HYBRID COMPUTER SOLUTION OF THE SAINT VENANT EQUATIONS

by

Martin Oosterveld

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Civil Engineering
School of Graduate Studies
University of Ottawa

© Martin Oosterveld, Ottawa, Canada, 1974.
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
A great variety of engineering problems are associated with unsteady nonuniform flow in rivers. A general approach to these problems involves the derivation of partial differential equations representing the process. The equations governing the process are the St. Venant equations. A continuous-space-discrete-time method of lines solution of the St. Venant equations is utilized in the study. The resulting ordinary differential equations are then solved on a hybrid computer.

Based on a comparison between mathematical model predictions and prototype observations it is concluded that the model is a good representation of the process. Its use for steady nonuniform flow is clearly established and the use for unsteady nonuniform flow is discussed.

The hybrid computer provides an ideal environment for interactive modelling and has speed of solution advantages over digital solutions. Such advantages can result in significant economic savings when a number of simulation experiments are carried out.
ACKNOWLEDGEMENTS

The author wishes to acknowledge the supervisor of this research work, Dr. K. Adamowski, for his personal encouragement throughout the program and for his valuable comments in the preparation of the thesis. Furthermore, the author is grateful to the members of the advisory committee for their guidance in this research program. The comments of Drs. R. G. Warnock, E. E. Shannon, and I. H. Mufti and detailed suggestions by Dr. D. W. Lawson significantly improved the quality of the final draft of the thesis.

Most of the research work was carried out at the Analysis Laboratory, National Research Council, and their contribution of computer time and advice is greatly appreciated. In particular the contributions of Dr. I. H. Mufti to the theoretical portions and those of Dr. R. E. Gagne to the computer implementation were invaluable.

The work of the Hydraulics Laboratory, National Research Council, in the supplying of data for the model application is gratefully acknowledged.

Finally, the author wishes to thank his wife, Bernice, and daughters Valerie and Janine for their personal sacrifices and understanding during the preparation of this thesis.
Financial assistance for the program was supplied by the Government of Ontario through the Ontario Graduate Fellowship program and University Affairs Research Grant and by grants from the National Research Council, Ottawa.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>NOTATIONS</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>THE SAINT VENANT EQUATIONS OF OPEN CHANNEL FLOW</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>The point forms of the equations of continuity, energy and momentum</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The general macroscopic forms</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>One dimensional flow equation</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Momentum and energy losses</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>THEORETICAL DEVELOPMENTS</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>One dimensional equations and boundary conditions</td>
<td>19</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Characteristics of hyperbolic equations</td>
<td>21</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Initial and boundary conditions</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Solution by the method of lines</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Boundary condition approximations</td>
<td>33</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>MODEL DEVELOPMENT</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Hybrid computer solution</td>
<td>35</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.3 Verifying the model for steady state conditions</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>6.4 Results of simulation experiments, steady flow</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>6.4.1 Height boundary conditions</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>6.4.2 Sensitivity of the model to the Chezy coefficient</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>6.5 Unsteady flow simulation</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>6.5.1 Changing downstream control</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>6.5.2 Flood routing</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>7.1 Conclusions</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>7.2 Recommendations for further research</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>APPENDIX I ANALOG DATA RECONSTRUCTION</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>APPENDIX II CHANNEL CROSS SECTIONS</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>APPENDIX III LISTING OF THE FORTRAN PROGRAM</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>One Dimensional Channel</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Characteristic of Hyperbolic Equations</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Channel Shapes and their A/T Ratio</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>General Program Flow</td>
<td>38</td>
</tr>
<tr>
<td>4.1.a</td>
<td>Integration Loop</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Data Reconstruction Circuit</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>General Arrangement of Forward Integration Circuit</td>
<td>45</td>
</tr>
<tr>
<td>4.3.a</td>
<td>Summary of Forcing Terms</td>
<td>46</td>
</tr>
<tr>
<td>4.3.a.1</td>
<td>Detailed Circuit of D_\parallel</td>
<td>46</td>
</tr>
<tr>
<td>4.3.a.2</td>
<td>Detailed Circuit of S_f</td>
<td>47</td>
</tr>
<tr>
<td>4.3.a.3</td>
<td>Detailed Circuit of Forcing due to Expanding or Contracting Channel</td>
<td>47</td>
</tr>
<tr>
<td>5.1</td>
<td>Plan View of Laboratory Channel of St. Lawrence River</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>The Parabolic Channel</td>
<td>52</td>
</tr>
<tr>
<td>5.3</td>
<td>Analog Representation of Geometry</td>
<td>53</td>
</tr>
<tr>
<td>5.4</td>
<td>Steady State Tests on Prototype</td>
<td>55</td>
</tr>
<tr>
<td>6.1</td>
<td>Sectional Side View of Channel</td>
<td>63</td>
</tr>
<tr>
<td>6.2</td>
<td>Spectrum of Channel Bottom Space Series</td>
<td>65</td>
</tr>
<tr>
<td>6.3</td>
<td>Chezy Coefficient - Depth Relationship at Station 19</td>
<td>68</td>
</tr>
<tr>
<td>6.4</td>
<td>Slope C as a Function of Distance</td>
<td>70</td>
</tr>
</tbody>
</table>
Figure | Description | Page |
-------|---|------|
6.5 | Calibration (Test #5) | 71 |
6.6 | Mathematical Model Output for Steady State Conditions | 72 |
6.7 | Model Test Runs 1 and 2 | 74 |
6.8 | Model Test Runs 3 and 4 | 75 |
6.9 | Water Level Predictions Based on Boundary Conditions in Height Only | 77 |
6.10 | Velocity Predictions at x = 0 Based on Boundary Conditions in Height Only | 77 |
6.11 | Sensitivity of Water Level to Changes in Chezy C | 79 |
6.12 | Effect of Changing Downstream Control | 81 |
6.13 | Time Profile of Water Level with a Change in Downstream Control | 82 |
6.14 | Flood Routing | 84 |
NOTATIONS

a 2x2 matrix
A cross section area
b vector with components b₁ and b₂
C Chezy coefficient
Cₚ coefficient embodying effects of nonuniformity, unsteadiness and viscosity
Cₜ turbulence correction
Cₚwp coefficient relating wetted perimeter to water level
Dₜ losses due to lateral inflow and outflow
f focal length of parabolic channel
F general continuous vector function of time and space
g acceleration due to gravity
h height above reference (channel bottom)
H water level head
k channel shape coefficient
m maximum value of the variable subscripted
n unit vector directed normal to the surface S
N total number of time steps
P mean pressure
q net lateral outflow per unit length
q₂ₜ lateral inflow
qₛ lateral outflow due to seepage and evaporation
Q discharge rate
R hydraulic radius
\[s \] primary space dimension
\[S \] surface bounding \(V \)
\[S^{-1} \] eigenvalue matrix
\[S_o \] channel bottom slope
\[S_f \] overall frictional losses
\[t \] time
\[T \] channel top width
\[u \] velocity in \(x \) direction
\[\bar{u} \] time mean velocity in the \(x \) direction
\[u' \] turbulent fluctuations about mean velocity in the \(x \) direction
\[u_L \] longitudinal velocity of lateral inflow
\[U \] vector of velocity and height
\[\hat{u} \] vector of characteristic variables
\[v \] velocity in the \(y \) direction
\[\bar{v} \] time mean velocity in the \(y \) direction
\[v' \] turbulent fluctuation about mean velocity in the \(y \) direction
\[V \] magnitude of the velocity vector
\[\Psi \] volume
\[\bar{V} \] velocity vector
\[w \] velocity in the \(z \) direction
\[\bar{w} \] time mean velocity in the \(z \) direction
\[w' \] turbulent fluctuation about the mean velocity in the \(z \) direction
\[W \] \(\frac{dW}{dx} \)
\(W_1 \) \hspace{1cm} \text{characteristic forward variable} \\
\(W_2 \) \hspace{1cm} \text{characteristic backward variable} \\
\(X \) \hspace{1cm} \text{component of exterior forces in x direction} \\
\(Y \) \hspace{1cm} \text{component of exterior forces in y direction} \\
\(Z \) \hspace{1cm} \text{component of exterior forces in z direction} \\
\(\alpha, \alpha_1 \) \hspace{1cm} \text{velocity correction coefficients} \\
\(\gamma \) \hspace{1cm} \text{specific gravity of water} \\
\(\delta_s \) \hspace{1cm} \text{incremental distance in the s direction} \\
\(\Delta t \) \hspace{1cm} \text{incremental step in time} \\
\(\varepsilon \) \hspace{1cm} \text{energy dissipation per unit area} \\
\(\eta \) \hspace{1cm} \text{general water level} \\
\(\theta \) \hspace{1cm} \text{angle of inclination of the channel bottom} \\
\(\lambda_1 \lambda_2 \) \hspace{1cm} \text{eigenvalues of the matrix } a \\
\(\rho \) \hspace{1cm} \text{density of water} \\
\(\sigma^x_1 \) \hspace{1cm} \text{deviation from mean pressure in x direction} \\
\(\sigma^y_1 \) \hspace{1cm} \text{deviation from mean pressure in y direction} \\
\(\sigma^z_1 \) \hspace{1cm} \text{deviation from mean pressure in z direction} \\
\(\tau_{ij} \) \hspace{1cm} \text{tangential stresses where } i \text{ is the direction normal to the plane of action and } j \text{ is the direction of the action} \\
\(\tau_o \) \hspace{1cm} \text{average boundary shear stress} \\
\(\bar{\omega} \) \hspace{1cm} \text{velocity vector of the surface } S
CHAPTER 1

INTRODUCTION

A number of empirically based techniques have been developed by hydrologists for the analysis of flood waves, (Dooge, 1972; Chow, 1959). Because of their empirical nature, problems arise in comparing the performance of alternate models for the same process (Kisiel, 1972). Therefore, there is a need for research effort in developing more advanced and general models (Dooge, 1972).

A general approach to the above problem involves the direct analysis of the partial differential equations governing the flow process (Henderson, 1966; Freeze, 1969). This approach will be pursued in this study since it has the potential of solving all unsteady, nonuniform flow problems in open channels rather than a small number of problems that fit a specialized, often idealized category.

The study of unsteady flow problems is usually undertaken by utilizing a mathematical model of the process and prototype (scaled replicas of the prototype are of use for special applications). The analyst utilizing a computer for the analysis must select the type of computer, that is digital, analog or hybrid, which is best suited to the given circumstances. In light of the modelling objectives, very careful considerations of the advantages and disadvantages of a particular computer must be made.
Analog computers utilize currents and voltages that vary continuously as the problem variables. A direct analogy of an ordinary differential equation can be constructed on the analog. The most important advantages of analog computation are the speed of the solution and the interactivity of the user. All components of a circuit act simultaneously and the solution appears as soon as the input is applied. The solution is available at many locations in the circuit allowing for the display or output of particular sub-circuits, and by analogy, the behaviour of prototype components. The value of analog computation in hydrology is recognized by its relatively widespread use (IASH Symposium, 1968; Riley et al, 1966).

Digital computers on the other hand have the advantages (Katell, 1969) of being able to store large volumes of data and retrieve these very quickly, and being able to compute algebraic expressions very precisely. The digital computer must, however, do all operations sequentially as opposed to the parallel operation of the analog.

Finally, the hybrid computer consists of both an analog and digital computer. The strength of the hybrid computer lies in solutions beyond the speed and economic scope of third generation digital machines, and in extending the accuracy of analog machines (Katell, 1969). Katell cites a particular application comparing an all digital with a hybrid simulation by the Central Electricity Generating
Board of Great Britain. As well as important fidelity advantages, a time saving of 200 to 1 was achieved on the hybrid computer as compared to the digital solution. The significance of time saving translated into economic terms could result in reducing the costs of computing time of a large simulation problem from, say 100 dollars per solution on an IBM 360/75 to less than 50 cents per solution on the hybrid. This could have an enormous impact on computer simulation studies in engineering.

In addition to the speed of solution and associated economic savings, the hybrid computer maintains the high degree of man-to-problem interfacing characteristic of the analog computer. The user of the hybrid is often physically surrounded by the computer and can investigate the response of his model by displaying the output of model components on scopes, plotters, or voltmeters. He can also take action to stop an erroneous solution from wasting computing time by observing intermediate output.

Thus the solution of complex problems on the hybrid computer, as opposed to a straight digital or straight analog, has proven tremendously rewarding in a number of applications in terms of time and economic savings. It is expected that similar advantages may result from the use of the hybrid for the solution of the unsteady flow equations (Vermuri, 1973; Chubb, 1970); hence it was selected as the most appropriate tool for this study.
The flow in natural rivers is a three-dimensional, time varying phenomena; however, the computer modelling of large scale, long duration events makes simplification of the process description mandatory. A one-dimensional approximation of the three-dimensional process is utilized. These one-dimensional equations are somewhat deficient in describing the results of irregularities in geometry observed in natural river channels and some smoothing of the observed geometry is required. As well the factors involved in the dissipation of energy and momentum are not precisely predictable from existing knowledge and some experimental adjustment of calibration is necessary to make the model predictions compare favourably with observations.

The one-dimensional partial differential equations must be changed to ordinary differential equations, which can then be solved on the analog computer. This requires a numerical approximation, which to date has not been documented in the literature. The continuous-space-discrete-time method of lines is thus developed for the St. Venant equations and the resulting ordinary differential equations form the basis for the hybrid computer solution.

The hybrid computer model is calibrated using observations from the St. Lawrence River hydraulic model located in the Hydraulics Laboratory, National Research Council. Once calibrated the computer model is then used to predict water levels under a variety of conditions which could arise in engineering problems.
1.1 Objectives

The objectives of this study are to:

1. construct a hybrid computer representation of the St. Venant equations,

2. experimentally determine the applicability of this one-dimensional simplification of a three-dimensional process,

3. provide guidelines for the use of these equations in engineering practice.
CHAPTER 2

THE SAINT VENANT EQUATIONS OF OPEN CHANNEL FLOW

The governing equations of open channel flow can be derived from the three basic principles of mass conservation, and momentum and energy flux and dissipation. The development simply involves the averaging of the point forms of these basic principles over the desired channel configuration and expressing the stress terms in a form amenable to evaluation.

2.1 The point forms of equations of continuity, energy and momentum

The continuity equation may be derived by considering the mass flux through a differential control volume. The resulting equations are derived (Whitaker, 1968) for a continuous incompressible conservative fluid to be

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \]

2.1

where \(u, v \) and \(w \) represent velocities in the \(x, y \) and \(z \) directions respectively. The velocities are assumed averaged over a sufficiently large time as to allow passage of a statistically significant number of eddies past a point in space but not so large as to damp out gradual time variations of the flow (Strelkoff, 1969).
The point forms of the energy and momentum equations are derived by summing the forces acting on a fluid element in each of the component directions (Rouse, 1959), that is,

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = X - \frac{1}{\rho} \frac{\partial P}{\partial x} \left(\frac{\partial \sigma'_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right) \tag{2.2.a}
\]

\[
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = Y - \frac{1}{\rho} \frac{\partial P}{\partial y} \left(\frac{\partial \sigma'_y}{\partial y} + \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} \right) \tag{2.2.b}
\]

\[
\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = Z - \frac{1}{\rho} \frac{\partial P}{\partial z} \left(\frac{\partial \sigma'_z}{\partial z} + \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} \right) \tag{2.2.c}
\]

where \(X\), \(Y\), and \(Z\) are the components of exterior forces on the element

\(P\) and \(\sigma'_x\), \(\sigma'_y\) and \(\sigma'_z\) are the mean pressure and deviations from this mean in the \(x\), \(y\) and \(z\) directions, and \(\tau_{ij}\) are the tangential stresses where \(i\) indicates the direction normal to the plane of action and \(j\) the direction of action.

If each of the terms in equation 2.2 are multiplied by the fluid density the equation takes on the form of momentum change per unit volume per unit time. If the only exterior terms are assumed to be those due to gravity and \(h\) is defined as the height above a horizontal reference then the momentum equations are

\[
\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} + \rho w \frac{\partial u}{\partial z} = - \frac{\partial (P + \rho gh)}{\partial x} + \frac{\partial \sigma'_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \tag{2.3.a}
\]

\[
\rho \frac{\partial v}{\partial t} + \rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} + \rho w \frac{\partial v}{\partial z} = - \frac{\partial (P + \rho gh)}{\partial y} + \frac{\partial \sigma'_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} \tag{2.3.b}
\]

\[
\rho \frac{\partial w}{\partial t} + \rho u \frac{\partial w}{\partial x} + \rho v \frac{\partial w}{\partial y} + \rho w \frac{\partial w}{\partial z} = - \frac{\partial (P + \rho gh)}{\partial z} + \frac{\partial \sigma'_z}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} \tag{2.3.c}
\]
The energy equation is derived by multiplying Eqn. 2.2 by the density and corresponding components of velocity. Adding all components of the equation and denoting $u^2 + v^2 + w^2$ by V^2 (magnitude of the velocity vector) the energy equation becomes (Rouse, 1959)

$$\frac{\partial}{\partial t} \frac{\partial V^2}{\partial t} + \frac{\partial}{\partial x} u \frac{\partial V^2}{\partial x} + \frac{\partial}{\partial y} v \frac{\partial V^2}{\partial y} + \frac{\partial}{\partial z} w \frac{\partial V^2}{\partial z} =$$

$$- u \frac{\partial (P + \rho gh)}{\partial x} - v \frac{\partial (P + \rho gh)}{\partial y} - w \frac{\partial (P + \rho gh)}{\partial z} + u \left(\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right)$$

$$+ v \left(\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{zy}}{\partial z} \right) + w \left(\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} \right)$$ \hspace{1cm} 2.4

2.2 The general macroscopic forms

Equations 2.1, 2.3 and 2.4 must now be averaged over some volume in space. Two general theorems are applied to convert the equations to a more tractable form. The first is the divergence theorem converting volume integrals to surface integrals. It may be stated as (Strelkoff, 1969)

$$\int_\Psi \text{div} \, F \, d\Psi = \int_S \bar{F} \cdot \bar{n} \, dS$$ \hspace{1cm} 2.5

where $\text{div} \, F$ is the divergence of any continuous vector function of space and time, S is the surface bounding Ψ, and \bar{n} is the unit vector directed outward normal to S.

The second theorem involves a general equation for the time derivative of a volume integral and is called the general transport theorem. The transport of any continuous scalar function (such as density or volume) f may be written as (Whitaker, 1968)

\[\text{div} \, F \, d\Psi = \int_S \bar{F} \cdot \bar{n} \, dS \]
\[
\frac{\partial f}{\partial t} dV = - \int f \frac{dV}{dt} - \int f \bar{\omega} \cdot n dS
\]

where \(\bar{\omega} \) is the local velocity of the surface.

By making use of the divergence theorem and then the general transport theorem the continuity equation is converted to

\[
\int_S (\bar{V} - \bar{\omega}) \cdot n dS + \frac{dV}{dt} = 0
\]

where \(\bar{V} \) is the velocity vector, and \(\bar{\omega} \) the vector of motion of the volume \(\psi \).

Similarly the macroscopic form of the momentum equation is derived by integrating over a volume. The volume integrals are converted to surface integrals in the momentum flux terms and part of the stress term. The general transport theorem is used to rewrite the time derivatives yielding

\[
\frac{d}{dt} \int_\psi \rho \ u \ d\psi + \int_\psi \rho \ u (\bar{V} - \bar{\omega}) \cdot n dS =
\]

\[
- \int_\psi \frac{\partial}{\partial x} (P + \rho gh + \sigma') d\psi + \int_\psi (\tau_{yx} \frac{\partial y}{\partial n} + \tau_{zx} \frac{\partial z}{\partial n}) dS
\]

for the x direction component. The y and z directional components are obtained by replacing \(u \) by \(v \) and \(w \) and the partial derivatives and stresses to the appropriate directions.

Similarly the macroscopic form of the energy equation is obtained by applying the general transport theorem to the first term and the divergence theorem to the energy flux term, the \(P + \rho gh \) terms and part of the stress term to yield
\[
\frac{\partial}{\partial t} \int V^2 \, dV + \frac{\partial}{\partial S} \left(\int (V - \omega) \cdot \mathbf{n} \, dS \right) = \\
- \int (P + \rho gh) \, V \cdot \mathbf{n} \, dS + \int \left[u \left(\frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} \right) + v \left(\frac{\partial x}{\partial x} + \frac{\partial z}{\partial z} \right) \right] \, dS - \int \left(\sigma \frac{\partial u}{\partial x} + \tau \frac{\partial u}{\partial y} + \tau \frac{\partial u}{\partial z} + \frac{\partial v}{\partial x} \right) \, dV
\]

Equations 2.7, 2.8 and 2.9 apply to any moving deforming volume and hence most applications in hydraulics and hydrodynamics can be derived from these forms. The special application of interest here is the application of these equations to a natural river channel of general form and alignment. For most problems of practical interest in hydrology, one dimensional equations are used (Eagleson, 1970).

2.3 One dimensional flow equation

Firstly, one dimensionality is defined as conditions where the mean components of velocity are zero except in the primary space dimension S. Turbulent fluctuations are present in all coordinate directions. The channel of interest is sketched in Fig. 2.1, where \(V \) is chosen as a slice across the flow of incremental thickness \(\delta_s \) and \(A \) is taken as the area at the midsection normal to the channel bottom and with its top always coincident with the fluctuating
a) Top View

b) Side Sectional View

c) Cross-sectional View

Fig. 2.1 One Dimensional Channel (Strelkoff, 1969)
water surface. The integration is carried out under conditions of lateral outflow at the rate of \(q \) per unit length of \(s \).

The continuity equation is derived by breaking the total surface into three regions; areas of entrances and exits through which fluid may enter or leave the system, area of solid moving surfaces and, area of solid fixed surfaces. On the solid moving surfaces \(\overline{V} - \overline{w} = 0 \) and on the solid fixed surfaces \(\overline{V} = \overline{w} = 0 \). Denoting discharge by \(Q \), then \((\overline{V} - \overline{w}) \cdot \overline{n} \, dS = dQ \). Furthermore, \(\frac{d\overline{V}}{dt} \) may be written as \(\frac{dA}{s \, dt} \). Applying 2.7 with the above assumptions yields

\[
\delta \frac{dA}{s \, dt} + \delta Q + q \delta s = 0 \tag{2.10}
\]

or letting \(\delta s \to 0 \) results in

\[
\frac{\delta A}{\delta t} + \frac{\delta Q}{\delta s} + q = 0 \tag{2.11}
\]

Application of the momentum and energy equations to the particular channel involves a closer analysis of the \(y \) and \(z \) portions of 2.8 and 2.9. Assuming all terms with velocity components in \(y \) and \(z \) can be neglected and that the atmospheric pressure is zero allows the writing of a pressure equation in the form

\[
P(s,y,x,t) = \rho g(\eta(s,t)-y) \cos \theta(\delta) + C_t^*(s,y,z,t)+C_p(s,y,z,t) \tag{2.12}
\]

where \(\theta \) is the angle of inclination of the channel bottom, \(C_t^* \) embodies all turbulence correction factors, and \(C_p \) embodies effects of nonuniformity, unsteadiness and viscosity.
At high Reynolds numbers (Streeter, 1966) usually encountered in open channel flow the turbulence effects are much larger than viscous effects. Furthermore, the expression for C^*_t can be simplified to (Strelkoff, 1969)

$$C^*_t(y) = -\frac{p v'v'(y)}{2.13}$$

where v' is the turbulent fluctuation about the mean velocity v, and $v'v'$ is the average cross-product. Inherent in equation 2.13 are the assumptions that $pw'w' = pv'v'$, and that derivatives of $pv'w'$ are negligible.

The most important contributions of C_p usually stem from streamline curvatures in the xy and yz planes.

Applying equations 2.8 and 2.9 to the one-dimensional channel in Fig. 2.1 yields (Strelkoff, 1969; Keulegan, 1943)

$$\frac{1}{g} \frac{\partial u}{\partial t} + \frac{\partial}{\partial s} \left[\beta \frac{u^2}{2g} + \eta \cos \theta + h_o \right] + \frac{\tau_o}{\gamma R} = -\frac{u^2}{2g} \frac{\partial \beta}{\partial s} - \frac{1}{\gamma \rho g}$$

$$\int_A \frac{\partial^2 p}{\partial s^2} dA + \frac{1}{\gamma \rho g} \int_A \frac{\partial C_t}{\partial s} dA - \frac{1}{\gamma \rho g} \left\{ \beta u \frac{\partial Q}{\partial s} + u \frac{\partial A}{\partial t} + u L q \right\} = 2.14$$

and

$$\frac{\alpha_1}{g} \frac{\partial u}{\partial t} + \frac{\partial}{\partial s} \left[\alpha \frac{u^2}{2g} + \eta \cos \theta + h_o \right] + \frac{1}{Q \gamma} \int \epsilon dA = -\frac{u}{2g} \frac{\partial \alpha_1}{\partial t} - \frac{1}{\gamma} \frac{\partial C_p}{\partial s} + \frac{1}{\gamma} \frac{\partial C_t}{\partial s} - \frac{1}{Q} \left\{ H \frac{\partial Q}{\partial s} + H_1 \frac{\partial A}{\partial t} + H_2 q \right\} = 2.15$$

where $C^*_t = \tau_{xx} - C^*_t$ is the total nondissipative contribution of fluid turbulence. Combining equation 2.13 with the assumption that viscous effects are small yields

$$C_t = -\frac{p u'v'}{2.16}$$
As is evidenced in both equations 2.14 and 2.15 it is only the gradient of C_t which enters into the equations of motion rather than the magnitude itself.

The correction coefficients in equations 2.14 and 2.15 are evaluated from

$$\beta = \frac{\int u^2 dA}{Qu}$$

$$\alpha = \frac{\int v^2 dA}{Qu^2}$$

$$\alpha_1 = \frac{\int C_t dA}{Q}$$

$$C_p = \frac{\int C_p dA}{Q},$$

where $\bar{u} = Q/A$ is the discharge mean velocity.

The terms involving head in the energy equation are defined as

$$\bar{H} = \eta \cos \theta + \xi_o + \frac{C_p - C_t}{\gamma} + \frac{\alpha_1 \bar{u}^2}{2g}$$

$$H_1 = \eta \cos \theta + \xi_o + \frac{C_p - C_t}{\gamma} + \frac{\alpha_1 \bar{u}^2}{2g}$$

$$H_\ell = \eta \cos \theta + \xi_o + \frac{C_p + C^*_T - \tau_\ell \ell}{\gamma} + \frac{V_\ell^2}{2g}$$

where ℓ refers to conditions at the point of lateral inflow and $\tau_\ell \ell$ represents deformation stresses at the outflow in the direction V_ℓ and ξ_o is the vertical reference elevation.

Equations 2.11, 2.14 and 2.15 are thus the general one-dimensional flow equations. They are both exact and complete and apply to laminar or turbulent flow and unsteady,
nonuniform, spatially varied flow surmounted by an atmosphere of negligible density in a fixed bed channel of arbitrary form and alignment.

For applications to open channels in natural settings several problems arise which usually lead to a further simplification of the equations before use. Firstly, it is very difficult and costly to measure the correction coefficients. Secondly, even when measurements are taken very often a degree of randomness remains in the data which is of little interest when studying a large scale process. Thus a number of physical assumptions will be made to yield simpler equations, representing unsteady nonuniform flow.

For the case of steady uniform flow all the characteristics of the cross-section are independent of s and a relationship for the dissipation terms from the momentum and energy equations becomes

\[
-\gamma \frac{d\xi}{ds} = \frac{\tau}{R} = \frac{1}{Q} \int \varepsilon \, dA
\]

The assumption are made that \(\theta \) is small and that \(\cos \theta \approx 1 \) and that the bulk of the streamlines are oriented in the s direction and uniformly distributed across a section so that departures from hydrostatic pressure are negligible. Thus all partials of the correction coefficients with respect to s will disappear.

Two cases of lateral discharge are of interest in hydrological problems, the case of seepage of fluid through
the channel wall and the case of inflow due to overbank flow or precipitation on the channel.

For the case of channel seepage it is assumed that u, V, and C_{pl} in equations 2.14 and 2.15 all vanish since the seepage occurs at essentially zero velocity in the longitudinal direction. With the above assumptions the equations of momentum and energy for the seepage case become

$$\frac{1}{g} \frac{\partial V}{\partial t} + \frac{\partial H}{\partial s} = - \frac{\tau_0}{\gamma R} + \frac{Vq}{Ag}$$

$$\frac{1}{g} \frac{\partial V}{\partial t} + \frac{\partial H}{\partial s} = - \frac{1}{\gamma \gamma} \int \varepsilon dA + \frac{Vq}{2Ag}$$

where $H = \xi_0 + \frac{v^2}{2g}$.

For equations 2.20 and 2.21 to remain compatible, τ_0 must decrease from what it is in equation 2.19. The energy equation is the convenient one to use in this case since it is assumed that the dissipation is the same as without lateral outflow.

In the case of lateral inflow the boundary shear τ_0 increases only slightly due to increased turbulence of the flow as compared to uniform flow (Strelkoff, 1969). For this reason it is convenient to use the momentum equation for such cases in which τ_0 is independent of the process, that is

$$\frac{1}{g} \frac{\partial V}{\partial t} + \frac{\partial H}{\partial s} = - \frac{\tau_0}{\gamma R} + \frac{Vq}{Ag} \left(1 - \frac{u}{V}\right)$$

Again for the energy equation to remain compatible with equation 2.19, the dissipation must increase over that of
uniform flow. This agrees with the observed physical fact that cross flow generates increased dissipation of energy.

2.4 Momentum and energy losses

As is evident in equation 2.19 a simple relationship exists between the loss term in the energy and momentum equations for the special case of steady uniform flow. The mechanisms for the losses are quite different. In the case of the momentum equation the loss stems from the boundary stresses opposing the motion of fluid while in the case of the energy equation the loss measures the dissipation of energy that occurs throughout the fluid mass at a given section (Farell, 1966).

For this special case a simple relationship exists between head loss per unit length and boundary shear force per unit length. This relationship may be assumed to hold approximately for gradually varied unsteady flow problems (Farell, 1966; Strelkoff, 1969; Keulegan, 1943).

The relationship between wall shear and momentum dissipation is a function of relative roughness, roughness geometry and Reynolds number (Keulegan, 1943). Defining $S_f = \frac{\tau_0}{\gamma R}$ leads to several empirical or semi-empirical relationships between S_f and flow parameters.

The frequently used Chezy equation (Daily and Harleman, 1966) evaluates S_f by

$$S_f = \frac{|u| u}{C^2 R}$$

where C is the coefficient.
Another common form of the dissipation term is Manning's formulation (Schwab, 1966) which may be stated as

\[S_f = \frac{|u|}{n} \left(\frac{2}{R^{4/3}} \right) \]

Assuming that the dissipation terms as defined for steady uniform flow also hold for unsteady nonuniform flow leads then to one equation of motion. Changing the notation slightly at this stage in order to conform to that most frequently used yields

\[\frac{1}{g} \frac{\partial V}{\partial t} + \frac{\partial H}{\partial x} = - S_f + D_L \]

where \(V \) is the discharge mean velocity, \(H = \zeta_o + \frac{V^2}{2g} \), \(S_f \) is described by equations 2.23 or 2.24, \(D_L = \frac{V\xi}{2gA} \) for seepage outflow, \(D_L = \frac{V - u_x}{gA} \) for lateral inflow where \(u_x \) is the inflow velocity in the x direction, and \(x \) is the primary space dimension (previously \(x \)). If the \(H \) term is taken relative to the channel bottom then \(\frac{d\xi_o}{dx} \) is defined by \(-S_o \).

Therefore, the assumptions leading to equations 2.25 and 2.11 have been established, and these equations are the basic mathematical expression of the physical flow process. These equations are usually called the Saint Venant equations after the French engineer who first utilized them (Stoker, 1957).
CHAPTER 3

THEORETICAL DEVELOPMENTS

The Saint Venant equations derived in the previous chapter cannot be solved explicitly except in some simplified cases. In this chapter the approximate method of lines will be applied to the Saint Venant equations and the close relationship between the mathematical developments and the physical flow process will be outlined. Some consideration of properly posing the boundary conditions from both physical and mathematical reasoning is also given.

3.1 One dimensional equations and boundary conditions

Equations 2.11 and 2.25 belong to a class of differential equations named hyperbolic partial differential equations. The general class of such equations can be put in the form (Ames, 1965; Mufti, 1973)

\[
\frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x} = b. \quad 3.1
\]

where U is a 2-vector, a is 2x2 matrix, b is a 2-vector and a and b are in general functions of x, t and U. If the coefficient a is independent of U and if b depends linearly on U the equation is called linear; if a is independent of U and b depends on U, but not linearly, the equation is called semilinear; if a depends on U, as is the case in the one dimensional open channel flow equations, the equation is called quasi-linear.
A number of methods exist for the approximate solution of the hyperbolic equations (Strelkoff, 1970), including finite difference schemes, methods based on the theory of characteristics, and solution by the method of lines. The finite differencing schemes, either implicit or explicit, involve the discretization of both space and time. Usually little physical reasoning goes into such schemes although extensive considerations as to their stability and convergence are available (Isaacson, 1956).

The method of characteristics is based on the physics of flow by breaking down the partial differential equations into four ordinary ones that correspond to a backward and forward wave observed in flow problems (Amein, 1966). The method provides solutions along characteristics only, which is of some disadvantage when the solution is required at a particular location in space. However, a discussion of the method of characteristics can give considerable insight into the flow process and how boundary conditions are to be stated.

The method of lines consists of discretizing either time or space and solving continuously along the other dimension. As in the method of characteristics, the partial differential equations are changed to ordinary differential equations. The solution by the method of lines can yield the solution at specific space locations and at specific time without further interpolation. A close relationship
is maintained between the method of characteristics and the method of lines which will be further developed in this chapter.

3.1.1 Characteristics of hyperbolic equations

To introduce the idea of characteristics consider the case where \(U \) is a scalar. Assuming that \(U \) satisfies Equation 3.1, then since \(U \) is a function of \(x \) and \(t \), its total differential is

\[
dU = \frac{\partial U}{\partial t} \, dt + \frac{\partial U}{\partial x} \, dx
\]

or the total derivative of \(U \) with respect to \(t \) is

\[
\frac{dU}{dt} = \frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} \frac{dx}{dt}
\]

By comparing Equations 3.1 and 3.3 it becomes evident that \(U \) which satisfies Equation 3.1 also satisfies

\[
\frac{dU}{dt} = b
\]

provided that

\[
\frac{dx}{dt} = a.
\]

Conversely, if \(U \) satisfies Equations 3.4 and 3.5 it also satisfies Equation 3.1. To show this let \(U \) satisfy Equations 3.4 and 3.5. Then

\[
b = \frac{dU}{dt} = \frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} \frac{dx}{dt} = \frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x}
\]

or \(U \) satisfies Equation 3.1.

Thus Equations 3.4 and 3.5 form an equivalent set of ordinary differential equations which have special physical
and geometric meaning (Mufti, 1973). Physically if an observer is moving with a velocity a, the time rate of change of U is equal to b. Geometrically, the equations state that on a trace of Equation 3.5 in the x, t plane the values of U are given by Equation 3.4 for points on the curve. The traces of Equation 3.5 in the x, t plane are called characteristics or characteristic curves and the direction is called the characteristic direction (Kells, 1965). The solution at any point, P, on the characteristic curve depends on the initial value at the point where the characteristic meets the initial curve (called the domain of dependence of P).

For the Saint Venant equations there are a pair of characteristics; a backward characteristic and a forward characteristic (see Fig. 3.1).

![Fig. 3.1 Characteristic of the Saint Venant Equations](image)

The theory of characteristics states that the solution at P is determined solely by the initial data on
the segment x_1-x_2. This segment, or the region enclosed by the characteristics through P is called the domain of dependence of the point $P(x,t)$ (Henderson, 1966). This knowledge of characteristics will now be used as a guide in specifying initial and boundary conditions.

3.1.2 Initial and boundary conditions

The solution of the Saint Venant equations must start from known conditions and proceed from there, forward in time. Supplying conditions in velocity and water level for all of x at some initial time t_0, is required information. If the initial conditions are supplied from data observations the necessary information can be obtained from continuous space observations or from combining discrete observations with an interpolation procedure.

In cases where observations are very scarce, the mathematical model may be used to assist in the interpolation procedure to obtain initial conditions (Prandle, 1972). A case where velocity and water level are known only at $x = 0$ and at $x = x_{\text{max}}$ is cited. An initial coarse estimate of the continuous velocity and height distribution might be obtained from linear interpolation between known values. A better estimate of the initial conditions is then obtained by assuming that the prototype is at steady state and running the mathematical model until it reaches a state of equilibrium.

From a strictly mathematical point of view one boundary condition in each of velocity and water level should
be adequate knowledge for the unique solution of the partial
differential equation. The theory of characteristics implies
that if one of the variables is specified, say at \(x = 0 \), the
other is implicitly known from the combination of the initial
condition and the characteristic passing through the point
on the boundary.

Thus if both boundary conditions are to be speci-
fied at the same space location, care must be exercised that
the physical laws of flow are not violated by such speci-
fication.

3.2 Solution by the method of lines

As becomes evident from Fig. 3.1 an approximate
solution based strictly on the theory of characteristics
will result in the knowledge of the solution only along
characteristic lines which are in general parallel to neither
the \(x \) nor \(t \) axis. In most applications it is desired that
the solution be known at specific points in space and time,
thus a solution on characteristic lines must be combined with
a two-dimensional interpolation scheme in order to obtain
the desired information (Ames, 1965; Paul et al, 1970).

The interpolation can be avoided and much of the
physical meaning associated with characteristics can be
utilized by choosing lines along which the solution is
obtained either parallel to the \(x \) or \(t \) axis. The continuous-
space-discrete-time (C.S.D.T.) solution consists of lines
parallel to the x axis while the continuous time-discrete space solution consists of lines parallel to the time axis. For the present application the C.S.D.T. solution is preferred since the geometry can then be represented continuously in space.

In order to facilitate the utilization of the theory of characteristics, the Saint Venant equations are first written in the characteristic normal form (Ames, 1965). For the Saint Venant equation, Equation 3.1 is applicable where U is a 2-vector of velocity and height, a is a 2x2 matrix and b a 2-vector which depends on U, x and t.

Equation 3.1 is first premultiplied by S^{-1} to obtain

$$S^{-1} \frac{\partial U}{\partial t} + S^{-1} a \frac{\partial U}{\partial x} = S^{-1} b$$ \hspace{1cm} (3.7)

where the non-singular matrix S is such that

$$S^{-1} a S = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$ \hspace{1cm} (3.8)

where λ_1 and λ_2 are the eigenvalues of the matrix a and they are assumed to be real and distinct.

Postmultiplying both sides of Equation 3.8 by S^{-1} on the right yields

$$S^{-1} a = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} S^{-1}$$ \hspace{1cm} (3.9)

which can be substituted into Equation 3.7 to give
Equation 3.10 is called the characteristic form of equation 3.1 where \(\lambda_1 \) and \(\lambda_2 \) are the characteristic directions. The equations of the characteristics are given by

\[
\begin{align*}
\frac{dx}{dt} &= \lambda_1 \\
\frac{dx}{dt} &= \lambda_2
\end{align*}
\]

For linear and semilinear problems the characteristic form can be simplified by introducing a new dependent vector \(\hat{U} \) whose elements are called characteristic variables (Isaacson and Keller, 1966) and which is given by

\[
\hat{U} = S^{-1} U
\]

Although Equation 3.12 is not applicable directly to the quasi-linear equation its equivalent can be obtained by making an assumption to be demonstrated later.

In the general form the Saint Venant equation becomes

\[
\frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x} = b
\]

where

\[
U = \begin{bmatrix} h \\ v \end{bmatrix}
\]

\[
a = \begin{bmatrix} v A \frac{T}{T} \\ g v \end{bmatrix}
\]

\[
b = \begin{bmatrix} - q - v \frac{dA}{dx} \\ g \left(S_0 - S_f + D_\xi \right) \end{bmatrix}
\]
The notation in Equation 3.13c may be shortened by writing the components of the vector \(\mathbf{b} \) as \(b_1 \) and \(b_2 \).

The eigenvalues of \(\mathbf{a} \) are obtained from

\[
\det(\mathbf{a} - \lambda \mathbf{I}) = 0
\]

or

\[
(v - \lambda)^2 - (\sqrt{\frac{A}{T}})^2 = 0
\]

from which

\[
\lambda_1 = v + \sqrt{\frac{A}{T}}
\]

and

\[
\lambda_2 = v - \sqrt{\frac{A}{T}}
\]

The corresponding eigenvector matrix \(S^{-1} \)

becomes (Mufti, 1973)

\[
S^{-1} = \begin{bmatrix}
\sqrt{\frac{T}{A}} & 1 \\
\sqrt{\frac{T}{A}} & 1 \\
-\sqrt{\frac{T}{A}} & 1
\end{bmatrix}
\]

Now, utilizing Equations 3.16a, 3.16b and 3.17 yields the following characteristic normal form of the Saint Venant equations

\[
\sqrt{\frac{T}{A}} \frac{\partial h}{\partial t} + \frac{\partial v}{\partial t} + (v+ \sqrt{\frac{A}{T}})(\sqrt{\frac{T}{A}} \frac{\partial h}{\partial x} + \frac{\partial v}{\partial x}) = \sqrt{\frac{T}{A}} b_1 + b_2
\]

\[
-\sqrt{\frac{T}{A}} \frac{\partial h}{\partial t} + \frac{\partial v}{\partial t} + (v- \sqrt{\frac{A}{T}})(-\sqrt{\frac{T}{A}} \frac{\partial h}{\partial x} + \frac{\partial v}{\partial x}) = -\sqrt{\frac{T}{A}} b_1 + b_2
\]

The equivalent of the characteristic variable will now be found by assuming that for the channels of interest a single relationship between area \(A \) and top width, \(T \), can be found. Fig. 3.2 summarizes some frequently used channel shapes and their relationships for \(A \) and \(T \).
A = Th or \(\frac{A}{T} = kh \)

where \(k = 1.0 \)

Rectangular channel

\[
A = \frac{h^2}{2m_1} + \frac{h^2}{2m_2} \\
T = \frac{h}{m_1} + \frac{h}{m_2}
\]

\[
\frac{A}{T} = \frac{\frac{h^2}{2} \left(\frac{1}{m_1} + \frac{1}{m_2} \right)}{h\left(\frac{1}{m_1} + \frac{1}{m_2} \right)} = kh
\]

where \(k = 1/2 \)

Triangular channel

\[
A = \frac{2}{3} Th \quad \text{or} \quad \frac{A}{T} = kh
\]

where \(k = 2/3 \)

Parabolic channel

Figure 3.2 Summary of Channel Shapes and A/T Ratios.
As becomes evident from Fig. 3.2 a variety of channel shapes have a simple relationship between A and T in the form

$$\frac{A}{T} = kh$$ \hspace{1cm} 3.19

Substituting Equation 3.19 into Equation 3.18 yields

$$\frac{\partial}{\partial t} (v + 2\sqrt{kh}) + (v + \sqrt{gkh}) \frac{\partial}{\partial x} (v + 2\sqrt{kh}) = \hat{b}_1$$ \hspace{1cm} 3.20a

$$\frac{\partial}{\partial t} (v - 2\sqrt{kh}) + (v - \sqrt{gkh}) \frac{\partial}{\partial x} (v - 2\sqrt{kh}) = \hat{b}_2$$ \hspace{1cm} 3.20b

where $\hat{b}_1 = \frac{V}{kh} b_1 + b_2$, and $\hat{b}_2 = -\frac{V}{kh} b_1 + b_2$.

By inspecting Equations 3.20a and 3.20b and introducing new dependent variables of the form

$$W_1 = v + 2\sqrt{kh}$$ \hspace{1cm} 3.21a

and

$$W_2 = v - 2\sqrt{kh}$$ \hspace{1cm} 3.21b

results in simplifying Equation 3.20 to

$$\frac{\partial W_1}{\partial t} + \lambda_1 \frac{\partial W_1}{\partial x} = \hat{b}_1$$ \hspace{1cm} 3.22a

and

$$\frac{\partial W_2}{\partial t} + \lambda_2 \frac{\partial W_2}{\partial x} = \hat{b}_2$$ \hspace{1cm} 3.22b

W_1 and W_2 may be called characteristic variables as introduced in Equation 3.12. The physical
significance of W_1 and W_2 can be seen by inspecting the characteristic equivalent of Equation 3.22.

The characteristic equations of the Saint Venant equations are (Strelkoff 1970, Mufti 1973).

\[
\frac{dv}{dt} + \sqrt{\frac{T}{gA}} \frac{dh}{dt} = \hat{b}_1 \quad \text{or} \quad \frac{dW_1}{dt} = \hat{b}_1 \tag{3.23a}
\]

along the characteristic $\frac{dx}{dt} = \lambda_1$, and

\[
\frac{dv}{dt} - \sqrt{\frac{T}{gA}} \frac{dh}{dt} = \hat{b}_2 \quad \text{or} \quad \frac{dW_2}{dt} = \hat{b}_1 \tag{3.23b}
\]

along the characteristic $\frac{dx}{dt} = \lambda_2$.

From Equation 3.23a it can be seen that along the forward characteristic the rate of change of W_1 is \hat{b}_1. Thus the association between W_1 and λ_1, the forward characteristic, becomes evident. Similarly W_2 is associated with λ_2 the backward characteristic.

The transformations from W_1 and W_2 back to v and h are

\[
v = \frac{W_1 + W_2}{2} \tag{3.24a}
\]

\[
h = k \frac{(W_1 - W_2)^2}{16g} \tag{3.24b}
\]

The next step in the method of lines is to discretize the time derivative in Equation 3.22. Using a backward difference approximation yields the following definition

\[
\frac{dW_1}{dt}(x,j\Delta t) = \frac{W_1(x,j\Delta t) - W_1(x,(j-1)\Delta t)}{\Delta t} \tag{3.25a}
\]
\[
\frac{\partial W_2}{\partial t} (x, j\Delta t) = \frac{W_2(x, j\Delta t) - W_2(x, (j-1)\Delta t)}{\Delta t}
\]

where \(j = 1, 2, \ldots, N \).

Substituting Equation 3.25 into Equation 3.22 and shortening the notation yields

\[
\frac{dW_j}{dx} = - \frac{W_j - W_{j-1}}{\lambda_j \Delta t} + \frac{b_j}{\lambda_j}
\]

and

\[
\frac{dW_2}{dx} = - \frac{W_2 - W_{2-1}}{\lambda_2 \Delta t} + \frac{b_2}{\lambda_2}
\]

The expressions for \(\lambda_1, \lambda_2, \hat{b}_1 \) and \(\hat{b}_2 \) in terms of \(W_1 \) and \(W_2 \) are

\[
\lambda_1 = W_1(2+k) + W_2(2-k)
\]

\[
\lambda_2 = W_1(2-k) + W_2(2+k)
\]

\[
\hat{b}_1 = \frac{4g}{kT} \frac{-q - \frac{W_1 + W_2}{2} \frac{dA}{dx}}{W_1 - W_2} + g(S_o - S_f + D_e)
\]

\[
\hat{b}_2 = -\frac{4g}{kT} \frac{W_1 + W_2}{W_1 - W_2} \frac{dA}{dx} + g(S_o - S_f + D_e)
\]

Furthermore, the relationship for frictional losses and dynamic effects of lateral inflow in terms of \(W_1 \) and \(W_2 \) become

\[
S_f = \frac{W_1 + W_2}{2} - \frac{W_1 + W_2}{2}
\]
\[D_x = \frac{W_1^j + W_2^j}{4Ag} q \quad 3.30a \]

for seepage outflow

\[D_x = \left(\frac{W_1^j + W_2^j}{2} - \frac{uG}{Ag} \right) q \quad 3.30b \]

for lateral inflow.

Since Equation 3.26a is associated with the forward characteristics, \(W_1^j \) must be given at the upstream location (\(x = 0 \)). Similarly, \(W_2^j \) being associated with the backward characteristic, must be specified at the downstream location (\(x = x_{\text{max}} \)). Hence, if Equations 3.26a and 3.26b respectively were independent of \(W_1^j \) and \(W_2^j \), the natural way to solve these equations numerically for \(W_1^j \) and \(W_2^j \) would be to integrate Equation 3.26a in the increasing \(x \) direction, and Equation 3.26b in the decreasing \(x \) direction. Numerical stability considerations also demand that Equations 3.26a and 3.26b be integrated in the increasing and decreasing directions respectively (Vichnevetsky, 1969; Fromm, 1972).

Unfortunately, however, Equations 3.26a and 3.26b are coupled equations and with \(W_1^j \) specified at \(x = 0 \) and \(W_2^j \) at \(x = x_{\text{max}} \) form a two-point boundary value problem which if solved as a sequence of coupled initial value problems may lead to numerical instabilities (Ames, 1965). To avoid the numerical instability problem and make use of the preferred direction of integration the following algorithm is developed.
For convenience the forward equation may be written in the general form

\[
\frac{dW_{1}^{j}}{dx} = f_{1}(W_{1}^{j}, W_{2}^{j}, x) \tag{3.31a}
\]

and the backward equation as

\[
\frac{dW_{2}^{j}}{dx} = f_{2}(W_{1}^{j}, W_{2}^{j}, x) \tag{3.31b}
\]

The computation algorithm proceeds by first estimating \(W_{2}^{*j}\) (estimate of \(W_{2}^{j}\)) and integrating Equation 3.31a with this estimate in the forward direction, yielding values of \(W_{1}^{*j}\). These values of \(W_{1}^{*j}\) are then used in the backward integration of Equation 3.31b to yield updated values of \(W_{2}^{*j}\). The process is then repeated with these new values of \(W_{2}^{*j}\) until the differences between subsequent estimates is nonsignificant.

3.3 Boundary condition approximations

The relationship between velocity \(v\), height \(h\), and \(W_{1}\) and \(W_{2}\) as specified by Equations 3.21a and 3.21b requires both \(v\) and \(h\) at \(x = 0\) and \(x = x_{\text{max}}\) to determine boundary conditions in \(W_{1}\) and \(W_{2}\). This imposes some practical and economic restrictions on the use of the model; hence the following boundary condition approximations are possible to minimize these restrictions.

At \(x = 0\) a boundary condition must be specified in \(W_{1}^{j}\) which may be obtained from both \(v\) and \(h\) by
Equation 3.21a or by combining v and W_2^{*j} in the form

$$W_1^{*j} = 2v^j - W_2^{*j} \quad 3.32$$

or by combining h and W_2^{*j} in the form

$$W_1^{*j} = W_2^{*j} + 4\sqrt{\frac{h^j}{k}} \quad 3.33$$

Similarly at $x = x_{\text{max}}$ the boundary condition in W_2^j may be specified using both v and h as in Equation 3.21b or by combining v and W_1^{*j} through the relationship

$$W_2^{*j} = 2v - W_1^{*j} \quad 3.34$$

or from h and W_1^{*j} by

$$W_2^{*j} = W_1^{*j} - 4\sqrt{\frac{h^j}{k}} \quad 3.35$$

For practical problems, then, it is possible to combine a boundary condition estimation procedure with one measurement in either velocity or water level at both $x = 0$ and $x = x_{\text{max}}$.
CHAPTER 4

MODEL DEVELOPMENT

The mathematical basis for the hybrid computer model is given by Equations 3.26 to 3.30. These equations are programmed on the hybrid computer. The mathematical model is applied to a particular prototype channel, hence a geometric description and the computer application of it are given. The mathematical model is then calibrated, verified, and employed in simulation experiments.

4.1 Hybrid computer solution

Equations 3.26 to 3.30 were solved on an EAI 690 Hybrid computer at the Analysis Laboratory, National Research Council, Ottawa. The system consists of a digital computer (EAI 640), an analog computer (EAI 680) and a digital-analog interface (Cagne, 1971). The approach of the solution is to design an analog circuit to represent the differential equations and let the digital computer perform the tasks of initializing the analog, storing and playing back current and past solutions, inputting the representation of the geometrical variables and outputting information in digital form wherever desired. During the initialization and input-output stages, the analog is in an initial condition (I.C.) or waiting mode. During the
integration the analog is continuously in an operate mode and the digital computer operates intermittently as signals from the analog dictate. Figs. 4.1 and 4.1a demonstrate the general program flow. The direction of the arrow across the interface indicates the origin of a command and hence the computer in control at that particular time.

The program for the digital computer was written in the standard scientific Fortran (FORTRAN IV, 1972) language. The interface operations are performed by library programs (Gagne, 1972). The analog program consists of patched components on a standard patchboard (680 Handbook, 1970). A special language (H.O.I.) is available (Gagne, 1972) to check the analog patchboard. This was very convenient during the analog program development stage as well as a fast tool for checking connections and components prior to each computing session.

4.1.1 Analog computer representation of ordinary differential equations

The basic important components available on the analog computer are (680 Handbook, 1970) summers, integrators, multipliers, potentiometers, function generators, comparators, switches and counters. These components can be arranged in a desired order by patching wires from the output of one component to the input of the next component. Most components have a dynamic range from -10 to +10 volts representing
DIGITAL COMPUTER

INITIALIZE

INPUT GEOMETRICAL DESCRIPTION OF CHANNEL

COMPUTE OR INPUT INITIAL CONDITIONS

INPUT CURRENT BOUNDARY CONDITIONS

SET CONSTANTS AND BOUNDARY CONDITION FOR FORWARD INT.

INTEGRATION LOOP FOR DETAIL SEE FIG. 4.1.a

SET CONSTANTS AND BOUNDARY CONDITION FOR BACKWARD INT.

INTEGRATION LOOP FOR DETAIL SEE FIG. 4.1.a

BOUNDARY CONDITION SATISFIED?

UPDATE ESTIMATE OF UNKNOWN BOUNDARY CONDITION AND PLAYBACK ELEMENT

DIGITAL OUTPUT?

OUTPUT INFORMATION

MORE TIME?

INCREMENT TIME

FIG. 4.1: GENERAL PROGRAM FLOW
DIGITAL COMPUTER ANALOG COMPUTER

START ANALOG TO OPERATE

SET ANALOG TO OPERATE

STORE CURRENT SOLUTION

YES TIME TO UP-DATE ?

INPUT NEXT PLAYBACK ELEMENT

NO

INPUT NEXT VALUES OF GEOMETRICAL VARIABLES

END OF SPACE ?

SET ANALOG TO I.C.

NO

END OF INTEGRATION LOOP

YES

ANALOG TO I.C.

FIG. 4.1.a: INTEGRATION LOOP
numbers from -1.0 to +1.0. For this reason the analog representation of the differential equations must be scaled (Gagne, 1971) in such a way that none of the components have values beyond this range.

4.1.1.1 Magnitude scaling

The forward differential equation is (see Equation 3.26)

\[
\frac{dW_i^j}{dx} = - \frac{W_i^j - W_i^{j-1}}{\lambda_1^j \Delta t} + \frac{\hat{b}_1^j}{\lambda_1^j}
\]

where

\[
\lambda_1^j = + W_i^j \left(\frac{2+k}{4}\right) + W_i^{j-1} \left(\frac{2-k}{4}\right)
\]

\[
\hat{b}_1^j = \frac{4g}{k} \left(-q - \frac{W_i^j + W_i^{j-1}}{2} \frac{dA}{dx}\right) + g \left(S_o - S_f + D_{\lambda}\right)
\]

\[
S_f = \left(\frac{W_i^j + W_i^{j-1}}{2}\right) \frac{C}{R}
\]

\[
D_{\lambda} = \frac{(W_i^j + W_i^{j-1})}{4gA} q_s
\]

for seepage outflow

\[
D_{\lambda} = \frac{2}{A g} - \frac{u_{\lambda}}{q_s}
\]

for lateral inflow.

The variables in Equation 4.1 are \(W_i^j, W_i^{j-1}, W_i^{j-2}, q_s^j, q_{\lambda}^j, T_i^j, A_i^j, C_i^j, R_i^j, u_{\lambda_i}^j, S_o^j\) and \(\frac{dW_i^j}{dx}\). Each of these
variables must be scaled to its maximum value. A subscript
m will be used to denote these maxima, that is \(W_{1m}, W_{2m}, q_{sm}, \) etc. As well as the individual variables, whole terms
must be scaled where there is a chance that these may exceed
an absolute value of one.

Firstly, the left hand side of Equation 4.1 is
scaled to \(\dot{W}_m \) yielding

\[
\frac{\dot{W}_m}{W_m} = \frac{1}{\lambda_1} \left(\frac{W_{1}^{j} - W_{1}^{j-1}}{\Delta t} \right) - \frac{1}{\lambda_1} \left(\frac{b_{1}^{j}}{\dot{W}_m} \right) \tag{4.2}
\]

where the square brackets indicate that the contained
quantity is scaled.

The right hand side of Equation 4.2 will be
analyzed term by term. The top of the first term yields

\[
- \left[\frac{W_{1}^{j}}{W_{1m}} \right] + \left[\frac{W_{1}^{j-1}}{W_{1m}} \right] \tag{4.3}
\]

Since both quantities are of the same sign their
difference will never exceed one.

The bottom of the first term becomes

\[
\left[\frac{\lambda_1^{j} \Delta t}{(\lambda \Delta t)_m} \right] + \left(\frac{2+k}{4} \right) \frac{\Delta t}{(\lambda \Delta t)_m} \left[\frac{W_{1}^{j}}{W_{1m}} \right] + \left(\frac{2-k}{4} \right) \frac{\Delta t}{(\lambda \Delta t)_m} \left[\frac{W_{1}^{j-1}}{W_{1m}} \right] \tag{4.4}
\]

Thus the scaled equivalent of the first term becomes

\[
- \left(\frac{2+k}{4} \right) \frac{\Delta t}{(\lambda \Delta t)_m} \left[\frac{W_{1}^{j}}{W_{1m}} \right] - \left(\frac{2-k}{4} \right) \frac{\Delta t}{(\lambda \Delta t)_m} \left[\frac{W_{1}^{j-1}}{W_{1m}} \right] = \frac{1}{\lambda_1} \left(\frac{W_{1}^{j} - W_{1}^{j-1}}{\Delta t} \right) \tag{4.5}
\]
Similarly the top and bottom of the second term can be analyzed. The bottom of the second term becomes

\[\frac{\lambda_j^j}{\lambda_m^m} = \frac{(2+k)}{4} \frac{W_{1m}^j}{W_{1m}^j} + \frac{(2-k)}{4} \frac{W_{2m}^j}{W_{2m}^j} \]

The top of the second term can again be analyzed in parts as

\[\frac{b_j^j}{\lambda_m^m W_{m}^j} = \frac{4g}{k\lambda_m^m W_{m}^j} \left\{ -q - \frac{W_{1m}^j + W_{2m}^j}{2} \frac{dA}{dx} \right\} + \frac{g S_q - g E + g D_t}{\lambda_m^m W_{m}^j} \]

The constituents of q will be broken down to outflow due to seepage and evaporation (q_s) and inflow due to precipitation on the channel and lateral inflow (q_l). The first term in scaled form then becomes

\[\frac{4g}{k\lambda_m^m W_{m}^j} \left\{ \frac{q_s}{q_s m} - \frac{q_l}{q_l m} - \frac{A_m}{A_m^m} \frac{W_{1m}^j}{W_{1m}^j} + \frac{W_{2m}^j}{W_{2m}^j} \right\} \]

Multiplying both top and bottom by \(\frac{2W_{1m}}{2W_{1m}} \) and collecting the premultiplying factors yields

\[\frac{2g q_{sm}}{kW_{m}^j \lambda_m^m W_{1m}^j T_m^j} \left\{ \frac{q_s}{q_{sm}} - \frac{2g q_{sm}}{kW_{m}^j \lambda_m^m W_{1m}^j T_m^j} \frac{q_{sm}}{q_{sm}} - \frac{g A_m}{kW_{m}^j \lambda_m^m T_m^j} \frac{W_{1m}^j}{W_{1m}^j} - \frac{2g q_{sm}}{kW_{m}^j \lambda_m^m T_m^j} \frac{W_{2m}^j}{W_{2m}^j} \right\} \]

\[\frac{T_m^j}{T_m^j} \left((0.5) \frac{W_{1m}^j}{W_{1m}^j} - (0.5) \frac{W_{2m}^j}{W_{2m}^j} \right) \]

\[\frac{g A_m}{kW_{m}^j \lambda_m^m W_{1m}^j T_m^j} \frac{W_{2m}^j}{W_{2m}^j} \]

\[\frac{T_m^j}{T_m^j} \left((0.5) \frac{W_{1m}^j}{W_{1m}^j} - (0.5) \frac{W_{2m}^j}{W_{2m}^j} \right) \]
The channel bottom slope term simply becomes

\[
\left(\frac{g S_{om}}{\lambda \dot{W}} \right) \begin{bmatrix} S_0 \\ S_{om} \end{bmatrix}
\]

4.10

The frictional losses term becomes

\[
g S_f \frac{W_{lm}^2 g}{2C_R W_{lm}^2} \left[\frac{W_1}{W_{lm}} \right] + \frac{W_{lm} W_{2m} g}{2C_R W_{lm}^2} \left[\frac{W_2}{W_{lm}} \right] + \left(\frac{1}{2} \right) \frac{W_1}{W_{lm}} + \frac{W_{2m}}{W_{lm}} \frac{W_2}{W_{lm}}
\]

4.11

The dynamic effects of lateral inflow and outflow term becomes

\[
g \frac{D_{q}}{W} = \frac{\left(q_{sm} W_{lm} \right)}{4W_{lm}} \left[\frac{W_1}{W_{lm}} \right] + \frac{\left(q_{sm} W_{2m} \right)}{4W_{lm}} \left[\frac{W_2}{W_{lm}} \right] \left[\frac{q_s}{q_{sm}} \right]
\]

4.12

Because of the limit to the number of variables that can be transferred quickly on digital to analog channels, it was assumed in Equation 4.12 that the lateral inflow enters with zero longitudinal velocity, that is, \(U \) in Equation 4.1e is zero.

Of course, the backward equations must be scaled in similar fashion, however, details of it will not be shown.
4.1.1.2 Analog wiring arrangement

Components on the analog computer are arranged to represent the scaled equations. Premultiplying scaling constants are set on potentiometers. Values of variables are transferred from the digital computer on digital to analog (D/A) conversion channels. Interpolation is used to reconstruct data to continuous form from the finite points in the digital by means of an analog reconstruction circuit (Bekey, 1968). A typical reconstruction circuit is shown in Fig. 4.2 and a detailed description of its operation is given in Appendix I as an example of analog computation.

The development of the analog circuitry follows the development of the scaled equations. Firstly, a circuit of the overall equation, Equation 4.2, is given in Fig. 4.3. The forcing term of Equation 4.2 is shown as a module in Fig. 4.3 with details given in Fig. 4.3a as they are represented by Equation 4.7. Again, further definition of the components of the forcing term are presented in Figs. 4.3a.1, 4.3a.2 and 4.3a.3 as they are given in Equations 4.12, 4.11 and 4.9, respectively.

The special checkout language for the analog (H.O.I.) simply checks in a systematic fashion the value after each component by comparing the value read on the analog to that computed from the equation the circuit represents. If differences between computed values and observed values exceed a specified tolerance (usually 6 parts
Figure 4.2 Data Reconstruction Circuit
Figure 4.3 General Arrangement of Forward Integration Circuit

(Representation of Eq. 4.2)
Figure 4.3.a Summary of Forcing Terms \((b_1) \)
(Representation of Equation 4.7)

\[\frac{S_0}{S_{om}} \quad \text{D/A} \]

\[-gD_\ell \]
\[\frac{\lambda W}{m m} \]

See Fig. 4.3.a.1

\[-gS_f \]
\[\frac{\lambda W}{m m} \]

See Fig. 4.3.a.2

\[+ \frac{EACF}{\lambda W} \]
\[\frac{\lambda W}{m m} \]

See Fig. 4.3.a.3

Detailed Circuit of the \(D_\ell \) Fig. 4.3.a.1 (represents Eq. 4.12)

\[\frac{W_2}{W_{2m}} \]
\[+ \frac{W_1}{W_{1m}} \]

Potentiometer Values

1. \[\frac{gS_{om}}{\lambda W} \]

\[\frac{gq_{sm W_{2m}}}{4W \lambda A} \]

2. \[\frac{gq_{sm W_{1m}}}{4W \lambda A} \]

3. \[\frac{gq_{sm W_{2m}}}{2W \lambda A} \]

4. \[\frac{gq_{sm W_{2m}}}{2W \lambda A} \]
Detailed Circuit of S_f Fig. 4.3.a.2 (represents Eq. 4.11)

![Circuit Diagram](image-url)

Potentiometer Values

1. \[\frac{W_{1m} W_{2m} g}{C_R W \lambda} \]
2. \[\frac{W_1m g}{C_R W \lambda} \]
3. \[\frac{W_{2m}}{2W_{1m}} \]
4. \[\frac{1}{2} \]

![Circuit Diagram](image-url)

Potentiometer Values

1. \[\frac{2gq_{sm}}{kT W_{1m} W \lambda} \]
2. \[\frac{2gq_{sm}}{kT W_{1m} W \lambda} \]
3. \[\frac{qW_{2m} A_m}{W_1m kT W \lambda} \]
4. \[\frac{g A_m}{kT W \lambda} \]
5. \[\frac{W_{2m}}{2W_{1m}} \]
6. \[\frac{1}{2} \]

Figure 4.3.a.3 Detailed Circuit of Forcing Due to Expanding or Contracting Channel.
(represent Eq. 4.9)
in \(10^4\) an error is printed out on the typewriter. Errors due to incorrect wiring or faulty components can be localized very quickly by such a program. Before each computing session this checkout program is run to ensure that all components used are still operating correctly and that no wires have been disconnected since the last session.

Only the solution to the forward questions has been described here. The backward equation is very similar with the exception of several signs and constants. The new values of the constants associated with the eigenvalues are input via D/A multipliers so that the digital computer simply inputs the values associated with the backward integration. The sign changes are obtained by switching in additional inverters for the backward integration.

A variety of accessory equipment exists for the output of results (Gagne, 1971). On the analog side, results can be displayed on a screen or plotted on X-Y plotters or strip chart recorders. The response of any part of the circuit can be studied by plotting its output in a desired fashion. On the digital side output is available on a teletype typewriter, a line printer, a Calcomp plotter or punched paper tape.
CHAPTER 5

APPLICATION OF THE HYBRID COMPUTER MODEL

Several factors governed the selection of the particular prototype to which the model was applied. The most important was the ability to control the prototype such that tests could be specified without waiting for their occurrence in nature. Furthermore, it is much more convenient to gather extensive amounts of data in an environment where delicate instruments and extensive recording equipment are available. For these reasons the artificial channel of the St. Lawrence River Tidal Model at the Hydraulics Laboratory, National Research Council was chosen for the application of the mathematical model. This channel will henceforth be called the prototype, and is shown in Fig. 5.1.

The total prototype channel length is 750 feet of which a 413-foot section was chosen which best fits the assumptions of one dimensionality. The flow at the upstream end is controlled by a weir and head-tank and can be controlled through a range of 0 to 0.5 c.f.s. The downstream level can be controlled by a variable pitch turbine pump which can be operated to simulate tidal conditions at Father Point. Lateral inflow through tributaries is possible, however, this capability was not utilized for the purpose of the present tests.
<table>
<thead>
<tr>
<th>Station No.</th>
<th>Name</th>
<th>Location (Ft. from Frontenac)</th>
<th>Station No.</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frontenac St.</td>
<td>0.0</td>
<td>11</td>
<td>Port-St. Francois</td>
<td>193.78</td>
</tr>
<tr>
<td>2</td>
<td>Longue Pte.</td>
<td>11.62</td>
<td>12</td>
<td>Trois Rivieres</td>
<td>209.62</td>
</tr>
<tr>
<td>3</td>
<td>Pte.-aux-Trembles</td>
<td>21.30</td>
<td>13</td>
<td>Champlain</td>
<td>241.30</td>
</tr>
<tr>
<td>4</td>
<td>Varennes</td>
<td>30.63</td>
<td>14</td>
<td>Batiscan</td>
<td>261.36</td>
</tr>
<tr>
<td>5</td>
<td>Repentigny</td>
<td>39.87</td>
<td>15</td>
<td>Cap-à-la Roche</td>
<td>278.52</td>
</tr>
<tr>
<td>6</td>
<td>Verchères</td>
<td>53.07</td>
<td>16</td>
<td>Grondines</td>
<td>290.40</td>
</tr>
<tr>
<td>7</td>
<td>Lavaltrie</td>
<td>74.98</td>
<td>17</td>
<td>Portneuf</td>
<td>319.71</td>
</tr>
<tr>
<td>8</td>
<td>Lanoraie</td>
<td>91.08</td>
<td>18</td>
<td>Neuville</td>
<td>358.78</td>
</tr>
<tr>
<td>9</td>
<td>Sorel</td>
<td>114.84</td>
<td>19</td>
<td>Quebec Bridge</td>
<td>395.21</td>
</tr>
<tr>
<td>10</td>
<td>Louiseville</td>
<td>154.18</td>
<td>20</td>
<td>Quebec City</td>
<td>412.37</td>
</tr>
</tbody>
</table>

Figure 5.1 Plan view of Laboratory Channel of St. Lawrence River
The control system for the prototype is centered on an E.A.I. 640 similar to the digital computer used in the mathematical model. Most operations can be controlled from the teletype input of the computer. Data gathering from the channel can be either preprogrammed or manually operated.

Float type water level gauges are located along the channel at various locations. In the selected reach there are 20 water level gauges. Fig. 5.1 illustrates the location of the gauges along with the midstream distances downstream from a gauge called Frontenac Street at what is Montreal in the natural St. Lawrence.

5.1 Geometry of the prototype

Data on the cross-sections were obtained by measuring depth below a known reference at distances across the stream. Readings were taken at a minimum of 30 points in the cross-section but at minimum spacings of 0.1 feet. Assuming the channel bottom to vary linearly between points of measurement allowed the computation of various channel parameters from the basic data by a simple computer program. Appendix 2 contains sketches of the observed cross-section shapes along with the required variable values as a function of water level in the channel in tabular form. Values of depth relative to a standard reference (I.G.L.D.), depth relative to the channel bottom and the corresponding values of cross-sectional area, wetted perimeter and top width all measured in inches and decimals are recorded in the tables in Appendix 2.
5.1.1 Hybrid computer representation of geometry

As discussed in the next chapter, it was found that the shape of the channel cross-section could best be represented by a parabola and the channel bottom slope by a Fourier series. The computing of the parabola focal length \(f \) and \(\frac{df}{dx} \) and the channel bottom slope \(S_0 \) took place on the digital computer from the algebraic expressions derived in the next chapter. The digital input the variable values at frequent locations along \(x \) and a continuous representation was obtained on the analog by a linear reconstruction circuit as previously demonstrated. It may have been possible to construct a complete analog representation of the geometry, however, insufficient hardware was available for this purpose.

The geometric variables used in the differential equations are \(S_0 \), \(A \), \(T \), and \(\frac{dA}{dx} \). Fig. 5.2 illustrates the relationship between area \(A \), top width \(T \), and height of water above the channel bottom \(h \), for the parabolic channel. The analog circuit deriving the geometric variables from \(S_0 \), \(f \), and \(\frac{df}{ds} \) are shown in Fig. 5.3

\[
A = \text{Area} = \frac{8}{3} \sqrt{f} \ h^{3/2}
\]
\[
T = \text{Top Width} = 4\sqrt{fh}
\]

Figure 5.2 The Parabolic Channel
Potentiometer values

1. \(\frac{4 f_m}{h_m} \frac{1}{2} \frac{1}{2} \)
2. \(\frac{8 h_m^{3/2}}{3} \frac{f_m}{A_m} \frac{1}{2} \)
3. \(A_m f_m \)
4. \(\frac{h_m}{C_{wp} R_m} \)

Figure 5.3 Analog Representation of Geometry
5.2 Prototype experiments

The prototype was run under steady state conditions with the aim of calibrating and verifying the mathematical model under conditions of steady nonuniform flow. Five tests were run and observations on water level and discharge were recorded after steady conditions had been reached. (Several hours elapsed between the time the controls were set for a given test until a steady state was reached.) The results of these tests are summarized in Table 5.4

5.3 Calibration of the mathematical model

The process of calibration of a mathematical model involves the adjustment of model parameters or coefficients in such a way as to minimize the differences between observation and model computations (Bekey, 1970). For the mathematical model developed in this study the Chezy coefficient, C, is used for calibration. The calibration procedure involves the selection of Chezy's C such that the observed values of water level correspond closely to the model output under invariant boundary conditions.

Keulegan (1943) has shown that C is a function of height, h, and distance, x. The problem is thus one of determining C in two dimensions.

For steady state conditions the governing equation of motion (see Equation 2.25) reduces to

\[
\frac{V}{g} \frac{dV}{dx} + \frac{dh}{dx} = S_o - \frac{V|V|}{C^2 R}. \tag{5.1}
\]
Table 5.4 Steady State Tests on Prototype

<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Bottom IGLD</th>
<th>Test #1</th>
<th>Test #2</th>
<th>Test #3</th>
<th>Test #4</th>
<th>Test #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>-0.048</td>
<td>0.236</td>
<td>0.236</td>
<td>0.235</td>
<td>0.235</td>
<td>0.235</td>
</tr>
<tr>
<td>2</td>
<td>11.62</td>
<td>-0.104</td>
<td>0.286</td>
<td>0.285</td>
<td>0.284</td>
<td>0.289</td>
<td>0.284</td>
</tr>
<tr>
<td>3</td>
<td>21.38</td>
<td>-0.179</td>
<td>0.355</td>
<td>0.355</td>
<td>0.353</td>
<td>0.353</td>
<td>0.353</td>
</tr>
<tr>
<td>4</td>
<td>30.63</td>
<td>-0.247</td>
<td>0.416</td>
<td>0.415</td>
<td>0.414</td>
<td>0.414</td>
<td>0.414</td>
</tr>
<tr>
<td>5</td>
<td>39.87</td>
<td>-0.312</td>
<td>0.474</td>
<td>0.472</td>
<td>0.471</td>
<td>0.470</td>
<td>0.470</td>
</tr>
<tr>
<td>6</td>
<td>53.07</td>
<td>-0.371</td>
<td>0.529</td>
<td>0.527</td>
<td>0.525</td>
<td>0.524</td>
<td>0.524</td>
</tr>
<tr>
<td>7</td>
<td>74.98</td>
<td>-0.349</td>
<td>0.499</td>
<td>0.498</td>
<td>0.495</td>
<td>0.494</td>
<td>0.494</td>
</tr>
<tr>
<td>8</td>
<td>91.08</td>
<td>-0.323</td>
<td>0.469</td>
<td>0.467</td>
<td>0.464</td>
<td>0.463</td>
<td>0.462</td>
</tr>
<tr>
<td>9</td>
<td>114.84</td>
<td>-0.123</td>
<td>0.267</td>
<td>0.263</td>
<td>0.261</td>
<td>0.259</td>
<td>0.258</td>
</tr>
<tr>
<td>10</td>
<td>154.18</td>
<td>-0.233</td>
<td>0.362</td>
<td>0.360</td>
<td>0.355</td>
<td>0.354</td>
<td>0.352</td>
</tr>
<tr>
<td>11</td>
<td>193.78</td>
<td>-0.468</td>
<td>0.586</td>
<td>0.581</td>
<td>0.575</td>
<td>0.572</td>
<td>0.570</td>
</tr>
<tr>
<td>12</td>
<td>209.62</td>
<td>-0.443</td>
<td>0.558</td>
<td>0.554</td>
<td>0.547</td>
<td>0.543</td>
<td>0.542</td>
</tr>
<tr>
<td>13</td>
<td>241.30</td>
<td>-0.260</td>
<td>0.360</td>
<td>0.353</td>
<td>0.342</td>
<td>0.337</td>
<td>0.334</td>
</tr>
<tr>
<td>14</td>
<td>261.36</td>
<td>-0.200</td>
<td>0.292</td>
<td>0.283</td>
<td>0.269</td>
<td>0.262</td>
<td>0.257</td>
</tr>
<tr>
<td>15</td>
<td>278.52</td>
<td>-0.243</td>
<td>0.323</td>
<td>0.308</td>
<td>0.290</td>
<td>0.274</td>
<td>0.264</td>
</tr>
<tr>
<td>16</td>
<td>290.40</td>
<td>-0.321</td>
<td>0.396</td>
<td>0.382</td>
<td>0.354</td>
<td>0.334</td>
<td>0.318</td>
</tr>
<tr>
<td>17</td>
<td>319.71</td>
<td>-0.526</td>
<td>0.591</td>
<td>0.573</td>
<td>0.539</td>
<td>0.513</td>
<td>0.488</td>
</tr>
<tr>
<td>18</td>
<td>358.78</td>
<td>-0.472</td>
<td>0.536</td>
<td>0.517</td>
<td>0.481</td>
<td>0.453</td>
<td>0.425</td>
</tr>
<tr>
<td>19</td>
<td>395.21</td>
<td>-0.288</td>
<td>0.351</td>
<td>0.331</td>
<td>0.294</td>
<td>0.265</td>
<td>0.237</td>
</tr>
<tr>
<td>20</td>
<td>412.37</td>
<td>-0.313</td>
<td>0.375</td>
<td>0.356</td>
<td>0.318</td>
<td>0.289</td>
<td>0.260</td>
</tr>
</tbody>
</table>

Discharge at x = 0 0.1521 c.f.s.
Solving for C gives

$$C = \left(\frac{\frac{V|V|}{S_o - \frac{V}{g} \frac{dV}{dx} - \frac{dh}{dx} R}}{} \right)^{1/2}$$

where all terms are defined previously. Values of C can be computed from the steady state observations (Fig. 5.4) by assuming that $\frac{dh}{dx}$ can be approximated by a finite difference form. These values of C were then used as an initial guide in the two dimensional optimization problems.

5.4 Simulation experiments, steady flow

Once the mathematical model has been calibrated it was then tested against observations not used in the calibration. It was concluded that the model was a reasonable representation of the actual flow process and it was then used to simulate what might happen under conditions for which it was not calibrated. A number of simulation tests are formulated as they might arise in engineering problems.

5.4.1 Height boundary conditions

Under natural conditions it is difficult to determine discharge mean velocity while it is relatively easy to obtain water levels; hence it would be desirable to have a model which utilizes water levels only, in the specification of the boundary conditions. Thus the model was run for test #1 to determine if a specification of
water level at $x = 0$ and $x = x_{\text{max}}$ was sufficient for good predictions.

For the forward integration the coupled variable W^*_{2} was obtained by linear extrapolation from the previous two time values. This estimate of W^*_{2} (W^*_{2}) was then combined with water level h to yield the boundary condition for W_1 in the form

$$W^*_{1} = \sqrt{\frac{16 \, g \, h^j}{k}} + W^*_{2} \quad 5.3$$

For the backward integration the current solution of W^*_{1} was combined with h^j to yield the boundary condition on W^*_{2} at $x = x_{\text{max}}$. No further approximation is required at this point since the current value of $W^*_{1}(x)$ is played back, and $W^*_{1}(x_{\text{max}})$ combined with $h^j(x_{\text{max}})$ uniquely determines all requirements for the backward integration. The predicted water level was recorded at 3 locations in the channel and compared to those obtained from using both velocity and water level in the boundary conditions.

5.4.2 Sensitivity of the model to the Chezy coefficient

It was observed in the Hydraulic Laboratory Model (Ploeg, 1973) that the laboratory channel was very sensitive to changes in roughness at certain locations while in other areas a change in roughness did not affect the flow regime. It was decided to test if this was also the case in the mathematical model.
For this test, it would appear that if there are areas where the calibration is particularly sensitive, they would likely correspond to locations where the depth is at a minimum. These conditions occur at $x = 127$ feet, 264 feet and 401 feet. The Chezy coefficient was increased significantly (by 20%) over the calibrated value for a length of 14 feet surrounding these points, and the model was run for steady state test #1.

Similarly, the deepest sections were tested by increasing the Chezy coefficient by 20% at $x = 58$, 195 and 332 feet. The results of both of the tests are compared with those of the original simulation.

5.5 Simulation experiments, unsteady flow

5.5.1 Effect of changing downstream control

The model was permitted to attain the steady state condition of test #5, and then a control was introduced to raise the water level at the downstream end to that corresponding to test #1. The water level was actually changed in 5 discrete evenly spaced increments from 0.260 to 0.375 feet. The mathematical model was then run continuously to see if it could simulate the unsteady flow and eventually settle to the water levels observed in test #1. From a computational point of view it is desirable to take large time steps, providing accuracy is not sacrificed. Therefore, the same simulation was repeated 3 times with $\Delta t = 5,$
10 and 20 seconds to study the effect of Δt on the observed solution.

5.5.2 Flood routing

In order to investigate the usefulness of the mathematical model in flood routing, flood conditions were simulated using water level boundary conditions (see section 5.4.1 and 6.5.2). The mathematical model was started from a water level corresponding to that of steady state test #5, and then subjected to unsteady flow at $x = 0$ according to a triangular flood peak.

The boundary condition at $x = 0$ was supplied by Equation 5.3, using the triangular flood wave at $x = 0$. The boundary condition at $x = x_{\text{max}}$ was supplied from the steady state (test #5) values, which is only valid until the flood wave reaches x_{max}. Water levels at $x = 20, 40$ and 60 feet were recorded and plotted in order to study the flood propagation. The solution was obtained for a period of 70 seconds with $\Delta t = 1$ second and 60 playback locations.

5.6 Time scaling

In terms of computing time, the present model utilized a time scaling of one computer second representing 10 feet of space. This the time to integrate 413 feet was 41.3 computer seconds or approximately 83 seconds for each time step. Several possibilities exist for the speeding up the solution such as selecting a different time scale
(Wright, 1971), increasing Δt, and utilizing more analog capability. In general the limit to the solution speed was governed by the rate at which the digital could perform its share of the calculations and perform the data transfer functions. The speed of solution is, of course, important in economic terms and it can be critical in special problems where model predictions are used to control a physical system.
CHAPTER 6

RESULTS AND DISCUSSION

6.1 Representation of the geometry

An early version of the mathematical model utilized the geometry directly by a table look-up scheme to get values of the geometric variables. Assuming that the one-dimensional equations accurately described the process over all of the channel cross-section, the model was then run with what appeared to be reasonable first estimates of the Chezy coefficients. The results of this study were grossly at variance with the flow as it appeared in the prototype. Two particular sections were especially troublesome; the very wide section at Louiseville and the very deep section at the Quebec bridge.

At the very deep section the velocity would increase very rapidly with the steep slope leading to the deep section because of the size of the gravity acceleration force. Past the deep section the bottom slope had a large negative value and a rapid deceleration of the velocity would take place. In fact it was difficult to maintain positive values of velocity in the section from 395 to 413 feet.

Similarly the velocities and water levels in the very wide channel section could not be accurately modelled. In order to maintain water levels of the model output as they were observed in the prototype very large values of the Chezy friction coefficient had to be used. The very large
frictional coefficients and geometric discontinuities would then result in the model predicting the propagation of a wave in the downstream direction during the forward integration and in the upstream direction for the backward integration.

It was concluded at that time that the one-dimensional equations could not adequately describe the total flow process in the channel. However, the model may be adequate for the description of the flow in a portion of the channel cross-section. It was observed in the prototype that in very wide sections a portion of the channel cross-section has negligible velocity and does not contribute to the conveyance of water. Furthermore a close inspection of the water levels observed in the steady state tests (Table 5.4, and Fig. 6.1) demonstrated that the water levels are governed mainly by shallow portions of the channel at distances from Montreal of about 120, 270 and 440 feet. Small slope changes in the deeper channel sections appeared to have no influence on the flow whatsoever suggesting that the deepest portion of the channel acted simply as dead water storage in these regions.

If the conveyance portion of the channel could be separated from the non-conveyance portion, the one-dimensional model may be a reasonable representation of the process in that portion of the channel. Furthermore the waves observed to propagate in the model output near channel discontinuities
Fig. 6 I Sectional side view of channel
suggested that sudden changes in geometry should be smoothed since these waves are not observed in the prototype flow. Therefore, it was decided to represent the conveyance portion of the channel by an algebraic model such that local irregularities in the channel bottom slope could be smoothed out, nonconveying portions of cross-sections eliminated and transitions made gradual and smooth.

A linear trend was fitted to the channel bottom and then removed from the data by subtracting. The remainder was subjected to a Fourier analysis (Jenkins, 1969) with the resulting spectrum shown in Fig. 6.2. Padding the data by adding zeros (Henry, 1971) improved the resolution of the computed spectrum significantly.

The spectrum (Fig. 6.2) demonstrates the existence of a major cycle with a period of 137 feet. (There is likely a good geomorphological explanation for the existence of such waves on the bottom of the St. Lawrence (Lane, 1955)). The channel bottom was thus represented by the following equation

\[z = -2.186 - 0.00785x + 1.913 \cos(0.046x + 0.458) \]

where \(z \) is the bottom elevation in inches from (below) reference (IGLD), \(x \) is the distance in feet downstream of Montreal and the angle is measured in radians. Fig. 6.1 illustrates the actual channel bottom and that represented by Equation 6.1.
Figure 6.2 Spectrum of Channel Bottom Space Series
The channel bottom slope S_o is defined as $-dz/dx$ and thus becomes

$$S_o = 0.00785 + 0.088 \sin(0.046x + 0.458) \quad 6.2$$

where S_o is the bottom slope in inches per foot.

Equations 6.1 and 6.2 are the mathematical representations of the channel bottom and are called the "effective" reference. When this effective bottom is above the observed bottom it is assumed that the area below this effective bottom does not contribute to the flow but acts simply as dead storage.

Further, an assumption was made in the theory leading to Equation 3.26, that the cross-sectional ratio A/T could be described by the relationship

$$\frac{A}{T} = kh \quad 6.3$$

The A/T ratios were computed for the observed cross-sections. It was found that in the range of water levels of interest, the average value of k for all sections was equal to 0.65. The theoretical value of k for the parabolic shape is $2/3$ or 0.66. Therefore, the parabola was chosen to be the shape which best preserved the A/T ratio at the surface water level. Thus the approach was to choose a parabola focal length f, which best fitted the observed cross-section data; with particular emphasis on area and top width and their ratio at the mean water surface elevation. In order to obtain a continuous representation of the channel geometry
along \(x \) it becomes necessary to interpolate between sections at which the focal length was estimated. To eliminate portions of the cross-section not contributing to water conveyance the parabola focal length values were smoothed along \(x \). The approach to fitting was to first remove the trend in focal length with a straight line and then subject the deviations to a Fourier analysis. The resulting expression for \(f \) as a function of \(x \) is

\[
f = 22.07 + 0.02324x + 5.044 \cos(0.0139x + 2.274) \\
+ 1.706 \cos(0.0337x - 2.232)
\]

where \(f \) is the parabola focal length in inches.

Although the wetted perimeter can be derived from the focal length the expression for it becomes very complex and somewhat difficult to program. It was thus decided that it would be more appropriate to independently establish a relationship between height \(h \) and hydraulic radius \(R \) from the observed data in the form

\[
R = \frac{A}{P} = \frac{h}{C_{wp}}
\]

where \(A \) is the cross-sectional area, \(P \) the wetted perimeter, and \(C_{wp} \) is the coefficient relating \(h \) to \(R \). The average value of \(C_{wp} \) at the mean water level for all sections was 2.2.

Thus Equations 6.2, 6.4 and 6.5 represent a continuous space model of the conveyance section of the channel and it was then implemented along with the one-dimensional equations.
Figure 6.3 Chezy Coefficient-Depth Relationship at Station 19
6.2 Calibration of the mathematical model

As indicated in the previous chapter, the model calibration involves a two-dimensional selection of Chezy's C. The problem was simplified to a one-dimensional selection by establishing a relationship between C and height from the steady state observations.

The values of C computed from Equation 5.2 were plotted as a function of h at each of the observation stations (see Fig. 6.3 for an example). For the particular range of water levels tested, a correlation established that C may be treated as a linear function of h. The correlation coefficients ranged from a low of 0.94 to 1.00 for cases where the range of h was small. It was also found that the intercept passed through the origin, thus the calibration simply became one of determining the slope of the C versus h relationship for all of x. This was done for one of the steady state experiments (test #5).

The starting values of slope C were obtained from Equation 5.2 and then the mathematical model was run and a comparison made between prototype observations and model output. The differences between these two were minimized by a trial and error process; and the final values of slope C versus x are shown in Fig. 6.4. The agreement between observed and computed values of water level are shown in Fig. 6.5.
Figure 6.4 Slope C as a Function of Distance
Figure 6.5 Calibration (Test #5)
Figure 6.6 Mathematical Model Output for Steady State Conditions
6.2.1 Test of the stability of the solution

The stability of the solution was tested by integrating for some time with the boundary conditions in test #5. The solution was accepted and time incremented with each completed forward and backward integration. The results are displayed in Fig. 6.6.

Some cycling is observed in the solution. Because the cycles were similar to those observed when a large imbalance of forces existed due to poor calibration, it was decided that the cause of these cycles was some residual errors in the calibration. Since it was practically impossible to eliminate the cycles completely and since they do not appear to magnify with increasing time, a filtering process is suggested where the cycles in the solution confuse a desired result.

6.3 Verifying the model for steady state conditions

The remaining steady state runs (tests #1-#4) were used to verify the calibration. These simulations were run with $\Delta t = 5$ seconds and sixty playback locations. For each test the model was run a significant length of time (at least 10 time steps) to see if the water levels would change from their initial values. The results are illustrated in Fig. 6.7 and 6.8 which show the continuous space model predictions and discrete observations. An inspection of the results establish that the model predicts accurately
Figure 6.7 Model Test Runs 1 and 2
Figure 6.8 Model Test Runs 3 and 4
the water levels observed in the prototype. Of note is the excellent agreement obtained from 250 feet to 400 feet where the water levels change significantly from one test to the next. The good predictions verify the calibration procedure and establish the utility of the model in problems associated with steady nonuniform flow.

The advantages of a continuous space solution become particularly evident for problems in which the spatial mean velocity is of interest, that is, problems such as determining the travel time of a decaying pollutant. For such problems the analog computer can perform an integration to yield the time to travel through a section.

6.4 Results of simulation experiments - steady flow

6.4.1 Height boundary conditions

The predicted water level based on boundary conditions in height only was recorded at 3 locations along the channel and compared with those obtained using both velocity and water levels as boundary conditions (Fig. 6.9). With \(\Delta t = 5 \) seconds the solution after 40 time steps was not significantly different from that obtained by using both velocity and water level for boundary conditions. Thus water level predictions are reasonably well determined using height boundary conditions.

However, it was observed that the velocity predictions under height boundary conditions were less than
Figure 6.9 Water Level Predictions Based on Boundary Conditions in Height Only

Figure 6.10 Velocity Predictions at x = 0 Based on Boundary Conditions in Height Only
satisfactory, especially near \(x = 0 \) (Fig. 6.10). This can be explained by going through an estimation cycle. The values of \(v, h, W_1 \) and \(W_2 \) at \(x = 0 \) for steady state test \#1 are \(v = 0.409 \text{ ft./sec., } h = 0.236 \text{ ft., } W_1 = 7.1446 \text{ and } W_2 = -6.326 \). If the estimate of \(W_2 \) is accurate, then combining \(h \) and \(W_2^* \) in Equation 5.3 yields the correct value of \(W_1 \). However, if a 5\% deviation exists in \(W_2^* \) from the correct value, that is \(W_2^* = -6.642 \), then the boundary condition in \(W_1 \) becomes 6.829. Combining \(W_1^* \) and \(W_2^* \) to yield velocity results in \(v^* = \frac{W_1^* + W_2^*}{2} = 0.093 \), which is a gross deviation from the correct value of 0.409. If the errors are defined as \(\varepsilon_1 = W_1 - W_1^* \) and \(\varepsilon_2 = W_2 - W_2^* \), then a positive \(\varepsilon_2 \) will always result in a positive \(\varepsilon_1 \) by Equation 5.3. Since \(h \) is derived from the difference of \(W_1 \) and \(W_2 \) (see Equation 3.24) and \(v \) from the sum, the errors tend to cancel in the computation of \(h \), while they accumulate in computations of \(v \). Compounding the problem is the fact that the relative error in \(v \) is \(\left| \frac{W_2}{v} \right| \) times the relative error in \(W_2 \), hence the errors are magnified.

It may be concluded from this simulation study that using boundary conditions in water level can yield reasonable predictions of water level. However, if velocity is a required model output, at least one of the boundary conditions must be specified in velocity.
Figure 6.11 Sensitivity of Water Level to Changes in Chezy C

x = 195
- --- - C 20% high in shallow areas
- - - - C normal
- --- - C 20% high in deep areas

x = 264
- --- - C 20% high in shallow areas
- - - - C normal
- --- - C 20% high in deep areas

Water Level (ft.)

Time (seconds)
6.4.2 Sensitivity of the model to the Chezy coefficient

A typical result from the simulation to determine the sensitivity of the solution to changes in Chezy's C is illustrated in Fig. 6.11. After 200 seconds (40 x Δt) no significant difference existed in predicted water levels. It was thus obvious that a local variation of 20% in the Chezy coefficient has no significant effect on model behaviour under steady state conditions. It also becomes evident that adding artificial roughness (i.e. a brick or a metal strip) to a section in the hydraulic model affects the Chezy coefficient by much more than 20%. Unfortunately it was not possible to change the Chezy coefficient beyond this range without substantial rescaling of the circuit.

6.5 Unsteady flow simulation

6.5.1 Changing downstream control

The simulated water level at x = 400 ft. is plotted for Δt values of 5, 10 and 20 seconds in Fig. 6.12. The results indicate that the model does predict the correct final steady state value (test #1). The water level predictions during the period of unsteady flow are dependent upon Δt, hence the accuracy of the simulation is a function of Δt. The results of plotting the unsteady flow period, using the beginning of water level changes at x = 400 as a starting time, is shown in Fig. 6.13 to reduce the effect of differing total times of change of the boundary conditions. Here again the
Figure 6.12 Effect of Changing Downstream Control
Figure 6.13 Time Profile of Water Level with a Change in Downstream Control
differences between various Δt values are evident. The time required to settle to a new steady state value is distinctly a function of Δt.

In general the shorter time steps result in solutions closer to the actual than longer time steps. It was observed that Δt values of 20 seconds resulted in very small values of $\frac{w_j^j - w_{j-1}^{j-1}}{\lambda_1 \Delta t}$, in fact only slightly larger than the accuracy of the analog equipment (about 1 part in 10^3). The appropriate value of Δt appears to be a function of the physical process which in this case is probably in the order of 5 seconds.

6.5.2 Flood routing

The results of the flood routing simulation are presented in Fig. 6.14. The figure illustrates that the front of the disturbance has not yet reached $x = 410$ ft. at 70 seconds, so the downstream boundary condition is still valid. The water level at all locations settles down to the steady state value after the disturbance has passed; and the sharpness of the peak is reduced as the wave is transmitted down the channel. As may be expected (Stoker, 1957) there is some indication that an instability is forming at the front of the wave. This is a hydrodynamic instability formed when the peak of the flood wave travels more rapidly than the beginning of the wave.
Figure 6.14 Flood Routing
It would appear that the flood wave is propagated more rapidly than what is expected for the prototype suggesting that some further adjustment of the calibration or the geometry may be necessary for successful modelling of flood flows.
CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

1) It has been demonstrated for the first time that the St. Venant equations can be solved on a hybrid computer.

2) Most of the advantages which are generally accredited to the hybrid computer were verified; namely:
 a) continuous prediction of the output variables is provided.
 b) interactive modelling which provides insight into the basic physical processes,
 c) rapid solutions resulting in economic advantages for the user.

3) The numerical method used in the solution, the method of lines, offers advantages over other methods of solution because a knowledge of the flow process is utilized in the derivation of the equations, the specification of boundary conditions, and the direction of integration.

4) A technique has been presented for calibrating the channel geometry which is physically realistic in that it detects storage areas which do not contribute to flow.

5) Simulations utilizing boundary conditions which are specified in terms of water level and velocity can provide satisfactory water level and velocity predictions. However, if the boundary conditions are specified only in
terms of water levels then, while the water level predictions will be satisfactory, the velocities could be in error.

6) Under steady state conditions local variations in Chezy's C of up to 20% will have little or no influence on water level predictions. However, the upper bound on the % variation of C, which has no significant influence on water level predictions, has not been determined.

7) For non-steady state conditions the model is more difficult to calibrate, and it appears to be more sensitive to Chezy's C. A recommendation has been made for further research.
7.2 Recommendations for further research

During this study several factors became evident which may provide topics for further research.

1) The time steps used in the simulation of unsteady flow ranged from 5 to 20 seconds. Such time steps are very small for studying large scale problems requiring long computer runs. This problem may be overcome by writing the equations in dimensionless form before discretization. The integration can then take place in dimensionless time and space. Time steps can be made appropriately small by proper selection of the time scale.

2) For unsteady flow the channel calibration procedure needs to be reexamined to more adequately account for changes in the channel geometry as a function of water level. For example, it may be desirable to more accurately describe the width of the channel in order to provide adequate storage volumes. The sensitivity of the predictions to variations in Chezy's C, and the variation of Chezy's C as a function of water level in unsteady flow also requires further investigation.
REFERENCES

Ploeg, J., discussed in personal conversation, August 1973.

"Symposium on 'The Use of Analog and Digital Computers in Hydrology," Tucson Symposium, IASH-UNESCO Publication #80, December 1968 (14 papers on analog applications).

APPENDIX I

ANALOG DATA RECONSTRUCTION
APPENDIX 1

ANALOG DATA RECONSTRUCTION

The operation of the analog data reconstruction circuit of Fig. 4.2 is described as an example of analog computation.

The digital computer supplies values of \(\frac{W^j_2}{W_{2m}} \) at \(x = 0 \) (\(\frac{W^j_2(0)}{W_{2m}} \)) and at \(x = 1 \). \(\Delta x \) (\(\frac{W^j_2(1)}{W_{2m}} \)) to D/A channels 15 and 18 respectively. On the analog computer side of the conversion channel appears an inverted signal. The signal on D/A channel 15 is passed through an inverter to the initial condition for integrator 30. The resulting signal on the output of integrator is \(-\frac{W^j_2(0)}{W_{2m}} \). The output of the integrator is patched to track-store device No. 31. This track store (T/S) device will transmit the signal from the integrator in the track mode and hold a constant value in the store mode. The logic signal \(L_1 \) is set up such that the T/S device is in-store for all of the time corresponding to \(\Delta x \) except for a small period \(\delta \) at the beginning of the time period when it is in track. The output of the T/S device is added to the value on D/A channel 18 by means of adder 35. The output of adder 35 will have the difference between subsequent values in space of \(W^j_2 \). Multiplying this by \(\frac{1}{\Delta x} \) yields the slope between subsequent values. The output of potentiometer 30 is connected to the derivative terminal of integrator 30.

When the computer is in the operate mode the value
of the derivative will be integrated and added to the existing output of integrator 30. When \(\Delta x \) has elapsed the output on integrator 30 will be \(\frac{W_2^j(1)}{W_{2m}} \). A logic signal \(L_1 \) then sets T/S device 31 to track such that it will now transmit \(\frac{W_2^j(1)}{W_{2m}} \) and at the same time send a signal to the digital to input \(\frac{W_2^j(2)}{W_{2m}} \) on D/A channel 18. Upon completion of these tasks T/S device 31 is again set to store and the derivative being integrated is that corresponding to the second \(\Delta x \). Thus the output of integrator 30 will have a continuous value of \(\frac{W_2^j}{W_{2m}} \) obtained by linear interpolation between subsequent points. This continuous representation is then used in subsequent computations.

This circuit has very stable error propagation properties since the difference integrated will always be formed by subtracting the current solution from the desired solution at the end of that \(\Delta x \). Thus despite errors in the current solution the solution after \(\Delta x \) will always tend to the correct value.
APPENDIX II

CHANNEL CROSS SECTIONS
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.9</td>
<td>.3</td>
<td>.5</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>-1.5</td>
<td>.7</td>
<td>2.0</td>
<td>4.7</td>
<td>5.0</td>
</tr>
<tr>
<td>-1.1</td>
<td>1.1</td>
<td>4.2</td>
<td>6.1</td>
<td>7.0</td>
</tr>
<tr>
<td>-.7</td>
<td>1.5</td>
<td>7.1</td>
<td>8.9</td>
<td>10.6</td>
</tr>
<tr>
<td>-.3</td>
<td>1.9</td>
<td>10.7</td>
<td>9.5</td>
<td>12.4</td>
</tr>
<tr>
<td>.0</td>
<td>2.3</td>
<td>14.6</td>
<td>11.7</td>
<td>15.6</td>
</tr>
<tr>
<td>.4</td>
<td>2.7</td>
<td>19.8</td>
<td>14.5</td>
<td>19.8</td>
</tr>
<tr>
<td>.8</td>
<td>3.1</td>
<td>26.3</td>
<td>19.8</td>
<td>27.0</td>
</tr>
<tr>
<td>1.2</td>
<td>3.5</td>
<td>34.4</td>
<td>22.6</td>
<td>32.0</td>
</tr>
<tr>
<td>1.6</td>
<td>3.9</td>
<td>43.3</td>
<td>23.1</td>
<td>34.5</td>
</tr>
<tr>
<td>1.9</td>
<td>4.2</td>
<td>52.5</td>
<td>23.6</td>
<td>36.9</td>
</tr>
<tr>
<td>2.3</td>
<td>4.6</td>
<td>61.8</td>
<td>24.1</td>
<td>39.4</td>
</tr>
<tr>
<td>2.7</td>
<td>5.0</td>
<td>71.2</td>
<td>24.2</td>
<td>41.0</td>
</tr>
<tr>
<td>3.1</td>
<td>5.4</td>
<td>80.7</td>
<td>24.2</td>
<td>42.6</td>
</tr>
<tr>
<td>3.5</td>
<td>5.8</td>
<td>90.1</td>
<td>24.3</td>
<td>44.1</td>
</tr>
<tr>
<td>3.9</td>
<td>6.2</td>
<td>99.6</td>
<td>24.3</td>
<td>45.7</td>
</tr>
<tr>
<td>4.3</td>
<td>6.6</td>
<td>109.2</td>
<td>24.4</td>
<td>47.3</td>
</tr>
<tr>
<td>4.7</td>
<td>7.0</td>
<td>118.9</td>
<td>25.4</td>
<td>49.4</td>
</tr>
<tr>
<td>5.1</td>
<td>7.4</td>
<td>128.8</td>
<td>25.4</td>
<td>50.2</td>
</tr>
<tr>
<td>5.5</td>
<td>7.8</td>
<td>138.8</td>
<td>25.5</td>
<td>50.9</td>
</tr>
</tbody>
</table>

Fig. II.1 Cross Section at Station 1, Frontenac St.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.4</td>
<td>.4</td>
<td>1.0</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>-2.0</td>
<td>.8</td>
<td>3.1</td>
<td>7.4</td>
<td>8.4</td>
</tr>
<tr>
<td>-1.6</td>
<td>1.2</td>
<td>6.7</td>
<td>8.8</td>
<td>10.6</td>
</tr>
<tr>
<td>-1.2</td>
<td>1.6</td>
<td>10.6</td>
<td>9.2</td>
<td>11.6</td>
</tr>
<tr>
<td>-.8</td>
<td>2.1</td>
<td>14.5</td>
<td>9.6</td>
<td>12.6</td>
</tr>
<tr>
<td>-.3</td>
<td>2.5</td>
<td>18.7</td>
<td>10.2</td>
<td>13.7</td>
</tr>
<tr>
<td>.0</td>
<td>2.9</td>
<td>23.2</td>
<td>11.1</td>
<td>15.2</td>
</tr>
<tr>
<td>.4</td>
<td>3.3</td>
<td>28.5</td>
<td>17.7</td>
<td>22.2</td>
</tr>
<tr>
<td>.8</td>
<td>3.7</td>
<td>37.1</td>
<td>21.7</td>
<td>27.1</td>
</tr>
<tr>
<td>1.3</td>
<td>4.2</td>
<td>47.5</td>
<td>27.1</td>
<td>33.8</td>
</tr>
<tr>
<td>1.7</td>
<td>4.6</td>
<td>60.6</td>
<td>36.6</td>
<td>44.7</td>
</tr>
<tr>
<td>2.1</td>
<td>5.0</td>
<td>76.9</td>
<td>39.5</td>
<td>48.5</td>
</tr>
<tr>
<td>2.5</td>
<td>5.4</td>
<td>93.6</td>
<td>39.8</td>
<td>49.4</td>
</tr>
<tr>
<td>2.9</td>
<td>5.8</td>
<td>110.4</td>
<td>40.1</td>
<td>50.3</td>
</tr>
<tr>
<td>3.4</td>
<td>6.3</td>
<td>127.4</td>
<td>40.8</td>
<td>51.6</td>
</tr>
<tr>
<td>3.8</td>
<td>6.7</td>
<td>144.6</td>
<td>40.9</td>
<td>52.5</td>
</tr>
<tr>
<td>4.2</td>
<td>7.1</td>
<td>161.8</td>
<td>41.0</td>
<td>53.4</td>
</tr>
<tr>
<td>4.6</td>
<td>7.5</td>
<td>179.0</td>
<td>41.0</td>
<td>54.2</td>
</tr>
<tr>
<td>5.0</td>
<td>7.9</td>
<td>196.2</td>
<td>41.0</td>
<td>55.0</td>
</tr>
<tr>
<td>5.5</td>
<td>8.4</td>
<td>213.5</td>
<td>41.0</td>
<td>55.9</td>
</tr>
</tbody>
</table>

Fig. II.2 Cross Section at Station 2, Longue Pt.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.7</td>
<td>.3</td>
<td>.9</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>-1.3</td>
<td>.7</td>
<td>2.1</td>
<td>3.5</td>
<td>4.2</td>
</tr>
<tr>
<td>-.9</td>
<td>1.1</td>
<td>3.5</td>
<td>4.1</td>
<td>5.1</td>
</tr>
<tr>
<td>-.5</td>
<td>1.5</td>
<td>5.5</td>
<td>9.1</td>
<td>10.6</td>
</tr>
<tr>
<td>-.2</td>
<td>1.9</td>
<td>9.7</td>
<td>13.2</td>
<td>14.9</td>
</tr>
<tr>
<td>.1</td>
<td>2.2</td>
<td>16.5</td>
<td>22.5</td>
<td>25.0</td>
</tr>
<tr>
<td>.5</td>
<td>2.6</td>
<td>27.0</td>
<td>30.2</td>
<td>33.4</td>
</tr>
<tr>
<td>.9</td>
<td>3.0</td>
<td>39.0</td>
<td>33.0</td>
<td>37.1</td>
</tr>
<tr>
<td>1.3</td>
<td>3.4</td>
<td>52.3</td>
<td>36.5</td>
<td>41.2</td>
</tr>
<tr>
<td>1.7</td>
<td>3.8</td>
<td>67.0</td>
<td>40.4</td>
<td>45.7</td>
</tr>
<tr>
<td>2.0</td>
<td>4.1</td>
<td>82.7</td>
<td>42.1</td>
<td>48.1</td>
</tr>
<tr>
<td>2.4</td>
<td>4.5</td>
<td>99.1</td>
<td>43.7</td>
<td>50.4</td>
</tr>
<tr>
<td>2.8</td>
<td>4.9</td>
<td>115.9</td>
<td>44.6</td>
<td>52.2</td>
</tr>
<tr>
<td>3.2</td>
<td>5.3</td>
<td>133.0</td>
<td>45.5</td>
<td>54.0</td>
</tr>
<tr>
<td>3.6</td>
<td>5.7</td>
<td>152.0</td>
<td>60.9</td>
<td>70.4</td>
</tr>
<tr>
<td>3.9</td>
<td>6.0</td>
<td>175.2</td>
<td>60.9</td>
<td>71.2</td>
</tr>
<tr>
<td>4.3</td>
<td>6.4</td>
<td>198.3</td>
<td>61.0</td>
<td>71.9</td>
</tr>
<tr>
<td>4.7</td>
<td>6.8</td>
<td>221.5</td>
<td>61.0</td>
<td>72.7</td>
</tr>
<tr>
<td>5.1</td>
<td>7.2</td>
<td>244.7</td>
<td>61.0</td>
<td>73.4</td>
</tr>
<tr>
<td>5.5</td>
<td>7.6</td>
<td>267.9</td>
<td>61.0</td>
<td>74.2</td>
</tr>
</tbody>
</table>

Fig. II.3 Cross Section at Station 3, Pte-aux-Trembles
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.7</td>
<td>.3</td>
<td>1.1</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>-1.3</td>
<td>.7</td>
<td>2.7</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>- .9</td>
<td>1.1</td>
<td>5.1</td>
<td>8.1</td>
<td>9.8</td>
</tr>
<tr>
<td>- .5</td>
<td>1.5</td>
<td>8.6</td>
<td>9.9</td>
<td>12.5</td>
</tr>
<tr>
<td>- .2</td>
<td>1.9</td>
<td>13.2</td>
<td>14.6</td>
<td>18.1</td>
</tr>
<tr>
<td>.1</td>
<td>2.2</td>
<td>19.3</td>
<td>17.1</td>
<td>21.5</td>
</tr>
<tr>
<td>.5</td>
<td>2.6</td>
<td>27.2</td>
<td>23.1</td>
<td>28.4</td>
</tr>
<tr>
<td>.9</td>
<td>3.0</td>
<td>36.4</td>
<td>25.4</td>
<td>31.7</td>
</tr>
<tr>
<td>1.3</td>
<td>3.4</td>
<td>46.5</td>
<td>28.0</td>
<td>35.3</td>
</tr>
<tr>
<td>1.7</td>
<td>3.8</td>
<td>57.6</td>
<td>29.8</td>
<td>38.0</td>
</tr>
<tr>
<td>2.0</td>
<td>4.1</td>
<td>69.2</td>
<td>31.1</td>
<td>40.1</td>
</tr>
<tr>
<td>2.4</td>
<td>4.5</td>
<td>81.2</td>
<td>32.3</td>
<td>42.0</td>
</tr>
<tr>
<td>2.8</td>
<td>4.9</td>
<td>93.8</td>
<td>34.1</td>
<td>44.5</td>
</tr>
<tr>
<td>3.2</td>
<td>5.3</td>
<td>107.5</td>
<td>37.8</td>
<td>48.8</td>
</tr>
<tr>
<td>3.6</td>
<td>5.7</td>
<td>127.4</td>
<td>64.9</td>
<td>76.8</td>
</tr>
<tr>
<td>3.9</td>
<td>6.0</td>
<td>152.1</td>
<td>64.9</td>
<td>77.5</td>
</tr>
<tr>
<td>4.3</td>
<td>6.4</td>
<td>176.8</td>
<td>65.0</td>
<td>78.3</td>
</tr>
<tr>
<td>4.7</td>
<td>6.8</td>
<td>201.5</td>
<td>65.0</td>
<td>79.1</td>
</tr>
<tr>
<td>5.1</td>
<td>7.2</td>
<td>226.2</td>
<td>65.0</td>
<td>79.8</td>
</tr>
<tr>
<td>5.5</td>
<td>7.6</td>
<td>250.9</td>
<td>65.0</td>
<td>80.6</td>
</tr>
</tbody>
</table>

Fig. II.4 Cross Section at Station 4, Varennes
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.9</td>
<td>0.3</td>
<td>0.7</td>
<td>3.2</td>
<td>3.5</td>
</tr>
<tr>
<td>-1.5</td>
<td>0.7</td>
<td>2.0</td>
<td>3.5</td>
<td>4.3</td>
</tr>
<tr>
<td>-1.1</td>
<td>1.1</td>
<td>3.7</td>
<td>4.9</td>
<td>6.5</td>
</tr>
<tr>
<td>-0.7</td>
<td>1.5</td>
<td>5.9</td>
<td>6.7</td>
<td>9.3</td>
</tr>
<tr>
<td>-0.3</td>
<td>1.9</td>
<td>8.9</td>
<td>8.7</td>
<td>12.5</td>
</tr>
<tr>
<td>0.0</td>
<td>2.3</td>
<td>13.2</td>
<td>13.5</td>
<td>18.8</td>
</tr>
<tr>
<td>0.4</td>
<td>2.7</td>
<td>19.7</td>
<td>19.5</td>
<td>26.6</td>
</tr>
<tr>
<td>0.8</td>
<td>3.1</td>
<td>28.4</td>
<td>26.1</td>
<td>35.3</td>
</tr>
<tr>
<td>1.2</td>
<td>3.5</td>
<td>39.8</td>
<td>32.1</td>
<td>42.8</td>
</tr>
<tr>
<td>1.6</td>
<td>3.9</td>
<td>53.6</td>
<td>38.3</td>
<td>50.1</td>
</tr>
<tr>
<td>1.9</td>
<td>4.2</td>
<td>69.1</td>
<td>42.2</td>
<td>54.8</td>
</tr>
<tr>
<td>2.3</td>
<td>4.6</td>
<td>86.2</td>
<td>45.7</td>
<td>58.7</td>
</tr>
<tr>
<td>2.7</td>
<td>5.0</td>
<td>104.3</td>
<td>46.4</td>
<td>60.0</td>
</tr>
<tr>
<td>3.1</td>
<td>5.4</td>
<td>122.5</td>
<td>46.9</td>
<td>61.0</td>
</tr>
<tr>
<td>3.5</td>
<td>5.8</td>
<td>140.8</td>
<td>47.1</td>
<td>61.8</td>
</tr>
<tr>
<td>3.9</td>
<td>6.2</td>
<td>159.2</td>
<td>47.3</td>
<td>62.6</td>
</tr>
<tr>
<td>4.3</td>
<td>6.6</td>
<td>177.7</td>
<td>47.4</td>
<td>63.4</td>
</tr>
<tr>
<td>4.7</td>
<td>7.0</td>
<td>196.3</td>
<td>47.6</td>
<td>64.3</td>
</tr>
<tr>
<td>5.1</td>
<td>7.4</td>
<td>214.9</td>
<td>47.8</td>
<td>65.1</td>
</tr>
<tr>
<td>5.5</td>
<td>7.8</td>
<td>233.6</td>
<td>48.0</td>
<td>65.9</td>
</tr>
</tbody>
</table>

Fig. II.5 Cross Section at Station 5, Repetigny
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.6</td>
<td>.4</td>
<td>.5</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>-2.2</td>
<td>.8</td>
<td>1.8</td>
<td>3.2</td>
<td>3.8</td>
</tr>
<tr>
<td>-1.8</td>
<td>1.2</td>
<td>3.4</td>
<td>4.5</td>
<td>5.8</td>
</tr>
<tr>
<td>-1.3</td>
<td>1.7</td>
<td>5.8</td>
<td>7.5</td>
<td>9.9</td>
</tr>
<tr>
<td>-.9</td>
<td>2.1</td>
<td>10.8</td>
<td>15.2</td>
<td>19.3</td>
</tr>
<tr>
<td>-.5</td>
<td>2.5</td>
<td>18.8</td>
<td>21.1</td>
<td>26.5</td>
</tr>
<tr>
<td>-.1</td>
<td>3.0</td>
<td>28.8</td>
<td>24.7</td>
<td>31.3</td>
</tr>
<tr>
<td>.3</td>
<td>3.4</td>
<td>39.8</td>
<td>27.4</td>
<td>34.9</td>
</tr>
<tr>
<td>.7</td>
<td>3.8</td>
<td>52.2</td>
<td>29.4</td>
<td>37.8</td>
</tr>
<tr>
<td>1.2</td>
<td>4.3</td>
<td>65.2</td>
<td>31.2</td>
<td>40.4</td>
</tr>
<tr>
<td>1.6</td>
<td>4.7</td>
<td>79.7</td>
<td>35.7</td>
<td>45.7</td>
</tr>
<tr>
<td>2.0</td>
<td>5.1</td>
<td>95.5</td>
<td>38.0</td>
<td>49.3</td>
</tr>
<tr>
<td>2.4</td>
<td>5.5</td>
<td>113.3</td>
<td>43.5</td>
<td>56.0</td>
</tr>
<tr>
<td>2.9</td>
<td>6.0</td>
<td>133.3</td>
<td>50.4</td>
<td>64.6</td>
</tr>
<tr>
<td>3.3</td>
<td>6.4</td>
<td>156.8</td>
<td>57.3</td>
<td>72.9</td>
</tr>
<tr>
<td>3.7</td>
<td>6.8</td>
<td>181.7</td>
<td>57.9</td>
<td>74.4</td>
</tr>
<tr>
<td>4.2</td>
<td>7.3</td>
<td>206.7</td>
<td>57.9</td>
<td>75.2</td>
</tr>
<tr>
<td>4.6</td>
<td>7.7</td>
<td>231.6</td>
<td>58.0</td>
<td>76.1</td>
</tr>
<tr>
<td>5.0</td>
<td>8.1</td>
<td>256.5</td>
<td>58.0</td>
<td>76.9</td>
</tr>
<tr>
<td>5.5</td>
<td>8.6</td>
<td>281.5</td>
<td>58.0</td>
<td>77.8</td>
</tr>
</tbody>
</table>

Fig. II.6 Cross Section at Station 6, Verchères
Fig. II.7 Cross Section at Station 7, Lavaltrie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.1</td>
<td>0.4</td>
<td>0.9</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>-1.7</td>
<td>0.8</td>
<td>2.7</td>
<td>4.7</td>
<td>5.2</td>
</tr>
<tr>
<td>-1.3</td>
<td>1.2</td>
<td>4.8</td>
<td>5.9</td>
<td>7.0</td>
</tr>
<tr>
<td>-0.9</td>
<td>1.6</td>
<td>7.6</td>
<td>7.9</td>
<td>9.6</td>
</tr>
<tr>
<td>-0.5</td>
<td>2.0</td>
<td>12.0</td>
<td>15.1</td>
<td>17.3</td>
</tr>
<tr>
<td>-0.1</td>
<td>2.4</td>
<td>20.4</td>
<td>26.3</td>
<td>29.3</td>
</tr>
<tr>
<td>0.2</td>
<td>2.8</td>
<td>32.4</td>
<td>32.7</td>
<td>36.6</td>
</tr>
<tr>
<td>0.6</td>
<td>3.2</td>
<td>46.3</td>
<td>36.0</td>
<td>41.1</td>
</tr>
<tr>
<td>1.0</td>
<td>3.6</td>
<td>61.9</td>
<td>41.3</td>
<td>47.4</td>
</tr>
<tr>
<td>1.4</td>
<td>4.0</td>
<td>80.3</td>
<td>50.9</td>
<td>58.1</td>
</tr>
<tr>
<td>1.8</td>
<td>4.4</td>
<td>105.0</td>
<td>63.5</td>
<td>71.8</td>
</tr>
<tr>
<td>2.2</td>
<td>4.8</td>
<td>131.3</td>
<td>67.1</td>
<td>76.5</td>
</tr>
<tr>
<td>2.6</td>
<td>5.2</td>
<td>160.9</td>
<td>77.5</td>
<td>87.5</td>
</tr>
<tr>
<td>3.0</td>
<td>5.6</td>
<td>192.4</td>
<td>78.1</td>
<td>88.6</td>
</tr>
<tr>
<td>3.4</td>
<td>6.0</td>
<td>224.6</td>
<td>82.1</td>
<td>92.9</td>
</tr>
<tr>
<td>3.8</td>
<td>6.4</td>
<td>257.9</td>
<td>82.4</td>
<td>93.8</td>
</tr>
<tr>
<td>4.2</td>
<td>6.8</td>
<td>291.4</td>
<td>82.8</td>
<td>94.7</td>
</tr>
<tr>
<td>4.6</td>
<td>7.2</td>
<td>325.0</td>
<td>83.2</td>
<td>95.6</td>
</tr>
<tr>
<td>5.0</td>
<td>7.6</td>
<td>358.8</td>
<td>83.6</td>
<td>96.5</td>
</tr>
<tr>
<td>5.5</td>
<td>8.1</td>
<td>392.7</td>
<td>84.0</td>
<td>97.4</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>5.5</td>
<td>9.1</td>
<td>176.5</td>
<td>28.0</td>
<td>37.7</td>
</tr>
<tr>
<td>5.0</td>
<td>8.6</td>
<td>163.8</td>
<td>27.7</td>
<td>36.7</td>
</tr>
<tr>
<td>4.5</td>
<td>8.1</td>
<td>151.2</td>
<td>27.5</td>
<td>35.8</td>
</tr>
<tr>
<td>4.1</td>
<td>7.7</td>
<td>138.7</td>
<td>27.3</td>
<td>34.8</td>
</tr>
<tr>
<td>3.6</td>
<td>7.2</td>
<td>126.3</td>
<td>27.1</td>
<td>33.9</td>
</tr>
<tr>
<td>3.2</td>
<td>6.8</td>
<td>114.1</td>
<td>25.8</td>
<td>31.9</td>
</tr>
<tr>
<td>2.7</td>
<td>6.3</td>
<td>102.5</td>
<td>25.3</td>
<td>30.8</td>
</tr>
<tr>
<td>2.3</td>
<td>5.9</td>
<td>91.1</td>
<td>24.8</td>
<td>29.8</td>
</tr>
<tr>
<td>1.8</td>
<td>5.4</td>
<td>79.9</td>
<td>24.3</td>
<td>28.8</td>
</tr>
<tr>
<td>1.4</td>
<td>5.0</td>
<td>68.9</td>
<td>23.9</td>
<td>27.8</td>
</tr>
<tr>
<td>.9</td>
<td>4.5</td>
<td>58.4</td>
<td>22.5</td>
<td>26.0</td>
</tr>
<tr>
<td>.4</td>
<td>4.0</td>
<td>48.3</td>
<td>21.8</td>
<td>24.8</td>
</tr>
<tr>
<td>.0</td>
<td>3.6</td>
<td>38.5</td>
<td>21.1</td>
<td>23.7</td>
</tr>
<tr>
<td>-.4</td>
<td>3.1</td>
<td>29.0</td>
<td>19.5</td>
<td>21.5</td>
</tr>
<tr>
<td>-.8</td>
<td>2.7</td>
<td>20.8</td>
<td>15.8</td>
<td>17.2</td>
</tr>
<tr>
<td>-.9</td>
<td>2.2</td>
<td>14.2</td>
<td>13.0</td>
<td>14.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.8</td>
<td>9.1</td>
<td>9.2</td>
<td>10.2</td>
</tr>
<tr>
<td>2.0</td>
<td>.8</td>
<td>5.6</td>
<td>4.6</td>
<td>5.2</td>
</tr>
<tr>
<td>2.6</td>
<td>.4</td>
<td>3.0</td>
<td>3.5</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Fig. II.8 Cross Section at Station 8, Landraie
Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>0.3</td>
<td>1.5</td>
<td>11.4</td>
<td>11.5</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.6</td>
<td>5.4</td>
<td>13.2</td>
<td>13.4</td>
</tr>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>10.4</td>
<td>18.1</td>
<td>18.6</td>
</tr>
<tr>
<td>0.3</td>
<td>1.2</td>
<td>16.9</td>
<td>20.7</td>
<td>21.5</td>
</tr>
<tr>
<td>0.7</td>
<td>1.6</td>
<td>23.7</td>
<td>21.9</td>
<td>23.1</td>
</tr>
<tr>
<td>1.0</td>
<td>1.9</td>
<td>31.1</td>
<td>23.7</td>
<td>25.2</td>
</tr>
<tr>
<td>1.3</td>
<td>2.2</td>
<td>38.8</td>
<td>24.5</td>
<td>26.4</td>
</tr>
<tr>
<td>1.6</td>
<td>2.5</td>
<td>46.8</td>
<td>25.3</td>
<td>27.5</td>
</tr>
<tr>
<td>1.9</td>
<td>2.8</td>
<td>55.0</td>
<td>25.9</td>
<td>28.6</td>
</tr>
<tr>
<td>2.3</td>
<td>3.2</td>
<td>63.4</td>
<td>26.2</td>
<td>29.3</td>
</tr>
<tr>
<td>2.6</td>
<td>3.5</td>
<td>71.8</td>
<td>26.5</td>
<td>30.1</td>
</tr>
<tr>
<td>2.9</td>
<td>3.8</td>
<td>80.3</td>
<td>26.7</td>
<td>30.8</td>
</tr>
<tr>
<td>3.2</td>
<td>4.1</td>
<td>88.9</td>
<td>27.0</td>
<td>31.5</td>
</tr>
<tr>
<td>3.5</td>
<td>4.4</td>
<td>97.6</td>
<td>27.1</td>
<td>32.2</td>
</tr>
<tr>
<td>3.9</td>
<td>4.8</td>
<td>106.3</td>
<td>27.3</td>
<td>32.9</td>
</tr>
<tr>
<td>4.2</td>
<td>5.1</td>
<td>115.1</td>
<td>27.4</td>
<td>33.5</td>
</tr>
<tr>
<td>4.5</td>
<td>5.4</td>
<td>123.9</td>
<td>27.5</td>
<td>34.2</td>
</tr>
<tr>
<td>4.8</td>
<td>5.7</td>
<td>132.7</td>
<td>27.7</td>
<td>34.9</td>
</tr>
<tr>
<td>5.1</td>
<td>6.0</td>
<td>141.6</td>
<td>27.8</td>
<td>35.5</td>
</tr>
<tr>
<td>5.5</td>
<td>6.4</td>
<td>150.6</td>
<td>28.0</td>
<td>36.2</td>
</tr>
</tbody>
</table>

Fig. II.9 Cross Section at Station 9, Sorel
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.7</td>
<td>.5</td>
<td>2.1</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td>-1.2</td>
<td>1.0</td>
<td>5.0</td>
<td>5.6</td>
<td>6.5</td>
</tr>
<tr>
<td>- .6</td>
<td>1.6</td>
<td>8.2</td>
<td>6.1</td>
<td>7.7</td>
</tr>
<tr>
<td>- .1</td>
<td>2.1</td>
<td>11.7</td>
<td>6.8</td>
<td>9.0</td>
</tr>
<tr>
<td>.4</td>
<td>2.7</td>
<td>16.6</td>
<td>15.6</td>
<td>18.4</td>
</tr>
<tr>
<td>.9</td>
<td>3.2</td>
<td>78.4</td>
<td>190.4</td>
<td>193.3</td>
</tr>
<tr>
<td>1.5</td>
<td>3.8</td>
<td>191.9</td>
<td>219.2</td>
<td>222.7</td>
</tr>
<tr>
<td>2.0</td>
<td>4.3</td>
<td>318.5</td>
<td>248.7</td>
<td>252.9</td>
</tr>
<tr>
<td>2.6</td>
<td>4.9</td>
<td>459.0</td>
<td>274.0</td>
<td>279.0</td>
</tr>
<tr>
<td>3.1</td>
<td>5.4</td>
<td>608.4</td>
<td>274.1</td>
<td>280.1</td>
</tr>
<tr>
<td>3.6</td>
<td>5.9</td>
<td>757.8</td>
<td>274.2</td>
<td>281.2</td>
</tr>
<tr>
<td>4.2</td>
<td>6.5</td>
<td>907.3</td>
<td>274.3</td>
<td>282.3</td>
</tr>
<tr>
<td>4.7</td>
<td>7.0</td>
<td>1056.8</td>
<td>274.3</td>
<td>283.4</td>
</tr>
<tr>
<td>5.3</td>
<td>7.6</td>
<td>1206.4</td>
<td>274.4</td>
<td>284.5</td>
</tr>
<tr>
<td>5.8</td>
<td>8.1</td>
<td>1356.0</td>
<td>274.5</td>
<td>285.6</td>
</tr>
<tr>
<td>6.4</td>
<td>8.7</td>
<td>1505.6</td>
<td>274.6</td>
<td>286.7</td>
</tr>
<tr>
<td>6.9</td>
<td>9.2</td>
<td>1655.3</td>
<td>274.7</td>
<td>287.8</td>
</tr>
<tr>
<td>7.5</td>
<td>9.8</td>
<td>1805.1</td>
<td>274.8</td>
<td>288.9</td>
</tr>
<tr>
<td>8.0</td>
<td>10.3</td>
<td>1954.9</td>
<td>274.9</td>
<td>290.0</td>
</tr>
<tr>
<td>8.6</td>
<td>10.9</td>
<td>2104.8</td>
<td>274.9</td>
<td>291.1</td>
</tr>
</tbody>
</table>

Fig. II.10 Cross Section at Station 10, Louiseville
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-.49</td>
<td>.4</td>
<td>.4</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>-.45</td>
<td>.8</td>
<td>1.1</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>-.41</td>
<td>1.2</td>
<td>2.1</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>-.37</td>
<td>1.6</td>
<td>4.2</td>
<td>6.7</td>
<td>8.5</td>
</tr>
<tr>
<td>-.33</td>
<td>2.1</td>
<td>7.5</td>
<td>9.0</td>
<td>11.3</td>
</tr>
<tr>
<td>-.28</td>
<td>2.5</td>
<td>11.8</td>
<td>11.5</td>
<td>14.4</td>
</tr>
<tr>
<td>-.24</td>
<td>2.9</td>
<td>17.7</td>
<td>17.8</td>
<td>21.1</td>
</tr>
<tr>
<td>-.20</td>
<td>3.3</td>
<td>26.8</td>
<td>22.9</td>
<td>26.5</td>
</tr>
<tr>
<td>-.16</td>
<td>3.7</td>
<td>36.7</td>
<td>23.9</td>
<td>27.8</td>
</tr>
<tr>
<td>-.12</td>
<td>4.2</td>
<td>46.9</td>
<td>24.7</td>
<td>29.0</td>
</tr>
<tr>
<td>-.07</td>
<td>4.6</td>
<td>57.5</td>
<td>25.4</td>
<td>30.2</td>
</tr>
<tr>
<td>-.03</td>
<td>5.0</td>
<td>68.3</td>
<td>26.1</td>
<td>31.3</td>
</tr>
<tr>
<td>.1</td>
<td>5.4</td>
<td>79.4</td>
<td>26.7</td>
<td>32.4</td>
</tr>
<tr>
<td>.4</td>
<td>5.8</td>
<td>91.0</td>
<td>28.3</td>
<td>34.3</td>
</tr>
<tr>
<td>.9</td>
<td>6.3</td>
<td>103.3</td>
<td>30.1</td>
<td>36.3</td>
</tr>
<tr>
<td>1.3</td>
<td>6.7</td>
<td>116.5</td>
<td>33.3</td>
<td>39.7</td>
</tr>
<tr>
<td>1.7</td>
<td>7.1</td>
<td>132.3</td>
<td>44.1</td>
<td>50.6</td>
</tr>
<tr>
<td>2.1</td>
<td>7.5</td>
<td>151.0</td>
<td>44.9</td>
<td>52.0</td>
</tr>
<tr>
<td>2.5</td>
<td>7.9</td>
<td>170.0</td>
<td>45.4</td>
<td>53.0</td>
</tr>
<tr>
<td>3.0</td>
<td>8.4</td>
<td>189.3</td>
<td>46.0</td>
<td>54.1</td>
</tr>
</tbody>
</table>

Fig. II.11 Cross Section at Station 11, Port-St-François
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.8</td>
<td>-4.4</td>
<td>-4.0</td>
<td>-3.6</td>
<td>-3.2</td>
</tr>
<tr>
<td>-4.4</td>
<td>-4.0</td>
<td>-3.6</td>
<td>-3.2</td>
<td>-2.8</td>
</tr>
<tr>
<td>-4.0</td>
<td>-3.6</td>
<td>-3.2</td>
<td>-2.8</td>
<td>-2.3</td>
</tr>
<tr>
<td>-3.6</td>
<td>-3.2</td>
<td>-2.8</td>
<td>-2.3</td>
<td>-1.9</td>
</tr>
<tr>
<td>-3.2</td>
<td>-2.8</td>
<td>-2.3</td>
<td>-1.9</td>
<td>-1.5</td>
</tr>
<tr>
<td>-2.8</td>
<td>-2.3</td>
<td>-1.9</td>
<td>-1.5</td>
<td>-1.1</td>
</tr>
<tr>
<td>-2.3</td>
<td>-1.9</td>
<td>-1.5</td>
<td>-1.1</td>
<td>- .7</td>
</tr>
<tr>
<td>-1.9</td>
<td>-1.5</td>
<td>-1.1</td>
<td>- .7</td>
<td>- .3</td>
</tr>
<tr>
<td>-1.5</td>
<td>-1.1</td>
<td>- .7</td>
<td>- .3</td>
<td>.1</td>
</tr>
<tr>
<td>-1.1</td>
<td>- .7</td>
<td>- .3</td>
<td>.1</td>
<td>.5</td>
</tr>
<tr>
<td>- .7</td>
<td>- .3</td>
<td>.1</td>
<td>.5</td>
<td>.9</td>
</tr>
<tr>
<td>- .3</td>
<td>.1</td>
<td>.9</td>
<td>.9</td>
<td>1.3</td>
</tr>
<tr>
<td>.1</td>
<td>.9</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.9</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>1.7</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>2.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>2.5</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>3.0</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Fig. II.12 Cross Section at Station 12, Trois Rivières
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.5</td>
<td>.2</td>
<td>1.9</td>
<td>10.6</td>
<td>10.8</td>
</tr>
<tr>
<td>-2.2</td>
<td>.5</td>
<td>5.4</td>
<td>13.4</td>
<td>13.9</td>
</tr>
<tr>
<td>-1.9</td>
<td>.8</td>
<td>9.4</td>
<td>14.2</td>
<td>14.8</td>
</tr>
<tr>
<td>-1.6</td>
<td>1.1</td>
<td>14.4</td>
<td>18.9</td>
<td>19.8</td>
</tr>
<tr>
<td>-1.3</td>
<td>1.4</td>
<td>20.4</td>
<td>23.8</td>
<td>25.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.7</td>
<td>27.6</td>
<td>25.9</td>
<td>27.5</td>
</tr>
<tr>
<td>-.7</td>
<td>2.0</td>
<td>35.7</td>
<td>29.4</td>
<td>31.7</td>
</tr>
<tr>
<td>-.4</td>
<td>2.3</td>
<td>44.6</td>
<td>31.8</td>
<td>34.6</td>
</tr>
<tr>
<td>-.1</td>
<td>2.6</td>
<td>54.4</td>
<td>40.3</td>
<td>43.5</td>
</tr>
<tr>
<td>.1</td>
<td>2.9</td>
<td>66.6</td>
<td>42.9</td>
<td>46.5</td>
</tr>
<tr>
<td>.3</td>
<td>3.1</td>
<td>79.7</td>
<td>49.5</td>
<td>53.6</td>
</tr>
<tr>
<td>.6</td>
<td>3.4</td>
<td>94.7</td>
<td>53.5</td>
<td>58.0</td>
</tr>
<tr>
<td>.9</td>
<td>3.7</td>
<td>117.5</td>
<td>84.5</td>
<td>89.2</td>
</tr>
<tr>
<td>1.2</td>
<td>4.0</td>
<td>142.1</td>
<td>85.5</td>
<td>90.4</td>
</tr>
<tr>
<td>1.5</td>
<td>4.3</td>
<td>167.0</td>
<td>85.8</td>
<td>91.1</td>
</tr>
<tr>
<td>1.8</td>
<td>4.6</td>
<td>192.0</td>
<td>86.2</td>
<td>91.8</td>
</tr>
<tr>
<td>2.1</td>
<td>4.9</td>
<td>217.0</td>
<td>86.6</td>
<td>92.5</td>
</tr>
<tr>
<td>2.4</td>
<td>5.2</td>
<td>242.2</td>
<td>86.8</td>
<td>93.2</td>
</tr>
<tr>
<td>2.7</td>
<td>5.5</td>
<td>267.4</td>
<td>87.3</td>
<td>94.0</td>
</tr>
<tr>
<td>3.0</td>
<td>5.8</td>
<td>292.9</td>
<td>88.0</td>
<td>95.0</td>
</tr>
</tbody>
</table>

Fig. II.13 Cross Section at Station 13, Champlain
Fig. II.14 Cross Section at Station 14, Batiscan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.1</td>
<td>.3</td>
<td>1.3</td>
<td>6.0</td>
<td>6.1</td>
</tr>
<tr>
<td>-2.8</td>
<td>.6</td>
<td>4.1</td>
<td>10.4</td>
<td>10.7</td>
</tr>
<tr>
<td>-2.5</td>
<td>.9</td>
<td>8.1</td>
<td>12.9</td>
<td>13.4</td>
</tr>
<tr>
<td>-2.2</td>
<td>1.3</td>
<td>12.4</td>
<td>14.1</td>
<td>14.7</td>
</tr>
<tr>
<td>-1.8</td>
<td>1.6</td>
<td>17.3</td>
<td>15.5</td>
<td>16.3</td>
</tr>
<tr>
<td>-1.5</td>
<td>1.9</td>
<td>22.6</td>
<td>17.0</td>
<td>17.9</td>
</tr>
<tr>
<td>-1.2</td>
<td>2.2</td>
<td>28.6</td>
<td>19.8</td>
<td>20.8</td>
</tr>
<tr>
<td>-.9</td>
<td>2.6</td>
<td>35.6</td>
<td>23.6</td>
<td>24.8</td>
</tr>
<tr>
<td>-.5</td>
<td>2.9</td>
<td>43.7</td>
<td>27.8</td>
<td>29.2</td>
</tr>
<tr>
<td>-.2</td>
<td>3.2</td>
<td>53.0</td>
<td>28.9</td>
<td>30.4</td>
</tr>
<tr>
<td>.1</td>
<td>3.5</td>
<td>63.1</td>
<td>33.4</td>
<td>35.2</td>
</tr>
<tr>
<td>.4</td>
<td>3.9</td>
<td>74.4</td>
<td>36.2</td>
<td>38.2</td>
</tr>
<tr>
<td>.7</td>
<td>4.2</td>
<td>87.2</td>
<td>50.2</td>
<td>52.4</td>
</tr>
<tr>
<td>1.0</td>
<td>4.5</td>
<td>105.0</td>
<td>56.0</td>
<td>58.4</td>
</tr>
<tr>
<td>1.3</td>
<td>4.8</td>
<td>123.3</td>
<td>56.6</td>
<td>59.3</td>
</tr>
<tr>
<td>1.7</td>
<td>5.2</td>
<td>141.8</td>
<td>57.1</td>
<td>60.2</td>
</tr>
<tr>
<td>2.0</td>
<td>5.5</td>
<td>160.5</td>
<td>57.6</td>
<td>61.0</td>
</tr>
<tr>
<td>2.3</td>
<td>5.8</td>
<td>179.3</td>
<td>58.0</td>
<td>61.7</td>
</tr>
<tr>
<td>2.6</td>
<td>6.1</td>
<td>198.2</td>
<td>58.5</td>
<td>62.5</td>
</tr>
<tr>
<td>3.0</td>
<td>6.5</td>
<td>217.3</td>
<td>59.0</td>
<td>63.3</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>-3.1</td>
<td>.3</td>
<td>1.0</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td>-2.8</td>
<td>.6</td>
<td>2.5</td>
<td>5.5</td>
<td>6.3</td>
</tr>
<tr>
<td>-2.5</td>
<td>.9</td>
<td>4.5</td>
<td>6.8</td>
<td>8.2</td>
</tr>
<tr>
<td>-2.2</td>
<td>1.3</td>
<td>7.0</td>
<td>8.7</td>
<td>10.5</td>
</tr>
<tr>
<td>-1.8</td>
<td>1.6</td>
<td>10.8</td>
<td>13.9</td>
<td>16.1</td>
</tr>
<tr>
<td>-1.5</td>
<td>1.9</td>
<td>15.8</td>
<td>16.3</td>
<td>18.8</td>
</tr>
<tr>
<td>-1.2</td>
<td>2.2</td>
<td>21.5</td>
<td>19.0</td>
<td>21.8</td>
</tr>
<tr>
<td>-.9</td>
<td>2.6</td>
<td>28.5</td>
<td>23.6</td>
<td>26.7</td>
</tr>
<tr>
<td>-.5</td>
<td>2.9</td>
<td>36.9</td>
<td>27.7</td>
<td>31.1</td>
</tr>
<tr>
<td>-.2</td>
<td>3.2</td>
<td>47.3</td>
<td>34.9</td>
<td>38.5</td>
</tr>
<tr>
<td>.1</td>
<td>3.5</td>
<td>59.1</td>
<td>38.9</td>
<td>42.8</td>
</tr>
<tr>
<td>.4</td>
<td>3.9</td>
<td>72.5</td>
<td>43.0</td>
<td>47.3</td>
</tr>
<tr>
<td>.7</td>
<td>4.2</td>
<td>88.5</td>
<td>50.0</td>
<td>55.0</td>
</tr>
<tr>
<td>1.0</td>
<td>4.5</td>
<td>104.9</td>
<td>50.7</td>
<td>56.2</td>
</tr>
<tr>
<td>1.3</td>
<td>4.8</td>
<td>121.5</td>
<td>51.0</td>
<td>56.9</td>
</tr>
<tr>
<td>1.7</td>
<td>5.2</td>
<td>138.1</td>
<td>51.3</td>
<td>57.6</td>
</tr>
<tr>
<td>2.0</td>
<td>5.5</td>
<td>154.8</td>
<td>51.6</td>
<td>58.3</td>
</tr>
<tr>
<td>2.3</td>
<td>5.8</td>
<td>171.7</td>
<td>52.0</td>
<td>59.1</td>
</tr>
<tr>
<td>2.6</td>
<td>6.1</td>
<td>188.7</td>
<td>52.7</td>
<td>60.1</td>
</tr>
<tr>
<td>3.0</td>
<td>6.5</td>
<td>206.0</td>
<td>54.0</td>
<td>61.5</td>
</tr>
</tbody>
</table>

Fig. II.15 Cross Section at Station 15, Cap-à-la Roche
Fig. II.16 Cross Section at Station 16, Grondines
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.2</td>
<td>0.5</td>
<td>1.7</td>
<td>5.8</td>
<td>6.0</td>
</tr>
<tr>
<td>-6.7</td>
<td>1.0</td>
<td>5.6</td>
<td>7.8</td>
<td>8.3</td>
</tr>
<tr>
<td>-6.1</td>
<td>1.6</td>
<td>10.3</td>
<td>9.9</td>
<td>10.9</td>
</tr>
<tr>
<td>-5.6</td>
<td>2.1</td>
<td>16.0</td>
<td>11.0</td>
<td>12.4</td>
</tr>
<tr>
<td>-5.1</td>
<td>2.7</td>
<td>22.2</td>
<td>11.9</td>
<td>13.8</td>
</tr>
<tr>
<td>-4.5</td>
<td>3.2</td>
<td>28.9</td>
<td>12.7</td>
<td>15.2</td>
</tr>
<tr>
<td>-4.0</td>
<td>3.7</td>
<td>36.0</td>
<td>13.5</td>
<td>16.6</td>
</tr>
<tr>
<td>-3.4</td>
<td>4.3</td>
<td>43.5</td>
<td>14.4</td>
<td>18.1</td>
</tr>
<tr>
<td>-2.9</td>
<td>4.8</td>
<td>51.6</td>
<td>15.3</td>
<td>19.7</td>
</tr>
<tr>
<td>-2.4</td>
<td>5.4</td>
<td>60.0</td>
<td>15.8</td>
<td>20.9</td>
</tr>
<tr>
<td>-1.8</td>
<td>5.9</td>
<td>68.7</td>
<td>16.2</td>
<td>22.1</td>
</tr>
<tr>
<td>-1.3</td>
<td>6.4</td>
<td>77.7</td>
<td>16.9</td>
<td>23.5</td>
</tr>
<tr>
<td>-0.7</td>
<td>7.0</td>
<td>87.0</td>
<td>17.8</td>
<td>25.1</td>
</tr>
<tr>
<td>-0.2</td>
<td>7.5</td>
<td>97.4</td>
<td>21.1</td>
<td>28.9</td>
</tr>
<tr>
<td>0.3</td>
<td>8.1</td>
<td>113.5</td>
<td>36.6</td>
<td>44.9</td>
</tr>
<tr>
<td>0.8</td>
<td>8.6</td>
<td>133.8</td>
<td>37.8</td>
<td>46.8</td>
</tr>
<tr>
<td>1.3</td>
<td>9.1</td>
<td>154.3</td>
<td>38.0</td>
<td>47.9</td>
</tr>
<tr>
<td>1.9</td>
<td>9.7</td>
<td>174.9</td>
<td>38.3</td>
<td>49.0</td>
</tr>
<tr>
<td>2.4</td>
<td>10.2</td>
<td>195.7</td>
<td>38.6</td>
<td>50.2</td>
</tr>
<tr>
<td>3.0</td>
<td>10.8</td>
<td>216.7</td>
<td>39.0</td>
<td>51.3</td>
</tr>
</tbody>
</table>

Fig. II.17 Cross Section at Station 17, Portneuf
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.6</td>
<td>.4</td>
<td>1.1</td>
<td>4.9</td>
<td>5.0</td>
</tr>
<tr>
<td>-5.1</td>
<td>.9</td>
<td>4.2</td>
<td>9.4</td>
<td>9.8</td>
</tr>
<tr>
<td>-4.7</td>
<td>1.3</td>
<td>9.1</td>
<td>12.2</td>
<td>13.0</td>
</tr>
<tr>
<td>-4.2</td>
<td>1.8</td>
<td>15.0</td>
<td>13.8</td>
<td>14.9</td>
</tr>
<tr>
<td>-3.8</td>
<td>2.2</td>
<td>21.5</td>
<td>14.7</td>
<td>16.3</td>
</tr>
<tr>
<td>-3.3</td>
<td>2.7</td>
<td>28.6</td>
<td>16.7</td>
<td>18.9</td>
</tr>
<tr>
<td>-2.9</td>
<td>3.1</td>
<td>36.9</td>
<td>19.8</td>
<td>22.5</td>
</tr>
<tr>
<td>-2.4</td>
<td>3.6</td>
<td>47.2</td>
<td>26.8</td>
<td>30.1</td>
</tr>
<tr>
<td>-2.0</td>
<td>4.0</td>
<td>61.3</td>
<td>37.8</td>
<td>41.7</td>
</tr>
<tr>
<td>-1.5</td>
<td>4.5</td>
<td>80.1</td>
<td>46.3</td>
<td>50.7</td>
</tr>
<tr>
<td>-1.0</td>
<td>5.0</td>
<td>102.0</td>
<td>48.9</td>
<td>53.7</td>
</tr>
<tr>
<td>-.6</td>
<td>5.4</td>
<td>124.5</td>
<td>49.9</td>
<td>55.1</td>
</tr>
<tr>
<td>-1</td>
<td>5.9</td>
<td>148.1</td>
<td>56.0</td>
<td>61.5</td>
</tr>
<tr>
<td>.2</td>
<td>6.3</td>
<td>174.5</td>
<td>59.9</td>
<td>65.8</td>
</tr>
<tr>
<td>.7</td>
<td>6.8</td>
<td>204.0</td>
<td>66.8</td>
<td>73.3</td>
</tr>
<tr>
<td>1.1</td>
<td>7.2</td>
<td>234.5</td>
<td>67.0</td>
<td>74.3</td>
</tr>
<tr>
<td>1.6</td>
<td>7.7</td>
<td>265.0</td>
<td>67.1</td>
<td>75.2</td>
</tr>
<tr>
<td>2.0</td>
<td>8.1</td>
<td>295.5</td>
<td>67.1</td>
<td>76.1</td>
</tr>
<tr>
<td>2.5</td>
<td>8.6</td>
<td>326.1</td>
<td>67.2</td>
<td>77.0</td>
</tr>
<tr>
<td>3.0</td>
<td>9.1</td>
<td>356.7</td>
<td>67.2</td>
<td>77.9</td>
</tr>
</tbody>
</table>

Fig. II.18 Cross Section at Station 18, Neuville
Fig. II.19 Cross Section at Station 19, Quebec Bridge
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-16.1</td>
<td>1.0</td>
<td>1.1</td>
<td>2.3</td>
<td>3.2</td>
</tr>
<tr>
<td>-15.1</td>
<td>2.0</td>
<td>4.2</td>
<td>3.7</td>
<td>5.7</td>
</tr>
<tr>
<td>-14.1</td>
<td>3.0</td>
<td>8.9</td>
<td>5.5</td>
<td>8.4</td>
</tr>
<tr>
<td>-13.1</td>
<td>4.0</td>
<td>15.0</td>
<td>6.3</td>
<td>10.6</td>
</tr>
<tr>
<td>-12.1</td>
<td>5.0</td>
<td>21.7</td>
<td>6.8</td>
<td>12.7</td>
</tr>
<tr>
<td>-11.1</td>
<td>6.0</td>
<td>28.9</td>
<td>7.3</td>
<td>14.8</td>
</tr>
<tr>
<td>-10.1</td>
<td>7.0</td>
<td>36.5</td>
<td>8.3</td>
<td>17.4</td>
</tr>
<tr>
<td>- 9.1</td>
<td>8.0</td>
<td>47.6</td>
<td>12.5</td>
<td>22.6</td>
</tr>
<tr>
<td>- 8.1</td>
<td>9.0</td>
<td>61.6</td>
<td>15.9</td>
<td>26.9</td>
</tr>
<tr>
<td>- 7.1</td>
<td>10.1</td>
<td>79.0</td>
<td>18.0</td>
<td>30.0</td>
</tr>
<tr>
<td>- 6.0</td>
<td>11.1</td>
<td>97.6</td>
<td>18.9</td>
<td>32.2</td>
</tr>
<tr>
<td>- 5.0</td>
<td>12.1</td>
<td>117.2</td>
<td>19.7</td>
<td>34.4</td>
</tr>
<tr>
<td>- 4.0</td>
<td>13.1</td>
<td>137.4</td>
<td>20.1</td>
<td>36.5</td>
</tr>
<tr>
<td>- 3.0</td>
<td>14.1</td>
<td>157.9</td>
<td>20.4</td>
<td>38.5</td>
</tr>
<tr>
<td>- 2.0</td>
<td>15.1</td>
<td>178.6</td>
<td>20.6</td>
<td>40.6</td>
</tr>
<tr>
<td>- 1.0</td>
<td>16.1</td>
<td>199.7</td>
<td>20.9</td>
<td>42.6</td>
</tr>
<tr>
<td>- .0</td>
<td>17.1</td>
<td>221.0</td>
<td>21.2</td>
<td>44.7</td>
</tr>
<tr>
<td>.9</td>
<td>18.1</td>
<td>242.5</td>
<td>21.4</td>
<td>46.7</td>
</tr>
<tr>
<td>1.9</td>
<td>19.1</td>
<td>264.4</td>
<td>21.7</td>
<td>48.7</td>
</tr>
<tr>
<td>3.0</td>
<td>20.2</td>
<td>286.4</td>
<td>22.0</td>
<td>50.8</td>
</tr>
</tbody>
</table>

Fig. II.20 Cross Section at Station 20, Quebec City
APPENDIX III

LISTING OF THE FORTRAN PROGRAM
COMMON/GDAT/XLOC(100), A(100), H(100), KMAX
COMMON/GENRL/V0(2), H0(2), SLOPE(150), HP(20), N4, XPLOC(20)
COMMON/PLBACK/W1(3, 150), W2(3, 150), C(150), QS(150), QL(150),
1 W1M, W2M, XOUT(18)
COMMON/SCALE/FM, FDM, SOM, CM, DELX, SHPF, QSM, QLM, JAY, JM1, JM2, G
SCALED FRACTION W1, W2, XOUT
LOGICAL LG, LOGIC, PLTFLG, SENSW, LSS, N5, LST, REFLAG
LOGICAL ENDFLG
INTEGER UPDAT

MAIN PROGRAM FOR THE HYBRID COMPUTER
DEVELOPED BY MARTIN OOSTERVELD, 1973

CALL EX7MT
CALL QSHYIN(IERR, 680)
CALL QSSECN(IERR)
PLTFLG = . FALSE.
N5 = . FALSE.

CONSTANTS OF THE PROBLEM

SS = SPACE SCALE - SS FT. = 1 SEC.
SS = 10.
G = 32.2

NFREQ = NO. OF FEET BETWEEN PLAYBACK LOCATIONS
NFREQ = 7
IDEC = 1
ICNT = 1

IITT = NUMBER OF ITERATIONS PER SOLUTION
IITT = 1

DATA INPUT SECTION

NO. OF TIME STEPS, NO. OF DATA INPUT LOCATIONS, DELTA T
READ (6, 150) JMAX, KMAX, DELT

SCALING INFORMATION
READ (6, 675) SHPF, CM, FM, FDM, SOM, QSM, QLM, VMAX, HMAX

STATION LOCATIONS
READ (6, 111) (XLOC(K), K = 1, KMAX)

INITIAL WATER LEVELS
READ (6, 90) (H(K), K = 1, KMAX)

COMPUTE SCALING CONSTANTS

FAC = SQRT(G/SHPF)
TEMP = 2. * SQRT(HMAX) * FAC
W1M = TEMP + VMAX
W2M = W1M
WDM=2.0
XLMM = VMAX + SQRT(G*SHPF*HMAX)
XLMDT = XLMM*DELT

CALL GEOME
EX = NFREQ
XSPACE = 0.1*EX*SS
DELX=XSPACE

CALL CREAT(KKMAX)
TYPE 820, KKMAX

READ(6,98)(SLOPE(K),K=1,KKMAX)
JJ = 0

DO 202 K=1,KLM
KLM = KMAX-1
QS(K) = 0.
QL(K) = 0.
202 CONTINUE

DO 901 K=1,KKMAX
DUM1=W1(JM1, K)
DUM2=W2(JM1, K)
ANS=DUM1
901 W2(JAY, K)=ANS

DO 116 K=1,KKMAX
DUM1=W1(JM1, K)
DUM2=W2(JM2, K)
H(K) = ((W1*M#DUM1-W2*M#DUM2)*2.)*SHPF/(16.*G)
116 C(K)=SLOPE(K)*H(K)

IF(SENSW(4)) WRITE(6,97)(K,H(K),C(K),K=1,KKMAX)
INPUT BOUNDARY CONDITIONS

BOUNDARY CONDITIONS FOR FLOOD ROUTING

BOUNDARY CONDITIONS

AT X=0
IF (JJ.EQ.0) HO(1)=0.235
IF (JJ.GT.0.AND.JJ.LE.25) HO(1)=HO(1)+0.0106
IF (JJ.GT.25.AND.JJ.LE.50) HO(1)=HO(1)-0.0106
IF (JJ.GT.50)HO(1)=0.235

AT X=XMAX
HO(2)=0.260

ESTIMATE WI(JAY, 1)
DUM1=W2(JAY, 1)
DUM2=SQRT(16.*G*HO(1)/SHPF)
DUM3=(DUM2+DUM1)/W2M/W1M
WI(JAY, 1)=DUM3

INITIALIZING FOR FORWARD INTEGRATION

CALL QWJDAS(W1(JAY, 1),O9,IERR)
DQS=QS(1)/QSM
DQL=QL(1)/QLM
CALL QWJDAR(DQS, 17, IERR)
CALL QWJDAR(DQL, 18, IERR)
DAMO = (2. +SHPF)*W1M/(40.*XLMM)
DAM1 = (2. -SHPF)*W2M/(4.*XLMM)
DAM2 = W1M/(WDM*XLMDT)
CALL QWJDAR (DAMO,00, IERR)
CALL QWJDAR (DAM1,01, IERR)
CALL QWJDAR (DAM2,02, IERR)

PUT INITIAL VALUES INTO RECONSTRUCTION CIRCUITS
K=1

CALL GEOVAL(K)
CALL QWJDAS(W1(JM1, 1),04,IERR)
CALL QWJDAS(W2(JAY, 1),05,IERR)

IND=0 FOR FORWARD INTEGRATE

INPUT VALUES FOR NEXT SPACE ELEMENT

IND=0
K=2
CALL PROUT(K, IND)
CALL QSTDA
CALL QWCLL(2,. FALSE., I ERR)

DATA CHANGE AND INPUT SECTION
INPUT PLOTTING LOCATIONS FOR CALCOMP PLOTTER

11 IF (SENSW(1)) GO TO 50

CHANGE NO OF PLAYBACK LOCATIONS

51 IF (SENSW(2)) GO TO 52

53 CALL QSIC(IERR)
 CALL QSDLY(1000)

SENSE LINE 3 IS CONNECTED TO A PUSHBUTTON TO START INTEGRATION

CALL QRSLL(3,LSS,IERR)
CALL QRSLL(3,LSS,IERR)
IF (. NOT. LSS) GO TO 11

IF (. NOT. SENSW(5)) GO TO 12
IF (. NOT. N5) GO TO 13
 CALL SBYSET

INITIALIZE THE CALCOMP PLOTTER

CALL PLTINT(KKMAX,N4,XPLOC)

FIND CURRENT PLOTTING HEIGHTS

CALL HTPLT
N5 = FALSE.
PLTFLG = .TRUE.
13 TIME = JJ
 XP=TIME*DELT
 TYPE 86, (HP(JKN), JKN=1, N4)

PLOT POINTS

CALL STRPLT(N4,0.,XP,HP)
GO TO 14

12 IF (PLTFLG) CALL STNDBY
14 CONTINUE

initialize control lines and sense lines
CALL QWCLL(1, TRUE., IERR)
CALL QRSLL(2, LG, IERR)
CALL QRSLL(0, LOGIC, IERR)

START ON A CLOCK PULSE

CALL QRSLL(1, LST, IERR)
15 CALL QRSLL(1, LST, IERR)
IF (. NOT. LST) GO TO 15

START OPERATION ON FORWARD INTEGRATE

CALL QSOP(IERR)

KK=K+1

INPUT NEXT SPACE DATA INFORMATION

CALL PROUT(KK,IND)

TIME TO UPDATE

CALL QRSLL(2, LG, IERR)

IF(LG) GO TO 501

CALL QRSLL(2, LG, IERR)

IF(. NOT. LG) GO TO 131

HAVE DIGITAL READ CURRENT VALUE OF W1

CALL QREADS(W1(JAY, K), 1, 1, IERR)

TRANSFER VALUES FOR NEXT ELEMENT

CALL QSTDA

SET T/S DEVICES TO STORE

CALL QWCLL(1, TRUE., IERR)

K=K+1

HAS SPACE ELAPSED

IF(K-KKMAX)399, 141, 130

SET ANALOG TO I.C.

CALL QSIC(IERR)

**

IF(KK. NE. KKMAX) GO TO 502

OUTPUT W1

IF (SENSW(6)) WRITE(6, 700) (W1(JAY, K), K=1, KKMAX)

WANT TO CHANGE CALIBRATION

IF(SENSW(3)) GO TO 507

TYPE 405, W1(JAY, KKMAX)

**

BACKWARD INTEGRATION LOOP

INITIALIZATION FOR BACKWARD INTEGRATE

DUMVAR=SQRT (16. -G*HO(2) /SHPF)

DUM=W1(JAY, KKMAX)
\[W_2(JAY, KKMAX) = \frac{(W_1M \times DUM - DUMVAR)}{W_2M} \]

\[TEMP = 4. \times XLMM \]

\[DAM0 = \frac{(2. + SHPF) \times W_2M}{(TEMP \times 10.)} \]

\[DAM1 = \frac{(2. - SHPF) \times W_1M}{TEMP} \]

\[DAM2 = \frac{W_2M}{(WDM \times XLMDT)} \]

\[CALL QWCLUD(2., TRUE., IERR) \]

\[CALL QWJDAR(DAM0, 00, IERR) \]

\[CALL QWJDAR(DAM1, 01, IERR) \]

\[CALL QWJDAR(DAM2, 02, IERR) \]

\[IND = 1 \]

\[K = KKMAX \]

\[KK = K - 1 \]

\[CALL GEOVAL(KK) \]

\[CALL QWJDAS(W2(JAY, KKMAX), 09, IERR) \]

\[CALL PROUT(KK, IND) \]

\[CALL QSTDA \]

\[CALL QWJDAS(W2(JM1, KKMAX), 04, IERR) \]

\[CALL QWJDAS(W1(JAY, KKMAX), 05, IERR) \]

\[CALL QWCLUD(1, TRUE., IERR) \]

\[CALL QWCLUD(2, TRUE., IERR) \]

\[CALL QSDLY(1000) \]

\[K = KKMAX - 1 \]

\[CALL QWCLUD(1, TRUE., IERR) \]

\[CALL QWCLUD(2, TRUE., IERR) \]

\[CALL QWCLUD(0, LOGIC, IERR) \]

\[CALL QWCLUD(2, LG, IERR) \]

\[CALL QWCLUD(1, LST, IERR) \]

\[CALL QRSLL(0, LOGIC, IERR) \]

\[CALL QRSLL(2, LG, IERR) \]

\[CALL QRSLL(1, LST, IERR) \]

\[IF(. NOT. LST) GO TO 341 \]

\[CALL QRSLL(1, LST, IERR) \]

\[CALL QRSLL(2, LG, IERR) \]

\[IF(LG) GO TO 503 \]

\[IF(. NOT. LG) GO TO 326 \]

\[CALL QRBADS(W2(JAY, K), 1, 1, IERR) \]

\[CALL QSTDA \]

\[CALL QWCLUD(1, TRUE., IERR) \]

\[K = K - 1 \]

\[IF(K - 1) \]

\[CALL QSIC(IERR) \]

\[IF(KK . NE. 1) GO TO 504 \]
IF(SENSW(6)) WRITE(6,700) (W2(JAY,K), K=1, KKMAX)
C 450 CONTINUE
C **
C INCREMENT TIME
C IF(IDEC.EQ.1) GO TO 400
IF(IDEC.EQ.0) GO TO 402
400 IDEC=0
GO TO 401
402 CONTINUE
ICNT=ICNT+1
IF(ICNT.GT.IIT) GO TO 404
401 CONTINUE
IF(IDEC-1)397,375,380
C **
C 404 CONTINUE
ICNT=1
IDEC=1
GO TO 401
C **
C INCREMENT TIME AND PLOT CURRENT VALUES
C 375 JM2=JM2+1
JM1=JM1+1
JAY=JAY+1
CALL HTPLT
IF(JM2.EQ.4) JM2=1
IF(JM1.EQ.4) JM1=1
IF(JAY.EQ.4) JAY=1
JJ = JJ + 1
IF(JJ-JMAX) 398,398,500
C **
C 380 CONTINUE
C INPUT NEW VALUE INTO W2(JAY,1)
TYPE 381
381 FORMAT(32H INPUT NEW ESTIMATE OF W2(JAY,1))
ACCEPT 382,W2(JAY,1)
GO TO 397
C **
C TIMING ERROR PRINT OUT SECTION
C 501 TYPE 510
GO TO 555
503 TYPE 511
GO TO 555
502 TYPE 512, KK
GO TO 389
504 TYPE 514, KK
GO TO 389
CALL QSH(IERR)
TYPE 515, KK
GO TO 555
CALL QSH(IERR)
TYPE 516, KK
CALL Q$IC(IERR)
PAUSE
GO TO 398

FORMAT (29H SAMPLING RATE TOO HIGH (501)/)
FORMAT (29H SAMPLING RATE TOO HIGH (503)/)
FORMAT (25H AT THE END OF COUNTUP K=, 14/)
FORMAT (27H AT THE END OF COUNTDOWN K=, 13/)
FORMAT(35H UP COUNTER OVER MAX. VALUE, VALUE = , 14)
FORMAT(29H DOWN COUNTER TOO LOW, VALUE=, 13)

•ft-ft-ft-ft-ft-ft-tt -ft -ft -ft-ft-ft-ft-ft-ft-ft-ft•»• -ft # -ft##-ft-ft-ft-ft-ft-ft-ft-ft•*##########*#########.^#*•.

GO TO 555

•ft-ft-ft#-ft-ft-ft-ft#-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft#-ft-ft-ft#-ft-ft-ft-ft-ft-ft#-tt#

INPUT THE PLOT LOCATIONS

ACCEPT 5, N4
DO 604 I=1,N4
TYPE 605, I
604 ACCEPT 606, XPLOC(I)
N5 = . TRUE.
GO TO 51

•ft-ft-ft-ft-ft-ft-ft##-ft-ft-ft-ft^-ft-ft-ft-ft-ft-ft-ft#-ft-ft##-ft*************************************

FORMAT (40H RESET SENSW(A), INPUT N4, XPLOC(J), J=1, N4/)
FORMAT (24H HOW MANY PLOT LOCATIONS/)
FORMAT (15H INPUT LOCATION, 13/)
FORMAT (F8. 2)
FORMAT (27H RESET SENSW(B), INPUT NFREQ)
6 FORMAT (I10)

•ft ### #-ft •«•#•«-»###•«•#*###*•«•***

FORMAT (13, 3X, F5. 3, 3X, F6. 0)
FORMAT (13, F12. 3)
GO TO 398

STOP

•ft-ft-ft-ft-ft-ft#-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft-ft#-ft-ft-ft#-ft-ft-ft-ft-ft-ft#-tt#

HOW MANY PLAYBACK LOCATIONS

ACCEPT 6, NFREQ
VAL = 1. /FLOAT (NFREQ)
CALL QWPR(4HP000, VAL, IERR)
CALL QWPR(4HP030, VAL, IERR)
GO TO 53

•ft###-ft •«•#•«-»###•«•#*###*•«•***

FORMAT (I3, 3X, F5. 3, 3X, F6. 0)
518 FORMAT (I3, F12. 3)
GO TO 398

STOP

97 FORMAT(I3, 3X, F5. 3, 3X, F6. 0)
518 FORMAT(I3, F12. 3)
GO TO 398

•ft-ft-ft-ft-ft-ft##-ft-ft-ft-ft^-ft-ft-ft-ft-ft-ft-ft#-ft-ft##-ft*************************************

INPUT THE BOUNDARY VALUES OF VELOCITY AND HEIGHT

FORMAT (15, 15, F12. 2)
362 FORMAT(I2)
651 FORMAT (11H VALUE READ, I10, 10H SET VALUE, I10)
675 FORMAT(10F8.5)
688 FORMAT (2HK=, I5, 5HKMAX=, I5)
690 FORMAT (10H TIME LEFT, I10)
804 FORMAT (19H D/A CHANNEL VALUES)
810 FORMAT(5($10, 2X)/)
820 FORMAT (25H NO. OF PLAYBACK ELEMENTS, I5)
661 FORMAT (17H PLAYBACK ELEMENT, I4/
700 FORMAT ((10($6, 2X))))
5 FORMAT(I3)
382 FORMAT(S6)
405 FORMAT(S5)
86 FORMAT(5F10.4)
90 FORMAT(5X, F10.6)
END
SUBROUTINE GREAT(KKMAX)
COMMON/GDAT/XLOC(100),A(100),H(100),KMAX
COMMON/SCALE/FM, FDM, SOM, CM, DELX, SHPF, OSM, QLM, JAY, JM1, JM2, G
COMMON/PLBACK/W1(3, 150),W2(3, 150),C(150),QS(150),QL(150),
1 W1M, W2M, XOUT(18)
SCALED FRACTION W1, W2, XOUT
C
C THIS SUBROUTINE CREATES INITIAL VALUES OF W1 AND W2 FROM DATA ON
C WATER LEVELS AND DISCHARGE

C XSPACE=DELX
FAC=SQRT(G/SHPF)
Q=0.1521
I = 1
K = 1

20 IP1 = I+1
TEMP = XLOC(IP1) - XLOC(I)
SLVEL = (Q/A(IP1) - Q/A(I))/TEMP
SLHGT = (H(IP1) - H(I))/TEMP
XXX = K-1
DIST = XXX*XSPACE - XLOC(I)
VEL = Q/A(I) + DIST*SLVEL
HEIGHT = H(I) + DIST*SLHGT
TEMP = 2.*SQRT(HEIGHT)*FAC
W1(JM1,K) = (VEL+TEMP)/W1M
W2(JM1,K)=(VEL-TEMP)/W2M
W2(JM2,K)=W2(JM1,K)
W1(JM2,K)=W1(JM1,K)
W1(JAY,K)=W1(JM1,K)
W2(JAY,K)=W2(JM1,K)
X = K
K = K+1
IF (X*XSPACE .GT. XLOC(IP1)) I=IP1
IF (I-KMAX) 20,21,21
21 W1(JM1,K)=(Q/A(I)+2.*SQRT(H(I))*FAC)/W1M
W2(JM1,K)=(Q/A(I)-2.*SQRT(H(I))*FAC)/W2M
W2(JM2,K)=W2(JM1,K)
KKMAX=K-1
RETURN
END
SUBROUTINE PROUT(K, IND)

THIS SUBROUTINE INPUTS VALUES OF GEOMETRIC VALUES

COMMON/SCALE/FM, FDM, SOM, CM, DELX, SHPF, QSM, QLM, JAY, JM1, JM2, G
COMMON/PLBACK/W1(3, 150), W2(3, 150), C(150), QS(150), QL(150),
1 W1M, W2M, XOUT(18)

SCALED FRACTION W1, W2, XOUT

XK=K-1
X=XK*DELX
THETA1=0.01379*X+2.274
THETA2=0.03372*X-2.232
FOUR1=5.044*COS(THETA1)
FOUR2=1.706*COS(THETA2)
XOUT(13)=(22.07+0.02324*X+FOUR1+FOUR2)/(FM*12.)
FOUR1=0.0696*SIN(THETA1)
FOUR2=0.0575*SIN(THETA2)
XOUT(14)=(0.02324-FOUR1-FOUR2)/(FDM*12.)
THETA1=0.046*X+0.458
XOUT(15)=(0.00785+0.088*SIN(THETA1))/(SOM*12.)
XOUT(16)=(C(K))**2. / (CM**2.)
XOUT(11)=W1(JM1, K)
IF(IND. EQ. 1) XOUT(11)=W2(JM1, K)
XOUT(12)=W2(JAY, K)
IF(IND. EQ. 1) XOUT(12)=W1(JAY, K)
CALL QWBDAS(XOUT(11), 11, 6, IERR)
IF(IERR. EQ. 2) GO TO 5
RETURN
5 CALL QSH(IERR)
 TYPE 6, (XOUT(JK), JK=11, 16)
6 FORMAT(F10.6)
RETURN
END
SUBROUTINE GEOVAL(

COMMON/SCALE/FM, FDM, SOM, CM, DELX, SHPF, OSM, OLM, JAY, JM1, JM2, G
COMMON/PLBACK/W1(3, 150), W2(3, 150), C(150), OS(150), OL(150),
1 W1M, W2M, XOUT(18)

SCALED FRACTION W1, W2, XOUT

THIS SUBROUTINE DETERMINES VALUES OF F, FDOT, AND SO GIVEN X

Xh=K^-1
X=Xh*DELX
THETA1=0 01379*X+2 274
THETA2=0 03372*X-2 232
FOUR1=5 044*COS(THETA1)
FOUR2=1 706*COS(THETA2)
F=(22 07+0 02324*X+FOUR1+FOUR2)/(FM*12)
FOUR1=0 0696*SIN(THETA1)
FOUR2=0 0575*SIN(THETA2)
FDOT=(0 02324-FOUR1-FOUR2)/(FDM*12)
THETA1=0 046*X+0 458
SO=(0 00785+0 088*SIN(THETA1))/(SOM*12)
C2=C(1-)**2 /CM**2
CALL QWJDAR(F, 06, IERR)
CALL QWJDAR(FDOT, 07, IERR)
CALL QWJDAR(SO, 08, IERR)
CALL QWJDAR(C2,10,IERR)
FORMAT(F10 3)
RETURN
END
SUBROUTINE GEOME

C THIS SUBROUTINE COMPUTES VALUES OF AREA FROM DEPTH

COMMON/GDAT/XLOC(100),A(100),H(100),KMAX
DO 20 K=1,KMAX
THETA1=0.01379*XLOC(K)+2.274
THETA2=0.03372*XLOC(K)-2.232
FOUR1=5.044*COS(THETA1)
FOUR2=1.706*COS(THETA2)
F=(22.07+0.02324*XLOC(K)+FOUR1+FOUR2)/12.
A(K)=8./3.*SQR(F)*H(K)**1.5
CONTINUE
RETURN
END
SUBROUTINE STRPLT(N, XINIT, X, Y)
C
C NOTE:'**
C THE PLOTTER MUST BE INITIALIZED, ANY AXES DRAWN, AND PLOTTING
C SCALES ESTABLISHED BEFORE STRPLT IS EXECUTED
C**
C SUBROUTINE FOR STRIP- PLOTTING Y(I) VS X
C FOR I=1, 2, .. N WHERE N. LE. 10
C PLOTTER INITIALIZES WHEN X. LE. XINIT
C DIMENSION Y(10), PREVY(10)
C CHECK FOR INITIALIZING
C IF(X. LE. XINIT) GO TO 7
C DO THE PLOTTING
C DO 6 I=1,N
C CALL PLOT(XPREV, PREVY(I))
C CALL PENDN
C CALL PLOT(X, Y(I))
C CALL PENUP
C 6 CONTINUE
C UPDATE PEN POSITIONS
C 7 XPREV=X
C DO 8 I=1, N
C PREVY(I)=Y(I)
C 8 CONTINUE
C RETURN
C END
SUBROUTINE PLTINT(JMAX,N4,XPLOC)
DIMENSION XPLOC(10)
C
C SUBROUTINE WHICH SETS UP FOR PLOTTING HEIGHT VS TIME
C AT UP TO 10 SPACE LOCATIONS,
C Draws AND LABELS THE X-Y AXIS
C
C
C DATA XSC, YSC/20. , 0. 25/, XREF, YREF/1. 0, 1. 0/, XVAL, YVAL/O. , 0. /
C XP, YF 120. , 8. /, XN, YN/O. 0, 0. 0/
C
C CONVERT INPUTS FROM INTEGER TO REAL
C
FMAX=FLOAT(JMAX)+0. 1
C SET UP PLOTTER MODE ARRAY, POSITION PLOTTER PAPER
C AND DRAW X-Y AXIS
C
CALL EJECT(20. 0, 0. 0)
CALL PLTSET(XSC, YSC, XREF, YREF, XVAL, YVAL, XP, YP, XN, YN)
CALL STNDBY
CALL QSIZE(2)
CALL LINECD(0)
CALL INPLOT(0. 0, YP)
CALL PENDN
CALL INPLOT(0. 0, 0. 0)
CALL INPLOT(10. 0, 0. 0)
CALL PENUP
C
C LABEL GRID Y-AXIS
C
CALL CHSIZE(0. 125, 90. 0)
CALL INPLOT(-0. 75, 1. 95)
CALL PLTEXT(WATER LEVEL (FEET))
CALL CHSIZE(0. 125, 0. 0)
Y=0. 8
YV=0. 2
DO 2 1 = 1, 10
CALL INPLOT(0. 0, Y)
CALL YMARK
CALL INPLOT(-0. 45, Y)
CALL PLTVAL(YV,1)
2 Y=Y+0. 8
YV=YV+0. 2
C
C LABEL GRID X-AXIS
C
X=1. 0
XV=40.
DO 6 J=1, 5
DO 4 I=1, 2
CALL INPLOT(X, 0. 0)
CALL XMARK
X=X+1. 0
Z=X-1. 1
CALL INPLOT(Z, -0. 25)
CALL PLTVAL(XV, -1)
XV=XV+40.
CALL INPLOT(3.9,-0.6)
CALL PLTEXT(17HTIME (IN SECONDS))

PRINT LEGEND
YST=5.75
XST=6.15
XS1=7.25
XS2=7.15
CALL INPLOT(XST,YST)
CALL PLTEXT(12HELEMENTS #)
CALL INPLOT(XS1,YST)
CALL PLTVAL(FMAX,-1)
DO 8 I=1,N4
YST=YST-0.3
M2=2*I
CALL INPLOT(XST,YST)
CALL SYMBOL (M2)
CALL PLTEXT(9H - LOC)
CALL INPLOT(XS2,YST)
CALL PLTVAL(XPLOC(I),-1)
CONTINUE

INITIALIZE THE CURVE PLOT

CALL STNDBY
RETURN
END
SUBROUTINE HTPLT
COMMON/GENRL/V0(2), H0(2), SLOPE(150), HP(20), N4, XPLOC(20)
COMMON/SCALE/FM, FDM, SOM, CM, DELX, SHPF, DSM, DLM, JAY, JM1, JM2, G
COMMON/PLBACI/W1(3, 150), W2(3, 150), C(150), OS(150), OL(150),
1 WIM, W2M, XOUT(18)
SCALED FRACTION W1, W2, XOUT

C THIS SUBROUTINE CALCULATES WATER LEVELS AT PLOT LOCATIONS
C FROM CURRENT VALUES OF W1 AND W2
C
XSPACE=DELX
DO 40 J=1,N4
 I = 0
21 I = I+1
 X = I
20 IF (XPLOC(J) - X*XSPACE) 20,20,21
 XINC=XPLOC(J)-(X-1)*XSPACE
 IP1=I+1
 SD1=W1(JAY, IP1)-W1(JAY, I)
 SLW1=SD1/XSPACE
 SD2=W2(JAY, IP1)-W2(JAY, I)
 SLW2=SD2/XSPACE
 DUM1=W1(JAY, I)
 DUM2=W2(JAY, I)
 W2P=DUM2+XINC*SLW2
 W1P=DUM1+XINC*SLW1
 TEMP = W1P*W1M - W2P*W2M
 HP(J) = TEMP*TEMP*SHPF/(16 * G)
40 CONTINUE
RETURN
END