Development of New Biarylphosphane Coinage Metal Complexes for the Regioselective Synthesis of Fused Carbocycles

by

Patrick Levesque

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements for the
Masters Science (M.Sc.) degree in chemistry

Candidate
Patrick Levesque

Supervisor
Dr. Louis Barriault

Ottawa-Carleton Chemistry Institute
Faculty of Science
University of Ottawa

© Patrick Levesque, Ottawa, Ontario, Canada, 2012
À mes parents, Jocelyne et Normand…
Abstract

In the last century, no less than five nobel prizes have been awarded for the construction of carbon-carbon bonds: The Grignard reaction (1912), the Diels-Alder reaction (1950), the Wittig reaction (1979), Olefin metathesis (2005) and palladium cross-coupling reactions (2011). The latter two are transition metal catalyzed transformations and their impact on the synthesis of pharmaceutically active compounds, bulk chemicals, fine chemicals, high tech materials as well as agricultural chemicals has been phenomenal. These reactions have changed the way the scientific community views the science of synthesis.

Unlike palladium, gold has long been considered to be an expensive and inert metal and therefore, research on Au catalysis was scarce until the beginning of the new millennium. Once the scientific community realized the treasure trove of reactivity that gold had to offer, the number of chemical transformations as well as total syntheses involving Au(I)/Au(III) catalysis has sky rocketed. A methodology initially developed by Toste and coworkers has shown that intramolecular addition of a silyl enol ether on alkynes proceeds via a 5-exo-dig process. In the first part of this thesis, we will discuss how the ancillary ligand on Au(I) species can influence pathway selectivity for these cyclizations, therefore opening the door to selective 6-endo-dig cyclizations to generate fused carbocycles.

With biological processes as well as other competing processes becoming ever more efficient, the future of chemical synthesis is threatened. If it is to survive, the focus of new chemical transformations will have to be on the cost and the greeness of the process. In the second part of this thesis, we will demonstrate how Ag(I) and Cu(I) complexes can offer even better 6-endo-dig selectivity than analogous Au(I) complexes. Silver is about 56 times less expensive than gold, and copper is about 453 times less expensive than gold. Due to the greatly increased selectivity as well as the diminished cost of the catalysts, we have provided access to an attractive 6-endo-dig cyclization process.
Mes premiers remerciements vont à celui qui m’a donné la chance de travailler dans un labo de chimie pour la première fois il y a un peu plus de quatre ans. Son enthusiasme contagieux pour la chimie et ses conseils ont été d’une valeur innestimable. Par-dessus tout, je suis reconnaissant pour la confiance qu’il m’a accordé; j’ai eu la chance de suivre mes instincts, de prendre des risques et des directions comme bon me semblait, et je crois sincèrement que c’est ce qui a fait de ma maitrise une expérience d’apprentissage si enrichissante. Merci Louis.

Mes seconds remerciements vont à mes parents et à ma sœur pour tout le support qu’ils m’ont donné durant les dernières années. Merci pour les encouragements, les discussions, les conseils et la bouffe! Mom et Dad, merci de toujours être là pour moi.

Troisièmement, je veux remercier mes amis pour le bon temps (bien arosé!) passé ensemble, les soupers, les voyages et les sorties. Je suis très chanceux de vous avoir et je vous remercie pour tout le support et l’encouragement que vous m’avez communiqué au cours des années. Merci François (Pompom) et Anna, Joël et Danielle, Sophie, Carine et Pascal Lafrance, Mackenzie, Brian et Mélissa, Patrick Kilfoil, Frank G., Jonathan, Pascal Lacombe, Martine et Valérie.

My stay in the lab would not have been the same without the extraordinary people with whom I worked side by side every day. Firstly, I want to acknowledge Christiane Grisé-Bard, who was my first supervisor and who taught me almost everything there was to know about lab work. Christiane, you are truly and inspiration and I am forever thankful for all that you have given me. Deuxièmement, je tiens à remercier Francis Barabé, mon voisin de hotte. Francis, je n’aurais pas pu demander une meilleure personne avec qui travailler durant les dernières années. Merci d’avoir tout partagé, pour tes conseils, pour les discussions à La Maison et surtout, pour ton amour de la chimie. Guillaume, merci pour les sessions de

Acknowledgements
remue-méninge, pour les soirées en bonne compagnie, pour tes bonnes idées et pour ton amitié. Jason, merci pour les discussions tard au labo et pour tes conseils. David, merci de m’avoir recommandé à Louis 4 ans passés. Travis, your enthusiasm and good mood was contagious. Thanks for the Easter and Thanksgiving dinners and for all the fun talks in the lab. To everyone, including Gab, Dan, Gen, Joël, Kass, Boub, Sophie, Mylène, Phil and Stephanie I say, thank you for such a great time!

Je tiens aussi à remercier Mathieu Morin, l’étudiant que j’ai supervisé durant une année. Matt, merci pour tout ton travail, pour ton sens critique et pour les soirées Call of Duty! Bonne chance pour tes études graduées!

Je tenais aussi à remercier Pierre-André Fournier, mon superviseur chez Merck Frosst, qui a su me transmettre des connaissances et une passion pour la chimie qui demeureront avec moi tout au long de ma carrière.

There are people in the department who make an organic chemist’s life so much easier and I believe they deserve to be acknowledged for the amazing work they do. I therefore want to thank Dr. Ilia Korobkov (X-ray) and Dr. Glenn Facey (NMR) for outstanding work. I also want to thank Dr. Khalid AlBahily for all the time he devoted to helping me make a cobalt catalyst. Merci Dr. Mathieu Leclere pour ta générosité et pour ton temps. Special thanks to Prof. André Beauchemin, Prof. Tony Durst, Nick Beach, Justin Lummiss, Carolyn Higman, Dr. Indira Thapa, Dr. Sebastiano Licciulli and Bala for fruitful discussions and advice. Merci à Loraine Houle, Josée Rouleau, Elvira Evangelista, Annette Campeau et Linda Baron pour leur bon travail.

Finally, I wish to express my gratitude towards NSERC, Merck Frosst and the University of Ottawa for generous funding, scholarships and work opportunities.
Table of Contents

Abstract .. 3
Acknowledgements .. 4
Table of Contents ... vi
Figures .. viii
Schemes .. ix
Tables ... x

Chapter 1 Introduction ... 1
 Addition reactions to C-C multiple bonds .. 1
 Gold-catalyzed cyclizations .. 9
 Silver & Copper-catalyzed cyclizations ... 16

Chapter 2 Au(I)-Catalyzed Synthesis of Fused Carbocycles ... 22
 Introduction .. 22
 Reaction Optimization .. 25
 Cyclization of Aryl Substituted Substrates .. 28
 Cyclization of Methyl Substituted Substrates .. 32
 Cyclization of Vinyl Substituted Substrates ... 35
 Ligand Synthesis ... 44

Chapter 3 Silver(I) / Copper(I)-Catalyzed Synthesis of Fused Carbocycles 51
 Introduction .. 51
 Reaction optimization – Aryl Substituted Alkynes ... 53
 Reaction optimization – Methyl Substituted Alkynes .. 55
 Reaction optimization – Terminal Alkynes .. 58
 Reaction Scope .. 61

Chapter 4 Summary and Outlook ... 64
 Summary .. 64
 Outlook ... 66
Chapter 5 Experimental ...68
 General Information ... 68
 General Procedure A – Synthesis of Silyl Enol Ethers 69
 General Procedure B – Synthesis of Silyl Enol Ethers with Alkene Substituted Alkynes 70
 General Procedure C – Au(I)-Catalyzed cyclizations 86
 General Procedure D – Ag(I)-Catalyzed cyclizations 87
 General Procedure E – Cu(I)-Catalyzed cyclizations 87
 Synthesis of Steroid-analogues 2.14a and 2.14b 116
 Synthesis of L7 .. 118
 Synthesis of Phosphine oxide 2.19 ... 120
 General procedure F – Synthesis of Buchwald-type phosphines via alkylation 122
 Synthesis of L1b via Pd-Coupling .. 124
 General procedure G - Synthesis of Au(I) catalysts 125
 General procedure H - Synthesis of Ag(I) catalysts 130
 General procedure I - Synthesis of Cu(I) catalysts 135

Glossary of Abbreviations ..137

References ..139
Figures

Figure 1.1 General Catalytic Cycle of Nucleophilic Additions to Alkynes2
Figure 1.2 Baldwin’s Original and Revised Geometry of Nucleophilic Additions3
Figure 1.3 Effect of Thermodynamic Bias on the Kinetic Competition between 5-exo and 6-exo-dig processes in fully conjugated systems (Modified figure from Alabugin et al.) ...5
Figure 1.4 Relative TS and Product Energies for 5-exo and 6-endο-dig Cyclizations in a Simplified System according to DFT calculations by Alabugin et al.6
Figure 1.5 Literature examples of 5-exo and 6-exo-dig cyclizations that proceed via anionic closure* (modified figure from Alabugin et al.) ...7
Figure 1.6 Calculated (Hartree Fock) Bond Energies of AuH With and Without Relativistic Effects (Modified figure from Toste et al.) ..10
Figure 1.7 Orbital Diagram Illustrating the Major Bonding components between a Transition Metal and an Alkyne Ligand ..11
Figure 1.8 Initial Experimental Evidence of Carbene-like Behavior ...12
Figure 1.9 Comparison of Reactivity between AuCl and InCl₃ in the Metal-Catalyzed Synthesis of Halophenanthrenes ...13
Figure 1.10 Effect of π-acidity of the ancillary ligand on the reactivity of Au(I)-carbene complexes ..14
Figure 1.11 Effect of π-acidity of the ancillary phosphine ligand on pathway selectivity15
Figure 1.12 Effect of π-acidity of the ancillary NHC ligand on pathway selectivity16
Figure 1.13 Bond lengths and angles of monomolecular coinage metal alkyne complexes obtained by Kroll and coworkers ..17
Figure 1.14 Echavarren Ag(I)-Catalyzed Carbostannylation of Alkynes20
Figure 2.1 Literature examples of Conia-Ene type cyclizations catalyzed by Au(I)23
Figure 2.2 Proposed Selective Syntheses of Fused Carbocycles Enabled by Selective Conditions for 5-exo-dig and 6-endο-dig Cyclizations ...24
Figure 2.3 Effect of L₁ Ligands on the endo:exo Ratio for the cyclization of 2.1a27
Figure 2.4 Percentage of Endo Product Generated Following the Cyclization of Substrates 2.4c-e-j ...32
Figure 2.5 Natural Products Potentially Accessible via Selective 6-exo-dig Cyclizations (Newly-formed Bond Illustrated in Blue) ...33
Figure 2.6 Proposed One-pot Synthetic Procedure for the Synthesis of Steroids and Terpenes ...36
Figure 2.7 Set-up for Cross-trimerization reactions ...46
Figure 2.8 X-ray structure of L₇AuCl ...48
Figure 3.1 X-Ray Structure of L₈AuCl ..52
Figure 3.2 Cationic Au(I), Ag(I) and Cu(I) Complexes with L₂a and MeCN ligands52
Figure 3.3 Mechanism for the formation of 2.6c and 2.7c using Ag(I) catalysts56
Figure 3.4 Determination of the Mechanism of Ag(I)-catalyzed Cyclizations of Terminal Alkynes 3.3 using D₂O ...61
Schemes

Scheme 1.1 Brønsted Acid Catalyzed Addition on to C-C multiple bonds.......................... 1
Scheme 1.2 Effect of annealed ring size on 5-exo-dig vs 6-endo-dig selectivity................... 8
Scheme 1.3 Looper’s regioselective hydroamination of propargylguanidines 18
Scheme 1.4 Dake Ag(I)-Catalyzed Cycloisomerization of Enamine 1.16 19
Scheme 1.5 Dixon and coworker’s Cu(I)-catalyzed Iminium/Enamine/Carboanulation cascade ... 20
Scheme 2.1 Mechanism for the formation of allenes 2.7c-d ... 35
Scheme 2.2 Proposed Au(I)-Catalyzed Cyclization of Enynes .. 36
Scheme 2.3 Initial Cyclization Attempt of 2.8c ... 37
Scheme 2.4 Proposed Mechanism for the Formation of Tricyclic Compounds 38
Scheme 2.5 Trapping and Deuteration Experiments for the Cyclization of Enyne 2.8c 39
Scheme 2.6 Diels-Alder reaction of 2.8c with N-Phenylmaleimide 43
Scheme 2.7 Representative Example of Heller’s Co(I)-Catalyzed Cross-Cyclotrimerization ... 44
Scheme 2.8 Friedel-Crafts acylation and attempts at the formation of vinyl chloride 2.17 ... 45
Scheme 2.9 Conversion of acetophenone 2.16 to phosphine oxide 2.19 via arylacetylene 2.18 ... 45
Scheme 2.10 Cross-trimerization of phosphine oxide 2.20 with acetylene 46
Scheme 2.11 Cross-trimerization attempt of 2.19 with 3-hexyne 47
Scheme 2.12 Synthesis of Phosphine L7 .. 47
Scheme 2.13 Attempt at the Synthesis of Phosphine Oxide 2.25 48
Scheme 2.14 Proposed Synthesis of Highly Functionalized biaryl phosphines 2.26-2.28 ... 48
Scheme 2.15 Synthesis of L1b by Pd-Coupling ... 49
Scheme 2.16 Alkylation Method for the Synthesis of Buchwald-Type Phosphines 49
Scheme 2.17 Synthesis of Cationic Au(I)-Complexes ... 50
Scheme 4.1 Selected Example of Ligand Effect on the cyclization of 2.8i 64
Scheme 4.2 Diels-Alder reaction of 2.8c with phenylmaleimide 65
Scheme 4.3 Ag(I)-Catalyzed 6-endo-dig Cyclization of 2.1a ... 65
Scheme 4.4 Ag(I)-Catalyzed 6-endo-dig Cyclization of 2.4c .. 66
Scheme 4.5 Cu(I)-Catalyzed Cyclization of 3.1 .. 66
Tables

Table 1.1 Obtuse angle of attack on alkynes determined from Alabugin and coworkers’ DTF calculations

Table 2.1 Optimization of the Au(I)-Catalyzed Cyclization of 2.1

Table 2.2 Cyclization of Phenyl Substituted Alkynes 2.1

Table 2.3 Effect of Polarization on Au(I)-catalyzed cyclization of Aryl substituted alkynes 2.1

Table 2.4 Cyclization of Methyl Substituted Alkynes 2.4

Table 2.5 Cyclization of Vinyl Substituted Alkynes 2.8a-d

Table 2.6 Cyclization of Substituted Enynes 2.8d-k

Table 3.1 Optimization of the cyclization of 2.1a using coinage metal catalysts

Table 3.2 Optimization of the cyclization of 2.4c using coinage metal catalysts

Table 3.3 Optimization of the cyclization of 3.1 using coinage metal catalysts

Table 3.4 Substrate Scope of Selective 6-endo-dig Ag(I) or Cu(I)-Catalyzed Cyclizations
Gold, silver, copper, mercury and platinum are metals that even non-chemists are aware of. Whether it is because their watch is made of gold and silver, or the copper wires in their homes, or the mercury thermometer indicating the outside temperature, or because their favorite album has gone “platinum”, they are aware that these metals exist. Oddly, the most well known metal, gold, had received little attention from the organic chemistry community until the end of the 1990’s. Silver on the other hand, has not yet received broad attention.

Addition reactions to C-C multiple bonds

Additions of nucleophiles onto C-C multiple bonds by Brønsted acid catalysis (Scheme 1) generally requires harsh reaction conditions. Furthermore, the generation of the carbocation intermediate engenders the possibility for a number of side reactions giving rise to undesired side products.\(^1\) Replacement of H\(^+\) with an isolobal “soft” Hg\(^{2+}\) ion was once a classical way of solving some of these problems.\(^2\) However, the toxic nature of mercury salts, which are often produced in stoichiometric quantities, due to the kinetically stable (sp\(^3\)) carbon-mercury bond, is a major handicap.\(^2,3\)

Scheme 1.1 Brønsted Acid Catalyzed Addition on to C-C multiple bonds
The logical alternative is to use a “soft” Lewis acid that has high affinity for C-C multiple bonds and a labile metal-carbon bond to insure turnover in a catalytic cycle (Figure 1.1). Such metals include, but are not limited to, Au, Ag, Cu, W, In, Pd, Zn and Pt.

Additions of various nucleophiles onto C-C multiple bonds can occur intermolecularly as well as intramolecularly. In the case of intramolecular nucleophilic additions, a cyclization occurs. It was Jack E. Baldwin who first proposed, in 1976, a set of rules to guide synthetic chemists in planning syntheses. Baldwin’s rules for ring closure are based on the ring size being formed and on the geometry of the carbon undergoing the ring closing reaction (Figure 1.2). At the time, nucleophilic additions onto tetrahedral carbons were known to occur according to Walden’s inversion of the S_N2 reaction, meaning that the nucleophilic attack occurred at an angle of 180° from the leaving group. Bürgi and Dunitz had only just published their findings on the ideal angle of 109° for carbonyl additions. However, the ideal angle of 120° for additions onto digonal carbons was postulated according to limited information available at the time.
In 2011, Alabugin and Gilmore decided it was time to reconsider Baldwin’s rules for ring closure pertaining to alkyne cyclizations. Baldwin’s assumptions of an acute angle of attack, when $\alpha = 60^\circ$, was based on his conception of a general predominance of endo ring closures for digonal systems as well as some x-ray studies. However, the acute angle of attack does not comply with molecular orbital predictions, which suggest an obtuse angle of attack in order for the attack trajectory to be directed at the alkyne π^* orbital. According to higher level calculations, the obtuse is indeed the preferred angle, although it varies according to the nucleophile and whether the transition state (TS) is considered as and early TS ($\alpha \approx 115^\circ$) or a late TS ($\alpha \approx 130^\circ$). These findings corroborate stereoelectronic considerations, as the obtuse approach minimizes interaction of the incoming nucleophile with the nodal plane of π^*-orbital. When these considerations are put in the context of an intramolecular digonal cyclization, the obtuse angle of attack would imply stereoelectronic preference for the exo trajectory over the endo trajectory (Table 1.1).
Table 1.1 Obtuse angle of attack on alkynes determined from Alabugin and coworkers’ DTF calculations

<table>
<thead>
<tr>
<th>Cyclization mode</th>
<th>Obtuse angle of attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-exo</td>
<td>140°</td>
</tr>
<tr>
<td>4-endo</td>
<td>76°</td>
</tr>
<tr>
<td>4-exo</td>
<td>133°</td>
</tr>
<tr>
<td>5-endo</td>
<td>82°</td>
</tr>
<tr>
<td>5-exo</td>
<td>116°</td>
</tr>
<tr>
<td>6-endo</td>
<td>99°</td>
</tr>
</tbody>
</table>

If one considers the ideal obtuse angle to be 115-130°, then the ideal angle of attack should favor 3-exo-dig and 4-exo-dig cyclizations. However, according to Baldwin’s rules, 3-exo-dig and 4-exo-dig cyclizations are disfavored. Although no example of 3-exo and 4-exo-dig cyclizations were known at the time Baldwin proposed his rules for ring closure, a few examples of 3-exo cationic and anionic ring closures have since surfaced in the literature. To reconcile the ideal obtuse angle of attack postulate with the predominance of 4-endo and 5-endo cyclizations, Gilmore and Alabugin have proposed that in the case of small (3-4-membered) ring systems, the intrinsic stereoelectronic preference for the exo cyclizations can be masked by the greater thermodynamic stability of the less strained endo-products. As the ring size increases, the obtuse angle of attack in endo-type cyclizations becomes more favorable and starts to compete with exo-type cyclizations; this is the case for 6-endo-dig processes although 5-exo-dig cyclizations are typically preferred. The later remark brings into context the thermodynamic aspects of these cyclizations. In the case of thermodynamic processes, the nature of the bonds being formed needs to be considered especially in the case of heterocycles. One also needs to consider that thermodynamic contributions are not negligible even when reactions proceed under kinetic control since thermodynamic factors may relax stereoelectronic requirements (optimal trajectories) therefore modifying kinetic predispositions of the Baldwin rules. Furthermore, exothermic processes are known to have earlier, reactant-like transition states, which require less distortion of the initial geometry of the reactants and therefore, if these conditions are met, the decreased distortions permit optimal obtuse angle of attack. Also, based on Marcus’ theory, favorable thermodynamic
contributions can effectively reduce the activation energy of a process, it is therefore inappropriate to compare the favorability of the nucleophile’s trajectories of two processes (exo vs endo) when their exothermicities are different. The generation of an aromatic product is a great example of how thermodynamic bias (large negative ΔG) can have a large impact on the activation energy (E_a). The theoretical activation energy of the 6-endo-dig TS, based on assumed identical exothermicities of both the 5-exo and 6-endo processes, is much higher than the TS energy of the 5-exo-dig process. However, the large ΔG effectively reduces the E_a of the 6-endo-dig process and thereby makes it kinetically competitive (Figure 1.3).

Figure 1.3 Effect of Thermodynamic Bias on the Kinetic Competition between 5-exo and 6-endo-dig processes in fully conjugated systems (Modified figure from Alabugin et al.)

The cyclizations discussed hereafter will concern cyclizations of the 5-exo-dig and 6-endo-dig type as these are the ones that we have studied. As stated, 6-endo-dig cyclizations have a more favorable obtuse angle of attack than analogous endo cyclizations of smaller ring sizes. Therefore, the 6-endo-dig process becomes competitive with the 5-exo-dig process. However, the 5-exo-dig TS is still favored by 7.8 kcal/mol in simplified systems (Figure
1.4)10, which implies that only the 5-exo product would be observed as it is generally the case.

Figure 1.4 Relative TS and Product Energies for 5-exo and 6-endo-dig Cyclizations in a Simplified System according to DFT calculations by Alabugin et al.10

Structural aspects have a tremendous impact on the predisposition of a molecule to undergo 5-exo or 6-endo-dig cyclizations. As seen in Figure 1.5,8 certain motifs are less predisposed to undergo 6-endo-dig cyclizations, as in the case of motifs A and B. In the case of motifs C and E, if one omits unsaturations in the linker, these motifs are also ill-disposed to undergo 6-endo-dig cyclizations. One can therefore deduce that the addition of an unsaturation in the linker between the nucleophile and the alkyne induces more selectivity for the 6-endo-dig pathway. It is worth noting that one of the determining factors for selectivity is the polarization of the alkyne, as seen for motif D. These biased motifs generally favor a Michael-type conjugate addition, although if one can produce thermodynamic conditions, both products can sometimes be accessed, as was the case for Miranda and coworkers14, as represented in the F motif. It is also noteworthy that the 6-endo-dig cyclization will generally be preferred when the cyclization product contains internal strain, as in the case of bridged rings.15,16 Internal strain also plays an important role in the case of fused ring systems with different annulated ring sizes (Scheme 1.2)8,17, although one might argue that in this
particular case the electronic properties or the heterocycle compared to the phenyl ring might also have had an impact on the selectivity.

Figure 1.5 Literature examples of 5-exo and 6-endo-dig cyclizations that proceed via anionic closure (modified figure from Alabugin et al.)

<table>
<thead>
<tr>
<th>Motif</th>
<th>5-exo</th>
<th>6-endo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>$X = CR_2, O$ $R' = Ph$</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>$X = C$ $R' = Ar, TMS$</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>$X = CR$ $R' = Alk$</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>$X = CR$ $Y = O$ $R' = C(O)R$</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>$X = CR_2, NR, O$ $Y = O$ $R' = H, C(O)R, Ar$</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>$X = O$ $R' = Ar$</td>
</tr>
</tbody>
</table>

a X marks gaps in the literature.
In strictly anionic cyclizations, alkyl substituents have a higher activation barrier for both endo and exo cyclization pathways when compared to their analogous terminal alkyne counterparts. The cyclization of phenyl substituted alkynes however, appears to be a barrierless process. This implies that a phenyl substituent instead of a methyl substituent accelerates the reaction by a factor of 10^6. According to DFT calculations, a phenyl substituent also renders the 5-exo-dig cyclization >12 kcal/mol more exothermic than other 5-exo-dig ring closures (Figure 1.5). TMS substituents typically induce exo-selectivity with relatively low activation energies when compared to methyl substituents.

Previously discussed cyclizations have, for the most part, been anionic, uncatalyzed cyclizations. Contrary to uncatalyzed cyclizations, Lewis Acid (LA) promoted ring formations tend to form 6-endo products more easily, but this is predominantly the case when an aromatic product is formed or when the newly formed ring contains more than one unsaturation. The same principles for anionic 5-exo-dig and 6-endo-dig cyclizations apply to LA-catalyzed cyclizations. It is worth noting however, that the metal itself may have unique influence on the reactivity and selectivity. As these properties are metal and ligand specific, we will only discuss cases relevant to our work on Au(I)-catalysis, and by extension to Ag(I) and Cu(I) systems, in the following sections.
Gold-catalyzed cyclizations

Gold is a metal that is as old as history; gold chemistry however, is fairly young when compared to other transition metals. Au(I)/(III) complexes show distinctive reactivity21 and catalysis by Au(I) has now blossomed into a very wide and competitive field. The unique reactivity of gold can be attributed, in part, to relativistic effects.22,23 It is not the objective of this work to explain the fundamental and theoretical aspects of relativism but to explain the consequences of relativism on the properties of gold as a metal catalyst.

Relativism causes contraction of the atomic s and p orbitals, which results in an increased shielding effect which induces an expansion of the atomic d and f orbitals. In the case of Au, it implies the contraction of the 6s atomic orbital and expansion of the 5d orbital (Figure 1.6).23,24,25 One of the direct consequences of relativism for gold is the increase in M-L bond strength, where M is the metal and L is any ligand. However, these types of bond contractions are sensitive to the nature and electronegativity of the ligands.26 For example, the bond contractions are more significant for Au-phosphine bonds than for Au-halogen bonds.

Theoretical calculations suggest that the 5d electrons of Au are located at a lower energy than the 3d electrons of Cu because of decreased electron repulsion of the more diffuse 5d electrons of Au. The consequence of this is that Au species tend to be both less nucleophilic and less prone to oxidative additions.27 More calculations have indicated that reductive elimination from Au(III) species is disfavored.28 Therefore, one may expect that Au does not generally cycle between oxidation states, although it should be noted that progress in this field has been made and it is possible under certain condition for this type of reactivity to occur.29,30 It is the reluctance of Au to oxidize that makes most Au species stable to air, therefore rendering futile the need for inert atmosphere during reactions. One of the other consequences of relativism is the “soft” nature of Au, which is attributed to the diffuse d orbitals. Au(I) is also the least predisposed of the Group 11 metals to increase its coordination number to more than two.31
One of the last consequences of relativism is the ability of the metal to back-donate. If one considers the bonding of an alkyne onto Au, there are four major bonding components to consider (Figure 1.7). In the case of Au(C₂H₂)⁺, the major bonding contribution (~65%) is the σ-donation of the in-plane π orbitals of acetylene, followed by back-donation (~27%) of Au d orbitals into the in-plane π* orbitals of acetylene. Bonding contributions from the orthogonal π orbitals of acetylene (~7%) and back-donation from Au d orbitals into the orthogonal π* orbitals of acetylene (~1%) are minor contributions.
Calculations show that in the case of Au(CH$_2$)$_2^+$, there should be double bond character associated with back-donation and further calculations have shown that relativistic effects would contribute up to 70% of the total bond energy for Au in that system. Evidence supporting back-donation from Au came with reports of enyne cycloisomerizations by the groups of Toste, Fürstner and Echavarren and a debate on the existence of such intermediates followed suit (Figure 1.8). Although the [1,2]-migration of the deuterium suggested that the proposed mechanism was correct, a debate on the actual nature of resonance stabilized intermediate 1 erupted. This resulted in a series of experiments that fashioned the field of gold catalysis to what it is today. Particularly strong evidence supporting carbene-like behavior came in a 2004 report by Fürstner and coworkers, in which vinylidene intermediate 3 was thought to be generated in order to furnish halophenanthrene 4 due to the migration of the bromine substituent on the alkyne (Figure 1.9). It is noteworthy that InCl$_3$ did not furnish 4, but the isomer 5, which suggests that the In(III)-catalyzed reaction occurs through another mechanism.
Figure 1.8 Initial Experimental Evidence of Carbene-like Behavior

A. Cycloisomerization of 1,5- and 1,6-Enynes

B. Proposed Catalytic Cycle for Cycloisomerizations
By 2009, the carbene vs carbocation debate, with regards to Au-catalysis, was pretty much settled even if no carbene species with sufficient double bond character had been isolated to support the existence of such species. Due to the carbene-like reactivity shown by Au, the intermediates exploiting this type of reactivity were coined as carbenoids. The logical question that followed suite was: now that we know that carbenoid and carbocationic pathways are both possible, can we use ligand effects to modulate the reactivity of Au complexes in order to favor one pathway over the other?

This question was answered shortly thereafter by the group of Toste, who discussed the nature of bonding in gold(I)-carbene complexes and suggested that the dominant contributing factor in pathway selectivity in terms of ligand is π-acidity. It is evident that π-acidic ligands draw electron density from the metal and one can assume that the σ-bonding of the ligand-gold bond is thus diminished, therefore making this bond longer and through a trans-effect, shortening the gold-carbon bond length. The overall result is an increase of electrophilicity of the carbene, which generally means favoring carbocationic reaction pathways. In the case of the Au(I)-catalyzed cyclopropanation of propene 1.6, the π-acidic ligand triphenylphosphite seems to favor the formation of resonance intermediate 1.7a over 1.7b. This could explain why no desired product is formed.
Figure 1.10 Effect of π-acidity of the ancillary ligand on the reactivity of Au(I)-carbene complexes

In the case of poor π-acidic or strong σ-donor ligands, there is more donation of electron density from the ligand to the metal. Since the metal is richer in electron density, its back-donation to the carbon will increase, and if we assume that increasing the π-component of the gold-carbon bond will automatically diminish its σ-bonding component, then we would expect that the gold-carbon bond become longer and through a trans-effect, the ligand-gold bond would become shorter. This would result in an increase in electron density of the gold-carbon bond, therefore making the carbon less electrophilic, which should favor carbene-like reactivity in reaction pathways. As shown in Figure 1.10, the Au(I)-catalyzed cyclopropanation of 1.6 occurs only when the ligand on gold has sufficiently low π-acidity. As the general π-acidity of the ligands decreases, there is an increase of yield. This increase of yield suggests the stabilization of carbene 1.7b over carbocation 1.7a.

Toste and coworkers also showed that these ligand effects are important in systems where both cationic and carbenoid-like pathways are possible. Upon complexation of allene-diene 1.9 with various Au(I) complexes comprised of ligands varying in π-acidity, a [4+3] cycloaddition occurs to generate resonance structures 1.10a and 1.10b. When ligands of low π-acidity are used, carbenoid 1.10 becomes electron rich and a [1,2]-hydride shift occurs to furnish 1.11. On the other hand, when π-acidic ligand P(OPh)₃ is utilized, carbenoid 1.10 becomes more electrophilic and we observe a [1,2]-alkyl shift, typical of carbocationic pathways, to yield 1.12. According to the Toste group, Buchwald-type ligands
tend to distort the ligand-gold-carbon bonds, which allows for the preferential formation of **1.11** over **1.12**.

Figure 1.11 Effect of π-acidity of the ancillary phosphine ligand on pathway selectivity

Fürstner and coworkers also described similar results with N-Heterocyclic Carbene (NHC) ligands. They discovered that modulating the π-acidity of N-heterocyclic carbene ligands enables the same steering of selectivity between reaction pathways (Figure 1.12) as Toste and coworkers.\(^3^9\) The π-acidity of NHC ligands is often considered to be negligible, but in the case of allene-diene **1.9**, when two NHC ligands of different π-acidity but of similar σ-donating properties are compared, more π-acidic ligands retain their tendency to favor carbocationic pathways.
The pioneering works of the Toste and Furstner groups showed that modulating the ancillary ligand on Au(I) species was the key solution to modulate pathway selectivity. By that time, our group was wondering whether this statement would hold true for pathway divergence at the first bond formation or, in other words; could exo vs endo selectivity be also modulated via proper choice of ligand?

Silver & Copper-catalyzed cyclizations

Silver and copper are also part of the group 11 elements, as is gold, and yet, there are notable differences between each metal that makes each unique. Silver, because of decreased relativistic effects and the lack of lanthanide contraction effect, has a slightly larger atomic volume than gold. On the other hand, copper has a smaller molecular volume than gold and constitutes a much harder Lewis acid due to the diminished relativistic effects.

Kroll and coworkers have investigated monomeric Au(I), Ag(I) and Cu(I) alkyne complexes and have determined trends within the coinage metal family. Silver generally has longer metal-ligand bond lengths than gold and copper. As for copper, the metal-ligand bond lengths are typically similar to those of gold. A noteworthy remark is that contrary to Au(I), which prefers a quasi-linear two coordinate system, there is a prevalence for tricoordinate or
tetracoordinate Ag(I) and Cu(I) systems. Also, organocuprates are generally more nucleophilic because of the electron-electron repulsion of Cu 3d electrons, which implies that copper will be more likely to undergo oxidative additions. Cu(I) species are also generally more prone to oxidation than their Au(I) counterparts. Ag(II) complexes are rare and are generally bridging complexes containing a Ag(I) and a Ag(III) atom, giving the effective oxidation state of Ag(II). Ag(III) complexes are known but are much less common than Ag(I) species. Ag(I) and Cu(I) species are generally considered to be less Lewis acidic than Au(I) species due to the low-lying LUMO of gold. Typically, reactions catalyzed by Ag(I) or Cu(I) complexes are known to be much slower than when catalyzed by Au(I). Often, longer reaction times are required if not higher reaction temperatures. Interestingly, the lengths of the metal-alkyne bonds and shorter for Cu(I) than for Au(I) than for Ag(I) (Figure 1.13).\(^{40}\) Furthermore, the bending of the alkyne is more pronounced for Au(I) species than it is for Cu(I) species. Ag(I) has the least impact of the bending of the alkyne, according to X-ray studies.

Figure 1.13 Bond lengths and angles of monomolecular coinage metal alkyne complexes obtained by Kroll and coworkers

\[\text{M-C}_1 (\text{Å}) \quad \text{M-C}_1-\text{C}_4 (\text{o})\]

<table>
<thead>
<tr>
<th></th>
<th>M= Au</th>
<th></th>
<th>M= Ag</th>
<th></th>
<th>M= Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.069</td>
<td>155.0</td>
<td>2.233</td>
<td>164.7</td>
<td>1.983</td>
</tr>
</tbody>
</table>

DFT calculations from the same publication indicate that Au(I) complexes form stronger metal-alkyne bonds and offer more metal-alkyne backdonation, followed by Cu(I) and then Ag(I) as the weakest bonding and least back-donating metal.
Nucleophilic additions to alkynes catalyzed by Ag or Cu complexes are well-known in the literature, but precedence for carbon nucleophile additions is scarce. However, heteroatom nucleophiles are well known to undergo addition reactions on alkynes. Such reactions include popular 5-endo dig cyclizations to form indoles, benzofurans, furo[2,3-d]pyrimidinones, furans and pyrole derivatives via Cu(I)41 and Ag(I)42 catalysis. The selectivity of 5-exo versus 6-endo dig cyclizations catalyzed by Ag(I) or Cu(I) complexes is in accordance with the trends introduced previously (p.1-8). Ag-catalyzed nucleophilic addition of heteroatoms on alkynes in a selective 5-exo-dig fashion has enabled the synthesis of various heterocycles43 such as furans, oxazolines and oxazolidinones and imidazolidin-2-imines44.

Interestingly, both imidazolidin-2-imines and 3,4-dihydropyrimidin-2(1H)-imine were synthesized in a regioselective manner by Looper and coworkers (Scheme 1.3). A regioselective 5-exo-dig cyclization of 1.13 occurred to generate 1.14 when silver acetate was utilized in catalytic quantities in the presence of acetic acid. When conditions were modified and a rhodium dimer was used instead of AgOAc, exclusive formation of 6-endo-dig product 1.15 occurred. To our knowledge, this is one of only two45 publications illustrating metal-catalyzed inversion of selectivity between 5-exo and 6-endo-dig processes. Numerous examples of selective 6-endo-dig additions of heteroatomic nucleophiles catalyzed by Ag(I) and Cu(I) appear in the literature. Notable accessed motifs include isoquinolines, isochromenones, pyranones, furans and others.

Scheme 1.3 Looper’s regioselective hydroamination of propargylguanidines

Only a few examples of cyclizations utilizing carbon nucleophiles using Ag(I) or Cu(I) catalysis have been reported. Dake and coworkers have demonstrated that a 5-exo-dig
cyclization of an enamine nucleophile onto an ynone is possible using silver triflate and heat.46 It is worth noting that an ynone type substrate such as 1.16 is likely to act as a Michael acceptor rather than an typical alkyne. Indeed, an ester/ketone/nitrile functionality on the alkyne appears to be necessary for the reaction to proceed and the geometry of enone 1.17 suggests a syn addition, which is contrary to the well-accepted trans-mechanism.47 Of course, one cannot discard the potential post cyclization isomerization of enone 1.17.

Another unique example is the work of Echavarren and Porcel, who demonstrated that allylstannanes may undergo additions on alkynes.48 This work showed that 1.18 may undergo cyclization on a terminal alkyne using only 3 mol\% of a trimer of silver triflate following which a transmetalation occurs to furnish the vinyl stannane 1.19. Interestingly, when attempting to synthesize larger ring sizes as well as non-terminal alkynes, a P(Cy)\textsubscript{2}(o-biphenyl) cationic Ag(I) complex proved to be ideal as it was a more active catalyst. A noticeable amount of proto-destannylation ensues when the later complex is utilized, furnishing a 1:1 mixture of 1.19 and 1.20.
One of the few examples49 of 5-\textit{exo} or 6-\textit{endo-dig} cyclization using a carbon nucleophile catalyzed by an Cu(I) catalyst is the work of Dixon and coworkers (Scheme 1.5).50 With an \textit{in situ} formation of the iminium of 1.21 followed by 1,4-addition of 1.22 which generates the enamine that is predisposed to undergo a 5-\textit{exo-dig} addition on the alkyne to generate 1.24. It is noteworthy that Cu(OTf)\textsubscript{2} readily undergoes a reduction to Cu(I) in the presence of triphenylphosphine.51

\textit{Scheme 1.5 Dixon and coworkers’ Cu(I)-catalyzed Iminium/Enamine/Carboanulation cascade}

Without a doubt, the fundamental differences between each coinage metal bring into light the possibilities for catalyst discovery and optimization for organic transformations. One can
imagine that the combination of the proper ligand, the optimal reaction conditions (temperature, solvent, etc.), as well as the choice of coinage metal may allow a chemist to tune the metal complex’s back-donation ability, nucleophilicity, binding ability, functional group tolerance and much more. Furthermore, as discussed during the reconsideration of the Baldwin rules, proper catalyst choice may indeed favor kinetic product or thermodynamic product pathways. Herein, we will discuss the unique properties and selectivities offered by gold, copper and silver complexes in the context of carbocyclizations.
Chapter 2

Au(I)-Catalyzed Synthesis of Fused Carbocycles

Introduction

At the start of the new millennium, Au-catalysis was becoming one of the fastest growing fields. Pioneering work by Teles and coworkers had revealed that nucleophilic addition of alcohols on to alkynes was enabled by cationic Au(I) complexes. This resulted in a wide investigation of alternative nucleophiles for addition on to alkynes. In 2004, Toste and coworkers published a 5-exo-dig conia-ene type reaction catalyzed by in situ formation of a cationic Au(I) species (Figure 2.1). Following this initial contribution, the group of Sawamura published an analogous 6-exo-dig cyclization. The group of Toste then showed that instead of in situ generated enols, silyl enol ethers could be used instead as nucleophiles for additions on to alkynes via 5-endo, 5-exo and 6-exo-dig processes. The following year, Lee and coworkers demonstrated that Toste’s cyclization of silyl enol ethers was also possible on non-terminal alkynes via a 5-exo-dig process, albeit in low yields and few examples. In 2008, Sawamura’s group gave evidence that the selectivity between 5-exo and 6-endo-dig processes was mediocre (ca. 1:1 ratios) on analogous systems to the ones of the Toste group from 2006. The following year, our group showed that 6-endo-dig Au(I)-catalyzed cyclizations were favoured over the 5-exo-dig process on systems where there is sufficient internal strain in the final products in order to generate bicycle[m.3.1]alkenones (m= 2-5). In 2010, Sawamura’s group demonstrated that increased yields could be obtained when using a tri-ethynylphosphine ligand (L) in order to perform 7-exo dig cyclizations of silyl enol ethers on alkynes.
Figure 2.1 Literature examples of Conia-Ene type cyclizations catalyzed by Au(I)

1. **Au(I)-Catalyzed Synthesis of Fused Carbocycles**

 ![Chemical structures](image)

 - **Toste (2004)**
 - Reaction: 1% AuClIPh$_3$ 1% AgBF$_4$
 - Solvent: CH$_2$Cl$_2$ r.t.
 - Yield: 94%

 - **Sawamura (2006)**
 - Reaction: 1% LAuNT$_2$
 - Solvent: CH$_2$N$_2$
 - Yield: Quantitative

 - **Toste (2006)**
 - Reaction: 10% AuClIPh$_3$ 10% AgBF$_4$
 - Solvent: CH$_2$Cl$_2$/H$_2$O (10:1)
 - Yield: (80-94%)

 - **Lee (2007)**
 - Reaction: PPh$_3$AuCl (5-10 mol%) 1 AgOTf (5-10 mol%)
 - Solvent: DCE 80°C
 - Yield: R= Me 45% R= Ph 56%

 - **Sawamura (2008)**
 - Reaction: LAuNT$_2$ (1 mol%)
 - Solvent: CH$_2$Cl$_2$/H$_2$O (10:1)
 - Yield: 96%
 - Product ratio: 1:1

 - **Barriault (2009)**
 - Solvent: Acetone, rt
 - Yield: 78-98%

 - **Sawamura (2010)**
 - Reaction: LAuNT$_2$ (5 mol%)
 - Solvent: tBuOH (1 eq)
 - Yield: 89%
Our group directed our attention to the selectivity problem encountered with internal alkynes. We wondered whether we could favor the 6-endo-dig pathway over the prevailing 5-exo-dig pathway in Toste’s 2006 publication55 and Lee’s 2007 publication56 by varying the ancillary ligand on the Au(I) species as well as the reaction conditions (Figure 2.2).

\textit{Figure 2.2 Proposed Selective Syntheses of Fused Carbocycles Enabled by Selective Conditions for 5-exo-dig and 6-endo-dig Cyclizations}

These studies were conducted by Francis Barabé, a Ph.D. candidate, and I. Francis was the one who performed the initial optimization for non-enyne substrates as well as all the cyclization reactions for these specific substrates. After the initial optimization, new ligands were synthesized and investigated and it would, therefore, be impossible not to discuss the importance of Francis’ work in this thesis because it is too intimately linked to my own studies.
Reaction Optimization

Our investigation started with the cyclization of 2.1a, which was a substrate that had previously shown to undergo 5-*exo*-dig cyclizations. As seen in entry 1, triphenyl phosphine was a poor ligand choice for both yield and *endo*-selectivity. Changing the counterion, entry 2, improved both the yield and the ratio but unfortunately, because the yield of entry 1 was so low, it is difficult to assume that this is the optimal counterion, especially since reactions were generally slower when BF₄ was used instead of SbF₆. Entries 3-5 show that alkyl substituents and electron poor aryls on the phosphine ligand do not influence the *exo*:endo ratio although they do increase the yield.

Table 2.1 Optimization of the Au(I)-Catalyzed Cyclization of 2.1

<table>
<thead>
<tr>
<th>Entry</th>
<th>LAuX</th>
<th>Ratio (2.2a:2.3a)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPh₃AuSbF₆</td>
<td>88:12</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>PPh₃AuBF₄</td>
<td>74:26</td>
<td>39</td>
</tr>
</tbody>
</table>
Looking at Buchwald-type phosphines such as JohnPhos (L_{1a}) improved the endo:exo ratio. With the intention of increasing steric bulk, an adamantyl analogue of JohnPhos (L_{1b}) was tested and to our great surprise, the endo:exo ratio was very low. One could assume that if adamantyls are not bulkier than tert-butyls then, certainly, they would at least offer similar steric bulk. This made us consider that perhaps not only steric factors could influence the endo:exo ratio but also the electronic properties of the ligand. With this idea in mind, we investigated L_{1} ligands and varied the R groups. From the ratios, we were able to demonstrate (Figure 2.3) that R=adamantyl is in fact the least favorable ligand amongst all the Buchwald-type phosphines. Interestingly, R=mesityl offers similar selectivity to tert-
butyls. In short, adamantyls are the least selective, followed by aryl groups that do not provide steric bulk (L1d and L1f), followed by cyclohexyls and then mesityls/tert-butyls.

Figure 2.3 Effect of L1 Ligands on the endo:exo Ratio for the cyclization of 2.1a

We then investigated other commercially available Buchwald ligands. Xphos (L2c) and tBuXPhos (L2a) showed the same trend as their L1 analogues. At this point, L2a was the most selective ligand with a good yield and a ratio of 35:65, favouring the endo product 2.3a. We
looked at both BrettPhos (L_{3c}) and JackiePhos (L_{3g}), but those ligands gave inferior ratios when compared to tBuXphos (L_{2a}). DavePhos (L_{4e}), L_{4d}, as well as RuPhos (L_5) gave ratios similar to the L_1 analogues. TrixiePhos (L_6) gave a surprisingly respectable ratio of 41:59 favoring 2.3a, even though L_{2a} was still a superior ligand. L_7 gave a low yield and a ratio comparable to the non-Buchwald-type phosphines. Finally, we had our best hit to date using Me-tBuXPhos (L_8) with a ratio of 29:71 favoring endo product 2.3a, altogether with a good yield of 82%. We also looked at IPr as an N-heterocyclic carbene (NHC) ligand and were pleased to discover that this very σ-donating ligand is very selective for the 5-exo-dig cyclization pathway, furnishing 2.2a in exclusive selectivity. With these results in hand, we we explored other substrates aimed at extending the scope of this reaction.

Cyclization of Aryl Substituted Substrates

We began our investigation using phenyl substituted alkynes 2.1 and varied the ring size as well as the R substituents (Table 2.2). Cyclization of 2.1a using exo-selective conditions A provided 2.2a in 95% yield as the sole isomer (Table 2.2, entry 1). When the cyclization of 2.2a was performed using the endo-selective conditions B, a ratio of 32:68 favoring 2.3a was obtained (entry 2). Interestingly, an increase of the 6-endodig cyclized product was obtained when R=Me (entry 4). Unfortunately, 2.1b gave a poor ratio (~1:1) using exo-conditions A (entry 3). The cyclization of 6-membered ring silyl enol ether 2.1c using conditions A gave 2.2c and 2.3c in 86% yield and in a ratio of 40:60 (entry 5). However, using conditions B and C afforded 2.3c as the major product in excellent ratios (entries 6-7). While conditions B gave 2.3c as the sole product, the yield was diminished (entry 6), but simply using L_{1a} as the ligand instead of L_8 (entry 7) allowed for an increased yield and only a slight erosion of selectivity. The 5-exo-selective conditions A gave 2.2d and 2.3d in 87% yield with a ratio of 86:14. On the other hand, conditions B furnished 2.3d as the major product in 91% yield.
Table 2.2 Cyclization of Phenyl Substituted Alkynes 2.1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Conditions<sup>a</sup></th>
<th>Products</th>
<th>Yield (2.2 : 2.3)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>A</td>
<td> + </td>
<td>95% (95:5)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>B</td>
<td> + </td>
<td>82% (32:68)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>A</td>
<td> + </td>
<td>88% (48:52)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>B</td>
<td> + </td>
<td>86% (13:87)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>A</td>
<td> + </td>
<td>86% (40:60)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>B</td>
<td> + </td>
<td>60% (<5:95)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>C</td>
<td> + </td>
<td>88% (10:90)</td>
</tr>
</tbody>
</table>
Au(I)-Catalyzed Synthesis of Fused Carbocycles

87% (86:14)

91% (29:71)

\[\text{Conditions A:} \] To a solution of \(\text{2.1} \) (100mg) in acetone (2 mL), is added \([\text{L}_8\text{AuMeCN}][\text{SbF}_6]\) 5 mol\% and the reaction is stirred O/N. \text{Conditions B:} To a solution of \(\text{2.1} \) (100mg) in acetone (2 mL), is added \([\text{L}_8\text{AuMeCN}][\text{SbF}_6]\) 5 mol\% and the reaction is stirred O/N. \text{Conditions C:} To a solution of \(\text{2.1} \) (100mg) in acetone (2 mL), is added \([\text{L}_8\text{AuMeCN}][\text{SbF}_6]\) 5 mol\% and the reaction is stirred O/N.

\[\text{Isolated yields. Ratio of products determined by crude } ^1\text{H NMR.} \]

One of the key concepts associated with 5-exo-dig vs 6-endo-dig discussed previously, is the polarization of the alkyne.\(^8\) We decided to investigate if electronic bias would have a big impact on our systems with respect to 5-exo/6-endo selectivity. We explored the cyclization of para-substituted aryl groups on alkyne substrates \(\text{2.1} \) using both exo-selective conditions A and endo-selective conditions B (Table 2.3). When methoxy substituted substrate \(\text{2.1e} \) was subjected to conditions A, a poor ratio of 24:76 disfavoring 5-exo-dig product \(\text{2.2e} \) was obtained (entry 1). On the other hand, \(\text{2.3e} \) could easily be furnished from \(\text{2.1e} \) using conditions B in exclusive selectivity. Replacing group X for a methyl substituent still made the 5-exo-dig cyclization of \(\text{2.1f} \) difficult, furnishing \(\text{2.2f} \) as the minor product in a 46:54 ratio (entry 2). Cyclization of \(\text{2.1f} \) using conditions B furnished \(\text{2.3f} \) in 78\% yield and exquisite selectivity. When a slightly electron-withdrawing group (EWG) such as a methyl ketone was used, we were able to obtain a 84:16 ratio favoring \(\text{2.2g} \) using conditions A and a 29:71 ratio favoring \(\text{2.3g} \) using conditions B (entry 4). When the cyclization of CF\(_3\), cyano and nitro substituted substrates \(\text{2.1h-j} \) was performed using conditions A, \(\text{2.2h-j} \) were all obtained in good selectivity and ratio (entries 5-7). However, progressive erosion of 6-endo-dig selectivity was observed for \(\text{2.1h-j} \) when these were submitted to conditions B. Compounds \(\text{2.3h-j} \) were obtained as the major products, albeit in low yields and poor exo:endo ratios (entries 5-7).
Table 2.3 Effect of Polarization on Au(I)-catalyzed cyclization of Aryl substituted alkynes 2.1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>X</th>
<th>Conditions</th>
<th>Yield (2.2 : 2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.1e</td>
<td>OMe</td>
<td>A</td>
<td>90% (26:74)</td>
</tr>
<tr>
<td>2</td>
<td>2.1f</td>
<td>Me</td>
<td>B</td>
<td>72% (<5:95)</td>
</tr>
<tr>
<td>3</td>
<td>2.1c</td>
<td>H</td>
<td></td>
<td>93% (46:54)</td>
</tr>
<tr>
<td>4</td>
<td>2.1g</td>
<td>COMe</td>
<td>A</td>
<td>90% (10:90)</td>
</tr>
<tr>
<td>5</td>
<td>2.1h</td>
<td>CF₃</td>
<td>B</td>
<td>89% (40:60)</td>
</tr>
<tr>
<td>6</td>
<td>2.1i</td>
<td>CN</td>
<td></td>
<td>91% (84:16)</td>
</tr>
<tr>
<td>7</td>
<td>2.1j</td>
<td>NO₂</td>
<td></td>
<td>91% (87:13)</td>
</tr>
</tbody>
</table>

*Isolated yields. Ratio of products determined by crude ¹H NMR.

b Conditions A: To a solution of 2.1 (100mg) in acetone (2 mL), is added [L₉AuMeCN][SbF₆] 5 mol% and the reaction is stirred O/N.

c Conditions B: To a solution of 2.1 (100mg) in acetone (2 mL), is added [L₈AuMeCN][SbF₆] 5 mol% at -10°C and the reaction let to warm up to r.t. O/N.

Our investigation on alkyne polarization led us to establish a trend between various X substitutions on aryl alkynes 2.1 (Figure 2.4). As expected, electron donating groups (EDGs) favors the 6-endo-dig cyclization while EWGs generally provide greater selectivity for the 5-exo-dig pathway, regardless of the reaction conditions used. Conditions A, which make use of NHC ligand L₉, show greater dependence on alkyne polarization than conditions B which utilize Buchwald phosphine ligand L₈. While exclusive selectivity could not be achieved with some substrates, one can see that even in the case of nitro substituted 2.1j, a substantial amount of 6-endo product 2.3j was obtained.
Figure 2.4 Percentage of Endo Product Generated Following the Cyclization of Substrates

2.4c,e-j

The percentage of the endo product 2.6 was determined directly from the ratio of 2.5 and 2.6 of the crude 1H NMR mixture.

Conditions A: To a solution of 2.1 (100mg) in acetone (2 mL), is added [L₉AuMeCN][SbF₆] 5 mol% and the reaction is stirred O/N.

Conditions B: To a solution of 2.1 (100mg) in acetone (2 mL), is added [L₈AuMeCN][SbF₆] 5 mol% at -10°C and the reaction let to warm up to r.t. O/N.

Cyclization of Methyl Substituted Substrates

Next, we investigated the cyclization of methyl substituted alkynes (Table 2.4). These are substrates known to cyclize only in a 5-exo-dig fashion. One can easily recognize that the cyclization via a 6-endo-dig pathway could potentially provide access to numerous diterpenoid natural products (Figure 2.5).
Cyclization of \textbf{2.4a} using conditions A gave exclusive selectivity for the 5-exo product \textbf{2.5a} in excellent yield (Table 2.4, entry 1). A 45:55 ratio favouring \textbf{2.6a} was obtained using conditions B2 (entry 2). In the case of \textbf{2.4b}, the methyl substituent enabled the synthesis of \textbf{2.5b} in excellent selectivity using conditions A (entry 3). On the other hand, conditions B3 using dry DCM enabled the formation of \textbf{2.6b} in a ratio of 7:93 ratio (entry 4). The cyclization of \textbf{2.4c} (conditions A) afforded \textbf{2.5c} with good selectivity (entry 5). However, the use of conditions B1 provided \textbf{2.6c} in a modest ratio of 43:57 (entry 6). In an attempt to improve this ratio, dry conditions B3 were used, but it appears that the dry conditions generated an appreciable 18\% of allene \textbf{2.7c} (entry 7). Cyclization of \textbf{2.4d} using conditions A gave exclusive formation of \textbf{2.5d}, and when conditions B1 were used, \textbf{2.6d} was obtained as the minor product in an 87:13 ratio (entries 8-9). Again, the use of conditions B3 generated allene \textbf{2.7d} as the major compound in 58\% yield (entry 10). One can propose that allenes \textbf{2.7c} and \textbf{2.7d} are the result of a [1,5]-hydride shift as depicted in (Scheme 2.1) In the absence of water, the protodeauration and the carboxonium hydrolysis cannot occur. Therefore, a competitive [1,5]-hydride shift takes place forming the allene \textbf{2.7} and regenerating the Au(I) catalyst.
Table 2.4 Cyclization of Methyl Substituted Alkynes 2.4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Conditions(^a)</th>
<th>Product</th>
<th>Yield (2.5 : 2.6)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TIPSO</td>
<td>A</td>
<td>2.5</td>
<td>86% (>95:5)</td>
</tr>
<tr>
<td></td>
<td>2.4a</td>
<td></td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TIPSO</td>
<td>B2</td>
<td>2.5a</td>
<td>77% (45:55)</td>
</tr>
<tr>
<td></td>
<td>2.4b</td>
<td></td>
<td>2.6a</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TIPSO</td>
<td>A</td>
<td>2.5b</td>
<td>94% (92:8)</td>
</tr>
<tr>
<td></td>
<td>2.4c</td>
<td></td>
<td>2.6b</td>
<td>83% (7:93)</td>
</tr>
<tr>
<td>4</td>
<td>TIPSO</td>
<td>B3</td>
<td>2.5c</td>
<td>88% (83:17)</td>
</tr>
<tr>
<td></td>
<td>2.4d</td>
<td></td>
<td>2.6c</td>
<td>79% (43:57)</td>
</tr>
<tr>
<td>5</td>
<td>OTIPS</td>
<td>A</td>
<td>2.5d</td>
<td>60% (23:77) + 18%</td>
</tr>
<tr>
<td></td>
<td>2.4e</td>
<td></td>
<td>2.6d</td>
<td>allene(^c)</td>
</tr>
<tr>
<td>6</td>
<td>OTIPS</td>
<td>B1</td>
<td>2.5e</td>
<td>86% (>95:5)</td>
</tr>
<tr>
<td></td>
<td>2.4f</td>
<td></td>
<td>2.6e</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>OTIPS</td>
<td>B3</td>
<td>2.5f</td>
<td>82% (87:13)</td>
</tr>
<tr>
<td></td>
<td>2.4g</td>
<td></td>
<td>2.6f</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) **Conditions A:** To a solution of 2.1 (100mg) in acetone (2 mL), is added [L₉AuMeCN][SbF₆] 5 mol% and the reaction is stirred O/N. **Conditions B1:** To a solution of 2.1 (100mg) in acetone (2 mL), is added [L₉AuMeCN][SbF₆] 5 mol% at -10°C and the reaction let to warm up to r.t. O/N. **Conditions B2:** To a solution of 2.1 (100mg) in DCM/acetone (2 mL/ 25 μL), is added [L₉AuMeCN][SbF₆] 5 mol% at -10°C and the reaction let to warm up to r.t. O/N. **Conditions B3:** To a solution of 2.1 (100mg) in DCM (2 mL), is added [L₉AuMeCN][SbF₆] 5 mol% at -10°C and the reaction let to warm up to r.t. O/N.

\(^b\) Isolated yields. Ratio of products determined by crude \(^1\)H NMR.

\(^c\) Isolated from the reaction mixture in 18% yield for 2.7c and 58% yield for 2.7d.
Cyclization of Vinyl Substituted Substrates

With the possibility of selective 6-endo-dig cyclization of silyl enol ethers within reach, this opened up new possibilities in terms of potential syntheses. We wondered whether this reaction would be tolerant of enynes (Scheme 2.2) and whether we could achieve good selectivity for the 6-endo-dig pathway with these types of substrates.
If it is the case, this could enable quick syntheses of diterpenes and steroids via the proposed one-pot synthetic pathway shown below (Figure 2.6). Complex steroids as well as related diterpenes could be synthesized from a Diels-Alder reaction between diene 2.14 and dienophile 2.15 to furnish the enol ether intermediate 2.16. The latter is poised to undergo a selective 6-endo-dig Au(I)-catalyzed cyclization to provide diene 2.17. The latter, in turn, would undergo a second intermolecular Diels-Alder reaction to provide polycyclic compounds 2.18. Of course, the initial question was: can we perform selectively and in good yield the step shown in red?

When the cyclization of 2.8c using various Au(I) catalysts was attempted in acetone, we obtained a mixture of two products: the minor one (2.11c) was the result of a 6-endo-dig cyclization while the major product (2.9c) was the result of a 5-exo-dig cyclization followed by a Prins cyclization. This formal [4+2] reaction catalyzed by Au(I) had previously been
reported by Echavarren and coworkers,59 but whether our reaction is a stepwise process or a concerted one, remains uncertain.

\textit{Scheme 2.3 Initial Cyclization Attempt of 2.8c}

We propose that upon complexation of the Au(I) species with the alkyne, two possibilities arise (Scheme 2.4). The first is a concerted mechanism in which the alkyne binds to the Au(I) to form a vinyl gold(I) species with a formal positive charge. This intermediate can then undergo a [4+2] cycloaddition to generate tertiary carbocation 2.22a. The other alternative is that Au(I) coordinates to the alkyne, following which there is a nucleophilic addition of the silyl enol ether on the latter to generate carboxonium 2.21. This carboxonium can then undergo a Prins cyclization to generate secondary carbocation 2.22b, which in turn, through resonance, generates the more stable tertiary carbocation 2.22a. A proton abstraction will follow to generate vinyl Au(I) species 2.23 and the final proto-deauration will furnish the final product 2.24.
In order to gain further insight into the reaction mechanism, the reaction was performed in methanol-d₄ and in acetone containing D₂O (Scheme 2.5). These experiments showed that when reactions are run in methanol-d₄ (CD₃OD), there is deuterium incorporation at the positions where the proto-deauration is suspected to occur (Scheme 2.5). Interestingly, when the same reactions are run in acetone-d₆ without any added water or deuterated water, very
little deuteration occurs. This suggests that the α-protons of acetone-d₆ are not sufficiently acidic to affect proto-deauration.

Scheme 2.5 Trapping and Deuteration Experiments for the Cyclization of Enyne 2.8c

If sufficient water is present in the reaction mixture, one may reduce or completely eliminate the Prins cyclization (Table 2.5, entry 14). Furthermore, in the case of five-membered ring substrates such as 2.8a-b, the Prins cyclization is not as efficient and the result is a mixture of the 5-exo-dig product 2.10a-b and its Prins cyclization product 2.9a-b. To achieve exclusive Prins cyclization, nitromethane is the best option as the reaction solvent (entry 9).

All cyclizations of 2.8a-d were attempted with at least four different Au(I)-catalysts (L₀, L₁α, L₂c, L₈) and as observed (entries 1, 5, 10 & 15) L₀ is always the most selective for 5-exo-dig cyclizations and generally furnishes the exo product in exclusive selectivity. L₁α, L₂c and L₈ have an increasing favorability for the 6-endo cyclization. However, 2.11 was never obtained as the major product in any of the cyclizations of unsubstituted enynes 2.8a-d.
Although we had been unable to obtain the 6-endo-dig product as the major product for enynes 2.8a-d, we decided to explore the scope of these reactions further by adding substitution on the vinyl group of our enynes.
We first looked at varying R1 substitution on 2.8 and discovered that when a TMS group is present (Table 2.6, entry 1), 2.11e is obtained in 74% yield with a modest ratio of 38:62. In this particular case, only L\textsubscript{1a} proved to be an adequate ligand because any other would give complex mixtures of products including the loss of the TMS group to furnish 2.11c as well as hydrolyzed starting material and other unknown products. On the other hand, when R1=Me, compound 2.11f is obtained as the major product (entry 5). However, it appears that the more electron donating nature of the methyl group allows for a 6-endo-dig/Prins cyclization to furnish 2.12f in small quantities. In the case of R1=Ph, 2.11g is obtained as the major product in 70% yield and in a ratio of 15:85 (entry 6). When R1=CH\textsubscript{2}OBn, exquisite formation of 2.11h is obtained using XPhos (L\textsubscript{2c}) as the ligand, albeit in 48% yield (entry 7). It is noteworthy that in the case of the cyclization of enyne 2.8h, other conditions and ligands gave complex mixtures of products. A phenyl substituent at the R2 position furnished 2.11i in 84% yield with a ratio of 13:87 (entry 11). Interestingly, if IPr (L\textsubscript{9}) is used as the ligand, the selectivity is completely reversed and a 97:3 selectivity favouring 2.10i is achieved. Not surprisingly, enyne 2.8j with substitution at both R1 and R2 gave exclusive selectivity towards 2.11j altogether with an 86% isolated yield.

Table 2.6 Cyclization of Substituted Enynes 2.8 d-k

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>L</th>
<th>Solvent</th>
<th>Ratio</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L\textsubscript{1a}</td>
<td>Acetone</td>
<td>38</td>
<td>0</td>
</tr>
</tbody>
</table>
As seen in Table 2.6, we were able to obtain dienes such as 2.11 from enynes 2.8. Although the selectivity is poor for vinyl substituted alkynes 2.8a-d, cyclizations of substituted enynes 2.8e-j provided the desired 6-endo-dig product in high selectivity. As a proof of concept,
diene 2.8c was converted to diterpene 14 using N-phenylmaleimide under thermal conditions in 65% yield.

Scheme 2.6 Diels-Alder reaction of 2.8c with N-Phenylmaleimide
Ligand Synthesis

Two main types of ligands are used in Au(I)-catalysis: phosphines and N-heterocyclic carbenes (NHC’s). Most of the ligands which were not commercially available were synthesized according to literature methods and herein, we will discuss a few of these and their relative usefulness.

One of the most original methods investigated for the generation of new Buchwald-type phosphines was a method developed by Heller and coworkers and utilizes a cobalt(I)-catalyzed trimerization of alkynes.60 This method (Scheme 2.7) seemed practical for two reasons: firstly, the trimerization may be done with achiral or chiral catalysts and secondly, it is tolerant of a very broad range of functionality.

Scheme 2.7 Representative Example of Heller’s Co(I)-Catalyzed Cross-Cycotrimerization

We proceeded to synthesize the appropriate Co(I) catalyst, [cpCo(cod)], as it is not commercially available.61 With this catalyst in hand, we synthesized 2.16 (Scheme 2.8) via a Friedel-Crafts reaction from commercially available 2.15. Several attempts at converting acetophenone 2.16 to the corresponding vinyl chloride 2.17 by the use of PCl₅ and PCl₃ were unsuccessful.
Au(I)-Catalyzed Synthesis of Fused Carbocycles

Scheme 2.8 Friedel-Crafts acylation and attempts at the formation of vinyl chloride 2.17

We turned our attention to a one-pot generation of a phosphonate ester followed by an elimination to generate aryl-acetylene 2.18. A one-pot deprotonation of 2.18, addition of a phosphine chloride followed by oxidation of the phosphine afforded phosphine oxide 2.19 (Scheme 2.9).

Scheme 2.9 Conversion of acetophenone 2.16 to phosphine oxide 2.19 via arylacetylene 2.18

Before any cross-trimerization attempts were performed on phosphine oxide 2.19, we tested the trimerization reaction on model 2.20, which was synthesized from phenylacetylene using the same method depicted in Scheme 2.9 in 92% yield. We encountered several problems with the manipulations required in these procedures. We did not have the two 400 Watt 420 nm wavelength lamps and the proper set-up required. Our set-up was comprised of a lighting panel containing five 8 Watt 420 nm wavelength lamps and a 300 Watt regular light bulb. The reactions are supposed to be run at room temperature but this was also an issue because the heat generated by our 300 Watt lamp was causing the solvent to reflux. An ingenious set-up (Figure 2.7) was improvised, utilizing a glass reflux condenser (where the water flow usually is located) as the reaction vessel. This allowed for a cold water flow to go through the inside of the condenser (where the reflux usually occurs) in order to cool the reaction.
mixture as the reaction proceeds under intense light. Strictly air-free and water-free conditions had to be used. Only under these strict reaction conditions and set-up would the conversion of 2.20 to 2.21 occur (Scheme 2.10), albeit in low yield. The low yield could surely have been improved by increasing the catalyst loading but since this was a probe to test the Co(I)-catalyzed trimerization, we decided to see if it would work, as reported, with 3-hexyne instead of acetylene. When the trimerization of 2.19 with 3-hexyne was attempted (Scheme 2.11), only starting material was recovered. After the realization that these cyclizations were temperamental and required a lot of optimization, we decided to discard this route.

Figure 2.7 Set-up for Cross-trimerization reactions

Scheme 2.10 Cross-trimerization of phosphine oxide 2.20 with acetylene
In order to develop bulkier ligands, another method developed by the Heller group seemed to be ideal for this purpose. With 2.20 already on hand, we performed a Diels-Alder reaction with tetraphenylcyclopentadienone, which generated phosphine oxide 2.23 (Scheme 2.12). This phosphine oxide was then reduced to generate phosphine L7. From this phosphine ligand, we were able to make the L7AuCl complex following this and an x-ray structure was obtained (Figure 2.8). A second Diels-Alder reaction was attempted using 2.19 as a substrate but no product was isolated. This failure was not surprising as Heller and coworkers stated that these reactions only work with bis(aryl)-phosphine oxides. The synthesis of 2.26-2.28 have yet to be synthesized, but it should be noted that this would be an ideal way of making Buchwald type ligands with aryl substituents on the phosphorous and a highly functionalized biaryl (Scheme 2.14).
In order to synthesize most Buchwald-type ligands ($L_{1a,c-g}$, L_{3a}), we first synthesized the various substituted 2-iodobiaryls 2.29 using benzyne chemistry developed by the Buchwald group. With these 2-iodobiaryls in hand, we were able to generate the desired phosphines by the use of two distinct methods: a palladium coupling reaction using bis-
(alkyl)phosphines (Scheme 2.15) or an alkylation reaction on to bis(alkyl)chlorophosphines or bis(aryl)chlorophosphines (Scheme 2.16).

In order to increase the steric bulk of various Buchwald-type ligands, we envisaged adamantyls as R groups. Rather than using the Buchwald group’s procedures, we used a simple coupling procedure from the Stradiotto Group. Coupling of 2.29 with 2.30 proceeded cleanly to afford \(\text{L}_{1b} \) in 21% yield (Scheme 2.15).

Scheme 2.15 Synthesis of \(\text{L}_{1b} \) by Pd-Coupling

For all other Buchwald-type phosphines (R≠Adamantyl), an alkylation procedure was used and this afforded phosphines \(\text{L}_{1a,c-g} \) and \(\text{L}_{3a} \) (Scheme 2.16).

Scheme 2.16 Alkylation Method for the Synthesis of Buchwald-Type Phosphines

The cationic Au(I)-catalysts were readily prepared from DMS-AuCl (Scheme 2.17). First, a ligand exchange reaction with DMS-AuCl generates the phosphine-AuCl species. Secondly, the treatment with a Ag(I) salt produces the cationic gold catalyst with the desired counter-ion (typically \([\text{SbF}_6]^-\)). In all cases but one, the addition of the Au(I) salt generated
stable catalysts. However, in the case of L_{1f}, the use of 2,4,6-trimethoxybenzonitrile instead of acetonitrile was required in order to generate a stable catalyst.

Scheme 2.17 Synthesis of Cationic Au(I)-Complexes

$$
\text{Me}_2\text{S-Au-Cl} \xrightarrow{\text{Ligand (L)}} \text{L-Au-Cl} \xrightarrow{\text{AgSbF}_6} \text{L}^+\text{AuNCR}^-\text{SbF}_6
$$

$R' = \text{Me or 2,4,6-trimethoxybenzonitrile}$
Chapter 3

Silver(I) / Copper(I)-Catalyzed Synthesis of Fused Carbocycles

Introduction

“Our scientific theories do not, as a rule, spring full-armed from the brow of their creator. They are subject to slow and gradual growth…”

Professor Gilbert N. Lewis

In our previous Au(I)-catalyzed synthesis of fused carbocycles, much optimization was needed in order to achieve respectable 6-endo-dig selectivity. However, these Au(I)-catalyzed cyclizations remained very substrate dependent. Having obtained X-ray structures for most of the Au(I)-catalysts used in this optimization, we had noticed that our most selective ligand for 6-endo-dig cyclizations was Me-tBuXPhos (L₈). The Au(I) chloride complex of L₈ (Figure 3.1) had an interesting P-Au-Cl angle of 169.2° which was, at the time, the largest bend of all Au(I) chloride complexes synthesized by our group and in the literature.
In 2010, Echavarren and coworkers investigated *metal-arene interactions in dialkylbiarylophosphane complexes of copper, silver and gold* and showed that the phosphine-metal-acetonitrile ligand bond (Figure 3.2) shows an increasingly larger bend with metal complexes of tBuXphos (L$_2$a) as one varies the metal from Au(I) to Ag(I) to Cu(I). It is worth noting that, in the case of the Cu(I) complex, BF$_4$ instead of SbF$_6$ was used as the counteranion and therefore it is difficult to say what impact the SbF$_6$ counteranion would have had on the phosphine-metal-acetonitrile angle of the Cu(I) complex.
From our perspective, these were thrilling results. As we suspected that the bending of certain phosphine-metal complexes might have a direct influence on the *exo:endo* selectivity of our carbocyclizations, we wondered whether Ag(I) and Cu(I) complexes would be sufficiently active catalysts to achieve good conversion. We therefore set out to investigate these assumptions.

Reaction optimization – Aryl Substituted Alkynes

Our initial optimization started with **2.1a**, as the optimal conditions for the cyclization of this substrate using [**L₈AuMeCN**]SbF₆ had furnished **2.2a** and **2.3a** in 82% yield and an 29:71 ratio in favor of **2.3a**.

When the reaction was run with [**L₁₄AgTHF**]SbF₆ (Table 3.1, entry 4), we were surprised to see that **2.3a** could be obtained in 84% yield with a 95:5 ratio. This result surpassed Au(I)-catalyzed cyclizations attempted on these substrates (entries 1-3). Encouraged by this result, we changed the JohnPhos (**L₁₄**) to tBuXPhos (**L₂a**) and obtained **2.3a** exclusively in 82% yield. Increasing the quantity of water present during the cyclization from 1000:1 to 20:1 DCE/H₂O was useful, as the yield was increased to 89% (entry 6). However, increasing the quantity of water to 10:1 started decreasing the yield slightly (entry 7). It is logical that increasing the water content from 5% to 10% did not generate much change in yield since both give biphasic mixtures due to the low solubility of water in DCE. Increasing the temperature to 100°C gave mostly hydrolysis of the starting material, along with 11% of **2.3a** (entry 8). When the reaction was performed at room temperature with [**L₂aAgTHF**]SbF₆, we were surprised to observe that the reaction proceeded smoothly in exquisite selectivity and in 86% yield (entry 9).

Control experiments were performed with AgSbF₆ or **L₂a** as the catalyst and in each case, no product was observed (entries 10-11). In the absence of catalyst, only starting material and some hydrolysis of the starting material were observed (entry 12). We were surprised to see that even [**L₁₄CuMeCN**]BF₄ is an active catalyst, albeit in a 41% yield (entry 13). We were hoping to obtain better *exo*-selectivity with triphenylphosphine as a ligand but unfortunately,
the catalyst was not sufficiently active. Depending on the reaction time, either starting material or hydrolysis of the starting material was observed with traces of 2.3a (entry 14). It is noteworthy that we did not try [L₈AgMeCN]SbF₆ as a catalyst during this optimization as the selectivity with L₂a was remarkable and we suspected that L₈ might induce longer reaction times.

Table 3.1 Optimization of the cyclization of 2.1a using coinage metal catalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Ratio (2.3a : 2.2a)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[L₁₈AuMeCN]SbF₆ᵃ</td>
<td>36:64</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>[L₂₈AuMeCN]SbF₆ᵃ</td>
<td>65:35</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>[L₈AuMeCN]SbF₆</td>
<td>71:29</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>[L₁₈AgTHF]SbF₆</td>
<td>95:5</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>[L₂₈AgTHF]SbF₆</td>
<td>> 95:5</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>[L₂₈AgTHF]SbF₆ᵇ</td>
<td>> 95:5</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>[L₂₈AgTHF]SbF₆ᶜ</td>
<td>> 95:5</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>[L₂₈AgTHF]SbF₆ᵈ</td>
<td>> 95:5</td>
<td>11</td>
</tr>
</tbody>
</table>
Ag(I)-Catalyzed Synthesis of Fused Carbocycles

<table>
<thead>
<tr>
<th></th>
<th>Reaction</th>
<th>Product Ratio</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>([L_{2a}AgTHF]SbF_6)</td>
<td>> 95:5</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>AgSbF_6</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>(L_{2a})</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>([L_{12}CuMeCN]BF_4)</td>
<td>89:11</td>
<td>41</td>
</tr>
<tr>
<td>14</td>
<td>([PPh_3AgMeCN]SbF_6)</td>
<td><5</td>
<td><5</td>
</tr>
</tbody>
</table>

\(a \) Reaction was run in acetone with 5 mol% catalyst loading. \(b \) Reaction was run in DCE/H_2O (20:1). \(c \) Reaction was run in DCE/H_2O (10:1). \(d \) Reaction was run at 100°C. \(e \) Reaction was run at room temperature. \(f \) NMR yields. \(g \) Reaction was sluggish.

Reaction optimization – Methyl Substituted Alkynes

Following the optimization of aryl substituted alkynes, we explored the scope of the reaction in order to measure the effectiveness of \([L_{2a}AgTHF]SbF_6 \) on other more challenging substrates such as 2.4c. However, when 2.4c was submitted to typical conditions (Table 3.2, entry 5) using \([L_{2a}AgTHF]SbF_6 \), it was with utter disappointment that we observed only a 25:75 ratio favoring 2.5c over 2.7c. It was clear that methyl substituted alkynes require different conditions.

The formation of 2.7c caught our attention because it is a product that is typically only formed when there is a lack of water in the reaction medium (Figure 3.3). However, with 5% v/v of water in DCE, the solvent is saturated with water and therefore, we did not expect the formation of 2.7c. One may recall that when Au(I) catalysts are utilized (entries 1-2), we observe formation of 5-exo-dig product 2.5c instead of allene 2.7c. Nonetheless, we performed analogous experiments to entry 5 with less and more water content. When a very small volume of water (0.1% v/v) was used, exclusive formation of allene 2.7c is observed (entry 4). Interestingly, when the reaction is ran in 10% v/v of water in DCE, only a slight increase in the 2.6c:2.7c ratio is observed (entry 6). The less than dramatic increase is most likely due to the fact that DCE is saturated in water with both 5% and 10% v/v H_2O in DCE.

We suspected the formation of allene 2.7c was due to a more difficult protodeargenti...
source of protons to lower the protodeargentation barrier. Unfortunately, this resulted in the hydrolysis of the starting material (entry 7). However, it is noteworthy that this hypothesis could still hold true if 2.4c was more resistant to hydrolysis.

Our second hypothesis was that perhaps steric properties of L_{2a} were preventing protodeargentation. In order to verify this assumption, we used less bulky, but also less electron donating, JohnPhos (L_{1a}) as a ligand and we were pleased to see that we increased the ratio of 2.6c over 2.7c to almost 1:1 (entry 3). It was difficult to say whether this increase in endo:exo ratio was due to steric or electronic effects or a combination of both.

To verify whether electronic properties of the ligand might be able to prevent the hydride shift by making the C₁ carbon less nucleophilic, JackiePhos (L_{3g}) was considered as a ligand due to its very electron withdrawing aryl groups which should make the metal center of the the catalyst more electrophilic. We therefore synthesized its Ag(I) complex, [L_{3g}AgTHF]SbF₆, and to our great pleasure, we observed a ratio of 85:15 favoring 2.6c in 98% yield (entry 8). Lowering the temperature to room temperature provided 2.6c in a slightly improved ratio of 87:13, albeit in 75% yield (entry 9).
On the basis that a more electron withdrawing phosphine ligand would induce better selectivity, we decided to synthesize phosphine L_{2g} which lacked the methoxy groups of JackiePhos (L_{3g}). The Ag(I) complex gave a similar ratio as the L_{3g} complex, however the conversion was low and the reproducibility of this result was difficult (entry 10).

Because JohnPhos (L_{1a}) had proved to be a better ligand than tBuXPhos (L_{2a}), we synthesized a hybrid between L_{1a} and L_{3g}, which had proved to be our optimal ligand yet. The Ag(I) complex of this electron withdrawing ligand (L_{1g}) was therefore synthesized and, to our displeasure, offered a lower ratio and yield than L_{3g} and L_{2g} complexes when submitted to the typical reaction conditions (entry 11). Therefore, one may assume that the initial observation that L_{1a} was more endo-selective ligand than L_{2a} is mostly the result of the poorer electron donating nature of L_{1a} and that steric, in this particular case, play a less important role.

Other Ag(I) complexes were tested in order to increase both yield and ratio for this reaction and unfortunately, all other catalyst were deemed not sufficiently active (entries 12-14). L_{3g} and L_{8g} Cu(I) complexes were synthesized but found to be inactive at room temperature (entries 15-16). When $[L_{3g}CuMeCN]SbF_6$ was used as the catalyst at 60°C however, low conversion and was observed (entry 17).

Table 3.2 Optimization of the cyclization of 2.4c using coinage metal catalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Ratio (2.6c : 2.5c : 2.7c)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[L_{1a}AuMeCN]SbF_6^a$</td>
<td>43:57:0</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>$[L_{8a}AuMeCN]SbF_6^a$</td>
<td>57:43:0</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>$[L_{1a}AgTHF]SbF_6$</td>
<td>46:0:54</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>$[L_{2a}AgTHF]SbF_6^b$</td>
<td>0:0:100</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>$[L_{2a}AgTHF]SbF_6$</td>
<td>25:0:75</td>
<td>98</td>
</tr>
</tbody>
</table>
Reaction Optimization – Terminal Alkynes

Upon exploring the scope of the Ag(I)-catalyzed cyclizations, we attempted the cyclization of terminal alkyne 3.1. Terminal alkynes of this nature are well known to undergo 5-exo-dig cyclizations exclusively when Au(I) catalysts are used (Table 3.3, entry 1). It is therefore with great surprise that we observed a ratio of 34:66, albeit favoring the 5-exo-dig product 3.3 over 3.2 (entry 2). Reducing the water content to 0.1% v/v slightly increased the ratio and yield (entry 3). L_{1a} and L_{3g} proved to be even less satisfactory ligands than L_{2a} (entries 4-5). Because the electron withdrawing but still fairly bulky phosphine L_{3g} seemed to be the least selective ligand for the 6-endo-dig cyclization of 3.1, we assumed that, in this case, bulky and electron rich Me-tBuXPhos (L_{8}) would be ideal to achieve increased selectivity. Indeed, this is the case as we obtained 3.2 in 91% yield with a ratio of 48:52 (entry 6). When the reaction is performed at room temperature, an increase of selectivity to 51:49 favouring 3.2 is obtained, thus achieving, for the first time, a ratio favouring the endo product on terminal alkynes.
Because L₈ is one of the most sterically demanding and electron rich Buchwald ligands, we considered other ways by which we could improve the selectivity towards the endo product 3.2 by varying the ligand on the Ag(I) metal center. We first used BrettPhos (L₃c), which has two methoxy groups on its biaryl, which we thought would make the metal center more electron rich. Encouraged by the identical ratio BrettPhos (L₃c) had to tBu-XPhos (L₂a) (entry 8), we set our sights on tBu-BrettPhos (L₃a), which we thought would be a even more selective ligand than Me-tBuXPhos (L₈). Unfortunately, L₃a turned out to be less selective than L₈ (entry 9-10). However it is noteworthy that L₃a was slightly more selective than L₂a.

Because we were unable to find a better ligand than Me-tBuXPhos (L₈), we directed our attention towards analogous Cu(I) complexes. We synthesized [L₈CuMeCN]SbF₆ and we were pleased to observe that at 60°C, we increased the ratio favouring 3.3 to 61:39 while altogether with 90% yield (entry 11). Lowering the temperature to r.t. allowed for both an increased ratio of 63:39 and yield of 92%.

We wondered whether exchanging the SbF₆ counteranion for a bulky and extremely non-coordinating BArF anion would induce further selectivity towards 6-endo-dig product 3.3. Unfortunately our efforts, thus far, have been unsuccessful at synthesizing such Cu(I) complexes.

Table 3.3 Optimization of the cyclization of 3.1 using coinage metal catalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Ratio (3.2 : 3.3)</th>
<th>Yield (%)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[L₈AuMeCN]SbF₆<sup>a</sup></td>
<td>0:100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>[L₂aAgTHF]SbF₆<sup>b</sup></td>
<td>34:66</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>[L₂aAgTHF]SbF₆<sup>b</sup></td>
<td>38:61</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>[L₄aAgTHF]SbF₆<sup>b</sup></td>
<td>21:79</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>[L₃gAgTHF]SbF₆<sup>b</sup></td>
<td>11:89</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>[L₈AgMeCN]SbF₆<sup>b</sup></td>
<td>48:52</td>
<td>91</td>
</tr>
</tbody>
</table>
Previous reports have shown that the 6-endo-dig cyclization of terminal alkynes may occur via two different mechanisms. We wanted to gain further insight into the mechanism utilized by our Ag(I) and Cu(I) complexes in order to potentially develop even more selective catalysts. Because the proto-demetalation would not occur at the same carbon in each mechanism, a simple deuteration experiment showed that the cyclization of terminal alkynes proceeds via the same mechanism as non terminal alkynes when our Ag(I) or Cu(I) catalysts are utilized (Figure 3.3).
Figure 3.4 Determination of the Mechanism of Ag(I)-catalyzed Cyclizations of Terminal Alkynes 3.3 using D$_2$O

Reaction Scope

With the optimization of three different types of substrates in hand, we explored the scope of these reactions further (Table 3.4). With the optimal reaction conditions, 2.3a could be synthesized exclusively and in 89% yield. Methyl substituted substrate 2.4a did not require electron poor L$_{3g}$ in order to obtain exquisite selectivity, L$_{2a}$ sufficed to furnish 2.6a exclusively (entry 2). Silyl enol ether 2.4b could also be cyclized in exquisite 6-endo selectivity and in 80% yield to furnish 2.6b (entry 3). Decalin 2.6c was obtained in 75% yield with a ratio of 87:13 at room temperature (entry 4). It is noteworthy that decalin 2.6c can also be obtained in a greatly improved yield by performing the reaction at 60°C with minimal decrease of selectivity towards the 6-endo-dig product (entry 5).
Table 3.4 Substrate Scope of Selective 6-endo-dig Ag(I) or Cu(I)-Catalyzed Cyclizations

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Catalyst</th>
<th>Product</th>
<th>Endo:Exo Ratio</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TIPS<sup>1</sup></td>
<td>[L<sub>2a</sub>Ag<sub>THF</sub>]SbF<sub>6</sub></td>
<td>>95:5</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TIPS<sup>1</sup></td>
<td>[L<sub>2a</sub>Ag<sub>THF</sub>]SbF<sub>6</sub></td>
<td>>95:5</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TIPS<sup>1</sup></td>
<td>[L<sub>3g</sub>Ag<sub>THF</sub>]SbF<sub>6</sub></td>
<td>>95:5</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>OTIPS</td>
<td>[L<sub>3g</sub>Ag<sub>THF</sub>]SbF<sub>6</sub></td>
<td>87:13</td>
<td>75<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>OTIPS</td>
<td>[L<sub>3g</sub>Ag<sub>THF</sub>]SbF<sub>6</sub></td>
<td>85:15</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TIPS<sup>1</sup></td>
<td>[L<sub>8</sub>CuMeCN]SbF<sub>6</sub></td>
<td>63:37</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>OTIPS<sup>1</sup></td>
<td>[L<sub>2a</sub>Ag<sub>THF</sub>]SbF<sub>6</sub></td>
<td>6-exo only</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>
Terminal alkyne 3.1 could also be cyclized to furnish 3.3 in a 63:37 ratio (entry 6), only this time the use of a Cu(I) species proved to be the ideal catalyst.

We also wanted to show that Ag(I) catalysts are fairly versatile and can catalyze other types of cyclizations which are known to proceed via Au(I) catalysis. For example, the 6-exo-dig cyclization of terminal alkyne 3.7 proceeds in excellent yield using the Ag(I) complex of L_{2a} (entry 7). The 5-endo-dig cyclization of terminal alkyne 3.9 also proceeds smoothly using less expensive JohnPhos (L_{1a}) as the ligand on a Ag(I) cationic complex (entry 8).
Summary

We have demonstrated that the 6-endo-dig pathway is accessible and not limited to sterically or electronically biased substrates. Pathway selectivity may be modulated by the proper choice of ancillary ligand on the metal species. It seems the ancillary ligand can affect pathway selectivity at the first bond formation rather than through a common intermediate generated after an initial bond formation.

Scheme 4.1 Selected Example of Ligand Effect on the cyclization of 2.8i
In the case of Au(I) complexex, we discovered that [IPrAuMeCN]SbF₆ was the ideal catalyst for 5-exo-dig cyclizations whereas [Me-tBuXPhosAuMeCN]SbF₆ proved to be the most selective catalyst towards 6-endo-dig cyclizations (Scheme 4.1). This allows for the formation of a variety of fused bicycles. As a proof of concept, a Diels-Alder reaction was performed on 2.8c in order to generate steroid analogue 2.14 (Scheme 4.2).

Scheme 4.2 Diels-Alder reaction of 2.8c with phenylmaleimide

X-ray analysis of LAuCl species bearing a Buchwald-type phosphine (L) showed a nice correlation between the L-Au-Cl angle and the general selectivity of Au(I) catalysts towards 6-endo-dig cyclizations. Inspired by the x-ray studies conducted by Echavarren and coworkers, which demonstrated that the L-M-NCMe angle increased when the metal was replaced from Au(I) to Ag(I) to Cu(I), we set out to re-explore the cyclization of silyl enol ether 2.1a. Our assumptions were confirmed when [tBuXPhosAgTHF]SbF₆ gave exquisite formation of 6-endo-dig product 2.3a in 89% yield (Scheme 4.3).

Scheme 4.3 Ag(I)-Catalyzed 6-endo-dig Cyclization of 2.1a

It soon became clear that not all substrates were going to cyclize as selectively as 2.1a, when we attempted the cyclization of 2.4c. Due to the formation of allene 2.7c, electron withdrawing JackiePhos ligand was used in order to form 6-endo-dig product 2.6c in 95%
yield with a good 2.6c to 2.7c ratio (Scheme 4.4). [JackiePhosAgTHF]SbF₆ proved to be the ideal catalyst for the cyclization of methyl substituted alkynes.

Scheme 4.4 Ag(I)-Catalyzed 6-endo-dig Cyclization of 2.4c

Finally, because terminal alkyne 3.1 had always cyclized in a 5-exo-dig fashion with even our most 6-endo-dig selective Au(I)-catalyst, our hopes of accessing the 6-endo-dig pathway with Ag(I) or even Cu(I) catalysts were low. However, we were happy to see that [Me-tBuXPhosCuMeCN]SbF₆ offered decent selectivity at room temperature, furnishing the 6-endo-dig product 3.2 as the major isomer. While the selectivity towards 3.2 is certainly not ideal, only we were able to access the 6-endo-dig pathway on a substrate that was previously known to only cyclize via the 5-exo-dig pathway when coinage metal catalysts were utilized.

Scheme 4.5 Cu(I)-Catalyzed Cyclization of 3.1

Outlook

Our investigations into coinage metal catalyzed cyclizations of silyl enol ethers have brought many questions. For instance, where does the selectivity originate? It is our belief that NMR spectroscopy studies using stoichiometric quantities of metal catalyst may reveal crucial information.
A second question one might ask is, what is the exact mechanism of these reactions and how does it impact pathway selectivity? Are we under kinetically controlled conditions or are thermodynamics more important?

A recent publication by Hammond and coworkers has, for the first time, shone light on the proto-deauration step of typical Au(I)-catalyzed reactions. These authors state that two rate-limiting steps (RLS) are possible for Au(I)-catalyzed reactions. In some cases, the RLS is the alkyne activation and in other, it is the proto-deauration. In the case of difficult alkyne activations, the ideal ligand is an electron-poor one, which renders the metal more lewis acidic. Therefore, one should expect a faster reaction rate with electron-poor ligands on systems where the RLS is the alkyne activation. On the other hand, electron-rich ligands tend to favor proto-deauration. Therefore, if the RLS is the protodeauration, electron-rich ligands would offer a faster reaction rate while electron poor ligands would slow down the reaction considerably.

It is our view that similar experiments could be conducted using electron poor and electron rich ligands in order to determine whether the RLS varies according to which metal is used. Also, if the RLS is the proto-demetalation for all coinage metal catalyzed cyclizations, this might suggest that the relative rate of proto-demetalation between metals is at the origin of the 6-endo-dig selectivity if the latent proto-demetalation offers a thermodynamic equilibrium.
Chapter 5

Experimental

General Information

All reactions were performed under nitrogen or argon atmosphere in flame-dried glassware equipped with a magnetic stir bar and a rubber septum, unless otherwise indicated. Most solvents were freshly distilled prior to use; diethyl ether and THF over sodium and benzophenone; toluene, triethylamine, and DCM over calcium hydride. All other commercial reagents were used without further purification, unless otherwise noted. The acetonitrile[(2-biphenyl)di-terr-butylphosphine]gold(I) complex was purchased from Sigma-Aldrich® and kept on bench without any further precaution or made as reported in the literature. Chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I) and Chloro[2-dicyclohexyl(2’,4’,6’-trisopropylbiphenyl)phosphine]gold(I) were purchased from Sigma-Aldrich® but used as its acetonitrile cationic form with hexafluoroantimonate as counterion. Reactions were monitored by thin layer chromatography (TLC) analysis of aliquots using glass sheets pre-coated (0.2 mm layer thickness) with silica gel 60 F254 (E. Merck). Thin layer chromatography plates were viewed under UV light and stained with phosphomolybdic acid or p-anisaldehyde staining solution. Column chromatographies were carried out with silica gel 60 (230-400 mesh, Merck). Preparative HPLC was performed on a waters LC 4000 system equipped with a PDA detector and a 21.2 mm - 2.5 mm reverse phase column. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker AMX 300 MHz, Bruker AMX 400 MHz and Bruker AMX 500 MHz spectrometers. NMR samples were dissolved in chloroform-d (unless specified otherwise) and chemical shifts are reported in ppm from ppm relative to the residual undeuterated solvent. Data are reported as follows:
chemical shift, integration, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets of doublets, dddd = doublet of doublets of doublets of doublets, br = broad signal, t = triplet, q = quartet, quint = quintet, sex = sextet, sept = septuplet, m = multiplet, or otherwise noted), coupling constant. Carbon nuclear magnetic resonance (\(^{13}\)C NMR) spectra were recorded on a 75.5 MHz, 100.7 MHz, or 125.7 MHz spectrometer. NMR samples were dissolved in chloroform-\(d\) (unless specified otherwise) and chemical shifts are reported in ppm relative to the solvent. IR spectra were recorded with a Bomem Michaelson 100 FTIR spectrometer. HRMS were obtained on a Kratos Analytical Concept instrument (University of Ottawa Mass Spectrum Centre). The crystals were mounted on thin glass fibers using paraffin oil and cooled to 200.15 °K. Data were collected on a Bruker AXS SMART single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with APEX II software package from BRUKER AXS.

General Procedure A – Synthesis of Silyl Enol Ethers

![Chemical Structure](image)

To a flame-dried flask equipped with a magnetic stir bar and under argon atmosphere was added cycloalkenone (1.0 mmol) and THF (5 mL). The solution was cooled to -78 °C and TIPSOTf (1.5 mmol) was added followed by the dropwise addition of Me\(_2\)S (3.0 mmol). The reaction was stirred 30 min at -78 °C. During this time, in a separate flame-dried flask equipped with a magnetic stir bar and under argon atmosphere, a THF solution of a mono alkylated diethyl propargylmalonate (1.5 mmol) was added to a THF (5 mL) suspension of NaH 60% w/w in oil (2.0 mmol) at r.t. The mixture was stirred 30 min and added dropwise to the first flask at -78°C. The reaction mixture was stirred at -78 °C for 1h and quenched with a saturated solution of NaHCO\(_3\)(aq). The aqueous layer was extracted three times with
EtOAc. The organics layers were combined, dried over MgSO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel (eluted with hexane/AcOEt (98:2 to 90:10)) to give silyl enol ether as clear oils. (52-100% yield).

General Procedure B – Synthesis of Silyl Enol Ethers with Alkene Substituted Alkynes

A flame-dried flask equipped with a magnetic stir bar was charged with Pd(PPh₃)₄ (0.05 mmol) followed by CuI (0.1 mmol). Benzene (10.0 mL) was then added and the solution was degassed with argon for 15 minutes. During the degassing, the terminal alkyne (1.0 mmol) was added followed by vinyl halide or aryl halide (1.5-3.0 mmol). Once the degassing was completed, diethyl amine (5.0 mmol) was added to the solution and the mixture was stirred overnight. Silica was added directly to the mixture and the solvent was evaporated off under reduced pressure. The residue was then purified by flash column chromatography on silica gel (eluted with hexane/AcOEt (98:2 to 95:5)) to give the desired compound as a clear yellow oil (60-100% yield). Vinyl halides for the synthesis of compounds 8k-p were synthesized according to the literature procedures.3, 4
Silyl enol ether 2.1a

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil.

IR (neat, cm$^{-1}$) ν max 2944-2867, 1733, 1645, 1252; **1H NMR (400 MHz, CDCl$_3$)** δ 7.38-7.33 (m, 2H), 7.29-7.26 (m,3H), 4.75 (ddd, J = 1.9 Hz, 1.6 Hz, 1.6 Hz, 1H), 4.36,-4.13 (m, 4H), 3.69-3.64 (m,1H), 3.04 (d, J = 17.1 Hz, 1H), 2.98 (d, J = 17.1 Hz, 1H), 2.32-2.27 (m, 2H), 2.15-2.05 (m, 1H), 1.97-1.88 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.21-1.13 (m, 3H), 1.06 (d, J =7.0 Hz, 18H); **13C NMR (100 MHz, CDCl$_3$)** δ 170.4 (C), 170.2 (C), 157.2 (C), 131.7 (CHx2), 128.3 (CHx2), 127.9 (CH), 123.7 (C), 102.7 (CH), 85.8 (C), 82.9 (C), 61.4 (CH$_2$x2), 61.0 (C), 45.8 (CH), 33.1 (CH$_2$), 23.8 (CH$_2$), 23.3 (CH$_2$), 18.0 (CH$_3$x6), 14.2 (CH$_3$x2), 12.5 (CHx3); **HRMS (EI)** m/z calcd for C$_{30}$H$_{44}$O$_5$Si [M$^+$] 512.2958, found 512.2958.

Silyl enol ether 2.1b

Silyl enol ether was prepared according to the general procedure A and isolated as colorless oil.

IR (neat, cm$^{-1}$) ν max 3057, 2980-2874, 1734, 1492, 1297, 1027; **1H NMR (400 MHz, CDCl$_3$)** δ 7.38-7.34 (m,2H), 7.29-7.26 (m, 3H), 4.26-4.16 (m, 4H), 3.66-3.61 (m, 1H), 3.15 (d J =17.3 Hz, 1H), 2.99 (d, J = 17.3 Hz, 1H), 2.47-2.38 (m, 1H), 2.26-2.13 (m, 2H), 2.09-2.01 (m, 1H), 1.59 (s, 3H), 1.29 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.27 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.16-1.11 (m, 3H), 1.10-1.06 (m, 18H); **13C NMR (100 MHz, CDCl$_3$)** δ 170.5 (C), 170.2 (C), 150.9 (C), 131.6 (CHx2), 128.2 (CHx2), 127.8 (CH), 123.8 (C), 111.8 (C), 86.4
(C), 82.6 (C), 61.5 (CH₂), 61.4 (CH₂), 61.2 (C), 49.1 (CH), 32.4 (CH₂), 23.8 (CH₂), 23.3 (CH₂), 18.0 (CH₃x6), 14.2 (CH₃), 14.1 (CH₃), 13.0 (CHx3), 11.9 (CH₃); **HRMS (EI)** m/z calcd for [M⁺] C₃₁H₄₆O₅Si 526.3115, found 526.3105.

Silyl enol ether 2.1c

Silyl enol ether was prepared according to the general procedure A and isolated as colorless oil.

IR (neat, cm⁻¹) ν max 2944, 2867, 1730, 1653, 1188, 883; **¹H NMR** (400 MHz, CDCl₃) δ 7.40-7.32 (m, 2H), 7.28-7.25 (m, 3H), 4.94-4.92 (m, 1H), 4.21 (dddd, J = 10.9 Hz, 7.2 Hz, 7.2 Hz, 7.2 Hz, 2H), 4.21 (dddd, J = 10.9 Hz, 7.2 Hz, 7.2 Hz, 7.2 Hz, 2H), 3.29-3.22 (m, 1H), 3.04 (s, 2H), 2.15-1.98 (m, 2H), 1.97-1.82 (m, 2H), 1.66-1.58 (m, 1H), 1.49-1.39 (m, 1H), 1.27 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.27 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.17-1.10 (m, 3H), 1.07 (d, J =7.3 Hz, 18H); **¹³C NMR** (100 MHz, CDCl₃) δ 170.2 (C), 170.0 (C), 131.9 (CHx2), 128.3 (CHx2), 127.9 (CH), 123.7 (C), 104.0 (CH), 85.9 (C), 83.1 (C), 61.5 (C), 61.4 (CH₂), 60.9 (CH₂), 39.1 (CH), 29.8 (CH₂), 24.4 (CH₂), 23.2 (CH₂), 22.7 (CH₂), 18.1 (C), 17.9 (CH₃x6), 14.2 (CH₃), 14.2 (CH₃), 12.7 (CHx3); **HRMS (EI)** m/z calcd for C₃₁H₄₆O₅Si [M⁺] 526.3115, found 326.3118.

Silyl enol ether 2.1d

Silyl enol ether was prepared according to the general procedure A and isolated as colorless oil.
IR (neat, cm⁻¹) ν max 2944, 2867, 1730, 1653, 1188, 883; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.33 (m, 2H), 7.28-7.23 (m, 3H), 4.21 (ddd, J = 13.1 Hz, 7.2 Hz, 7.2 Hz, 4H), 3.39-3.34 (br, 1H), 3.07 (d, J = 16.9 Hz, 1H), 3.01 (d, J = 16.9 Hz, 1H), 2.12-2.01 (m, 2H), 1.80-1.74 (m, 2H), 1.67 (s, 3H), 1.60-1.53 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.15-1.10 (m, 3H), 1.07 (d, J = 7.3 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8 (C), 170.7 (C), 131.7 (CHx2), 128.3 (CHx2), 127.7 (CH), 124.0 (C), 110.8 (C), 87.0 (C), 82.7 (C), 61.5 (C), 61.5 (CH₂), 61.4 (CH₂), 43.2 (CH), 30.3 (CH₂), 25.8 (CH₂), 24.7 (CH₂), 21.4 (CH₂), 18.4 (CH₃x6), 18.3 (C), 15.5 (CH₃), 14.2 (CH₃), 14.1 (CH₃), 13.4 (CHx3); HRMS (EI) m/z calcd for [M⁺] C₃₂H₄₈O₅Si 540.3271, found 540.3284.

![Silyl enol ether](image)

Silyl enol ether 2.1e

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2943, 2867, 1730, 1511, 1248, 1195, 1035; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.26 (m, 2H), 6.81-6.77 (m, 2H), 4.94-2.92 (m, 1H), 4.21 (dddd, J = 11.1 Hz, 7.2 Hz, 7.2 Hz, 7.2 Hz, 2H), 4.21 (dddd, J = 11.1 Hz, 7.2 Hz, 7.2 Hz, 7.2 Hz, 2H), 3.79 (s, 3H), 3.28-3.22 (m, 1H), 3.02 (s, 2H), 2.12-1.80 (m, 4H), 1.67-1.55 (m, 1H), 1.48-1.38 (m, 1H), 1.26 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.26 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.19-1.10 (m, 3H), 1.05 (d, J = 7.2 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3 (C), 170.1 (C), 159.3 (C), 152.8 (C), 133.1 (CHx2), 116.0 (C), 113.9 (CHx2), 104.1 (CH), 84.2 (C), 82.9 (C), 61.4 (CH₂), 61.4 (CH₂), 61.0 (C), 55.4 (CH₃), 39.0 (CH), 29.8 (CH₂), 24.4 (CH₂), 23.4 (CH₂), 22.7 (CH₂), 18.1 (CH₃x6), 14.2 (CH₃), 14.1 (CH₃), 12.7 (CHx3); HRMS (EI) m/z calcd for [M⁺] C₃₂H₄₈O₅Si 556.3220, found 556.3237.
Silyl enol ether 2.1f

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 3028, 2942, 2865, 1733, 1662, 1511, 1196 1036; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 7.9 Hz, 2H), 4.93 (s, 1H), 4.20 (m, J = 11.1 Hz, 7.2 Hz, 4H), 3.28-3.22 (m, 1H), 3.02 (s, 2H), 2.32 (s, 3H), 2.16-2.05 (m, 1H), 2.01-1.80 (m, 3H), 1.66-1.54 (m, 1H), 1.48-1.39 (m, 1H), 1.26 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.24 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.19-1.09 (m, 3H), 1.06 (d, J = 6.0 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2 (C), 170.0 (C), 152.7 (C), 137.8 (C), 131.5 (CHₓ₂), 129.0 (CHₓ₂), 120.6 (C), 104.0 (CH), 84.9 (C), 83.1 (C), 61.4 (CH₂), 61.3 (CH₂), 60.9 (C), 39.0 (CH), 29.8 (CH₂), 24.3 (CH₂), 23.2 (CH₂), 22.6 (CH₂), 21.5 (CH₃), 18.1 (CHₓ₃x6), 14.2 (CH₃), 14.2 (CH₃), 12.6 (CHₓ₃); HRMS (EI) m/z calcd for C₃₂H₄₈O₅Si [(M-C₅H₁₀O₂)⁺] 497.2723, found
Experimental

1.90-1.81 (m, 2H), 1.65-1.53 (m, 1H), 1.45-1.36 (m, 1H), 1.25 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.24 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.16-1.08 (m, 3H), 1.03 (d, J = 6.5 Hz, 18H); 13C NMR (100 MHz, CDCl3) δ 197.4 (C), 170.0 (C), 169.8 (C), 153.0 (C), 136.0 (C), 131.8 (CHx2), 128.6 (C), 128.2 (CHx2), 103.7 (CH), 89.9 (C), 82.5 (C), 61.5 (CH2), 61.4 (CH2), 60.8 (C), 39.1 (CH), 29.7 (CH2), 26.7 (CH3), 24.4 (CH2), 23.2 (CH2), 22.5 (CH2), 18.0 (CH3x6), 14.2 (CH3), 14.1 (CH3) 12.6 (CHx3); HRMS (EI) m/z calcd for C33H48O6Si [M+] 568.3220, found 568.3247.

![Silyl enol ether 2.1h](image)

Silyl enol ether 2.1h

Silyl enol ether was prepared according to the general procedure A and isolated as a yellow-orange oil.

IR (neat, cm⁻¹) ν max 2944, 2868, 1734, 1663, 1465, 1324, 1168, 1068; ¹H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 4.90 (s, 1H), 4.30-4.15 (m, 4H), 3.27-3.20 (m, 1H), 3.04 (s, 2H), 2.16-2.05 (m, 1H), 2.01-1.94 (m, 1H), 1.91-1.82 (m, 2H), 1.64-1.54 (m, 1H), 1.46-1.35 (m, 1H), 1.26 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.25 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.17-1.08 (m, 3H), 1.05 (d, J =6.4 Hz, 18H); 13C NMR (100 MHz, CDCl3) δ 170.0 (C), 169.9 (C), 153.0 (C), 131.9 (CHx2), 130.2 (CH), 125.4 (C), 125.2 (q, J_C-F = 3.9 Hz) (CHx2), 124.9 (q, J_C-F = 3.9 Hz) (C), 103.8 (CH), 88.9 (C), 81.9 (C), 61.5 (CH2), 61.5 (CH2), 60.9 (C), 39.2 (CH), 29.8 (CH2), 24.4 (CH2), 23.1 (CH2), 22.6 (CH2), 18.1 (CH3x6), 14.2 (CH3), 14.2 (CH3) 12.7 (CHx3); HRMS (EI) m/z calcd for C32H35F3O5Si1 [M+] 594.2988, found 594.3012.
Sillyl enol ether

Sillyl enol ether was prepared according to the general procedure 1,4-addition of propargyl malonate B and isolated as a yellow oil.

H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.6 Hz, 2H), 7.40 (d, 8.6 Hz, 2H), 4.88 (s, 1H), 4.26-4.15 (m, 4H), 3.21 (d, J = 9.2 Hz, 1H), 3.03 (s, 2H), 2.14-2.04 (m, 1H), 2.00-1.92 (m, 1H), 1.85 (dd, J = 10.4 Hz, 4.0 Hz, 2H), 1.63-1.52 (m, 1H), 1.44-1.33 (m, 1H), 1.25 (t, J = 7.1 Hz, 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 7.1 Hz, 3H), 1.17-1.07 (m, 3H), 1.02 (d, J = 7.2 Hz, 18H) ; **C NMR (100 MHz, CDCl₃)** δ 169.9 (C_quat), 169.7 (C_quat), 153.1 (C_quat), 132.2 (CHx2), 131.9 (CHx2), 128.6 (C_quat), 118.6 (C_quat), 111.2 (C_quat), 103.6 (CH), 91.3 (C_quat), 81.7 (C_quat), 61.6 (CH₂), 61.5 (CH₂), 60.8 (C_quat), 39.2 (CH), 29.8 (CH₂), 24.4 (CH₂), 23.1 (CH₂), 22.6 (CH₂), 18.1 (CH₃x6), 14.3 (CH₃), 14.2 (CH₃) 12.7 (CHx3); **HRMS (EI) m/z** calcd for C₃₂H₄₅NO₅Si₁ 551.3027, found 571.3054

Silyl enol ether 2.1j

Silyl enol ether was prepared according to the general procedure A and isolated as a yellow oil.

IR (neat, cm⁻¹) ν max 2943, 2866, 1733, 1662, 1594, 1520, 1464m 1343, 1195; **H NMR (400 MHz, CDCl₃)** δ 8.11 (dd, J = 8.9 Hz, 2.2 Hz, 2H), 7.45 (dd, 8.9 Hz, 2.2 Hz, 2H), 4.98-
4.87 (m, 1H), 4.24-4.15 (m, 4H), 3.25-3.19 (m, 1H), 3.04 (s, 2H), 2.15-2.04 (m, 1H), 2.00-1.92 (m, 1H), 1.88-1.81 (m, 2H), 1.63-1.52 (m, 1H), 1.43-1.33 (m, 1H), 1.24 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.24 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.14-1.07 (m, 3H), 1.03 (d, J = 7.3 Hz, 18H);

13C NMR (100 MHz, CDCl$_3$) δ 169.9 (C), 169.7 (C), 153.1 (C), 146.9 (C), 132.4 (CHx2), 130.6 (C), 123.5 (CHx2), 103.6 (CH), 92.4 (C), 81.6 (C), 61.6 (CH$_2$), 61.5 (CH$_2$), 60.8 (C), 39.3 (CH), 29.8 (CH$_2$), 24.4 (CH$_2$), 23.2 (CH$_2$), 22.6 (CH$_2$), 18.0 (CH$_3$x6), 14.2 (CH$_3$), 14.2 (CH$_3$) 12.7 (CHx3); HRMS (EI) m/z calcd for [M$^+$] C$_{31}$H$_{45}$NO$_7$Si 571.2965, found 571.2980.

Silyl enol ether 2.4a

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 4.77(dd, J = 3.4 Hz, 1.7 Hz, 1H), 4.24-4.07 (m, 4H), 3.59-3.52 (m, 1H), 2.73 (dq, J = 16.9 Hz, 2.6 Hz, 1H), 2.69 (dq, J = 16.9 Hz, 2.6 Hz, 1H), 2.32-2.21 (m, 2H), 2.04 (dddd, J = 13.2 Hz, 8.8 Hz, 8.8 Hz, 4.5 Hz, 1H), 1.88-1.79 (m, 1H), 1.73 (dd, J = 2.6 Hz, 3H), 1.25 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.23 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.18-1.13 (m, 3H), 1.06 (d, J = 7.2 Hz, 18H); 13C NMR (100 MHz, CDCl$_3$) δ 170.5 (C$_{	ext{quatx2}}$), 156.8 (C$_{	ext{quat}}$), 102.9 (CH), 78.2 (C$_{	ext{quat}}$), 74.5 (C$_{	ext{quat}}$), 61.2 (CH$_2$x2), 60.8 (C$_{	ext{quat}}$), 45.5 (CH), 33.1 (CH$_2$), 23.7 (CH$_2$), 23.0 (CH$_2$), 18.0 (CH$_3$x6), 17.8 (CH$_3$), 14.2 (CH$_3$), 12.5 (CH), 12.0 (CHx3); HRMS (EI) m/z calcd for C$_{25}$H$_{42}$O$_5$Si 450.2802, found 450.2790.

Silyl enol ether 2.4b
Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil.

IR (neat, cm\(^{-1}\)) v max 2944, 2867, 1734, 1465, 1225, 883; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.22-4.10 (m, 4H), 3.52-3.47 (m, 1H), 2.84 (dq, J = 17.0 Hz, 2.6 Hz, 1H), 2.68 (dq, J = 17.0 Hz, 2.6 Hz, 1H), 2.37-2.27 (m, 1H), 2.23-2.13 (m, 1H), 2.12-2.05 (m, 1H), 1.91 (dddd, J = 13.5 Hz, 9.2 Hz, 4.6 Hz, 4.6 Hz, 1H), 1.73 (dd, J = 2.6 Hz, 2.6 Hz, 3H), 1.54 (d, J = 0.9 Hz, 3H), 1.25 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.23 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.19-1.10 (m, 3H), 1.07-1.03 (m, 18H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 170.7 (C), 170.5 (C), 150.5 (C), 112.0 (CH), 78.0 (C), 75.0 (C), 61.3 (CH\(_2\)), 61.2 (CH\(_2\)), 61.1 (C), 48.9 (CH), 32.3 (CH\(_2\)), 23.7 (CH\(_2\)), 23.3 (CH\(_2\)), 18.0 (CH\(_3\)x6), 17.8 (CH\(_3\)), 14.2 (CH\(_3\)), 14.1 (CH\(_3\)), 13.0 (CHx3); HRMS (EI) m/z calcd for [M\(^+\)] \(\text{C}_{26}\text{H}_{44}\text{O}_5\text{Si}\) 464.2958, found 464.2936.

![Silyl enol ether 2.4c](image)

Silyl enol ether 2.4c

Silyl enol ether was prepared according to the general procedure A and isolated as a clear oil.

IR (neat, cm\(^{-1}\)) v max 3056, 2943-2867, 1734, 1665, 1464, 1327, 1190; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.94-4.89 (m, 1H), 4.18 (dq, J = 15. 5 Hz, 7.1 Hz, 2H), 4.18 (dq, J = 15. 5 Hz, 7.1 Hz, 2H), 3.17-3.11 (m, 1H), 2.75 (dd, J = 5.8 Hz, 2.6 Hz, 2H), 2.13-1.90 (m, 2H), 1.87-1.78 (m, 2H), 1.72 (t, J = 2.5 Hz, 3H), 1.59-1.54 (m, 1H), 1.29-1.18 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.15-1.11 (m, 3H), 1.06 (d, J =7.1 Hz, 18H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 170.3 (C), 170.2 (C), 152.5 (C), 104.2 (CH), 78.3 (C), 74. 5 (C), 61.2 (CH\(_2\)), 61.2 (CH\(_2\)), 60.8 (C), 38.7 (CH), 29.7 (CH\(_2\)), 24.2 (CH\(_2\)), 23.0 (CH\(_2\)), 22.6 (CH\(_2\)), 18.1 (CH\(_3\)x6), 14.2 (CH\(_3\)x2), 12.7 (CH\(_3\)), 12.6 (CHx3); HRMS (EI) m/z calcd for \(\text{C}_{26}\text{H}_{44}\text{O}_5\text{Si}[\text{M}^+]\) 464.2958 found 464.2948.
Silyl enol ether 2.4d

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 4.21-4.11 (m, 4H), 4.23 (t, J = 5.9 Hz, 1H), 2.75 (dq, J = 16.8 Hz, 2.5 Hz, 1H), 2.71 (dq, J = 16.8 Hz, 2.5 Hz, 1H), 2.06-1.99 (m, 2H), 1.73 (t, J = 2.5 Hz, 3H), 1.71-1.65 (m, 3H), 1.63 (s, 3H), 1.55-1.46 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.13-1.08 (m, 3H), 1.06 (d, J = 7.1 Hz, 18H); 13C NMR (100 MHz, CDCl$_3$) δ 171.0 (C$_{quat}$), 170.9 (C$_{quat}$), 147.2 (C$_{quat}$), 111.2 (CH), 77.9 (C$_{quat}$), 75.4 (C$_{quat}$), 61.4 (C$_{quat}$), 61.2 (CH$_2$), 61.2 (CH$_2$), 42.9 (CH), 30.3 (CH$_2$), 25.6 (CH$_2$), 24.6 (CH$_2$), 21.2 (CH$_2$), 18.2 (CH$_3$x6), 15.5 (CH$_3$), 14.0 (CH$_3$x2), 13.7 (CH$_3$), 12.6 (CHx3), HRMS (EI) m/z calcd for C$_{27}$H$_{46}$O$_5$Si 478.3115 found 478.3119.

Enyne 2.8a

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil in 76% yield.

IR (neat, cm$^{-1}$) ν max 1737; 1H NMR (500MHz, CDCl$_3$) δ = 5.71 (tdd, J = 2.2, 11.1, 17.5 Hz, 1 H), 5.52 (dd, J = 2.2, 17.5 Hz, 1 H), 5.38 (dd, J = 2.2, 11.1 Hz, 1 H), 4.68 (q, J = 1.8 Hz, 1 H), 4.25 - 4.10 (m, 4 H), 2.89 (dq, J = 2.1, 17.5 Hz, 2 H), 2.32 - 2.20 (m, J = 1.9, 9.2 Hz, 2 H), 2.05 (dd, J = 4.6, 8.8, 13.3 Hz, 1 H), 1.89 - 1.79 (m, 1 H), 1.24 (t, J = 7.1 Hz, 3 H), 1.25 (t, J = 7.2 Hz, 3 H), 1.20 - 1.10 (m, 3 H), 1.08 - 1.02 (m, 18 H); 13C NMR (126MHz, CDCl$_3$) δ = 170.3 (C$_{quat}$), 170.3 (C$_{quat}$), 157.1 (C$_{quat}$), 126.3 (CH$_2$), 117.4 (CH), 102.7 (CH), 86.4 (C$_{quat}$), 81.6 (C$_{quat}$), 61.4 (2xCH$_2$), 60.9 (C$_{quat}$), 45.7 (CH), 33.1 (CH$_2$), 23.7
(CH2), 23.3 (CH2), 18.0 (9xCH3), 14.2 (CH3), 14.2 (CH3), 12.5 (3xCH); **HRMS (EI)** m/z calcd for C26H42O5Si [M+] 462.2802, found 462.2802.

![Enyne 2.8b](image)

Enyne 2.8b

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil in 76% yield.

IR (neat, cm-1) ν max 2943, 2868, 1738; **1H NMR (400MHz, CDCl3)** δ = 5.72 (tdd, J = 2.3, 11.0, 17.5 Hz, 1 H), 5.51 (dd, J = 2.3, 17.5 Hz, 2 H), 5.37 (dd, J = 2.3, 11.0 Hz, 2 H), 4.26 - 4.10 (m, 4 H), 3.58 - 3.50 (m, 1 H), 3.03 (dd, J = 2.2, 17.3 Hz, 1 H), 2.85 (dd, J = 2.1, 17.3 Hz, 1 H), 1.54 (s, 3 H), 1.26 (dt, J = 3.5, 7.1 Hz, 16 H), 1.07 (s, 12 H), 1.06 (s, 6 H); **13C NMR (101MHz, CDCl3)** δ = 170.4 (Cquat), 170.1 (Cquat), 150.7 (Cquat), 126.0 (CH2), 117.4 (CH), 111.6 (Cquat), 86.9 (Cquat), 81.3 (Cquat), 61.3 (CH2), 61.3 (CH2), 61.0 (Cquat), 49.0 (CH), 32.2 (CH2), 23.6 (CH2), 23.3 (CH2), 17.9 (CH3x3), 17.9 (CH3x3), 14.1 (CH3), 14.0 (CH3), 12.8 (CHx3), 11.8 (CH3); **HRMS (EI)** m/z calcd for C27H44O5Si [M+] 476.2958, found 476.2959.

![Enyne 2.8c](image)

Enyne 2.8c

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil in quantitative yield.

IR (neat, cm-1) ν max 2943, 2867, 1734, 1663, 1465, 1368, 1195, 916, 883, 684; **1H NMR (300MHz, CDCl3)** δ = 5.72 (tdd, J = 2.0, 11.0, 17.5 Hz, 1 H), 5.51 (dd, J = 2.3, 17.6 Hz, 1
Experimental

H), 5.37 (dd, J = 2.3, 10.9 Hz, 1 H), 4.88 (s, 1 H), 4.24 - 4.12 (m, 4 H), 3.23 - 3.10 (m, 1 H), 2.92 (d, J = 2.0 Hz, 2 H), 2.17 - 1.77 (m, 4 H), 1.66 - 1.50 (m, 1 H), 1.43 - 1.02 (m, 4 H), 1.25 (dt, J = 5.0, 7.1 Hz, 6 H), 1.07 (s, 12 H), 1.05 (s, 6 H); 13C NMR (75MHz, CDCl$_3$) δ = 170.1 (C$_{quat}$), 170.0 (C$_{quat}$), 152.8 (C$_{quat}$), 126.3 (CH$_2$), 117.4 (CH), 103.9 (CH), 86.4 (C$_{quat}$), 81.8 (C$_{quat}$), 61.4 (CH$_2$), 61.3 (CH$_2$), 60.8 (C$_{quat}$), 38.9 (CH), 29.7 (CH$_2$), 24.3 (CH$_2$), 23.2 (CH$_2$), 22.6 (CH$_2$), 18.1 (CHx3), 14.2 (CH$_3$), 14.2 (CH$_3$), 12.6 (CH$_3$x6); HRMS (EI) m/z calcd for C$_{27}$H$_{44}$O$_5$Si [M$^+$] 476.2958, found 476.2982.

Enyne 2.8d

Prepared according to the general procedure 1,4-addition of propargyl malonate B from the corresponding cycloalkenone and isolated in 75% yield as a clear oil.

IR (neat, cm$^{-1}$) ν max 2944, 2867, 1732, 1465, 1188, 924, 883, 681; 1H NMR (300MHz, CDCl$_3$) δ = 5.73 (tdd, J = 2.0, 10.9, 17.6 Hz, 1 H), 5.50 (dd, J = 2.4, 17.6 Hz, 1 H), 5.35 (dd, J = 2.4, 11.0 Hz, 1 H), 4.18 (qd, J = 7.1, 9.9 Hz, 4 H), 3.29 (t, J = 5.7 Hz, 1 H), 2.91 (dd, J = 2.0, 9.4 Hz, 2 H), 2.18 - 1.93 (m, 2 H), 1.63 (s, 3 H), 1.85 - 1.45 (m, 3 H), 1.26 (dt, J = 5.0, 7.1 Hz, 6 H), 1.18 - 0.94 (m, 22 H); 13C NMR (75MHz, CDCl$_3$) δ = 170.8 (C$_{quat}$), 170.7 (C$_{quat}$), 147.6 (C$_{quat}$), 126.0 (CH$_2$), 117.7 (CH), 110.8 (C$_{quat}$), 87.6 (C$_{quat}$), 81.4 (C$_{quat}$), 61.5 (CH$_2$), 61.5 (CH$_2$), 61.3 (CH), 43.2 (CH), 30.3 (CH$_2$), 25.8 (CH$_2$), 24.7 (CH$_2$), 21.4 (CH$_2$), 18.2 (CHx3), 15.4 (CH$_3$), 14.2 (CH$_3$), 14.0 (CH$_3$), 13.4 (CH$_3$x6); HRMS (EI) m/z calcd for C$_{28}$H$_{46}$O$_5$Si [M$^+$] 490.3115, found 490.3126.

Enyne 2.8e
Prepared according to general procedure B from the corresponding terminal alkyne and (1-bromovinyl)trimethylsilane in 55% yield as a clear oil.

IR (neat, cm-1) 2945, 2866, 1734, 1197, 841; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta = 5.97\) (d, \(J = 3.4\) Hz, 1 H), 5.61 (d, \(J = 3.5\) Hz, 1 H), 4.90 (s, 1 H), 4.22 - 4.11 (m, 4 H), 3.24 - 3.14 (m, 1 H), 3.00 (d, \(J = 5.4\) Hz, 2 H), 2.14 - 1.78 (m, 4 H), 1.63 - 1.50 (m, 1 H), 1.44 - 1.32 (m, 1 H), 1.24 (q, \(J = 7.2\) Hz, 6 H), 1.20 - 1.09 (m, 3 H), 1.07 (s, 12 H), 1.05 (s, 6 H), 0.12 (s, 9 H); \(^{13}\)C NMR (101MHz, CDCl\(_3\)) \(\delta = 170.1\) (C\textsubscript{quat}), 169.9 (C\textsubscript{quat}), 152.4 (C\textsubscript{quat}), 134.7 (C\textsubscript{quat}), 133.4 (CH\(_2\)), 104.1 (CH), 89.0 (C\textsubscript{quat}), 84.3 (C\textsubscript{quat}), 61.2 (CH\(_2\)), 61.1 (CH\(_2\)), 60.7 (C\textsubscript{quat}), 38.5 (CH), 29.6 (CH\(_2\)), 24.1 (CH\(_2\)), 23.9 (CH\(_2\)), 22.5 (CH\(_2\)), 18.0 (CH\(_3\)x6), 14.1 (CH\(_3\)), 14.1 (CH\(_3\)), 12.5 (CH\(_3\)), -2.2 (CH\(_3\)x3); HRMS (EI) m/z calcd for C\(_{25}\)H\(_{39}\)O\(_5\)Si [M\(^+\)] 548.3353, found 548.3350.

Enyne 2.8f

Prepared according to general procedure B from the corresponding terminal alkyne and 2-bromoprop-1-ene in 78% yield as a clear oil.

IR (neat, cm-1) \(\nu\) max 2943, 2867, 1734, 1664, 1464, 1371, 1195, 883, 685; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta = 5.17 - 5.14\) (m, 1 H), 5.12 (dq, \(J = 1.7\) Hz, 1 H), 4.87 (s, 1 H), 4.26 - 4.10 (m, 4 H), 3.20 - 3.13 (m, 1 H), 2.91 (d, \(J = 1.7\) Hz, 2 H), 2.15 - 2.02 (m, 1 H), 2.01 - 1.91 (m, 1 H), 1.90 - 1.79 (m, 2 H), 1.83 - 1.79 (m, 3 H), 1.67 - 1.50 (m, 1 H), 1.44 - 1.31 (m, 1 H), 1.25 (q, \(J = 7.2\) Hz, 6 H), 1.19 - 1.09 (m, 3 H), 1.07 (s, 12 H), 1.05 (s, 6 H); \(^{13}\)C NMR (101MHz, CDCl\(_3\)) \(\delta = 170.0\) (C), 169.9 (C), 152.7 (C), 126.9 (C), 120.8 (CH\(_2\)), 103.8 (CH), 84.7 (C), 84.2 (C), 61.3 (CH\(_2\)), 61.2 (CH\(_2\)), 60.7 (C), 38.8 (CH), 29.6 (CH\(_2\)), 24.2 (CH\(_2\)), 23.5 (CH\(_3\)), 23.0 (CH\(_2\)), 22.5 (CH\(_2\)), 18.0 (CH\(_3\)x6), 14.1 (CH\(_3\)), 14.0 (CH\(_3\)), 12.5 (CH\(_3\)); HRMS (EI) m/z calcd for C\(_{28}\)H\(_{46}\)O\(_5\)Si [M\(^+\)] 490.3115, found 490.3134.
Experimental

Enyne 2.8g

Prepared according to general procedure B from the corresponding terminal alkyne and α-bromostyrene in 53% yield as a clear oil.

IR (neat, cm$^{-1}$) ν max 2443, 2866, 1731, 1195, 880, 675; 1H NMR (400MHz, CDCl$_3$) δ = 7.62 - 7.58 (m, 2 H), 7.35 - 7.27 (m, 3 H), 5.84 (d, $J = 1.0$ Hz, 1 H), 5.55 (d, $J = 0.7$ Hz, 1 H), 4.91 (s, 1 H), 4.24 - 4.14 (m, 6 H), 3.28 - 3.19 (m, 1 H), 3.04 (d, $J = 2.2$ Hz, 2 H), 2.17 - 2.03 (m, 1 H), 2.01 - 1.78 (m, 3 H), 1.55 (s, 1 H), 1.42 (ddt, $J = 2.4$, 10.2, 12.5 Hz, 1 H), 1.24 (dt, $J = 4.0$, 7.1 Hz, 6 H), 1.19 - 1.09 (m, 3 H), 1.08 - 1.06 (m, 12 H), 1.06 - 1.04 (m, 6 H); 13C NMR (101MHz, CDCl$_3$) δ = 170.0 (C), 169.9 (C), 152.7 (C), 137.4 (C), 130.6 (C), 128.2 (CHx2), 128.1 (CH), 126.0 (CHx2), 119.9 (CH$_2$), 103.8 (CH), 87.2 (C), 82.1 (C), 61.4 (CH$_2$), 61.3 (CH$_2$), 60.8 (C), 39.0 (CH), 29.6 (CH$_2$), 24.3 (CH$_2$), 23.3 (CH$_2$), 22.5 (CH$_2$), 18.0 (CHx3), 14.0 (CH$_3$), 14.0 (CH$_3$), 12.5 (CH$_3$x6); HRMS (EI) m/z calcd for C$_{33}$H$_{48}$O$_5$Si $[M^+]$ 552.3271, found 552.3245.

Enyne 2.8h

Prepared according to general procedure B from the corresponding terminal alkyne and ((2-bromoallyloxy)methyl)benzene in 57% yield as a clear oil.

IR (neat, cm$^{-1}$) ν max 2943, 2866, 1734, 1662, 1368 1221, 1194, 1096, 881, 752, 681; 1H NMR (400MHz, CDCl$_3$) δ = 7.40 - 7.24 (m, 5 H), 5.49 (q, $J = 1.7$ Hz, 1 H), 5.43 - 5.40 (m, 1 H), 4.86 (s, 1 H), 4.53 (s, 2 H), 4.30 - 4.09 (m, 4 H), 3.96 (t, $J = 1.3$ Hz, 2 H), 3.22 - 3.10 (m, 1 H), 2.94 (d, $J = 3.5$ Hz, 2 H), 2.14 - 2.02 (m, 1 H), 1.95 (td, $J = 2.8$, 17.0 Hz, 1 H),
1.91 - 1.77 (m, 2 H), 1.61 - 1.49 (m, 1 H), 1.45 - 1.30 (m, 1 H), 1.23 (dt, J = 4.5, 7.1 Hz, 6 H), 1.19 - 1.09 (m, 3 H), 1.07 (s, 12 H), 1.06 (s, 6 H); 13C NMR (101MHz, CDCl$_3$) δ = 170.0 (C), 169.8 (C), 152.7 (C), 138.1 (C), 128.4 (C), 128.4 (CHx2), 127.7 (CHx2), 127.6 (CH), 121.0 (CH$_2$), 103.7 (CH), 86.7 (C), 81.3 (C), 72.2 (CH$_2$), 72.1 (CH$_2$), 61.3 (CH), 61.2 (CH$_2$), 60.7 (C), 38.9 (CH), 29.6 (CH$_2$), 24.2 (CH$_2$), 23.1 (CH$_2$), 22.5 (CH$_2$), 18.0 (CHx3), 14.1 (CH$_3$), 14.0 (CH$_3$), 12.5 (CH$_3$6); HRMS (EI) m/z calcd for C$_{35}$H$_{42}$O$_6$Si [(M-CH$_2$Ph)$^+$] 505.2985, found 505.2977.

Enyne 2.8i

Prepared according to general procedure B from the corresponding terminal alkyne and (E)-(2-iodovinyl)benzene in 89% yield as a clear oil.

IR (neat, cm$^{-1}$) ν max 2943, 2866, 1731, 1661, 1463, 1367, 1195, 748, 690; 1H NMR (400MHz, CDCl$_3$) δ = 7.36 - 7.23 (m, 5 H), 6.82 (d, $J = 16.3$ Hz, 1 H), 6.09 (td, $J = 1.9$, 16.2 Hz, 1 H), 4.91 (s, 1 H), 4.27 - 4.14 (m, 4 H), 3.21 (d, $J = 9.2$ Hz, 1 H), 2.99 (d, $J = 1.7$ Hz, 2 H), 2.18 - 1.79 (m, 4 H), 1.68 - 1.49 (m, 1 H), 1.45 - 1.33 (m, $J = 11.9$ Hz, 1 H), 1.26 (q, $J = 7.3$ Hz, 6 H), 1.23 - 1.10 (m, 3 H), 1.08 (s, 12 H), 1.06 (s, 6 H); 13C NMR (101MHz, CDCl$_3$) δ = 170.0 (C), 169.9 (C), 152.7 (C), 140.6 (CH), 136.4 (C), 128.6 (CHx2), 128.3 (CH), 126.1 (CHx2), 108.5 (CH), 103.8 (CH), 88.0 (C), 82.1 (C), 61.3 (CH$_2$), 61.3 (CH$_2$), 60.8 (C), 38.9 (CH), 29.7 (CH$_2$), 24.2 (CH$_2$), 23.4 (CH$_2$), 22.5 (CH$_2$), 18.0 (CHx3), 14.1 (CH$_3$), 14.1 (CH$_3$), 12.5 (CH$_3$6); HRMS (EI) m/z calcd for C$_{33}$H$_{48}$O$_6$Si [M$^+$] 552.3271, found 552.3260.
Enyne 2.8j

Prepared according to general procedure B from the corresponding terminal alkyne and (E)-2-bromobut-2-ene in 52% yield as a clear oil.

IR (neat, cm⁻¹) ν max 2943, 2867, 1734, 1663, 1465, 1366, 1223, 1194, 884, 680; **¹H NMR** (300MHz, CDCl₃) δ = 5.75 (qq, J = 1.3, 7.0 Hz, 1 H), 4.86 (s, 1 H), 4.22 - 4.08 (m, 4 H), 3.19 - 3.10 (m, 1 H), 2.87 (s, 2 H), 2.12 - 1.98 (m, 1 H), 1.98 - 1.92 (m, 1 H), 1.92 - 1.74 (m, J = 4.8 Hz, 2 H), 1.67 (t, J = 1.3 Hz, 3 H), 1.60 (dd, J = 0.9, 7.0 Hz, 3 H), 1.65 - 1.27 (m, 2 H), 1.22 (dt, J = 5.5, 7.1 Hz, 6 H), 1.04 (s, 12 H), 1.02 (s, 6 H), 1.16 - 1.00 (m, 3 H); **¹³C NMR** (75MHz, CDCl₃) δ = 170.0 (C), 169.9 (C), 152.4 (C), 131.2 (CH), 118.4 (C), 103.9 (CH), 86.0 (C), 81.3 (C), 61.1 (CH₂), 61.0 (CH₂), 60.7 (C), 38.6 (CH), 29.6 (CH₂), 24.1 (CH₂), 23.0 (CH₂), 22.4 (CH₂), 17.9 (CH₃), 16.9 (CH₃), 14.0 (CH₃), 14.0 (CH₃), 13.8 (CH₃), 12.5 (CH₃x6); **HRMS (EI)** m/z calcd for C₂⁹H₴₈O₆Si [M⁺] 504.3271, found 552.3256.

Enyne 3.1

Prepared according to general procedure A in 80% yield as a colorless oil. Exhibited spectral data in accordance with previous report.⁶⁶
Enyne 3.7

Silyl enol ether was prepared according to the general procedure A and isolated as a colorless oil in 74% yield.

IR (neat, cm$^{-1}$) ν max 3312, 2943, 2867, 1722; 1H NMR (500MHz, CDCl$_3$) δ = 4.86 (br. s, 1 H), 4.23 - 4.13 (m, 4 H), 3.00 - 2.93 (m, 1 H), 2.33 - 1.99 (m, 7 H), 1.93 (t, J = 2.6 Hz, 1 H), 1.87 - 1.76 (m, 1 H), 1.74 - 1.65 (m, 1 H), 1.60 - 1.48 (m, 1 H), 1.30 - 1.20 (m, 6 H), 1.18 - 1.09 (m, 3 H), 1.06 (s, 9 H); 13C NMR (126MHz, CDCl$_3$) δ = 170.6 (C$_{quat}$), 170.6 (C$_{quat}$), 152.4 (C$_{quat}$), 104.0 (CH), 84.0 (C$_{quat}$), 68.4 (CH), 61.2 (CH$_2$), 61.1 (CH$_2$), 60.6 (C$_{quat}$), 40.1 (CH), 31.6 (CH$_2$), 29.7 (CH$_2$), 24.4 (CH$_2$), 22.6 (CH$_2$), 18.1 (9xCH$_3$), 14.9 (CH$_2$), 14.2 (2xCH$_3$), 12.6 (3xCH); HRMS (EI) m/z calcd for C$_{26}$H$_{44}$O$_5$Si [M$^+$] 464.2958, found 464.2944.

![OTIPS](image)

Silyl enol ether 3.9

Prepared according to literature procedure and exhibited spectral data in accordance with previous report.67

General Procedure C – Au(I)-Catalyzed cyclizations
The flask was charged with silyl enol ether (0.175 mmol), solvent (2 mL) and the cationic gold(I) complex (0.0087 mmol, 5 mol%). The mixture was stirred for 1 to 42 hours at room temperature. The reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel eluted with hexane/AcOEt (9:1 to 6:1) to give the cyclization products.

Note 1: When hydrolysis of the starting material was an issue, flasks uses were kept in a base bath prior to performing the reaction. (Base Bath preparation: KOH pellets (70 g) were dissolved in iPrOH (1L) and distilled water (200 mL)). The flasks from the base bath were washed with water, rinsed with acetone prior usage and dry in the oven (60 °C) for a couple of hours.

Note 2: When DCM was used as the solvent, dry conditions were necessary for reproducibility of these results. The round bottom flask was flame-dried and the solvent distilled over CaH₂.

General Procedure D – Ag(I)–Catalyzed cyclizations

A reaction vessel was charged with a magnetic stirrer and purged with argon. A solution of the silyl enol ether (0.100 mmol), solvent (1.5 ml), water (75 μL) and the appropriate Ag(I) catalyst (0.010 mmol) is added via seringe. The reaction mixture is stirred at r.t. or 60°C for 1.5 days. Upon completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel eluted with hexane/AcOEt (9:1 to 6:1) to give the cyclization products.

General Procedure E – Cu(I)–Catalyzed cyclizations
A reaction vessel was charged with a magnetic stirrer and the appropriate Cu(I) catalyst (0.010 mmol). This vessel is then purged with argon and a solution of the silyl enol ether (0.100 mmol), solvent (1.5 ml) and water (75 μL) is added via seringe. The reaction mixture is stirred at r.t. or 60°C for 1.5 days. Upon completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel eluted with hexane/AcOEt (9:1 to 6:1) to give the cyclization products.

\[
\text{Bicyclo[3,3,0]alkenone 2.2a}
\]

Isolated as a colorless oil.

IR (neat, cm}^{-1}) ν max 2980-2891, 1703, 1368, 1259, 1067; **mp (°C)** 85.3-88.7; **1H NMR (400 MHz, CDCl\textsubscript{3})** δ 7.62-7.57 (m, 2H), 7.34-7.22 (m, 3H), 6.54-6.52 (m, 1H), 4.26 (dddd, \(J = 10.7\) Hz, 7.2 Hz, 7.2 Hz, 7.2 Hz, 2H), 4.18 (q, \(J =7.1\) Hz, 2H), 3.78-3.67 (m, 2H), 3.16 (ddd, \(J =15.6\) Hz, 1.9 Hz, 1.9 Hz, 1H), 2.82 (d, \(J = 15.9\) Hz, 1H), 2.51-2.33 (m, 2H), 2.16-2.07 (m, 1H), 1.64-1.54 (m, 1H), 1.29 (t, \(J = 7.2\) Hz, 3H), 1.23 (t, \(J = 7.2\) Hz, 3H); **13C NMR (100 MHz, CDCl\textsubscript{3})** δ 215.8 (C), 170.9 (C), 169.6 (C), 136.4 (C), 135.7 (C), 128.4 (C\textsubscript{H}), 128.0 (CH\textsubscript{x2}), 128.0 (CH), 127.5 (CH\textsubscript{x2}), 62.2 (C), 61.9 (CH\textsubscript{2}), 61.8 (CH\textsubscript{2}), 53.2 (CH), 45.6 (CH), 42.3 (CH\textsubscript{2}), 39.7 (CH\textsubscript{2}), 23.0 (CH\textsubscript{2}), 14.3 (CH\textsubscript{3}), 14.2(CH\textsubscript{3}); **HRMS (EI) m/z** calcd for C\textsubscript{21}H\textsubscript{24}O\textsubscript{5} [M+] 356.1623, found 356.1609.

\[
\text{Bicyclo[4,3,0]alkenone 2.3a}
\]
Isolated as a colorless oil.

IR (neat, cm⁻¹) v max 2994-2855, 1729, 1236, 1097; **mp (°C)** 69.6-72.5; **¹H NMR (400 MHz, CDCl₃)** δ 7.32-7.19 (m, 5H), 5.86 (ddd, J = 4.4 Hz, 4.4 Hz, 2.2 Hz, 1H), 4.30-4.07 (m, 4H), 3.88 (dd, J = 7.8 Hz, 1.5 Hz, 1H), 3.34 (ddd, J = 12.0 Hz, 7.5 Hz, 7.5 Hz, 1H), 2.86 (dd, J = 4.2 Hz, 2.9 Hz, 2H), 2.33-2.12 (m, 2H), 1.92-1.84 (m, 1H), 1.75 (ddd, J = 12.2 Hz, 9.2 Hz, 2.8 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 214.0 (C), 170.7 (C), 170.3 (C), 140.1 (C), 134.3 (C), 128.1 (CHx2), 127.4 (CH), 126.9 (CHx2), 123.4 (CH), 61.9 (CH₂), 61.8 (CH₂), 55.1 (C), 50.0 (CH), 39.7 (CH), 36.8 (CH₂), 26.7 (CH₂), 22.6 (CH₂), 14.3 (CH₃), 14.1 (CH₃); **HRMS (EI)** m/z calcd for C₂₁H₂₄O₅ [M⁺] 356.1623, found 356.1635.

Bicyclo[3.3.0]alkenone 2.2b

Isolated as a white powder.

IR (neat, cm⁻¹) v max 2983, 1734, 1469, 1257, 1153; **mp (°C)** 68.6-70.4; **¹H NMR (400 MHz, CDCl₃)** δ ppm 7.43 (dd, J = 6.9 Hz, 0.6 Hz, 1H) 7.33-7.12 (m, 4H), 6.62 (s, 1H), 4.32-4.15 (m, 4H), 3.35 (dd, J=16.4, 2.4 Hz, 1H), 3.28 (dd, J = 7.9 Hz, 7.9 Hz, 1H), 3.02 (dd, J=16.5 Hz, 1.3 Hz, 1.3 Hz, 1H), 2.32 (dd, J=16.6 Hz, 2.3 Hz, 1H), 2.32 (s, 1H), 2.04 (ddd, J=13.7 Hz, 8.4 Hz, 8.4 Hz, 6.7 Hz, 1H), 1.67-1.49 (m, 1H) 1.28 (ddd, J = 7.1Hz, 7.1 Hz, 4.0 Hz, 6H), 1.16 (s, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 216.6 (C), 171.1 (C), 169.7 (C), 140.7 (C), 136.3 (C), 129.3(CHx2), 127.7 (CHx2), 127.6 (CH), 127.1 (CH), 62.0 (C), 61.9 (CH₂), 61.8(CH₂), 59.5 (C), 54.7 (CH), 43.3 (CH₂), 37.1 (CH₂), 21.9 (CH₂), 21.8 (CH₃), 14.3(CH₃), 14.2 (CH₃); **HRMS (EI)** m/z calcd for [M⁺] C₂₂H₂₇O₅ 371.1859, found 371.1887.
Bicyclo[4.3.0]alkenone 2.3b

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2976, 2941, 2904, 1734, 1492, 1444, 1257; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.21 (m, 3H), 6.94-6.91 (m, 2H), 5.67 (dd, J = 5.7 Hz, 2.5 Hz, 1H), 4.32-4.21 (m, 2H), 4.21-4.12 (m, 2H), 3.11 (dd, J = 18.4 Hz, 6.1 Hz, 1H), 3.05 (dd, J = 11.1 Hz, 7.0 Hz, 1H), 2.57 (dd, J = 18.7 Hz, 2.3 Hz, 1H), 2.50 (dt, J = 9.5 Hz, 2.3 Hz, 1H), 2.41-2.34 (m, 1H), 2.30-2.20 (m, 1H), 1.87-1.76 (m, 1H), 1.29 (t, J = 7.1 Hz, 6H), 1.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 216.1 (C), 170.3 (C), 170.2 (C), 140.5 (C), 137.9 (C), 129.4 (CHx₂), 127.5 (CH), 127.2 (CHx₂), 126.3 (CH), 61.9 (CH₂x₂), 54.3 (C), 54.3 (C), 46.8 (CH), 35.2 (CH₂), 27.2 (CH₂), 22.0 (CH₂), 21.7 (CH₃), 14.2 (CH₃), 14.1 (CH₃); HRMS (EI) m/z calcd for [M⁺] C₂₂H₂₆O₅ 370.1780, found 370.1777.

Bicyclo[4.3.0]alkenone 2.2c

Isolated as a white powder.

IR (neat, cm⁻¹) ν max 2987, 2932, 1736, 1454, 1254, 1238, 1153; mp (°C) 116.9-118.7; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.22 (m, 2H), 7.20-7.16 (m, 1H), 7.13-7.10 (m, 2H), 6.60 (d, J = 1.8Hz, 1H), 4.29-4.12 (m, 4H), 3.80 (d, J= 7.5 Hz, 1H), 3.54 (dd, J = 17.4 Hz, 2.3 Hz, 2.3 Hz, 1H), 3.34 (dd, J = 12.3 Hz, 6.1 Hz, 6.1 Hz, 1H), 3.02 (d, J = 17.4 Hz, 1H), 2.21-2.13 (m, 1H), 2.07-2.02 (m,1H), 1.95-1.87(m,1H), 1.74-1.61 (m, 2H), 1.43 (ddd, J = 12.6, 12.6 Hz, 3.8Hz, 1H), 1.26 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 210.2 (C), 171.1 (C), 169.5 (C), 137.9 (C), 136.2 (C), 128.9 (CHx₂), 128.1 (CHx₂), 127.2 (CH), 126.8 (CH), 62.0 (C), 61.9 (CH₂), 56.9 (CH), 49.2 (CH), 40.5 (CH₂), 39.0 (CH₂), 24.9
Experimental

(CH₂), 24.1 (CH₂), 14.2 (CH₃), 14.1 (CH₃); **HRMS (EI)** m/z calcd for C₂₂H₂₆O₅ [M⁺] 370.1780, found 370.1792.

Bicyclo[4.4.0]alkenone 2.3c

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2980, 2941, 2867, 1732, 1444, 1254, 1180, 1044; **¹H NMR (400 MHz, CDCl₃)** δ 7.26-7.16 (m, 5H), 5.94 (ddd, J = 5.4 Hz, 2.7 Hz, 2.7 Hz, 1H), 4.27-4.15 (m, 4H), 3.94 (br, 1H), 3.08-3.00 (m, 1H), 3.04-3.00 (m, 1H), 2.82 (ddd, J = 19.3 Hz, 4.3 Hz, 2.5 Hz, 1H), 2.10-1.96 (m, 3H), 1.71-1.59 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 211.7 (C), 170.0 (C), 169.7 (C), 140.0 (C), 134.4 (C), 128.3 (CHx2), 127.5 (CH), 127.2 (CHx2), 124.6 (CH), 62.0 (CH₂), 61.9 (CH₂), 56.2 (C), 53.0 (CH), 40.9 (CH), 39.9 (CH₂), 27.5 (CH₂), 26.1 (CH₂), 23.6 (CH₂), 14.1 (CH₃), 14.1 (CH₃); **HRMS (EI)** m/z calcd for C₂₂H₂₆O₅ [M⁺] 370.1780, found 370.1778.

Bicyclo[4.3.0]alkenone 2.2d

Isolated as a white powder.

IR (neat, cm⁻¹) ν max 2982, 2940, 2867, 1732, 1711, 1445, 1256, 1178, 1049; **mp (°C)** 79.7 - 82.3; **¹H NMR (400 MHz, CDCl₃)** δ 7.24-7.12 (m, 4H), 7.04 (dd, J = 7.3 Hz, 0.9 Hz, 1H), 6.55 (s, 1H), 4.28-4.10 (m, 4H), 3.63 (dd, J = 18.0 Hz, 1.9 Hz, 1H), 3.31 (dd, J = 17.9 Hz, 1.4 Hz, 1H), 3.12 (dd, J = 11.4 Hz, 5.1 Hz, 1H), 2.08-2.02 (m, 1H), 1.94-1.81 (m, 2H), 1.57-1.44 (m, 3H), 1.31-1.24 (m, 6H), 1.27 (s, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 211.8
Experimental

(C), 171.8 (C), 169.7 (C), 144.5 (C), 136.4 (C), 129.0 (CHx2), 127.9 (CHx2), 127.2 (CH), 124.9 (CH), 62.5 (C), 62.1 (CH2), 60.3(C), 57.1 (CH), 40.3 (CH2), 39.2 (CH2), 25.8 (CH2), 25.4 (CH2), 23.1 (CH3), 14.2 (CH3), 14.1 (CH3); HRMS (EI) m/z calcd for [M⁺] C_{23}H_{28}O_5 384.1937, found 384.1927.

Bicyclo[4.4.0]alkenone 2.3d

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 3062, 2981, 2941 1731, 1297, 1232, 1096; 1H NMR (400 MHz, CDCl₃) δ 7.24-7.12 (5H), 5.92 (dd, J = 4.8 Hz, 2.2 Hz, 1H), 4.30-4.10 (m,4H), 3.29 (dd, J = 19.6 Hz, 4.9 Hz, 2H), 2,94 (dd, J = 11.7 Hz, 7.9 Hz, 1H), 2.76 (dd, J = 19.6 Hz, 3.2 Hz, 1H), 2.28-2.15 (m, 1H), 2.01-1.81 (m, 2H), 1.75-1.62 (m, 2H), 1.42 (s, 3H), 1.31-1.24 (m, 6H); 13C NMR (100 MHz, CDCl₃) δ 212.1 (C), 170.9 (C), 170.4 (C), 140.6 (C), 139.6 (C), 128.3 (CHx2), 127.8 (CH), 127.3 (CHx2), 125.6 (CH), 62.0 (CH2), 62.0 (CH2), 56.4 (C), 55.4 (C), 49.1 (CH), 40.9 (CH2), 27.5 (CH2), 26.2 (CH2), 25.9 (CH2), 23.0 (CH3), 14.1 (CH3), 13.9 (CH3); HRMS (EI) m/z calcd for [M⁺] C_{23}H_{28}O_5 384.1937, found 384.1932.

Bicyclo[4.3.0]alkenone 2.2e

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 3080, 2920, 2980, 2980, 2918, 1731, 1511, 1250, 1176; 1H NMR (300 MHz, CDCl₃) δ 7.04 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.9 Hz, 2H), 6.51 (d, J = 2.1 Hz, 1H), 4.30-4.20 (m, 4H), 3.81-3.15 (m, 1H), 3.76 (s, 3H), 3.52 (ddd, J = 17.6 Hz, 2.4 Hz, 2.4 Hz, 1H),
3.52 (ddd, J = 12.4 Hz, 6.5 Hz, 5.6 Hz, 1H), 3.02 (d, J = 17.6 Hz, 1H), 2.23-2.13 (m, 1H), 2.07-1.99 (m, 1H), 1.96-1.85 (m, 1H), 1.74-1.56 (m, 2H), 1.42 (qd, J = 13.2 Hz, 3.9 Hz, 1H), 1.25 (t, J = 7.1 Hz, 6H), 1.25 (t, J = 7.1 Hz, 6H); 13C NMR (75 MHz, CDCl\textsubscript{3}) \(\delta\) 210.6 (C), 171.1 (C), 169.5 (C), 158.7 (C), 136.2 (C), 130.1 (CHx2), 128.8 (C), 126.3 (CHx2), 113.4 (CH), 62.0 (C), 61.9 (CH\textsubscript{2}), 61.8 (CH\textsubscript{2}), 57.0 (CH), 55.2 (CH\textsubscript{3}), 49.2 (CH), 40.3 (CH\textsubscript{2}), 39.9 (CH\textsubscript{2}), 24.9 (CH\textsubscript{2}), 24.2 (CH\textsubscript{2}), 14.2 (CH\textsubscript{3}), 14.1 (CH\textsubscript{3}); HRMS (EI) m/z calcd for [M+]\(\text{C}_{23}\text{H}_{28}\text{O}_{6}\) 400.1886, found 400.1855.

Bicyclo[4.4.0]alkenone 2.3e

Isolated as a colorless oil.

IR (neat, cm-1) v max 2982, 2940, 1733, 1714, 1609, 1512, 1245, 1181; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.16-7.13 (m, 2H), 6.80-6.76 (m, 2H), 5.87 (ddd, J = 5.4 Hz, 2.6 Hz, 2.6 Hz, 1H), 4.21 (dq, J = 16.4 Hz, 7.1 Hz, 2H), 4.21 (dq, J = 16.4 Hz, 7.1 Hz, 2H), 3.91 (br, 1H), 3.76 (s, 3H), 3.06-2.98 (m, 1H), 3.03-2.98 (m, 1H), 2.81 (ddd, J = 4.6 Hz, 2.5 Hz, 2.5 Hz, 1H), 2.10-1.97 (m, 3H), 1.71-1.59 (m, 3H), 1.26 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.24 (dd, J = 7.1 Hz, 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 212.0 (C), 170.1 (C), 169.8 (C), 133.8 (C), 132.6 (C), 128.4 (CHx2), 123.3 (CHx2), 113.6 (CH), 62.0 (CH\textsubscript{2}), 61.9 (CH\textsubscript{2}), 56.2 (C), 55.3 (CH), 53.0 (CH\textsubscript{3}), 40.9 (CH), 39.9 (CH\textsubscript{2}), 27.5 (CH\textsubscript{2}), 26.1 (CH\textsubscript{2}), 23.6 (CH\textsubscript{2}), 14.2 (CH\textsubscript{3}), 14.1 (CH\textsubscript{3}); HRMS (EI) m/z calcd for C\textsubscript{23}H\textsubscript{28}O\textsubscript{6} [M+] 400.1886, found 400.1874.
Bicyclo[4.3.0]alkenone 2.2f

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2975-2865, 1738, 1714, 1260, 1235, 1182; **mp (°C)** 69.0 –75.3; **¹H NMR (400 MHz, CDCl₃)** δ 7.08-6.98 (m, 4H), 6.55 (d, J = 1.5 Hz, 1H), 4.28-4.11 (m, 4H), 3.79 (d, J = 7.4 Hz, 1H), 3.52 (ddd, J = 17.4 Hz, 2.3 Hz, 2.3 Hz, 1H), 3.32 (ddd, J = 12.3 Hz, 6.2 Hz, 6.2 Hz, 1H), 3.01 (d, J = 17.4 Hz, 1H), 2.28 (s, 3H), 2.21-2.13 (m, 1H), 2.07-1.97 (m, 1H), 1.94-1.86 (m, 1H), 1.71-1.57 (m, 2H), 1.47-1.37 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 210.4 (C), 171.1 (C), 169.5 (C), 137.0 (C), 136.9 (C), 133.3 (C), 128.7 (CHₓ2), 128.7 (CH), 126.6 (CHₓ2), 61.9 (C), 61.9 (CHₓ2), 56.9 (CH), 49.2 (CH), 40.4 (CH₂), 38.9 (CH₂), 24.9 (CH₂), 24.1 (CH₂), 21.3 (CH₃) 14.2 (CH₃), 14.1 (CH₃);

Bicyclo[4.4.0]alkenone 2.3f

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2979, 2941, 2866, 1733, 1714, 1445, 1234, 1180,1044; **mp (°C)** 89.5-91.6; **¹H NMR (400 MHz, CDCl₃)** δ 7.12-7.03 (m, 4H), 5.91 (dd, J = 5.4 Hz, 2.6 Hz, 2.6 Hz, 1H), 4.27-4.15 (m, 4H), 3.91 (br, 1H), 3.07-2.99 (m, 2H), 2.81 (dd, J = 19.2 Hz, 2.5 Hz, 1.7 Hz, 1H), 2.27 (s, 3H), 2.07-1.98 (m, 3H), 1.70-1.62 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 211.9 (C), 170.0 (C), 169.7 (C), 137.2 (C), 137.1 (C), 134.3 (C), 129.0 (CHₓ2), 127.0 (CHₓ2), 123.9 (CH), 62.0 (CH₂), 61.9...
(CH_{2}), 56.2 (C), 53.0 (CH), 40.9 (CH), 39.9 (CH_{2}), 27.5 (CH_{2}), 26.1 (CH_{2}), 23.6 (CH_{2}), 21.2 (CH_{3}), 14.2 (CH_{3}), 14.1 (CH_{3}); \textbf{HRMS (EI)} m/z calcd for C_{23}H_{28}O_{5} [M^+] 384.1937, found 384.1928

\begin{center}
\includegraphics[width=0.2\textwidth]{alkenone2.2g.png}
\end{center}

\textbf{Bicyclo[3,4,0]alkenone 2.2g}

Isolated as a colorless oil.

\textbf{IR (neat, cm-1)} \nu max 2973, 2947, 1730, 1698, 1256, 1233, 1043; \textbf{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 7.84 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 6.61 (d, J = 1.8 Hz, 1H), 4.29-4.12 (m, 4H), 3.84 (d, J = 7.6 Hz, 1H), 3.55 (ddd, J = 17.6 Hz, 2.4 Hz, 2.4 Hz, 1H), 3.37 (ddd, J = 11.6 Hz, 7.2 Hz, 5.6 Hz, 1H), 3.03 (d, J = 17.6 Hz, 1H), 2.56 (s, 3H), 2.20-2.04 (m, 2H), 1.96-1.87 (m, 1H), 1.76-1.62 (m, 2H), 1.48-1.38 (m, 1H), 1.26 (t, J = 7.1 Hz, 6H); \textbf{13C NMR (100 MHz, CDCl\textsubscript{3})} \delta 209.5 (C), 197.7 (C), 197.0 (C), 169.3 (C), 141.0 (C), 140.1 (C), 135.6 (C), 128.9 (CHx2), 128.2 (CHx2), 126.0 (CH), 62.0 (CH_{2}), 61.9 (CH_{2}), 61.8 (C), 56.8 (CH), 49.0 (CH), 40.9 (CH_{2}), 39.0 (CH_{2}), 26.7 (CH_{3}), 24.6 (CH_{2}), 24.1 (CH_{2}), 14.2 (CH_{3}), 14.1 (CH_{3}); \textbf{HRMS (EI)} m/z calcd for C_{24}H_{24}O_{6} [M^+] 412.1886, found 412.1879.

\begin{center}
\includegraphics[width=0.2\textwidth]{alkenone2.3g.png}
\end{center}

\textbf{Bicyclo[4,4,0]alkenone 2.3g}

Isolated as a colorless oil.
Experimental

IR (neat, cm⁻¹) ν max 2977-2869, 1733, 1684, 1268, 1168, 1057; **¹H NMR (400 MHz, CDCl₃)** δ 7.84 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 6.06 (ddd, J = 5.4 Hz, 2.7 Hz, 2.7 Hz, 1H), 4.28-4.16 (m, 4H), 3.96 (br, 1H), 3.10-3.02 (m, 2H), 2.85 (ddd, J = 19.5 Hz, 4.2 Hz, 2.6 Hz, 1H), 2.55 (s, 3H), 2.03-1.98 (m, 3H), 1.70-1.62 (m, 3H), 1.26 (dd, J = 7.1 Hz, 7.1 Hz 3H), 1.26 (dd, J = 7.1 Hz, 7.1 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 211.2 (C), 197.7 (C), 169.8 (C), 169.6 (C), 144.6 (C), 136.0 (C), 133.7 (C), 128.5 (CHx2), 127.4 (CHx2), 126.6 (CH), 62.1 (CH₂), 62.0 (CH₂), 56.1 (C), 52.8 (CH), 40.8 (CH), 39.8 (CH₂), 27.6 (CH₃), 26.7 (CH₃), 25.9 (CH₂), 23.6 (CH₂), 14.2 (CH₃), 14.1 (CH₃); **HRMS (EI)** m/z calcd for [M⁺] C₂₄H₂₈O₆ 412.1886, found 412.1881.

![Bicyclo[4.3.0]alkenone 2.2h](image)

Bicyclo[4.3.0]alkenone 2.2h

Isolated as a white solid.

IR (neat, cm⁻¹) ν max 2983-2877, 1732, 1616, 1263, 1122, 1067; **mp (°C)** 73.8-76.6; **¹H NMR (400 MHz, CDCl₃)** δ 7.48 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 6.60 (s, 1H), 4.29-4.11 (m, 4H), 3.81 (d, J = 7.7 Hz, 1H), 3.53 (ddd, J = 17.5 Hz, 2.2 Hz, 2.2 Hz, 1H), 3.38 (ddd, J = 11.5 Hz, 7.4 Hz, 5.8 Hz, 1H), 3.01 (d, J = 17.5 Hz, 1H), 2.20-2.06 (m, 2H), 1.95-1.87 (m, 1H), 1.71-1.62 (m, 2H), 1.48-1.37 (m, 1H), 1.26 (t, J = 6.9 Hz, 3H), 1.26 (t, J = 6.9 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 209.6 (C), 171.0 (C), 169.5 (C), 140.1 (C), 139.8 (C), 139.8 (C), 129.0 (CHx2), 127.5 (q, J_C-F = 266.0 Hz) (C), 125.7 (CH), 125.1 (q, J_C-F = 3.8 Hz) (CHx2), 62.0 (CH₂), 62.0 (CH₂), 61.8 (C), 56.7 (CH), 48.9 (CH), 40.9 (CH₂), 39.0 (CH₂), 24.4 (CH₂), 24.1 (CH₂), 14.2 (CH₃), 14.2 (CH₃); **HRMS (EI)** m/z calcd for C₂₃H₂₅F₃O₅ [M⁺] 438.1654, found 438.1684.
Bicyclo[4.4.0]alkenone 2.3h

Isolated as a white solid.

\[\text{IR (neat, cm}^{-1} \text{) } \nu \text{ max 2981-2875, 1734, 1326, 1236, 1122, 1069; mp (°C) 59.5-61.9; } ^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 7.50 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.33, 6.03 (ddd, J = 5.4 Hz, 2.6 Hz, 2.6 Hz, 1H), 4.29-4.10 (m, 4H), 3.96 (br, 1H), 3.10-3.03 (m, 2H), 2.85 (ddd, J = 19.5 Hz, 4.2 Hz, 2.5 Hz, 1H), 2.06-1.96 (m, 3H), 1.71-1.62 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H); } ^{13}\text{C NMR (100 MHz, CDCl}_3 \text{) } \delta 211.1 (C), 169.8 (C), 169.4 (C), 143.5 (C), 133.6 (C), 129.6 (C), 129.0 (CHx2), 127.4 (q, J_{C,F} = 271.8) (C), 126.7 (CH), 125.3 (q, J_{C,F} = 3.7 Hz) (CHx2), 62.1 (CH), 62.0 (CH), 52.7 (CH), 40.8 (CH), 39.0 (CH), 27.6 (CH), 25.8 (CH), 23.7 (CH), 14.2 (CH), 14.1 (CH); } \text{HRMS (EI) } m/z \text{ calcd for C}_{23}H_{25}O_5F_3 [M^+] 438.1654, \text{ found 438.1688.} \]

Bicyclo[3,4,0]alkenone 2.2i

Isolated as a white solid.

\[\text{IR (neat, cm}^{-1} \text{) } \nu \text{ max 2987-2871, 2227, 1733, 1723, 1240, 1040; mp (°C) 118.1-121.3; } ^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 7.51 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 6.57 (d, J = 1.6 Hz, 1H), 4.28-4.11 (m, 4H), 3.80 (d, J = 7.7 Hz, 1H), 3.52 (ddd, J = 17.6 Hz, 2.4 Hz, 2.4 Hz, 1H), 3.37 (ddd, J = 11.4 Hz, 7.4 Hz, 5.9 Hz, 1H), 3.00 (d, J = 17.7 Hz, 1H), 2.15-2.09 (m, 2H), 1.95-1.87 (m, 1H), 1.74-1.63 (m, 2H), 1.46-1.35 (m, 1H), 1.25 (t, J = 6.9 Hz, 3H), 1.25 (t, J = 6.9 Hz, 3H); } ^{13}\text{C NMR (100 MHz, CDCl}_3 \text{) } \delta 209.1 (C_{quat}), 170.9 (C_{quat}), 169.3 \]
(C\textsubscript{quat}), 141.3 (C\textsubscript{quat}), 140.8 (C\textsubscript{quat}), 131.9 (CHx2), 129.3 (CHx2), 125.4 (CH), 119.0 (C\textsubscript{quat}), 62.0 (CH\textsubscript{2}), 61.9 (CH\textsubscript{2}), 61.7 (C\textsubscript{quat}), 56.5 (CH), 48.7 (CH), 41.0 (CH\textsubscript{2}), 39.0 (CH\textsubscript{2}), 24.3 (CH\textsubscript{2}), 24.0 (CH\textsubscript{2}), 14.1 (CH\textsubscript{3}), 14.1 (CH\textsubscript{3}); \textbf{HRMS (EI)} m/z calcd for C\textsubscript{23}H\textsubscript{25}NO\textsubscript{5} 395.1732, found 395.1747

Bicyclo[4,4,0]alkenone 2.3i

Isolated as a white solid.

\textbf{IR (neat, cm}-1) \nu max 2981, 2941, 2227, 1750, 1731, 1605, 1255, 1181; \textbf{1H NMR (400 MHz, CDCl\textsubscript{3})} \delta 7.54 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 6.05 (ddd, J = 5.4 Hz, 2.6 Hz, 2.6 Hz, 1H), 4.28-4.12 (m, 4H), 3.94 (br, 1H), 3.10-3.02 (m, 2H), 2.85 (ddd, J = 19.6 Hz, 4.2 Hz, 2.6 Hz, 1H), 2.06-1.88 (m, 3H), 1.76-1.59 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H); \textbf{13C NMR (100 MHz, CDCl\textsubscript{3})} \delta 210.8 (C\textsubscript{quat}), 170.9 (C\textsubscript{quat}), 169.6 (C\textsubscript{quat}), 144.5 (C\textsubscript{quat}), 133.3 (C\textsubscript{quat}), 132.2 (CHx2), 127.8 (CH), 127.7 (CHx2), 118.8 (C\textsubscript{quat}), 111.2 (C\textsubscript{quat}), 62.1 (CH\textsubscript{2}), 62.1 (CH\textsubscript{2}), 56.0 (C\textsubscript{quat}), 52.6 (CH), 40.6 (CH), 39.9 (CH\textsubscript{2}), 27.7 (CH\textsubscript{2}), 25.7 (CH\textsubscript{2}), 23.5 (CH\textsubscript{2}), 14.2 (CH\textsubscript{3}), 14.1 (CH\textsubscript{3}); \textbf{HRMS (EI)} m/z calcd for C\textsubscript{23}H\textsubscript{25}NO\textsubscript{5} 395.1732, found 395.1722

Bicyclo[4.3.0]alkenone 2.2j

Isolated as a yellow oil.
Experimental

IR (neat, cm-1) \(\nu \max 2943, 2867, 1733, 1662, 1521, 1343, 1195; \) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.10 (d, J = 8.8 \text{ Hz}, 2H), 7.28 (d, J = 8.6 \text{ Hz}, 2H), 6.63 (d, J = 1.6 \text{ Hz}, 1H), 4.40-4.09 (m, 4H), 3.85 (d, J = 7.8 \text{ Hz}, 1H), 3.54 (ddd, J = 17.6 \text{ Hz}, 2.4 \text{ Hz}, 2.4 \text{ Hz}, 1H), 3.39 (ddd, J = 11.3 \text{ Hz}, 7.5 \text{ Hz}, 6.0 \text{ Hz}, 1H), 3.03 (d, J = 17.7 \text{ Hz}, 1H), 2.25-2.12 (m, 2H), 1.97-1.89 (m, 1H), 1.79-1.66 (m, 2H), 1.49-1.38 (m, 1H), 1.26 (t, J = 6.9 Hz, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 209.0 (C), 170.9 (C), 169.4 (C), 146.6 (C), 142.9 (C), 142.0 (C), 129.6 (CH\(_2\)), 125.1 (CH), 123.5 (CH\(_2\)), 62.1 (C), 62.0 (CH\(_2\)), 61.8 (CH\(_2\)), 56.6 (CH), 48.7 (CH), 41.2 (CH\(_2\)), 39.1 (CH\(_2\)), 24.3 (CH\(_2\)), 24.0 (CH\(_2\)), 14.2 (CH\(_3\)\(_x2\)); \) HRMS (EI) m/z calcd for C\(_{22}\)H\(_{25}\)NO\(_7\) [M+] 415.1631, found 415.1651.

\[\text{Bicyclo[4.4.0]alkenone 2.3j} \]

Isolated as a yellow oil.

IR (neat, cm-1) \(\nu \max 2981, 2942, 1729, 1596, 1345, 1262, 1181; \) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.11-8.06 (m, 2H), 7.37 (d, J = 8.9 \text{ Hz}, 2H), 6.11 (ddd, J = 5.4 \text{ Hz}, 2.6 \text{ Hz}, 2.6 \text{ Hz}, 1H), 4.28-4.12 (m, 4H), 3.96 (br, 1H), 3.12-3.09 (m, 2H), 2.87 (ddd, J = 19.6 \text{ Hz}, 4.2 \text{ Hz}, 2.6 \text{ Hz}, 1H), 2.06-1.88 (m, 3H), 1.77-1.61 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 210.7 (C), 169.6 (C), 169.3 (C), 147.0 (C), 146.4 (C), 133.0 (C), 128.3 (CH\(_2\)), 127.8 (CH), 123.6 (CH\(_2\)), 62.1 (CH\(_2\)), 62.0 (CH\(_2\)), 55.9 (C), 52.6 (CH), 40.6 (CH), 39.9 (CH\(_2\)), 27.6 (CH\(_2\)), 25.7 (CH\(_2\)), 23.5 (CH\(_2\)), 14.1 (CH\(_3\)), 14.1 (CH\(_3\)); \) HRMS (EI) m/z calcd for C\(_{22}\)H\(_{25}\)NO\(_7\) [M+] 415.1631, found 415.1650.
Bicyclo[3,3,0]alkenone 2.5a

Isolated as a white powder.

IR (neat, cm⁻¹) v max 2980, 2937, 1734, 1464, 1256, 1191; **mp (°C)** 60.4-62.6; **¹H NMR (400 MHz, CDCl₃)** δ 5.58 (qdd, J = 7.0 Hz, 1.7 Hz, 1.7 Hz, 1H), 4.28-4.20 (m, 4H), 3.55-3.49 (m, 2H), 3.06 (dd, J = 16.0 Hz, 2.7 Hz, 2.7 Hz, 1H), 2.66 (d, J = 16.0 Hz, 1H), 2.34-2.28 (m, 2H), 2.07-1.98 (m, 1H), 1.79 (dd, J = 6.4 Hz, 2.5 Hz, 3H), 1.52-1.45 (m, 1H), 1.27 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.23 (dd, J = 7.1 Hz, 7.1 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 216.1 (C_quat), 171.3 (C_quat), 169.5 (C_quat), 134.2 (C_quat), 123.1 (CH), 62.8 (C_quat), 61.7 (CH₂), 61.6 (CH₂), 53.6 (CH), 46.2 (CH), 39.4 (CH₂), 39.0 (CH₂), 23.0 (CH₂), 15.2 (CH₃), 14.3 (CH₃), 14.2 (CH₃); **HRMS (EI)** m/z calcd for C₁₆H₂₂O₅ 294.1467 found 294.1452.

Bicyclo[4,3,0]alkenone 2.6a

Isolated as a colorless oil.

IR (neat, cm⁻¹) v max 2982, 2940, 2867, 1746, 1733, 1464, 1256; **¹H NMR (400 MHz, CDCl₃)** δ 5.40 (ddt, J = 3.6 Hz, 2.3 Hz, 1.4 Hz, 1H), 4.25-4.05 (m, 4H), 3.15 (dt, J = 12.1 Hz, 7.3 Hz, 1H), 3.07-2.99 (m, 1H), 2.67-2.58 (m, 2H), 2.22-2.11 (m, 2H), 1.85-1.78 (m, 1H), 1.74 (dd, J = 7.0 Hz, 2.8 Hz, 3H), 1.50-1.41 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 215.8 (C_quat), 170.8 (C_quat), 170.4 (C_quat), 128.8 (C_quat), 120.0 (CH), 61.5 (CH₂), 61.5 (CH₂), 54.9 (C_quat), 52.8 (CH), 39.9 (CH), 36.9 (CH₂), 26.1 (CH₂), 22.9 (CH₂), 21.0 (CH₃), 14.1 (CH₃), 14.0 (CH₃); **HRMS (EI)** m/z calcd for C₁₆H₂₂O₅ 294.1467 found 294.1463.
Bicyclo[3.3.0]alkenone 2.5b

Isolated as a colorless oil.

\textbf{IR (neat, cm}^{-1}\textbf{) v max 2980, 2937, 2890, 1734, 1464, 1256, 1097; }^{1}\textbf{H NMR (400 MHz, CDCl}_3\textbf{)} \delta 5.48 (qdd, J = 7.4 Hz, 1.8 Hz, 1.8 Hz, 1H), 4.23-4.22 (m, 4H), 3.19-3.16 (m, 1H), 3.14-3.11 (m, 1H), 2.97 (dq, J = 17.1 Hz, 1.3 Hz, 1H), 2.36 (dd, J = 9.3 Hz, 3.7 Hz, 1H), 2.34 (dd, J = 9.3 Hz, 3.7 Hz, 0.5H), 2.26-2.12 (m, 1H), 1.99 (ddddd, J = 13.3 Hz, 9.4 Hz, 3.7 Hz, 0.9 Hz, 1H), 1.68 (ddd, J = 7.4 Hz, 2.7 Hz, 1.3 Hz, 3H), 1.55-1.44 (m, 1H), 1.29 (s, 3H), 1.22 (t, J = 7.1 Hz, 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 7.1 Hz, 3H); \textbf{^{13}C NMR (100 MHz, CDCl}_3\textbf{)} \delta 217.6 (C), 171.0 (C), 169.6 (C), 138.6 (C), 123.0 (CH), 62.1 (C), 61.8 (CH_2), 61.6 (CH_2), 59.1 (C), 55.6 (CH), 39.9 (CH_2), 37.0 (CH_2), 22.1(CH_3), 22.0 (CH_2), 14.2 (CH_3), 14.0 (CH_3), 13.7 (CH_3); \textbf{HRMS (EI) m/z calcd for [M\^+] C_17H_24O_5 308.1624 found 308.16345.}

Bicyclo[4.3.0]alkenone 2.6b

Isolated as a colorless oil.

\textbf{IR (neat, cm}^{-1}\textbf{) v max 2984, 2941, 2866, 1743, 1733, 1464 1256; }^{1}\textbf{H NMR (400 MHz, CDCl}_3\textbf{)} \delta 5.51 (ddd, J = 5.4 Hz, 1.9 Hz, 1.9 Hz, 1H), 4.26-4.06 (m, 4H), 2.97 (dd, J = 11.5 Hz, 6.7 Hz, 1H), 2.91 (ddddd, J = 18.4 Hz, 5.8 Hz, 1.1 Hz, 1.1 Hz, 1H), 2.45-2.21 (m, 4H), 1.68-1.59 (m, 1H), 1.58 (dd, J = 2.6 Hz, 1.4 Hz, 1.4 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H), 1.13 (s, 3H); \textbf{^{13}C NMR (100 MHz, CDCl}_3\textbf{)} \delta 217.5 (C), 170.3 (C), 170.1 (C), 131.2 (C), 121.9 (CH), 61.5 (CH_2x2), 54.4 (C), 53.5 (C), 46.8 (CH), 35.2 (CH_2), 26.8 (CH_2), 21.9 (CH_2), 21.6 (CH_3), 18.3 (CH_3), 14.0 (CH_3), 13.8 (CH_3); \textbf{HRMS (EI) m/z calcd for C_17H_24O_5 [M\^+] 308.1624 found 308.1633.}
Bicyclo[3,4,0]alkenone 2.5c

Isolated as a colorless oil.

IR (neat, cm⁻¹) v max 2980-2941, 1733, 1725, 1240, 1178; **¹H NMR (400 MHz, CDCl₃)** δ 5.54-5.50 (m, 1H), 4.24-4.06 (m, 4H), 3.56 (br, 1H), 3.27 (ddd, J = 16.9 Hz, 2.6 Hz, 2.6 Hz, 1H), 3.18 (ddd, J = 12.4 Hz, 6.3 Hz, 6.3 Hz, 1H), 2.78 (d, J = 16.9 Hz, 1H), 2.31-2.27 (m, 2H), 2.01-1.93 (m, 1H), 1.70-1.52 (m, 2H), 1.48-1.66 (m, 3H), 1.33 (dq, J = 12.8 Hz, 3.8 Hz, 1H), 1.20 (t, J = 7.3 Hz, 3H), 1.17 (t, J = 7.3 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 211.2 (C quat), 170.8 (C quat), 169.3 (C quat), 134.7 (C quat), 122.1 (CH), 62.7 (C quat), 61.7 (CH₂), 61.7 (CH₂), 55.6 (CH), 48.1 (CH), 39.3 (CH₂), 26.7 (CH₂), 24.5 (CH₂), 24.3 (CH₂), 14.1 (CH₃), 14.0 (CH₃), 13.8 (CH₃); **HRMS (EI)** m/z calcd for C₁₇H₂₄O₅ 308.1624 found 308.1624.

Bicyclo[4.4.0]alkenone 2.6c

Isolated as a colorless oil.

IR (neat, cm⁻¹) v max 2984, 2940, 2870, 1733, 1445, 1239, 1179; **¹H NMR (400 MHz, CDCl₃)** δ 5.50 (d, J = 2.7Hz, 1H), 4.22-4.10 (m, 4H), 3.25 (br, 1H), 2.88-2.83 (m, 1H), 2.80-2.73 (m, 1H), 2.62 (dd J = 18.6 Hz, 4.2 Hz, 2.3 Hz, 2.3 Hz, 1H), 2.32-2.26 (m, 1H), 2.24-2.15 (m, 1H), 2.04-1.97 (m, 1H), 1.67-1.54 (m, 3H), 1.50 (d, J = 1.2 Hz, 3H), 1.22 (dd, J = 7.1 Hz, 7.1 Hz, 3H), 1.20 (dd, J = 7.1 Hz, 7.1 Hz, 3H); **¹³C NMR (100 MHz, CDCl₃)** δ 212.0 (C), 170.2 (C), 169.3 (C), 128.3 (C), 121.0 (CH), 61.8 (CH₂), 61.7 (CH₂), 56.4 (C), 54.4 (CH), 40.0 (CH), 39.8 (CH₂), 26.8 (CH₂), 25.0 (CH₂), 23.6 (CH₂), 14.1 (CH₃), 14.0 (CH₃); **HRMS (EI)** m/z calcd for C₁₇H₂₄O₅ [M⁺] 308.1624 found 308.1629.
Bicyclo[3,4,0]alkenone 2.5d

Isolated as a colorless oil.

IR (neat, cm\(^{-1}\)) \(\nu\) max 2981, 2939, 2867, 1733, 1707, 1447, 1256, 1051; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 5.41 (qdd, \(J = 7.3\) Hz, 2.0 Hz, 2.0 Hz, 1H), 4.25-4.08 (m, 4H), 3.40 (ddd, \(J = 17.7\) Hz, 1.8 Hz, 1.8 Hz, 1.0 Hz, 1H), 3.12 (dddd, \(J = 17.7\) Hz, 1.8 Hz, 1.8 Hz, 1.0 Hz, 1H), 3.10-3.05 (m, 1H), 2.57-2.36 (m, 2H), 2.02-1.93 (m, 1H), 1.72-1.60 (m, 2H), 1.48 (ddd, \(J = 3.5\) Hz, 1.8 Hz, 1.8 Hz, 1H), 1.45 (dt, \(J = 7.3\) Hz, 2.1 Hz, 3H), 1.28 (dd, \(J = 7.1\) Hz, 7.1 Hz, 3H), 1.28 (dd, \(J = 7.1\) Hz, 7.1 Hz, 3H), 1.20 (s, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 213.1 (C\(_{\text{quat}}\)), 171.7 (C\(_{\text{quat}}\)), 169.7 (C\(_{\text{quat}}\)), 141.8 (C\(_{\text{quat}}\)), 119.5 (CH), 63.4 (C\(_{\text{quat}}\)), 61.9 (CH\(_2\)), 61.8 (CH\(_2\)), 59.2 (C\(_{\text{quat}}\)), 56.4 (CH), 39.3 (CH\(_2\)), 39.0 (CH\(_2\)), 26.0 (CH\(_2\)), 24.8 (CH\(_2\)), 22.5 (CH\(_3\)), 14.1 (CH\(_3\)), 14.1 (CH\(_3\)), 13.3 (CH\(_3\)); HRMS (EI) m/z calcd for C\(_{18}\)H\(_{26}\)O\(_5\) 322.1780, found 322.1767.

Bicyclo[4,4,0]alkenone 2.6d

Isolated as a colorless oil.

IR (neat, cm\(^{-1}\)) \(\nu\) max 2981, 2940, 2867, 1735, 1722, 1447, 1233, 1095; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 5.52 (ddq, \(J = 5.3\) Hz, 2.6 Hz, 1.4 Hz, 1H), 4.25-4.01 (m, 4H), 2.84-2.80 (m, 1H), 2.53-2.37 (m, 2H), 2.32-2.26 (m, 2H), 2.02-1.94 (m, 2H), 1.68-1.59 (m, 2H), 1.46-1.43 (m, 3H), 1.26 (t, \(J = 7.2\) Hz, 6H), 1.11 (s, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 212.8 (C\(_{\text{quat}}\)), 170.9 (C\(_{\text{quat}}\)), 170.5 (C\(_{\text{quat}}\)), 133.2 (CH), 120.9 (C\(_{\text{quat}}\)), 61.9 (CH\(_2\)), 61.9 (CH\(_2\)), 56.5 (C\(_{\text{quat}}\)), 55.0 (C\(_{\text{quat}}\)), 47.4 (CH), 40.3 (CH\(_2\)), 26.9 (CH\(_2\)), 26.2 (CH\(_2\)), 25.2 (CH\(_2\)), 21.3 (CH\(_3\)), 19.3 (CH\(_3\)), 14.2/(CH\(_3\)), 14.1 (CH\(_3\)); HRMS (EI) m/z calcd for C\(_{18}\)H\(_{26}\)O\(_5\) 322.1780, found 322.1793.
Allene 2.7c

Isolated as a white solid.

IR (neat, cm⁻¹) v max 1735; ¹H NMR (300MHz, CDCl₃) δ = 4.83 - 4.66 (m, 2 H), 4.28 - 4.03 (m, 5 H), 3.37 (ddt, J = 2.6, 5.1, 17.6 Hz, 1 H), 3.06 (q, J = 6.5 Hz, 1 H), 3.00 - 2.87 (m, 2 H), 1.73 (s, 2 H), 1.66 - 1.51 (m, 1 H), 1.24 (t, J = 7.1 Hz, 3 H), 1.23 (t, J = 7.1 Hz, 3 H), 1.06 (s, 18 H), 1.48 - 0.84 (m, 6 H); ¹³C NMR (75MHz, CDCl₃) δ = 201.3 (C_quat), 170.5 (C_quat), 160.7 (C_quat), 99.8 (C_quat), 77.4 (CH₂), 66.3 (CH), 62.0 (CH), 60.6 (CH₂), 60.5 (CH₂), 47.4 (CH), 40.5 (CH), 33.7 (CH₂), 28.2 (CH₂), 23.1 (CH₂), 17.3 (6xCH₃), 13.3 (CH₃), 13.1 (CH₃), 11.5 (3xCH); HRMS (EI) m/z calcd for C₂₃H₃₅O₅Si [(M-iPr)⁺] 421.2410, found 421.2427.

Allene 2.7d

Isolated as a white solid.

IR (neat, cm⁻¹) v max 1734; ¹H NMR (400MHz, CDCl₃) δ = 4.76 (ddd, J = 3.2, 5.1, 9.4 Hz, 1 H), 4.68 (ddd, J = 3.4, 5.4, 9.2 Hz, 1 H), 4.29 - 4.04 (m, 4 H), 3.87 (dd, J = 3.4, 9.0 Hz, 1 H), 3.65 (td, J = 5.2, 17.2 Hz, 1 H), 2.90 - 2.85 (m, 1 H), 2.83 (td, J = 3.2, 17.2 Hz, 1 H), 1.65 - 1.43 (m, 5 H), 1.23 (t, J = 7.1 Hz, 3 H), 1.22 (t, J = 7.2 Hz, 3 H), 1.14 - 0.98 (m, 25 H); ¹³C NMR (75MHz, CDCl₃) δ = 202.8 (C_quat), 172.6 (C_quat), 171.8 (C_quat), 107.4 (C_quat), 77.9 (CH₂), 71.2 (CH), 61.9 (CH₂), 61.7 (CH₂), 61.1 (C_quat), 50.9 (C_quat), 50.7 (CH), 36.2 (CH₂), 30.4 (CH₂), 22.7 (CH₂), 20.3 (CH₂), 18.4 (3xCH₃), 18.2 (3xCH₃), 17.8 (CH₃), 14.0 (CH₃), 14.0 (CH₃), 13.1 (3xCH); HRMS (EI) m/z calcd for C₂₄H₃₉O₅Si [(M-iPr)⁺] 435.2567, found 435.2563.
Tricycle 2.9b

Prepared according to the general procedure Gold-Catalyzed Carbocyclization from enyne 17a using [L3AuMeCN]SbF6 as the catalyst, acetone as the solvent and isolated as white powder.

IR (neat, cm⁻¹) v max 2945, 2867, 1734, 1325, 1210, 1140, 1056, 916; mp (°C) 63.4-64.8;

¹H NMR (400MHz ,CDCl₃) ¹H NMR (400MHz, CDCl₃) δ = 6.16 (dd, J = 1.5, 9.8 Hz, 1 H), 5.70 (ddd, J = 2.7, 5.2, 9.8 Hz, 1 H), 5.55 (s, 1 H), 4.28 - 4.08 (m, 4 H), 3.22 (dd, J = 2.7, 10.8 Hz, 1 H), 2.50 (ddd, J = 1.5, 5.2, 18.5 Hz, 1 H), 2.39 (dt, J = 0.6, 2.7, 18.7 Hz, 1 H), 2.22 - 2.06 (m, 1 H), 1.59 (s, 2 H), 1.28 (s, 6 H), 1.08 (s, 18 H), 1.23 - 1.05 (m, 7 H); ¹³C NMR (101MHz , CDCl₃) δ = 170.9 (Cquat), 170.2 (Cquat), 151.1 (Cquat), 129.5 (CH), 121.1 (CH), 120.4 (CH), 83.7 (Cquat), 69.7 (Cquat), 61.5 (Cquat), 61.4 (CH₂), 61.2 (CH₂), 51.7 (CH), 37.0 (CH₂), 35.6 (CH₂), 25.8 (CH₂), 18.4 (CHx3), 17.7 (CH₃), 14.2 (CH₃), 14.1 (CH₃), 13.5 (CH₃x6); HRMS (EI) m/z calcd for C₂₄H₃₇O₅Si [(M-iPr)⁺] 433.2410, found 433.2423.

Diene 2.11b

Isolated as a colorless oil.

IR (neat, cm⁻¹) v max 2983, 2934, 1735, 1241, 1174, 1095, 1059; ¹H NMR (300MHz ,CDCl₃) δ = 6.26 (dd, J = 10.8, 17.0 Hz, 1 H), 5.95 (dd, J = 2.3, 5.8 Hz, 1 H), 5.33 (d, J = 17.2 Hz, 1 H), 4.96 (d, J = 11.2 Hz, 1 H), 4.30 - 4.04 (m, 4 H), 3.11 - 2.94 (m, 2 H), 2.53 (d, J = 19.3 Hz, 1 H), 2.46 - 2.12 (m, 3 H), 1.72 - 1.54 (m, 1 H), 1.26 (dt, J = 5.9, 7.1 Hz, 6 H), 1.14 (s, 3 H); ¹³C NMR (75MHz ,CDCl₃) δ = 217.0 (Cquat), 170.1 (Cquat), 169.8 (Cquat), 134.5 (CH), 134.2 (Cquat), 121.9 (CH), 114.7 (CH₂), 61.6 (CH₂x2), 54.0 (Cquat), 52.5 (Cquat),
46.5 (CH), 35.0 (CH₂), 26.9 (CH₂), 22.2 (CH₃), 21.8 (CH₂), 14.0 (CH₃), 13.9 (CH₃); **HRMS (EI)** m/z calcd for C₁₈H₂₄O₅ [M⁺] 320.1624, found 320.1623.

Tricycle 2.9c

Isolated as a white powder.

IR (neat, cm⁻¹) v max 2940, 2865, 1733, 1461, 1221, 1058, 882, 675; **mp (°C)** 100.4 - 102.1; **¹H NMR (300MHz, C₆D₆)** δ = 6.11 (dd, J = 3.0, 9.7 Hz, 1 H), 6.04 (d, J = 3.0 Hz, 1 H), 5.55 (ddd, J = 2.2, 6.1, 9.7 Hz, 1 H), 4.15 - 3.90 (m, 3 H), 3.80 (m, 2 H), 3.60 (br. s., 1 H), 2.44 (d, J = 17.4 Hz, 1 H), 2.06 (dd, J = 6.1, 17.2 Hz, 1 H), 2.14 - 1.91 (m, 1 H), 1.75 - 1.63 (m, 1 H), 1.53 - 1.32 (m, 4 H), 1.22 - 1.00 (m, 21 H), 0.90 (td, J = 7.1, 20.0 Hz, 6 H); **¹³C NMR (75MHz, C₆D₆)** δ = 169.4 (C_quat), 168.6 (C_quat), 144.2 (C_quat), 131.0 (CH), 122.6 (CH), 122.4 (CH), 72.0 (C_quat), 69.4 (C_quat), 60.8 (CH₂), 60.5 (CH₂), 52.2 (CH), 43.1 (CH), 41.2 (CH₂), 34.4 (CH₂), 23.4 (CH₂), 19.4 (CH₂), 18.4 (CH₃x3), 13.8 (CH₃), 13.6 (CH₃), 13.6 (CH₃x6); **HRMS (EI)** m/z calcd for C₂₄H₃₇O₅Si [(M-iPr)⁺] 433.2410, found 433.2416.

Diene 2.11c

Isolated as a colorless oil.

IR (neat, cm⁻¹) 2927, 2849, 1733, 1463, 1444, 1236, 1180, 1051, 862, 736; **¹H NMR (400MHz, CDCl₃)** δ = 6.12 (dd, J = 11.3, 17.7 Hz, 1 H), 5.85 (td, J = 2.4, 5.2 Hz, 1 H), 5.14 (d, J = 17.7 Hz, 1 H), 4.90 (d, J = 11.3 Hz, 1 H), 4.26 - 4.08 (m, 4 H), 3.49 (br. s., 1 H), 2.97 - 2.87 (m, 2 H), 2.74 (d, J = 20.0 Hz, 1 H), 2.34 - 2.16 (m, 2 H), 2.05 - 1.97 (m, 1 H), 1.70 - 1.48 (m, 3 H), 1.22 (q, J = 7.1 Hz, 6 H); **¹³C NMR (101MHz, CDCl₃)** δ = 213.0 (C_quat),
169.8 (C_quat), 169.4 (C_quat), 136.8 (CH), 131.8 (C_quat), 125.6 (CH), 114.5 (CH₂), 61.9 (CH₂), 61.8 (CH₂), 56.2 (C_quat), 52.0 (CH), 41.0 (CH), 39.5 (CH₂), 27.3 (CH₂), 26.0 (CH₂), 23.5 (CH₂), 14.0 (CH₃), 14.0 (CH₃); **HRMS (EI)** m/z calcd for C₁₈H₂₄O₅ [M⁺] 320.1624, found 320.1604.

Tricycle 2.9d

Isolated as a white powder.

IR (neat, cm⁻¹) ν max 2943, 2867, 1733, 1456, 1188, 1095, 1058, 882, 715, 672; **mp (°C)** 71.8-73.2; **¹H NMR (300MHz, CDCl₃) δ** = 6.21 (dd, J = 2.7, 9.7 Hz, 1 H), 5.75 (ddd, J = 2.4, 5.9, 9.7 Hz, 1 H), 5.64 (s, 1 H), 4.31 - 4.05 (m, 4 H), 3.07 (dd, J = 6.5, 10.8 Hz, 1 H), 2.59 (td, J = 2.2, 17.8 Hz, 1 H), 2.08 (dd, J = 6.1, 18.1 Hz, 1 H), 1.83 - 1.55 (m, 2 H), 1.44 (dd, J = 3.7, 8.0 Hz, 2 H), 1.25 (dt, J = 6.0, 7.1 Hz, 6 H), 1.35 - 1.02 (m, 26 H); **¹³C NMR (75MHz, CDCl₃) δ** = 171.3 (C_quat), 170.5 (C_quat), 149.6 (C_quat), 129.9 (CH), 122.2 (CH), 120.7 (CH), 75.5 (C_quat), 70.2 (C_quat), 61.7 (CH₂), 61.6 (CH₂), 52.9 (C_quat), 48.5 (CH), 39.7 (CH₂), 35.1 (CH₂), 25.7 (CH₂), 24.3 (CH₃), 18.8 (CHₓ₁), 18.7 (CH₂), 18.7 (CHₓ₂), 14.3 (CH₃), 14.1 (CH₃), 13.9 (CHₓ₆); **HRMS (EI)** m/z calcd for C₂₈H₄₆O₅Si [M⁺] 490.3115, found 490.3147.

Tricycle 2.9e

Isolated as a colorless oil.

Compound aromatizes readily in CDCl₃. Use of deactivated silica (washed with 1% Et₃N in hexanes) was necessary for flash chromatography purification.
IR (neat, cm⁻¹) ν max 2943, 2866, 1733, 1464, 1242, 1221, 1118, 1059, 835, 679; \(^1\)H NMR (300MHz, C₆D₆) \(\delta = 6.48\) (d, \(J = 2.8\) Hz, 1 H), 6.06 (d, \(J = 2.8\) Hz, 1 H), 4.20 - 3.68 (m, 5 H), 3.65 - 3.59 (m, 1 H), 2.59 (dd, \(J = 3.3, 16.6\) Hz, 1 H), 2.41 (d, \(J = 16.6\) Hz, 1 H), 2.15 - 1.95 (m, 1 H), 1.78 - 1.60 (m, 1 H), 1.55 - 1.31 (m, 4 H), 1.27 - 1.07 (m, 21 H), 0.93 (td, \(J = 7.1, 16.5\) Hz, 6 H), 0.07 (s, 9 H); \(^{13}\)C NMR (75MHz, C₆D₆) \(\delta = 169.4\) (C quat), 168.6 (C quat), 144.9 (C quat), 129.6 (CH), 123.0 (CH), 72.4 (C quat), 69.4 (C quat), 60.8 (CH₂), 60.6 (CH₂), 52.1 (CH), 43.3 (CH₂), 43.3 (CH), 34.0 (CH₂), 23.3 (CH₂), 19.3 (CH₂), 18.5 (CHx₃), 13.8 (CH₃), 13.7 (CH₃x₆), 13.7 (CH₃), -2.9 (CH₃x3); HRMS (EI) m/z calcd for C₂₇H₄₅O₅Si₂ [(M⁻iPr)⁺] 505.2806, found 505.2809.

Bicyclo[4.4.0]decenone 2.11e

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2954, 1733, 1714, 1249, 1179, 841, 760; \(^1\)H NMR (300MHz, CDCl₃) \(\delta = 5.52\) (d, \(J = 2.7\) Hz, 1 H), 5.47 (td, \(J = 2.5, 5.4\) Hz, 1 H), 5.31 (d, \(J = 2.7\) Hz, 1 H), 4.31 - 4.08 (m, 4 H), 3.59 (br. s., 1 H), 3.01 - 2.81 (m, 2 H), 2.71 (ddd, \(J = 2.5, 3.9, 19.0\) Hz, 1 H), 2.35 - 1.92 (m, 3 H), 1.71 - 1.53 (m, 3 H), 1.24 (t, \(J = 7.1\) Hz, 6 H), 0.08 (s, 9 H); \(^{13}\)C NMR (75MHz, CDCl₃) \(\delta = 211.1\) (C quat), 169.9 (C quat), 169.6 (C quat), 152.9 (C quat), 137.3 (C quat), 126.7 (CH₂), 120.7 (CH), 61.7 (CH₂), 61.6 (CH₂), 56.1 (C quat), 53.2 (CH), 40.4 (CH), 40.3 (CH₂), 26.8 (CH₂), 25.5 (CH₂), 23.6 (CH₂), 14.0 (CH₃), 14.0 (CH₃), -0.8 (CH₃x3); HRMS (EI) m/z calcd for C₂₁H₂₂O₅Si [M⁺] 392.2019, found 392.2023.
Tricyclic Compound mixture of 2.9f & 2.12f

Isolated as an inseparable clear oil mixture. Characterized as a mixture.

Mixture: IR (neat, cm⁻¹) ν max 2940, 2866, 1739, 1733, 1460, 1242, 1058, 882, 680; HRMS (EI) m/z calcd for C₂₅H₃₉O₅Si [(M-Pr)⁺] 447.2567, found 447.2572.

Major: ¹H NMR (500MHz, CDCl₃) δ = 5.96 (d, J = 1.8 Hz, 1 H), 4.80 - 4.68 (br. s., 2 H), 4.33 - 4.02 (m, 4 H), 3.31 (d, J = 19.5 Hz, 1 H), 3.02 (td, J = 5.7, 13.0 Hz, 1 H), 2.93 (d, J = 19.6 Hz, 1 H), 2.87 (br. s., 1 H), 2.49 (d, J = 13.7 Hz, 1 H), 2.34 (d, J = 13.7 Hz, 1 H), 1.24 (s, 6 H), 1.11 - 1.08 (m, 18 H), 1.85 - 0.68 (m, 9 H); ¹³C NMR (126MHz, CDCl₃) δ = 171.6 (C quat), 169.8 (C quat), 143.6 (C quat), 143.1 (C quat), 122.2 (CH), 110.4 (CH₂), 73.2 (C quat), 62.5 (C quat), 61.4 (CH₂), 61.3 (CH₂), 52.2 (CH), 45.4 (CH₂), 42.1 (CH), 35.6 (CH₂), 32.2 (CH₂), 23.2 (CH₂), 19.6 (CH₂), 18.5 (CHx2), 18.4 (CH), 14.1 (CH₃), 14.1 (CH₃), 13.6 (CH₃x6).

Minor: ¹H NMR (500MHz, CDCl₃) δ = 6.44 (d, J = 9.8 Hz, 1 H), 5.89 (d, J = 9.8 Hz, 1 H), 4.31 - 4.03 (m, 4 H), 3.28 - 3.21 (m, 0 H), 2.76 (dtd, J = 0.9, 4.8, 12.9 Hz, 1 H), 2.65 (d, J = 15.2 Hz, 1 H), 2.09 (d, J = 15.2 Hz, 1 H), 1.71 (s, 3 H), 1.29 - 1.17 (m, 6 H), 1.13 - 1.04 (m, 18 H), 1.83 - 0.68 (m, 9 H); ¹³C NMR (126MHz, CDCl₃) δ = 170.8 (C quat), 169.3 (C quat), 133.9 (C quat), 129.8 (C quat), 122.6 (CH), 122.5 (CH), 80.3 (C quat), 61.3 (CH₂), 61.2 (CH₂), 59.5 (C quat), 52.2 (CH₂), 49.3 (CH), 36.2 (CH₂), 34.1 (CH), 24.4 (CH₂), 21.0 (CH₂), 18.4 (CHx₃), 14.1 (CH₃), 14.1 (CH₃), 14.0 (CH₃), 13.2 (CH₃x6).

Trace: ¹H NMR (500MHz, CDCl₃) δ = 6.00 (s, 1 H), 5.49 (d, J = 2.8 Hz, 1 H), 4.30 - 4.04 (m, 4 H), 3.27 - 3.22 (m, 1 H), 3.16 - 3.12 (m, 1 H), 2.49 (d, J = 16.9 Hz, 1 H), 2.04 (d, J = 16.9 Hz, 1 H), 1.79 (s, 3 H), 1.29 - 1.18 (m, 6 H), 1.12 - 1.07 (m, 18 H), 1.83 - 0.68 (m, 9 H); ¹³C NMR (126MHz, CDCl₃) δ = 170.4 (C quat), 169.3 (C quat), 145.0 (C quat), 140.9 (C quat), 118.6 (CH), 118.2 (CH), 72.2 (C quat), 69.4 (C quat), 61.0 (CH₂), 60.9 (CH₂), 51.4 (CH), 46.5 (CH₂), 42.4 (CH), 34.4 (CH₂), 23.9 (CH₃), 23.2 (CH₂), 19.1 (CH₂), 18.5 (CHx3), 14.1 (CH₃), 14.1 (CH₃), 13.7 (CH₃x6).
Bicyclo[4.4.0]decenone 2.11f

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2979, 2942, 2870, 1733, 1714, 1445, 1367, 1255, 1180, 898;¹H NMR (300MHz, CDCl₃) δ = 5.80 (td, J = 2.6, 5.3 Hz, 1 H), 4.80 (s, 2 H), 4.22 - 4.10 (m, 4 H), 3.61 - 3.51 (m, J = 1.5 Hz, 1 H), 2.95 - 2.84 (m, 2 H), 2.71 (td, J = 3.3, 19.5 Hz, 1 H), 2.31 - 2.07 (m, 2 H), 2.07 - 1.88 (m, 1 H), 1.79 (s, 3 H), 1.70 - 1.49 (m, 3 H), 1.21 (dt, J = 3.4, 7.1 Hz, 6 H):¹³C NMR (75MHz, CDCl₃) δ = 212.8 (C), 169.8 (C), 169.5 (C), 143.4 (C), 135.2 (C), 122.4 (CH), 114.0 (CH₂), 61.8 (CH₂), 61.7 (CH₂), 56.1 (C), 52.4 (CH), 41.0 (CH), 39.4 (CH₂), 27.1 (CH₂), 26.2 (CH₂), 23.5 (CH₂), 21.6 (CH₃), 14.0 (CH₃), 13.9 (CH₃); HRMS (EI) m/z calcd for C₁₉H₂₆O₅ [M⁺] 334.1780, found 334.1781.

Tricycle 2.9g

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2942, 2865, 1732, 1241, 1217, 1060, 883, 761, 674;¹H NMR (300MHz, CDCl₃) δ = 7.46 - 7.21 (m, 5 H), 6.64 (d, J = 2.8 Hz, 1 H), 5.76 (d, J = 2.8 Hz, 1 H), 4.30 - 4.06 (m, 4 H), 3.37 - 3.25 (m, 2 H), 2.87 (dd, J = 2.7, 16.9 Hz, 1 H), 2.65 (d, J = 16.3 Hz, 1 H), 1.95 - 1.73 (m, 1 H), 1.25 (td, J = 7.1, 18.4 Hz, 6 H), 1.13 (s, 18 H), 1.52 - 0.84 (m, 8 H):¹³C NMR (75MHz, CDCl₃) δ = 170.2 (C_quat), 169.0 (C_quat), 145.1 (C_quat), 141.0 (C_quat), 140.7 (C_quat), 128.5 (CHₓ2), 127.8 (CH), 125.4 (CHₓ2), 122.3 (CH), 119.2 (CH), 72.3 (C_quat), 69.6 (C_quat), 61.2 (CH₂), 61.1 (CH₂), 51.7 (CH), 43.6 (CH₂), 42.6 (CH),
Experimental

34.1(CH₂), 23.1 (CH₂), 19.1 (CH₂), 18.5 (CHx3), 14.2 (CH₃), 14.0 (CH₃), 13.7 (CH₃x6);
HRMS (EI) m/z calcd for C₃₃H₄₈O₅Si [M⁺] 552.3271, found 552.3275.

Bicyclo[4.4.0]decenone 2.11g

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2980, 2940, 1733, 1717, 1180, 780, 701; ¹H NMR (300MHz, CDCl₃) δ = 7.33 - 7.20 (m, 5 H), 5.85 (td, J = 2.6, 5.4 Hz, 1 H), 5.19 (d, J = 1.2 Hz, 1 H), 5.09 (d, J = 1.2 Hz, 1 H), 4.27 - 4.15 (m, 4 H), 3.52 (br. s., 1 H), 3.04 - 2.90 (m, 2 H), 2.75 (ddd, J = 2.5, 4.1, 19.3 Hz, 1 H), 2.42 - 2.29 (m, 1 H), 2.26 - 2.17 (d, J = 12.6 Hz, 1 H), 2.13 - 2.00 (m, 1 H), 1.79 - 1.59 (m, 3 H), 1.25 (dt, J = 1.5, 7.1 Hz, 6 H); ¹³C NMR (75MHz, CDCl₃) δ = 210.6 (C), 169.8 (C), 169.6 (C), 149.2 (C), 140.1 (C), 134.2 (C), 128.2 (CHx2), 127.8 (CH), 127.4 (CHx2), 126.6 (CH), 114.6 (CH₂), 61.9 (CH₂), 61.7 (CH₂), 56.2 (C), 52.4 (CH), 40.6 (CH), 39.7 (CH₂), 27.2 (CH₂), 25.6 (CH₂), 23.6 (CH₂), 14.0 (CH₃), 14.0 (CH₃);
HRMS (EI) m/z calcd for C₂₄H₂₈O₅ [M⁺] 396.1937, found 396.1918.

Bicyclo[4.4.0]decenone 2.11h

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2979, 2942, 2866, 1732, 1366, 1217, 1180, 1094, 913, 738, 699; ¹H NMR (400MHz, CDCl₃) δ = 7.37 - 7.23 (m, 5 H), 5.89 (td, J = 2.6, 5.5 Hz, 1 H), 5.11 (d, J = 0.9 Hz, 1 H), 5.06 (s, 1 H), 4.46 (dd, J = 11.9, 27.3 Hz, 2 H), 4.31 - 4.06 (m, 5 H), 3.99 (d, J = 12.7 Hz, 1 H), 3.66 (s, 1 H), 3.02 - 2.84 (m, 2 H), 2.75 (dd, J = 2.8, 3.9, 19.4 Hz, 1 H), 2.42 - 2.23 (m, 1 H), 2.18 (d, J = 12.6 Hz, 1 H), 2.06 - 1.96 (m, 1 H), 1.71 - 1.53 (m, 3 H),
1.21 (td, $J = 7.1, 19.0$ Hz, 6 H); 13C NMR (101MHz, CDCl$_3$) $\delta = 212.3$ (C), 169.9 (C), 169.4 (C), 144.6 (C), 138.3 (C), 132.7 (C), 128.3 (CHx2), 127.7 (CHx2), 127.5 (CH), 123.7 (CH), 115.4 (CH$_2$), 72.1 (CH$_2$), 71.7 (CH$_2$), 61.8 (CH$_2$), 61.8 (CH$_2$), 56.1 (C), 52.4 (CH), 40.7 (CH), 39.5 (CH$_2$), 27.1 (CH$_2$), 25.9 (CH$_2$), 23.5 (CH$_2$), 14.0 (CH$_3$), 14.0 (CH$_3$); HRMS (EI) m/z calcd for C$_{26}$H$_{32}$O$_6$ [M$^+$] 440.2199, found 440.2204.

Bicyclo[4.3.0]decenone 2.9i

Isolated as a colorless oil.

IR (neat, cm$^{-1}$) ν max 2980, 2869, 1735, 1447, 1243; 1H NMR (300MHz, CDCl$_3$) $\delta = 7.37$ - 7.15 (m, 5 H), 6.94 (dd, $J = 11.3$, 15.4 Hz, 1 H), 6.39 (d, $J = 15.5$ Hz, 1 H), 6.27 (d, $J = 11.2$ Hz, 1 H), 4.32 - 4.09 (m, 4 H), 3.87 - 3.77 (m, 1 H), 3.51 (d, $J = 18.0$ Hz, 1 H), 3.28 (td, $J = 6.3$, 12.3 Hz, 1 H), 2.96 (d, $J = 18.1$ Hz, 1 H), 2.40 - 2.31 (m, 2 H), 2.04 (td, $J = 4.2$, 13.5 Hz, 1 H), 1.78 - 1.58 (m, 2 H), 1.49 - 1.36 (m, 1 H), 1.25 (td, $J = 7.1$, 10.0 Hz, 6 H); 13C NMR (75MHz, CDCl$_3$) $\delta = 211.3$ (C), 170.5 (C), 169.0 (C), 137.3 (C), 136.6 (C), 133.0 (CHx2), 128.6 (CH), 127.5 (CH), 127.2 (CH), 126.4 (CHx2), 124.2 (CH), 62.7 (C), 61.8 (CH$_2$), 61.7 (CH$_2$), 56.5 (CH), 48.3 (CH), 39.6 (CH$_2$), 39.5 (CH$_2$), 24.6 (CH$_2$), 24.3 (CH$_2$), 14.1 (CH$_3$), 14.0 (CH$_3$); HRMS (EI) m/z calcd for C$_{24}$H$_{28}$O$_5$ [M$^+$] 396.1937, found 396.1940.

Bicyclo[4.4.0]decenone 2.11i
Isolated as a colorless oil.

Bicyclo[4.4.0]decenone 2.11j

Isolated as a colorless oil.

IR (neat, cm⁻¹) ν max 2981, 2940, 2866, 1733, 1713, 1445, 1235, 1180, 1049, 916, 733; **¹H NMR (300MHz, CDCl₃)** δ = 5.64 (td, J = 2.4, 5.1 Hz, 1 H), 5.35 (q, J = 6.7 Hz, 1 H), 4.22 - 4.10 (m, 4 H), 3.57 (br. s., 1 H), 2.92 - 2.81 (m, 2 H), 2.67 (td, J = 2.8, 19.2 Hz, 1 H), 2.27 - 2.07 (m, 2 H), 2.05 - 1.90 (m, 1 H), 1.63 (d, J = 0.7 Hz, 3 H), 1.54 (d, J = 6.7 Hz, 3 H), 1.66 - 1.50 (m, 3 H), 1.21 (ddt, J = 0.7, 2.4, 7.1 Hz, 6 H); **¹³C NMR (75MHz, CDCl₃)** δ = 212.4 (C), 169.9 (C), 169.6 (C), 137.3 (C), 135.9 (C), 122.8 (CH), 120.5 (CH), 61.7 (CH₂), 61.6 (CH₂), 56.1 (C), 52.3 (CH), 40.7 (CH), 39.5 (CH₂), 26.9 (CH₂), 26.0 (CH₂), 23.5 (CH₂), 15.0 (CH₃), 14.0 (CH₃), 13.9 (CH₃), 13.6 (CH₃); **HRMS (EI)** m/z calcd for C₂₀H₂₈O₅ [M⁺] 348.1937, found 348.1905.
Tricycle 2.13

Isolated as a 7:13 mixture of diasterioisomers as clear oils. Stereochemistry could not be determined by 2D-NMR.

Major: IR (neat, cm\(^{-1}\)) 2942, 2866, 1734, 1462, 1247, 1152, 1093, 883, 676; \(^1\)H NMR (400MHz, CDCl\(_3\)) \(\delta = 5.62\) (br. s., 1 H), 4.31 - 4.05 (m, 4 H), 3.85 (ddd, \(J = 2.0, 3.7\) Hz, 1 H), 3.33 (s, 3 H), 3.28 (ddd, \(J = 2.1\) Hz, 1 H), 3.03 (ddd, \(J = 5.8, 13.0\) Hz, 1 H), 2.88 (d, \(J = 18.7\) Hz, 1 H), 2.66 (br. s., 1 H), 2.11 (d, \(J = 13.8\) Hz, 1 H), 1.91 - 1.77 (m, 1 H), 1.76 - 1.63 (m, 2 H), 1.44 - 1.29 (m, 3 H), 1.24 (dt, \(J = 7.1\) Hz, 6 H), 1.13 - 1.06 (m, 21 H), 0.80 (ddd, \(J = 2.7, 13.0\) Hz, 1 H); \(^{13}\)C NMR (101MHz, CDCl\(_3\)) \(\delta = 171.8\) (C\(_{\text{quat}}\)), 169.8 (C\(_{\text{quat}}\)), 142.9 (C\(_{\text{quat}}\)), 117.6 (CH), 76.4 (CH), 72.3 (C\(_{\text{quat}}\)), 62.3 (C\(_{\text{quat}}\)), 61.4 (CH\(_2\)), 61.4 (CH\(_2\)), 56.6 (CH), 52.1 (CH), 42.4 (CH), 40.3 (CH\(_2\)), 35.6 (CH\(_2\)), 32.9 (CH\(_2\)), 23.4 (CH\(_2\)), 20.0 (CH\(_2\)), 18.5 (CH\(_{3x3}\)), 14.1 (CH\(_3\)), 14.0 (CH\(_3\)), 13.7 (CH\(_{3x6}\)); HRMS (EI) m/z calcd for C\(_{25}\)H\(_{41}\)O\(_6\)Si [(M-\(i\)-Pr\(^+\)] 465.2672, found 465.2716.

Minor: IR (neat, cm\(^{-1}\)) 2941, 2866, 1735, 1465, 1366, 1248, 1085, 883, 679; \(^1\)H NMR (300MHz, CDCl\(_3\)) \(\delta = 5.56\) (br. s., 1 H), 4.32 - 4.05 (m, 4 H), 3.91 (br. s., 1 H), 3.36 (s, 3 H), 3.34 - 3.23 (m, 1 H), 3.00 (ddd, \(J = 6.0, 12.3\) Hz, 1 H), 2.89 (d, \(J = 18.9\) Hz, 1 H), 2.81 (br. s., 1 H), 2.18 (dd, \(J = 6.2, 11.8\) Hz, 1 H), 1.85 - 1.59 (m, 2 H), 1.23 (dt, \(J = 7.1\) Hz, 6 H), 1.51 - 1.02 (m, 7 H), 1.09 (s, 18 H), 0.73 (ddd, \(J = 3.2, 13.1\) Hz, 1 H); \(^{13}\)C NMR (75MHz, CDCl\(_3\)) \(\delta = 171.6\) (C\(_{\text{quat}}\)), 169.9 (C\(_{\text{quat}}\)), 142.7 (C\(_{\text{quat}}\)), 117.8 (CH), 77.6 (CH), 73.8 (C\(_{\text{quat}}\)), 62.2 (C\(_{\text{quat}}\)), 61.4 (CH\(_2x2\)), 55.6 (CH\(_3\)), 51.8 (CH), 42.6 (CH\(_2\)), 41.7 (CH), 35.4 (CH\(_2\)), 32.8 (CH\(_2\)), 23.2 (CH\(_2\)), 19.5 (CH\(_2\)), 18.5 (CH\(_{3x3}\)), 14.1 (CH\(_3\)), 14.0 (CH\(_3\)), 13.6 (CH\(_{3x6}\)); HRMS (EI) m/z calcd for C\(_{25}\)H\(_{41}\)O\(_6\)Si [(M-\(i\)-Pr\(^+\)] 465.2672, found 465.2696.
Bicyclo[4.3.0]decenone 3.2

Isolated as a colorless oil.

IR (neat, cm⁻¹) v max 1742, 1730; ¹H NMR (400MHz, CDCl₃) δ = 5.05 - 5.00 (m, 2 H), 4.26 - 4.12 (m, 4 H), 3.30 - 3.18 (m, 2 H), 3.05 - 2.98 (m, 1 H), 2.40 - 2.23 (m, 2 H), 2.09 - 2.00 (m, 1 H), 1.55 - 1.42 (m, 1 H), 1.23 (s, 3 H), 1.25 (dt, J = 4.0, 7.1 Hz, 6 H); ¹³C NMR (101MHz, CDCl₃) δ = 217.8 (Cₜₜₜ), 171.1 (Cₜₜₜ), 169.6 (Cₜₜₜ), 149.3 (Cₜₜₜ), 110.2 (CH₂), 62.3 (Cₜₜₜ), 61.9 (CH₂), 61.8 (CH₂), 59.7 (Cₜₜₜ), 53.3 (CH), 38.8 (CH₂), 37.3 (CH₂), 24.0 (CH₃), 22.4 (CH₂), 14.2 (CH₃), 14.1 (CH₃); HRMS (EI) m/z calcld for C₁₆H₂₂O₅ [(M)⁺] 294.1467, found 294.1467.

Bicyclo[4.3.0]decenone 3.3

Isolated as a colorless oil. Characterized as an inseparable mixture of 3.2 and 3.3.

IR (neat, cm⁻¹) v max 1738, 1733; ¹H NMR (400MHz, CDCl₃) δ = 5.74 (ddd, J = 2.2, 5.7, 10.0 Hz, 1 H), 5.26 (td, J = 1.4, 10.0 Hz, 1 H), 4.27 - 4.07 (m, 4 H), 3.05 - 2.98 (m, 2 H), 2.43 - 2.16 (m, 4 H), 1.61 - 1.40 (m, 1 H), 1.25 (dt, J = 4.0, 7.0 Hz, 6 H), 1.11 (s, 3 H); ¹³C NMR (101MHz, CDCl₃) δ = 218.8 (Cₜₜₜ), 170.3 (Cₜₜₜ), 170.2 (Cₜₜₜ), 127.3 (CH), 125.1 (CH), 61.8 (2xCH₂), 54.7 (Cₜₜₜ), 51.3 (Cₜₜₜ), 45.5 (CH), 35.8 (CH₂), 26.2 (CH₂), 23.3 (CH₃), 22.4 (CH₂), 14.2 (CH₃), 14.1 (CH₃); HRMS (EI) m/z calcld for C₁₆H₂₂O₅ [(M)⁺] 294.1467, found 294.1471.
Bicyclo[4.4.0]alkenone 3.8

Isolated as a colorless oil.

IR (neat, cm-1) ν max 1732, 1709; ¹H NMR (400MHz, CDCl₃) δ = 4.94 (s, 1 H), 4.38 (s, 1 H), 4.25 - 4.09 (m, 4 H), 3.56 (br. s., 1 H), 2.90 - 2.81 (m, 1 H), 2.56 - 2.44 (m, 1 H), 2.42 - 2.27 (m, 3 H), 2.07 (dq, J = 3.8, 14.2 Hz, 1 H), 2.07 - 1.87 (m, 2 H), 1.70 - 1.55 (m, 2 H), 1.24 (q, J = 6.9 Hz, 6 H), 1.32 - 1.19 (m, 1 H); ¹³C NMR (101MHz, CDCl₃) δ = 211.2 (C₄quat), 170.2 (C₄quat), 170.1 (C₄quat), 142.8 (C₄quat), 111.6 (CH₂), 61.8 (CH₂), 61.7 (CH₂), 58.1 (C₄quat), 55.4 (CH), 41.9 (CH), 39.8 (CH₂), 32.0 (CH₂), 26.7 (CH₂), 25.0 (CH₂), 23.0 (CH₂), 14.2 (CH₃), 14.2 (CH₃); HRMS (EI) m/z calcd for C₁₇H₂₄O₅ [(M)+] 308.1624, found 308.1606.

Bicyclo[4.3.0]alkenone 3.10

Prepared according to literature procedure and exhibited spectral data in accordance with previous report.⁶⁸

Synthesis of Steroid-analogues 2.14a and 2.14b
N-phenylmaleimide (16.8 mg, 0.0963 mmol) was cannulated with toluene (0.24 mL) to a solution of the diene 2.8c (19.3 mg, 0.0602 mmol) in toluene (0.40 mL) at room temperature in a sealed tube. The reaction mixture was then stirred for 3 days at 70°C. Once the reaction was completed, the solvent was evaporated and the residue was purified by flash column chromatography (40% EtOAc : Hexane) to yield 5.8 mg of 2.14a and 13.4 mg of 2.14b as colorless oils in a total 65% yield.

Diterpene 2.14a

Isolated as a white solid.

IR (neat, cm⁻¹) v max 1713; ¹H NMR (500MHz, CDCl₃) δ = 7.50 - 7.43 (m, 2 H), 7.41 - 7.36 (m, 1 H), 7.35 - 7.31 (m, 2 H), 5.54 (qd, J = 2.7, 6.4 Hz, 1 H), 4.28 - 4.09 (m, 4 H), 3.35 - 3.30 (m, 1 H), 3.13 - 3.02 (m, 3 H), 2.79 - 2.64 (m, 2 H), 2.53 (ddd, J = 6.7, 13.0, 15.4 Hz, 1 H), 2.34 - 2.21 (m, 2 H), 2.03 - 1.93 (m, 1 H), 1.79 - 1.57 (m, 4 H), 1.47 (dq, J = 3.7, 13.0 Hz, 1 H), 1.24 (t, J = 7.2 Hz, 3 H), 1.25 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126MHz, CDCl₃) δ = 209.9 (C_quat), 178.0 (C_quat), 177.4 (C_quat), 171.5 (C_quat), 170.5 (C_quat), 135.9 (C_quat), 131.9 (C_quat), 129.2 (2xCH), 128.6 (CH), 126.5 (2xCH), 123.4 (CH), 62.0 (CH₂), 61.5 (CH₂), 55.7 (C_quat), 53.3 (CH), 45.5 (CH), 39.5 (CH), 38.8 (CH), 37.8 (CH₂), 33.7 (CH₂), 31.8 (CH), 25.0 (CH₂), 24.6 (CH₂), 23.7 (CH₂), 14.2 (CH₃), 14.2 (CH₃); HRMS (EI) m/z calcd for C₂₈H₃₁NO₇ [(M)⁺] 493.2101, found 493.2021.
Diterpene 2.14b

Isolated as a white solid.

IR (neat, cm⁻¹): ν max 1710; **¹H NMR (500MHz, CDCl₃)**: δ = 7.53 - 7.40 (m, 2 H), 7.39 - 7.34 (m, 1 H), 7.17 - 7.13 (m, 2 H), 5.45 (qd, J = 2.8, 7.2 Hz, 1 H), 4.33 - 4.18 (m, J = 7.1, 7.1, 7.1, 10.6, 10.6 Hz, 2 H), 4.12 (qt, J = 7.1, 10.6 Hz, 2 H), 3.34 - 3.26 (m, 2 H), 3.19 (ddd, J = 3.4, 4.8, 13.0 Hz, 1 H), 3.09 - 2.98 (m, 1 H), 2.83 (dd, J = 7.1, 15.6 Hz, 1 H), 2.64 (dd, J = 4.5, 14.9 Hz, 1 H), 2.57 - 2.43 (m, 2 H), 2.38 - 2.25 (m, 2 H), 1.98 (ddd, J = 2.6, 7.1, 13.4 Hz, 1 H), 1.72 - 1.59 (m, J = 4.5, 4.5, 4.5, 8.7, 13.1 Hz, 2 H), 1.59 - 1.50 (m, 1 H), 1.36 (dq, J = 3.7, 12.8 Hz, 1 H), 1.26 (t, J = 7.2 Hz, 3 H), 1.24 (t, J = 7.2 Hz, 3 H); **¹³C NMR (126MHz, CDCl₃)**: δ = 209.6 (Cₜₚₜₜ), 178.4 (Cₜₚₜₜ), 176.5 (Cₜₚₜₜ), 171.4 (Cₜₚₜₜ), 171.2 (Cₜₚₜₜ), 138.6 (Cₜₚₜₜ), 131.6 (Cₜₚₜₜ), 129.1 (2xCH), 128.7 (CH), 126.6 (2xCH), 122.0 (CH), 61.9 (CH₂), 61.2 (CH₂), 55.3 (Cₜₚₜₜ), 53.1 (CH), 43.1 (CH), 39.6 (CH), 39.0 (CH), 37.8 (CH₂), 32.0 (CH), 29.6 (CH₂), 24.8 (CH₂), 24.7 (CH₂), 24.3 (CH₂), 14.0 (CH₃), 13.9 (CH₃); **HRMS (EI)**: m/z calcd for C₂₈H₃₁NO₇ [(M⁺)⁺] 493.2101, found 493.2087.

Synthesis of L₇

![Synthesis Diagram](image)

2.20

[2.23 ∈ Ph₂O → 84% → 2.23]

[2.23 → HSiCl₅ 5 eq Et₃N 5.5 eq Toluene → 55% → L₇]
Experimental

Phosphine oxide 2.20

Prepared according to literature procedure. Exhibited spectral data in accordance with previous report.

Phosphine oxide 2.23

Isolated as a white solid.

\[\text{H NMR (500MHz, CDCl}_3\text{)} \delta = 7.35 \text{ (dd, } J = 8.3, 10.4 \text{ Hz, } 4 \text{ H)}, \text{7.04 - 6.72 (m, } 26 \text{ H)}, \text{6.66 (t, } J = 7.3 \text{ Hz, } 12 \text{ H)}; \text{C NMR (126MHz, CDCl}_3\text{)} \delta = 147.3 \text{ (d, } J = 10.5 \text{ Hz, } C_{\text{quat}}\text{)}, \text{145.1 (d, } J = 2.5 \text{ Hz, } C_{\text{quat}}\text{)}, \text{141.8 (d, } J = 10.5 \text{ Hz, } C_{\text{quat}}\text{)}, \text{140.0 (s, } C_{\text{quat}}\text{)}, \text{139.3 (s, } C_{\text{quat}}\text{)}, \text{139.0 (d, } J = 5.5 \text{ Hz, } C_{\text{quat}}\text{)}, \text{137.1 (d, } J = 104.2 \text{ Hz, } C_{\text{quat}}\text{)}, \text{133.0 (s, } C_H\text{)}, \text{132.3 (d, } J = 103.7 \text{ Hz, } C_{\text{quat}}\text{)}, \text{131.2 (s, } C_H\text{)}, \text{130.6 (s, } C_H\text{)}, \text{130.2 (d, } J = 8.5 \text{ Hz, } C_H\text{)}, \text{129.2 (d, } J = 2.5 \text{ Hz, } C_H\text{)}, \text{127.6 (d, } J = 12.0 \text{ Hz, } C_H\text{)}, \text{126.6 (s, } C_H\text{)}, \text{126.4 (d, } J = 41.9 \text{ Hz, } C_H\text{)}, \text{126.3 (s, } C_H\text{)}, \text{125.7 (s, } C_H\text{)}, \text{125.6 (s, } C_H\text{)}; \text{HRMS (ESI) m/z calcd for } C_{48}H_{35}PO [(M]^+\text{]} 658.2426, \text{found 568.2427.} \]
1H NMR (300MHz, CDCl$_3$) δ = 7.16 - 7.02 (m, 10 H), 6.92 - 6.62 (m, 25 H); 13C NMR (75MHz, CDCl$_3$) Observed complexity due to 13C-31P coupling δ = 148.1 (C$_{quat}$), 147.8 (C$_{quat}$), 142.8 (C$_{quat}$), 141.8 (C$_{quat}$), 141.8 (C$_{quat}$), 140.6 (C$_{quat}$), 140.5 (C$_{quat}$), 140.3 (C$_{quat}$), 137.2 (C$_{quat}$), 137.0 (C$_{quat}$), 132.3 (CH), 132.1 (CH), 131.1 (CH), 130.9 (CH), 130.8 (CH), 130.8 (CH), 127.6 (CH), 127.5 (CH), 126.8 (CH), 126.4 (CH), 126.3 (CH), 126.3 (CH), 125.6 (CH), 125.3 (CH), 125.1 (CH); 31P NMR (121MHz, CDCl$_3$) δ = -4.2; HRMS (ESI) m/z calcd for C$_{48}$H$_{35}$P [(M$^+$)] 642.2476, found 642.2460.

Synthesis of Phosphine oxide 2.19

\[
\text{Ketone 2.16}
\]
Prepared according to literature procedure and exhibited spectral data in accordance with previous report.70

\[\text{Aryl acetylene 2.18} \]
Prepared according to literature procedure in 60\% yield and isolated as a clear oil.71 Exhibited spectral data in accordance with previous report.72

\[\text{Phosphine oxide 2.19} \]
Prepared according to literature procedure in 75\% yield and isolated as a pale yellow solid.60

\[^1H \text{ NMR (400MHz, CDCl}_3\text{)} \delta = 6.98 \text{ (s, 2 H), 3.51 (spt, } J = 6.8 \text{ Hz, 2 H), 2.87 (spt, } J = 6.8 \text{ Hz, 1 H), 1.37 (d, } J = 15.2 \text{ Hz, 18 H), 1.24 (d, } J = 7.2 \text{ Hz, 12 H), 1.22 (d, } J = 7.7 \text{ Hz, 6 H);} \]

\[^13C \text{ NMR (101MHz, CDCl}_3\text{)} \delta = 152.4 \text{ (d, } J = 1.1 \text{ Hz, 2xC}_{\text{quat}}, 151.3 \text{ (s, C}_{\text{quat}), 120.6 \text{ (s, 2xCH), 116.0 (d, } J = 3.3 \text{ Hz, C}_{\text{quat}), 100.8 (d, } J = 19.1 \text{ Hz, C}_{\text{quat}), 88.9 (d, } J = 129.8 \text{ Hz, C}_{\text{quat}}, 36.3 \text{ (d, } J = 72.6 \text{ Hz, 2xC}_{\text{quat}}), 34.7 \text{ (s, CH), 31.9 (s, 2xCH), 26.5 (s, 6xCH}_3\text{), 23.8 (s, 2xCH}_3\text{), 23.6 (s, 4xCH}_3\text{); HRMS (EI) m/z calcd for C}_{25}H_{41}OP [(M)+] 388.2895, found 388.2897.} \]
General procedure F – Synthesis of Buchwald-type phosphines via alkylation

To a shlenk containing a -78°C solution of 2-iodobiphenyl (1.81 mmol) in THF (7.4 mL) was added a 1.5 M solution of tBuLi in pentane (3.69 mmol) dropwise. The reaction is stirred for 1 hour at -78°C and CuCl is added. The reaction mixture is allowed to warm up to room temperature before PR₂Cl (1.78 mmol) is added as a THF solution (2 mL) via seringe. The shlenk is sealed and the mixture is heated to 70°C for 18 hours. The reaction mixture is cooled to room temperature, diluted with EtOAc and washed with NH₄OH until the aqueous phase remains colorless. The organic phase is then washed with NaHCO₃(aq), brine and dried over sodium sulfate before being filtered and concentrated by rotary evaporation. The resulting crude phosphine is then recrystallized.

L₁ ligands

L₁d (R = Ph)

Prepared according to general procedure literature procedure F in 67% yield and crystalized from methanol. Exhibited spectral data in accordance with previous report.⁷³
L_{1e} (R = Mes)

Prepared according to general procedure literature procedure F in 40% yield and crystalized from methanol.

1H NMR (400MHz, CDCl₃) $\delta = 7.33 - 7.25$ (m, 2 H), 7.23 - 7.12 (m, 7 H), 6.74 (d, $J = 2.5$ Hz, 4 H), 2.24 (s, 6 H), 2.01 (t, $J = 0.5$ Hz, 12 H); 13C NMR (101MHz, CDCl₃) Two CH signals appear to have the same chemical shift, however, we are unsure which ones. $\delta = 147.8$ (d, $J = 31.2$ Hz, C quat), 143.2 (d, $J = 16.5$ Hz, 4xC quat), 142.2 (d, $J = 5.9$ Hz, C quat), 137.9 (s, 2xC quat), 136.7 (d, $J = 16.1$ Hz, C quat), 133.9 (s, CH), 131.0 (d, $J = 21.3$ Hz, 2xC quat), 130.2 (d, $J = 4.8$ Hz, CH), 129.9 (d, $J = 2.9$, 4xCH), 129.3 (d, $J = 4.4$ Hz, CH), 128.0 (s, CH), 127.4 (s, 2xCH), 126.8 (s, 2xCH), 23.2 (d, $J = 16.5$ Hz, 4xCH₃), 21.0 (s, 2xCH₃); 31P NMR (121MHz, CDCl₃) $\delta = -27.1$; HRMS (EI) m/z calcd for C₃₀H₃₁P [(M-H)$^+$] 422.2163, found 422.2175.

L_{1f} (R = (4-OMe)C₆H₄)

Prepared according to general procedure literature procedure F in 35% yield and crystalized from methanol. Exhibited spectral data in accordance with previous report. ⁷⁴

L_{1g} (R = (3,5-bis(CF₃))C₆H₃)

Prepared according to general procedure literature procedure F in 65% yield and crystalized from methanol.

1H NMR (300MHz, CDCl₃) $\delta = 7.86$ (s, 2 H), 7.62 (d, $J = 6.6$ Hz, 4 H), 7.53 (dt, $J = 1.3$, 7.6 Hz, 1 H), 7.44 - 7.33 (m, 2 H), 7.31 - 7.21 (m, 3 H), 7.19 - 7.11 (m, 2 H), 6.95 - 6.89 (m, 1 H); 13C NMR (101MHz, CDCl₃) $\delta = 148.3$ (d, $J = 27.1$ Hz, C quat), 140.8 (d, $J = 5.9$ Hz, C quat), 139.7 (d, $J = 19.4$ Hz, 2xC quat), 133.7 (dd, $J = 21.6$, 2.6 Hz, 2xCH), 132.9 (s, CH), 132.3 (d, $J = 12.1$ Hz, C quat), 132.2 (qd, $J = 33.7$, 6.6 Hz, 4xC quat), 131.0 (d, $J = 4.4$ Hz, CH), 130.5 (s, CH), 129.6 (d, $J = 3.7$ Hz, CH), 128.5 (s, CH), 128.2 (s, 2xCH), 128.0 (s, 2xCH), 123.4 (dt, $J = 7.3$, 3.7 Hz, 4xCH), 123.1 (q, 274.4 Hz, 4xC quat); 31P NMR (121MHz, CDCl₃) $\delta = -9.1$; HRMS (EI) m/z calcd for C₂₈H₁₅PF₁₂ [(M-H)$^+$] 609.0642, found 609.0616.
Experimental

L₂ ligands

L₂₉ (R = (3,5-bis(CF₃))C₆H₃)

Prepared according to general procedure literature procedure F in 35% yield and crystalized from methanol. Exhibited spectral data in accordance with previous report.⁷⁵

Synthesis of L₁b via Pd-Coupling

\[
\text{Phosphine 2.30} \quad \text{DiPPF 11 mol\%} \quad \text{Pd(OAc)}₂ 10 \text{ mol\%} \quad \text{NaOtBu 1.47 eq} \quad \text{toluene} \quad 21 \% \quad \text{unoptimized}
\]

Prepared according to literature procedure and exhibited spectral data in accordance with previous report.⁷⁶
L₁₁b (R= adamantyl)

Prepared according to a modified literature procedure. Exhibited spectral data in accordance with previous report. In a glovebox, Pd(OAc)$_2$ (30.5 mg, 0.136 mmol) and DiPPF (1,1'-bis(diisopropylphosphino)ferrocene; 58.6 mg, 0.140 mmol) were combined. Toluene (2 mL) was then added and the reaction mixture was stirred for 10 min. This solution was added to a via containing di(1-adamantyl)phophine 2.30 (which in this case contained 50 mol% of the corresponding phosphine oxide; 411.3 mg, 0.770 mmol) and NaOtBu (192.2 mg, 2.00 mmol), followed by the addition of the 2-bromobiphenyl (241.4 μL, 1.40 mmol). The vial was then heated at 110°C for 20 hours. The reaction mixture was filtered on silica (10% EtOAc : Hexane) and concentrated in vacuo before being purified by flash chromatography (3% EtOAc: Hexane). The residue was then triturated with cold pentane to yield 72.3 mg of L₁₁b in 21% yield.

General procedure G - Synthesis of Au(I) catalysts

To suspension of a phosphine (0.208 mmol) in DCM (2 mL) was added chloro(dimethylsulfide)gold(I) (61 mg, 0.208 mmol). The mixture was stirred for 4h at room temperature. The solvent was evaporated off under reduced pressure and the residue was triturated with pentane to give L₅AuCl (125 mg, 83%) as a grey powder.
L₈AuCl

Prepared according to general procedure G in 83% yield as a grey powder.

1H NMR (400 MHz, C₆D₆) δ 7.37 (s, 2H), 3.21 (sept, J = 6.9 Hz, 1H), 2.57 (sept, J = 6.7 Hz, 2H), 2.16 (s, 3H), 1.89 (s, 3H), 1.85 (s, 3H), 1.64 (d, J = 6.9 Hz, 6H), 1.60 (s, 3H), 1.52 (d, J = 6.7 Hz, 6H), 1.31 (s, 9H), 1.28 (s, 9H), 0.98 (d, J = 6.7 Hz, 6H); 13C NMR (100 MHz, C₆D₆) δ 151.0 (C_quat), 146.9 (C_quat), 146.6 (C_quat), 146.0 (C_quat), 140.2 (C_quat) (d, J_C−P = 2.6 Hz), 138.3 (C_quat) (d, J_C−P = 3.3 Hz), 138.2 (C_quat), 137.8 (C_quat) (d, J_C−P = 9.2 Hz), 135.9 (C_quat) (d, J_C−P = 7.0 Hz), 129.1 (C_quat), 128.8 (CH), 123.3 (CH), 41.5 (C_quat x 2) (d, J_C−P = 20.2 Hz), 35.0 (CH), 33.3 (CH₃ x 3) (d, J_C−P = 8.4 Hz), 31.2 (CH₂ x 2), 27.9 (CH₃), 27.9 (CH₃), 25.4 (CH₃ x 3), (d, J_C−P = 7.7 Hz) 25.1 (CH₃ x 2), 22.6 (CH₃), 22.6 (CH₃), 17.6 (CH₃ x 2), 17.1 (CH₃ x 2); 31P NMR (162 MHz, C₆D₆) δ 76.51; HRMS (EI) m/z calcd for C₃₃H₆₄PAuCl [(M-Cl)$^+$] = 677.3550, found 6755.3548

L₃cAuCl

Prepared according to general procedure G in 78% yield as a white powder.

1H NMR (400 MHz, C₆D₆) δ; 13C NMR (100 MHz, C₆D₆) δ 7.44 (s, 2H), 6.47 (d, J = 9.0 Hz, 1H), 6.32 (dd, J = 9.0 Hz, 3.4 Hz, 1H), 3.23 (sept, J = 7.0 Hz, 1H), 3.18 (s, 3H), 2.94 (s, 3H), 2.58 (sept, J = 6.8 Hz, 2H), 2.47 (qdd, J = 12.3 Hz, 2.8 Hz, 2.8 Hz, 2H), 2.11 (s, 1H), 1.96-1.87 (m, 2H), 1.77-1.44 (m, 10H), 1.56 (d, J = 6.9 Hz, 12H), 1.41-1.27 (m, 2H), 1.14 (d, J = 6.8 Hz, 6H), 1.10-0.99 (m, 5H); 13C NMR (75 MHz, C₆D₆) δ 155.6 (C_quat), 154.0
(C_{quat}) (d, $J_{C-P} = 11.4$ Hz), 151.1 (C_{quat}), 146.5 (C_{quat}), 139.5 (C_{quat}) (d, $J_{C-P} = 14.7$ Hz), 131.6 (C_{quat}) (d, $J_{C-P} = 7.4$ Hz), 128.9 (CH), 122.9 (CH), 119.1 (C_{quat}), 118.6 (C_{quat}), 113.9 (CH) (d, $J = 2.2$ Hz), 110.4 (CH) (d, $J = 5.5$ Hz), 55.5 (CH$_3$), 54.6 (CH$_3$), 39.6 (CHx2) (d, $J_{C-P} = 34.5$ Hz), 35.3 (CHx2), 35.0 (CH$_2$-CH$_2$), 34.9 (CH$_2$-CH$_2$), 31.6 (CH), 30.6 (CH$_2$), 28.0 (CH$_2$-CH$_2$) (d, $J_{C-P} = 12.8$ Hz), 27.4 (CH$_2$-CH$_2$) (d, $J_{C-P} = 16.1$ Hz), 26.3 (CH$_2$), 25.9 (CH$_2$-CH$_2$), 25.2 (CH$_2$-CH$_2$), 24.8 (CH$_3$-CH$_3$); 31P NMR (121 MHz, C$_6$D$_6$) δ 40.43; HRMS (EI) m/z calcd for C$_{35}$H$_{53}$AuClO$_2$P [(M-Cl)$^+$] 733.3449, found 733.3512.

![Image](image.png)

L_{3g}AuCl

Prepared according to general procedure G in 89% yield as a white powder.

1H NMR (300 MHz, C$_6$D$_6$) δ 7.65 (d, $J = 11.3$ Hz, 4H), 7.65 (s, 2H), 7.38 (s, 2H), 6.44 (d, J = 6.4 Hz, 1H), 6.11 (dd, J = 9.1 Hz, 4.5 Hz, 1H), 3.12 (sept, J = 6.9 Hz, 1H), 2.90 (s, 3H), 2.64 (s, 3H), 2.56 (dt, J = 13.6 Hz, 6.7 Hz, 2H), 1.48 (d, J = 6.9 Hz, 6H), 1.32 (d, J = 7.0 Hz, 6H), 1.14 (d, J = 6.7 Hz, 6H); 13C NMR (75 MHz, C$_6$D$_6$) δ 154.5 (C_{quat}), 153.9 (C_{quat}) (d, $J_{C-P} = 14.3$ Hz), 151.8 (C_{quat}), 146.3 (C_{quat}), 139.3 (C_{quat}), 139.0 (C_{quat}), 134.7 (C_{quat}), 133.9 (C_{quat}), 133.0-132.9 (C_{quat}) (m), 132.8-132.7 (C_{quat}) (m), 132.6 (C_{quat}), 132.9 (CH), 132.6 (CH), 132.4 (C_{quat}), 132.1 (C_{quat}), 131.8 (C_{quat}) (d, $J_{C-P} = 11.5$ Hz), 130.1 (C_{quat}) (d, $J_{C-P} = 9.0$ Hz), 128.3 (CHx4), 125.0 (C_{quat}), 124.7-124.6 (C_{quat}) (m), 124.6 (CH), 123.1 (CH), 121.4 (C_{quat}), 117.0 (CH), 111.3 (CH) (d, $J_{C-P} = 5.5$ Hz), 54.7 (CH$_3$), 54.2 (CH$_3$), 34.9 (CH), 32.1 (CHx2), 25.1 (CH$_3$-CH$_3$), 24.6 (CH$_3$-CH$_3$), 23.8 (CH$_3$-CH$_3$); 31P NMR (121 MHz, C$_6$D$_6$) δ 16.00; HRMS (EI) m/z calcd for C$_{39}$H$_{57}$O$_2$PF$_{12}$AuCl 1028.1692, found 1028.1646.
L₇AuCl

Prepared according to general procedure G in 89% yield as a white powder.

¹H NMR (500MHz, CDCl₃) \(\delta = 7.49 \text{ (dd, } J = 7.7, 13.1 \text{ Hz, } 4 \text{ H}), 7.17 - 6.99 \text{ (m, } 6 \text{ H}), 6.93 \text{ (d, } J = 7.2 \text{ Hz, } 4 \text{ H}), 6.89 - 6.65 \text{ (m, } 21 \text{ H}); \)**

¹³C NMR (126MHz, CDCl₃) * \(\delta = 146.7 \text{ (d, } J = 9.0 \text{ Hz, } C_{\text{quat}}), 144.9 \text{ (d, } J = 2.0 \text{ Hz, } C_{\text{quat}}), 142.7 \text{ (d, } J = 7.5 \text{ Hz, } C_{\text{quat}}), 139.5 \text{ (s, } C_{\text{quat}}), 138.9 \text{ (d, } J = 1.0 \text{ Hz, } C_{\text{quat}}), 138.5 \text{ (d, } J = 5.0 \text{ Hz, } C_{\text{quat}}), 134.1 \text{ (d, } J = 15.0 \text{ Hz, CH}), 132.7 \text{ (d, } J = 6.38 \text{ Hz, } C_{\text{quat}}), 132.0 \text{ (s, CH), 131.0 (s, CH), 130.6 (s, CH), 130.3 (d, } J = 2.5 \text{ Hz, CH), 128.3 (d, } J = 12.0 \text{ Hz, CH), 127.3 (s, CH), 127.2 (d, } J = 59.3 \text{ Hz, } C_{\text{quat}}), 126.7 (d, } J = 7.5 \text{ Hz, CH), 126.6 (s, CH), 125.9 (s, CH), 125.8 (s, CH); \)**

³¹P NMR (202MHz, CDCl₃) \(\delta = 37.8; \)**

HRMS (EI) m/z

Calcd for \(C_{48}H_{35}AuClP \) [(M⁺)] 874.1830, found 874.1816.

Due to the high number of similar carbons, we were not able to attribute which \(^{13}C \) signal belonged to which carbon.

L₁₀AuCl

Prepared according to general procedure G in 89% yield as a white powder.

¹H NMR (400MHz, CDCl₃) \(\delta = 7.59 - 7.35 \text{ (m, } 15 \text{ H}), 7.29 - 7.23 \text{ (m, } 1 \text{ H}), 7.04 \text{ (ddd, } J = 1.0, 7.8, 11.6 \text{ Hz, } 1 \text{ H}), 6.99 \text{ (dd, } J = 1.0, 8.1 \text{ Hz, } 2 \text{ H}); \)**

¹³C NMR (101MHz, CDCl₃) \(\delta = 148.2 \text{ (d, } J = 15.0 \text{ Hz, } C_{\text{quat}}), 140.1 \text{ (d, } J = 7.0 \text{ Hz, } C_{\text{quat}}), 134.6 \text{ (d, } J = 13.9 \text{ Hz, } 4xCH), 133.8 \text{ (d, } J = 6.6 \text{ Hz, CH), 132.1 (d, } J = 8.4 \text{ Hz, CH}, 131.9 \text{ (d, } J = 2.2 \text{ Hz, } 2xCH), 131.5 \text{ (d, } J = 2.2 \text{ Hz, CH), 129.9 (d, } J = 62.0 \text{ Hz, } C_{\text{quat}), 129.8 (s, } 2xCH), 129.3 (d, } J = 11.7, 4xCH), 128.6 (s, CH), 128.6 (s, } 2xCH), 127.7 (d, } J = 8.8 \text{ Hz, CH), 127.6 (d, } J = 61.6 \text{ Hz, } C_{\text{quat}); \)**

³¹P NMR
Experimental

(121 MHz, CDCl₃) δ = 26.8; HRMS (EI) m/z calcd for C₂₄H₁₉PAuCl [(M)⁺] 570.0578, found 570.0561.

\[
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
\text{P} & - \text{Au} - \text{Cl} \\
\text{Mes} & \quad \text{Mes}
\end{align*}
\]

\text{L}_{1f}\text{AuCl}

Prepared according to general procedure G in 81% yield as a white powder.

\(^1\text{H NMR (400 MHz, CDCl}_3)\) δ = 7.54 (tt, \(J = 1.2, 7.5 \text{ Hz}, 1 \text{ H}\)), 7.45 - 7.33 (m, 7 H), 7.27 (t, \(J = 7.6 \text{ Hz}, 2 \text{ H}\)), 7.08 - 6.91 (m, 7 H), 3.85 (s, 6 H); \(^{13}\text{C NMR (101 MHz, CDCl}_3)\) δ = 162.3 (d, \(J = 2.2 \text{ Hz}, C_{\text{quat}}\)), 147.8 (d, \(J = 15.0 \text{ Hz}, C_{\text{quat}}\)), 140.0 (d, \(J = 6.6 \text{ Hz}, C_{\text{quat}}\)), 136.0 (d, \(J = 15.4, 4xCH\)), 133.4 (d, \(J = 7.0 \text{ Hz}, CH\)), 131.9 (d, \(J = 8.1 \text{ Hz}, CH\)), 131.1 (d, \(J = 2.2 \text{ Hz}, CH\)), 129.7 (s, 2xCH), 128.7 (s, \(C_{\text{quat}}\)), 128.4 (s, CH), 128.3 (s, 2xCH), 127.4 (d, \(J = 9.2 \text{ Hz}, CH\)), 120.8 (d, \(J = 68.2 \text{ Hz}, C_{\text{quat}}\)), 114.7 (d, \(J = 13.2 \text{ Hz}, 4xCH\)), 55.5 (s, 2xCH₃); HRMS (EI) m/z calcd for C₂₆H₂₃O₂PAuCl [(M)⁺] 630.0790, found 630.0791.

\[
\begin{align*}
\text{Mes} & \quad \text{Mes} \\
\text{P} & - \text{Au} - \text{Cl} \\
\text{Mes} & \quad \text{Mes}
\end{align*}
\]

\text{L}_{1e}\text{AuCl}

Prepared according to general procedure G in 93% yield as a white powder.

\(^1\text{H NMR (500 MHz, CDCl}_3)\) δ = 7.54 (tt, \(J = 1.5, 7.5 \text{ Hz}, 1 \text{ H}\)), 7.48 - 7.42 (m, \(J = 7.0 \text{ Hz}, 2 \text{ H}\)), 7.40 (dd, \(J = 7.9, 12.1 \text{ Hz}, 1 \text{ H}\)), 7.35 - 7.25 (m, 3 H), 7.16 (d, \(J = 7.5 \text{ Hz}, 2 \text{ H}\)), 6.88 (d, \(J = 3.9 \text{ Hz}, 4 \text{ H}\)), 2.31 (s, 6 H), 2.24 (s, 12 H); \(^{13}\text{C NMR (126 MHz, CDCl}_3)\) δ = 148.4 (d, \(J = 16.5 \text{ Hz}, C_{\text{quat}}\)), 142.5 (d, \(J = 10.5 \text{ Hz}, 4xC_{\text{quat}}\)), 141.3 (d, \(J = 2.0 \text{ Hz}, C_{\text{quat}}\)), 141.0 (d, \(J = 7.0 \text{ Hz}, C_{\text{quat}}\)), 135.1 (d, \(J = 6.5 \text{ Hz}, CH\)), 132.9 (d, \(J = 8.5 \text{ Hz}, CH\)), 132.0 (d, \(J = 9.5 \text{ Hz}, 4xCH\)).
131.3 (d, J= 3.0 Hz, CH), 129.5 (d, J= 56.8 Hz, C$_{quat}$), 129.4 (s, 2xCH), 128.8 (s, CH), 128.7 (s, 2xCH), 127.6 (d, J= 9.0 Hz, CH), 125.8 (d, J= 56.9 Hz, C$_{quat}$), 25.1 (d, J= 11.0 Hz, 4xCH$_3$), 21.1 (d, J= 1.0 Hz, 2xCH$_3$); 31P NMR (202MHz, CDCl$_3$) δ = 1.3; HRMS (EI) m/z calcd for C$_{30}$H$_{31}$PAuCl [(M$^+$)] 654.1517, found 654.1511.

General procedure H - Synthesis of Ag(I) catalysts

The phosphane ligand (300 mmol) dissolved in acetonitrile (5 mL) was added to a suspension of AgSbF$_6$ (300 mmol) in acetonitrile or THF (5 mL) under Ar. The reaction mixture was stirred for 2 h in the dark at RT, then the solvent was reduced to 3 mL and the solution was filtered through a Celite pad. The solvent was then evaporated to form a white solid which was triturated 2-3 times with pentane and then dried under vacuum. Crystals were obtained by slow evaporation of DCM or CDCl$_3$ at r.t.64

\[
\text{Cy}_2\text{P} - \text{Ag-THF} \oplus \text{BF}_4
\]

$[\text{L}_{1c}\text{AgTHF}]\text{BF}_4$

Prepared according to literature procedure and exhibited spectral data in accordance with previous report.48

\[
\text{Me} \quad \text{iPr} \quad \text{tBu} \quad \text{tBu} \quad \oplus \quad \text{SbF}_6
\]

$[\text{L}_{8}\text{AgMeCN}]\text{SbF}_6$

Prepared according to general procedure H in 93% yield as a white powder.
Experimental

1H NMR (400 MHz, CDCl$_3$) δ = 7.24 (s, 2 H), 2.98 (spt, $J = 6.9$ Hz, 1 H), 2.62 (s, 3 H), 2.41 (spt, $J = 6.7$ Hz, 2 H), 2.31 (s, 3 H), 2.22 (s, 3 H), 2.21 (s, 3 H), 1.46 (s, 3 H), 1.42 (s, 9 H), 1.37 (s, 9 H), 1.32 (d, $J = 6.9$ Hz, 6 H), 1.28 (d, $J = 6.8$ Hz, 6 H), 0.89 (d, $J = 6.6$ Hz, 6 H);

13C NMR (101 MHz, CDCl$_3$) δ = 150.1 (s, C$_{quat}$), 146.8 (dd, $J = 1.7$, $J = 1.7$ Hz, 2xC$_{quat}$), 144.0 (dd, $J = 27.9$, $J = 1.1$ Hz, C$_{quat}$), 140.9 (d, $J = 2.6$ Hz, C$_{quat}$), 139.3 (d, $J = 7.7$ Hz, C$_{quat}$), 136.7 (d, $J = 5.1$ Hz, C$_{quat}$), 136.5 (d, $J = 8.1$ Hz, C$_{quat}$), 135.2 (d, $J = 12.1$, $J = 1.1$ Hz, C$_{quat}$), 127.2 (dd, $J = 19.1$, $J = 6.2$ Hz, C$_{quat}$), 123.8 (s, 2xC), 119.3 (s, C$_{quat}$), 38.4 (dd, $J = 5.9$, $J = 4.0$ Hz, 2xC$_{quat}$), 34.0 (s, CH), 33.3 (dd, $J = 11.9$, $J = 1.7$ Hz, 6xC$_3$), 30.8 (s, 2xC), 27.7 (s, CH$_3$), 26.0 (s, 2xC$_3$), 25.0 (s, 2xC$_3$), 24.0 (s, 2xC$_3$), 22.4 (d, $J = 3.7$ Hz, CH$_3$), 17.7 (s, CH$_3$), 17.4 (s, CH$_3$), 2.1 (s, CH$_3$); 31P NMR (121 MHz, CDCl$_3$) δ = 63.1 (d, $J(^{31}$P-109Ag) = 721.2 Hz), $J(^{31}$P-107Ag) = 625.4 Hz); HRMS (ESI) m/z calcd for C$_{35}$H$_{56}$AgNP [(M-SbF$_6$)$^+$] 628.3201, 628.3205.

![Diagram](https://example.com/diagram.png)

$[^{3}g$AgTHF]SbF_6

Prepared according to general procedure H in 89% yield as a white powder.

1H NMR (500 MHz, CDCl$_3$) δ = 7.94 (s, 2 H), 7.76 (d, $J = 11.7$ Hz, 4 H), 7.32 (d, $J = 9.2$ Hz, 1 H), 7.25 (s, 2 H), 7.05 (dd, $J = 3.0$, $J = 9.1$ Hz, 1 H), 3.71 - 3.68 (m, 3 H), 3.78 - 3.58 (m, 4 H), 3.38 (s, 3 H), 3.00 (spt, $J = 6.9$ Hz, 1 H), 2.39 (spt, $J = 6.8$ Hz, 2 H), 1.84 (td, $J = 3.2$, 6.7 Hz, 4 H), 1.31 (s, 6 H), 1.29 (s, 6 H), 1.03 (d, $J = 6.8$ Hz, 6 H), 0.99 (d, $J = 6.7$ Hz, 6 H); 13C NMR (126 MHz, CDCl$_3$) δ = 155.1 (dd, $J = 5.2$, 2.7, C$_{quat}$), 153.1 (d, $J = 12.5$ Hz, C$_{quat}$), 151.0 (s, C$_{quat}$), 147.1 (s, 2xC$_{quat}$), 137.0 (d, $J = 26.4$ Hz, C$_{quat}$), 132.6 (dq, $J = 18.5$, 3.4 Hz, 4xC), 132.4 (qd, $J = 33.9$, 10.5 Hz, 4xC$_{quat}$), 132.1 (d, $J = 36.9$ Hz, 2xC$_{quat}$), 129.5 (dd, $J = 14.0$, 1.5 Hz, C$_{quat}$), 124.7 (br. s., 2xC), 122.8 (q, $J = 272.8$ Hz, 4xC$_{quat}$), 122.5(s, C$_{quat}$), 117.6 (s, CH), 113.2 (dd, $J = 44.9$, 7.0 Hz, C$_{quat}$), 112.4 (d, $J = 4.0$ Hz, CH), 68.5 (s, 2xC$_2$),
55.5 (s, CH₃), 55.2 (s, CH₃), 34.0 (s, CH), 31.5 (s, 2xCH), 25.7 (s, 2xCH₂), 24.6 (s, 2xCH₃), 23.8 (s, 2xCH₃), 23.8 (s, 2xCH₃); ³¹P NMR (202MHz, CDCl₃) δ = -4.9 (d, J(³¹P-¹⁰⁹Ag) = 807.3 Hz), J(³¹P-¹⁰⁷Ag) = 700.1 Hz); HRMS (ESI) m/z calcd for C₄₃H₄₅AgF₁₂O₃P [(M-SbF₆)⁺] 975.1965, found 975.1920.

\[
\begin{align*}
\text{[L₂gAgMeCN]} & \text{SbF}_6 \\
\end{align*}
\]

Prepared according to general procedure H in 75% yield as a white powder.

¹H NMR (500MHz, CDCl₃) δ = 8.02 (s, 2 H), 7.75 - 7.72 (m, 4 H), 7.75 (d, J = 11.6 Hz, 1 H), 7.63 (tt, J = 1.0, 7.7 Hz, 1 H), 7.41 (tt, J = 1.0, 7.0 Hz, 0 H), 7.35 (dt, J = 1.0, 8.0 Hz, 1 H), 7.24 (s, 2 H), 3.00 (spt, J = 7.0 Hz, 1 H), 2.24 (spt, J = 6.8 Hz, 2 H), 2.18 (s, 3 H), 1.32 (d, J = 7.0 Hz, 6 H), 1.01 (d, J = 7.0 Hz, 6 H), 1.00 (d, J = 6.7 Hz, 6 H); ¹³C NMR (126MHz, CDCl₃) δ = 151.2 (s, C_quat), 147.4 (d, J= 26.4 Hz, C_quat), 146.7 (d, J= 1.0Hz, 2xC_quat), 134.9 (dd, J= 2.0, 20. Hz, CH), 133.3 (d, J= 1.5 Hz, CH), 133.0 (qd, J= 34.3, 10.5 Hz, 4xC_quat), 133.0 (dd, J= 16.1, 2.5 Hz, 4xCH), 133.3 (d, J= 12.0 Hz, C_quat), 132.8 (d, J= 7.5 Hz, CH), 132.5 (dd, J= 35.5, 2.8 Hz, C_quat), 129.9 (s, CH), 129.7 (d, J= 5.5 Hz, CH), 128.0 (s, CH), 126.5 (s, CH), 125.7 (s, br., 2xCH), 124.7 (d, J= 44.4 Hz, 2xC_quat), 122.9 (s, 2xCH), 122.6 (q, J= 274.3 Hz, 4xC_quat), 120.6 (s, CH), 119.9 (s, C_quat), 34.3 (s, CH), 31.4 (s, 2xCH), 25.2 (s, 2xCH₃), 23.8 (s, 2xCH₃), 23.3 (s, 2xCH₃), 2.2 (s, CH₃); ³¹P NMR (202MHz, CDCl₃) δ = -3.7 (d, J(³¹P-¹⁰⁹Ag) = 785.1 Hz), J(³¹P-¹⁰⁷Ag) = 681.6 Hz); HRMS (ESI) m/z calcd for C₃₀H₃₆NF₁₂PAg [(M-SbF₆)⁺] 884.1445, found 884.1455.
Prepared according to general procedure H in 45% yield as a white powder.

1H NMR (300MHz, CDCl3) \(\delta = 8.05\) (s, 2 H), 7.90 - 7.31 (m, 10 H), 7.19 - 6.93 (m, 3 H), 2.20 (s, 3 H); **HRMS (ESI) m/z calcd for** C\(_{30}\)H\(_{18}\)AgF\(_{12}\)NP [(M-SbF\(_6\))^+] 758.0036, found 758.0028.

Prepared according to general procedure H in 85% yield as a white powder.

1H NMR (400MHz, CDCl3) \(\delta = 7.18\) (s, 2 H), 7.08 (d, \(J = 9.0\) Hz, 1 H), 7.01 (dd, \(J = 2.1, 9.1\) Hz, 1 H), 3.91 (s, 3 H), 3.55 (s, 3 H), 2.96 (spt, \(J = 6.9\) Hz, 1 H), 2.54 - 2.37 (m, 2 H), 2.27 (s, 3 H), 2.31 (spt, \(J = 6.8\) Hz, 2 H), 1.97 - 1.84 (m, 2 H), 1.80 (d, \(J = 12.2\) Hz, 2 H), 1.69 (t, \(J = 14.5\) Hz, 4 H), 1.52 - 1.40 (m, 2 H), 1.33 (d, \(J = 7.0\) Hz, 6 H), 1.26 (d, \(J = 6.9\) Hz, 6 H), 1.39 - 0.99 (m, 8 H), 0.99 - 0.78 (m, 6 H); **13C NMR (126MHz, CDCl3)** \(\delta = 155.3\) (dd, \(J = 6.2, 2.2\) Hz, C\(_{\text{quat}}\)), 152.6 (d, \(J = 10.5\) Hz, C\(_{\text{quat}}\)), 149.6 (s, C\(_{\text{quat}}\)), 146.9 (s, 2xC\(_{\text{quat}}\)), 136.2 (d, \(J = 20.0\) Hz, C\(_{\text{quat}}\)), 130.4 (dd, \(J = 11.4, 1.5\) Hz, C\(_{\text{quat}}\)), 122.4 (s, 2xCH), 119.3 (s, C\(_{\text{quat}}\)), 116.2 (d, \(J = 35.4, 6.7\) Hz, C\(_{\text{quat}}\)), 114.7 (d, \(J = 2.0\), CH), 110.8 (d, \(J = 4.0\) Hz, CH), 56.0 (s, CH\(_3\)), 54.9 (s, CH\(_3\)), 36.3 (dd, \(J = 21.4, 4.5\) Hz, 2xCH), 34.7 (d, \(J = 13.0, 2.0\) Hz, 2xCH\(_2\)).
Experimental

33.9 (s, CH), 30.8 (2xCH), 30.5 (d, J= 1.5 Hz, 2xCH₂), 27.2 (d, J= 12.5 Hz, 2xCH₂), 26.8 (d, J= 17.5 Hz, 2xCH₂), 25.7 (d, J= 1.1 Hz, 2xCH₂), 24.8 (s, 2xCH₃), 24.6 (s, 2xCH₃), 23.8 (s, 2xCH₃), 2.2 (s, CH₃); ³¹P NMR (202MHz, CDCl₃) δ = 24.8 (d, J(³¹P-¹⁰⁹Ag) = 750.7 Hz), J(³¹P-¹⁰⁷Ag) = 651.0 Hz); HRMS (ESI) m/z calc for C₃₇H₅₆AgNO₂P [(M-SbF₆)+] 684.3099, found 684.3106.

[L₃ₐAgMeCN]SbF₆

Prepared according to general procedure H in 88% yield as a white powder.

¹H NMR (500MHz, CDCl₃) δ = 7.22 (s, 2 H), 7.12 (d, J = 9.0 Hz, 1 H), 7.07 (d, J = 9.0 Hz, 1 H), 3.87 (s, 3 H), 3.75 (t, J = 6.4 Hz, 4 H), 3.55 (s, 3 H), 2.97 (spt, J = 6.8 Hz, 1 H), 2.40 (spt, J = 6.6 Hz, 2 H), 1.90 (quin, J = 3.2 Hz, 4 H), 1.32 (d, J = 7.2 Hz, 6 H), 1.29 (d, J = 17.0 Hz, 18 H), 1.27 (d, J = 6.8 Hz, 6 H), 0.90 (d, J = 6.6 Hz, 6 H); ¹³C NMR (126MHz, CDCl₃) δ = 155.1 (d, J= 5.0 Hz, C_quat), 152.6 (d, J= 10.5 Hz, C_quat), 150.0 (s, C_quat), 147.0 (s, 2xC_quat), 136.5 (dd, J= 21.9, 1.5 Hz, C_quat), 130.3 (dd, J= 11.5, 2.0 Hz, C_quat), 122.2 (s, 2xCH), 118.4 (dd, J= 20.9, 6.5 Hz, C_quat), 114.9 (d, J= 2.0 Hz, CH), 110.8 (d, J= 4.0 Hz, CH), 70.6 (s, 2xCH₂), 54.7 (s, CH₃), 54.7 (s, CH₃), 37.1 (dd, J= 10.5, 5.0 Hz, 2xC_quat), 33.8 (s, CH), 32.1 (dd, J= 11.0, 2.0 Hz, 6xCH₃), 31.2 (s, 2xCH), 25.5 (s, 2xCH₂), 25.2 (s, 2xCH₃), 24.4 (2xCH₃), 23.7 (2xCH₃); ³¹P NMR (202MHz, CDCl₃) δ = 57.1 (d, J(³¹P-¹⁰⁹Ag) = 789.8 Hz), J(³¹P-¹⁰⁷Ag) = 683.4 Hz); HRMS (ESI) m/z calc for C₃₃H₅₂AgNO₂P [(M-SbF₆)+] 632.2787, found 632.2784.
General procedure I - Synthesis of Cu(I) catalysts

In a typical reaction, a flame-dried Schlenck flask (50 mL) was charged with Cu(CH$_3$CN)$_4$[X] (0.318 mmol) in DCM (2 mL) and the mixture was stirred under Ar at r.t. The desired phosphane ligand (0.318 mmol) was added, the mixture was stirred for 30 min, and then the solvent was evaporated to yield the corresponding copper(I) complex as a white solid. Crystals were obtained by slow evaporation (hexane/DCM, 10:1 v/v). (X= BF$_4$ or SbF$_6$)

![Chemical structure of [L$_2$aCuMeCN]BF$_4$]

[L$_2$aCuMeCN]BF$_4$

Prepared according to literature procedure and exhibited spectral data in accordance with previous report.64

![Chemical structure of [L$_2$aCuMeCN]SbF$_6$]

[L$_2$aCuMeCN]SbF$_6$

Prepared according to general procedure I as a white powder.

1H NMR (400MHz, CDCl$_3$) δ = 7.31 (s, 2 H), 3.00 (spt, J = 6.9 Hz, 1 H), 2.60 (s, 3 H), 2.40 (spt, J = 6.7 Hz, 2 H), 2.31 (s, 3 H), 2.28 (s, 3 H), 2.23 (s, 3 H), 1.62 (s, 1 H), 1.46 (s, 3 H), 1.38 (d, J = 15.7 Hz, 18 H), 1.33 (d, J = 7.0 Hz, 6 H), 1.29 (d, J = 6.8 Hz, 6 H), 0.90 (d, J = 6.6 Hz, 6 H). 13C NMR (101MHz, CDCl$_3$) δ = 151.0 (d, J = 2.2 Hz, C$_{quat}$), 145.5 (d, J = 2.2 Hz, 2xC$_{quat}$), 144.5 (d, J = 32.6 Hz, C$_{quat}$), 140.8 (d, J = 2.2 Hz, C$_{quat}$), 139.1 (s, C$_{quat}$), 136.9 (d, J = 5.5 Hz, C$_{quat}$), 136.1 (d, J = 9.5 Hz, C$_{quat}$), 130.0 (d, J = 21.6 Hz, C$_{quat}$), 129.8 (s, C$_{quat}$),
125.8 (d, J= 1.8 Hz, 2xCH), 119.3 (s, C quat), 37.9 (d, J= 9.5 Hz, 2xC quat), 34.1 (s, CH), 32.8 (d, J= 9.5 Hz, 6xCH3), 31.1 (s, 2xCH), 27.0 (s, CH3), 25.6 (s, 2xCH3), 25.3 (s, 2xCH3), 24.2 (s, 2xCH3), 22.1 (d, J= 3.3 Hz, CH3), 17.6 (s, CH3), 17.3 (s, CH3), 2.6 (s, CH3); 31P NMR (121MHz, CDCl3) δ = 48.7; HRMS (ESI) m/z calcd for C$_{35}$H$_{56}$CuNP [(M-SbF$_6$)$^+$] 584.3446, found 584.3434.

[L$_{3g}$CuMeCN]SbF$_6$

Prepared according to general procedure I as a white powder.

1H NMR (400MHz, CDCl$_3$) δ = 7.95 (s, 2 H), 7.77 (d, J = 10.9 Hz, 4 H), 7.31 (d, J = 9.1 Hz, 1 H), 7.24 (s, 2 H), 7.08 (dd, J = 2.9, 9.1 Hz, 1 H), 3.69 (s, 3 H), 3.49 (s, 3 H), 3.00 (spt, J = 6.9 Hz, 1 H), 2.35 (spt, J = 6.7 Hz, 2 H), 2.13 (s, 3 H), 1.33 (s, 3 H), 1.31 (s, 3 H), 0.99 (d, J = 7.2 Hz, 6 H), 0.96 (d, J = 6.9 Hz, 6 H); 13C NMR (101MHz, CDCl$_3$) δ = 155.1 (d, J= 2.2 Hz, C quat), 152.8 (d, J= 13.2 Hz, C quat), 150.4 (s, C quat), 145.4 (d, J= 1.5 Hz, 2xC quat), 136.6 (d, J= 29.3 Hz, C quat), 133.1 (d, J= 36.7 Hz, 2xC quat), 133.0 (dd, J= 16.9, 2.2 Hz, 4xCH), 132.2 (qd, J= 33.7, 10.3 Hz, 4xC quat), 128.8 (d, J= 12.5 Hz, C quat), 124.2 (m, 2xCH), 123.4 (s, 2xCH), 122.9 (q, J= 273.3 Hz, 4xC quat), 118.1 (s, C quat), 117.4 (d, J= 1.5 Hz, CH), 114.8 (d, J= 44.0 Hz, C quat), 112.4 (d, J= 4.0 Hz, CH), 55.4 (s, CH3), 55.1 (s, CH3), 34.3 (s, CH), 31.6 (s, 2xCH), 24.7 (s, 2xCH3), 23.8 (s, 2xCH3), 22.8 (s, 2xCH3), 2.0 (s, CH3); 31P NMR (121MHz ,CDCl$_3$) δ = -11.5; 19F NMR (377MHz, CDCl$_3$) δ = -63.1; HRMS (ESI) m/z calcd for C$_{41}$H$_{40}$CuF$_{12}$NO$_2$P [(M-SbF$_6$)$^+$] 900.1901, found 900.1905.
Glossary of Abbreviations

Ac acetate
Ad Adamantyl
BArF tetrakis[3,5-bis(trifluoromethyl)phenyl] borate
Bn benzyl
Bu butyl
BuLi n-butyllithium
Cy Cyclohexyl
DCE dichloroethane
DCM dichloromethane
DMS dimethylsulfide
DMSO dimethylsulfoxide
Ea activation energy
EDG electron donating group
equiv equivalents
Et ethyl
EWG electron withdrawing group
DG Gibbs free energy
GC gas chromatography
GC/MS gas chromatography coupled to mass spectrometry
HMPA hexamethylphosphoramide
HMQC heteronuclear multiple quantum coherence
HPLC high-performance liquid chromatography
HRMS high resolution mass spectrum
L ligand
LA Lewis Acid
M metal
Me methyl
Mes Mesityl
NHC N-heterocyclic carbene
NMR nuclear magnetic resonance
OTf trifluoromethylsulfonate
P phosphine ligand
Ph phenyl
ppm parts per million
quant. quantitative yield (i.e. >98%)
RLS rate limiting step
r.t. room temperature
t-Bu tert-butyl
TBS tert-butyldimethyl silyl
t-BuLi tert butyllithium
TBS Tert-butyldimethylsilyl
THF tetrahydrofuran
TIPS triisopropylsilyl
TIPSOTf triisopropylsilyl trifluoromethylsulfonate
TLC thin layer chromatography
TMS trimethylsilyl
TS transition state
UV Ultraviolet
v/v volume/volume
References

7 See Ref. 6 for a discussion on this subject as well as the following works that motivated this assumption: a) Wegner, G. Polymer Letters 1971, 9, 133. b) Baughman, R. H. J. Appl. Phys. 1972, 43, 4362.

Schwerdtfeger, P. Heteroatom Chemistry 2002, 13, 578.

References

35 For a review of the experiments that supported carbene-like behaviour, see ref. 23.

57 Structure of the holey ligand used:

63 stradioto
References

72 Bertrand, G.; Guisado-Barrios, G; Bouffard, J.; Donnadieu, B. Crystalline 1H-1,2,3-triazole-5-ylidenes International Patent. C07D249/06; C07F15/00, November 10, 2011.

