged for fruitful discussions regarding probe synthesis. Dr. Allison Sherratt is thanked for offering background knowledge and expertise related to rhomboid proteases and performing the preliminary ABPP experiments.
Materials and Methods

General

All chemical reagents were purchased from commercial suppliers and used without further purification. Reactions were monitored by thin layer chromatography (TLC) pre-coated silica gel glass plates (60 Å, F254, layer thickness 250µm), using UV light and potassium permanganate stain to visualize the course of reaction. For flash column chromatography technical grade solvents were used, and chromatographic purification was performed using silica gel (60 Å, particle size 40–63 µm). 1H NMR and 13C NMR spectra were recorded using a Bruker-DRX-400 spectrometer using a frequency of 400.13 MHz for 1H and 100.61 MHz for 13C and processed using Bruker TOPSPIN 2.1 software. Chemical shifts are reported in parts per million (δ) using residual CHCl3 resonance as an internal reference (7.26 and 77.0 ppm for 1H and 13C NMR, respectively). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal and J = coupling constants in Hz.

Synthetic Procedures and Characterization Data:

tert-butyl-(4-dithoxymethyl-benzyloxy)-dimethyl-silane (3.30):

Triethylamine (1.2 mL, 12.2 mmol), DMAP (0.68g, 5.6 mmol) and tert-butylidimethylsilyl chloride (1.84 g, 12.2 mmol) were added to a stirred solution of 4-(diethoxymethyl)-benzenemethanol,67 (2.0 g, 9.5 mmol) dissolved in CH2Cl2 (40 mL). The reaction mixture was stirred at r.t. for 4 h. Upon completion, the reaction mixture was diluted with CH2Cl2 (20
mL), washed with water (4 x 25 mL), and brine (50 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered, and the solvent evaporated by rotary evaporation to a yellow oil. The crude product was purified by flash column chromatography (95:5/hexanes:EtOAc), affording the title compound as a colourless oil (2.2 g, 6.6 mmol, 69 %). Spectral data corresponded to that previously described in the literature.⁶⁸ \textbf{R} = 0.88 (70:30/hexanes:EtOAc). \textbf{H NMR (CDCl₃, 400 MHz)}: δ 7.44 (d, \textit{J} = 8.2 Hz, 2H), 7.32 (d, 2H) 5.51 (s, 1H), 4.75 (s, 2H), 3.65-3.49 (m, 4H), 1.24 (t, \textit{J} = 7.0 Hz, 6H), 0.95 (s, 9H), 0.10 (s, 6H). \textbf{C NMR (CDCl₃, 100 MHz)}: δ 141.5, 137.7, 126.5, 125.8, 101.4, 64.7, 60.9, 25.9, 18.4, 15.2, -5.3.

\textbf{4-(tert-butyl-dimethyl-silyloxymethyl)-benzaldehyde (3.31):}

\[\text{O} \]
\[\text{TBDMS} \]
\[\text{3.31} \]

Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (2.7 mg, 0.003 mmol, 0.001 equiv.) was added to a stirred suspension of \textbf{3.30} (990 mg, 3 mmol, 1 equiv.) in H₂O (6 mL). The reaction was stirred at r.t. for 5 min. Upon completion, the mixture was extracted with DCM (3 x 5 mL), the combined organic phases were dried over anhydrous MgSO₄, filtered, and concentrated \textit{in vacuo}. The crude oil was purified by silica gel chromatography (95:5/hexanes:EtOAc). \textbf{3.31} was obtained as a colourless oil (716 mg, 2.86 mmol, 95 %). Spectral data corresponded to that previously described in the literature.⁷⁴ \textbf{R} = 0.50 (90:10/hexanes:EtOAc). \textbf{H NMR (CDCl₃, 400 MHz)}: δ 9.99 (s, 1H), 7.85 (d, \textit{J} = 8.2 Hz, 2H), 7.48 (d, \textit{J} = 8.0 Hz, 2H), 4.81 (s, 2H), 0.95 (s, 9H), 0.11 (s, 6H). \textbf{C NMR (CDCl₃, 100 MHz)}: δ 192.0 (CH), 148.6 (C), 135.3 (C), 129.8 (CH), 126.2 (CH), 64.4 (CH₂), 25.9 (CH₃), 18.3 (C), -5.4 (CH₃).
N-(4-((tert-butyl diphenylsilyloxy)methyl)benzylidene)benzenamine oxide (3.25):

![Chemical structure of 3.25](attachment:image.png)

To a solution of SDS (0.288 g, 1 mmol) in H₂O (10 mL) was added aldehyde 3.25 (600 mg, 2.4 mmol, 1.0 equiv.) and N-phenyl hydroxyl amine⁷⁵ (314 mg, 2.9 mmol, 1.2 equiv.). The reaction was stirred for 30 min. The reaction mixture was diluted with brine (10 mL) and extracted with EtOAc (3 x 10 mL). The organic phases were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The crude was purified by silica gel column chromatography (70 : 30 / Hexanes : EtOAc) affording 3.25 as pale brown solid (650 mg, 1.90 mmol, 79 %). \(R_f = 0.26 \) (75 : 25 / Hexanes : EtOAc) ¹H NMR (CDCl₃, 400 MHz): \(\delta \) 8.37 (d, 2H), 7.90 (s, 1H), 7.76-7.74 (m, 2H), 7.46-7.42 (m, 5H), 4.79 (s, 2H), 0.96 (s, 9H), 0.11 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): \(\delta \) 148.9 (C), 144.6 (C), 134.6 (CH), 131.5 (CH), 129.7 (CH), 129.5 (CH), 129.2 (C), 129.0 (CH), 128.0 (CH), 128.7 (CH), 128.6 (CH), 125.9 (CH), 122.2 (CH), 121.6 (CH), 64.6 (CH₂), 25.8 (CH), 18.3 (C), -5.4 (CH). LRMS: calculated for C₂₀H₂₈NO₂Si (M⁺) 342.2; Found: 342.2.

N-(4-(hydroxymethyl)benzylidene)benzenamine oxide (3.34):

![Chemical structure of 3.34](attachment:image.png)

A solution of 4-(hydroxymethyl)-Benzaldehyde,⁶⁹ 3.33 (184 mg, 0.74 mmol) and N-phenyl hydroxyl amine (162 mg, 0.89 mmol) dissolved in 0.1M sodium dodecyl sulfate (4 mL), was sonicated for 5 min, then allowed to stir at r.t. for 1 hr. Upon completion, the reaction was diluted with H₂O (5 mL), and extracted with EtOAc (3 x 5 mL). The combined organic
phases were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The crude was purified by silica gel column chromatography eluting 6:4/hexanes:EtOAc to 100 % EtOAc. The title compound was obtained as an off-white solid (150 mg, 0.66 mmol, 89 %).

Rf = 0.48 (EtOAc). ¹H NMR (CDCl₃, 400 MHz): 8.27 (d, 2H), 7.88 (s, 1H), 7.73 (m, 2H), 7.46-7.37 (m, 5H), 4.67 (s, 2H), 3.28 (br s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 148.7 (C), 144.8 (C), 135.1 (CH), 129.9 (CH), 129.3 (CH), 129.3 (CH), 129.2 (CH), 126.7 (CH), 121.6 (CH), 64.5 (CH₂). LRMS: Calculated for C₁₄H₁₄NO₂ (M⁺) 228.1, Found 228.2.

N-(4-carboxybenzylidene)benzenamine oxide (3.27):

![N-(4-carboxybenzylidene)benzenamine oxide](image)

4-carboxybenzaldehyde (450.4 mg, 3 mmol) and N-phenyl hydroxyl amine⁷⁵ (360.0 mg, 3.3 mmol) suspended in anhydrous EtOH (4.3 mL). The reaction was heated to reflux for 5 min, then was stirred at r.t. for 30 min. The resultant precipitate was filtered, washed with copious amounts of EtOH, dried under high vacuum. The title compound was obtained as a pale-yellow crystalline solid (517.7 mg, 2.15 mmol, 72 %). Spectral data corresponded to that previously described in the literature.⁷⁶ Rf = 0.38 (90:10/CH₂Cl₂:CH₃OH). ¹H NMR (DMSO-d₆, 400 MHz): δ 13.13 (br s, 1H), 8.63 (s, 1H), 5.56 (d, J = 8.4 Hz, 2 H), 8.05 (d, J = 8.4 Hz, 2H), 7.93 (dd, J = 8.1, 2.1 Hz, 2H), 7.60-7.53 (m, 3H). ¹³C NMR (DMSO-d₆, 100 MHz): δ 166.8 (C), 148.5 (C), 134.8 (CH), 133.0 (CH), 131.8 (C), 130.2 (CH), 129.4 (CH), 129.2 (CH), 128.6 (CH), 121.6 (CH). LRMS: Calculated for C₁₄H₁₂NO₃ (M⁺) 225.1; Found 225.2.

General Procedure for Micelle-Promoted Kinugasa Reactions in Aqueous Media:
To a solution of SDS (288 mg, 1 mmol) in H$_2$O (10 mL), was added (+)-sodium-(L)-ascorbate (475 mg, 2.4 mmol), CuSO$_4$·5H$_2$O (300 mg, 1.2 mmol), pyridine (775 μL, 9.6 mmol), ethanolamine (78 μL, 1.3 mmol) and phenyl acetylene (134 μL, 1.2 mmol). The resultant was allowed to stir at r.t. for 30 min. The mixture was cooled to 0°C using an ice bath, and nitrone (1.46 mmol) was added. The reaction mixture was allowed to warm slowly to r.t. over 30 min, and was stirred for an additional 6 h at this temperature. Upon completion, the reaction was diluted with brine (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic phases were washed with brine (30 mL). The combined organic phases were dried over anhydrous MgSO$_4$, filtered, and concentrated in vacuo. The crude was pre-absorbed onto silica gel and the cis- and $trans$-β-lactams were purified by flash column chromatography.

cis-4-(4-((tert-butyldiphenylsilyloxy)methyl)phenyl)-1,3-diphenylazetidin-2-one $(cis-3.23)$ and trans-4-(4-((tert-butyldiphenylsilyloxy)methyl)phenyl)-1,3-diphenylazetidin-2-one $(trans-3.23)$:

These compounds were obtained by following the general Kinugasa reaction procedure. Purified by flash column chromatography eluting 95:5 to 90:10/hexanes:EtOAc, affording the title compounds cis-3.23 (184.1 mg, 0.42 mmol) and trans-3.23 (135.0 mg, 0.30 mmol) as off-white solids in a combined yield of 60%. cis-3.23: $R_f = 0.22$ (90:10/hexanes:EtOAc).
\(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 7.43 (dd, \(J = 8.6, 1.1 \text{ Hz}, 2\text{H})\), 7.28 (t, \(J = 7.5 \text{ Hz}, 2\text{H})\), 7.10-7.03 (m 10H), 5.46 (d, \(J = 6.1 \text{ Hz}, 1\text{H})\), 5.00 (d, \(J = 6.1 \text{ Hz}, 1\text{H})\), 4.60 (s, 2H), 0.90 (s, 9H), 0.01 (s, 6H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 165.6 (C), 141.1 (C), 137.7 (C), 132.9 (C), 132.1 (C), 129.0 (CH), 128.8 (CH), 128.0 (CH), 127.1 (CH), 127.0 (CH), 125.9 (CH), 123.9 (CH), 117.2 (CH), 64.5 (CH\(_2\)), 60.2 (CH), 60.1 (CH), 25.8 (CH), 18.3 (C), -5.3 (CH).

LRMS: calculated for C\(_{28}\)H\(_{33}\)NO\(_2\)Si [M\(^+\)] 444.2; Found: 444.2. \(\text{trans-3.23: } R_f = 0.43\) (90:10/hexanes:EtOAc). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 7.40-7.25 (m, 13H), 7.07 (t, \(J = 7.4 \text{ Hz}, 1\text{H})\), 4.95 (d, \(J = 2.6 \text{ Hz}, 1\text{H})\), 4.76 (s, 2H), 4.27 (d, \(J = 2.5 \text{ Hz}, 1\text{H})\), 0.95 (s, 9H), 0.12 (s, 6H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 165.6 (C), 142.1 (C), 137.5 (C), 136.1 (C), 134.7 (C), 129.1 (CH), 129.0 (CH), 127.9 (CH), 127.4 (CH), 126.9 (CH), 125.8 (CH), 124.0 (CH), 117.2 (CH), 65.2 (CH), 64.5 (CH\(_2\)), 63.6 (CH), 25.9 (CH), 18.4 (C), -5.3 (CH). LRMS: calculated for C\(_{28}\)H\(_{33}\)NO\(_2\)Si (M\(^+\)) 444.2; Found: 444.2.

cis-4-(4-(hydroxymethyl)phenyl)-1,3-diphenylazetidin-2-one (cis-3.32) and trans-4-(4-(hydroxymethyl)phenyl)-1,3-diphenylazetidin-2-one (trans-3.32):

These compounds were prepared following the general Kinugasa reaction procedure. The crude was purified by flash column chromatography eluting 60:40/hexanes:EtOAc, affording the title compounds \(\text{cis-3.32} \) (186.2 mg, 0.57 mmol) and \(\text{trans-3.32} \) (141.0 mg, 0.43 mmol) as white solids in a combined yield of 83 %. \(\text{cis-3.32: } R_f = 0.29 \) (60 : 40 / Hexanes :
1H NMR (CDCl₃, 400 MHz): δ 7.40 (m, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.12-7.03 (m, 10H), 5.47 (d, J = 6.1 Hz, 1H), 5.01 (d, J = 6.1 Hz, 1H), 4.54 (s, 2H), 1.58 (br s, 1H). 13C NMR (CDCl₃, 100 MHz): δ 165.6 (C), 140.5 (C), 137.6 (C), 133.8 (C), 132.0 (C), 129.1 (CH), 128.9 (CH), 128.1 (CH), 127.4 (CH), 127.2 (CH), 126.8 (CH), 124.1 (CH), 117.2 (CH), 64.8 (CH₂), 60.3 (CH), 60.1 (CH).

LRMS: Calculated for C₂₂H₂₀NO (M⁺) 330.1, Found 330.1. trans-3.32: Rf = 0.30 (60:40/hexanes:EtOAc). 1H NMR (CDCl₃, 400 MHz): δ 7.41-7.24 (m, 13H), 7.07 (t, J = 7.4 Hz, 1H), 4.96 (d, J = 2.5 Hz, 1H), 4.68 (s, 2H), 4.22 (d, J = 2.2 Hz, 1H), 2.28 (br s, 1H). 13C NMR (CDCl₃, 100 MHz): δ 165.6 (C), 141.6 (C), 137.3 (C), 136.6 (C), 134.5 (C), 129.1 (CH), 129.0 (CH), 127.9 (CH), 127.8 (CH), 127.4 (CH), 126.0 (CH), 124.1 (CH), 117.1 (CH), 65.0 (CH), 64.6 (CH₂), 63.4 (CH).

LRMS: Calculated for C₂₂H₂₀NO (M⁺) 330.1, Found 330.2.

4-((cis)-4-oxo-1,3-diphenylazetidin-2-yl)benzoic acid (cis-3.26) and 4-((trans)-4-oxo-1,3-diphenylazetidin-2-yl)benzoic acid (trans-3.26):

These compounds were prepared following the general Kinugasa reaction procedure. The crude was purified by flash column chromatography eluting 99:1/CH₂Cl₂:CH₃OH, affording the title compounds cis-3.26 (102.1 mg, 0.30 mmol) and trans-3.26 (79.0 mg, 0.23 mmol) as white solids in a combined yield of 44 %. cis-3.26: Rf = 0.24 on silica (98:2/CH₂Cl₂:CH₃OH). 1H NMR (CDCl₃, 400 MHz): δ 7.83 (d, J = 8.1 Hz, 2H), 7.38 (d, J
= 7.9 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.12-7.03 (m, 6H), 5.52 (d, J = 6.1 Hz, 1H), 5.07 (d, J = 6.1 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz): δ 171.2 (C), 165.2 (C), 140.8 (C), 137.4 (C), 131.5 (C), 130.1 (CH), 129.2 (CH), 128.8 (CH), 128.7 (C), 128.3 (CH), 127.6 (CH), 127.3 (CH), 124.4 (CH), 117.1 (CH), 60.5 (CH), 60.0 (CH). LRMS: Calculated for C$_{22}$H$_{18}$NO$_3$ (M$^+$) 344.1, found 344.2. trans-3.26: R$_f$ = 0.29 on silica (98:2/CH$_2$Cl$_2$:CH$_3$OH). 1H NMR (CDCl$_3$, 400 MHz, 298 K, CHCl$_3$) : δ 8.16 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 7.42-7.27 (m, 9H), 7.10 (t, J = 7.2 Hz, 1H), 5.04 (d, J = 2.4Hz, 1H), 4.30 (d, J = 2.4 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, 298 K, CHCl$_3$) : δ 171.2 (C), 165.2 (C), 143.6 (C), 137.1 (C), 134.2 (C), 131.3 (CH), 129.7 (C), 129.2 (CH), 129.2 (CH), 128.2 (CH), 127.5 (CH), 126.0 (CH), 124.4 (CH), 117.1 (CH), 65.1 (CH), 63.2 (CH). LRMS: Calculated for C$_{22}$H$_{18}$NO$_3$ (M$^+$) 344.1, found 344.3.

4-((cis)-4-oxo-1,3-diphenylazetidin-2-yl)-N-(prop-2-ynyl)benzamide (cis-3.22) and 4-((trans)-4-oxo-1,3-diphenylazetidin-2-yl)-N-(prop-2-ynyl)benzamide (trans-3.22):

β-lactam intermediates 3.26 (98.1 mg, 0.29 mmol) were dissolved in CH$_2$Cl$_2$ (4 mL). Then added DCC (90 mg, 0.435 mmol), DMAP (17.7 mg, 0.145 mmol) and propargyl amine (22.3 μL, 0.348 mmol). The reaction was stirred at r.t. overnight. Upon completion, the reaction was filtered over a bed of celite and the solvent was evaporated. The crude reaction was diluted with CH$_2$Cl$_2$ (5 mL), washed with H$_2$O (5 mL), then extracted with CH$_2$Cl$_2$ (2 x 5
mL). The combined organic phases were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography eluting 65:35/hexanes:EtOAc. The title compounds cis-3.22 (44.8 mg, 0.12 mmol) and trans-3.22 (34.0 mg, 0.09 mmol) as white solids in a combined yield of 73 %. cis-3.22: R_f = 0.17 (65:35/hexanes:EtOAc).¹H NMR (CDCl₃, 400 MHz): δ 7.54 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 5.6 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.11-7.03 (6H, m), 6.18 (br s, 1H), 5.49 (d, J = 6.2 Hz, 1H), 5.05 (d, J = 6.2 Hz, 1H), 4.16 (dd, J = 5.2, 2.5 Hz, 2H), 2.24 (t, J = 2.5 Hz, 1H).¹³C NMR (CDCl₃, 100 MHz): δ 166.3 (C), 165.3 (C), 138.6 (C), 137.4 (C), 133.1 (C), 131.6 (C), 129.2 (CH), 128.8 (CH), 128.3 (CH), 127.5 (CH), 127.4 (CH), 127.1 (CH), 124.3 (CH), 117.1 (CH), 79.3 (CH), 71.9 (CH), 60.4 (CH), 59.9 (CH), 29.7 (CH₂). LRMS: Calculated for C₂₅H₂₁N₂O₂ (M⁺) 381.2, Found 381.2. trans-3.12: R_f = 0.28 (65:35/hexanes:EtOAc).¹H NMR (CDCl₃, 400 MHz): δ 7.82 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.41-7.25 (m, 11H), 7.08 (t, J = 7.2 Hz, 1H), 6.36 (t, J = 4.8 Hz, 1H), 4.99 (d, J = 2.5 Hz, 1H), 4.26-4.25 (m 2H), 4.24 (d, J = 2.5 Hz, 1H), 2.28 (t, J = 2.5 Hz, 1H).¹³C NMR (CDCl₃, 100 MHz): δ 166.4 (C), 165.2 (C), 141.4 (C), 137.2 (C), 134.2 (C), 134.2 (C), 129.2 (CH), 129.1 (CH), 128.1 (CH), 127.4 (CH), 126.2 (CH), 124.3 (CH), 117.1 (CH), 79.2 (CH), 72.0 (CH), 65.2 (CH), 63.2 (CH), 30.3 (CH₂). LRMS: Calculated for C₂₅H₂₁N₂O₂ (M⁺) 381.2, Found 381.2.

β-lactam Probe Labelling of Active Rhomboid in Crude Membrane Extracts:

Wild type or mutant (S203A) crude membrane extracts in 50 mM HEPES pH 7.3, 1% dodecyl maltoside (DDM, 40 µg total protein at 1 mg/mL), 200 mM NaCl, 10% glycerol and 100 µM EDTA 1% prepared as described previously, was incubated the with β-lactam probes cis-3.22 (0.1, 1, 10 µM), trans-3.22 (0.1, 1, 10 µM), or 3.38 (0.01 µM), for 1 h at 37
°C. The alkyne labelled proteome was reacted with 3.39 (100 μM) in the presence of CuSO₄ (0.5 mM), TCEP (0.5 mM) and TBTA (0.05 mM) for 2 h at r.t. Upon completion, the reaction was quenched by precipitating the proteome with five volumes of ice-cold acetone to remove unreacted probe. The precipitated protein samples were subjected to SDS-PAGE separation on a 15% gel (1.5 mm thickness) at 100 V. The gels were scanned for fluorescence using the FMBIO III (Hitachi Solutions Ltd, Tsurumi-ku Yokohama, Japan) to visualize the active protein.
References

Chapter 4: Alkyne Functionalized Silver Nanoparticles for SERS Imaging of Cell Surface Proteins

A significant portion of the work presented in this chapter was published in:

Introduction

Alkynes are well known reporter groups that have been widely used in azide-alkyne cycloadditions for labelling of biomolecules in vivo. We have recently developed a highly efficient multicomponent Kinugasa reaction in aqueous media and have utilized this synthetic method for preparing alkyne-tethered β-lactam activity-based probes for proteomics applications. Here we describe the synthesis of alkyne-tethered β-lactam probes that can be used as contrast agents for imaging cell surface proteins using surface enhanced Raman scattering (SERS) spectroscopy.

Thiolate functionalized silver and gold plasmonic nanoparticles (NPs) have been developed for SERS microscopy in biological imaging. SERS imaging is also emerging as a promising technique for clinical imaging and a highly sensitive multiplexed detection alternative to fluorescence imaging. Functionalized NPs have been used in SERS imaging to detect cancer cells, and are themselves efficient labelling probes for cell surface receptors. In parallel with other imaging techniques (e.g. two photon fluorescence (TPF), Rayleigh light scattering (RLS) and scanning electron microscopy (SEM)), SERS microscopy can give highly detailed information about protein localization at the cell surface and report on receptor aggregation. Silver NPs have also been used to design novel SERS probes that can function as both diagnostic and therapeutic tools or markers of enzymatic activity.

One advantage of using SERS microscopy over fluorescence based methods to report on protein localization is the increased enhancement in signal that arises upon NP coupling when protein aggregation drives the targeted NP aggregation at the cell surface to form SERS hotspots. We have shown the utility of mercaptomethylbenzyl nitrile
functionalized NPs for SERS imaging of mammalian cells surfaces.2,14 Additionally we have adapted this same NP design to incorporate carborane molecules as potential therapeutics, transforming the NP contrast agent into a drug delivery particle as well.13 The carborane and nitrile reporter molecules each contain unique Raman stretches (1700 and 2800 cm-1, respectively) that are in the spectroscopically silent region of the cell.

Silver nanoparticles can be coated with other SERS active labels that display distinct signals. Reporter groups containing C≡N, C-D, C≡C, NO\textsubscript{2} or B-H have been successfully employed.2,6,13 SERS spectra obtained from NPs coordinated to benzylthiol based ligands provide much stronger and better resolved signals than those of the analogous linear DTSP based ligand set NPs.6 The proximity of the functional groups to the NP surface plays an important role in the strength of the observed signals.6,18

The Raman spectra of four commonly employed benzyl thiol reporter ligands; 4-mercaptomethyl)nitrobenzene (MMBNO, \textbf{4.1}), 4-(mercaptomethyl)ethynyl benzene (MMByne, \textbf{4.2}), mercaptomethylbenzene-\textit{d}\textsubscript{7} (DMMB, \textbf{4.3}), and 4-(mercaptomethyl)benzonitrile (MMBN, \textbf{4.4}) are shown in Figure 4-1.6 The Raman spectra for MMByne, DMMB, and MMBN show distinct signals in the desired region of the spectrum ranging from 1700 - 2800 cm-1 (Figure 4-1B). Although MMBNO lacking signals in this region, the two prominent signals arise at 1352 cm-1 (NO\textsubscript{2} symmetric stretching) and 1599 cm-1 (NO\textsubscript{2} asymmetric stretching), the former peak at 1352cm-1 is unique to this molecule while the latter peak at 1600 cm-1 overlaps with the C=C phenyl ring deformations (1570-1620 cm-1) observed for all the reporter molecules.6 Characteristic signals of the remaining SERS reporter molecules include the C≡C stretching for MMBYNE (2112 cm-1), C≡N stretching for MMBN (2234 cm-1), phenyl C-D bending (1047 cm-1) and two diagnostic
peaks for C-D stretching (2168 and 2287 cm\(^{-1}\)) in DMMB. For each probe, the peak occurring at 2550-2580 cm\(^{-1}\) results from S-H stretching.

Figure 4-1. Raman reporter ligands and Ag-NPs with benzyl thiol based ligands for use in nanoparticle-based SERS imaging. A) Chemical structures of four benzyl thiol ligands. B) Raman spectra for commonly employed NPs containing C≡N, C-D, C≡C, NO\(_2\) reporter groups. C) SERS spectra of functionalized Ag-NPs using the 4-(mercaptomethyl)benzene-derived reporter molecules. This figure was reprinted from the literature.\(^6\)

All of these ligands (4.1-4.4) have been utilized to functionalize the surface of Ag NPs and the associated SERS spectra of the resulting NPs upon ligand binding are shown in Figure 4-1C. All benzylthiol based ligand NP SERS spectra exhibit a peak between 1160-
1180 cm\(^{-1}\) associated with the phenyl ring (in plane C-H bending), as well as two peaks between 1340-1400 cm\(^{-1}\) and 1560-1610 cm\(^{-1}\) that are associated with ring deformations. The SERS spectra of MMBNO NPs exhibit representative signals from NO\(_2\) at 1347 cm\(^{-1}\) and 1594 cm\(^{-1}\). However, these two peaks overlap with the phenyl ring deformation making them indistinguishable. In the case of MMBN a sharp peak resulting from C≡N stretching is observed at 2226 cm\(^{-1}\). The SERS spectrum of MMByne NP displays a diagnostic C≡C stretch at 1983 cm\(^{-1}\) (MMByne C-bound). The shift in the C≡C mode to lower wavenumber is consistent with terminal alkyne coordination. Additionally, a small peak at 2101 cm\(^{-1}\) was also observed, suggesting that there was competition between thiol and alkyne binding to the NP.\(^6\) The SERS spectrum of DMMB NPs showed two peaks at 2146 cm\(^{-1}\) and 2283 cm\(^{-1}\), C-D stretching with the double peak being characteristic of deuterated compounds,\(^19\) with both spectra resembling their corresponding non-ligated Raman spectra.

Ag NPs are synthesized and assembled using a mixed ligand coating that contains the Raman reporter molecule for imaging, a water solubilizing PEGylated thiol, and a short chain succinimide ester that can be used to bind targeting antibodies to the NP. As shown in Figure 4-2, NPs are coated with a mixture of 3,3′-dithiodipropionic acid di(N-hydroxysuccinimide ester) (DTSP, 4.5), 2-(2-(2-methoxy-ethoxy)-ethoxy)-ethanethiol (EG\(_3\)SH, 4.6), and Raman reporter ligands (4.1-4.4) in a molar ratio of 2:5:5, respectively. DTSP is readily reduced \textit{in situ} by the NP surface to form to coordinated thiols on the NP, and provides a handle for further functionalization with targeting antibodies.\(^20\) EG\(_3\)SH is a simple PEGylated thiol that is used to coordinate NPs to form water soluble particles.\(^21\) The resultant particles are functionalized with antibodies and the remaining sites are blocked with bovine serum albumin (BSA). The NPs are readily used to carry out highly sensitive detection of membrane receptor proteins using SERS microscopy.
Figure 4-2. Synthesis of functionalized particles and basic premise for SERS imaging of coupled nanoparticles. Molecular structures of the functionalized silver NPs for cell surface labeling. (a) A) Schematic for synthesis of SERS active Ag NPs and structures of the ligands used to coat the nanoparticles. A colloidal Ag solution is first reacted with a mixture of DTSP, EG$_3$SH and Raman reporter, then is activated with an antibody, followed by blocking on the remainder of the particle with BSA. B) Particles bind to the cell surface receptors via the covalently linked antibody and are then imaged with a Raman microscope. Figure was adapted from the literature.2

In order for the Nanotag to be exploited in cellular imaging applications, the specific functional groups that are being studied must meet the stringent requirements of bioorthogonality. For in vivo imaging the ligand-NP interaction must be highly specific, non-toxic toward the host, and must not alter the biochemistry of the cell. This chapter describes
applications of micelle-promoted Kinugasa reactions for the synthesis of an alkyne functionalized β-lactam that can be used as a ligand for binding Ag NPs. The ability to display electrophilic moieties such as β-lactams on the surface of NPs presents a distinct advantage over thiolate-based ligands that are not compatible with electrophilic groups. Furthermore we show the utility of alkyne-bonded silver NPs for cell surface imaging, and present the potential for novel diagnostic and therapeutic uses.

Hypothesis

β-lactams bind NPs via alkyne tethers and provide a SERS reporting platform for imaging cell surface proteins.

Results and Discussion

Alkyne-Tethered β-Lactams as Reporter Ligands for SERS Imaging

Recently, linear terminal alkynes have been shown to coordinate Ag or Au NPs as alternatives to thiol-based ligands. The energy of the Raman band for the C≡C bond shifts approximately 100 cm\(^{-1}\) to lower energy from ~2100 cm\(^{-1}\) to ~2000 cm\(^{-1}\) upon coordination to the NP. Both experiment and theory indicate that the magnitude of the shift is highly dependent on the orientation of the bond. Similarly, functionalization of Ag NPs with 1,4-diethynylbenzene (4.7) results in a similar shift in the peak for the coordinated alkyne, while that for the unbound alkyne remains unchanged. Interestingly, Yoo and Joo have observed a second peak for the C≡C stretch resulting from coordination of 1,4-diethynylbenzene to both NPs that is shifted to higher energy to ~2200 cm\(^{-1}\). The latter peak was more prominent when they bound structurally more complex terminal alkynes such as 3-(4-(4-ethynylphenyl)-1H-1,2,3-triazol-1-yl)propan-1-ol at the NP surface.
We have shown that MMByne binds to the surface of Ag NPs either via the alkyne or the thiol depending on the total ligand concentration. To develop probes for biological imaging, we hypothesized that the signature C≡C stretch of phenylacetylene (4.8) would be shifted from 2225 cm\(^{-1}\) to \(~2000\) cm\(^{-1}\) upon coordination to Ag NPs, and would be unique to background interference that may arise from cellular components. The Raman spectrum of 4.8 coordinated to Ag NPs is shown in Figure 4-3.

Figure 4-3. Surface enhanced Raman scattering spectrum of phenylacetylene functionalized Ag NPs. The arrow denotes the position of the coordinated alkyne peak.

Silver NPs were synthesized as previously mentioned using a mixture of ligands that included phenylacetylene, DTSP and EG\(_3\)SH to increase water solubility of the NPs. For these particles, we see only a single broad peak for coordinated alkyne at 1986 cm\(^{-1}\). This bond is highly sensitive to the surface chemistry as signal enhancement arises from atoms directly bonded to the metal surface and changes in binding modes due to a rough asymmetric surface (likely due to bridging versus axial binding modes) as is found on NPs could change the energy of the observed Raman peak.
In order to demonstrate the utility of alkynes as ligands to functionalize NPs, the previously developed micelle-promoted Kinugasa reaction in aqueous media26 was used to synthesize alkyne tethered \(\beta\)-lactams (4.10) (Scheme 4-1). \(\beta\)-lactams are electrophilic and undergo reactions with nucleophiles such as thiols, making them not generally compatible with benzyl thiol reporter molecules. Alternatively, \(\beta\)-lactams are orthogonal to alkyne reporter groups, suggesting that \(\beta\)-lactams containing aryl alkynes would be amenable to SERS imaging. The Kinugasa reaction between 1,4-diethynylbenzene (4.7) and \(\alpha,\text{N}\)-diphenyl nitrone (4.9) provided a 1:1 diastereomeric mixture of \textit{cis}-4.10 and \textit{trans}-4.10 in 21 \% yield. Attempts to synthesize the analogous thiol-containing \(\beta\)-lactams by substituting MMByne (4.2) as substrate for the Kinugasa reaction with 4.9 did not provide the thiolated \(\beta\)-lactam products.

\textbf{Scheme 4-1.} Synthesis of alkyne tethered \(\beta\)-lactam ligand via the Kinugasa reaction.
Figure 4-4. A) Functionalization of silver NPs with alkyne-labelled β-lactams. B) Raman spectrum of alkyne functionalized β-lactam and SERS spectrum of that lactam bonded to the surface of a silver NP.

The Raman spectrum for the alkyne tethered β-lactam product exhibits a C≡C stretch at 2112 cm\(^{-1}\) that is consistent with a terminal alkyne, and a C=O stretch for the β-lactam visible as a weak peak at 1749 cm\(^{-1}\). We then functionalized silver NPs at pH 8 with the alkyne-labelled β-lactam exclusively in the absence of other ligands (Figure 4-4). The resulting NPs clearly exhibited two peaks for the alkyne at 1983 and 2214 cm\(^{-1}\) that may arise from two or more binding motifs for the molecule at the particle surface. A mixture of coordination geometries at the cell surface has been previously postulated to explain these two peaks for other multi-functional alkynes on silver surfaces.\(^{22,23,25}\) The C=O peak of the β-lactam at 1749 cm\(^{-1}\) is not observed in the SERS spectrum; however, this is consistent with the SERS spectra of other β-lactams that have been previously reported.\(^{27}\)
Figure 4-5. Raman spectra for alkyne tethered β-lactam (top), β-lactam bonded to the surface of a Ag NP (middle), and of particles after β-lactam hydrolysis (bottom). The inlay highlights changes that occurred following hydrolysis with NaOH.

The Kinugasa reaction offers a simple approach for developing novel alkyne-functionalized β-lactams that can be explored for biological properties. The affinities of alkynes for gold and silver surfaces make them ideal targeting molecules and probes for SERS imaging. In the absence of enhancement of the C=O peak of the β-lactam to prove that the ring structure was still intact, we hydrolyzed the bound β-lactams with dilute NaOH. The spectrum of the resulting NPs showed a number of changes between 1200 cm\(^{-1}\) and 1600 cm\(^{-1}\) as well as a small peak at 1694 cm\(^{-1}\) that is consistent with the formation of a carboxylic acid (Figure 4-5). The absence of the β-lactam C=O stretch in the β-lactam NP sample and the similarity of the spectrum with that of the hydrolyzed sample indicates that the β-lactam had been hydrolyzed during NP synthesis.

SERS Imaging of Cell Surface Proteins Using Alkyne Tethered Nanoparticles

In order to demonstrate the utility of aryl alkynes as SERS reporter molecules for cell surface labelling we prepared phenylacetylene functionalized NPs that also were
functionalized with targeting antibodies to label cell-surface receptors.2,6,13 We have previously labelled EGFR with functionalized Ag NPs for SERS and two-photon fluorescence imaging as a possible tool for cancer detection13 and have labelled β\textsubscript{2}-adrenergic receptors as a target in cardiovascular disorders.2 We have now started to explore the localization of tight junction proteins that are often down-regulated in tumor metastases and may undergo changes in localization and aggregation that accompany these changes in expression.

Occludin is an important protein for proper tight junction formation that is down regulated in a number of tumor cell types.28,29 Greater decreases in occludin expression correspond to higher levels of metastases. Using phenylacetylene functionalized NPs we have targeted occludin (Figure 4-6) to determine how this protein is aggregated at the cell surface in human hepatoma Huh7.5 cells. In healthy primary cells, occludin is found primarily at cell–cell contacts where it co-localizes with ZO-1 and other tight junction proteins in the formation of tight junctions with neighbouring cells.29 Using phenylacetylene-functionalized NPs co-functionalized with antibodies that target the extracellular domain for occludin, we successfully identified a subpopulation of aggregated receptors in this cell line that are not localized to tight junctions. Control experiments that lacked the targeting antibody showed no adhesion to the cells confirming that aggregation was being driven by the biological recognition of occludin.
Figure 4-6. Brightfield (left) and SERS image (middle) of a cluster of Huh7.5 liver cells functionalized with phenylacetylene and targeted with anti-occludin antibodies. The overlay (right) clearly shows that hot spots exist where the NPs are clustered and that these clusters are distributed uniformly across the cell surface. Previous studies have shown that the SERS signal only arises from coupled nanoparticles16,17 indicating that the proteins are at distances of only a few nm at most in these clusters.

Immunofluorescence staining of the intracellular C-terminus of occludin confirms that the protein does still co-localize to tight junctions in Huh7.5 human hepatoma cells.30,31 Interestingly, the sub-population identified by extra-cellular targeting is uniformly distributed in aggregated clusters across the cell surface. A similar pattern is also observed using immunofluorescence with this antibody targeting the extracellular domain of occludin in this cell line. This suggests that the intracellular interactions of occludin may be different for this subpopulation resulting in the change in localization away from tight junctions and this different state also gives rise to the difference in labelling based on the epitope that is targeted with different antibodies.

SERS imaging reveals that the occludin proteins are clustered at the cell surface at a nano-scale in order to give rise to SERS hotspots.15,16 The data also demonstrate that the carbon-bonded NPs are stable in mammalian cell culture experiments and are suitable for receptor protein targeting.
Future Directions

We are currently conducting detailed studies of the membrane protein occludin using multiplexed SERS imaging and multimodal imaging to monitor changes in occludin expression in conjunction with other cancer biomarkers in order to understand the importance of nanometer clustering of these proteins as well as local environment. SERS microscopy has several potential advantages over fluorescence imaging including a greater potential for multiplex imaging and a lack of photo-bleaching.

Conclusion

In summary, we have shown that carbon-bonded silver NPs are a convenient way of making NPs that display electrophilic functional groups such as β-lactams that are incompatible with thiolate ligands. Alkyne-based ligands open up new avenues for NP synthesis and allow for more diverse applications to be conducted. We also demonstrate that carbon bonded silver NPs can be used for mammalian cell labelling and give rise to strong signals from SERS of their characteristic vibrational resonances. We have shown that mixed ligand NPs containing carbon-bonded reporter ligands can be used to study the localization of the tight junction protein occludin and may offer new insight into disease progression.

Acknowledgements

Dr. David Kennedy is thanked for providing nanoparticle synthesis and Dr. Li-Lin. Tay is kindly acknowledged for performing SERS spectroscopy and microscopy.
Materials and Methods

General: All chemical reagents were purchased from Sigma-Aldrich and were used without further purification. EG$_3$SH was prepared according literature procedures.32 Deuterated solvents were purchased from Cambridge Isotope laboratories. Thin layer chromatography (TLC) was carried out on Analtech Uniplate® silica gel plates (60 Å F254, layer thickness 250μm) using UV light to visualize the course of the reaction. Flash column chromatography was performed using silica gel (60 Å, particle size 40–63 μm). 1H NMR and 13C NMR spectra were obtained using a 400 MHz Bruker NMR spectrometer. Chemical shifts are reported as δ referenced to solvent and coupling constants (J) are reported in Hz. 2 mM solutions of DTSP in DMF and of EG$_3$SH in MeOH were prepared.

Synthetic Procedures and Characterization Data:

cis-3-(4-ethynyl-phenyl)-1,4-diphenyl-azetidin-2-one (cis-4.10) and trans-3-(4-ethynyl-phenyl)-1,4-diphenyl-azetidin-2-one (trans-4.10):

![Chemical Structure](image)

A mechanically stirred solution of α,N-diphenyl-nitrone34 (297.2 mg, 1.5 mmol) in SDS/H$_2$O (15 mL, 0.1M) was cooled to 0 °C and was added (+)-sodium L-ascorbate (476 mg, 2.4 mmol), CuSO$_4$•5H$_2$O (299.6 mg, 1.2 mmol), pyridine (971 μL, 12 mmol), ethanolamine (78 μL, 1.3 mmol) and 1,4-diethynyl benzene (151.4 mg, 1.2 mmol). The reaction mixture was warmed to r.t. over 30 min and was stirred for an additional 8 h. The
reaction progress was monitored by TLC (9:1/Hx:EtOAc). Upon completion, the reaction was diluted with brine (10 mL) and extracted with EtOAC (3 x 10 mL). The combined organic phases were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The resultant residue was purified by silica gel flash column chromatography (95:5 to 90:10/Hx:EtOAc), affording cis-4.10 (38 mg, 0.12 mmol) and trans-4.10 (42 mg, 0.13 mmol) as off-white solids (21 %). cis-4.10: Rₓ = 0.29 (90:10/Hexanes:EtOAc). ¹H NMR (CDCl₃, 400 MHz): δ 7.40 (d, 2H), 7.29 (t, 2H), 7.22 (d, 2H), 7.15-7.01 (m, 8H), 5.47 (d, J = 6.2 Hz, 1H), 4.99 (d, J = 6.1 Hz, 1H), 3.00 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 165.1 (C), 137.5 (C), 134.0 (C), 133.0 (C), 131.9 (CH), 129.1 (CH), 128.8 (CH), 128.4 (CH), 128.1 (CH), 127.0 (CH), 124.2 (CH), 120.8 (C), 117.2 (CH), 83.3 (C), 60.2 (CH), 60.0 (CH).

LRMS: Calculated for C₂₃H₁₈NO (M⁺) 324.1, Found 324.2. trans 4.10: Rₓ = 0.36 (90:10/Hexanes:EtOAc). ¹H NMR (CDCl₃, 400 MHz, 298 K, CHCl₃): δ 7.51 (d, 2H), 7.42-7.25 (m, 11H), 7.08 (t, 1H), 4.94 (d, J = 2.6 Hz, 1H), 4.29 (d, J = 2.6 Hz, 1H), 3.10 (s, 1H).

¹³C NMR (CDCl₃, 100 MHz): δ 165.0 (C), 137.3 (C), 137.2 (C), 135.4 (C), 132.8 (CH), 129.4 (CH), 129.2 (CH), 128.8 (CH), 127.5 (CH), 125.9 (CH), 124.2 (CH), 121.8 (C), 117.2 (CH), 83.2 (C), 64.9 (CH), 63.6 (CH). LRMS: Calculated for C₂₃H₁₈NO (M⁺) 324.1, Found 324.1.

Synthesis of Ag Nanoparticles:

Ag NPs (~25 nm in diameter) were synthesized according to the Lee and Meisel protocol.³ Briefly, a solution of AgNO₃ (50.0 ml, 1.0 mM) in 18.2 MΩ deionized water was heated to boil under reflux. A 1.0 ml of 51.0 mM sodium citrate solution was added to the boiling AgNO₃ solution. The colour of the solution slowly turned into grayish-yellow. The solution was refluxed for another 60 min. The Ag solution was cooled to r.t. before storage at 4 °C.
Functionalization of Nanoparticles:

To 1 mL of Ag nanoparticles (~10^{13}/mL) in a glass vial was added either (a) 1 μL of 2 mM DTSP, 6 μL of 2 mM phenylacetylene and 6 μL of 2mM EG₃SH or (b) 15 μL of 2 mM alkynyl-β-lactam (4.10). The resulting solutions were left stirring for 4 h. Solution (b) was transferred to a 1.5 mL Eppendorf micro-centrifuge tube and spun at 13.4 k rpm for 20 min to pellet the particles. The supernatant was then removed and the particles re-suspended in 500 μL of water. To (a): 50 μL of the secondary antibody solution (Affinipure bovine anti-goat IgG (H+L) 2.4 mg/mL (Jackson Immunoresearch)) was added and the resulting solution mixed by pipetting it slowly several times. This solution was left in the fridge at 4 °C overnight for 16 h. Upon completion, the solution was warmed to r.t. and 30 μL of 30 % bovine serum albumin (BSA) was added. This solution was mixed with a pipette and left to stand at r.t. for 30 min. Next the solution was transferred to a 1.5 mL Eppendorf micro-centrifuge tube and spun at 13.4 k rpm for 20 min to pellet the particles. The supernatant was then removed and the particles were re-suspended in 500 μL of PBS. The resulting solutions were determined to be approximately 1 nM in size as determined by UV-Vis spectroscopy. The particles were stored at 4 °C.

Cell Culture and Sample Preparation:

Huh7.5 cells (ATCC, Manassas, VA) were grown in Dulbecco’s modified Eagle’s medium (Invitrogen, Burlington, ON) supplemented with 10 % fetal bovine serum (FBS) (NorthBio, Toronto, ON) under standard culture conditions (37 °C, 5% CO₂) and were plated onto silica wafers in a 12-well plate. After 24 h, cells were fixed and rinsed with PBS. To this, anti-occludin antibody (AB) (Occludin (Y-12)) goat polyclonal IgG (Santa Cruz Biotechnology 0.2 mg/mL, 4 uL used per mL PBS) was added, and the cells stored in the fridge with the AB
for 24 h at 4 °C. Cells were then rinsed 3 times with PBS and then the 1 mL NP solution in PBS was used to cover the cells after the final wash. This cells were then stored again for 24 hrs at 4 °C with the NPs. Subsequently, the NP solution was recovered, and cells were again rinsed 3 times with PBS. The cells were then stored at 4 °C in PBS until imaged.

Raman Imaging and Spectroscopy:

Raman spectroscopy and microscopy were acquired with a commercial microRaman system (LabRAM HR, Horiba Jobin Yvon) equipped with a software controlled XYZ stage and a thermal-electric cooled CCD detector. In typical SERS experiments, samples were excited with 632.8 nm radiation at a power density of ~ 10^4 W/cm². Incident radiation was coupled into an Olympus BX51 optical microscope and focused to ~1 μm diameter spot through a 100X objective. The same objective also collects the retro-reflected radiation and guides it to a notch filter which removes the Rayleigh radiation. In the Raman mapping experiments, a fine set of grid points within an area of interest is defined in the software and imaged by raster of the sample under the tightly focused laser beam. At each of the grid points, a full Raman spectrum was acquired. The SERS images were generated with 1 s acquisition time (2 accumulations) with a power density of 10^4 W/cm². The multiple accumulations are necessary for the spike removal algorithm to function. Upon completion of the mapping, Raman intensity map of the C≡C vibrational mode is regenerated by fitting and removing the associated background for each spectrum in the predefined spatial grid. The C≡C intensity is displayed as a thermal map. This is achieved by the Labspec 5.25 software (Horiba Jobin Yvon). The solid Raman spectrum was acquired by 632.8 nm irradiation at a power density of ~10^5 W/cm².
Additional Imaging Data:

Figure 4-7. Additional bright field and SERS image of Huh 7.5 cells showing a high abundance of occludin localized away from tight junctions.
References

Chapter 5: Strain-Promoted 1,3-Dipolar Cycloadditions of Cyclooctynes with Nitrones and Diazoalkanes

A significant portion of the work presented in this chapter was published in:

Introduction

Reactions that meet the requirements of bioorthogonality have far reaching applications for monitoring proteins, nucleic acids, glycans and lipids on their own or as post-translational modifications.1-3 Despite the number of developed organic transformations, there exists only a handful of reactions have been deemed bioorthogonal. Issues arising due to toxicity of reagents, compatibility with water, and competing side reactions have hampered the number of reactions that have been successfully transferred from the round bottom flask to biological systems. Not only must the bioorthogonal reactive groups be mutually reactive, bio-inert and ideally non-toxic, the reaction must proceed with exceptionally fast reaction rates to ensure formation of the product at low concentrations typically required in biological labelling experiments. These limitations present unique challenges for chemists to develop selective reactions that display exceptionally fast kinetics and high yield and can ultimately be used for studying dynamic cellular processes.

A number of bioorthogonal strain-promoted 1,3-dipolar cycloaddition reactions have been developed that show fast kinetics, and high selectivity for functionalizing biomolecules. The quintessential metal-free bioorthogonal reaction, strain-promoted azide-alkyne cycloaddition (SPAAC)1,3-5 has found wide utility for labelling glycans,6 proteins,7 lipids of living cells.8 Additionally, SPAAC has been employed for glycoprotein enrichment of proteomic samples,9 proteins,10 oligonucleotide modification11 and tissue engineering.12,13 As mentioned in Chapter 1, density function theory (B3LYP) calculations of the transition state of cycloadditions of phenylazide with acetylene or cyclooctyne indicate that the fast rate of the strain-promoted cycloaddition is due to a lower energy required for distorting the 1,3-dipole and alkyne into the transition state geometry.13-17
A tremendous amount of effort has been directed toward improving the kinetics of SPAAC by increasing the reactivity of the alkyne component. Modifications to the cyclooctyne have included fluorination,18,19 sp2 hybridization of ring atoms,20-24 fusion to cyclopropane moieties,25 or by substituting a heteroatom for ring carbon atoms.26 Despite these improvements to the kinetics of SPAAC, less attention has been focused on the use of alternative 1,3-dipoles that display increased reactivity in strain promoted cycloadditions with cyclooctynes. Recently, the kinetics of SPAAC have been improved through substituting the azide with a more reactive dipole such as nitrile oxides.27 Although nitrile oxides display enhanced reactivity relative to azides in 1,3-dipolar cycloadditions, they require in situ generation due to their instability under physiological settings and require external oxidants or bases for their generation.13

Having recently become interested in using nitrones as dipoles in [3+2] cycloadditions with terminal alkynes via the Kinugasa reaction,28 we speculated that nitrones may display faster kinetics in reactions with strained alkynes. Strain-promoted alkyne-nitrone cycloaddition (SPANC) would not only circumvent the use of potentially toxic copper catalysts,29-31 but would also avoid the energetically disfavored ring contraction required for β-lactam formation by the Kinugasa reaction, giving rise to selective formation of isoxazoline products. Given the value of increasing reaction rates of bioorthogonal reactions as a means for reducing the concentration of labelling reagents, we set out to explore the use of nitrones and diazoalkanes as alternative 1,3-dipoles in strain-promoted cycloadditions with cyclooctynes (Scheme 5-1).
Scheme 5-1. Strain-promoted cycloadditions of cyclooctynes with 1,3-dipoles of different reactivity; strain-promoted azide-alkyne cycloaddition (SPAAC), strain-promoted alkyne-nitrile oxide cycloaddition (SPANOC), strain-promoted alkyne-nitrene cycloaddition (SPANC), and strain-promoted alkyne-diazoalkane cycloaddition (SPADC).

Hypothesis

Nitrones serve as rapid alternatives to azides in strain-promoted 1,3-dipolar cycloadditions with cyclooctynes.

Results and Discussion

This chapter describes the development of strain-promoted alkyne-nitrene cycloaddition (SPANC) and strain-promoted alkyne-diazoalkane cycloaddition (SPADC) for biological labelling. A series of nitrones, diazoalkane compounds, and dibenzocyclooctyne were synthesized and tested in model reactions. The generality of SPANC and SPADC was evaluated with respect to the conformational flexibility and electronics of the respective 1,3-
dipole component. Rate constants were measured for the fastest reacting 1,3-dipoles, and the obtained rate constants were compared with analogous reaction involving benzyl azide.

Kinetics of Strain-Promoted Alkyne-Nitrone Cycloadditions

At the onset of this work, Boons *et al.* had reported 4-dibenzocyclooctynol\(^{24}\) (DIBO) and demonstrated its fast reactivity for the visualization of metabolically labelled azido glycans on the surface of living cells.\(^{24}\) The attractive features of DIBO included its synthetic tractability and nontoxicity. Towards establishing the chemistry of SPANC and SPADC, we felt that it would be advantageous to utilize a symmetric cyclooctyne with exquisite reactivity towards 1,3-dipoles. The lack of regioselectivity of strain-promoted 1,3-dipolar cycloadditions in the solution phase, in combination with introducing additional chiral centers in the products would only lead to complicated mixtures of regio- and diastereomeric cycloaducts.

Dibenzocyclooctyne\(^{32}\) (**5.1**) was chosen due to its ease of preparation and by virtue of its symmetric structure as well as its fast reaction rates in SPAAC. The synthesis of **5.1** was accomplished in 61 % over four steps starting from phenyl acetaldehyde **5.2** (Scheme 5-2). The key step en route to **5.1** involved a double *ortho*-Friedel-Crafts cyclization effected by iodo-trimethylsilane to generate the tetracyclic ether (**5.3**) according to the method of Kagan.\(^{33}\) Reductive ring opening of Kagan’s ether using lithium naphthalenide afforded the alcohol (**5.4**) in 39 % yield.\(^{34}\) Oxidation of the alcohol with pyridinium dichromate afforded the ketone (**5.5**) in excellent yield. Treatment of **5.5** with KHMDS and *N*-phenyl-bis(trifluorosulphonimide) facilitated formation of the vinyl triflate, and subsequent elimination yielded **5.1** in 60 % over 2 steps.
Scheme 5-2. Reagents and conditions for the synthesis of dibenzocyclooctyne 5.1.

Nitrones are conveniently prepared by several methods that are well documented in the literature (Scheme 5-3).35 One of the most useful ways for preparing nitrones involves the condensation of N-substituted hydroxylamines (5.6) with carbonyl compounds (5.7) in the presence of a dehydrating agent.36,37 This method is especially suitable for the preparation of acyclic aldonitrones,35 but has also been developed for preparing cyclic nitrones via intramolecular cyclization.38 Methods for preparing nitrones include: 1) oxidizing secondary amines (5.8),39,40 imines (5.9),41 and hydroxylamines (5.10);42-46 2) N-alkylation of oximes (5.11) at an electrophilic center (5.12) under basic conditions;47 and 3) intramolecular N-alkylation of oximes for the preparation of cyclic nitrones.48 For our purposes, we elected to utilize micelle-promoted condensations of aldehydes with N-hydroxylamine compounds for the generation of a series of acyclic aldonitrones. For the synthesis of cyclic nitrones we decided to employed oxidation of secondary amines and intramolecular N-hydroxylamine/aldehyde cyclizations.

Toward establishing nitrones as alternative 1,3-dipoles in rapid strain promoted cycloadditions with cyclooctynes, our preliminary investigations involved performing a solvent screen for reaction of α,N-diphenyl nitrone (5.13) with 5.1 in a series of solvents. Interestingly, the reaction yielded cycloadduct (5.14) in excellent yield and in less than 1 h for each of the solvents that were tested, with toluene being optimal (Table 5-1).

Table 5-1. Solvent screen of strain-promoted alkyne-nitrone cycloadditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>T (min)</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>30</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>tetrahydrofuran</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>ethanol</td>
<td>28</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>acetonitrile</td>
<td>40</td>
<td>89</td>
</tr>
</tbody>
</table>

Conditions: 5.13 (100 mM), 5.1 (100 mM), r.t., solvent. *a*Isolated yield after column chromatography.
The low solubility of 5.1 and 5.13 in aqueous solution prevented us from conducting these reactions in water. Nevertheless, it was encouraging that the SPANC reaction proceeded in high yield and in short reaction times, suggesting that the kinetics of SPANC could be competitive with that of SPAAC.

Careful examination of the 1H NMR of cycloadduct 5.14, indicated that it had undergone thermal isomerization to the 2-acylaziridine (5.15), and rearrangement leading to the azo-methine ylide (5.16) (Scheme 5-4). After prolonged storage, hydrolysis of 5.16 to the α-amino-ketone (5.17) and benzaldehyde was observed. It well known that Δ^4-isoxazolines are prone to such rearrangements.49,50 The reactivity of the isoxazoline ring is mainly due the low thermochemical stability of the N-O bond associated with the π system. It was found that this rearrangement could be slowed by storing the cycloadducts at -20 °C. Isoxazolines bearing electron withdrawing groups (EWG) at the N-position of the nitrone are prone to undergo facile thermal rearrangements.

To improve upon the kinetics of SPANC and increase the stability of the corresponding cycloadducts, we replaced the N-phenyl EWG with an electron donating group (EDG), methyl or benzyl (Table 5-2). The acyclic nitrones (5.18–5.27) were prepared by micelle-promoted condensation of an aryl aldehyde with the appropriate hydroxylamine.51 As shown in Table 5-2, the α-aryl-N-methyl nitrones reacted rapidly with 5.1 and yielded the
isoxazolines in 72-86 % (Table 5-2, Entries 1-3). These corresponding isoxazoline were found to be stable enough for isolation without compromising the kinetics of the reaction. Nitrone 5.18 bearing an α-aryl 4-methyl ester group demonstrated an enhancement in the reaction rate relative to 5.20 bearing an α-aryl 4-methyl ether, suggesting that the EWGs at the α-aryl position increase the reactivity of the nitrone.

Table 5-2. Strain-promoted cycloadditions between acyclic nitrones 5.18-5.27 and 5.1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nitrone</th>
<th>T (min)</th>
<th>Product</th>
<th>Yield %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.18</td>
<td>R¹ = Me</td>
<td>R² = 4-CO₂MeC₆H₄</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>5.19</td>
<td>R¹ = Me</td>
<td>R² = Ph</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>5.20</td>
<td>R¹ = Me</td>
<td>R² = 4-OMeC₆H₄</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>5.21</td>
<td>R¹ = Bn</td>
<td>R² = 4-NO₂C₆H₄</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>5.22</td>
<td>R¹ = Bn</td>
<td>R² = 4-CO₂MeC₆H₄</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>5.23</td>
<td>R¹ = Bn</td>
<td>R² = 4-BrC₆H₄</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>5.24</td>
<td>R¹ = Bn</td>
<td>R² = 4-CNC₆H₄</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>5.25</td>
<td>R¹ = Bn</td>
<td>R² = 4-MeC₆H₄</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>5.26</td>
<td>R¹ = Bn</td>
<td>R² = Ph</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>5.27</td>
<td>R¹ = Bn</td>
<td>R² = 4-OMeC₆H₄</td>
<td>62</td>
</tr>
</tbody>
</table>

Conditions: Nitrone (100 mM), 5.1 (100 mM), 22 °C, toluene. aIsolated yield after column chromatography.

In another attempt to further optimize the tradeoff between rate and reactant/product stability, we tested α-aryl-N-benzyl nitrones (Table 5-2, Entries 4-10) in reactions with 5.1.
We observed that the cycloaddition proceeded at similar rates as with diphenyl nitrone, and that corresponding products were tolerant to substitution of the nitrone at the α-aryl position. As expected, nitrones bearing EWG’s at the α-aryl position (Entries 4-7) reacted more rapidly than α-phenyl-N-benzyl nitrone and those bearing EDG’s (Entries 8–10). Further optimization of the nitrone component was viewed as being critical to developing the SPANC reaction as a rapid alternative bioorthogonal reaction.

Next we explored the use of cyclic nitrones since they offered the advantage of locking the nitrone in the more reactive E-conformation and the opportunity to introduce strain into the 1,3-dipole component. Endocyclic nitrones 5.38-5.40 were prepared by metal-free oxidation of the corresponding secondary amine following the method of Font.52 Interestingly, SPANC reactions of cyclic nitrones displayed improved reactivity over their acyclic counterparts in reactions with 5.1 (Table 5-3).

Table 5-3. Strain-promoted cycloadditions of cyclic nitrones with 5.1.

<table>
<thead>
<tr>
<th>Entr</th>
<th>Nitrone</th>
<th>T (min)</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.38</td>
<td>75</td>
<td>5.41</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>5.39</td>
<td>40</td>
<td>5.42</td>
<td>≥99c</td>
</tr>
<tr>
<td>3</td>
<td>5.40</td>
<td>2</td>
<td>5.43c</td>
<td>≥99</td>
</tr>
</tbody>
</table>

Conditions: Nitrone (100 mM), 5.1 (100 mM), 22 °C, toluene. *a*Isolated yield after column chromatography. *c*Single diastereomer observed.
The SPANC reactions involving cyclic nitrones resulted in quantitative formation of the isoxazolines (5.41-5.43). The five membered pyrroline N-oxides, 5.38-5.39 (Table 5-3, Entries 1-2) reacted slower than the dihydroisoquinoline N-oxide (5.40) (Entry 3). Nitrone 5.40, which features benzylic activation and is contained within a rigid six-membered ring, appeared qualitatively to be the most rapid by TLC analysis and therefore warranted further quantitative study.

Second order rate constants for SPANC reactions were determined by 1H-NMR, by measuring disappearance of the nitrone and 5.1 reactants, and appearance of products, as monitored by integration of peak areas at multiple chemical shifts (Table 5-4). The second order rate constants for acyclic nitrones 5.19 and 5.26 were found to be $0.13 \pm 0.01 \text{ M}^{-1}\text{s}^{-1}$ and $0.088 \pm 0.004 \text{ M}^{-1}\text{s}^{-1}$, respectively, in benzene-d_6 at 25 °C (Entries 1 and 2).

Table 5-4. Kinetics of strain-promoted cycloadditions of nitrones or benzyl azide with 5.1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Dipole</th>
<th>$k_2 (\text{M}^{-1}\text{s}^{-1})$</th>
<th>k_{rel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.19</td>
<td>0.13 ± 0.01</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>5.26</td>
<td>0.088 ± 0.004</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>5.40</td>
<td>1.5 ± 0.1</td>
<td>24.2</td>
</tr>
<tr>
<td>4</td>
<td>5.44</td>
<td>0.062 ± 0.006</td>
<td>1</td>
</tr>
</tbody>
</table>

Kinetic evaluation of nitrones: the appropriate substrate and 5.1 were pre-dissolved in benzene-d_6 and mixed at equimolar concentrations of ~50 mM. Reactions were monitored by 1H NMR at 25 °C and were repeated in triplicate.

These rates are comparable with typical values obtained from reactions of benzyl azide (5.44) with difluorinated cyclooctyne (DIFO).19,53 The rate constant for reaction of azide 5.44...
with 5.1 was determined to be 0.062 ± 0.006 M$^{-1}$s$^{-1}$. Interestingly, the second order rate constant for the reaction of endocyclic nitroben 5.40 with 5.1 in benzene-d_6 at 25 °C was determined to be 1.5 ± 0.1 M$^{-1}$s$^{-1}$. The additional rate acceleration likely arises at least in part due to added strain in the cyclic nitroben, making the reaction doubly strain-promoted. Put in context, this rate is about 20 times faster than the reaction of DIFO with benzyl azide19 and approximately 24 times faster than the reaction of 5.1 with benzyl azide as determined under our conditions.

Table 5-5. Solvent screen for reaction between 5.40 and 5.1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Reaction time for 95% conversion to 5.43 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>acetonitrile-d_3</td>
<td>8.6</td>
</tr>
<tr>
<td>2</td>
<td>benzene-d_6</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>chloroform-d</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>tetrahydrofuran-d_8</td>
<td>2.7</td>
</tr>
<tr>
<td>5</td>
<td>acetone-d_6</td>
<td>7.7</td>
</tr>
<tr>
<td>6</td>
<td>dimethylsulfoxide-d_6</td>
<td>15</td>
</tr>
</tbody>
</table>

Conditions: A solution of 5.40 was added to a solution of 5.1 (both pre-dissolved, 100 mM, 1 : 1 in appropriate solvent) in an NMR tube and monitored by 1H NMR at 25 °C.

To further study the reactive nature of endocyclic nitroben 5.40, the reaction between 5.40 with 5.1 was tested in a variety of common deuterated solvents at ambient temperature and monitored by 1H NMR (Table 5-5). At starting reaction concentrations of 100 mM, the reaction reached 95% conversion to isoxazoline 5.43 in less than 33 min for all solvents.
employed. It was found that the reaction kinetics were fastest in toluene and slowest in chloroform, suggesting that there may be a pH dependence of the reaction.

Kinetics of Strain-Promoted Alkyne-Diazoalkane Cycloadditions

Inspired by the pioneering work done by Huisgen et al.54 involving 1,3-dipolar cycloadditions of diazoalkanes with linear alkynes,54-60 we set out to investigate whether a strain-promoted variant could serve as a rapid alternative to reactions of nitrones or azides with cyclooctynes. There are number of ways in which diazoalkanes can be conveniently synthesized.61 Standard literature procedures were used to prepare diazoalkanes just prior to use. The diazoalkane scope was evaluated with respect to its electronics and conformational rigidity, and kinetics for reaction with 5.1 was measured by 1H NMR (Table 5-6). The reaction of diphenyldiazomethane (5.45) with 5.1 in methanol-\textit{d}_4 yielded the substituted pyrazole 5.49 in > 95 \% yield, corresponding to a second-order rate constant of \(k_2 = 0.07 \text{ M}^{-1}\text{s}^{-1}\). Substitution with stronger EWG’s, such as ethyl 2-diazoacetate (5.46), reduced the reaction rate by 13-fold (\(k_2 = 0.0053 \text{ M}^{-1}\text{s}^{-1}\)) reaching > 95 \% conversion within 18 h (Table 5-6, Entry 2). Diazoalkanes bearing electron-donating methylene groups or those less capable of resonance stabilization displayed dramatic rate enhancements. Trimethylsilyl diazomethane (5.47) reacted quite rapidly with 5.1 and reached maximum conversion in less than 1 min. The similar reaction of phenyl diazomethane (5.48) reached > 95 \% conversion within 1 min. We were unable to determine rate constants for reactions between 5.47-5.48 and 5.1 by 1H NMR, since the reactions were complete upon acquisition of the first data point. The low yield of 5.51 likely resulted from competitive reaction pathways, including carbene reaction pathways of 5.47. The cycloadducts arising from reactions of diazoalkanes 5.46-5.48 underwent rapid tautomeration to the aromatic pyrazoles (5.50-5.52),
respectively. The primary cycloadduct from the reaction of 5.47 with 5.1 suffered loss of the trimethylsilyl group under the aqueous reaction conditions yielding 5.51.

Table 5-6. Kinetics of strain-promoted cycloadditions between diazo compounds 5.45-5.48 and 5.1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diazo compound</th>
<th>Product</th>
<th>T (min)</th>
<th>Yield %</th>
<th>k_2 (M$^{-1}$s$^{-1}$)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{Ph} \equiv \text{Ph}) 5.45</td>
<td>(\text{Ph} \equiv \text{Ph}) 5.49</td>
<td>98</td>
<td>>99</td>
<td>0.070</td>
</tr>
<tr>
<td>2</td>
<td>(\text{H} \equiv \text{CO}_{2}\text{Et}) 5.46</td>
<td>(\text{H} \equiv \text{CO}_{2}\text{Et}) 5.50b</td>
<td>1062</td>
<td>97</td>
<td>0.0053</td>
</tr>
<tr>
<td>3</td>
<td>(\text{H} \equiv \text{SiMe}_{3}) 5.47</td>
<td>(\text{H} \equiv \text{SiMe}_{3}) 5.51b</td>
<td>< 1 min</td>
<td>34</td>
<td>n.d.c</td>
</tr>
<tr>
<td>4</td>
<td>(\text{H} \equiv \text{Ph}) 5.48</td>
<td>(\text{H} \equiv \text{Ph}) 5.52b</td>
<td><1 min</td>
<td>93</td>
<td>n.d.c</td>
</tr>
</tbody>
</table>

\textit{Conditions:} diazo compound (50 mM); 5.1 (50 mM); 25 °C; MeOH-d$_4$. aKinetic evaluation of diazo compounds: the appropriate substrate and 5.1 were pre-dissolved in MeOH-d$_4$ and mixed at equimolar concentration of ~25 mM. Reactions were monitored by 1H NMR at 25 °C. bRepresentative tautomer isolated after column chromatography. cn.d. = not determined. Reactions were too fast to be measured by 1H NMR.
Lastly, a screen of various deuterated solvents was used to evaluate the generality of the reaction as well as to determine if there was a solvent effect on the rate of cycloaddition. The reaction of 5.45 with 5.1 reached > 95% conversion within 4 h for all solvents that were tested (Table 5-7). In contrast to the rate of cycloadditions of nitrones being optimal in toluene, it was found that d_4-methanol was an optimal solvent for SPADC, reaching 95% yield within 98 min as compared to the reaction in toluene (245 min).

Table 5-7. Solvent screen for reaction between 5.45 and 5.1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Reaction time for 95% conversion to 5.49 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>benzene-d_6</td>
<td>245</td>
</tr>
<tr>
<td>2</td>
<td>methanol-d_4</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>dimethyl sulfoxide-d_6</td>
<td>108</td>
</tr>
<tr>
<td>4</td>
<td>acetonitrile-d_3</td>
<td>139</td>
</tr>
</tbody>
</table>

Conditions: 5.1 was added to 5.45 (both pre-dissolved, 100 mM, 1:1) in an NMR tube and monitored by 1H NMR at 25 °C.

Diazoalkanes can be protonated to form alkane diazonium ions in aqueous solution in biological systems that can alkylate nucleic acids as well as protein side chains, causing cellular stress and carcinogenesis.\(^{62-67}\) Although the bimolecular rate constants for strain-promoted cycloaddition are slower than those of proton transfer ($k_{\text{H}^+} \approx 10^2\text{--}10^6 \text{ M}^{-1}\text{s}^{-1}$)\(^{62-67}\) under neutral conditions, at physiological pH, where hydronium ion concentration is low (10^{-7} M), cycloaddition rates may be competitive or even dominate over diazonium ion chemistry. Diazoalkanes can give rise to carbene intermediates either through photolytic or
thermolytic processes.68,69 The generated carbenes can then undergo O–H or C–H insertion reactions, cyclopropanation reactions, as well as intramolecular rearrangements such as 1,2-hydrogen shifts.68,69 Interestingly, cyclooctynes might also serve as in vivo quenchers of diazoalkanes that might be formed through nitrosative stress.

Future Directions

Further optimization of the cyclic nitrone reactivity and stability in SPANC for biological labelling studies will be required. Also, SPANC reactivity in aqueous buffers and pH dependence of the reaction will be explored. The SPANC reaction is well-positioned for development as a novel metal-free bioorthogonal reaction. In chapter 6 we describe applications of SPANC for protein modification and labelling of live cell surface proteins.

Conclusions

We have studied the kinetics of SPANC for reactions of a series of acyclic and cyclic nitrones with dibenzocyclooctyne. Reactions of acyclic nitrones with dibenzocyclooctyne exhibit kinetics on the same order of magnitude as analogous reaction involving benzyl azide. Alternatively, endocyclic nitrones display exceptionally fast reaction kinetics in a variety of solvents. The reaction between cyclic nitrone 5.40 and dibenzocyclooctyne 5.1 corresponded to a second-order rate constant of 1.5 M-1s-1. This value is 24 times faster than the analogous reaction involving benzyl azide.

Strain-promoted cycloadditions of diazoalkanes with cyclooctynes represent an alternative rapid conjugation technique for material sciences and a valid method for constructing functionalized pyrazoles. Exceptionally fast kinetics was observed for diazoalkanes containing EDGs adjacent to the diazo moiety. The rate constants observed for resonance stabilized diazoalkane 5.45 are comparable with those of analogous reactions
involving acyclic diaryl nitrones or azides. However, more weakly stabilized diazoalkanes displayed faster kinetics for cycloaddition with 5.1 than cyclic nitrones, benzyl azide, or acyclic nitrones bearing ester or amide groups70 at the α-position. Optimization of the stability and reactivity of the diazoalkane group may lead to diazoalkanes as reactive and useful alternatives to nitrone and azide dipoles for use in strain-promoted cycloadditions with cyclooctynes.

Acknowledgements

I would like to thank Dr. Joseph Moran for assistance with solvent screens and interpretation of kinetics data for SPANC and SPADC. We also thank Kenneth Chan for assistance with MALDI-MS of the reaction products.
Materials and Methods

General

All chemical reagents were purchased from commercial suppliers and used without further purification. Reactions were monitored by thin layer chromatography (TLC) pre-coated silica gel glass plates (60 F254, layer thickness 250µm), using UV light and potassium permanganate stain to visualize the course of reaction. For flash column chromatography technical grade solvents were used, and chromatographic purification was performed using silica gel (60, particle size 40–63 µm). 1H NMR and 13C NMR spectra were recorded using a Bruker-DRX-400 spectrometer using a frequency of 400.13 MHz for 1H and 100.61 MHz for 13C and processed using Bruker TOPSPIN 2.1 software. Chemical shifts are reported in parts per million (δ) using residual CHCl$_3$ resonance as an internal reference (7.26 and 77.0 ppm for 1H and 13C NMR, respectively). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal and J = coupling constants in Hz.

Synthetic Procedures and Characterization Data:

5,6,11,12-tetrahydro-5,11-epoxydibenzo[a,e]cyclooctene (5.3):

An oven dried 100 mL Erlenmeyer flask was charged with phenylacetaldehyde (12.5 g, 104 mmol) and freshly distilled dichloromethane (52 mL). The flask was stoppered under an atmosphere of nitrogen and cooled in an ice bath. To this solution was added iodo(trimethyl)silane (17.5 mL, 125 mmol) and the reaction was allowed to stand at 5 °C for 7 d. Upon completion, sodium thiosulfate solution (1 M, 100 mL) and dichloromethane (100
mL) were added, and the mixture was stirred until the iodine colour had been discharged. The organic phase was separated, and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo yielding a dark brown oil that was purified by silica gel column chromatography eluting 60:40/CH$_2$Cl$_2$:hexanes to 100% CH$_2$Cl$_2$. The ether (5.78 g, 50 %) was obtained as a brittle brown solid. Spectral data were identical to that previously reported.\(^\text{33}\) \(R_f = 0.72\) (100 % CH$_2$Cl$_2$). \(^1\)H NMR (400 MHz, CDC$_3$): \(\delta\) 7.17-6.99 (m, 8H), 5.32 (d, \(J = 6\) Hz, 2H), 3.58 (dd, \(J = 16.2, 6.2\) Hz, 1H), 2.70 (d, \(J = 16.2\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl$_3$): \(\delta\) 137.8, 131.6, 129.0, 126.8, 125.9, 125.1, 69.5, 36.1.

5,6,11,12-tetrahydro-dibenzo[a,e]cycloocten-5-ol (5.4):

Li metal (300 mg, \(~10\) mmol, from a 25% wt./v. dispersion in mineral oil) was placed under Argon in a 15 mL pear shaped flask. The Li metal was washed with THF (3 x 1 mL). The resultant metal was suspended in THF (6 mL) and a catalytic amount of naphthalene (15 mg, 0.1 mmol) was added and the mixture was stirred until it turned a dark green colour. A solution of 5.3 (225 mg, 1 mmol) in THF (0.4 mL) was added drop wise over 5 min. After stirring the reaction mixture for 2 h, a solution of water (23 \(\mu\)L, 1.3 mmol) in THF (1 mL) was carefully added. After stirring for 15 min, the mixture was quenched by slow drop wise addition of H$_2$O (2 mL) and the resulting mixture extracted with Et$_2$O (3 x 10 mL). The combined organic phases were washed with brine (10 mL), dried over anhydrous magnesium sulfate, filtered and concentrated. The crude yellow oil was purified by column chromatography eluting 8:2/CH$_2$Cl$_2$:hexanes to 100% CH$_2$Cl$_2$. The title compound was
obtained as a white crystalline solid (87 mg, 39 %). Spectral data were identical to that previously reported.33,71 $R_f = 0.3$ (8:2/CH$_2$Cl$_2$:hexanes). 1H NMR (400 MHz, CDCl$_3$): δ 7.23-6.93 (m, 8H), 5.26 (t, $J = 8.0$ Hz, 1H), 3.54 (dd, $J = 14.1, 7.7$Hz, 1H), 3.43-3.38 (m, 1H), 3.21-3.01 (m, 4H), 2.25 (br, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 141.5, 139.3, 138.0, 137.5, 130.1, 130.0, 129.8, 127.5, 126.9, 126.5, 126.4, 126.0, 74.8, 43.7, 35.1, 33.6.

11,12-dihydro-dibenzo[a,e]cycloocten-5(6H)-one (5.5):

To a stirring solution of 5.4 (87 mg, 0.39 mmol) in freshly distilled dichloromethane (4 mL), was added crushed 3 Å molecular sieves (150 mg) and the resultant mixture was stirred at room temperature under a stream of nitrogen gas for 5 min. Then pyridinium dichromate (293 mg, 0.78 mmol) was added and the reaction was stirred at room temperature for 8 h until the reaction was complete as evident by thin layer chromatography. The reaction was diluted with dichloromethane (25 mL) and was filtered through a plug of celite. The solvent was removed by rotary evaporation, and the resultant orange residue was purified by flash column chromatography eluting 6:4/CH$_2$Cl$_2$:hexanes. This compound was obtained as a white solid (81.2 mg, 94 %). Spectral data corresponds to that previously reported in the literature.71,72 $R_f = 0.38$ (6:4/CH$_2$Cl$_2$:hexanes) 1H NMR (400 MHz, CDCl$_3$): δ 7.42-6.99 (m, 8H), 4.16 (s, 2H), 3.40-3.25(m, 4H); 13C NMR (100 MHz, CDCl$_3$): δ 204.4, 138.7, 138.4, 137.8, 133.5, 131.5, 130.8, 130.5, 129.6, 128.0, 127.4, 126.7, 126.5, 51.5, 34.7, 33.7.
5,6-didehydro-11,12-dihydro-dibenzo[a,e]cyclooctene (5.1):

A stirred solution of 5.5 (991 mg, 4.46 mmol) in freshly distilled THF (44 mL) was cooled to −78 °C and N-phenyl-trifluoromethanesulphonimide (1.911 g, 5.35 mmol) was added, followed by the slow addition of a potassium bis(trimethylsilyl)amide solution (10.7 mL, 5.35 mmol of a 0.5 M solution in toluene). The resulting mixture was stirred at −78 °C and was allowed to warm to 0 °C. Potassium bis(trimethylsilyl)amide solution (10.7 mL, 5.35 mmol) was then added drop-wise over 45 minutes at 0 °C. The reaction was allowed to warm to r.t. for an additional 30 min, then was concentrated in vacuo. The crude was purified by flash column chromatography eluting 97:3 to 95:5/Hexanes:CH₂Cl₂. This compound was obtained as an off-white solid (544 mg, 60%). Spectral data corresponds to that previously reported in the literature.⁷³ \(R_f = 0.41 \) (98:2/hexanes:CH₂Cl₂) \(^1H \text{ NMR (400 MHz, CDCl}_3\)): \(\delta \) 7.39-7.27 (m, 8H), 3.38-3.29 (m, 2H), 2.51-2.41 (m, 2H). \(^13C \text{ NMR (100 MHz, CDCl}_3\)): \(\delta \) 153.5, 129.35, 127.6, 126.5, 126.1, 123.9, 111.5, 36.4.

General Procedure for Micelle-Promoted Nitrone Formation:

\[
\begin{align*}
R^1\text{-NHOH} & \quad \xrightarrow{\text{r.t.}} \quad R^2\text{-CHO} & \quad \xrightarrow{\text{SDS (0.1 M)}} & \quad R^2\text{N}^\ominus \text{R}^1\ominus
\end{align*}
\]

An aldehyde (0.5 mmol), and phenyl hydroxylamine (0.6 mmol, 1.2 equiv.) were added successively to a vigorously stirred solution of SDS (0.2 mmol) dissolved in H₂O (2 mL). The reaction mixture was sonicated for 5 min, and was stirred at r.t. for 2 h. The reaction was monitored by TLC. Upon consumption of the aldehyde, the crude was diluted with brine (5 mL) and extracted with EtOAc (3 x 5 mL). The combined organic phases were dried over
anhydrous MgSO$_4$, filtered, and concentrated *in vacuo*. The crude was purified by flash column chromatography.

N-(phenylmethylene)-benzenamine N-oxide (5.13):

![Chemical structure of N-(phenylmethylene)-benzenamine N-oxide](image)

This compound was obtained in 86 % yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.30$ (7:3/Hexanes:EtOAc). Spectral data corresponded to that previously described in the literature.74

4-[(methyloxidoimino)methyl]-benzoic acid methyl ester (5.18):

![Chemical structure of 4-[(methyloxidoimino)methyl]-benzoic acid methyl ester](image)

This compound was obtained in 72 % yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.25$ (7:3/Hexanes:EtOAc). Spectral data corresponded to that previously described in the literature.75

N-(phenylmethylene)-methanamine N-oxide (5.19):

![Chemical structure of N-(phenylmethylene)-methanamine N-oxide](image)

This compound was obtained in 86 % yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.39$ (95:5/EtOAc:MeOH). Spectral data corresponded to that previously described in the literature.74
\textit{N-[(4-methoxyphenyl)methylene]-methanamine N-oxide (5.20):}

\begin{center}
\includegraphics[width=0.2\textwidth]{5.20.png}
\end{center}

This compound was obtained in 88 % yield by following the general procedure for micelle promoted nitrone formation. \(R_f = 0.27 \) (96:4/EtOAc:MeOH). Spectral data corresponded to that previously described in the literature.76

\textit{N-[(4-nitrophenyl)methylene]-benzenemethanamine N-oxide (5.21):}

\begin{center}
\includegraphics[width=0.2\textwidth]{5.21.png}
\end{center}

This compound was obtained in 81 % yield by following the general procedure for micelle promoted nitrone formation. \(R_f = 0.38 \) (1:1/hexanes:EtoAc). Spectral data corresponded to that previously described in the literature.77

\textit{4-[[oxido(phenylmethyl)imino)methyl]benzoic acid methyl ester (5.22):}

\begin{center}
\includegraphics[width=0.2\textwidth]{5.22.png}
\end{center}

This compound was obtained in 76 % yield by following the general procedure for micelle promoted nitrone formation. \(R_f = 0.41 \) (6:4/hexanes:EtoAc). Spectral data corresponded to that previously described in the literature.74

\textit{N-[(4-bromophenyl)methylene]-benzenemethanamine N-oxide (5.23):}

\begin{center}
\includegraphics[width=0.2\textwidth]{5.23.png}
\end{center}
This compound was obtained in 85% yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.70$ (1:1/hexanes:EtOAc). Spectral data corresponded to that previously described in the literature.78

\textbf{4-[[oxido(phenylmethyl)imino]methyl]-benzonitrile (5.24):}

\begin{center}
\begin{tikzpicture}
\t\node[anchor=west] (A) at (0,0) {\textbf{5.24}};
\end{tikzpicture}
\end{center}

This compound was obtained in 78% yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.42$ (1:1/hexanes:EtOAc). Spectral data corresponded to that previously described in the literature.79

\textbf{N-[(4-methylphenyl)methylene]-benzenemethanamine N-oxide (5.25):}

\begin{center}
\begin{tikzpicture}
\t\node[anchor=west] (A) at (0,0) {\textbf{5.25}};
\end{tikzpicture}
\end{center}

This compound was obtained in 86% yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.42$ (1:1/hexanes:EtOAc). Spectral data corresponds to that previously described in the literature.80

\textbf{N-(phenylmethylene)-benzenemethanamine N-oxide (5.26):}

\begin{center}
\begin{tikzpicture}
\t\node[anchor=west] (A) at (0,0) {\textbf{5.26}};
\end{tikzpicture}
\end{center}

This compound was obtained in 78% yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.46$ (1:1/hexanes:EtOAc). Spectral data corresponds to that previously described in the literature.74
N-[(4-methoxyphenyl)methylene]-benzenemethanamine N-oxide (5.27):

This compound was obtained in 73 % yield by following the general procedure for micelle promoted nitrone formation. $R_f = 0.27$ (1:1/hexanes:EtOAc). Spectral data corresponds to that previously described in the literature.\(^8^0\)

3,4-dihydro-2H-pyrrole 1-oxide (5.38):

Synthesis previously reported in the literature.\(^5^2\)

4-(tert-butoxycarbonylamino)-3,4-dihydro-2H-pyrrole 1-oxide (5.39) and 3-(tert-butoxycarbonylamino)-3,4-dihydro-2H-pyrrole 1-oxide (5.53):

NaHCO_3 (1.68 g, 20 mmol) was added to a stirred solution of 3-(Boc-amino)-pyrrolidine (745.2 mg, 4 mmol) in 4:1/acetonitrile:THF (7.4 mL) and Na\(_2\)EDTA (0.01 M, 5.6 mL). The resultant mixture was then cooled to 0 °C using an ice bath and Oxone® (2.95 g, 4.8 mmol) was added portion wise over 2 h. The mixture was stirred at 5 °C for 20 min and then diluted with EtOAc (20 mL). The two phases were separated and the aqueous one was extracted with CH\(_2\)Cl\(_2\) (3 x 10 mL). The combined organic extracts were dried over anhydrous MgSO\(_4\), filtered, and concentrated \textit{in vacuo}. The crude was purified by silica gel column chromatography eluting 15:7:1/CH\(_2\)Cl\(_2\):EtOAc:MeOH. The title compounds, 5.39 (400 mg,
2.01 mmol) and 5.53 (174 mmol, 0.87 mmol) were obtained as white solids in a combined yield of 72%. Spectral data corresponded to that previously reported in the literature.81

Compound 5.39: \(R_f = 0.13 \) (15:7:1/CH\(_2\)Cl\(_2\):EtOAc:MeOH). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 6.84 (q, \(J = 1.7 \) Hz, 1H), 5.62 (m, 1H), 4.96 (br s, 1H), 4.11-4.03 (m, 1H), 3.92-3.83 (m, 1H), 2.68-2.64 (m, 1H), 2.04-1.98 (m, 1H), 1.41 (s, 9H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 155.0 (C), 134.9 (CH), 80.4 (C), 61.4 (CH2), 52.4 (CH), 28.5 (CH\(_2\)), 28.4 (CH3). LRMS: Calculated for C\(_9\)H\(_{17}\)N\(_2\)O\(_3\) (M\(^+\)) 201.1, Found 201.2. **Compound 5.53**: \(R_f = 0.10 \) (15:7:1/CH\(_2\)Cl\(_2\):EtOAc:MeOH). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 6.87 (m, 1H), 5.41 (m, 1H), 4.51 (br s, 1H), 4.26-4.21 (dd, \(J = 14.2, 7.8 \) Hz, 1H), 3.82 (d, \(J = 14.6 \) Hz, 1H), 3.13 (dd, \(J = 18.5, 6.5 \) Hz, 1H), 2.61 (d, \(J = 19.0 \) Hz, 1H), 1.43 (s, 1H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 155.2 (C), 133.6 (CH), 80.5 (C), 68.3 (CH), 45.8 (CH), 37.0 (CH\(_2\)), 28.5 (CH3). LRMS: Calculated for C\(_9\)H\(_{17}\)N\(_2\)O\(_3\) (M\(^+\)) 201.1, found 201.1.

3,4-dihydroisoquinoline 2-oxide (5.40):

![Structure](image)

Synthesis previously reported in the literature.52

General Procedure for Strain-Promoted Alkyne-Nitrone Cycloadditions:

To a stirring solution of dibenzocyclooctyne, 5.1 (10.2 mg, 0.05 mmol) in toluene (500 \(\mu \)L) was added nitrone (0.05 mmol). Reactions were stirred open to air and were monitored by thin layer chromatography for disappearance of the nitrone. Upon completion, the solvent was removed under reduced pressure and the crude was purified by silica gel flash column chromatography to afford pure isoxazoline cycloadducts.
4-(2,3,8,9-tetrahydro-2-methylidibenzo[3,4:7,8]cyclooct[1,2-d]isoxazol-3-yl)-benzoic acid methyl ester (5.28):

```

```

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a white solid (19.0 mg, 95%). $R_f = 0.34$ (9:1/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400 MHz): δ 7.96 (d, $J = 8.3$Hz, 2H), 7.52-7.50 (m, 1H), 7.45 (d, $J = 8.3$Hz, 2H), 7.18-7.04 (m, 7H), 5.09 (s, 1H), 3.89 (s, 3H), 3.41-3.33 (m, 1H), 3.15 (s, 3H), 3.19-2.98 (m, 2H), 2.88-2.81 (m, 1H). 13C NMR (CDCl$_3$, 100 MHz): δ 167.0, 147.3, 146.2, 141.1, 139.1, 131.9, 131.0, 129.9, 129.8, 129.7, 129.3, 128.8, 127.9, 127.5, 127.2, 126.5, 125.8, 125.5, 109.8, 80.3, 52.0, 47.0, 36.7, 35.7, 32.8. HRMS: Calculated for C$_{26}$H$_{23}$NO$_3$ (M$^+$) 398.1756, Found 398.1744.

2,3,8,9-tetrahydro-2-methyl-3-phenyl-dibenzo[3,4:7,8]cyclooct[1,2-d]isoxazole (5.29):

```

```

Purified by eluting 96:4/hexanes:EtOAc. This compound was obtained as a white solid (15.2 mg, 90%). $R_f = 0.41$ (96:4/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400 MHz, 298 K, CHCl$_3$): δ 7.54-6.98 (m, 13H), 5.03 (m, 1H), 3.45-3.38 (m, 1H), 3.23-3.08 (m, 2H), 3.13 (s, 3H), 3.00-2.93 (m, 1H). 13C NMR (CDCl$_3$, 100 MHz, 298 K, CHCl$_3$): δ 147.3, 141.1, 138.9, 132.4, 131.0, 129.8, 129.6, 128.6, 128.6, 127.9, 127.8, 127.6, 127.0, 126.8, 125.7, 125.5, 110.2, 80.9, 47.1, 36.9, 32.9. HRMS: Calculated for C$_{24}$H$_{21}$NO (M$^+$) 340.1701, Found 340.1660.
2,3,8,9-tetrahydro-3-(4-methoxyphenyl)-2-methyl-dibenzo[3,4:7,8]cyclooct[1,2-\textit{d}]isoxazole (5.30):

![Structure of compound 5.30]

Purified by eluting 95:5/hexanes:EtOAc. This compound was obtained as a white solid (19.0 mg, 94%). \(R_f = 0.43 \) (95:5/hexanes:EtOAc). \(^1\text{H NMR (CDCl}_3, 400\text{ MHz)}: \delta \) 7.53–7.51 (m, 1H), 7.32 (d, \(J = 8.7\text{Hz, 2H}), 7.18-6.94 (m, 7H), 6.84 (d, \(J = 8.7\text{Hz, 2H}), 4.99 \) (s, 1H), 3.78 (s, 3H), 3.46-3.39 (m, 1H), 3.26-3.08 (m, 2H), 3.10 (s, 3H), 3.05-2.98 (m, 1H). \(^{13}\text{C NMR (CDCl}_3, 100\text{ MHz, 298 K, CHCl}_3): \delta \) 159.1, 147.3, 141.0, 138.8, 132.5, 131.0, 129.8, 129.6, 128.5, 128.2, 128.0, 127.7, 126.9, 125.7, 125.5, 114.0, 110.3, 80.5, 55.2, 37.0, 32.9. HRMS: Calculated for \(\text{C}_{25}\text{H}_{23}\text{NO}_2 \) (M\(^+\)) 370.1807, found 370.1721.

2,3,8,9-tetrahydro-3-(4-nitrophenyl)-2-(phenylmethyl)-dibenzo[3,4:7,8]cyclooct[1,2-\textit{d}]isoxazole (5.31):

![Structure of compound 5.31]

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a yellow solid (22.3 mg, 97%). \(R_f = 0.18 \) (9:1/hexanes:EtOAc). \(^1\text{H NMR (CDCl}_3, 400\text{ MHz): \delta \) 8.11 (d, \(J = 8.8\text{Hz, 2H}), 7.55-7.09 (m, 15H), 5.36 (s, 1H), 4.72 (d, \(J = 12.7\text{Hz, 1H}), 4.33 \) (d, \(J = 12.7\text{Hz, 1H}), 3.39-3.32 (m, 1H), 3.14-2.85 (m, 2H), 2.84-2.78 (m, 1H). \(^{13}\text{C NMR (CDCl}_3, 100\text{ MHz): \delta \)

159
MHz): δ 148.5, 148.3, 147.2, 141.1, 139.2, 135.7, 131.6, 131.0, 130.0, 129.3, 129.3, 129.1, 128.7, 127.9, 127.4, 127.3, 127.2, 126.0, 125.6, 123.7, 109.5, 76.3, 62.9, 36.5, 33.0. **HRMS:**

Calculated for $\text{C}_{30}\text{H}_{24}\text{N}_{2}\text{O}_{3} (\text{M}^+)$ 461.1865, Found 461.1866.

4-[2,3,8,9-tetrahydro-2-(phenylmethyl)dibenzo[3,4:7,8]cyclooct[1,2-d]isoxazol-3-yl]-benzoic acid methyl ester (5.32):

![Image of 5.32](attachment:image.png)

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a white solid (19.2 mg, 96%). $R_f = 0.31$ (9:1/hexanes:EtOAc). \[^1\text{H NMR (CDCl}_3, 400 \text{ MHz)}:\delta 7.93 (d, J = 8.3Hz, 2H), 7.53-7.02 (m, 15H), 5.30 (s, 1H), 4.67 (d, J = 12.8 Hz, 1H), 4.32 (d, J = 12.8 Hz, 1H), 3.89 (s, 3H), 3.39-3.32 (m, 1H), 3.15-2.98 (m, 2H), 2.87-2.80 (m, 1H). \[^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz)}:\delta 167.0, 148.0, 146.4, 141.1, 139.2, 136.0, 132.0, 131.0, 130.0, 129.8, 129.3, 129.2, 128.8, 128.0, 127.8, 127.6, 127.2, 126.6, 125.8, 125.6, 110.0, 76.9, 63.0, 52.0, 36.6, 33.0. **HRMS:** Calculated for $\text{C}_{32}\text{H}_{27}\text{NO}_3 (\text{M}^+)$ 474.2069, Found 474.2080.

3-(4-bromophenyl)-2,3,8,9-tetrahydro-2-(phenylmethyl)-dibenzo[3,4:7,8]cyclooct[1,2-d]isoxazole (5.33):

![Image of 5.33](attachment:image.png)
Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as an off white solid (24.2 mg, 98%). \(R_f = 0.55 \) (9:1/hexanes:EtOAc). \(^1\)H NMR (CDCl\(_3, 400\) MHz): \(\delta \) 7.52-7.00 (m, 17H), 5.21 (s, 1H), 4.65 (d, \(J = 12.8\) Hz, 1H), 4.30 (d, \(J = 12.8\) Hz, 1H), 3.42-3.35 (m, 1H), 3.20-3.04 (m, 2H), 2.95-2.88 (m, 1H). \(^{13}\)C NMR (CDCl\(_3, 100\) MHz, 298 K, CHCl\(_3\)) : \(\delta \) 148.0, 141.1, 140.5, 139.1, 136.0, 132.1, 131.6, 131.0, 130.0, 129.8, 129.3, 128.8, 128.6, 128.5, 127.9, 127.8, 127.7, 127.1, 125.8, 125.6, 121.3, 110.0, 63.0, 36.7, 33.0. HRMS: Calculated for C\(_{30}\)H\(_{24}\)NOBr (M\(^+\)) 494.1120, Found 494.1098.

4-[2,3,8,9-tetrahydro-2-(phenylmethyl)dibenzo[3,4:7,8]cyclooct[1,2-d]isoxazol-3-yl]-Benzonitrile (5.34):

![Chemical structure](image)

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as an off white solid (21.7 mg, 99%). \(R_f = 0.26 \) (9:1/Hexanes:EtOAc). \(^1\)H NMR (CDCl\(_3, 400\) MHz): \(\delta \) 7.55-7.05 (m, 17H), 5.30 (s, 1H), 4.70 (d, \(J = 12.7\) Hz, 1H), 4.30 (d, \(J = 12.7\)Hz, 1H), 3.39-3.32 (m, 1H), 3.15-2.96 (m, 2H), 2.87-2.80 (m, 1H). \(^{13}\)C NMR (CDCl\(_3, 100\) MHz): \(\delta \) 148.2, 146.5, 141.0, 139.2, 135.7, 132.3, 131.6, 131.0, 129.9, 129.3, 129.0, 128.6, 127.9, 127.9, 127.3, 127.1, 125.9, 125.6, 118.9, 111.1, 109.5, 76.5, 62.8, 36.5, 32.9. LRMS: Calculated for C\(_{31}\)H\(_{24}\)NO (M\(^+\)) 455.4, Found 455.4.
2,3,8,9-tetrahydro-3-(4-methylphenyl)-2-(phenylmethyl)-dibenzo[3,4:7,8]cyclooct[1,2-d]isoxazole (5.35):

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a slow crystallizing white solid (23.2 mg, 94%). $R_f = 0.43$ (9:1/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400 MHz): δ 7.53-6.96 (m, 17H), 5.22 (s, 1H), 4.62 (d, $J = 12.9$ Hz, 1H), 4.31 (d, $J = 12.9$ Hz, 1H), 3.45-3.38 (m, 1H), 3.25-3.09 (m, 2H), 3.01-2.94 (m, 1H), 2.31 (s, 3H). 13C NMR (CDCl$_3$, 100 MHz): δ 147.9, 141.0, 138.9, 138.4, 137.1, 136.3, 132.6, 131.0, 129.9, 129.6, 129.4, 129.2, 128.5, 128.1, 127.9, 127.6, 126.9, 125.7, 125.5, 110.5, 63.1, 36.9, 33.0, 21.1.

HRMS: Calculated for C$_{31}$H$_{27}$NO (M$^+$) 430.2171, Found 430.2108.

2,3,8,9-tetrahydro-3-phenyl-2-(phenylmethyl)-dibenzo[3,4:7,8]cyclooct[1,2-d]isoxazole (5.36):

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a white solid (19.2 mg, 92%). $R_f = 0.33$ (9:1/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400 MHz): δ 7.53-6.96 (m, 18H), 5.24 (s, 1H), 4.63 (d, $J = 12.9$ Hz, 1H), 4.31 (d, $J = 12.9$ Hz, 1H), 3.43-3.35 (m, 1H), 3.22-3.05 (m, 2H), 2.97-2.90 (m, 1H). 13C NMR (CDCl$_3$, 100 MHz): δ 147.9, 141.4, 141.0,
139.0, 136.3, 132.5, 131.0, 130.0, 129.7, 129.4, 128.6, 128.5, 128.5, 127.9, 127.6, 127.4,
127.0, 125.7, 125.5, 110.4, 63.1, 36.8, 33.0. **HRMS:** Calculated for C_{30}H_{25}NO (M^+) 416.2014, Found 416.1977.

2,3,8,9-tetrahydro-3-(4-methoxyphenyl)-2-(phenylmethyl)-dibenzo[3,4:7,8]cyclooct[1,2-

d]isoxazole (5.37):

![Compound 5.37](image)

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a white solid (21.0
mg, 95%). R_f = 0.44 (9:1/hexanes:EtOAc). \(^1\)H NMR (CDCl₃, 400 MHz): δ 7.52-6.81 (m,
17H), 5.21 (s, 1H), 4.61 (d, J = 12.9 Hz, 1H), 4.30 (d, J = 12.9 Hz, 1H), 3.78 (s, 3H), 3.45-
3.37 (m, 1H), 3.26-3.09 (m, 2H), 3.03-2.96 (m, 1H). \(^13\)C NMR (CDCl₃, 100 MHz): δ 159.0,
147.9, 141.0, 138.9, 136.3, 133.6, 132.6, 131.0, 129.9, 129.6, 129.4, 128.5, 128.5, 128.2,
128.0, 127.8, 127.6, 126.9, 125.7, 125.5, 113.9, 110.4, 63.0, 55.2, 36.9, 33.0. **HRMS:**
Calculated for C_{31}H_{27}NO₂ (M^+) 446.1946, Found 446.1952.

Compound 5.16:

![Compound 5.16](image)

Purified by eluting 95:5/hexanes:EtOAc. This compound was obtained as an off white solid
(19.3 mg, 96%). R_f = 0.52 (95:5/hexanes:EtOAc). \(^1\)H NMR (CDCl₃, 400 MHz): δ 7.86-6.80
(m, 18H), 6.73 (s, 1H), 3.94-3.83 (m, 2H), 3.25-3.13 (m, 2H). 13C NMR (CDCl$_3$, 100 MHz):
δ 147.3, 141.5, 139.6, 139.5, 138.5, 131.0, 130.8, 130.1, 129.7, 129.1, 128.9, 128.8, 128.3,
127.0, 126.3, 126.1, 125.7, 121.0, 119.6, 117.8, 97.9, 35.6, 35.3. LRMS: Calculated for
C$_{29}$H$_{23}$NO (M$^+$) 402.4, Found 402.4.

1,2,3,3a,8,9-hexahydro-dibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxazole (5.41):

[Diagram 5.41]

Purified by eluting 7:3/hexanes:EtOAc. This compound was obtained as a white solid (14.4
mg, 100%). R_f = 0.33 (7:3/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400 MHz): δ 7.47-7.08 (m,
8H), 5.21 (dd, J = 7.3 Hz, 2.2 Hz, 1H), 3.62-3.49 (m, 2H), 3.47-3.40 (m, 1H), 3.32-3.25 (m,
1H), 3.17-3.09 (m, 1H), 2.99-2.92 (m, 1H). 2.07-1.82 (m, 4H). 13C NMR (CDCl$_3$, 100
MHz): δ 148.0, 140.8, 138.2, 132.6, 130.9, 129.7, 129.5, 128.4, 128.0, 127.0, 126.0, 125.6,
109.1, 74.9, 59.9, 36.9, 33.3, 31.3, 22.9. LRMS: Calculated for C$_{20}$H$_{19}$NO (M$^+$) 290.3,
Found 290.3.

(±)-N-[1,2,3,3a,8,9-hexahydrodibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxol-3-yl]-2,2-dimethyl-propanamide (5.42):

[Diagram 5.42]

Purified by eluting 6:4/hexanes:EtOAc. This compound was obtained as a white crystalline
solid (20.2 mg, 100%). R_f = 0.56 (6:4/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400 MHz): δ
7.43-7.08 (m, 8H), 4.94 (s, 1H), 4.76 (d, \(J = 1.9\) Hz, 1H), 4.07 (m, 1H), 3.65-3.56 (m, 1H), 3.55-3.47 (m, 2H), 3.43-3.36 (m, 1H), 3.17-3.09 (m, 1H), 3.00-2.94 (m, 1H), 2.37-2.32 (m, 1H), 1.91-1.88 (m, 1H), 1.37 (s, 9H). \(^{13}\)C NMR (CDCl\(_3, 100\) MHz): \(\delta\) 154.8, 149.0, 140.5, 138.4, 131.6, 130.9, 129.9, 129.4, 128.7, 128.1, 127.5, 127.2, 126.1, 125.6, 57.8, 36.7, 33.3, 30.6, 28.3. LRMS: Calculated for C\(_{25}\)H\(_{28}\)N\(_2\)O\(_3\) (M\(^+\)) 405.4, Found 405.4.

4b,10,17,18-tetrahydro-9H-dibenzo[3',4':7',8']cyclooct[1',2':4,5]isoxazo|3,2-a|isoquinoline (5.43):

![Chemical Structure](image)

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a white crystalline solid (17.3 mg, 98%). \(R_f = 0.23\) (9:1/hexanes:EtOAc). \(^1\)H NMR (CDCl\(_3, 400\) MHz): \(\delta\) 7.50-7.48 (m, 1H), 7.17-7.06 (m, 9H), 6.96-6.92 (m, 1H), 6.58 (d, \(J = 7.7\) Hz, 1H), 5.97 (s, 1H), 3.93-3.89 (m, 1H), 3.36-3.22 (m, 3H), 3.10-3.03 (m, 1H), 2.85-2.75 (m, 3H). \(^{13}\)C NMR (CDCl\(_3, 100\) MHz): \(\delta\) 148.3, 141.3, 138.9, 135.1, 133.6, 132.1, 131.0, 130.0, 129.4, 129.3, 128.8, 128.3, 127.8, 127.2, 126.6, 126.4, 126.0, 125.6, 125.5, 111.3, 71.1, 50.8, 36.7, 32.7, 24.5. HRMS: Calculated for C\(_{25}\)H\(_{23}\)NO (M\(^+\)) 352.1701, Found 352.1683.

Kinetic Measurements of Strain-Promoted Alkyne-Nitrone Cycloadditions:

The appropriate nitrone or benzyl azide and 5.1 were pre-dissolved in C\(_6\)D\(_6\) and mixed at equimolar concentrations of \(~50\) mM. Percent conversion was monitored both by disappearance of starting materials and by appearance of product as determined by integration at multiple chemical shifts in the \(^1\)H NMR spectrum. No other products were
detected by 1H NMR and all reactions were performed in triplicate. Second order rate constants in units of M$^{-1}$s$^{-1}$ were determined by plotting 1/[nitrone] or 1/[azide] versus time and subsequently using analysis by linear regression. The second order rate constant k_2 (M$^{-1}$s$^{-1}$) corresponded to the determined slope.

Figure 5-1. Kinetics of SPANC and SPAAC reactions. A) 5.19 with 5.1, B) 5.26 with 5.1, C) 5.40 with 5.1, and D) 5.44 with 5.1.

General Procedure for Strain-Promoted Alkyne-Diazoalkane Cycloadditions:

A solution of diazoalkane (0.025 mmol) in MeOH (0.5 mL) was combined with a solution of dibenzocyclooctyne (5.1 mg, 0.025 mmol) in MeOH (0.5 mL). Reaction progress was
monitored by thin layer chromatography. Upon completion, the solvent was removed by rotary evaporation and the products (5.49-5.52) were purified by flash column chromatography.

diphenyl diazomethane (5.45) and phenyldiazomethane (5.48):

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \\
5.45 & \\
\text{N}_2 & \\
\text{N}_2 & \\
\text{Ph} & \quad \text{Ph}
\end{align*}
\]

Synthesis previously reported in the literature.\(^8^2\)

Characterization Data for SPADC Cycloadducts:

8,9-dihydro-3,3-diphenyl-3H-dibenzo[3,4:7,8]cycloocta[1,2]pyrazole (5.49):

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{Ph} & \quad \text{Ph}
\end{align*}
\]

Compound 5.41: Purified by eluting 95:5/hexanes:CH\(_2\)Cl\(_2\). This compound was obtained as a white solid (10.0 mg, 100 %). \(R_f = 0.35\) (95:5/hexanes:CH\(_2\)Cl\(_2\)). \(^1\text{H NMR}\) (\(d_6\)-DMSO, 400MHz): \(\delta\) 7.71-7.69 (m, 1H), 7.47-7.39 (m, 8H), 7.31-7.24 (m, 5H), 7.10-7.08 (m, 4H), 6.97 (t, 1H), 6.32 (d, 1H), 3.25 (t, \(J = 6.8\text{Hz}\), 2H), 2.72 (t, \(J = 6.8\text{Hz}\), 2H). \(^1\text{C NMR}\) (\(d_6\)-DMSO, 100MHz): \(\delta\) 154.1, 148.9, 140.8, 138.1, 134.3, 132.0, 131.4, 130.9, 129.8, 129.4, 129.3, 129.2, 129.0, 128.8, 128.6, 127.7, 125.9, 125.9, 125.8, 125.6, 124.8, 107.5, 36.4, 31.0.

HRMS: Calculated for C\(_{29}\)H\(_{22}\)N\(_2\) (M\(^+\)) 399.1861, Found 399.2023.

8,9-dihydro-\(1H\)-dibenzo[3,4:7,8]cycloocta[1,2]pyrazole-3-carboxylic acid ethyl ester (5.50):
Purified by eluting 6:4/hexanes:EtOAc. This compound was obtained as a white solid (7.7 mg, 97%). $R_f = 0.35$ (6:4/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400MHz): δ 10.98 (br s, 1H), 7.33-7.17 (m, 8H), 4.39-4.28 (m, 2H), 3.43-3.40 (m, 1H), 3.24-3.13 (m, 2H), 2.93-2.91 (m, 1H), 1.30 (t, 3H). 13C NMR (CDCl$_3$, 100MHz): δ 160.7, 139.8, 139.1, 131.5, 131.1, 131.0, 130.9, 130.0, 129.0, 128.7, 127.9, 126.0, 125.3, 123.6, 61.1, 36.4, 33.0, 14.1. HRMS: Calculated for C$_{20}$H$_{19}$N$_2$O$_2$ (M$^+$) 319.1447, Found 319.1468.

8,9-dihydro-IH-dibenzo[3,4;7,8]cycloocta[1,2]pyrazole (5.51):

Purified by eluting 9:1/hexanes:EtOAc. This compound was obtained as a white solid (2.1 mg, 34 %). $R_f = 0.35$ (9:1/hexanes:EtOAc). 1H NMR (CDCl$_3$, 400MHz): δ 7.64 (br s, 1H), 7.31-7.18 (m, 9H), 3.28-3.16 (m, 4H). 13C NMR (CDCl$_3$, 100MHz): 139.6, 139.3, 132.3, 130.8, 130.6, 130.2, 130.1, 128.5, 127.2, 126.1, 126.0, 35.6, 34.3. HRMS: Calculated for C$_{17}$H$_{14}$N$_2$ (2M$^+$) 494.2392, Found 493.2445.

8,9-dihydro-3-phenyl-IH-dibenzo[3,4;7,8]cycloocta[1,2]pyrazole (5.52):
Purified by eluting 8:2/hexanes:EtOAc. This compound was obtained as a white solid (7.5 mg, 93 %). \(R_f = 0.28 \) (8:2/hexanes:EtOAc). \(^1\)H NMR (CDCl\(_3\), 400MHz): \(\delta \) 8.01 (br s, 1H), 7.46–6.90 (m, 13H), 3.54–3.27 (m, 2H), 3.18–2.89 (m, 2H). \(^{13}\)C NMR (CDCl\(_3\), 100MHz): \(\delta \) 140.1, 139.3, 132.2, 131.2, 131.0, 130.4, 130.0, 129.8, 128.7, 128.5, 128.2, 127.8, 127.4, 126.0, 126.0, 118.4, 36.0, 33.6. LRMS: Calculated for C\(_{23}\)H\(_{18}\)N\(_2\) (M\(^+\)) 323.1, Found 323.2.

Kinetics Measurements of Strain-Promoted Alkyne-Diazoalkane Cycloadditions:

The diazocompound (50 mM) and 5.1 (50 mM) were pre-dissolved in \(d_6 \)-methanol and mixed at equimolar concentration of \(\sim 25 \) mM. Percent conversion was monitored both by disappearance of starting materials and by appearance of product as determined by integration at multiple chemical shifts in the \(^1\)H NMR spectrum. Second order rate constants in units of M\(^{-1}\)s\(^{-1}\) were determined by plotting 1/[cyclooctyne] versus time. The second order rate constant \(k_2 \) (M\(^{-1}\)s\(^{-1}\)) corresponded to the determined slope.

Figure 5-2. Kinetics of SPADC. A) Reaction of 5.45 with 5.1, B) Reaction of 5.46 with 5.1.
References

(64) Lawson, T.; Nagel, D. Carcinogenesis 1988, 9, 1007-1010.
Chapter 6: Strain-Promoted Alkyne-Nitrone Cycloadditions for Functionalizing Cell Surface Proteins

A significant portion of the work presented in this chapter was published in:

Introduction

The incorporation of fluorescent probes into proteins, DNA, RNA, lipids and glycans within their native cellular environments provides opportunities for imaging and understanding their roles in vivo. Creative metabolic and genetic engineering strategies have made it possible to site-specifically incorporate azides, alkynes, and many other abiotic groups into proteins, glycans, nucleic acids, lipids, metabolites, and various posttranslational modifications in cultured cells and living organisms. The azide group is an extremely versatile bioorthogonal chemical reporter, by virtue of its small size it can be easily introduced into biomolecules or probe molecules without changing their functional properties. Most reported applications rely either on copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), or strain-promoted azide-alkyne cycloadditions (SPAAC). Although the former is most suitable for in vitro applications resulting from the toxicity of copper, the latter is most suitable for live-cell and in vivo applications but is impeded by relatively slow reaction kinetics.

New reactions that display fast reaction kinetics and do not require a metal-catalyst are of interest for various molecular imaging applications, enabling labelling at lower reagent concentrations. In the previous chapter we had evaluated the kinetics for reactions of a series of acyclic and cyclic nitrones in strain-promoted alkyne-nitrones cycloadditions (SPANC) (Figure 6-1). It was found that diaryl acyclic nitrones displayed rates that were comparable with azides. Acyclic nitrones predominantly exist in the more stable Z-conformation, whereas cyclic nitrones are conformationally locked in the more reactive E-conformation. Cyclic nitrones displayed exceptionally fast kinetics in strain-promoted cycloadditions with cyclooctynes, proceeding up to 24 times faster than analogous reactions involving azides.
In addition to the rapid reactivity of cyclic nitrones, the synthetic accessibility and ease of functionalization of cyclic nitrones make them particularly attractive 1,3-dipoles for strain-promoted cycloadditions with cyclooctynes.

![Figure 6-1](image)

Figure 6-1. Strain-promoted alkyne-nitrone cycloadditions of acyclic and cyclic nitrones.

This chapter describes synthesis and kinetic evaluation of a series of cyclic nitrones in strain-promoted cycloadditions with cyclooctynes to optimize the balance of reactivity and reactant/product stability, and develop SPANC as a tool for bioconjugation. We demonstrate covalent modification of proteins (BSA and EGF) with the nitrone reporter group and perform fluorescence labelling via SPANC *in vitro*. Toward *in vivo* applications, we report pre-targeted labelling of human epidermal growth factor receptors expressed on the surface of breast cancer cells using nitrone modified epidermal growth factor and highly specific fluorescence labelling via SPANC. Lastly, we describe the synthesis of an unnatural nitrone modified oligosaccharide and preliminary attempts to metabolically incorporate the nitrone moiety into cell surface glycans and achieve fluorescence labelling via SPANC.
Hypothesis

Strain-promoted alkyne-nitrone cycloadditions serves as an efficient reaction for the functionalization of proteins and labelling of cell surface proteins.

Results and Discussion

Synthesis of Cyclic Nitrones for SPANC Reactions

To probe the feasibility of SPANC reactions involving cyclic nitrones as a tool for biological labelling, we examined the reaction scope and kinetics for reactions of a series of cyclic nitrones with dibenzocyclooctyne (6.1). With the goal of finding optimal cyclic nitrone structures for bioconjugation via SPANC, we synthesized a series of cyclic nitrones differing in ring size, steric and stereoelectronics to determine their respective contributions to nitrone reactivity in SPANCs.

On the basis of the enhanced rate of SPANC involving 3,4-dihydroisoquinoline 2-oxide from the previous chapter, which featured benzylic activation of the nitrone, we synthesized oxo-piperazine-nitrone (6.2) as shown in Scheme 6-1. The oxo-piperazine nitrone is a six membered nitrone, containing an electron withdrawing α-amide group and a pendant ester group that can be further functionalized to biomolecules. Nitrone 6.2 was synthesized in four steps starting from 4-Boc-2-oxo-piperazine (6.3). Briefly, alkylation of the amide of 6.3 with bromoacetic acid provided the ester intermediate (6.4) in 82 % yield. Following Boc-deprotection using trifluoroacetic acid in anisole, the secondary amine (6.5) was oxidized with 30 % aqueous H₂O₂ using Na₂WO₄·2H₂O in methanol as catalyst affording nitrone 6.2 in 73 % isolated yield.
We also evaluated the kinetics of various five-membered nitrones. Proline-based nitrones were tested since they offered a carboxylic acid group that could be further functionalized with biological probes. Despite attempts to regioselectively oxidize the secondary amine of proline (6.6) to nitrone (6.7), yielded decarboxylated nitrone (6.8) as the main product (Scheme 6-2). We had also attempted to perform the oxidation using α-methyl-proline (6.9) to facilitate aldonitrone formation, however α-methyl-proline N-oxide (6.10) was not obtained by this route.

It became apparent, that we needed to reduce the carboxylic acid of proline to prolinol in order to avoid decarboxylative nitrone or ketonitrone formation. Scheme 6-3 outlines the synthetic route to prolinol nitrones (6.11 and 6.12). Starting from N-Boc proline (6.13), the carboxylic acid of 6.13 was reduced to the alcohol (6.14), the resulting
alcohol was protected as the TBDPS ether (6.15) prior to nitrone formation. The bulky TBDPS group was employed in the late stage nitrone oxidation, mainly to facilitate separation of the regioisomeric mixture of ketonitrone 6.11 from aldonitrone 6.12 upon oxidation of the secondary amine (6.16). The N-Boc group of 6.15 was removed using TFA, and the secondary amine (6.16) was oxidized using a biphasic mixture containing oxone® according to the method or Font,16 affording a 1.3:1 regioisomeric mixture of aldo- and keto-nitrones, 6.11 and 6.12, respectively.

![Scheme 6-3. Synthesis of prolinol nitrones 6.11, 6.12 and 6.17.](image)

Since there is precedence in the literature that nitrones bearing resonance stabilizing EWGs at the α-position display rate enhancements for SPANC reactions with DIBO and derivatives,13,17 we installed an inductively withdrawing gem-difluoro group at the α-position of the prolinol nitrone in hopes of increasing the reactivity of the nitrone. According to Scheme 6-3, 4,4-difluoro-L-prolinol-N-oxide (6.17) was synthesized analogously to the non-fluorinated prolinol nitrones. Briefly, N-Boc-4,4-difluoro-L-proline (6.18) was reduced to the alcohol (6.19), the alcohol was protected as the TBDPS ether (6.20). Boc-deprotection of the
secondary amine (6.20), and regioselective oxidation of the resultant amine (6.21) provided aldonitrone (6.17).

Another cyclic nitron that was pursued was 5-carboxyethyl-5-methyl-pyrrole N-oxide (EMPO, 6.22).18,19 Rather than pursuing nitron formation via oxidation of the secondary amine, nitron 6.22 was synthesized in three steps in 86 % overall through a highly efficient intramolecular cyclization (Scheme 6-4). Briefly, 1,4-addition of ethyl-2-nitro-propionate (6.23) with acrolein (6.24) provided the aldehyde (6.25), that was protected as the dioxolane (6.26). Intramolecular condensation of the in situ generated hydroxylamine with the deprotected aldehyde yielded 6.22.

Additionally we synthesized a ketonitrone (6.27) following the method of Bode et al. that featured a potential activating α-ester group and a carboxylic acid for further functionalization (Scheme 6-5).20 Nitron 6.27 was synthesized by annulation of α-ketoglutaric acid (6.28) with cyclohexane carboxaldehyde oxime (6.29).

Scheme 6-5. Synthesis of ketonitrone 6.27.
Kinetics of SPANC Reactions of Cyclic Nitrones with Dibenzocyclooctynes

Having successfully synthesized a series of cyclic nitrones, we measured kinetics of their SPANC reactions with 6.1 (Table 6-1). Aldonitrone (Entries 1-7) reacted significantly faster than the ketonitrone (Entries 8 and 9). All nitrones employed yielded isoxazoline cycloadducts in excellent yields. The five membered pyrroline N-oxides, (Entries 1-4) were found to be optimal, blending fast kinetics with enhanced stability under ambient conditions. Reactions of nitrones 6.30 and 6.22 (Entries 1 and 2) resulted in second-order rate constants of 0.63 ± 0.12 M⁻¹s⁻¹ and 7.69 ± 0.19 M⁻¹s⁻¹, respectively. The rate enhancement of 6.30 may have resulted from electron repulsions of the nitrone oxygen with the pendant ester group, causing less distortion of the nitrone to achieve the transition state geometry. Additionally, prolinol nitrone 6.11 reacted with 6.1 with a rate constant of 1.95 ± 0.60 M⁻¹s⁻¹ (Entry 3), suggesting that sterically bulky groups adjacent to the nitrone reduce nitrone reactivity. The presence of an N-Boc group adjacent at the α-position in 6.31 resulted in a somewhat slower reaction with 6.1 relative to the analogous reaction of 6.11.

Attempts to further activate the cyclic nitrene using gem-difluoro groups at the α-position in nitrene 6.17 (Table 6-1, Entry 5) resulted in remarkably slower rates for cycloaddition than the other 5-membered nitrones. Evidently, nitrones containing resonance stabilized groups at the α-position (ie. amide or aryl groups) reacted faster than those with inductively withdrawing fluoro-groups. We also tested a six membered nitrene, 6.2 containing the electron withdrawing α-amide group. Nitrene 6.2 reacted with 6.1 in 96% yield within 3 min at 25 °C; corresponding to a rate constant of 1.41 ± 0.19 M⁻¹s⁻¹ (Entry 6). Despite its fast reactivity, nitrene 6.2 was less stable and prone to decomposition at room temperature. Attempts to synthesize additional six membered nitrones that would be
electronically and sterically similar to the five membered nitrones gave similar decomposition products as 6.2.

Table 6-1. Kinetics of strain-promoted cycloadditions between cyclic nitrones and 6.1.

![Diagram of cycloaddition reaction](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nitrone</th>
<th>Product</th>
<th>Yield (%)<sup>a</sup></th>
<th>T (min.)</th>
<th>k_2 (M<sup>-1</sup> s<sup>-1</sup>)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.30</td>
<td>6.32</td>
<td>91</td>
<td>15</td>
<td>0.63 ± 0.12</td>
</tr>
<tr>
<td>2</td>
<td>6.22</td>
<td>6.33</td>
<td>96</td>
<td><2</td>
<td>7.69 ± 0.19</td>
</tr>
<tr>
<td>3</td>
<td>6.11</td>
<td>6.34</td>
<td>88</td>
<td>5</td>
<td>1.95 ± 0.60</td>
</tr>
<tr>
<td>4</td>
<td>6.31</td>
<td>6.35</td>
<td>90</td>
<td>18</td>
<td>0.62 ± 0.08</td>
</tr>
<tr>
<td>5</td>
<td>6.17</td>
<td>6.36</td>
<td>87</td>
<td>180</td>
<td>0.0215 ± 0.00038</td>
</tr>
<tr>
<td>6</td>
<td>6.2</td>
<td>6.37</td>
<td>84</td>
<td>3</td>
<td>1.41 ± 0.19</td>
</tr>
<tr>
<td>7</td>
<td>6.12</td>
<td>6.38</td>
<td>89</td>
<td>1380</td>
<td>n.d.</td>
</tr>
<tr>
<td>8</td>
<td>6.27</td>
<td>6.39</td>
<td>97</td>
<td>1440</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Conditions: Reagents were mixed 1 : 1 at 25 mM in C₆D₆ at 25 °C. ^aIsolated yield following column chromatography. ^bRate constant, k_2, was determined by ¹H NMR under second-order conditions.
Having established that the five membered cyclic nitrones displayed sufficiently fast reactivity in SPANC reactions with 6.1, and were stable under ambient conditions, we measured rate constants for reactions of the most reactive cyclic nitrones with dibenzocyclooctynol (DIBO, 6.40) in acetonitrile (Table 6-2). All cyclic nitrones tested gave excellent yields of isoxazoline products (6.41-6.44) with comparable rates upon moving from benzene to acetonitrile.

Table 6-2. Kinetics of strain-promoted cycloadditions between cyclic nitrones and 6.40.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nitrone</th>
<th>Product</th>
<th>Yield %a</th>
<th>k_2 (M$^{-1}$s$^{-1}$)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.30</td>
<td>6.41</td>
<td>97</td>
<td>0.75 ± 0.04</td>
</tr>
<tr>
<td>3</td>
<td>6.22</td>
<td>6.42</td>
<td>96</td>
<td>3.38 ± 0.31</td>
</tr>
<tr>
<td>4</td>
<td>6.11</td>
<td>6.43</td>
<td>92</td>
<td>1.04 ± 0.17</td>
</tr>
<tr>
<td>1</td>
<td>6.2</td>
<td>6.44</td>
<td>95</td>
<td>0.46 ± 0.01</td>
</tr>
</tbody>
</table>

Conditions: Reagents were mixed 1 : 1 at 25 mM in CD$_3$CN at 25 °C. aYield % was determined by 1H NMR. bRate constants, k_2, was determined by 1H NMR under second-order reaction conditions.
The rate constant for reaction of 6.30 with 6.40 was 0.75 ± 0.04 M⁻¹s⁻¹ (Table 6-2, Entry 1). Although the value for reactions of 6.30 with DIBO in acetonitrile is within experimental error, with that obtained for its reaction with 6.1 in toluene, it is still 13 times faster than analogous reactions of benzyl azide with DIBO. Cyclic nitrone 6.22 reacted with 6.40 in 96 % yield within 3 min with a rate constant of 3.38 ± 0.31 M⁻¹s⁻¹ (Table 6-2, Entry 2). This rate constant corresponds to a 44-fold enhancement relative to the reaction of benzyl azide with DIFO, a 59-fold enhancement relative to reaction with DIBO, and a 3-fold enhancement relative to reaction with BARAC. We also tested the prolinol nitrone, 6.11 in reaction with DIBO and the rate constant was found to be 1.04 ± 0.17 M⁻¹s⁻¹, this corresponded to a 18-fold enhancement over analogous reaction of benzyl azide with DIBO. Similar rate enhancements were observed in the reaction of 6.2 with DIBO (0.46 ± 0.01 M⁻¹s⁻¹).

Labelling of Cell Surface Proteins via SPANC

To demonstrate direct protein functionalization via SPANC, we labelled bovine serum albumin (BSA) and human epidermal growth factor (EGF) in vitro (Figure 6-2). An NHS-activated prolinol nitrone (6.45) was prepared by desilylation of 6.11 with TBAF and subsequent reaction of the alcohol (6.46) with N,N′-disuccinimidyl carbonate, yielded NHS-activated nitrone 6.45. The NHS-activated nitrone was coupled with lysine residues on BSA and EGF. We observed that BSA was modified with an average of four nitrone groups, whereas EGF was modified with an average of two nitrones, as confirmed by MALDI-MS.

Nitrone modified BSA (6.47) was treated with DIBO-488 (6.48) for time intervals between 0 and 60 min. Highly specific, time-dependent labelling and minimal background labelling in the negative control was detected by in-gel fluorescence scanning (Figure 6-2,
lower left gel). For the SPANC reaction of nitrone modified EGF (6.49) with 6.48, due to co-elution of the DIBO-488 with the EGF-labelled protein on SDS-PAGE, we were unable to separate the unbound DIBO-488 from the fluorescently labelled EGF. Fortunately, through the use of a DIBO-TAMRA probe (6.50), we observed highly specific time-dependent labelling of EGF (Figure 6-2, lower right gel) via SPANC. For both proteins that were tested, the negative control (-), is unlabelled BSA or EGF in the presence of appropriate DIBO-fluorophore conjugate.

Figure 6-2. Functionalization of BSA and EGF through bioorthogonal SPANC reactions. A) Synthetic scheme for covalent modification of BSA and EGF with a cyclic nitrone by NHS coupling, and subsequent fluorescence labelling via SPANC. B) Time course labelling of BSA by SPANC reaction with 6.48 was detected by SDS-PAGE with fluorescence scan (upper gel) and silver stain as the loading control (lower gel). C) Time course labelling of EGF by SPANC reaction with 6.50 was detected by SDS-PAGE with fluorescence scan (upper gel) and silver stain as the loading control (lower gel).
To illustrate the utility of SPANC for cellular imaging, we labelled epidermal growth factor receptors (EGFRs) that were overexpressed on the surface of human breast cancer cells (MDA-MB-468) (Figure 6-3). Cyclic nitrone modified EGF, 6.49 (10 μM) was targeted to EGFRs on the cell surfaces. Cellular labelling was accomplished by in situ SPANC reactions of cyclic nitrone modified EGFRs at the cell surface (6.51) with DIBO-biotin11 (6.52) for 30 min prior to staining with a streptavidin-FITC conjugate. For the negative control, cells were pretreated with unmodified EGF (10 μM) followed by treatment with DIBO-biotin (10 μM) and streptavidin-FITC (5 μg/mL). As shown in Figure 6-3, highly specific labelling of EGF-EGFR interactions was achieved, and we observed minimal background fluorescence in the negative control.

Figure 6-3. In situ pre-targeted labelling of EGF–EGFR interactions on the surface of breast cancer cells (MDA-MB-468) via SPANC. A) Cyclic nitrone modified EGF bound to EGFR was labelled by SPANC using DIBO Biotin (6.52) for 30 min prior to streptavidin-FITC fluorescent labeling. B) Fluorescence (top) and bright field (bottom) image of in situ SPANC. Negative control was cells pre-treated with EGF followed by treatment with 6.52 and streptavidin-FITC. Reagent concentrations: 6.49 (10 μM), EGF (10 μM), 6.52 (10 μM) and streptavidin-FITC (5 μg/mL).
Metabolic Incorporation of Nitrones into Cell Surface Glycans

To validate the SPANC methodology as a viable bioorthogonal reaction, we attempted to incorporate the nitrone moiety into cell surface glycans. Cell surface sialosides are synthesized in a series of biochemical steps (Figure 6-4).23,24 ManNAc is known as the first committed intermediate, which can be synthesized from N-acetylglucosamine (GlcNAc) or taken up from outside the cell. Upon formation of the CMP-NeuNAc, further processing occurs in the Golgi apparatus prior to being presented on the cell surface. As shown previously, exogenously delivered ManNAc analogs bearing ketone (Lev) or azide (N$_3$) groups are able to intercept the pathway and produce cell surface sialosides with unique functionality.25 Toward exploiting the cyclic nitrone group as a bioorthogonal reporter in SPANC reactions, we probed the utility of SPANC for metabolic incorporation of N-acetyl mannosamine (ManNAc) derivatives bearing the cyclic nitrone moiety.

Figure 6-4. Sialic acid biosynthetic pathway. Figure was reprinted from the literature.25
Recent attempts to metabolically incorporate monosaccharide derivatives bearing acyclic nitrones into Jurkat cell surfaces, followed by labelling with a DIBO-probe led to no observable fluorescence labelling. Two possible reasons for the lack of metabolic incorporation of the acyclic nitrones could be that either nitrones were not tolerated by the cellular machinery or the nitrones underwent intracellular hydrolysis within acidic compartments within the cell. We set out to evaluate the hydrolytic stabilities of cyclic nitrone, 6.30 with acyclic nitrone (6.53), under acidic and basic conditions to determine whether the cyclic nitrones would offer improved stability toward hydrolysis (Figure 6-5).

Figure 6-5. Hydrolysis studies of acyclic and cyclic nitrones at variable pH of solution. A) Hydrolysis of acyclic nitrone 6.53 (10 mM) in the presence of PBS 1x, 10 mM NaOH, 100 mM NaOH, 10 mM HCl or 100 mM HCl over 2 h. The exponential decay observed for hydrolysis of 6.53 in the presence of 10 mM HCl is consistent with first order reaction kinetics. For the reaction of 6.53 in the presence of 100 mM HCl, the data was not fit to an exponential equation due to a limited number of HPLC data points acquired during the first 15 min of reaction. B) Hydrolysis of Cyclic nitrone 6.30 (10mM) in the presence of PBS 1x, 100 mM NaOH or 100 mM HCl over 2 hrs.

At neutral pH, both acyclic and cyclic nitrones were stable in aqueous PBS media. However, in the presence of 100 mM HCl solution, the acyclic nitrone 6.53 was rapidly hydrolyzed to the corresponding aldehyde (6.54) and N-methyl hydroxyl amine (6.55) within
15 min (as evidenced by GC-MS). Also, in the presence of 100 mM NaOH, 6.53 was significantly hydrolyzed solution over 2 h. The rapid hydrolysis of the acyclic nitrone at variation of pH, corresponds to only a small fraction of the number of days that are typically required for unnatural carbohydrate metabolites to be taken up by mammalian cells and incorporated into cell surface glycans.26 Interestingly, the cyclic nitrone 6.30 remained was resilient toward hydrolysis in the presence of acidic or basic solutions.

Encouraged by the superior hydrolytic stability of the cyclic nitrone over the acyclic nitrone, we sought to design a cyclic nitrone modified ManNAc derivative, Ac\textsubscript{4}ManNCMPO (6.56). Nitrone 6.56 could be efficiently synthesized by an amide coupling between cyclic nitrone 4-carboxy-4methyl-pyrroline-N-oxide19 (CMPO, 6.57) and 1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy-α-D-mannopyranose27 (6.58) (Scheme 6-6). Following saponification of the ester of nitrone 6.22 according to the conditions of Tsai,19 carbodiimide-mediated coupling of 6.57 and 6.58 provided Ac\textsubscript{4}ManNCMPO in 49 % yield as a mixture of α- and β-anomers in a ratio of 1:1.

\textbf{Scheme 6-6.} Synthesis of Ac\textsubscript{4}ManNCMPO, 6.55.

To evaluate the efficiency of SPANC, we measured kinetics for SPANC reaction of Ac\textsubscript{4}ManNCMPO 6.56 with DIBO in acetonitrile, under pseudo first order reaction conditions by UV-vis absorption spectroscopy, and compared the obtained rate constant with that for
the reaction involving Ac$_4$ManNAz (6.59) (Scheme 6-7). It was found that SPANC displayed a 6-fold rate enhancement over SPAAC, corresponding to rate constants of $(3.35 \pm 0.07) \times 10^{-1}$ M$^{-1}$s$^{-1}$ and $(5.52 \pm 0.18) \times 10^{-2}$ M$^{-1}$s$^{-1}$, respectively.

![Scheme 6-7. Kinetics of SPANC versus SPAAC with nitrone or azide modified Ac$_4$ManNAc derivatives. Kinetic were done under pseudo-first order reaction conditions and measured by UV-visible spectroscopy.](image)

Toward metabolic incorporation of the cyclic nitrone into cell surface sialosides (Scheme 6-8), we incubated ManNAc derivatives, Ac$_4$ManNCMPO and Ac$_4$ManNAz, with Huh7 liver cells for 3 d. The cells were the fixed and treated with DIBO-Biotin. Following staining with Streptavidin-FITC, we did not observe reproducible fluorescence signal for cells treated with Ac$_4$ManNCMPO. It has been hypothesized, that incorporation of ManNAc derivatives bearing longer N-acyl chains or branched chains are not tolerated for phosphorylation by ManNAc 6-kinase.25,28
Scheme 6-8. Metabolic incorporation of nitrone modified ManNAc derivative into cell surface glycans and fluorescence labelling by SPANC.

Fortunately, it is possible to bypass the bottle-neck step in the sialic acid biosynthetic pathway, through supplementing cells directly with sialic acid derivatives rather than ManNAc. We are currently exploring the synthesis of unnatural N-acetyl neuraminic acid (NeuNAc) derivatives bearing the cyclic nitrone functionality at C-5 (6.60) or C-9 (6.61) as shown in Scheme 6-9.

Scheme 6-9. Prospective cyclic nitrone modified NeuNAc derivatives.

We anticipate that through by-passing ManNAc 6-kinase, we will be able incorporate the cyclic nitrone into cell surface sialosides and achieve metabolic incorporation of nitrones and highly specific bioorthogonal labelling via SPANC.
Future Directions

Future directions will involve exploring alternate methods for incorporating the nitrone moiety into biomolecules to demonstrate nitrones as bioorthogonal reporters in strain-promoted cycloadditions with strained alkynes that can be used for imaging biomolecules within living cells. This will involve covalent modification of other metabolic substrates such as unnatural amino acids, nucleotides, or lipids bearing nitrone functionality and their incorporation into biomolecules by either genetic or metabolic routes.

Conclusions

We have established nitrones as versatile alternatives to azides in strain-promoted cycloadditions with cyclooctynes. Advantages of cyclic nitrones includes that they are simple and conveniently prepared, they are fast reacting and stable at variable pH, and perhaps most importantly, their reactivity is tunable. We have shown that five membered cyclic nitrones blend enhanced stability with fast kinetics in SPANC reactions with cyclooctynes. Reactions of cyclic nitrones proceeded with rate constants up to $3.38 \pm 0.31 \text{ M}^{-1}\text{s}^{-1}$ in CD$_3$CN, corresponding to 59 times faster than the analogous reaction of benzyl azide with DIBO. We have demonstrated highly specific labelling of BSA and EGF in vitro and have shown efficient pre-targeted labelling of EGFRs on the surfaces of live cancer cells via SPANC. The SPANC bioconjugation approach presented here is modular and can be extended to other biological imaging applications, since cyclic nitrone functionalities can be easily conjugated to carboxylic acid or amine containing biomolecules. The high selectivity, fast reaction rate, and aqueous compatibility of SPANC makes this reaction ideally suited for a variety of other in vivo imaging applications.
Acknowledgements

Jenny Cheng is thanked for technical assistance with protein functionalization via SPANC and Dr. Jessie Blake is thanked for performing confocal microscopy imaging of the SPANC labelled cell surfaces. We also thank Kenneth Chan for MALDI-MS analysis of the reaction products.
Materials and Methods

General

All chemical reagents that were purchased from commercial sources were used without further purification unless otherwise stated. 5,5-dimethyl-1-pyrroline-N-oxide (DMPO, 6.30) and bovine serum albumin (BSA) were purchased from Sigma-Aldrich. Human recombinant epidermal growth factor (EGF), tetramethyl rhodamine cadaverine (TAMRA), Alexa Fluor® 488 cadaverine sodium salt, and FITC-streptavidin were purchased from Invitrogen. Deuterated solvents were purchased from Cambridge Isotope Laboratories. MDA-MB-468 cell line and culture media were purchased from ATCC. Thin layer chromatography (TLC) was carried out on Analtech Uniplate® silica gel plates (60 Å F254, layer thickness 250μm) using UV light to visualize the course of reaction. Flash column chromatography was performed using silica gel (60 Å, particle size 40–63 μm).

The experimental procedure and spectral data (1H, 13C, 19F, Rf and MS) for any newly reported compounds are included. References for known compounds for which their syntheses were prepared from standard literature procedures are included. 1H and 13C NMR spectra were recorded using a 400 Bruker-DRX-400 spectrometer using a frequency of 400.13 MHz for 1H and 100.61 MHz for 13C and processed using Bruker TOPSPIN 2.1 software. Chemical shifts are reported in parts per million (δ) using residual CHCl3 resonance as an internal reference (7.26 and 77.0 ppm for 1H and 13C NMR, respectively). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal and J = coupling constants in Hz. Kinetic experiments were completed either by 1H NMR or by UV-vis
absorption spectroscopy on a Varian system comprising a Cary 3 UV-visible Spectrophotometer and Cary Temperature Controller.

Synthetic Procedures and Characterization Data:

5,6-didehydro-11,12-dihydro-dibenzo[a,e]cyclooctene (6.1):

![6.1](image)

Synthesis previously reported in the literature.\(^{13}\)

4-(2-methoxy-2-oxoethyl)-5-oxo-2,3,4,5-tetrahydropyrazine 1-oxide (6.2):

![6.2](image)

Synthesis previously reported in the literature.\(^{14}\)

(S)-2-((tert-butyldiphenylsilyloxy)methyl)-3,4-dihydro-2\(H\)-pyrrole 1-oxide (6.11):

![6.11](image)

Synthesis previously reported in the literature.\(^{16}\)

5-((tert-butyldiphenylsilyloxy)methyl)-3,4-dihydro-2\(H\)-pyrrole 1-oxide (6.12):

![6.12](image)

Synthesis previously reported in the literature.\(^{16}\)
(S)-**tert**-butyl 4,4-difluoro-2-(hydroxymethyl)pyrrolidine-1-carboxylate (6.19):

\[
\begin{align*}
\text{OH} & \quad \text{N-}\text{Boc} \quad \text{F} \\
\text{F} & \quad \text{N-}\text{Boc} \\
\end{align*}
\]

\text{N-Boc-4,4-difluoro-L-proline} (500 mg, 1.99 mmol) was dissolved in THF (3.85 mL) and \(\text{BH}_3\)-THF (3.85 mL, 3.85 mmol from a 1.0 M solution in THF) was added at 0 °C. The resultant solution was stirred at 0 °C for 2 h. Upon completion, ice water (7 mL) was added and the solution was extracted with EtOAc (3 x 14 mL), the combined organic phases were washed with brine (7 mL), saturated NaHCO\(_3\) (7 mL) and H\(_2\)O (2 x 7mL). The organic phase was dried over anhydrous Na\(_2\)SO\(_4\), filtered and concentrated. The crude was purified by flash column chromatography eluting with 86:6:6/hexanes:EtOAc:EtOH. \text{N-Boc-4,4-difluoro-L-prolinol} was obtained as a colourless oil (467 mg, 1.97 mmol, 99 %). \(R_f = 0.17\) (88:6:6/Hexanes:EtOAc:EtOH). \(^1\text{H NMR (CDCl}_3, 400 \text{ MHz})\) : \(\delta 4.16\) (quintet, \(J = 5.4 \text{ Hz}, 1\text{H}) , 3.84 (q, J = 11.9 \text{ Hz}, 1\text{H}) , 3.72 (t, J = 5.2 \text{ Hz}, 1\text{H}) , 3.63 (q, J = Hz, 1\text{H}) , 2.54-2.41 (m, 1\text{H}) , 2.22 (m, 1\text{H}) , 1.48 (s, 9\text{H}) . \(^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz})\) : \(\delta 155.5\) (C), 126.4 (t, C), 81.4 (CH\(_2\)), 65.3 (CH), 58.4 (CH\(_2\)), 54.1 (t, CH\(_2\)), 36.9 (t, CH\(_2\)), 28.4 (CH\(_3\)), 27.5 (C). \(^{19}\text{F NMR (CDCl}_3, 100 \text{ MHz})\) : \(\delta -99.7\). \text{LRMS}: Calculated for \(\text{C}_{10}\text{H}_{18}\text{F}_2\text{NO}_3\) (M\(^+\)) 238.12, Found 238.1.
(S)-2-((tert-butyldiphenylsilyloxy)methyl)-4,4-difluoro-3,4-dihydro-2H-pyrrole 1-oxide (6.17):

\[OTBDPS \]

\[\text{N-Boc-4,4-difluoro-L-prolinol 6.19 (104 mg, 0.44 mmol) was dissolved in dry CH}_2\text{Cl}_2 (4.4 mL) at 0 °C. TBDDS-Cl (236 μL, 0.92 mmol) and imidazole (66 mg, 0.97 mmol) were successively added and the reaction was stirred at 0 °C for 15 min, then was warmed to r.t. and stirred overnight. Upon completion, the reaction mixture was filtered through a plug of celite, diluted with a saturated NH}_4\text{Cl (10 mL) and extracted with CH}_2\text{Cl}_2 (3 x 10 mL). The combined organic phases where dried over anhydrous Na}_2\text{SO}_4, filtered and concentrated. The crude 6.20 was purified by flash column chromatography (85:15/hexanes:EtOAc, R_f = 0.35). This colourless oil (159 mg, 0.33 mmol) was dissolved in CH}_2\text{Cl}_2 (4 mL) and TFA (250 μL, 3.3 mmol), stirred for 2 h at r.t. and the solvent was removed under reduced pressure. The crude was used without further purification. The crude oil 6.21 (~0.3 mmol) was dissolved in MeCN:THF/4:1 (1mL) at 5 °C. The EDTA (0.5mL from a 0.01 M solution) and NaHCO}_3 (252 mg, 3 mmol) were added. Subsequently over a 2 h period, oxone® (203 mg, 0.33 mmol) was added portion wise at 5 °C. The reaction mixture was allowed to stir for an additional 20 minutes at 5 °C. Upon completion, the mixture was extracted into EtOAc (3 x 5 mL) and the combined organic phases were dried over anhydrous Na}_2\text{SO}_4, filtered and concentrated in vacuo. The crude 6.17 was purified by reverse phase preparative HPLC, eluting with 70-80 % MeCN:H}_2\text{O during 15 min (column: Sunfire C}_{18} 19 x 100 mm, flow rate = 17.0 mL/min). \text{^1H NMR (CDCl}_3, 400MHz): δ 7.70-7.65 (m, 4H), 7.46-7.39 (m, 6H), 7.09 (m, 1H), 4.44 (dd, J = 11.3, 1.5 Hz, 1H), 4.20 (m, 1H), 3.63 (dd, J = 11.3, 1.9 Hz, 1H),} \]
3.07-2.95 (m, 1H), 2.85-2.73 (m, 1H), 1.05 (s, 9H). 13C NMR (CDCl$_3$, 100MHz): δ 135.6, 135.5, 132.8, 132.1, 130.0, 127.8, 73.3, 59.9, 55.6 (t), 26.5, 19.3. LRMS: Calculated for C$_{21}$H$_{26}$F$_2$NO$_2$Si (M$^+$) 390.17, Found 390.2.

2-(ethoxycarbonyl)-2-methyl-3,4-dihydro-2H-pyrrol 1-oxide (6.22):

Synthesis previously reported in the literature.19

4-(2-carboxyethyl)-2-cyclohexyl-5-oxo-2,5-dihydrooxazole 3-oxide (6.27):

Synthesis previously reported in the literature.20

4-(tert-butoxycarbonylamino)-3,4-dihydro-2H-pyrrole 1-oxide (6.31):

Synthesis previously reported in the literature.16

11,12-didehydro-5,6-dihydro-dibenzo[a,e]cycloocten-5-ol, (DIBO, 6.40):

Synthesis previously reported in the literature.11
General Procedure for SPANC Reactions in Model Systems:

The appropriate cyclic nitrone (0.015 mmol) and dibenzocyclooctyne (6.1) (0.015 mmol) or dibenzocyclooctynol (6.31) (0.015 mmol) were pre-dissolved in either C₆D₆ (0.3 mL) or CD₃CN (0.3 mL) and mixed at equimolar concentrations of ~25 mM (0.6 mL). Percent conversion was monitored both by disappearance of starting materials and by appearance of product as determined by integration at multiple chemical shifts in the ¹H NMR spectrum. No other products were detected by ¹H NMR and all reactions were performed in triplicate. Upon completion, the triplicate reactions were combined and the solvent was removed by rotary evaporation. The crude reactions were purified by flash column chromatography.

1,2,3,10,11,15c-hexahydro-3,3-dimethyl-dibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxazole (6.32):

The crude reaction mixture was concentrated under reduced pressure and 6.32 was purified by flash column chromatography (9:1/hexanes:EtOAc, Rf = 0.20), affording 6.32 as a white solid (13.0 mg, 0.04 mmol, 91 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.50-7.48 (m, 1H), 7.29-7.08 (m, 7H), 5.18 (dd, J = 7.7, 2.8 Hz, 1H), 3.56 – 3.49 (m, 1H), 3.46–3.39 (m, 1H), 2.14-2.04 (m, 1H), 2.01-1.91 (m, 1H), 1.88-1.82 (m, 1H), 1.78-1.73 (m, 1H), 1.47 (s, 3H), 1.20 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 147.5, 140.7, 138.3, 132.7, 130.8, 129.9, 129.7, 128.3, 128.3, 128.1, 126.9, 125.9, 125.5, 110.1, 74.5, 69.5, 36.8, 35.1, 33.3, 31.5, 26.7, 23.7.

HRMS: Calculated for C₂₂H₂₄NO₂ (M⁺) 318.1858, Found 318.1832.
1,2,3,3a,8,9-hexahydro-1-methyl-dibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxazole-1-carboxylic acid ethyl ester (6.33 and 6.33’):

The crude reaction mixture was concentrated under reduced pressure and 6.33 and 6.33’ were separated by flash column chromatography (8:2/ hexanes:EtOAc, \(R_f = 0.32\) for 6.33 and 0.25 for 6.33’), affording a 72:28 ratio of 6.33 and 6.33’ as off white solids (16.2 mg, 0.043 mmol, 96 %). 6.33 major: \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.53-7.52 (m, 1H), 7.24-7.22 (m, 2H), 7.14-7.09 (m, 5H), 5.32 (dd, \(J =7.1, 2.9\) Hz, 1H), 4.26 (q, 2H), 3.56-3.49 (m, 1H), 3.44-3.37 (m, 1H), 3.18-3.10 (m, 1H), 3.00-2.94 (m, 1H), 2.43-2.36 (m, 1H), 2.00-1.85 (m, 1H), 1.69 (s, 3H), 1.32 (t, 3H). \(^1^3\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) 173.8, 148.0, 140.7, 138.2, 132.2, 130.8, 129.8, 129.7, 127.0, 126.0, 125.6, 109.8, 76.5, 75.2, 61.4, 36.9, 33.6, 33.3, 30.6, 19.8, 14.2. 6.33’ minor: \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.42 (d, \(J =7.6\) Hz, 1H), 7.26-7.04 (m, 7H), 3.85 (dd, \(J = 8.1, 1.9\) Hz, 1H), 4.31-4.21 (m, 2H), 3.56-3.40 (m, 2H), 3.15-3.00 (m, 1H), 2.99-2.94 (m, 1H), 2.68-2.62 (m, 1H), 2.13-2.05 (m, 1H), 1.93 (m, 2H), 1.45 (s, 3H), 1.28 (t, 3H). \(^1^3\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) 171.6, 147.3, 141.0, 138.4, 132.1, 130.8, 129.8, 128.4, 138.3, 127.5, 127.2, 126.0, 125.4, 109.8, 74.5, 61.1, 36.8, 33.2, 30.6, 30.4, 22.6, 14.1. \textbf{HRMS}: Calculated for C\(_{24}\)H\(_{26}\)NO\(_3\) (M\(^+\)) 376.1913, Found 376.1915.
3-[[1,1-dimethylethyl)diphenylsilyl]oxy|methyl]-1,2,3,10,11,15c-hexahydro-dibenzo-[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxazole (6.34 and 6.34’):

The reaction mixture was concentrated under reduced pressure and 6.34 was purified by flash column chromatography (9:1 hexanes:EtOAc, $R_f = 0.50$ for 6.34 and 0.39 for 6.34’), affording a 87:13 ratio of 6.34 and 6.34’ as white solids (22.1 mg, 0.040 mmol, 88 %). 6.34 major: 1H NMR (CDCl$_3$, 400 MHz): δ 7.70-7.67 (m, 4H), 7.42-7.32 (m, 7H), 7.26-7.23 (m, 1H), 7.17-7.08 (m, 6H), 5.18 (dd, $J = 6.5, 4.5$ Hz, 1H), 4.04 (dd, $J = 9.6, 4.2$ Hz, 1H), 3.75-3.64 (m, 2H), 3.55-3.48 (m, 1H), 3.44-3.37 (m, 1H), 3.19-3.11 (m, 1H), 3.02-2.95 (m, 1H), 2.12-2.04 (m, 2H), 1.86-1.82 (m, 1H), 1.74-1.69 (m, 1H), 1.08 (s, 9H). 13C NMR (CDCl$_3$, 100 MHz): δ 147.7, 140.8, 135.7, 135.6, 133.7, 133.7, 132.5, 130.8, 129.7, 129.6, 129.4, 128.3, 127.6, 126.9, 126.0, 125.5, 109.9, 73.8, 71.4, 66.0, 36.9, 33.3, 29.1, 26.9, 25.5, 19.3. 6.34’ minor: 1H NMR (CDCl$_3$, 400 MHz): δ 7.70-7.68 (m, 3H), 7.44-7.08 (m, 15H), 5.20-5.19 (m, 1H), 4.33-4.29 (m, 1H), 3.93-3.89 (m, 1H), 3.51-3.33 (m, 3H), 3.12-3.06 (m, 1H), 2.95-2.88 (m, 1H), 2.08-2.04 (m, 1H), 1.88-1.81 (m, 2H), 1.07 (s, 9H). 13C NMR (CDCl$_3$, 100 MHz): δ 148.2, 140.8, 135.6, 133.8, 130.8, 129.9, 129.7, 129.6, 128.4, 128.3, 127.6, 126.0, 125.4, 75.9, 72.8, 50.3, 36.9, 33.2, 32.0, 26.8, 26.6, 19.2. HRMS: Calculated for C$_{37}$H$_{40}$NO$_2$Si (M$^+$) 558.2828, Found 558.2775.
(±)-N-[(3R,3aR)-1,2,3,3a,8,9-hexahydropibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-
 b]isoxazol-3-yl]-2,2-dimethyl-propanamide (6.35):

Synthesis previously reported in the literature.13

(1S)- 1-[[[(1,1-dimethylethyl)diphenylsilyl]oxy)methyl]-3,3-difluoro-1,2,3,3a,8,9-
hexahydro-dibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxazole (6.36):

The reaction mixture was concentrated under reduced pressure and 6.36 was purified by
flash column chromatography (85:15/hexanes:EtOAc, $R_f = 0.50$), affording 6.36 as a white-
solid (22.5 mg, 0.038 mmol 84%). 1H NMR (CDCl\textsubscript{3}, 400 MHz): δ 7.70-7.66 (m, 4H), 7.44-7.34 (m, 7H), 7.24-7.17 (m, 4H), 7.15-7.19 (m, 3H), 5.31 (dd, $J = 11.7, 9.5$ Hz, 1H), 4.80 (dd, $J = 10.5, 4.1$ Hz, 1H), 3.87 (dd, $J = 10.5, 6.5$ Hz, 1H), 3.78-3.71 (m, 1H), 3.56-3.47 (m, 2H), 3.13-2.94 (m, 2H), 2.51-2.42 (m, 1H), 2.32-2.17 (m, 1H), 1.08 (s, 9H). 13C NMR
(CDCl\textsubscript{3}, 100 MHz): δ 149.93, 139.8, 139.2, 135.7, 135.6, 133.3, 133.2, 131.4, 130.6, 130.3, 129.8, 129.2, 129.1, 127.7, 127.4, 127.3, 127.1, 125.9, 125.6, 103.8, 103.7, 79.3, 79.1, 79.0, 78.8, 69.5, 69.4, 64.5, 36.0 (t), 33.7, 26.9, 19.3. HRMS: Calculated for C\textsubscript{37}H\textsubscript{36}F\textsubscript{2}NO\textsubscript{2}Si (M$^+$) 594.2640, Found 594.2665.

The reaction mixture was concentrated under reduced pressure and 6.37 was purified by flash column chromatography (8:2/hexanes:EtOAc, \(R_f = 0.52 \)), affording 6.37 as an off-white solid (15.2 mg, 0.039 mmol, 87 %). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 7.43 (m, 1H), 7.32-7.29 (m, 1H), 7.20-7.11 (m, 6H), 5.46 (s, 1H), 4.35 (d, \(J = 17.4 \) Hz, 1H), 4.06-4.00 (m, 1H), 3.99 (d, \(J = 17.4 \) Hz, 1H), 3.80-3.70 (m, 2H), 3.73 (s, 3H), 3.64-3.57 (m, 1H), 3.54-3.47 (m, 1H), 3.41-3.31 (m, 2H), 3.23-3.15 (m, 1H), 3.02-2.96 (m, 1H). \(^13\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 169.0, 165.7, 149.9, 140.3, 139.2, 131.1, 131.0, 129.6, 129.4, 129.3, 129.1, 127.5, 127.2, 125.6, 125.6, 107.8, 71.9, 52.3, 50.5, 48.3, 13.6, 36.7, 33.0. HRMS: Calculated for C\(_{23}\)H\(_{23}\)N\(_2\)O\(_4\) (M\(^+\)) 391.1658, Found 391.1611.

15c-(((1,1-dimethylethyl)diphenylsilyl]oxy)methyl)-1,2,3,10,11,15c-hexahydro-dibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxazole (6.38):

The reaction mixture was concentrated under reduced pressure and 6.38 was purified by flash column chromatography (95:5/hexanes:EtOAc, \(R_f = 0.25 \)), affording 6.38 as an off-white solid (22.2 mg, 0.040 mmol, 89 %). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 7.78-7.72 (m,
4H), 7.45-7.36 (m, 7H), 7.28-7.26 (m, 2H), 7.18-7.03 (m, 5H), 3.93 (d, J = 10.6 Hz, 1H), 3.73 (d, J = 10.6 Hz, 1H), 3.62-3.56 (m, 1H), 3.45-3.32 (m, 2H), 3.29-3.20 (m, 2H), 3.18-3.08 (m, 1H), 2.12-2.02 (m, 1H), 1.93-1.79 (m, 2H), 1.70-1.63 (m, 1H), 1.07 (s, 9H). 13C

NMR (CDCl$_3$, 100 MHz): δ 150.2, 142.3, 137.6, 136.0, 135.8, 133.8, 133.4, 132.9, 131.3, 130.3, 129.5, 128.9, 128.6, 128.4, 128.2, 127.6, 127.5, 127.2, 125.9, 125.2, 108.3, 85.3, 68.0, 59.4, 37.9, 32.7, 32.1, 26.9, 23.5, 19.4. HRMS: Calculated for C$_{37}$H$_{40}$NO$_2$Si (M$^+$) 558.2828, Found 558.2817.

3-cyclohexyl-10,11-dihydro-1-oxo-3H-dibenzo[3,4:7,8]cyclooct[1,2-d]oxazolo[3,4-b]isoxazole-15c(1H)-propanoic acid (6.39):

![Chemical structure](image_url)

The reaction mixture was concentrated under reduced pressure and 6.39 was purified by flash column chromatography (7:3/hexanes:EtOAc, R$_f$ = 0.34), affording 6.39 as a white solid (20.0 mg, 0.044 mmol, 97 %). 1H NMR (CDCl$_3$, 400 MHz): δ 7.29-7.10 (m, 8H), 4.98 (d, J = 6.3Hz, 1H), 3.44-3.23 (m, 3H), 3.04-2.99 (m, 1H), 2.67-2.59 (m, 1H), 2.55-2.47 (m, 1H), 2.42-2.35 (m, 1H), 2.32-2.24 (m, 2H), 2.01-1.98 (m, 2H), 2.86-1.73 (m, 4H) 1.39-1.22 (m, 1H). 13C NMR (CDCl$_3$, 100 MHz): δ 177.6, 170.6, 151.7, 142.1, 138.5, 131.7, 130.2, 129.4, 129.2, 128.8, 128.6, 126.3, 125.9, 125.6, 106.2, 101.4, 78.9, 42.1, 37.6, 32.0, 29.0, 28.7, 27.3, 27.0, 26.2, 25.5, 25.4. HRMS: Calculated for C$_{28}$H$_{30}$NO$_5$ (M$^+$) 460.2124, Found 460.2112.
1,2,3,3a,8,9-hexahydro-1,1-dimethyl-dibenzo[3,4:7,8]cycloocta[1,2-d]pyrrolo[1,2-b]isoxazol-8-ol (6.41):

The reaction mixture was concentrated under reduced pressure and 6.42 was purified by flash column chromatography (7:3/hexanes:EtOAc, Rf = 0.30), affording regio- and diastereomers of 6.42 as an off-white solid (14.7 mg, 0.044 mmol, 97%).

1H NMR (CDCl$_3$, 400 MHz): δ 7.69-7.63 (m, 2.0H), 7.52-7.50 (m, 1.3H), 7.39-7.35 (m, 2.0H), 7.29-7.09 (m, 11H), 5.65-5.61 (m, 1.0H), 5.24-5.20 (m, 1.8H), 5.08-5.03 (m, 0.9H), 3.82-3.77 (dd, J = 16.0, 5.2 Hz, 1H), 3.44-3.38 (dd, J = 12.6, 11.2 Hz, 0.9H), 3.32-3.27 (dd, J = 12.7, 6.1 Hz, 0.9H), 3.22-3.15 (dd, J = 16.0, 10.5 Hz 1.0H), 2.12-1.88 (m, 6.0H), 1.79-1.74 (m, 4.2H), 1.49, 1.46, 1.21, 1.20 (s, 4 x 3H).

13C NMR (CDCl$_3$, 100 MHz): δ 149.6, 147.5, 146.8, 143.6, 139.3, 136.7, 135.3, 132.8, 132.6, 131.3, 130.5, 130.4, 130.0, 129.6, 129.0, 128.6, 127.8, 127.7, 127.6, 127.5, 127.2, 127.0, 126.6, 125.9, 125.2, 110.5, 109.1, 74.3, 74.2, 69.6, 69.1, 45.7, 40.5, 35.1, 35.0, 31.1, 30.9, 26.6, 26.5, 23.7. HRMS: Calculated for C$_{22}$H$_{24}$NO$_2$ (M$^+$) 334.1807, Found 334.1775.
1,2,3,3a,8,9-hexahydro-8-hydroxy-1-methyl-dibenzo[3,4:7,8]cycloocta[1,2-
d]pyrrolo[1,2-b]isoxazole-1-carboxylic acid ethyl ester (6.42):

The reaction mixture was concentrated under reduced pressure and 6.42 was purified by flash column chromatography (65:35/hexanes:EtOAc, \(R_f = 0.28 \)), affording a mixture of regio- and diastereomers of 6.42 as an white solid (16.9 mg, 0.043 mmol, 96 %). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 7.69-7.66 (m, 1.4H), 7.55-7.50 (m, 0.9H), 7.46-7.43 (m, 0.4H), 7.37-7.34 (m, 1.6H), 7.30-7.06 (m, 9H), 5.67-5.83 (m, 0.8H), 5.37-5.35 (m, 1H), 5.29-5.25 (m, 0.6H), 5.08-5.04 (m, 0.4H), 5.01-4.96 (m, 0.2H), 4.31-4.09 (m, 3.8H), 3.82-3.75 (m, 0.8H), 3.54-3.13 (m, 2.1H), 2.71-2.59 (m, 0.4H), 2.43-2.33 (m, 1.2H), 2.20-1.77 (m, 8.0H), 1.71, 1.69, 1.48, 1.46 (s, 4 x 3H), 1.3-1.23 (t, 4 x 3H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 173.6, 171.7, 171.4, 171.2, 150.0, 149.3, 148.0, 143.8, 143.6, 139.6, 139.2, 137.1, 136.6, 135.4, 135.2, 132.9, 132.6, 132.4, 132.3, 131.3, 130.2, 130.1, 129.9, 129.9, 129.8, 129.6, 129.6, 129.1, 129.0, 128.7, 128.7, 127.8, 127.7, 127.6, 127.6, 127.5, 127.4, 127.4, 127.2, 127.1, 127.0, 126.6, 126.5, 126.2, 125.9, 125.8, 125.7, 125.3, 125.1, 110.3, 110.1, 108.8, 108.8, 74.9, 74, 9, 74.4, 74.1, 61.5, 61.4, 61.2, 60.4, 45.8, 45.8, 40.8, 40.5, 33.7, 33.6, 31.3, 30.5, 30.4, 30.2, 30.1, 29.7, 29.5, 23.1, 22.6, 21.0, 19.8, 19.8, 14.2, 14.1, 14.0. HRMS: Calculated for C\(_{24}\)H\(_{26}\)NO\(_4\) (M\(^+\)) 392.1862, Found 392.1799.
1-[[1,1-dimethylethyl)diphenylsilyl]oxy]methyl]-1,2,3,3a,8,9-hexahydropyrimido[3,4:7,8]cycloctapro[1,2-d]pyrrolo[1,2-b]isoxazolo-8-ol (6.43):

The reaction mixture was concentrated under reduced pressure and 6.43 was purified by flash column chromatography (8:2/Hx:EtOAc, \(R_f = 0.25 \)), affording a mixture of regio- and diastereomers of 6.43 as a white solid (24.0 mg, 0.041 mmol, 92%).

\(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta 7.71-7.65 \) (m, 33.2H), 7.63-7.51 (m, 6.2H), 7.43-7.14 (m, 93.5H), 5.65-5.60 (m, 3.5H), 5.53-5.49 (m, 1.4H), 5.39-5.35 (m, 1.0H), 5.30-5.16 (m, 5.5H), 5.09-4.99 (m, 3.1H), 2.13-2.05 (m, 16.8H), 1.96-1.85 (m, 7.2H), 1.80-1.68 (m, 8.6H), 1.08, 1.07, 1.07, 1.06 (s, 4 x 3H).

\(^13\)C NMR (CDCl\(_3\), 100 MHz): \(\delta 143.6, 139.1, 136.7, 135.7, 135.7, 135.7, 135.5, 133.7, 133.6, 132.7, 131.6, 131.3, 131.2, 130.4, 130.1, 130.1, 129.8, 129.7, 129.5, 128.9, 128.6, 128.1, 127.6, 127.0, 126.8, 126.6, 125.9, 125.3, 110.3, 109.1, 107.1, 103.5, 73.7, 72.3, 71.5, 69.0, 65.7, 60.4, 45.8, 45.8, 42.1, 40.6, 30.2, 29.6, 29.0, 26.9, 26.8, 26.8, 25.5, 25.4, 21.1, 19.3, 19.2, 14.2. \(\text{HRMS: m/z Calculated for C}_{37}\text{H}_{46}\text{NO}_3\text{Si (M\(^+\)) 574.2777, Found 574.2763.} \)
1,3,4,11,12,16c-hexahydro-12-hydroxy-1-oxo-2H dibenzo[3',4':7',8']cycloct[1',2':4,5]-
isoazolo[2,3-a]pyrazine-2-acetic acid methyl ester (6.44):

The reaction mixture was concentrated under reduced pressure and 6.44 was purified by
flash column chromatography (6:4/Hx:EtOAc, R\text{f} = 0.35), affording a mixture of regio- and
diastereomers of 6.44 as a white solid (17.4 mg, 0.043 mmol, 95\%). 1H NMR (CDCl\textsubscript{3}, 400
MHz): \(\delta\) 7.67-7.64 (m, 2.1H), 7.58-7.55 (m, 1.1H), 7.48-7.10 (m, 29H), 5.81-5.77 (dd, \(J =
11.6, 5.4\) Hz, 1.0H), 5.55-5.23 (m, 2.1H), 5.46-5.43 (m, 3.1H), 5.09-5.04 (dd, \(J = 10.5, 7.3\)
Hz, 1.0H), 4.99-4.94 (dd, \(J = 10.1, 8.1\) Hz, 1.2H), 4.72-4.47 (m, 3.6H), 4.38-4.25 (m, 2.3H),
4.17-4.05 (m, 4.7H), 3.95-3.78 (m, 7.8H), 3.75, 3.74, 3.73, 3.69 (s, 4 x 3H), 3.68-3.43 (m,
8.9H), 3.34-3.10 (m, 8.9H). 13C NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 169.4, 169.2, 169.1, 169.0,
167.3, 165.8, 165.5, 165.2, 152.2, 149.9, 149.8, 148.7, 144.5, 142.8, 140.4, 140.3, 138.2,
136.5, 136.6, 136.4, 133.8, 132.7, 132.4, 131.7, 131.5, 130.7, 130.4, 130.2, 130.1, 130.0,
130.0, 129.8, 129.7, 129.5, 129.3, 129.2, 129.0, 129.0, 128.8, 128.7, 128.7, 128.6, 128.2,
128.0, 128.0, 127.7, 127.6, 127.5, 127.3, 127.0, 126.8, 126.6, 126.5, 126.5, 126.3, 126.2,
125.9, 125.7, 125.6, 125.4, 125.2, 124.8, 124.5, 110.2, 109.3, 108.5, 105.8, 76.1, 74.2, 72.0,
71.9, 71.8, 71.5, 71.3, 68.1, 65.5, 64.3, 60.4, 57.1, 52.6, 52.5, 52.4, 52.3, 52.0, 51.9, 50.5,
50.2, 50.1, 49.2, 48.8, 48.5, 48.4, 48.3, 45.6, 43.7, 43.6, 43.6, 43.5, 43.5, 43.1, 42.4, 40.6, 35.1,
30.9, 30.6, 21.0, 19.1, 14.2, 13.7. HRMS: Calculated for C\textsubscript{23}H\textsubscript{23}N\textsubscript{2}O\textsubscript{5} (M+) 407.1617, Found
407.1634.
3,6-diamino-9-[2-carboxy-4(or 5)-[[[5-]][(11,12-didehydro-5,6-dihydro-dibenzo[a,e]-
-xanthone (6.48):

Alexa Fluor® 488 cadaverine, sodium salt (1mg, 0.00156 mmol) was dissolved in a dry
DMF (0.2 mL) solution containing N,N-diisopropyl amine (1.4 μL, 0.0078 mmol) and 11,12-
didehydro-5,6-dihydroidibenzo[a,e]cycloocten-5-yl carboxylic acid 4-nitrophenyl ester11
(0.8mg, 0.00312 mmol) at r.t. and the reaction was stirred overnight. The solvent was
removed by rotary evaporation and 6.48 was purified by reverse-phase preparative HPLC,
eluting with 10-95% MeCN+0.1%TFA:H\textsubscript{2}O+0.1%TFA gradient in 10 min. Column: Sunfire
C\textsubscript{18}, 19x100mm, flow rate: 17.0 mL/min. 6.48 was obtained as a dark orange solid (0.8 mg,
0.0009 mmol, 58 %). LRMS: Calculated for C\textsubscript{43}H\textsubscript{37}N\textsubscript{4}O\textsubscript{12}S\textsubscript{2} (M+) 865.18, Found 865.2.
3,6-bis(dimethylamino)-9-[2-carboxy-4(or 5)-[[5-[[12-didehydro-5,6-dihydro-

\[
\text{DIBO-TAMRA (6.50)}
\]

5-(and-6)-((N-(5-aminopentyl)-amino)carbonyl)tetramethylrhodamine (10 mg, 0.019 mmol) was dissolved in DMF (0.5 mL). Then 4-nitrophenyl chloroformate dibenzocyclooctyne\(^{13}\) (11.2 mg, 0.029 mmol) and \(\text{Et}_3\text{N}\) (8 \(\mu\)L, 0.057 mmol) were added. The reaction was allowed to stir at r.t. in the absence of light for 4 hrs. After the allotted time, the solvent was removed under reduced pressure. \textbf{6.50} was purified by reverse-phase preparative HPLC, eluting with 40-65\% MeCN+0.1\%TFA/H\(_2\)O+0.1\%TFA gradient in 20 min. Column: Sunfire C\(_{18}\) 19x100mm, flow rate: 17.0 mL/min. \textbf{6.50} was obtained as a dark purple solid (11.9 mg, 0.015 mmol). \textbf{LRMS}: Calculated for C\(_{47}\)H\(_{45}\)N\(_4\)O\(_6\) (M\(^+\)) 761.33, Found 761.3.
N-[5-][5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]-amino]pentyl]-carbamic acid 11,12-didehydro-5,6-dihydrodibenzo[a,e]cycloocten-5-yl ester (6.52):

![DIPO-Biotin](image)

Synthesis previously reported in the literature.11

2-(methylxidoimino)-N-(phenylmethyl)-acetamide (6.53):

![Image](image)

Synthesis previously reported in the literature.17

(2S)-3,4-dihydro-2H-pyrrole-2-methanol 1-oxide (6.46):

![Image](image)

To a stirring solution of 6.11 (39.2 mg, 0.11 mmol) in dry THF (1.5 mL) was added TBAF (132 μL, 0.13 mmol from a 1.0 M solution in THF). The resultant solution was stirred at r.t. for 3 h. Upon completion, the solvent was removed by rotary evaporation and the crude orange oil was purified by flash column chromatography (85:15/CH\textsubscript{2}Cl\textsubscript{2}:CH\textsubscript{3}OH, R\textsubscript{f} = 0.3), affording 6.46 as an off-white solid (12.0 mg, 0.10 mmol, 95 %). 1H NMR (CDCl\textsubscript{3}, 400 MHz): δ 6.93 (m, 1H), 4.15 (m, 1H), 4.02 (dd, J = 12.1, 2.8 Hz, 1H), 3.80 (dd, J = 12.1, 6.9 Hz, 1H), 2.70-2.66 (m, 2H), 2.36-2.30 (m, 1H), 2.02-1.97 (m, 1H). 13C NMR (CDCl\textsubscript{3}, 100 MHz):
\(\text{MHz} \): \(\delta \ 135.9, 72.2, 63.8, 27.1, 21.4 \). **LRMS:** Calculated for \(\text{C}_5\text{H}_{10}\text{NO}_2 (M^+) \) 116.07, Found 116.1.

\[(2S)\]-3,4-dihydro-1-oxido-2\(H\)-pyrrol-2-yl]methyl 2,5-dioxo-1-pyrrolidinyl-carbonic acid ester (6.45):

![Chemical structure](image)

To a stirring solution of 6.46 (3.3 mg, 0.029 mmol) in dry CH\(_3\)CN (0.29 mL), was added DSC (8.7 mg, 0.034 mmol) and Et\(_3\)N (5.2 \(\mu \)L, 0.037 mmol). The reaction was stirred overnight under an atmosphere of argon. Upon completion, 6.45 was used directly for coupling with BSA or EGF.

3,4-dihydro-2-methyl-2\(H\)-pyrrole-2-carboxylic acid 1-oxide (6.57):

![Chemical structure](image)

Synthesis previously reported in the literature.\(^{19}\)
2-methyl-2-((3R,4R,5S)-2,4,5-triacetoxy-6-(acetoxymethyl)-tetrahydro-2H-pyrano-3-ylcarbamoyl)-3,4-dihydro-2H-pyrrole 1-oxide (Ac₄ManNCMPO, 6.56):

A solution of 6.57 (17 mg, 0.12 mmol) dissolved in DMSO (1.2 mL) was treated wth EDC·Cl (38.3 mg, 0.2 mmol) and 1-HOBt (16.2 mg, 0.12 mmol) and was allowed to stir at r.t. for 30 min. Then added D-Mannopyranose, 2-amino-2-deoxy-, 1,3,4,6-tetraacetate, ethanedioate (1:1)²⁹ (52.5 mg, 0.12 mmol) and triethyl amine (33 μL, 0.24 mmol). The reaction mixture was allowed to stir at r.t. for 48 hrs. Upon completion, the solvent was evaporated by high vaccuum rotary evaporation and the crude was purified by reverse phase preparative HPLC, eluting with 10 to 50 % MeCN+0.1%FA/H2O+0.1%FA in 20 min. Column: Sunfire C18, 3.5 μm, 19x100mm, flow rate = 17.0 mL/min. A 1:1 mixture of α and β anomers of 6.56 was obtained as an off-white solid (27.6 mg, 0.058 mmol).

¹H NMR (CDCl₃, 400 MHz): δ 8.84 (d, J = 9.5 Hz, 1H), 8.70 (d, J = 9.4 Hz, 1H), 7.44 (m, 1H), 7.38 (m, 1H), 6.10 (d, J = 1.9 Hz, 1H), 6.03 (d, J = 1.6 Hz, 1H), 5.32-5.27 (m, 3H), 5.17 (t, J = 10.0 Hz, 1H), 4.62-4.56 (m, 2H), 4.25 (dt, J = 12.2, 4.0 Hz, 2H), 4.15-4.02 (m, 4H), 3.03-2.95 (m, 2H), 2.76-2.69 (m, 4H), 2.24-2.11 (m, 2H), 2.18 (s, 3H), 2.17 (s, 3H), 2.13 (s, 6H), 2.05 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H), 1.96 (s, 3H), 1.78 (s, 3H), 1.72 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) : δ 171.0 (C), 171.0 (C), 170.5 (C), 170.2 (C), 170.1 (C), 169.9 (C), 169.4 (C), 169.3 (C), 168.2 (C), 168.2 (C), 143.9 (CH), 143.7 (CH), 91.5 (CH), 91.3 (CH), 79.1 (C), 79.0 (C), 70.4 (CH), 70.4 (CH), 69.6 (CH), 69.6 (CH), 65.5 (CH), 65.1 (CH), 61.5 (CH₂), 61.3 (CH₂), 49.5 (CH), 49.2 (CH), 30.1 (CH₂), 29.6 (CH₂), 25.6 (CH₂), 25.4 (CH₂),
24.0 (CH₃), 23.1 (CH₃), 20.8 (CH₃), 20.7 (CH₃), 20.5 (CH₃), 20.5 (CH₃), 20.4 (CH₃). LRMS: Calculated for C₂₀H₂₉N₂O₁₁ (M⁺) 473.18, Found 473.2.

(3R,4R,5S)-6-(acetoxymethyl)-3-(2-azidoacetamido)-tetrahydro-2H-pyran-2,4,5-triyl triacetate (Ac₄ManNAz, 6.59):

![Chemical structure](image)

Synthesis previously reported in the literature.²⁹

Kinetics measurements of SPANC by¹H NMR:

The appropriate cyclic nitrone and dibenzocyclooctyne (6.1) or 4-dibenzocyclooctynol (6.40) were pre-dissolved in either C₆D₆ or CD₃CN and mixed at equimolar concentrations of ~25 mM. Percent conversion was monitored both by disappearance of starting materials and by appearance of product as determined by integration at multiple chemical shifts in the ¹H NMR spectrum. No other products were detected by ¹H NMR and all reactions were performed in triplicate. Second order rate constants in units of M⁻¹s⁻¹ were determined by plotting 1/[nitrone] versus time and subsequently using analysis by linear regression. The second order rate constant $k₂$ (M⁻¹s⁻¹) corresponded to the determined slope. Plots for reactions of cyclic nitrones with dibenzocyclooctyne (6.1) in C₆D₆ (25 mM) are shown (Figure 6-6). Plots for reactions of cyclic nitrones with 4-dibenzocyclooctynol (6.40) in CD₃CN (25 mM) are shown in Figure 6-7.
Figure 6-6. Kinetics of SPANC with dibenzocyclooctyne by 1H NMR. Reactions of cyclic nitrones (6.30, 6.22, 6.11, 6.31, 6.17 and 6.2) with dibenzocyclooctyne (6.1) in C$_6$D$_6$ (25 mM).
Figure 6-7. Kinetics of SPANC with 4-dibenzocyclooctynol by 1H NMR. Reactions of cyclic nitrones (6.2, 6.30, 6.22 and 6.11) with DIBO (6.40) in CD$_3$CN (25 mM).

Kinetics Measurements of SPANC Versus SPAAC by Absorption Spectroscopy:

Rate measurements of cycloadditions of Ac$_4$ManNCMPO (6.56) or Ac$_4$ManNac (6.59) with DIBO (6.40) in acetonitrile at 25 ± 0.1 °C were performed under pseudo-first order conditions by UV-visible spectroscopy with 6.56 and 6.59 in at least 100 fold excess. Reactions were monitored by following the decay of the absorbance at the characteristic wavelengths specified and were repeated in triplicate. For each sample the absorbance (Abs.) at 287 nm (for 6.56) or 297 nm (for 6.59) was monitored until reaction was complete as determined by no further change in absorbance. Pseudo first order rate constants (k_{obs}) in units of s$^{-1}$ were determined from the slope obtained by plotting Ln(Abs. – Abs$_{final}$) versus time. The second order rate constant, k_2 (M$^{-1}$s$^{-1}$), was determined by plotting k_{obs} versus
concentration of 6.56 or 6.59, respectively (Figure 6-8); the slope of the line corresponded to \(k_2 \).

Figure 6-8. Kinetic studies of SPANC versus SPAAC by absorption spectroscopy. A) Reaction of Ac₄ManNCMPO (1.53, 1.67, 1.8, 1.93 mM) with DIBO (0.015 mM) in CH₃CN monitored at \(\lambda = 287 \) nm. B) Reaction of Ac₄ManNAz (1.5, 1.8, 2.07, 2.33 mM) with DIBO (0.015 mM) in CH₃CN monitored at \(\lambda = 297 \) nm. The second order rate constant \(k_2 \) (M⁻¹s⁻¹) was determined from multiple pseudo-first order rate constants (\(k_2 = k_{obs}[Ac₄ManNAc] \)).

Hydrolysis Studies of Acyclic and Cyclic Nitrones at Variable pH of Solution:

The acyclic nitrone\(^{11}\) (20 µL, 0.01 mmol from a 500 mM stock in DMSO) or cyclic nitrone (20 µL, 0.01 mmol from a 500 mM stock in DMSO) was added to either PBS 1x (980 µL), 10 mM NaOH (980 µL), 100 mM NaOH (980 µL), 10 mM HCl (980 µL) or 100 mM HCl (980 µL). Hydrolysis was monitored by disappearance of the acyclic nitrone as determined by reverse phase analytical HPLC (Figure 6-5). The concentration of nitrone remaining (nitrone %) was determined by substituting the peak area from the HPLC chromatogram into the equations of nitrone calibration curves.\(^{32}\)
In vitro SPANC labeling of BSA and EGF:

Cyclic Nitrone Modification of BSA or EGF via NHS Coupling:

The NHS-activated nitrone, 6.45 (2 μL, 200 nmol from a 100 mM freshly prepared stock in CH₃CN) was added to a solution of BSA (10 nmol) or EGF (8 nmol) in phosphate buffered saline pH =7.4 (100 μL, PBS: 137 mM NaCl, 2.7 mM KCl, 8 mM Na₂HPO₄, and 2 mM KH₂PO₄). The reaction was incubated on a shaking platform over night at r.t. Upon completion, nitrone modified BSA (6.47) was first diluted with PBS (15 mL) and then concentrated in an Amicon Ultra-15 centrifugal filter device (Millipore) with a 10-kDa molecular weight cut off (MWCO) by centrifugation at 4000 g. In the second case of nitrone modified EGF (6.49), the sample was diluted with PBS (15 mL) in an Amicon Ultra-15 filter device (Millipore) with a 3-kDa MWCO and was concentrated by centrifugation at 4000 g. For both samples, the process was repeated twice more to remove excess 6.45, excess coupling reagents and byproducts from the NHS activation of 6.46. The samples were concentrated to final volume of 200-500 μL. The final concentration of 6.47 was determined by a Bio-Rad Bradford Protein Assay (BIO-RAD) against BSA standards. The final concentration of 6.49 was calculated based on the volume remaining in the device. MALDI-MS of 6.47 and unmodified BSA samples indicated that there was on average four cyclic nitrones incorporated (Figure 6-9A and B, respectively). The MALDI-MS of 6.49 and EGF indicated that there were an average of two nitrone groups incorporated (Figure 6-9C and D, respectively).
Figure 6-9. MALDI-MS/MS post-modification of BSA and EGF with **6.45**. A) MS of BSA; B) MS of nitrone modified BSA (**6.47**); C) MS of EGF; D) MS of nitrone modified EGF (**6.49**).

In vitro SPANC Labelling of Nitrone Modified BSA with DIBO-488:

The crude nitrone modified BSA, **6.47** (7.36 μL, 0.25 nmol from a 34 μM stock in PBS) was diluted with PBS (993 μL) and was reacted with DIBO-488, **6.48** (1.25 μL, 1.25 μmol from a 100 mM stock solution in PBS). The reaction was incubated on a shaking platform at r.t. in the absence of light for 0-60 min. During this time course experiment, a negative control (-) sample contained unmodified BSA (0.25 nmol) solution in PBS (1 mL) in the presence of DIBO-488 (1.25 μmol). This was used to confirm specific time dependent labelling of BSA via SPANC. At each time point, a 40 μL aliquot from the SPANC reaction and negative control was quenched with cyclic nitrone **6.22** (2 μL, 200 μmol from a 100 mM stock solution in DMSO). Each quenched BSA sample (20 μL) and negative control (20 μL) was
diluted with 4 μL of 6X sodium dodecyl sulphate polyacrylamide gel electrophoresis sample buffer (SDS-PAGE, 300 mM Tris pH 6.8, 12% w/v SDS, 60% glycerol, 600 mM dithiothreitol) and was heated at 95 °C for 10 min. The samples and negative controls were separated by 10 % Tris-glycine SDS-PAGE. After electrophoresis, the gel was imaged using the Fluorescent Method Bio Image Analyzer FMBIO III (Hitachi, Tokyo, Japan). The band intensities corresponding to fluorescently labelled BSA (Figure 6-2B, upper left gel) were quantified with ImageJ software (National Institutes of Health, Bethesda, MD). After the fluorescence measurement, the same gel was silver stained for protein content (Figure 6-2B, lower left gel).

In vitro SPANC Labelling of Nitrone Modified EGF with DIBO-TAMRA:

The crude nitrone modified EGF, 6.49 (64.8 μL, 1.25 nmol from a 19.3 μM stock in PBS) was diluted with PBS (435.2 μL) and was reacted with DIBO-TAMRA, 6.50 (62.5 μL, 6.25 μmol from a 100 μM stock solution in DMSO). The reaction was incubated on a shaking platform at r.t. in the absence of light for 0-60 min. During this time course experiment, a negative control (-) sample contained unmodified EGF (1.25 nmol) solution in PBS 1x (0.5 mL) in the presence of DIBO-TAMRA (6.25 μmol). At each time point, a 40 μL aliquot from the SPANC reaction and negative control was quenched with cyclic nitrone 6.22 (2 μL, 200 μmol from a 100 mM stock solution in DMSO). Each quenched EGF sample (20 μL) and negative control (20 μL) was diluted with 4 μL of 6X sodium dodecyl sulphate polyacrylamide gel electrophoresis sample buffer (SDS-PAGE, 300 mM Tris pH 6.8, 12% w/v SDS, 60% glycerol, 600 mM dithiothreitol) and was heated at 95 °C for 10 min. The samples and negative controls were separated by a 16 % tricine SDS-PAGE gel. After electrophoresis, the gel was imaged using the Fluorescent Method Bio Image Analyzer.
FMBIO III (Hitachi, Tokyo, Japan). The band intensities corresponding to fluorescently labeled EGF (Figure 6-2C, upper right gel) were quantified with ImageJ software (National Institutes of Health, Bethesda, MD). After the fluorescence measurement, the same gel was silver stained for protein content (Figure 6-2C, lower right gel).

In situ Imaging of Cancer Cells via SPANC:

Cell culture:

The MDA-MB-468 (breast cancer) cell line was maintained in Leibovitz’s L-15 medium supplemented with 10% fetal bovine serum (FBS; CANSERA), 50 U/mL penicillin and 50 μg/mL streptomycin in a humidified incubator at 37 °C with 100 % atmospheric air.

Fixed Cell Labelling of EGFRs by SPANC:

MDA-MB-468 cells were seeded at 20 x 10⁴ cells/well in 12 well tissue culture plates in 1 mL of Leibovitz’s L-15 medium supplemented with 10 % fetal bovine serum (FBS; CANSERA), 50 U/mL penicillin and 50 μg/mL streptomycin. After 24 h, appropriate samples were treated with BSA (1% in serum free medium) for 30 min at r.t. to block non-specific binding of EGF. The samples were subsequently, treated with cyclic nitrone modified EGF 6.49 (1 μM) and incubated for 5 min at 4 °C. In parallel, the negative control samples were treated with unmodified EGF (1 μM). The cells were washed with media (3X) and PBS (3X) and treated with DIBO-biotin 6.52 (10 μM) for 30 min at r.t. in serum-free media. The cells were washed with media (3X) and PBS (3X), blocked with 1% BSA (in serum free media) for 30 min at r.t., and then stained with FITC-streptavidin (5 μg/mL in PBS) for 30 min at r.t. Cells were then washed with media (2X) and PBS (2X), and then fixed by applying fixing solution (4% paraformaldehyde, 4% sucrose in dH₂O) for 15 min at
4 °C. Once the coverslips were mounted on slides, the cells were imaged with an Olympus 1X81 spinning-disk confocal microscope equipped with a FITC filter (Semrock, Excitation: 465-499 nm, Emission: 516-556 nm) and a Photometrics (Coolsnap ES) camera using 100x magnification. Images were taken of samples and controls using both bright-field and the FITC channel (1 s exposure). Image processing was done using ImageJ software, applying pseudocolour to FITC channel images. The same pixel-intensity ranges were applied and displayed for all images taken.

![Figure 6-10](image)

Figure 6-10. Fixed cell imaging of EGFRs via SPANC. Highly specific fluorescent labeling for 8 fields of view (A and B, n = 41) relative to the negative controls (C and D, n = 47). For each image, fluorescence mode is on top and bright field is on the bottom (B and D). The labeling experiment was repeated once with consistent results.
References

(2) Best, M. D. Biochemistry 2009, 48, 6571-6584.

222

Spectral Data