Many time series of practical interest show strong dependence (or long memory). This phenomenon appears visually as fractal behaviour and is connected to heavy tails of a distribution of the series. This aspect occurs for example in computer networks. It is empirically observed that network data follow fractal behaviour.

What is the goal?

The goal of this project is to describe statistical behaviour of network traffic models and estimate relevant parameters such as the memory parameter.

Results

We analysed a simulated network traffic model. We computed the estimator of the memory parameter for that simulated traffic model. The results indicate a good performance of the R/S estimator. Our simulations studies motivate further research on theoretical properties of the estimator and its precise relation to the optimal capacity of the network.

Few definitions:

- **Long memory**: A time series is said to have a long memory if values from the distant past still have an effect on present values.
- **Fractal behaviour**: It is a type of pattern used in technical analysis to predict a reversal in the current trend.
- **Computer network**: It can be defined as a group of computers and other devices connected in some ways in order to exchange data. It usually consists of many sources.
- **Heavy-tailed distribution**: It is a distribution that assigns relatively high probabilities to regions far from the mean or the median.
- **Long-range dependency**: It is a notion that can be defined as a slow decay of correlations. It is a phenomenon that may arise in the analysis of time series data.

RESOURCES

Statistical analysis of non-standard time series models

Model description

Traffic Process from one source:

\[
W(t) = \sum_{j \geq 1} (t_j \leq t \leq t_j + X_j), \quad t \in [0, \infty)
\]

X_j random variables = duration times of each transmission

T_j points from Poisson Process = beginning of a transmission

Assumption 1:

Duration follow heavy-tailed distribution:

\[
P(X > x) \sim const \cdot x^{- \alpha}, \quad \alpha \in (1,2)
\]

The parameter \(\alpha\) is related to the size

Assumption 2:

Sequences \(T_j\) and \(X_j\) are independent form each other.

Central limit theorem not valid anymore for the long memory traffic models

Rescaled Range method

\[
\hat{d}_{R/S} = \frac{\log(R_n/S_n)}{\log n} - \frac{1}{2}
\]

is the R/S estimator of the memory parameter \(d\) which is needed to construct a network in an optimal way. Intuitively, the bigger \(d\) is, the bigger the capacity of the network will be.

Estimation of the memory parameter:

\(d+1/2\) can be interpreted as the slope of a regression line of \(\log(R_n/S_n)\) against \(\log n\).

Traffic models that exhibit long memory

Few definitions:

- **Long memory**: A time series is said to have a long memory if values from the distant past still have an effect on present values.
- **Fractal behaviour**: It is a type of pattern used in technical analysis to predict a reversal in the current trend.
- **Computer network**: It can be defined as a group of computers and other devices connected in some ways in order to exchange data. It usually consists of many sources.
- **Heavy-tailed distribution**: It is a distribution that assigns relatively high probabilities to regions far from the mean or the median.
- **Long-range dependency**: It is a notion that can be defined as a slow decay of correlations. It is a phenomenon that may arise in the analysis of time series data.

RESULTS

We analysed a simulated network traffic model. We computed the estimator of the memory parameter for that simulated traffic model. The results indicate a good performance of the R/S estimator. Our simulations studies motivate further research on theoretical properties of the estimator and its precise relation to the optimal capacity of the network.

We also simulated a traffic model from \(M = 100\) sources. We chose \(\alpha = 1.3\). The simulated model is displayed on figure 1. The result of the regression procedure is shown on figure 2. The estimated parameter \(d\) is \(d = 0.350714\), whereas the formula \(d = 1 - \alpha/2\) gives 0.35. Hence, our estimation is very accurate.

Technical details:

- **Traffic Process from one source:**

\[
W(t) = \sum_{j \geq 1} (t_j \leq t \leq t_j + X_j), \quad t \in [0, \infty)
\]

\(W(t)\) is the total transmission from the beginning of the time series to the time \(t\).

\(X_j\) are the duration times of each transmission.

Rescaled Range method

\[
\hat{d}_{R/S} = \frac{\log(R_n/S_n)}{\log n} - \frac{1}{2}
\]

is the R/S estimator of the memory parameter \(d\) which is needed to construct a network in an optimal way. Intuitively, the bigger \(d\) is, the bigger the capacity of the network will be.

Estimation of the memory parameter:

\(d+1/2\) can be interpreted as the slope of a regression line of \(\log(R_n/S_n)\) against \(\log n\).

Traffic models that exhibit long memory

Few definitions:

- **Long memory**: A time series is said to have a long memory if values from the distant past still have an effect on present values.
- **Fractal behaviour**: It is a type of pattern used in technical analysis to predict a reversal in the current trend.
- **Computer network**: It can be defined as a group of computers and other devices connected in some ways in order to exchange data. It usually consists of many sources.
- **Heavy-tailed distribution**: It is a distribution that assigns relatively high probabilities to regions far from the mean or the median.
- **Long-range dependency**: It is a notion that can be defined as a slow decay of correlations. It is a phenomenon that may arise in the analysis of time series data.

RESULTS

We analysed a simulated network traffic model. We computed the estimator of the memory parameter for that simulated traffic model. The results indicate a good performance of the R/S estimator. Our simulations studies motivate further research on theoretical properties of the estimator and its precise relation to the optimal capacity of the network.

We also simulated a traffic model from \(M = 100\) sources. We chose \(\alpha = 1.3\). The simulated model is displayed on figure 1. The result of the regression procedure is shown on figure 2. The estimated parameter \(d\) is \(d = 0.350714\), whereas the formula \(d = 1 - \alpha/2\) gives 0.35. Hence, our estimation is very accurate.

Technical details:

- **Traffic Process from one source:**

\[
W(t) = \sum_{j \geq 1} (t_j \leq t \leq t_j + X_j), \quad t \in [0, \infty)
\]

\(W(t)\) is the total transmission from the beginning of the time series to the time \(t\).

\(X_j\) are the duration times of each transmission.

Rescaled Range method

\[
\hat{d}_{R/S} = \frac{\log(R_n/S_n)}{\log n} - \frac{1}{2}
\]

is the R/S estimator of the memory parameter \(d\) which is needed to construct a network in an optimal way. Intuitively, the bigger \(d\) is, the bigger the capacity of the network will be.

Estimation of the memory parameter:

\(d+1/2\) can be interpreted as the slope of a regression line of \(\log(R_n/S_n)\) against \(\log n\).

Traffic models that exhibit long memory

Few definitions:

- **Long memory**: A time series is said to have a long memory if values from the distant past still have an effect on present values.
- **Fractal behaviour**: It is a type of pattern used in technical analysis to predict a reversal in the current trend.
- **Computer network**: It can be defined as a group of computers and other devices connected in some ways in order to exchange data. It usually consists of many sources.
- **Heavy-tailed distribution**: It is a distribution that assigns relatively high probabilities to regions far from the mean or the median.
- **Long-range dependency**: It is a notion that can be defined as a slow decay of correlations. It is a phenomenon that may arise in the analysis of time series data.

RESULTS

We analysed a simulated network traffic model. We computed the estimator of the memory parameter for that simulated traffic model. The results indicate a good performance of the R/S estimator. Our simulations studies motivate further research on theoretical properties of the estimator and its precise relation to the optimal capacity of the network.

We also simulated a traffic model from \(M = 100\) sources. We chose \(\alpha = 1.3\). The simulated model is displayed on figure 1. The result of the regression procedure is shown on figure 2. The estimated parameter \(d\) is \(d = 0.350714\), whereas the formula \(d = 1 - \alpha/2\) gives 0.35. Hence, our estimation is very accurate.