The self regulation of exercise performance in the heat

Nicholas Ravanelli, Matthew N. Cramer, and Ollie Jay
Thermal Ergonomics Laboratory, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, ON, CANADA

INTRODUCTION:
Self-paced exercise intensity is thought to be regulated in anticipation of homeostatic catastrophe through the feedforward calculation of heat storage rate (HSR). However, estimations of mean body temperature (T_{body}) using a weighted average of rectal (T_{re}) and mean skin (T_{sk}) produces erroneous HSR. Since esophageal temperature (T_{es}) is a more sensitive index of core temperature, its inclusion in an estimate T_{body} may better reflect changes in HSR.

Purpose: To compare estimates of HSR using a two-compartment thermometry model (CTM) with two different core temperatures and weighting coefficients in thermoneutral (TN) and hot (HOT) conditions.

METHODS:
Participants: five males (23.4±3.82 y, 73.68±7.27 kg, BSA 1.9 ±0.1 m2) cycled at a fixed RPE on cycle ergometer until power output declined to 70% of the initial 3-min average.

Conditions: The ambient conditions were TN (25.2±0.7°C; RH 31.0±4.0%) and HOT (35.1±0.8°C; RH 23.7±4.7%).

Instrumentation: Esophageal, rectal and skin (7 sites) temperatures were measured continuously. Indirect calorimetry was measured continuously to determine metabolic heat production.

Rate of Heat Storage: calculated using partitional calorimetry (HSR$_c$) and from four CTM equations with typical weighted coefficients using thermometry (HSR$_t$).

CONCLUSIONS:
1) CTM are poor indicators of HSR with significant underestimation of HSR during TN which has been shown in previous studies
2) Theses results question the validity of a feedforward mechanism of exercise intensity regulation to prevent homeostatic catastrophe

ACKNOWLEDGEMENTS:
NSERC Discovery Grant (O. Jay)

RESULTS:
Despite no difference in HSR$_c$ between HOT and TN in the first 5 min of exercise (Figure 2), power output was significantly lower in HOT vs TN by 15 min (p<0.01). In TN, estimates of HSR, using core/shell weighting, but not T_{es} alone, showed negative HSR values between 0-3 min (Figure 3A,B, C). In contrast, HSR using T_{es} for CTM (Figure 3B,D) show higher HSR from 3-6 min of exercise. A significant difference was observed in HSR for T_{body} calculations with core defined by T_{re} (Figure 3A,C) compared to core defined by T_{es} (Figure 3B,D) during 3-4 min of exercise in HOT (p<0.05) and 3-6 min for TN (p<0.05).

Figure 1. The Borg RPE scale

Figure 2. Average rate of heat storage (kJ/min) during initial 5 minutes of exercise for TN and HOT

Figure 3. Estimates of heat storage rate using T_{body} calculations with weighted coefficients of A) 0.79*T$_{re}$+ 0.21*T$_{sk}$ B) 0.9*T$_{es}$+ 0.1*T$_{sk}$ C) 0.9*T$_{es}$+ 0.1*T$_{sk}$ D) T$_{es}$ x = p < 0.05 for HOT; ǂ = p < 0.05 for TN.