THE NATURE OF MATHEMATICAL ABSTRACTION

A DISSERTATION

Submitted to the Faculty of Philosophy
of the University of Ottawa
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

by

Rev. Fr. Edward Anthony Maziarz, M.A., M.S.
Priest of the Society of the Precious Blood

Ottawa, Canada
1949
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
CONTENTS

Preface .. iii

Chapter

INTRODUCTORY

I. The Problem of Mathematical Abstraction ... 1

PART I. AN HISTORICAL SURVEY OF MATHEMATICAL ABSTRACTION

II. The Historical Problem of Mathematical Abstraction 27

III. Ancient Conceptions .. 55

IV. The Cartesian Era ... 55

V. British Empiricism .. 84

VI. Idealism and Positivism .. 109

VII. Contemporary Directions ... 151

PART II. THE NATURE OF MATHEMATICAL ABSTRACTION

VIII. The Distinction of Speculative Sciences .. 163

IX. The Nature of Mathematical Abstraction .. 215

X. Mathematical Abstraction and Contemporary Mathematics 264

XI. Conclusion .. 298

Bibliography ... 301

Biographical Note ... 324
An inestimable amount of specialization and self-criticism characterizes current mathematical research. In the field of mathematics proper, a great number of mathematical books and periodicals are being issued, containing countless new theorems, restatements and new, original solutions of old problems, and new methods of proof. It has been said that though the delegates to mathematical congresses may be quite competent mathematicians themselves, they cannot possibly comprehend all the over-specialized topics presented (1). According to the historian Ohorl, if the history of mathematics in the nineteenth century alone were written with some detail, fourteen or fifteen large volumes would be required (2). The same situation obtains in the literature, and at the congresses dealing with applied mathematics. Even the non-mathematician feels the impact of mathematics on general culture through the increasing number of books and articles endeavoring to present mathematics in a simplified and popularized form.

Contemporary research in mathematics itself is nearly rivalled by an equal productivity in philosophical inquiries on mathematics. Questions of mathematical method and symbolism are being examined under the title of Symbolic Logic, while other investigations are concerned with the foundations of mathematics, with theories on number, functions and structure. Numerous philosophical discussions deal with the applicability of mathematics to physics, to chemistry and biology, and to psychological and economic situations. The more extended problems covering the speculative relations of mathematics to logic, psychology and philosophy in general -- part

of a growing philosophy of science -- are being investigated by a growing number of thinkers.

The specific problem which is herein conceived as being persistent and basic to much -- indeed, if not all -- of the current discussions concerning the philosophy of mathematics is the nature of mathematical abstraction. It is with this question that the present inquiry is concerned as attempting to disclose the doctrinal pertinence and speculative value of mathematical abstraction for current philosophical theories on the nature of mathematics. A study of this kind naturally invokes many related problems, as an analysis of its historical antecedents, its relation to experience, its difference from other abstractive processes, and its pertinence to contemporary extensions of mathematics.

These closely related themes have provoked the following order of consideration. An introductory part of one chapter aims to clarify the problem by distinguishing and speculatively ordering the various possible views that can be held on mathematical thought. The next part considers some selected historical positions, and the last part contains the discussion of mathematical abstraction.

My thanks are due primarily to the Society of the Precious Blood to which I owe a cherished debt of gratitude. It was through its agency that I was given the opportunity to study and that I was directed into the philosophical aspects of mathematics and science. The influence of the most Rev. Joseph M. Marling, O.P.P., Ph.D., Auxiliary Bishop of Kansas City, Dr. Rudolf Allers of Georgetown University and Dr. Raymond I. Wilder of the University of Michigan -- all of them my teachers in the past -- is gratefully acknowledged. The direction and kindness of the Rev. Honri Glatton, O.M.I., Ph. L., S.T.L., of the University of Ottawa, Rev. Rene Trudel, O.M.I., Ph. L, S.T.L., J.-B., Dean of the Faculty of Philosophy of the University of Ottawa, and Dr. Thomas Greenwood of the Universities of Ottawa and Montreal, and of their colleagues at the University of Ottawa, were invaluable.
Chapter 1. The Problem of Mathematical Abstraction

A fundamental confusion of terminology characterizes the literature bearing on the philosophical aspects of mathematics. Mathematical Logic, Mathematical Philosophy, Philosophical Mathematics and Metamathematics are but a few of the expressions currently used to designate the cognate aspects of mathematics and philosophy. This verbal disorder is but symptomatic of more basic disputes. A variety of opinionated attitudes is common today; mathematics is equated to logic and to all exact thought; the perfection of mathematical abstraction has supplanted and superseded metaphysics; the universe of mathematical discourse offers a unique though tentative view of the world of nature (1).

Various factors are responsible for these disparate views. Mathematics presently occupies a position of enviable importance (2). Exaggerated opinions of its nature are readily occasioned by its strong influence on speculative and cultural thought and its numberless practical applications. Secondly, the philosophical background of our times and present philosophical trends are notorious for an excessive regard for mathematics and science, and a correlate distaste for metaphysics, ethics and theology. Mathematicians and scientists have philosophized in this antimetaphysical atmosphere.

(2) It is well known that mathematics, so successfully applied to physics, chemistry and the sciences of non-living matter is gradually being introduced into biology, psychology and the sciences concerned with life. For a broad, popularized and somewhat exaggerated survey of the significance of mathematics for other sciences, see Hollis R. Cooley, David Gans, Morris Klein and Howard R. Wahlert, Introduction to Mathematics; A survey emphasizing Mathematical Ideas and their Relations to other Fields of Knowledge, New York: Houghton Mifflin Company, 1937, Chapter 21, pp. 583-517.
since the days of the Cartesians (3). Thirdly, most philosophers are neglectful of mathematical doctrine. The difficulties inherent in its abstractive process and symbolism, the lack of time, interest or mathematical talent, and the comfort of relaxing in the view of one's own philosophical position are partial reasons for this dearth of philosophical response. Fourthly, the mathematician as a rule untutored in philosophy, scrutinise the universe from the view of mathematical abstraction alone (4). Neglectful of metaphysical implications, any mathematicians make indiscriminate generalisations, as mathematics is "the subject in which we never know what we are talking about, nor whether what we are saying is true" (5); or, "From the intrinsic evidence of his creation, the Great Architect of the Universe now begins to appear as a pure mathematician" (6).

The general disregard for the doctrine of philosophical abstraction has contributed to and emphasised this want of speculative accord (7). The clarifications which it embodies regarding the nature of science and the distinction and

(7) Through the influential thought of Leibniz and Kant, the word "abstraction" has suffered a falsification of its original meaning. It frequently refers, in the contemporary view, to a qualitative state or pose of the mind which lacks an extra-mental counterpart. For a use of the term in this falsified sense see Sir James Jeans, _Ibid._, Chapter V, "Into the Deep Waters," pp. 137-188, or George P. Kirkhoff, _Mathematics: Quantity and Orders_ in _Science for a New World_, edited by J. G. Crowther, New York: Harper & Brothers, 1934, pp. 306-309. The word is used in this essay to designate that action of the mind which specifies speculative science, and will be explained below in Chapter VIII.
interrelation of sciences, are, however, fundamental in solving prevalent mathematical disputes. If a mathematician ignores or neglects the distinctions of logical, metaphysical, scientific and philosophical abstraction in his reflections on the universe, strange consequences result. The metaphysical teaching on the analogy of being, the distinction of substance, quantity and quality, matter and spirit, lose their significance. Logic, Cosmology and Psychology are credited with scientific status only to the extent that they are amenable to mathematical treatment, while the vast realm of probable and imperfect scientific knowledge together with the opinions and knowledge of the ordinary person, are reputed as erroneous and unenlightened (8). That such is the present situation for many mathematician-philosophers is a generally accepted proposition.

In order to distinguish the point of view which is adopted throughout this essay, it is necessary to classify these divergent views, illustrate them, and adopt a definite and consistent terminology. Adopting abstraction itself as a basic for division, the possible views on mathematics fall under five broad categories ranging from a pre-scientific attitude towards mathematics to the extreme of identifying mathematical

and metaphysical abstraction and thus equating all science to mathematics. The first is the non-abstractive or pre-scientific, which includes numbert mysticism, the ordinary person's acquaintance with mathematics, the experimental view, and theories which do not credit mathematics with achieving scientific abstraction. The second is the abstractive view of the sciences and of the philosophy of nature which includes the historical view and that of applied mathematics. The third category is the abstraction proper to the science of mathematics. The fourth is the abstractive view of logic as distinct from mathematics (9). The fifth is the abstraction of metaphysics, more commonly called "critical" today (10). The attempt to place both legitimate and erroneous positions on mathematics within each of these classes, meets with a partial overlapping and clash among these divisions, especially in the relation of any class to that of metaphysical abstraction. This is attributable, though, not to the inadequacy of the divisions but to the unity of human science and knowledge and to the fact that the mind seeks synthesis and truth (11). Moreover, much of the concomitant confusion and many of the errors are directly attributable to the capriciousness of a given thinker and to his predisposition, from his mathematical viewpoint, towards hasty and unwarranted generalisations. For example, one historian may merely

(9) This is in contrast to the tenets of logicism, a current theory maintaining the identity of logic and mathematics. For a summary of this position, see Louis C. Kattsoff, op. cit., pp. 93-118.

(10) Ibid., pp. 1-7. Kattsoff views "metaphysics" or philosophy as having merely a critical function, which is but a modern restatement of Kant's transcendental criticism.

catalogue dates, names and mathematical facts, considering this to be his
proper function (12). Another may exhibit a delightful blend of humanism
(13), or a curious socio-biological attitude to the historical development
of mathematics and the influences which played upon its growth (14).

A brief consideration and elucidation of these five groups of attitudes
towards mathematics is essential both to delimit the scope of this essay and to disclose the significant position occupied by the doctrine of
mathematical abstraction. Essentially it is our intention merely to explicate mathematical abstraction itself, a speculative determination which
is proper to the metaphysician. Even though it is the mathematician who
"abstracts" in the science of mathematics, it is readily granted that the
mathematician who initiates a self-conscious analysis of his mathematical
operations is abstracting anew — abstracting on mathematical abstraction —
and has entered the abstractive process of metaphysics. If such abstraction
is performed without deliberate intent and conscious realization, meta-
physically and mathematical abstraction are identified, and disaster to

(12) This is the general method adopted by historians of mathematics.
As an example, see Florian Cajori, A History of Mathematics, second edition,
(13) The reference is to George Sarton who is largely responsible for
the emphasis on studying the history of science and mathematics in the United
States. Sarton is somewhat imbued with the positivism of Auguste Comte.
For his humanist view, see, especially his The History of Science and the
New Humanism, Cambridge; Harvard University Press, 1936; The Study of the
History of Science, Cambridge; Harvard University Press, 1936. His monu-
mental work inspired by the Cartesian notion of history is the Introduction
to the History and Method of Science, three volumes in five, Baltimore,
Williams and Wilkins Company, 1927-1946.
(14) E. T. Bell, The Development of Mathematics, New York: Mc
Graw Hill, 1940, passim. Bell's style and remarks are indicative of a frame of mind
frequently found in the specialist who subjects the march of history to the
limited scope of his science. The effects of such treatment, naturally dis-
astrous as they are, increase for a mathematician accustomed as he is to cer-
titude and deducibility, and frequently lacking, as he sees, the care for de-
tail and the insight into particulars and the complicated situations of his-
tory which characterize the good historian.
speculative truth is an inevitable consequence (15). This is but the inceptive stage of a current frame of mind, eventually begetting a mental distaste for other scientific abstraction and a cavalier treatment of the speculations of other sciences.

I. The Pre-Scientific View.

The four groups included under a non-abstractive acquaintance with mathematics, comprising number mysticism, the view of the ordinary man, the experimental view and theories not crediting mathematics with the perfection of science, are alike in being non-scientific. Consequently, for this view, mathematical knowledge is merely probable and opinionative. The pre-scientific statements and propositions which are held by people in the pre-scientific view, have not attained the perfection of science, cannot be supported by proofs and reasons, and lack the characteristics of certainty, necessity and universality proper to scientific knowledge.

From the abundant evidence of astrology and number mysticism it is easily seen that a quite fabulous and mystical -- really, a non-rational -- view of mathematics has frequently occurred in history (16). The notion of number or form was intriguing even in the early history of thought. Strange powers and divine influences were attributed to number or form either under the guise of some religious rite or mystical philosophy.

(15) "There, at any rate, lies the deepest root of the Cartesian philosophy. If anything can be truly said to express its innermost spirit, it is what I venture to call "Mathematism," for Descartes' philosophy was nothing else than a rashly conducted experiment to see what becomes of human knowledge when moulded into conformity with the pattern of mathematical evidence." Etienne Gilson, op. cit., p. 155. This original error of Descartes has not as yet been repudiated by many contemporaries.

This interpretation of mathematical entities derives from the vagaries of an uncontrolled or excessive use of the imagination. As a consequence, even though this attitude has occurred frequently in the history of thought, exerted much influence and even exists today, it can hardly be classed as rational and will not concern us here.

The pre-scientific acquaintance and use of mathematics by the ordinary person, since it is but imperfectly scientific, likewise belongs here. This view, however, is legitimate, even though it is confused and embraces many inaccuracies. For it is precisely this class of people who attend school, and when we attempt to lift up, by our teaching, to the level of mathematical abstraction. Ordinary acquaintance with the universe includes, as a rule, some imperfectly mathematical notions; on the strength of these notions teachers of mathematics attempt to induce the scientific consideration of mathematical entities in the imaginations and minds of their pupils, thus actualizing in them the science of mathematics. How this can be done most expertly and properly, of course, implicates a knowledge of what mathematical abstraction is; as, of course, a philosophy of teaching (17).

In the experimental approach to mathematics, as investigation is made of the process through which a child or person learns to count or learns about figures. From these experiments, which often furnish illuminating and helpful results, one can infer tentative theories on the psychological origins of mathematics. Such theories are useful in formulating beneficial

(17) In Mathematics’ Teachers Views on Certain Issues in the Teaching of Mathematics (New York: Columbia Teachers College, 1941), Howard Homer gives the results of a survey concerned with philosophical aspects of the teaching of mathematics. See also Max Black, ”The Relevance of Mathematical Philosophy to the Teaching of Mathematics,” The Mathematical Gazette, 22(1938), pp. 149-163.
methods of teaching and shed some light on speculations concerning the foundations of mathematics (18). Quite of necessity, however, the investigator has some principle of hypothesis in mind whose veracity he wishes to establish, and frequently the results of such experimentation are colored and interpreted from this psychological or metaphysical point of view (19).

As an example of theories not crediting mathematics with being a speculative science, the materialistic view of Thomas Hobbes readily comes to mind (20). Granting universality only to the names of things, he had a radically empiricist view of all science, regarding mathematics as a frustrated idealization of sense impressions, and denying the ability of human nature to consider lines or surfaces as being devoid of breadth or thickness. This view of mathematics, though rare, was adopted in a milder form by the British empiricists, Locke, Hume and John Stuart Mill.

II. The Sciences and the philosophy of nature.

The historical treatment of mathematics and the sciences which use mathematics comprise this second group. It is characteristic of the multiple sciences in this latter class — physics, chemistry, biology, sociology and others — merely to apply mathematical principles or conclusions

to their own subject matter (21). They do not, as a rule, question its validity or its method. The interaction between these sciences and mathematics in the course of their development is significant (22). New problems frequently arise in the sciences, requiring mathematical treatment and thus stimulating mathematical discoveries. Similarly, mathematical inventions are suggestive of new theories in science predictive of new fields of research.

The historian of mathematics is concerned, first, with narrating the occurrence of mathematical facts. By investigating human records, historians look for the answers to the question, What contributions have been made to mathematics? The problem of when, where and by whom such items were invented and discovered and what these items are, lies in this domain. Properly speaking, the historian of mathematics should know what mathematics is in order to be able to classify the contributions.

Frequently a philosophical interpretation of these facts is coupled with the historical work (23). In investigating the early records of man,
for example, the historian may approach these records with an evolutionistic or pragmatic attitude of mind, thus modifying his presentation and interpretation of these facts. This attitude is indicative of the gradual reintroduction of the historian as one who looks for the meaning in history and considers the laws of historical growth. Recent histories of mathematics point in this direction (24). Some historians, however, betray the fallacy of comparison judgment in which the perfections of our age or some historical period are taken as a standard or measure of the greatness or the value of previous or future historical events (25).

Historico-philosophical accounts of mathematics present the following problem: has mathematics changed its nature as a science as it grew in content and methodology throughout history? If it is maintained that such an essential change is possible (for example, that it is now seen that mathematics and logic are identical (26)), then a true science of mathematics or a philosophy of mathematics never really exists or is possible. The science of mathematics would constantly be fluctuating not only in method, but in its very nature. One would never know, in any historical period, whether we had ever arrived at the degree of abstraction proper to mathematics, nor whether any contributions were properly scientific. There would be no reason in concerning oneself with the nature of the problem

(24) This is true especially of the works of George Sarton who inclines, however to a Comtian interpretation of science; cf. Footnote 13, above.
(25) This seems to be one of the faults of E. T. Bell's The Development of Mathematics; see footnote 14, above.
(26) "The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our age; and when this fact has been established, the remainder of the principles of mathematics consists in the analysis of Symbolic Logic itself." Bertrand Russell, The Principles of Mathematics, New York: W. W. Norton & Company, 2nd edition, 1937.
of a science which never attains proper existence. A strictly evolutionistic view of mathematics or of science is a contradiction (27).

On the other hand, it is possible to maintain that though the intrinsic nature of mathematics does not change, the abstractive process of the mathematician can become more precise and less dependent, for example, on imaginative intuitions or constructions. In this case, the historian would show the birth of mathematics as an independent science, complete in itself in the sense that it would have the necessary abstraction and perfection to be recognised as mathematics, yet have the possibilities of further development and of a more abstractive treatment within the limits of mathematical abstraction itself. It is maintained here that mathematics does not alter its nature so fundamentally as to become unrecognizable as such as to destroy mathematical continuity. The type of abstraction proper to mathematics was born and had achieved a recognizable content and method already by the time of Euclid (28). By their separation and distinction of number mysticism or allied contributions from mathematics,

(27) Louis O. Kattsoff, op. cit., Chapter Twelve, "Gödel's Theorem and Formal Systems," pp. 182-186. Kattsoff writes about Gödel's famous theorem and its relation to formal systems: "If, as is agreed, the formal systems can be used to systematise fields of knowledge, and if the Gödel theorem applies to such applications, it would mean that no field of knowledge so systematised can ever be complete. At any state there will always be questions formulable in the system that need a wider system for their solution. Since it is the contention of the author of this book that logic and mathematics do tell us something about reality, the Gödel theorem tells us that there can never be a complete and final theory of reality, i.e., metaphysics. This does not lead to mysticism, but to an evolutionary scheme of reality." pp. 194-196.

(28) "...if we should study any subject properly, we must study it as something that is alive and growing and consider it with reference to its origins and its evolution in the past. In the case of mathematics, it is the Greek contribution which it is most essential to know, for it was the Greeks who first made mathematics a science." Sir Thomas L. Heath, A Manual of Greek Mathematics, Oxford: The Clarendon Press, 1931, p. 1.
Historians of mathematics indicate their belief in the recognizable content of mathematics. Further discoveries after Euclid -- new methods and new problems, applications to other sciences and practical affairs -- are but a natural growth and derived expansion of the fundamental abstractions achieved by the Greeks. What increases is our understanding and use of mathematical abstraction through the introduction, for example, of new methods, various systems of geometry and algebra.

The applications of mathematics to problems of chemistry, physics, biology and economics, are made by men who fall into the class of applied mathematicians. This application of the principles of mathematics to the objects of scientific abstraction was adumbrated by the early Pythagoreans; and, of course, the efforts of Archimedes in this direction are justly famous. The essential element in this process is the coordination and subordination of the manifold and mutable in nature under the unity and principles of mathematical abstraction. The history of mathematics memorializes the terrific struggle that thinkers faced in gradually establishing the relevance of a quantitative study of nature. For example, the many attempts to find a procedure for studying motion and change were finally rewarded with the algorithm of the calculus, clarifying, at the same time, the concepts of mathematical with the notions of number, function and the limit process (29).

Mathematics is being applied with increasing success to three groups of science. In the sciences concerned with non-living matter, astronomy, physics, chemistry, geology and crystallography, its use has been most

(29) An interesting account of this century-old struggle is given in Carl B. Boyer's *The Concepts of the Calculus* cited above.
striking and successful. The application of mathematical principles to the sciences concerned with living matter is of three types: mathematics is applied to biology and related subjects (30); to psychology (31); and, in statistical applications, an analytic attempt is made to place the predictable relatedness between contingent things in correspondence to the interrelatedness of mathematical entities (32). The mathematics of probability involved in statistics attempts to measure the fluctuation, motion and change associated with the world of non-living and living nature.

Examples of philosophical speculation by all types of applied mathematicians are numerous. Considering only those who deal with astronomy and physics, the names of Einstein, Jeans, Whitehead, Eddington and Schrödinger readily suggest themselves. Mentally overfamiliarized in viewing nature through the abstraction of mathematics or physics (and, possibly, never having really achieved the abstraction of metaphysics), these men readily adopt a reductionist attitude to reality. One thinker, viewing an ordinary desk with his scientific mental eye, proclaims that

It is a host of tiny electric charges darting hither and thither with inconceivable velocity. Instead of being solid substance my desk is more like a swarm of gnats (33).
In concluding a series of lectures on What is Life?, Schrödinger finds that although my body functions as a pure mechanism according to the laws of nature, I know that I direct it. This directive "I" has led, he believes, to the notion of a plurality of such "I's," to the invention of souls and similar problems. The better alternative which he suggests, is:

simply to keep to the immediate experience that consciousness is a singular of which the plural is unknown; that there is only one thing and that, what seems to be a plurality, is merely a series of different aspects of this one thing, produced by a deception (the Indian Maya); the same illusion is produced in a gallery of mirrors, and in the same way Gaursankar and Mt. Everest turned out to be the same peak seen from different valleys (34).

Examples of such scientific extravagances can be called from the works of many leading astronomers, physicists, biologists and sociologists (35).

The relation of the philosophy of nature as the branches of cosmology and psychology to mathematics was an acute diagnostic problem for Plato, Aristotle, Descartes, Leibniz and Kant. Today, however, outside of those who adhere to the unity of the philosophical tradition (36), cosmologists are few in number and most psychologists consider their work to be merely

(35) "Contrary to the view that psychology is hostile to religion we believe that if we are willing to modernize our conception of God we can employ the methods and results of biological psychology in defense of a view of the world which is essentially religious. But the god whom we have propose to substitute for the god of traditional theology may seem a strange god to many. And yet this god alone makes possible the only life we know of; this god is the source of all the energy on earth which sustains man and his institutions. In brief, I wish to argue that god is light! And as light god can do all those things which this most remarkable reality of modern physics can accomplish." Oliver H. Reiser, Philosophy and the Concepts of Modern Science, New York: The Macmillan Co., 1935, p. 194.

experimental and statistical. This current dearth of a philosophical appraisal of nature distinct from metaphysics is partially explicable by the huge success of the mathematical and physical sciences, and is a strong factor in explaining the many philosophical reflections stemming from scientists in biology, chemistry, physics and allied fields of investigation. In this relation of the sciences to the philosophy of nature, in fact, there is a confusion of terminology and thought parallel to that covering the relation of philosophy and mathematics. Though the vague designation "philosophy of science," is often used to cover psychological, moral, political and metaphysical remarks and views, it is, properly speaking, the function of metaphysical science (37).

III. Logical Abstraction

In the negative abstraction of logic, one considers an object which is related to something in nature, and which does not exist as such in nature but only in the mind. The objects of logical consideration are supplied, so to speak, by the reflective mind which is capable of subjecting these logical objects to a dialectical process without necessarily implicating a reference to an object in nature. The close connection and use of this type of abstraction and mental dialectical process to that of mathematics is readily seen. For the concepts of mathematical abstraction, though they have an extra-mental reference of origin to objects in nature,

(37) An able presentation of the relevance of metaphysics as properly being the "philosophy of science" can be found in any of the works cited in the previous footnote. That many contemporary works are sprinkled with moral psychological and metaphysical allusions under the broad cover of "philosophy of science" is evident in the works of Jeens, Whitehead, Planck, Eddington, Cassirer and others.
are considered by the mind as abstracted from these natural objects.

Many mathematicians, holding that mathematics and logic are identical, frequently propose the added equation of all scientific thinking to that of mathematics. Bertrand Russell is an outstanding contemporary example of this view which had previously been held by Leibniz, Wolff, Peano, Frege and Boole (38). Russell's definition of mathematics is well known:

Pure mathematics is the class of all propositions of the form 'p implies q' where p and q are propositions containing one or more variables, the same in the two propositions, and neither p nor q contains any constants except logical constants. And logical constants are all notions definable in terms of the following: implication, the relation of a term to a class of which it is a member, the notion of such that, the notion of relation, and such further notions as may be involved in the general notion of propositions of the above form. In addition to these mathematics uses a notion which is not a constituent of the propositions which it considers, namely the notion of truth (39).

Similar definitions, equating logic and mathematics, are frequent (40), a sampling of which is contained in Scher's article on "Fundamental

Conceptions and Methods of Mathematics" (41). Pierce, for example, says that "Mathematics is the science which draws necessary conclusions" (42), while Böcher himself gives this definition of mathematics:

If we have a certain class of objects and a certain class of relations and if the only questions which we investigate are whether ordered groups of these objects do or do not satisfy the relations, the results of the investigations are called mathematics (43).

For this group of mathematicians, of which there is a large number, logical and mathematical abstraction are not clearly distinguishable. As a consequence, all sciences should be governed by mathematical logic -- the contemporary version of Descartes', Leibniz's and Comte's universal mathematics (44).

IV. Mathematical Abstraction

The mathematician as teacher or specialist -- the mathematical mathematician, so to speak -- fits into this class. The mathematician as such exists only when he is actually using his mind as a mathematician in that degree of science called mathematical abstraction, as he performs actual mathematical operations of the mind. At other times, he retains mathematical images in his memory, a certain mathematical adaptability in his imagination, and the scientific habit of

(42) Ibid., p. 117.
(43) Ibid., p. 127.
(44) A presentation and criticism of the program of mathematical logic can be found in Harold B. Smart, The Philosophical Presuppositions of Mathematical Logic, Cornell Studies in Philosophy, no. 17, New York: Longmans Green & Company, 1928.
the conclusions of the science of mathematics in his mind (46).

Suppose, to illustrate this viewpoint, that a student is engaged in the study of the Calculus. It is not necessary for him to know its precise definition or its history in order to understand the demonstrations or to work the problems. The subject matter is presented to him, a method of demonstrating properties is used, and the student, if he is capable of mathematical abstraction, acquires the knowledge of the qualitative and quantitative characters of the Calculus. If the student questions the existence of a proper subject matter for mathematics, he cannot proceed any further in the science until its existence be shown him by construction or definition; if he questions the mode of demonstration, the logic of the procedure needs to be shown him. Supposing that he grants both of these and is capable of mathematical abstraction, he acquires, with the help of his imagination and by a number of acts of mental abstraction, the habit of the science of the Calculus.

Or consider the case of the mathematician as specialist. He is concerned with what is immediately given: the problem to be solved and the methods of solution. The mathematician considers structure and its relations, symbols and their laws of combination, or merely reflects on abstract relations which may materialise into mathematical conclusions. When, however, the mathematician wonders about the meaning of mathematics or questions its applicability to nature or its relation to logic, he has begun to consider mathematics itself from an extrapolated view, that of metaphysics. Unless he is conscious of this new viewpoint, he may confuse

(46) Chapter IX of this essay will attempt to clarify the notion of mathematical abstraction.
or identify the entities which he holds in mathematical abstraction with other concepts.

This defective understanding of the proper place and function of mathematical abstraction colors most of the current research and speculation concerned with the philosophy of mathematics. Such questions in mathematics as the notion of mathematical existence, the ultimate nature of number or function, though they can be given a strictly mathematical treatment -- the inner consistency and rigor of these concepts, for example -- are questions which are outside the abstraction of mathematics and belong to metaphysics or logic. Of the false and strange speculative conclusions which result from a neglect of the doctrine of mathematical abstraction, the antimonies and paradoxes which have arisen out of discussion on the foundations of mathematics are illustrative (46).

As an example of the limitation and uniqueness of mathematical abstraction, consider the relation of the imagination to mathematics. Suppose that a mathematician wishes to examine the psychology of invention in mathematics (47), or illustrate the relation of the imagination to mathematical abstraction (48). The existence and nature of the imagination, a question proper to psychology, is assumed, as is the nature and existence of mathematical entities as established in metaphysics. Such an investigation, consequently, can have neither a psychological

nor a mathematical attitude, for it is outside the demonstrative scope of either science, and it is metaphysical because it orders the relations of a psychological subject to mathematics. One cannot do this successfully unless he admits the validity of both metaphysics and psychology, and understands the relation of the abstraction proper to both of these sciences in contrast to mathematics (49).

An example from one of the schools on the foundations of mathematics serves to point up the distinction between mathematical and non-mathematical abstraction. The theory known as formalism (50) holds, briefly, that mathematics is similar to a game played with arbitrary symbols according to arbitrary rules, internal consistency being the only requirement in this game. By this jeu d'esprit, a mathematical theory arises which must be kept distinct from a theory about mathematics. Theories about mathematics are classified as metamathematics. Metamathematics deals with such problems as structure, categoricalness and consistency. Whether this view, Hilbert's formalism, be true or not (it hardly credits the science of mathematics as being scientific), it is evident that here is a distinction between the activity of the mathematician as such, and a more abstracted consideration of mathematics.

(49) For an extreme example of speculative error at its worst, see Lancelot Hogben, Mathematics for the Million, London: George Allen & Unwin, 1942, and, by the same author, Science for the Citizen, second edition, London: George Allen & Unwin, 1943. Hogben interprets the historical development of mathematics by reference to sorceries, fabulous stories and to the process of dialectical materialism. He masks himself alternately as theologian, metaphysician, philosopher of history and scientist. He is far outside the scope of mathematics or science proper and assumes the role primarily of the metaphysician who orders and relates the branches of knowledge to each other.

Unlike the logistic view of mathematics, formalism and intuitionism (51) seem to offer a basic distinction between mathematical abstraction proper and an alternate view of mathematics.

V. Metaphysical Abstraction

The ultimate in speculative science, metaphysics as a scientific habit informs the mind both with the knowledge of being and with a judging, critical habit (52). Its capacity as a scientific habit has been denied since the days of Kant; in its critical and systematizing role however, its validity is still quite universally acknowledged though often identified with logic or with philosophy itself. Bacon, Descartes, Leibniz and Kant, viewing metaphysics from mathematical, scientific and logical abstraction, bemoaned its miserable plight (53), and their attempts to make it mathematical, physical or logical are echoed today.

Before considering an outline of the legitimate view that metaphysics offers on current mathematical speculation, the pseudometaphysical view of mathematicism must be clarified. Mathematicism appears under various names as mathematical philosophy (54); mathematical idealism (55); mathematics-
metaphysical philosophy (66); universal mathematics (67); and, in a broad sense, scientism (68). Briefly, mathematicism maintains that only mathematical abstraction affords a legitimate outlook on the universe and consequently, that mathematics is the only science. Its adherents propose, in some form, that the abstract view and methodology of mathematics alone qualify in dealing with problems of scientific, cultural or general knowledge. Mathematics, in this view, is coterminous in some sense with all science; philosophy, biology, chemistry -- science in general -- either are mathematical or should aim to become such. This hyper-reductionist view of the universe submits all of reality to the measure of the mathematical yardstick, subsuming the diversity of things under one monotonous view, the mathematical.

Some general characteristics are common to the various distinguishable types of mathematicism (69). First of all, it is an extreme, ultimate, or final attitude, manifesting itself as philosophical rationalism and idealism, or positivism and scepticism (60). Secondly, by not distinguishing various levels or types of being, mathematicism is universalist and universal (61). Because it is ultimate and universal, mathematicism is likewise reductionist. There is no distinction of quantity from quality, homogeneity from heterogeneity.

(70) Ibid., pp. 2-9.
genetic, infinite from finite, in its view by comparison to these distinctions in metaphysics and philosophy as conformable to extra-mental reality (62). Thirdly, in view of the rigid determination with which mathematical abstraction regards reality, mathematician evokes a propensity to deconstruct and to make categorical statements concerning the complex, detailed qualitative states which characterize the universe along with the quantitative.

As a class into which thinkers can be placed, mathematician may be subdivided into three groups. The views of two of these subdivisions, of course, may be straddled by a given mathematician. Mathematician may exhibit itself under the form of idealism. This peculiar attitude, an ancient habit of mind, was found in its perfect state in the Pythagoreans and Platonists, in Descartes and Spinoza; and today, in Jeans, Eddington, Russell and others. Mathematician takes the form of empiricism in the claims of those who require mathematical certitude in all sciences, including sciences in which this goal has not, nor will likely be attained. Concepts or propositions which cannot be subjected to mathematical procedure are regarded as conjectural, superstitious or unscientific; qualities or substances not amenable to measuring devices are considered fabulous, mystical or supernatural. Protagoras' dictum, "man is the measure of all things" is parodied as "measure is the measure of all things (63)." Kepler, Galileo, Kelvin and some modern mathematician...

physicists are members of this group (64). Thirdly, mathematicism assumes the form of positivism or logical positivism (65). As such, it proposes that only such items as are reducible to and verifiable by the procedures of linguistic analysis or symbolic logic are creditable with scientific status. Although mathematicism is frequently, in this view, identified with logic, it is an ultimate, metaphysical view. For these men, logic is little more than a symbolic language congealing or stratifying the results of empirical investigation.

Finally, there is a legitimate field of philosophical inquiry concerned with the nature of mathematical abstraction which is termed the philosophy of mathematics throughout this essay. This view bears some resemblance to a field of inquiry which appears under the guise of various names, as critical philosophy of mathematics, the epistemology of mathematics, the metaphysics of mathematics (66); metamathematics, intuitionism and logicism (67). In being thus connected with mathematics, however, the word philosophy is currently given a meaning and usage that is quite liberal and inexact; philosophy, as a rule, is credited with a mere critical function, granted solely a judging capacity, or denominated as contributing nothing further than a

(65) Louis O. Kattsoff, op. cit., p. 246.
(67) These latter three views will be explained below in Chapter VII.
measure of restraint and caution in the analysis of mathematical knowledge (68).

The philosophy of mathematics which concerns us here, however, and of which the nature of mathematical abstraction is the basic and central problem, involves both a more exact and extensive use of the term. Metaphysics not only has a critical and defensive function (69); it is a genuine science similar to other sciences in that it inlays the mind with a qualitative habit, yet distinct and unique inasmuch as it is the supreme science (70). In its capacity as a science, then, it is correctly viewed as performing a double function: it actually confers scientific knowledge of things (71); and, secondly, it criticizes and defends the truth, value and validity of human knowledge both pre-scientific and scientific, and it arbitrates the relations between the sciences (72).

The contemporary situation in philosophical speculations on mathematics is of such a nature that both functions of metaphysics are employed throughout this essay. In its first function, that of contributing genuine scientific knowledge, metaphysics is the science of the very being of things.

(68) Hans Reichenbach, Experience and Prediction, Chicago: The University of Chicago Press, 1938. In the Preface, (p. v), Reichenbach writes: "American pragmatists and behaviorists, English logistic epistemologists, Austrian positivists, German representatives of the analysis of science, and Polish logicians are the main groups to which is due the origin of that philosophic movement which we now call "logistic epistemology." . . . all characterized by their common descent from a strict disavowal of the metaphoric language of metaphysics..." In Chapter I, "Meaning," he attributes to what he calls epistemology the threefold task of being descriptive, critical and advisory. See pp. 3-16.

as such and deals with anything which is in any way whatsoever; in this way it answers the problem of the general nature of science, the unity and plurality of sciences, and the nature and functions of particular sciences. In its critical and defensive role metaphysics will be used as validating the truth and pertinence of other scientific abstractive processes than that of mathematical abstraction, and by ordering the complex relations with which mathematics is related to pre-scientific knowledge, and to the particular, multiple sciences that are being cultivated today.
PART I. AN HISTORICAL SURVEY OF MATHEMATICAL ABSTRACTION

Chapter II. The Historical Problem of Mathematical Abstraction

An historical account of the nature of mathematical abstraction shows that it is the central problem of any philosophical speculation on mathematics. From the time of Thales, or the first Greek thinker who abstracted the mathematical, intellectual content from the sensible, thinkers have confused or identified the objects held in mathematical abstraction with the objects of logic, of science or metaphysics, and even with the nature of things themselves. All the speculative questions whose correct answer hinges on an adequate grasp of abstraction in mathematics -- existence, certitude, truth, applicability to nature -- are unsuccessfully met by thinkers who neglected this problem.

The deductive certainty of mathematics, its tenuous relation to the sense-perceptible, its exactness and profundity, exercise an attraction that is difficult to resist (1). Mathematical abstraction had scarcely been achieved, when the ancient Pythagoreans, captivated by its excellence, initiated the first program of mathematicism; they attempted to subsume the diversity and fluctuation of things under the rigor and determination of number and form (2). Plato and Aristotle had to take account of the popularity of the Pythagorean doctrine; in fact, we already find Aristotle insisting against the Pythagoreans and the Platonists, in those early days, that it is impossible to attribute real existence to the objects held in

mathematical abstraction (3). The Pythagorean experiment, though unsuccessful, is a frequently recurring theme in the history of thought and is often credited with exercising a strong influence on all subsequent scientific and philosophical thinking (4).

Of the many thinkers who concern themselves with mathematics in its philosophical aspect, few deal expressly and explicitly with mathematical abstraction as such. As a separated question of inquiry, the nature of mathematical abstraction is not a frequently occurring question; most thinkers assume that nature of mathematics is self-evident or never consider an understanding of mathematical abstraction as basic to all discussion on the nature of mathematics. For example, when Cartesian mathematics was popular, few thinkers broached the delicate but pertinent query, What is mathematics? At that time, the attitude of acceptability to mathematics which was inaugurated with the Renaissance, and the remarkable applicability to problems and the numberless discoveries that quickly followed Descartes' analytic geometry, precluded the prudence of questioning its nature (5). Hence it is necessary to ferret out the theories on mathematical abstraction from the implications which are

(3) More basically, of course, the Pythagorean attempt can be regarded as the inception of a long struggle to gain recognition for the validity of the abstraction proper to mathematics and the consequent admission of the importance of the quantitative element in nature. Cf. Thomas Little Heath, "Greek Mathematics and Astronomy," Scripta Mathematica, 5 (1938), pp. 215-232.

latent in what such thinkers as Descartes have written on mathematics or from the role and the function mathematics is given in their philosophy and science.

The explicit secondary sources for a history of mathematical abstraction, or, more especially, for the relation of mathematics to philosophy are relatively few (6). There is, moreover, much disagreement and dispute on the extent, influence and relation of mathematics to the philosophy of individual thinkers. It is only recently, in fact, along with the self-consciousness of mathematics and science, that the influence of mathematics on the historical formation of philosophy is being sufficiently credited (7). Many scholars today are cautious about the relation of mathematics to philosophy, and some shy away from or reject the relevance of a philosophical viewpoint of mathematics (8). Others welcome a philosophical attitude as healthful and even provocative of mathematical discovery (9). These attitudes, important as they are in the study of an individual thinker, also have a pronounced effect on the future relation

(7) A good example of this can be found in Joseph Maréchal, Précis d'Histoire de la Philosophie Moderne, Tome Premier: De la Renaissance à Kant, Louvain: Musée Lessianum, 1933. By the same author, see the study entitled Le Point de départ de la Métaphysique, 6 volumes, Paris: Declère de Breswar, 1944-1947, passim.

(8) "There will be less mysticism in the mathematics of the future than there has been in that of the past, and fewer grandiose claims to immortality and eternal youth. Mathematics will become less self-conscious, less introspectively critical, and more boldly creative. It will resign its soul to the metaphysicians for such tortures as they may choose to inflict, feeling nothing; for it will continue to serve with its living body the purposes of the man who create it to meet human needs rather than to be the plaything of sterile philosophies," K. T. Bell, The Development of Mathematics, New York: McGraw Hill, 1948, pp. 174-178.

A passing emphasis must be laid on the mutual influence of mathematics and philosophy on each other in the course of their development (10). As will be shown below, the evidence for their interaction, quite evident as it is in the works of philosopher-mathematicians as Pythagoras, Plato, Descartes and Leibniz, can likewise be detected in philosophers who were not mathematicians as Locke, Berkeley and Kant. They, of course, naturally, obvious speculative issues about which both mathematics and philosophy are concerned: quantity, space, time, infinity and number. Even with regard to less apparent theoretical matters, however, both mathematics and philosophy have gravitated towards each other in their developmental history and are doing so today. For example, the type of knowledge and procedure furnished by mathematics in comparison to moral knowledge was the program of investigation to which the British empiricists set themselves. Analogous questions concerning the interrelatedness of mathematics and philosophy, mathematics and the sciences, have frequently appeared and are common speculative coin today (11).

The usual chronology of the history of mathematics proper is not

relevant to an historical survey of mathematical abstraction (12). Neither does the basis for demarcating the different historical periods nor do the guides for classifying types of contributions apply (13). Instead, a classification based on what are frequently called the three crises of mathematics will be followed (14). The first period witnesses the struggle of mathematical abstraction — along with that of science and philosophy — to gain and keep recognition. It comprises the ancient views which Pythagoras, Plato and Aristotle began and which continue throughout medieval times. Although a close relation between philosophy, science and mathematics characterizes this

(12) For a short survey of the history of mathematics, cf. Raymond Clare Archibald, Outline of the History of Mathematics, Fifth edition, revised and enlarged, Oberlin: The Mathematical Association of America, 1941. The history of mathematics is usually divided into seven periods. The first period, from early times to ancient Babylonia and Egypt inclusive, is but a period of beginnings. The Greek contribution, from about 600 B.C. to 500 A.D., comprises the second period which signals the important introduction of deductive reasoning into mathematics. From 500 to 1200 A.D., the third period comprises the Hindu, Arabic and Persian contributions and is significant for the transmission of Greek mathematics and the introduction of Hindu-Arabic numerals. The fourth period, that of European mathematics extending from 1200 to 1600, marks especially the development of symbolic algebra by the French and Italian mathematicians. The fifth period is the outstanding seventeenth century which includes such great names as Fermat, Descartes, Kepler, Galileo, Huygens, Newton and Leibniz, and such an important step as mathematical analysis from which analytic geometry, the calculus and other developments arose. Applications of mathematics to the physical sciences and astronomy are noteworthy in this period. The next period, the sixth, developed the mathematical tradition and created such subjects as actuarial science, the calculus of variations and different geometries and algebras. The final period, the nineteenth century to present times, is one of unbelievable fruitfulness and productivity in mathematics. Laplace and Lagrange, Lgotaowsky, Gauss and Cauchy are but a few of the early great names in this period which includes many great contemporary mathematicians.

(13) Contributions to mathematics are generally classed under three broad headings. One of these is number with its implication of discreteness, exhibited at first as arithmetic and algebra. The concept of form and continuity, the second class, showed itself especially as geometry and later as structure in mathematical relations and theories. The third heading includes contributions to method, notation and similar devices. Cf. N. T. Bell, op. cit., pp. 3-15.

period, mathematical thought and discovery is often found completely divorced from philosophy; philosophy often is found neglectful of mathematics in its analysis (15). The second period, though it arises from a slow and scattered though coherent development, begins approximately with the publication of Descartes' analytic geometry in 1637, and his program of mathematicism. In this second period, a great rebirth in mathematics and in science, and a close connection frequently begetting a confusion of science, mathematics, and philosophy, reappears. The invention of analytic geometry and the recognition of its fecundity as a means of invention in mathematics and physics, foster in Descartes the dream of a universal mathematics which he hopes will qualify in dealing with problems of all knowledge. The Cartesian fellow Descartes in furthering this ideal science. Leibniz, by his calculus and mathematicism, actually initiates the steps towards its realization. Most of the philosophers of this period feel themselves bound to deal with mathematics in some form, or to explain how and why other knowledge, though it lacks the handsome qualities of mathematics, is yet valid (16). The problem of the distinction between philosophy and mathematics, posed by the program of mathematicising all knowledge at least with respect to mathematical method, appears frequently, leading to Christian von Wolff's proposal of two types of knowledge: Metaphysics and its ultimate causes, science and its proximate causes. The period concludes with the mathematically ultimate and absolute interpretations of Newton, Kant and Auguste

(15) This separability of mathematical from philosophical or scientific abstraction can be viewed as an historical argument favoring the distinction of these various types of abstractive processes.

The third and final report, the contemporary scene, is one of growing self-consciousness for both mathematics and science. In the eighteenth century, discussions arise on the foundations of the calculus and the theory of infinite series. The program of arithmetization follows, and is succeeded by a number of antinomies and paradoxes. Schools of thought on the foundations of mathematics develop, and the analysis of the nature of mathematics, its relation to other sciences and philosophy again become paramount problems (17).

It will be easily seen that the survey embodied in this chapter is not a history of mathematical abstraction. For, properly speaking, an account of the results arising from mathematical abstraction is merely the history of the science of mathematics. The historical sketch which follows is more aptly termed a history of the metaphysics of mathematical abstraction or a history of the philosophy of mathematics. It arises in answering these two questions: (a) what metaphysical position have past thinkers adopted on the nature of mathematics? and (b) in their philosophical account of what mathematics is, have they sufficiently distinguished mathematics and its method from metaphysics, logic and science in general? A speculative inquiry of this sort implies, then, that though a mathematician frequently questions the nature of his science, he engages in this inquiry not as mathematician but as philosopher; and, secondly, that such an endeavor is not the proper function of the mathematician as such but that of the mathematicians as man and philosopher.

In answering the two questions posed above, the following historical resume, by placing a man's theory on mathematical abstraction within his systematic philosophical efforts, reveals two truths: firstly, the mutual interaction of mathematics with other types of scientific abstraction; secondly, the recurrence of an ancient, modern and recent confusion or identification of mathematical method or abstraction with that of other sciences frequently manifesting itself as the error of mathematicism. Thus the historical view argues that a proper understanding of mathematical abstraction is necessary for speculative truth in general; and, more pointedly, for the contemporary philosophical speculations stemming from the science of mathematics.
Chapter III. Ancient Conceptions.

Mathematics had its historical origins in practical necessities (1). The counting and measuring processes of the ancient peoples, especially the Babylonians, Egyptians and Persians, grew out of their primitive engineering problems — surveying, construction, building walls and digging dikes — and out of their attempts to number the days of the year, to count sheep and compute interest. These countless submathematical facts, constituting an elementary arithmetic, a geometry and an analysis of a sort, and an algebra without symbolism, were the inheritance of the Greeks (2).

The Greeks did more than absorb these facts (3). Breaking with mythology and the current appeal to popular fancy, they achieved the abstraction proper to mathematics as well as that proper to science and philosophy and created the scientific outlook. In mathematics itself, they are to be credited not only for their contributions but especially for founding mathematics as a science by introducing the uni-

(1) A discussion of the views on this problem can be found in Carl B. Boyer, op. cit., pp. 14-16. Many recent books, popularizing mathematics, give a delightful but fanciful account of the origin of mathematics, regarding it as the offspring of convention, use, or as a result of the gradual perfecting of the human brain. Such accounts are quite fictitious. These authors interpret historical facts from a prejudiced and even mythological point of view. See, for example, Lancelet Hogben, Mathematics for the Millions, passim, and Gaylord N. Mersman, To Discover Mathematics, New York: John Wiley & Sons, 1942, pp. 1-5.

(3) "Even if we grant that the practical gardener—mathematics of the Egyptians and the astronomical observations of Babylonian astronomers influenced the Greeks and supplied them with preliminary material, this admission is in no way prejudicial to the originality of the Greek genius. Science and Thought, as distinct from mere practical calculation and astrological lore, were the result of the Greek genius and were due neither to the Egyptians nor to the Babylonians, F. Copleston, op. cit., pp. 15-16. For a similar testimony see John Burnet, Early Greek Philosophy, fourth edition, London: Adam and Charles Black, 1945, pp. 15-30, and Thomas L. Heath, op. cit., Chapter I, "Introductory", pp. 1-10.
flying principle of deductive reasoning (4). In their attempt to relate structure to number, they are also responsible for the view that a mathematical concern with nature is quite relevant, thus opening the way for a program of applying mathematics to nature. Finally, the genius of the Greek mind extended to a speculative treatment of mathematical abstraction, and a consideration of the relations between mathematics and the other sciences which had but lately been born (6). In this way they initiated the first notions of a philosophy of mathematics (6).

I. The Pythagoreans

When the school of thinkers known as the Pythagoreans speculated in Greece, a number of opinions were being offered on the nature and principle of all things. These early pioneers, whom Aristotle called “physicists” or philosophers of nature, had achieved a high level of scientific and philosophical abstraction. The early Ionians held, with Thales, that water is the principles of all things. Others sided with Anaximander’s teaching that the

(4) "They created the systematic mathematical theory based upon axioms and developed by means of logical deductions in the form of proofs, the standard pattern for mathematics, as it is formulated today," L. L. Woodruff, editor, The Development of the Sciences, Second Series, New Haven: Yale University Press, 1941, p. 4. See Gaston Milhaud, op. cit., pp. 51-59.

(5) Most scholars pay tribute to the Greek genius. In The Development of Mathematics, E. T. Bell seems to take a contrary view on the worth of the Greek contribution to mathematics and to civilization. A comparison of the various places in which he speaks of the Greeks indicates, however, that his on passant remarks are to be interpreted as flippantly as they are made.

(6) It is beyond our purpose here to examine the exaggerated and mystical views of number or form, or their use in symbolism. A detailed study of these developments can be found in Lynn Thorndike’s History of Magic and Experimental Science, cited above. For the symbolism and mysticism often attached to parts of mathematics, see Vincent Foster Hopper’s Medieval Number Symbolism, cited above, passim.
changes we observe in nature originate from a conflict of opposites which arise within the original element called the indeterminate. Some followed Anaximenes, who taught that all things come from air through a process of condensation and reaction. This propensity to rationalize the ceaseless, almost unintelligible change in nature, was adopted by the Pythagoreans. Although they came of a curious mixture of mysticism and a bent for mathematics, the Pythagoreans were likewise scientific, and thrived in the new intellectual atmosphere (7).

To the current scientific and philosophical attempts towards rendering nature intelligible, the Pythagoreans contributed a new outlook: was there not a connection between the attitudes of the physicists and that offered by mathematics? All the physicists had tried to solve the problem of the many and the one; they had sought for identity in diversity. The Pythagoreans suggested that possibly the sameness in diversity could be accounted for by number and structure. We need no longer inquire what the primitive matter is (thus the Pythagorean mathematical outlook eliminates that of scientific and philosophical abstraction); we can say that all things are number and form. Aristotle writes that

The Pythagoreans, as they are called, devoted themselves to mathematics, they were the first to advance this study, and having been brought up in it, they thought that its principles were the principles of all things (8).

The application of the Pythagorean tenets to nature were successful. In acoustics, their doctrine pointed out that the qualitative differences

(8) Metaphysics, 98a 17-6; see also 98a 15 and 1090 a 32. References to Aristotle are from The Works of Aristotle, Translated into English under the editorship of W. D. Ross, eleven volumes, Oxford: The Clarendon Press, 1908-1931.
between notes are due to the way in which the plucked musical string takes up different shapes. Likewise the concordance of musical tones was well explained by their ratio of numbers. By analyzing bodies into surfaces, surfaces into lines and lines into points, they applied their doctrine to nature and demonstrated, to the physicists, that mathematical concepts explained the world of nature (9). Each body expresses the number four; surfaces, three; lines, two; the point, one. If we add these together, we get ten, the perfect number. The whole universe seemed to submit to this interpretation by mathematical abstraction; the forms and figures of the objects of sense experience could be seen to have geometrical contours, while the constellations of the heavens were explicable both as a configuration and a number. And hence, as four dots can represent the configuration of a square, three of a triangle, two of a line and one of a point, the Pythagoreans readily

supposed the elements of numbers to be the elements of all things, and the whole heaven to be a musical scale and a number (10).

Pythagorean mathematicism, then, attempted to identify the objects held in mathematical abstraction with all things and eliminated the propriety of the earlier abstracted views of the physicists. Nature, they agreed with the earlier physicists, is orderly and changes in harmonious proportions; but the very order and the proportion is number and form. And whereas the earlier physicists had thought of water, air, fire and

(10) Metaphysics, 986 a 1-5.
earth as elements and principles, the Pythagoreans held numbers and forms to be the intrinsic principles of nature and to be immanent in things themselves (11).

The plausibility of the Pythagorean doctrines attracted many followers and the school flourished. Aristotle wrote of them and the Platonists:

mathematics has come to be identical with philosophy for modern thinkers, though they say that it should be studied for the sake of other things (12).

The "scandalous discovery" (13) of the irrationals in mathematics, however, became an insuperable obstacle to Pythagorean mathematics and their mathematicism. In the application of the side of a square to its diagonal, an incommensurable ratio was discovered, and no way of resolving this difficulty could be found. The attempt to apply mathematics to nature, and the endeavor to relate continuity as form to discreteness as number, was abandoned, although the Pythagorean

(12) Metaphysics, 992 a, 32-41.
Influence and outlook on these matters continued (14).

In the meantime, other schools of thought with highly metaphysical abstractions, flourished. Heraclitus opposed the static and atomic concept of nature advocated by his predecessors with a dynamic philosophy of becoming. He answered the question of identifying diversity by holding that the One is the principle of all things. The essence of the One lies in its being both the many and the One at the same time, so that all things are in a constant state of flux and change. Parmenides, on the contrary, taught a philosophy of being. There is no change; being is, and all things are. The doctrines were pitted against each other, and acute discussion arose through the efforts of Zeno and Elea, Parmenides' most prominent pupil. In support of his master and in opposition to the Pythagoreans and other schools, Zeno offered his famous dialectical abstractions which argued in favor of continuous as against discrete quantity. Zeno used his dialectical talents to show that Parmenides' static philosophy was the best; if one granted the ideas of the Pythagoreans or even of the Atomists with their "infinitely small" quantities (15), antinomies arise which are

(14) The Pythagorean influence passes through Plato and the Neo­Platonists to Saint Augustine, eventually reaching scholasticism where the Pythagorean notion of numbered order in geometry, arithmetic, music and astronomy made these four subjects the quadrivium of medieval instruction; Sir W. C. Dampier, A History of Science, New York: MacMillan, 1943, pp. 17-18. On page twenty Dampier writes, "After the Renaissance, the idea of the importance of number was taken up by Copernicus and Kepler, who laid chief stress on the mathematical harmony and simplicity of the Heliocentric hypothesis as the best evidence of its truth. In our own day, Aston with his integral atomic weights, Moseley with his atomic numbers, Planck with his quantum theory, and Einstein with his claim that physical facts such as gravitation are exhibitions of local space-time properties, are revising ideas that, in older, cruder forms, appear in Pythagorean philosophy."

Dampier refers to Whitehead as his authority for this statement. It should be pointed out that it is possible to separate procedure in science from such metaphysical implications as are found, for example, in Pythagorean mathematics. One can say that scientists as such are merely relating structure to number, without any metaphysical implications as to the existence of these numbers in things, which is closer to the Pythagorean view. This distinction between procedures and metaphysics in mathematics has been studied in Edward W. Strong, Procedures and Metaphysics, Berkeley: University of California Press, 1926, see Chapter I and Chapter II.

insoluble by the theory of number and form. Mathematics fails to rationalize nature as it fails to rationalize the incommensurable segments in the teaching of the Pythagoreans.

Another school, the Atomists, taught that an infinite number of indivisible units called atoms, differing only in size and shape are the principles of all things. From the various formations and configurations which these atoms subsume, the four elements and the world of nature are brought into being. This theory, however, was also unable to cope with Zeno's arguments. Hence the doctrine of the infinitesimally small and the infinite in number, which the Atomists proposed, was gradually abandoned (16).

II. Plato

Through their insistence on the intelligibility of nature, all these early thinkers exercised a profound influence on the philosophy of Plato. Socrates, Plato's teacher, advanced the thought of these men by introducing the maieutic method and the notion of definition; he accentuated the importance of ethics and displayed the necessity for clarifying the goal of all scientific endeavor, the Universal. Plato's respect and debt to all these thinkers is repaid in the work of his dialogues, where they often play the leading roles in presenting scientific, mathematical and philosophical points of view.

In order to enter Plato's Academy, a certain amount of proficiency in mathematics was requisite. "Let none enter here ignorant of geometry" is

(16) F. Copleston, op. cit., pp. 72-75.
a well-known phrase which was, supposedly, the admissions standard to Plato's school. This respect and syllogisation of mathematics which is found in Plato's writings, is principally due to Pythagorean influence. Plato's deference to mathematics likewise produced a number of graduates who made important contributions to the growing science of mathematics (17).

Plato's attempt to solve the problem of the one and the many consisted of a dual psychological process: a gradual purification of the shadows and sense images of the world of nature, and the process of recollection. His philosophy is dominated by the fundamental principle that the proper object of all true science is the world of ideas in which man pre-existed, and of which the sense-perceptible world is but a shadow or copy yielding only opinion. For Plato, in contrast to the earlier thinkers, held that essences, forms, numbers — the intelligible as such — transcended the world of nature and were not immanent within it.

A student is initiated into the process towards knowledge from his state of ignorance by beginning with the sensible world, of which he can garner only opinion. The lowest type of opinion is that acquaintance or mere conjecture a man has of the fleeting "images" in the world about us. Such a man judges wrongly that external nature is the true reality. A higher type of opinion, faith or belief, is achieved when a man realises that those images are nothing more than reflections of something more basically real. He realises that external nature is not what it purports to be, and, though he has not got it as yet, he is on the road towards scientific knowledge.

(17) See the interesting remarks Plato makes concerning Greek ignorance of geometry in Laws, 619 d - 620 a. References to Plato are taken from The Dialogues of Plato, Translated into English by B. Jowett, with an Introduction by Raphael Demos, two volumes, New York: Random House, 1937.
The second stage, that of knowledge, also has two subdivisions. In the lower, a man begins from hypotheses and proceeds, not to a principle or form, but to a conclusion. Such men are "really endeavoring to behold those objects which a person can only see with the eye of thought" (18), or the objects of mathematics. Mathematical abstraction, then, though it has the function of rationalizing the fluctuation of nature, is only on the road to knowledge. The men who abstract in this way are classed as having understanding, which is the intermediate state of mind between opinion and the final stage of scientific knowledge — pure reason, the understanding of the forms and ideas themselves. In order to arrive at the state of pure reason, one must begin with the hypotheses of the previous section (mathematics), and rise to the first principles, the world of forms and ideas. It is only here that the inner meaning of all things is grasped in the contemplation of the Good (19).

The problem of Plato's doctrine on the nature of mathematics and on the relation of mathematics to the Forms is a widely disputed one (20). It is agreed that Plato's search for rationality in nature was fruitless and that he thereby consigned the study of nature to the realm of uncertain, shifting opinion. The Pythagoreans had made the ensemble of numbers and things correspond. Plato lifted number out of the world
of nature and made it transcendent; it occupied an intermediary position between the sense world and the world of ideas. Seemingly, Plato — and certainly later Platonists — was not content with this scheme. According to Aristotle and many modern scholars, Plato taught that mathematics is not only the means by which a man reaches true knowledge, but even the ideal world itself can only be made rational and intelligible through mathematics. In this way Plato offered a different type of mathematicism from that of the Pythagoreans. The Pythagoreans had identified the scientific abstraction of the earlier thinkers with that of mathematics. Plato eliminates scientific abstraction (21), and identifies mathematical with metaphysical abstraction in idealistic mathematicism. In Plato's philosophy, it has been said, "God ever geometrizes (22)."

If Plato is not to be understood as proposing mathematicism, then his notions on mathematics were quite in harmony with current mathematiccal practice. Mathematics has unto itself a special faculty of the soul, called understanding (23). It is classed among the purely intellectual, as opposed to the practical sciences (24). Although the mathematician uses sensible things as symbols in his demonstrations, his purpose is to lay hold of the triangle or square in itself which he does by rationalizing nature; that is, by reducing the fluctuation of images and shadows to forms, for "in these perplexities the soul naturally summons to her aid

(21) "Plate's criterion of reality was not consistency in experience but reasonableness in thought. For him, as for the Pythagoreans, there was no necessary distinction between mathematics and science; both were the result of deduction from clearly perceived first principles." Carl B. Boyer, op. cit., p. 23.

(22) This quotation can be found in the delightful work of Robert Edouard Moritz, Memorabilia Mathematica, pp. 259-270; Moritz's book, though old, is an invaluable source of quotations on mathematics and the philosophy of mathematics.

(23) Republic, VI, 511 C; see Theaetetus, 184 D.

(24) Statesman, 268 D.
calculation and intelligence" (25). Mathematical abstraction makes much use of hypotheses, whose validity the mathematician does not question but simply uses in drawing his conclusions (26). Further, the existence of a square or a triangle is assumed by the mathematician; it is what is given to him, and furnishes his point of departure for mathematical demonstration.

The usual division of mathematics into arithmetic and geometry is mentioned.

Each of these branches, however, has two varieties, the impure (which seems to be mathematics itself), and the pure. The latter is the philosophical use of mathematics; the philosopher must be an arithmetician, "because he has to rise out of the sea of change and lay hold of true being" (27).

III. Aristotle

Aristotle owed much to his predecessors and especially to his teacher, Plato. There can be little doubt, however, of the originality and greatness of his contribution to the new scientific doctrine of the early Greeks to the problems posed by the mathematical philosophers. In his logical treatises, we meet for the first time in the history of thought a complete and quite satisfying account of the nature of pre-scientific knowledge, and of the nature, divisions and extent of scientific knowledge (28). In both cases a man may possess knowledge; what especially distinguishes scientific knowledge is its universality, demonstrability and certainty.

(25) Republic, VII, 524.
(27) Republic, VII, 525.
(28) Aristotle's logical treatises portray his scientific ideal. The Prior Analytics examines the formal validity of inference, or the valid derivation of conclusions from given premises. The Posterior Analytics analyses the characteristics of premises if our knowledge is to be the most perfect obtainable that is, truly scientific. In the Topics, Aristotle shows how we attain and justify the premises that are used in the arguments of daily life. The notion of science itself occupies the main part of the Posterior Analytics.
There is a realm of pre-scientific knowledge, Aristotle teaches, which corresponds roughly to Plato's theory that only opinion can be obtained of nature (29). It is the realm of the fancies of the poet which induce in us a state of mind called estimation about the truth of things; it is the realm of the persuasions of the rhetorician which breeds a suspicion of truth within us, inclining us to adopt one part of a contradiction; it is the realm of the probabilities of the dialectician which gives us opinion, whereby we accept one part of a contradictory proposition, with fear that we may be in error. Since some form of reasoning, man's distinctive activity, occurs in all these states of mind, Aristotle felt that the logician should examine their respective merits.

Dialectics, a favorite Aristotelian device, is a fertile source of argument, demonstration and methods of arriving at truth or approximations to the truth (30). Problems of any sort are its concern, and the arguments and discussions it provokes arise from propositions which either are, or seem to be generally accepted. Dialectics being an easy way to learn, it is of much service in the acquisition of scientific knowledge and plays an important role in all the sciences. Its main function occurs in dealing with the realm of the changeable and contingent where truth is difficult to establish. Dialectical arguments rest on what

(29) Posterior Analytics, VII a 1-10.

(30) In Aristotle's conception, Dialectics played a large part as preparatory to the acquisition of each science. It performed an important function in the approach towards science through the consideration of doubts and difficulties, and the opinions offered by previous thinkers.
can be observed to be the case only in most instances. Inductive examples and the type of syllogism known as enthymemes are the main types of arguments used in dialectical knowledge.

Scientific knowledge, which is not limited merely to knowledge of forms or mathematics, is dealt with chiefly in the Posterior Analytics.

We suppose ourselves to possess unqualified scientific knowledge of a thing...when we think that we know the cause on which the fact depends, as the cause of that fact and of no other, and, further, that the fact could not be other than it is (31).

It is knowledge obtained only by strict demonstration through the syllogism of the first mood and first figure, having both premises universal and affirmative (32). This implies that the premises must be "true, primary, immediate, better known than and prior to the conclusion, which is related to them as effect to cause" (35). Scientific, in opposition to pre-scientific knowledge, is demonstrative (34), is knowledge of causes (35), of universals (36), of essence (37), of form (38). These strict requirements for knowledge to be classed as scientific, reduce much knowledge to the pre-scientific level, especially to that of Dialectics.

(31) Posterior Analytics, 71 b 8-12.
(32) This is a rigorous conception of science. "Of all the figures the most scientific is the first. Thus, it is the vehicle of the demonstrations of all the mathematical sciences, such as arithmetic, geometry, and optics, and practically of all the sciences that investigate causes... Posterior Analytics, 79 a 18-21.
(33) Posterior Analytics, 71 b 20-22.
(34) Posterior Analytics, 74 b 27; 90 b 9; 97 b 35.
(35) Posterior Analytics, 71 b 9; 94 a 20. Cf. also Physics, 194 b 1f.
Here Aristotle has in mind his doctrine of the four causes. Causal knowledge implies necessity.
(36) Posterior Analytics, 67 b 28; see also Metaphysics, 1006 b 6; 1059 b 28; 1005 a 13. The individual thing as such is ineffable and cannot be the object of science.
(37) Posterior Analytics, 99 a 22; Metaphysics, 1081 b 7; 1031 b 20.
(38) In the Soul, 412 a 9; 414 a 4.
In the process of teaching, science is induced in the pupil by demonstration. It begins with the student's pre-existent knowledge of self-evident principles. It supposes the student's acquaintance with a fact, the comprehension of a term, or both. All proof ultimately rests on the grasp of self-evident principles which are known by an act of immediate understanding, incapable of demonstration and thus, self-evident. These principles are incapable of demonstration, Aristotle maintains, or we are committed to an infinite regress in the process of science. The teacher presents the students with facts, with the terms and the subject-matter of the science, with the varied opinions that have been offered on the matter under consideration, and with dialectical suppositions.

The actuality of scientific knowledge, consequently, arises in the mind of the student by inducing in him the process of abstraction from what is given in sense data. It is theoretical or speculative, as opposed to practical knowledge (39). Theoretical knowledge is interested in truth as such and is more noble than practical knowledge, which relates truth in the mind to human actions of an ethical or factive nature. Theoretical science arises in three ways. By the process of scientific abstraction of the first degree, a student studies nature itself under the aspect of mobile being. The concepts and definitions which arise in the student mind bear a direct relation to the world of nature. They are the mental grasp of the permanent, universal and the necessary lodged within nature in general, and in each thing. The entities which the mind holds in this

(39) Metaphysics, 935 b 20; 1025 b 1-1026a 33; 1084a 1-1084b 14.
type of abstraction are seen to be of such a type that they are connected
with matter for their existence, and in order to be known. They are not
transcendent or apart from the world of nature. The whole realm of nature,
living and non-living, is included under this abstractive process in which
inductive and deductive methodology occur.

The second type of abstraction is that proper to mathematics, which
likewise originates through the senses, though often from a minimum of
experience (40). In his discussion of mathematics, Aristotle forcibly
rejects the mathematicism of the Pythagoreans or Platonists or any theory
which equates mathematical entities with a separately real world of nature
or self-existing ideas (41). Mathematics is distinguished from the first
abstractive process; there the mind abstracted from the individual sensible
matter of each thing and arrive at the concept of common sensible matter.
In mathematics, the mind abstracts from common sensible matter and arrives
at the notion of "intelligible" matter. The mathematician

strips off all the sensible qualities, e.g., weight and lightness, hard
ness and its contrary, and also heat and cold and the other
sensible contraries, and leaves only the quantitative and con-
tinuous, sometimes in one, sometimes in two, sometimes in three
dimensions, and the attributes of these qua quantitative and con-
tinuous... (42).

(40) "What has been said is confirmed by the fact that while young
men become geometericians and mathematicians and wise in matters like these,
it is thought that a young man or practical wisdom cannot be found...indeed
one might ask this question too, why a boy may become a mathematician,
but not a philosopher or a physicist. Is it because the objects of math-
ematics exist by abstraction, while the first principles of these other
subjects come from experience, and because young men have no conviction
about the latter but merely use the proper language, while the essence
of mathematical objects is plain enough to them?" Nicomachean Ethics,
1142 a 10-19.

(41) Metaphysics, Books XIII and XIV; see Augustin Mansion, Intro-
duction a la Physique Aristotelicienne, deuxieme edition, revue et augmen-
tées, Paris, J. Vrin, 1945, Ch. V, No. 5, "Distinction de la physique et des
mathematiques d'apres Aristote," pp. 143-186.

(42) Metaphysics, 1061 a 26-35.
What the mind achieves here, then, are the concepts proper to mathematics. The mathematician considers quantity either as the continuous extension of geometry or the discrete units of arithmetic. Though he summons the aid of the senses for illustration and makes much use of the imagination, the mathematician is not concerned with objects as the limits of a physical body; nor does he consider the attributes indicated as the attributes of such bodies. That is why he separates them; for in thought they are separable from motion, and it makes no difference, nor does any falsity result, if they are separated (43).

The application of mathematics to optics, harmonies and astronomy is achieved by sciences which lie between physics and mathematics. The objects held in the mind by scientific abstraction are dealt with by the abstraction of mathematics (44). Geometry, for example,

investigates physical lines but not qua physical, optics investigates mathematical lines, but qua physical, not qua mathematical (45).

In its applications to other sciences, mathematics is superior to them.

If one reaches impossible consequences in mathematics, they will reproduce themselves when applied to physical bodies, but there will be difficulties in physics which are not present in mathematics; for mathematics deals with an abstract and physics with a more concrete object (45).

The methodology of mathematics, like that of all the sciences, is treated by logic. Mathematics, though it may use dialectics, is distinct from it (47).

(43) Physics, 195 b, 31-35.
(45) Physics, 194 a, 9-11.
(46) De Caelo, 290 a, 15-16.
Mathematical abstraction, though it is not the highest and noblest which the mind can achieve, is yet most proportionate to the human mind (48). It deals with the necessary (49), has the highest type of certitude (50) and offers conclusions that are timeless (51).

The third abstractive process does not arise from a remembrance or contemplation of a separated world of ideas, as Plato held, but from a consideration of the world of nature. This abstraction, metaphysics, is the highest, noblest and most difficult (52). It abstracts more deeply from the world of nature by not considering being as mobile or quantitative, but being as such. Its concepts and definitions, as substance, potentiality, actuality, are seen to have no necessary connection or dependence on matter in their consideration by the mind. Thus, not being fraught with change and contingency, these abstractions yield the highest type of speculative science. Besides this positive knowledge which is the fruit of this abstraction, metaphysics has a critical function: it orders the abstraction of the other sciences, determines the speculative relations between them, and establishes the speculative principles of all science. Metaphysics, the highest type of speculative science, is superseded by two higher states of mind. The first is understanding — a habit of mind which sees the conclusions of science as related to the speculative principles of all thought; the

(48) Metaphysics, 1078a 8-14.
(49) Physics, 200a 15-24.
(50) De Coelo, 306a 25.
(52) Metaphysics, 993a 30-993b 30.
second is wisdom, which sees the order and relation of all things to God, its ultimate principle.

Although there are significant points of agreement between Aristotle and his predecessors, he did not merely harmonise their views. Rather, his attitude was that

It is just that we should be grateful, not only to those whose views we may agree, but also to those who have expressed more superficial views; for these also contributed something, by developing before us the powers of thought (53).

By his theory of knowledge and his classification and distinction of the sciences he wished to vindicate many legitimate points of view. By eliminating the Platonic theory of a science concerned only with the recall and contemplation of a world of ideas; by denying the idealist identification of mathematical with metaphysical abstraction in the Platonic teaching or with scientific abstraction in the Pythagorean attitude, Aristotle hoped to establish many valid types of scientific knowledge (54). The transcendent ideas or forms become, so to speak,

(53) Metaphysics, 1023 b, 12-16.
(54) The following diagram will serve to emphasize the difference between Plato and Aristotle.

[Diagram of the classification of knowledge and sciences between Plato and Aristotle.]

PLATO

- Pure Reason: Knowledge of Ideal world & the Good, God.
- Mathematical: Prelude to knowledge of Ideal World
- Pre-scientific Knowledge: Conjecture

ARISTOTLE

- Metaphysics: Third & highest type of abstractive knowledge of nature, leading to knowledge of First Cause, God.
- Mathematical: Second and intermediary type of abstractive knowledge of nature; being as quantitative (Intermediary Sciences).
- Physics: First and lowest type of abstractive knowledge of real world: mobile being.
- Dialectics: Knowledge of highest type of probability
- Pre-scientific Knowledge: Opinion; Suspicion of truth; Estimation of truth.
The concept of mathematical abstraction in the various types of science is present in the world of nature as the essences and accidents of things; through abstraction the mind conceptualizes the essence and the accidents of natural things in the various types of science. With regard to the Platonic mathematical ideas as such, they exist only in the mind which develops from them the pure or applied sciences of mathematics. Hence the essential, the quantitative and the qualitative aspects of nature are intelligible and the proper concern of various sciences.

The generations immediately succeeding the Pythagorean, Platonic and Aristotelian schools contributed little material that is germane to the problem of mathematical abstraction which is being considered here (56). With some exceptions, number mysticism, scepticism and lack of mathematical speculation followed in the decadence of Hellenic and Hellenistic thought. These intervening centuries are more properly viewed as a prolonged period of preparation for mathematics and science (56).

In fact, only in the Middle Ages is the problem of mathematical abstraction expressly given a philosophical consideration in the Aristotelian tradition, especially by St. Thomas Aquinas (57). But the medievals contributed towards the future growth of mathematics in a number of ways. Various mathematical compendia were edited; change, variability of quantities, the infinite, infinitesimal and the continuum were subjected to lively theoretical discussion; Greek mathematics, as well as science and philosophy, were preserved and translated; the

relations and respective spheres of reason and faith were widely discussed and the appositeness of reason as a powerful instrument of speculative consideration was vindicated (58).

Chapter IV. The Cartesian Era.

The founding of mathematics as a science and its accessory development by the Greeks marked the first golden era of mathematics. The seventeenth century, the second great period of mathematical history, signalized by its emphasis on analysis, the beginnings of modern mathematics (1). This fruitful period comprised the founding of analytic geometry by Fermat and Descartes; the inception of probability theory in Fermat and Pascal and Fermat's higher arithmetic; the application of mathematics to dynamics by Galileo and the Newtonian theory of the universe; the discovery of algorithms for the calculus by Leibniz and Newton; the synthetic geometry of Desargues and Pascal; the notion of symbolic logic in Leibniz.

The rediscovery and progress of mathematical thought had a widespread effect on the current cultural outlook (2). An unbounded faith in the excellence and certainty of mathematics rose, and the application of its principles to astronomy, physics, and allied branches was initiated. A keen interest in the quantitative elements of nature slowly supplanted the study of nature in its qualitative aspects. Extreme views in favor of the new sciences, amounting even to contempt for theology, metaphysics and moral knowledge, led many thinkers to adopt a sheer mechanical view of nature.

The new mathematics had a direct influence on philosophical thought (3). In contrast to mathematics, philosophy was looked upon as empty speculation, and many attempts were made to remedy these supposed failings by introducing

(3) For the impact of mathematics and science on sixteenth and seventeenth century thought see Edwin Burtt, op. cit., passim. See also Edward F. Strong, op. cit., passim.
mathematical abstraction and method into philosophy. In this way various forms of mathematicism appeared. The growing conviction that nature is essentially mathematical in its makeup, reestablished the Pythagorean-Platonic tradition in metaphysics. The successful adoption of mathematics in experimental science predisposed various thinkers to employ it in psychological, religious and ethical knowledge (4).

The general sentiment concerning mathematics before Descartes is epitomised in the views of Copernicus, Kepler and Galileo. With Copernicus (1473-1543), mathematics took a forward step by being applied anew to astronomy. Though his heliocentric theory of the universe was based on a small amount of empirical evidence, Copernicus proposed its acceptance for its evident arrangement of astronomical facts in a more simple and orderly mathematical frame (5). Proposing a theory of empirical mathematicism, he held mathematics to be the magic key to the study of nature, whose structure be considered as mathematical and quantitative. A strong anti-Aristotelian, Copernicus was an ardent enthusiast for the neo-Pythagoreanism which had been ushered in with the Renaissance and had left such a marked influence on Cardinal Nicholas of Cusa. Both Cusa and Copernicus held extravagant views on the range of mathematical abstraction.

Kepler (1571-1630), had a deep love of astronomy almost equivalent to sun-worship (6). He eagerly read Copernicus' works and adopted his ideas.

(4) This will be seen to be true especially of Locke, Hume and the British empiricist school.

(6) For a recent view somewhat akin to Kepler's fantastic position, see F. S. C. Northrop, Science and First Principles, New York: the Macmillan Co., 1932. "Hence, there are two gods. One, the macroscopic atom is a single perfect substance. The other, the macroscopic unity of nature as a whole is a complex substance. Many of the inconsistencies in theological theory have arisen because of the failure to distinguish between these two divine objects." p. 262.
Convinced of the principles that nature does nothing in vain, that nature
loves simplicity and chooses the easiest means for its ends, Copernicus
claimed that his mathematical theories exhibited the deep connection of
the mathematically-harmonious motions of nature. That the only true
knowledge of nature is quantitative was the fundamental tenet of his em­
pirical mathematicism. In Kepler's universe, mathematical knowledge was
most perfect; its conclusions were certain and not subject to doubt, and
it revealed to us the only real being, the quantitative.

The mathematicism of these scientists culminated in Galileo (1564-1642).
A great and famous scientist; he was familiar with Greek geometry and was
strongly influenced by the Pythagorean-Platonic line of thought. His sci­
cific theories owed much to late medieval speculation on motion, the indivi­
sibles, the infinite, the continuum and the notion of impetus. More than his
predecessors, Galileo insisted on the mathematical character of nature and
considered it as governed by immutable laws. Nature moved in perfect pre­
cision and order; not logic, but mathematics joined with experiment was the
cue to nature's secrets. Observation yielded the general mathematical
scheme of nature with which the mind became immediately informed; the mind
then deduced a theory which must always be verifiable in actual events.
Galileo was most clear in his emphasis on the reality of primary and the
fictive character of secondary qualities;

But that external bodies, to excite in us these tastes, these odours,
and these sounds, demand other than size, figure, number and slow or
rapid motions, I do not believe; and I judge that, if the ear, the
tongue, and the nostrils were taken away, the figure, the numbers,
and the motions would indeed remain, but not the odours nor the tastes
nor the sounds, which, without the living animal, I do not believe
are anything else than names, just as tickling is precisely nothing
but a name if the armpit and the nasal membrane be removed (7).

(7) As quoted in E. A. Burtt, op. cit., p. 75.
The new scientific movement fostered by Copernicus, Kepler and Galileo separated scientific from philosophical abstraction and led to the eventual disregard of the latter. Further, scientific abstraction became quasi-identified with mathematics. The quantitative and mathematical character of nature alone was important and mathematics slowly infiltrated into all scientific speculation.

I. DESCARTES

The favorisation of mathematics and science and the distaste for scholastic theology and philosophy are embodied in Descartes (1596-1650). The founder (with Fermat) of analytic geometry, Descartes was likewise the inaugurator of a mathematicised metaphysics. In both regards he was a child of the past and a man of his time (8). He displayed a certain mental coquettishness (9), however, by his admitted distaste and disavowal of historical and doctrinal influences on his speculations. His metaphysics, yet couched in scholastic terminology, discloses him as an habitue of their

(8) "In fact, though Descartes' antipathy to history is part of his philosophy, his philosophy, in its turn has its historical setting. The two principal preoccupations of Descartes were his mathematical method and his personal approach to philosophy. In both there lurks a hostility to the historical outlook. The necessary truths of mathematics are independent of temporal changes. They are always necessary. The order in which they happen is irrelevant to them; their articulation is not that of events of time. On the other hand, the personal approach, placing as it does the whole case of the search after truth on the individual, who must live through each turn of the argument he discovers, relieves him of the study of precedent and imposes simply the duty of reflecting methodically on the implications of his own experience." A. Boyce Gibson, The Philosophy of Descartes, London: Methuen and Co., 1933, pp. 3-4.

(9) Of Joseph Marechal, Précis d'Histoir.e de la Philosophie Moderne, Tome Première: De la Renaissance à Kant, Louvain: Martinus Nijhoff, 1933, pp. 62.
thought (10). Furthermore, his mental condition was due to a readily
number of his predecessors, Saint Augustine, the Renaissance Neo-
Platonists and contemporary scientists (11).

A mental malcontent, Descartes considered his past experience in
philosophy, science and letters merely as cumulative evidence for the
sorry state in which he found knowledge and science to be;

But as soon as I had finished the entire course of study..., I
found myself involved in so many doubts and errors, that
I was convinced I had advanced no farther in all my attempts
at learning, than the discovery at every turn of my own
ignorance (12).

The excellence of mathematics and its normative influence on him, however,
was given proper credit. Of his students' days at La Fleche, he writes,

I was especially delighted with mathematics, on account of the
certainty and evidence of their reasoning (13).

He looked to mathematics under its elementary forms of arithmetic
and geometry as representative, but incipient models of truth:

(10) "En decider d'etendre l'explication matheatique a la totalite
du reel, Descartes vient de substituer le point de vue du sujet a celui
de l'objet. S'engageant en effet a considerer la methode mathematique
comme le seul exercice normal et legitime de la raison, il remplace la
science scolastique, diversifiee dans ses methodes comme elle l'était
dans ses objets, par une science comme l'est sa methode meme; il s'en-
gage a proceder toujours a priori, en allant des idees aux choses, au
lieu de proceder toujours a posteriori, comme le thomisme, en allant des
chooses aux concepts; il s'oblige enfin a substituer au reel, pris dans
sa complexite concrete, un ensemble d'idées definites a chaque desquelles
correspond une chose, au lieu de proceder, comme le thomisme, a une analyse
conceptuelle du concret ou la complexite des concepts se modelle sur la
complexite des choses." Etienne Gilson, Hledes sur le Role de la Rensee
(11) A. Boyes Ellison, op. cit., pp. 1-29.
(12) "Mais sitot que j'ai acheve tout ce cours d'etudes..., je me trouvais
embasse de tant de doutes & erreurs, qu'il me semblait n'avoir fait autre
profit, en tansant de m'instruire, sinon que j'avois decouver de plus en
plus mon ignorance." Oeuvres de Descartes, Charles Adam & Paul Tannery, Paris:
Leopold Cerf, 1897-1913, Discours de la Methode, Vol. VI, p. 6. All quotations
from Descartes are from this edition.
(13) "Je me plaisois surtout aux Mathematiques, a cause de la certitude
Arithmetica et Geometria...circa objectum ita purum et simplex
versatnr, ut nihil plane suppressat, quod experientia reddiderit
incertum, sed tota consistunt in consequentiis rationabiliter
dedueendi (14).

The inherent rigor of mathematical demonstration particularly gratified
him, and he averred that those who seek truth

Circa nullum objectum debere occupari, de quae non possint habere
certitudinem Arithmeticae et Geometriae demonstrationibus aequalem (15).

Current lack of mathematical development surprised Descartes; though mathe-
matics had strong foundations, it seemed strange that "they should have
had no loftier superstructure reared on them (16)." Instead of being neatly
compacted in a uniform doctrine, the parts of mathematics seemed disordered
and of little use:

as to the analysis of the ancient and the algebra of the moderns,
besides that they embrace only matters highly abstract, and, to
appearance, of no use, there results an art full of confusion
and obscurity calculated to embarrass, instead of a science fitted
to cultivate the mind (17).

Then Descartes regarded the philosophy of the Schoolmen, it was only to
censure their syllogistic method as

that method of philosophising which others have already discovered and
those weapons of the schoolmen, probable syllogisms, which are so well
suited for dialectical combat (18).

(14) "Ex quibus evidentem colligitur, quare Arithmetica & Geometria castoris
disciplinis longe certiores existant: quia scilicet has folias circa objectum ita
purum & simplex versatnr, ut nihil plane suppressat, quod experientia reddiderit
incertum, sed totae consistunt in consequentiis rationabiliter dedueendi." Regu-

(15) "...rectum veritatis iter quaerentes circa nullum objectum debere
occupari, de quae non possint habere certitudinem Arithmeticae & Geometriae
demonstrationibus aequalem." Ibid., p. 366.

(16) "...mais je ne remarquais point encore leur vrai usage, à passant
qu'elles ne servoient qu'aux Arts Mechaniques, je n'estonnais de ce que, leurs
fondemens estans si forts & si solides, on n'avoit rien basti dessus de plus

(17) "...nul, pour l'Analyse des anciens à l'Algebre des modernes, autre
qu'elles ne s'entendent qu'a des matieres fort abstraites, à qui ne semblent
d'aucun usage...qu'en en a fait un art confus à obscur, qui embarasse l'esprit,
au lieu d'une science qui le cultive." Discours de la Methode, Vol. VI, pp. 17-18

(18) "...damnum illum, quam castori haecemus inveniunt, philosophandi
rationem, à scholasticorum, optimum bellis, probabilium syllogismorum tormenta.
The logic of the schoolmen is only able to affect a status of opinion and probable knowledge; it is concerned with empty problems and fails to guarantee the certitude of truth. Science, letters and learning in general were prescribed by Puseartes, and he found no one adequately equipped with truth, no place where it was taught and no truth so certain that it could not be doubted.

Fraught with these doubts and with speculative dissatisfaction, \(\text{Descartes} \) conjectured that the prevalent barrenness of truth and verity of error were due to a faulty and confused method. He desired a mode of procedure in reasoning that would dissolve his personal doubts, enable him to achieve certainty for the good of mankind, and possibly empower him with the reconstruction of the entire edifice of human knowledge. The method which he unearthed was disclosed to him in mathematics (19). It had two admirable traits: the simplicity and generality of its axioms, and the long chain of reasoned deductions enabling the mind to advance from the simple to the complex.

the long chain of simple and easy reasonings by means of which geometers are accustomed to reach the conclusions of their most difficult demonstrations, has led me to imagine that all things, to the knowledge of which man is competent, are mutually connected in the same way…(20).

(19) "Pare Descartes, la science est essentiellement une, puisqu'elle n'est rien d'autre que l'intelligence du travail, et qu'il n'y a qu'une seule manière de comprendre. Il doit donc y avoir une seule manière, une seule méthode pour arranger les données complexes d'un problème quelle qu'il soit, dans une chaîne de relations simples entre des éléments simples en dernière analyse. La relation initiale doit être la plus simple de toutes, afin que l'esprit puisse la saisir dans un seul acte, sans une intuition individuelle et indivisée." Thomas Greenwood, "Origines de la géométrie analytique." Revue Trimestrielle Canadienne, 34 (1948), p. 177.

(20) "Ces longues chaînes de raisons, toutes simples et faciles, dont les Géomètres ont coutume de se sauver, pour parvenir à leurs plus difficiles demonstrations, m'avaient donnée occasion de m'imager que toutes les choses, qui peuvent tomber sous la connaissance des hommes, s'entrelacent en même façon..." Discours de la Méthode, Vol. VI, p. 19.
Mathematical procedure alone guarded the passage of truth and fitted all types of scientific inquiry, since "All sciences are interconnected and dependent on one another (21)."

We must not imagine that one kind of knowledge is more obscure than another, since all knowledge is of the same kind throughout, and consists solely in combining what is self-evident (22).

Descartes' high regard for mathematics was not completely new or original (23). Favorable opinions on mathematics were prevalent, and Descartes himself speaks of his method as known to the ancients, "But my opinion is that these writers then with a low sort cunning, deplorable indeed, suppressed this knowledge" (24). To comprehend Descartes' contribution, it is necessary to understand his distinction between the literary form of writing geometrically and the geometrical method itself (25). The literary form or presenting doctrine is quite unimportant in itself, since it consists merely in putting forward those things first that should be known without the aid of what comes subsequently, and arranging all other matters so that their proof depends solely on what precedes them (26).

(22) "Denique sollicitur quarto, ex distis, nullas rerum cognitiones unas alia, obscuriores esse putandas, suas omnes aequalibus art nutusae, & in sola rerum per se notarum compositiones consistant." Ibid., pp. 427-428.
(23) "But whether or not Descartes originated the high esteem in which mathematics was held, it was without doubt the conception which influenced him most profoundly in the development of his philosophy." Leon Roth, Spinoza, Descartes, and Hume, Oxford: Clarendon Press, 1924, p. 12.
(26) "Orde in eo tentum consistit, quod ea, quae prima proponuntur, absque illa sequentium opere debent cognosci & reliqua deinde omnia ita dependent, ut ex praecedentibus folis demonstratur." Secundae Responsiones, VII, p. 155.
The geometrical method proper is distinguished into proof by synthesis or by analysis. Euclid is a fine example of proof by synthesis; he begins with primary notions and common axioms, sets forth propositions and uses construction. Euclid proceeded from effect to cause, from the complex to the simple. It is this method which Descartes discards for proof by analysis. Thus the Cartesian originality lay in the universal application of a specific mathematical method to all scientific inquiry, the method of analysis (27).

Descartes' speculative conception, then, of mathematics and science in general, eliminates the necessity of any mental abstractive process.
though it forced him to adopt a theory of innate ideas. The adoption
of a clear and distinct idea as a beginning point was the first re­
quise. This initial point was then used as an instrument in the dis­
covery of new truths by the mind's presenting new and unknown materials
to this mental mirror. The mind then rationalizes each item of this
new material by making each conformable, one after another, to the measure
of the intuitive idea. From this unilateral inference of the mind, a
series of deductions resembling a neatly linked chain of reasonings ensue
(31). In this way,

passing little by little from one to the other, we may acquire
in time a perfect knowledge of the whole of philosophy and
ascend to the highest degree of wisdom (32).

Descartes gave a number of rules (33) to serve as guides for this mental
process; to accept only what is clear and distinct (intuition); to separate
each difficulty into all its component parts (analysis); to begin with the
simplest and easiest and proceed to the unknown and complex (deduction);
to be complete and omit nothing (hypothetical induction). The adoption
of this method, Descartes believed, would perfect the habit of discovery,
since

of all those who have hitherto sought truth in the sciences, the math­
ematicians alone have been able to find any demonstrations, that is, any
certain and evident reasons, I did not doubt that such must have been the
rule of their demonstrations (34).

(32) As quoted in Leon Roth, Spinoza. Descartes & Maimonides, Oxford,
the Clarendon Press, 1934, p. 15; see Chapter I of Roth's work for a fine
summary of Descartes' method. The book also contains a short but fine study
of the relations between Descartes and Spinoza.

(34) "...A considerer qu'entre tous ceux qui ont cy devant recherché la
verite dans les sciences, il n'y a eu que les seuls Mathématiciens qui ont pu
trouver quelques demonstrations, c'est a dire quelques raisons certaines & eviden­
tes, je ne doutais point que ce ne fussent par les mesures qu'ils ont examinees..."
Descartes employed this method to all the sciences (35). In its application to metaphysics, his procedure and results are well known. He found himself forced to doubt anything that could be subject to doubt. The testimony of the external and internal senses, of the principles of reasoning, and specifically the existence of God, the external self and mathematical truths (whose method he retained), were included. Through this progressive withdrawal from all existence and evidence, nothing was left but his doubting, thinking self: Cogito, ergo sum arose as a clear and distinct intuition (36). The new materials which he found within the thinking self — God, the world, his body — were permitted to enter the domain of reality and intelligibility only by being made conformable to the basic intuition (37). Descartes' chain of reasoning has begun: the thinking self has an idea of God which only God could have placed there; God exists. God's veracity would not permit the thinking self to be deceived with regard to the impressions of an external world; the external

(36) "The mathematical interpretation of nature involves, in the first place, the application of general numerical relations to figures in space, which resulted in Descartes' own discovery of analytical geometry; in the second, the application of mathematical analysis as a whole to the study of moving bodies, as practiced (though not entirely to Descartes' satisfaction), by Galileo; and, in the third, the reduction to mechanical formulae of all physiological phenomena, including the instinctive reactions of animals, which appeared to be indicated by Harvey's new theory of the circulation of the blood." A. Boyce Gibson, op. cit., p. 187.

(37) "Thus it is Descartes' mathematicism which leads to his psychologism. He posits the self for determination just as the geometer posits space; and misconceiving the fashion in which we find its properties in a triangle, he makes what is in fact an empirical enumeration of the modes of thinking substance." Martha Minna Versfeld, An Essay on the Metaphysics of Descartes, London: Methuen and Co., 1940, p. 85.
The idealistic mathematicism which Descartes founded wreaked a retroactive revenge on its author and his successors. In return for the denial of pre-scientific knowledge and the proper views of abstractive processes other than the mathematical, disastrous speculative results followed (38). The Cartesian science lost sight of the analogy of being: the existence of God was subjected to doubts and denials; the world of nature, denuded of qualities, was equated to extension, thus severing the delicate suture of matter to spirit and snuffing out the slightest bit of life in plant, animal and human bodies. Descartes' exaggerated dualism is evident in the metaphysical antithesis of matter and spirit, the psychological dichotomy of body and soul, the epistemological disjunction of thought and object (39).

The failure of Descartes' mathematicism was recognized by his successors (40). He had, however, successfully turned the direction of non-scholastic philosophical thought onto a road that it has since travelled: the emulation and imitation of mathematics and science, a distrust of metaphysics and a dislike for theology (41). Descartes'
immediate and subsequent successors did not attempt to recast philosophical speculation but remained in the Cartesian tradition (43). Even those who opposed his thought and method fell under his influence and developed systems of rationalism, empiricism, pantheism, mechanism and scepticism.

II. Spinoza

Two of Descartes' immediate followers, Goullon and Malebranche, developed the conclusions latent in his separation of mind from matter and in his notion of God. Spinoza (1632-1677) was apparently opposed to Descartes and criticized his doctrines (43). Yet his pantheism is directly based on Descartes' notion of substance and on the adoption of the Cartesian method. The very title of Spinoza's principal work, Ethica Ordinum Geometricorum Demonstratura (44), is an echo of Cartesian mathematicism. An ethical motive prompted Spinoza to write; he sought for the knowledge that would make men happy. By teaching men to look upon things in such wise that they would be led to great moral perfection, he hoped to lead them to eternal blessedness, to the knowledge of the "Sumnum bonum...cognitionem uniam, quam mens cum tota Natura habet" (45)." The passage of the mind to this state is a hardy one. We must go from the mental condition of mere perception and inadequate experience to the state of rational knowledge with its adequate ideas; only from here can we be led to the final phase where man attains the intellectual love of God (46).

(43) Joseph Merschall, op. cit., pp. 63-64. Merschall summarizes the different estimates which students of Descartes' philosophy have made of his predominant characteristics, some regarding him primarily as a physicist and mathematician, others as a metaphysician or an apologist.

(44) A study of the numerous influences on Spinoza is found in Joseph Merschall, op. cit., pp. 107-115.

(45) 22X quotations from Spinoza are taken from the following edition: J. Van Vloten et J. P. L. Land, Benedicti De Spinoza Opera Justqvet Reperta Sue,Editio tertia, Francofurti ad Martinium 1718.

To achieve this goal both for himself and others, seemed to Spinoza an impossible task. History revealed the many attempts men have made in this regard, and their tragic failures (47). Spinoza surmised that a faulty method was responsible, and he searched for an impersonal and certain procedure which would yet allow the freedom of unprejudiced inquiry. This method he found in Descartes. Distinguishing himself from Descartes, Spinoza complained that Descartes had erred in using this method. He had, first of all, treated God as an asylum ignorantiae.

Sed illa Mentem a Corpore aedes distinctam conseperat, ut nec hujus uniam, nec ipsius Mentis ullam singularas causas signare potuerit, sed necessae ipsi fuerit, ad causam totius Universi, hae est ad Deum, recurrere (48).

Descartes had likewise maintained the freedom of the will. Spinoza emphatically rejected both propositions, dissociating himself from Cartesianism as much as possible, but adopting the mathematical method.

The *Principia Philosophiae Cartesianae*, a work in which Spinoza recasts Descartes' *Principia Philosophiae* in synthetic form, contains an interesting preface by Mayer. It was written at Spinoza's request and approved by him (49). In his preface, Mayer eulogizes the mathematical method as being "tutissimique veritatis indagandae atque descendi viae, omnibus, qui supra vulgus sapere volunt, unanimis est sententia (50)." He laments the fact that other sciences have not been treated mathematically, for most people judge it as merely applicable to mathematics.

This has caused uncertain and unclear demonstrations in those sciences. Descartes, discerning the miserable plight of philosophy,

nova Methodus a tenebris in lucem protransitat, Philosophiae fundamenta inconcessa eruit...quibus plurimas veritates ordine as certitudine Mathematica superstrui posse (51).

Meyer then describes the Cartesian method of analysis and contrasts it with synthesis. Spinoza's purpose in presenting Descartes *Principia* in synthetic form is to clarify the doctrine for those of meagre talent.

Meyer then mentions, significantly, that Spinoza's treatment does not follow Descartes completely, nor does it imply that Spinoza accepts all that follows. In fact, Meyer stresses the fact that Spinoza rejects the Cartesian dogma of final causality, and freedom of the will, and that there are some things which surpass the capacity of human reason. Spinoza

Judicat enim ista omnia, ac etiam plura illa maris sublimia atque subtillia, non tantum clare et distincte a nobis concepi, sed etiam commodissime explicari posse, si modo humanus intellectus alia via, quam quae a Cartesio aporta atque strata est, in veritatis investigationem rerumque cognitionem deducatur; atque idea scientarum fundamenta a Cartesio eruta, et quae ad ipso superstatis saeclum, non sufficiere ad omnes as difficillimas, quae in Metaphysicae occurrunt, quattuor neminem atque solvendas, sed illae requiri, si ad illud cognitionis fastigium intellectum nostrum superfasis evocare (52).

Spinoza's use of the mathematical method is impressive. Beginning with the intuitive definition and notion of substance in the *Ethics*, he deduces the real order. Spinoza's mathematicism differs from that of Descartes' in point of departure, and by the rigorous correspondence of the real to the mathematically ideal (53). Regarding the nature of God, Spinoza writes,

(51) Ibid., p. 104.
(52) Ibid., p. 106.
Verum ego ne satia alia ostendisse puto, a summa mi potentia, sive infinita natura infinita infinitis modis, hoc est, omnia necessario efflumus, vel semper cadem necessitate sequi, cadem modo ac ex natura trianguli ab asterae et in asterae sequitur, ejus tres angulos equans duobus rectis (54).

With regard to his geometrical treatment of the nature, actions and emotions of man, Spinoza remarks

Hic sine dubio mirum videtur, quod hominum vita et ineptias mere Geometricum tractare agradiar, et certa ratione demonstrare velim ea, quae rationi repellitam, quaeque vana, absurda, et horrenda esse clamant (59).

Spinoza replies that since only necessity and determination exist in nature, the geometrical treatment is valid:

De affectum itaque natura et viribus, ac Mantis in cadam potentia, eadem Methodo agam, quae in praebentibus de Sec et Mente egit, et humanas actiones atque appetitus considerabo perinde, ac si quiescit lineis planis, aut de corporibus esset (59).

Spinoza did not concern himself with the nature of mathematics. He was merely interested in its deductive certainty and exactness. His philosophy was but pure mathematicism (57).

Spinoza's development of Descartes' philosophy was not adopted by subsequent thinkers. Cartesianism, instead, adopted three major forms. One group of thinkers, of whom Leibniz is most prominent, emphasized the idealistic aspect in Descartes; another, typified by La Mettrie and the French philosophers, tended towards mechanism and materialism; the third, the British school, developed a pronounced empiricism. All three schools are alike in their adoption of some fundamental positions or tenets of Cartesian philosophy.

(54) Ethica, I, (Prop. XVII), Scholium, p. 55.
(55) Ethica, III, Praxis, p. 120.
(56) Idem, p. 121.
III. Leibniz

Leibniz (1646-1716) is often called the last universal genius. His countless references to ancient, medieval and contemporary thinkers illustrate his wide learning and capacity for detail (58). They likewise reveal his basic trait and tendency: to compromise and synthesise, to remove individual differences, to harmonise speculative opposition in his own "centre de perspective (59)."

Leibniz was fully appreciative of these numerous influences. His acquaintance with Aristotle, Plato and the Scholastics made him desire to combine their doctrines with the moderns (60). He was familiar with the doctrines of Francis Bacon, Hobbes, Galileo, Descartes, Spinoza, Malebranche and contemporary philosophers and scientists (61). Owing

(59) "La considération de ce système fait voir aussi que lorsqu'on entre dans le fonds des choses, on remarque plus de la raison qu'on ne voyait dans le glupart des sectes des philosophes. Le peu de réalité substantielle des choses sensibles des Sceptiques; la réduction de tout aux harmonies out nombres, idées et perceptions des Pythagoriciens et Platoniciens; l'un et même un tout, de Parménide et de Platon, sans aucun Spinoisme; la connexion stoïcienne, compatible avec la spontanéité des autres; la philosophie vitale des Cabalistes et Hermetiques, qui mettent du sentiment par tout; les formes et âme de l'homme; l'interprétation mécanique de tous les phénomènes particuliers selon Descartes et les modernes, etc., se trouvent réunies comme dans un centre de perspective, d'ou l'objet (embrouillé en re gardant de cet autre endroit) fait voir sa regularité et le convenance de ses parties."

(60) "J'ai toujours eté fort contact, meme dans ma jeunesse de la Morale de Platon, et encore en quelque facette de sa Metaphysique; aussi ces deux sciences vont-elles de compagnie, comme la Mathematique et la Physique. Si quelqu'un reduisit Platon en systeme, il rendrait un grand service au genre humain, et l'on verroit que j'en approche un peu." Extrait d'une lettre a Mr. Raymond de Montmort, 1718. Erdmann, p. 725. In the same letter Leibniz writes, "Quand j'étais jeune garçon, les Suisses de mon âge chantaient: Summus Aristoteles, Plato et Euripides, occiderunt in profundum." Ibid., p. 725.

(61) "Leibniz's philosophy was thus the attempt to reconcile two ways of looking at things, the ancient and the modern, the theological and the mechanical, the religious and the scientific. He desired to give all possible scope to scientific research, all possible breadth to knowledge, but not less did he wish to give all possible depth and reality to religious belief." John Theodore Mertz, Leibniz, New York: Hacker Press, 1943.
to Descartes’ influential position, Leibniz was prompted to make clear
his own position by contrast to the Cartesian. Leibniz pronounced many
anti-Cartesian sentiments (62). Maintaining that “in Cartesio ejus
methodi tantum propositum testae (63),” he proposed a dynamist view of
nature, reinstated final causality and improved Descartes’ mathematics as
evidence of his opposition to the Cartesian. But his ambition to determine
the simple elements of thought, his theory of innate ideas, and his mathe-
maticism placed him in the Cartesian tradition.

Leibniz’s notion of a universal characteristic and his metaphysical
doctrine are two aspects which demonstrate the influence of mathematics
on his thought (64). The first of these proposed an ultimate identification

(62) For example, Laettner, “Il m‘arriva un jour de dire, que le Carte-
sienisme en se quit’a de bon n’est que l’anti-chambre de la veritable
philosophie.” Lettre a un ami de la Philosophie, 1699, Fronahen, p. 125.
(63) Epistola ad Jacobum Thomassinum, III, 1666, Fronahen, pp. 85.
(64) The influence of mathematics on Leibniz’s thought can be found in
Leibniz: The Monadology and other Philosophical Writings, translated with
Introduction and Notes by Robert Latta, London: Geoffrey Cumberlege, 1948; see
Latta’s Introduction, especially pp. 74-86. A similar study is prefixed
to G.-W., Leibniz: Oeuvres Choisies, avec preface, notes, index, et
table des noms propres, par L. Fresnay, Paris: Librairie Garnier Freres,
ndt. See the editor’s preface to the selections from Leibniz. An older,
but still valuable work is Leibniz, The Philosophical Works of, Comprising
the Monadology, New System of Nature, Principles of Nature and of Grace,
Letters to Clarke, Refutation of Spinoza, and his other important philosophical
writings, together with the Abridgment of the Theodicy and Extracts from the
New Essays on Human Understanding, Translated from the original Latin and French
with notes by George Martin Danan, New Haven: Tuttle, Morehouse & Taylor, 1899.
References to Leibniz are taken from the above three works, but principally from
Cod. 435, Leibnizii Opera Philosophica Quae Extant, Latina Gallica Germanica
Codex, edita recognitiv et temporum rationibus disposita pluribus ineditis auxit
introductione critica atque indicibus, instruxit Joannes Eduardus Erdmann, Pars
Prima et Prima Altera, Berolini: Buntibus O. Eichleri, 1891.
of abstractive thinking with his symbolic logic (66). This idea was seen
to be impracticable and was tentatively laid aside. In the metaphysics,
which represents his mature thinking, the notion of a universal mathematical
science played a formative part.

The ambition to unify all knowledge by a universal logic possessed
Leibniz at the early age of eighteen, when it had been stimulated by the
work of Raymond Lule and others (66), who, he admits were his predecessors
in this invention. He aimed to construe an "alphabet of human thoughts."
What the Italian mathematician, Vieta, had done for Algebra, he hoped to do
for all the sciences.

Si daretur vel lingua quaedam exacta (qualem quidam Adamicae vocant),
vel saltem sensum scripturne verum philosophiae, qua notiones revo-
carentur ad Alphabetum quoddam cogitationum humanarum, omnia, quae
ex data ratione assequi, inveniri possunt quaedam generis calculi,
perinde ac resolvuntur problemata arithmetica aut geometrica (67).

Leibniz's idea of this Combinatory Art, Universal Characteristic,
Universal Language, or Universal Mathematics was based on the notion that all
concepts are themselves simple or reducible to a small number of simple
concepts. If the simple concepts are designated by appropriate symbols,
they can be combined into composite concepts with the laws of arithmetic.
Summarily, then, the logical algebra aimed to replace concepts by symbols
and their combinations, propositions by the relations between symbols.

(65) "Ruevoir tous les hommes en une famille qui ait la meme science,
la meme langue; tel a ete le but que Leibniz s'est propose. Cette religion
devait etre le christianismes; et cette langue, la caracteristique universelle."
Clodius Plat, Leibniz, Paris: Felix Alcan, 1918, p. 1. See also Louis
Couturat, La logique de Leibniz d'apres des documents inedits, Paris:
Felix Alcan, 1901; and C. I. Lewis, A Survey of Symbolic Logic, Berkeley:
University of California Press, 1918, pp. 5-18.

(66) For a study of these sources, see Joseph Iwanicki, Leibniz et les
demonstrations mathematiques de l'existence de Dieu, Strasbourg: Librairie
Universitaire d'Alsace, 1933, pp. 107-110.

(67) De Scientia Universalis seu Calculo Philosophico, Nordmann, op. cit.,
p. 83.
and thus substitute calculation for reasoning. Leibniz ventured this
facetious remark as to future human argumentation,

Quæ factæ, quando orientur controversiae, non magis disputations
opus erit inter duo philosophos, quam inter duo commutatorum.
Sufficit enim, salmos in manus sumere, sedereque ad abacos,
et sibi mutus (secit si placet amico) dicere: calculamus (68).

Besides eliminating barren argumentation, the combinatory art was to
insure inventiveness in science and even permit a demonstration of God’s
existence with the certitude of mathematics.

Leibniz saw that two requirements were necessary to achieve this com-
binatory art: an encyclopedia as an inventory of all human knowledge and a
universal characteristic or system of signs representing the concepts and
the legitimate manners of combination. Realizing that the idea of an in-
ventory of human thoughts was a vast undertaking and not the work of a man
or a generation, Leibniz began to carry out the scheme himself and sought
collaborators for the project. He even authorized a plan for a society
which would work on the Encyclopedia, to be called "Ordre de la Charité,"
or "Societas Philosophorum vel Amoris Divini." Once the encyclopedia had
begun to take shape, the symbolism and its application would be a relatively
easy task. The choice of signs and their signification would be extremely
important. They should be chosen for their usefulness in signifying and as an
aid to reasoning. Leibniz proposed that the symbolism possess the suppleness
and generality of his own notation of the differential calculus, thus obtaining
controllable certitude and avoiding controversies.

(68) Ibid., p. 86.
Two difficulties, not subject to the combinatory art, faced Leibniz. The one was the impracticability of the scheme; he was unable to get a sufficient number of people to carry out the work entailed in the encyclopedia. The other was that "ses caractères présupposeraient la véritable philosophie, et ce n'est que présentement que d'oserais entreprendre de les fabriquer (69)." Accordingly, though he kept the project in mind, Leibniz turned his efforts to speculative thought and towards harmonising religious and political efforts (70).

Leibniz's numerous philosophical speculations can be centered, in a partial synthesis, about his doctrine of substance. Descartes had imputed reality to two opposed substances, matter and spirit, which Spinoza had reduced to a pantheist unity. Descartes' interpretation of matter as continuous, inert, geometrical extension capable of infinite divisibility, was opposed by the atomist conception of matter as discrete, active, arithmetical extension, ultimately indivisible. Leibniz scored both theories on their reduction of substance to quantity and the elimination of quality. Quantity alone does not differentiate; mere extension has no meaning; there must be something extended (71).

The differentiating character of Leibniz's substance lay in the self-active monad (72). These ultimate metaphysical units, monads, were real

(69) As quoted in Joseph Narechal, op. cit., p. 166.
(71) "Ceux qui veulent que l'entendue soit une substance, renversent l'ordre des paroles aussi bien que des pensées. Outre l'entendue il faut avoir un sujet qui soit étendu, c'est-à-dire, une substance à laquelle il appartienne d'être répétée sous continue. Car l'entendue ne signifie qu'une répétition ou multiplicité continue de ce qui est répandu; une pluralité, continuité, et co-existence des parties; et par conséquent elle ne suffit point pour expliquer la nature même de la substance répandue ou répétée, dont la notion est antérieure à celle de sa répétition," extrait d'une lettre, Erdmann, p. 114.
(72) Leibniz's doctrine on monads is synthesised in La Monadologie, Erdmann, pp. 705-711. La Monadologie, written in 1714, two years before his death, contains a condensed statement of his philosophy. In Systeme Nouveau de la Nature, (Erdmann, pp. 124-128), Leibniz gives a personal account of how he was led to his theory on the nature and communication of monads.
like the atom of physics but inextendend like the mathematical point (73);
they were immaterial in essence yet material in the sense that they made
up an extended body (74). Since they were essentially self-active and
activity has no parts, the monads were indestructible. Furthermore, since
nothing can affect pure activity, the monads could only change from within;
they were immutable ab extra (76). So two monads were alike, but each
possessed proper individuality. The self-activity of each monad con­
sisted in the constant mirroring, representing and reflecting of the
entire monadic universe in varying degrees of continuous perfection (76).
They were to be looked upon as mirroring, in microscopic fashion, the
macroscopic universe.

This activity gave qualitative specification to each monad. Within
the monad itself, desire and perception were distinguished (77). Desire
was the self-active tendency of the monad as a part of a whole to realize
itself; perception was its passive mirroring of the universe. Non-living
matter -- bare monads -- had unconscious perception and mere impulse as
desire; plants and animals had conscious perception with instinct as desire;
man had self-conscious perception (apperception) and will as desire (78).

Leibniz considered living bodies as composed of a central monad -- a soul

(74) La Monadologie, n. 6, Erdmann, p. 706.
(75) Ibid., n. 7; see also Bertrand Russell, A Critical Exposition of the
Philosophy of Leibniz, Cambridge; The University Press, 1900, p. 45.
(76) Ibid., n. 56-62, Erdmann, n. 700-710.
(77) Ibid., n. 14-24, p. 703-707.
(78) "La connaissance des verites necessaires et eternelles est ce qui
nous distingue des simples animaux et nous fait etre les sciences, c
nous elevant a la connaissance de nous mesmes et de Dieu. "Et c'est ce qu'on
appelle en nous meme raisonnable ou Esprit." Ibid., n. 29, Erdmann, p. 702."The
necessary and eternal truths are the first principles of all rational knowledge.
They are innate in us. They are, in fact, the very principles of our nature,
as of the universe, because it is of our essence to represent the whole universe.
This consciousness or knowledge of these truths is knowledge of ourselves, and
it is at the same time knowledge of God, who is the final reason of all things."
Robert Latta, Leibniz The Monadology and other Philosophical Writings, Oxford;
or entelechy — surrounded by non-living monads which were subject to it. In this way Leibniz proposed his solution of Descartes' problem of matter and spirit.

The universe was composed of an infinity of such monads. With the law of indiscernibles, Leibniz held that no two monads are alike; there were no duplications and superfluities in nature. The law of analogy prevented contradictions and contrarieties in nature by viewing all monads as differing not in kind, but merely in degree. By the law of continuity, the monads could be seen as an infinite series of terms increasing in perfection from the least perfect monad to the limit of God, the perfect monad (79). Since there was an infinity of monads, no new ones were added nor taken away by death (80). All monads were created at the beginning of time and will perish together at time's end. Generation and corruption were merely other terms for the ceaseless evolution and involution of monads. Finally, by his principles of pre-established harmony and cosmological optimism, Leibniz considered the monadic universe as the best possible which God could have created, and in which all the inner monadic changes have been harmoniously pre-established and work constantly for the best.

With the aid of these ultimate units, Leibniz's two philosophies (61) present a somewhat coherent system. Essentially logical, idealist and mathematical in his general outlook, Leibniz based his philosophy on the adoption

(79) Extrait d'une lettre à Mr. Bayle, Erdmann, pp. 104-106.
(80) La Monadologie, n. 74-77, Erdmann, p. 711.
(61) Leibniz's nature philosophical thought was definitely formed by 1688 when he sent his Discours de Metaphysique to Arnauld. His latter philosophy is the logical development of the notion of substance. Cf. Bertrand Russell, A History of Western Philosophy, New York: Simon and Schuster, 1945, Chapter XI, Leibniz, pp. 581-596. Our understanding of Leibniz's thought stems from the efforts of Russell's and Couturat's works, cited above.
of mathematical method and two principles, contradiction and sufficient reason (82). In method he distinguished analysis from synthesis. The notion of analysis was not merely breaking down a complex whole into its component parts; analysis included the abstractive reduction of these parts (in which process Leibniz's mathematics prevents him from seeing that he thus destroys the identity of these parts) to a clear idea or a principle. In synthesis the process is reversed: the movement is from the simple to the composite. His monadology had already indicated this procedure, while his theory of a universal science illustrates this method more strikingly.

By his monadology, Leibniz was able to eliminate Descartes' radical dualism of matter and spirit with its consequent independence of self-consciousness. Though the mind is an individual, independent substance, its monadic nature qualifies it as one of an infinite number of substances, to which it is alike and all of which it reflects. Human self-consciousness, a more perfectly developed degree of perception, is due to the greater clarity and distinction of the ideas which it subjects to analysis. These ideas are innate and are the ultimate principles of all knowledge (83).

But Leibniz did not consider all ideas or knowledge as innate. The method of analysis had to be applied to propositions in order to make them

(82) "Dubes uitor in demonstrando principiis, quorum unus est: Cash sum esse quod implicit contradictionem; alterum esse omnis veritatis (quae immutata sive identica non est) reddi posse rationem; hoc est, notionem praedicti semper notioni sui subjecti vel expressa vel implicita inesse, idque non minus in denominationibus extrinsecis quam in intrinsecis, non minum in veritatis conscientibus quam necessariis loceum habere." De Scientia Universalis seu De Calculo Philosophico, Erdmann, p. 82. Cf. La Monadologie, n. 31-32, Erdmann, p. 97. See also De Natura et Usu Scientiae Generalis, Erdmann, pp. 86-88.

clearly intelligible. Analysis was the reduction of all true propositions to identical ones (84). True propositions which do not predicate the rate of existing at a particular time are necessary and analytic, those which predicate particular existence are contingent and synthetic. The first type of propositions, called truths of reasoning, yield necessary truths; while the second, termed truths of fact, deal with contingent truths. Leibniz proposed the goal of human knowledge as the reduction of even contingent truths to identical propositions (85).

Since a proposition consists of a subject and a predicate, its reduction to identity required that all predicates were to be reducible to the subject of which they were predicated. This would be tantamount to demonstrating that all the requisites of an effect were comprised within its cause. This reduction, for the truths of reasoning, lay in the mind itself. The reduction was to be effected by aid of the principle of contradiction (or identity, or possibility) in virtue of which that was false which contained a contradiction and that true which was contradictory to the false. Primitive truths of reasoning were the identical propositions themselves; derivative were all others — axioms, postulates, relations — which were to be reduced to the primitive with the principle of contradiction (86). All these truths were at least virtually innate within us.

(84) Bertrand Russell, op. cit., p. 4. Russell lists five principal premises of Leibniz's philosophy: "I. Every proposition has a subject and a predicate. II. A subject may have predicates which are qualities existing at various times. (Such a subject is called a substance.) III. True propositions not asserting existence at particular times are necessary and analytic, but such as assert existence at particular times are contingent and synthetic. The latter depend upon final causes. IV. The type is a substance. V. Perception yields knowledge of an external world, i.e., of existents other than myself and my states."

(85) Ibid., p. 49.

(86) "À savoir: une proposition nécessaire est celle dont le contraire implique contradiction; telle est toute proposition identique ou dérivée résoluble en identiques et telles sont les vérités qu'on appelle nécessités mathématiques ou géométriques. En effet, démontrer n'est pas autre chose que résoudre les termes d'une proposition et substituer au terme défini sa définition ou une de ses parties pour dégager une sort d'équation, c'est à dire la coïncidence du predicat avec le sujet dans une proposition réciproque." De La Liberté, Fresnant, p. 268.
Leibniz held that only God has a prior and adequate knowledge of the other class of judgments, those concerned with contingent matters, termed truths of fact (87). All these judgments involved an attribution of present existence to a subject. Our knowledge of these arose from our passive mirroring of the universe of monadic existence. Leibniz set up the reduction of truths of fact to identical propositions as his ideal aim; this implied that all the existential predicates which can or ever be attributed to an individual — for example, to Alexander the Great — belong necessarily to him and make up his "notion" (88). It is this infinity of infinite monadic relations and complexities that God only knows, for each substance has an infinite number of possible predicates and is an infinity of individuality (89). Men's minds were limited and thus unable properly to mirror this infinity which comes to us through our passive experience. We only know these truths with confused perception; they are obtained by induction through the sense (90). Were we able to grasp an adequate understanding of any existing subject, we would know all its possible predications (91).

In order for us to discern truths of fact, then, the principle of sufficient reason was to be applied (92). No fact was true unless there was a sufficient reason why it should be so and not otherwise. This would demonstrate the "composibility" of an existent subject, showing its existence in the divine pre-established harmony. All composable things exist — that is,

(87) *La Monadologie*, n. 33, 36-38. See also *Nouveaux Essais*, Chapitres I, II.
(88) *Discours de Métaphysique*, Pratun, pp. 92-93.
(90) *Nouveaux Essais*, *Introduction*, passim.
(91) Bertrand Russell, *op. cit.*, p. 47; see *Discours de Métaphysique*, Pratun, pp. 95-96.
all those things which are harmonious with the surrounding totality of existence — in keeping with the laws of finality and of cosmological optimism (86). Known knowledge of these contingent facts was called primitive when it referred to the facts of experience themselves. Derivative facts were those inferred from the primitive by using the principles of sufficient reason, thus determining their agreement with the world as a whole (91). We knew contingent facts only by probable arguments (85); they were merely stages of a series of terms which approached truths of reasoning as a limit (98).

Our knowledge of the truths of reasoning, and, for their proper sphere, certain knowledge, especially as in metaphysics (97). In metaphysical knowledge we properly attribute qualities to the monad which it really possesses. Metaphysics, for Leibniz, was founded on the method of traditional logic, and was predicative. The richness of the individual substance as a source of knowledge was evident, since it comprised within itself all past, present and future predicates which could ever be attributed to it. Metaphysics was thus the justification of every true proposition. It does not deal with pure abstractions. Leibniz censured any metaphysics, like the Cartesians, which wished to found itself on pure abstractions or mere relations. The perfect analysis of all conceivable predicates — the infinitely infinite — only was known by the Divine monad. Man, however, was able to reflect many of these predicates with the aid of the principles of contradiction.

(86) Bertrand Russell, op. cit., p. 66 ff.
(91) De la liberté, Fremant, pp. 288-291.
(85) Leibniz here envisioned the use of the calculus of probabilities; in Leibniz's well ordered world, the most probable combination must be achieved; see Joseph Marechal, op. cit., pp. 179-182.
(86) Nouveaux Essais, Br. IV, Chapitre III, 4; Frdmann, pp. 343-345.
Holding to a metaphysics of predication, Leibniz maintained that the truths of fact properly belong to mathematics and mechanics (98). The proper concern of mathematics was relations (99). These relations he termed "abstractions" or "phenomena bane fundata," founded, that is, on the concrete reality of substance, but not metaphysical and predictable of substance as such. The mind thus achieved the universal, which was the principle of the relations between things. A logical or mathematical truth was but a glimpse of the system of infinitely possible relations which can characterize the monadic universe. Mathematical space and time are not things of substances. Space is merely our abstraction of one possible order of simultaneous existences: our "notions" of space are mere "abstractions" from the inner, monadic changes. Similarly, time is but our abstraction of the order of simultaneous existences. Likewise, extension is but an "abstraction" which neglects the properties of the rich, concrete existence of the monad, and extension lacks genuine reality as such (100).

The application of this distinction between a metaphysics of predication and a mathematics and science of mere relations would, possibly, have had many startling effects, though Leibniz did not carry out this program. The apparent rigor and necessity of mathematical science would, in such a case, be no longer

(98) Bertrand Russell, op. cit., p. 49.
(99) Ibid., pp. 13-14; See Remarques sur la lettre d'Arnauld, "renant," p. 146.
(100) Prentant's Preface, p. xxxvi.
a matter of much concern, since mathematics merely furnishes relative and not absolute or ultimate knowledge. Similarly, mechanics and other sciences merely deal with appearances, which, though well founded on substance, do not deal with things themselves. These conceptions of Leibniz (101), as those embodied in his universal characteristic (102), carried a pronounced influence on future speculation almost equal in weight to his invention of the calculus (103). Little attention, however, was given by successive thinkers to his insistence on philosophical tradition, or to his numerous attempts at speculative harmony.

(102) Harold R. Smart, The Philosophical Presuppositions of Mathematical Logic, Chapters II and III.
Chapter V. British Empiricism

The school of rationalism which Descartes inaugurated on the European continent had a correlative but dissentent rival in the era of British empiricism (1). In Mathematics and physics, Cartesian empiricism was offset by Newton's experimental-mathematical method, while in the formulation of philosophical problems, the British thinkers adopted the empirical and critical attitude of John Locke in contrast to continental dogmatism and idealism (2). This critical attitude was combined with a practical approach to philosophical problems, causing the British school to be more concerned with ethical and political problems while the rationalists emphasized systematic philosophy (3). The rationalist emphasis on intellectual and the empiricist concern with sense knowledge are the two threads of thought later gathered up by Kant, who attempted to knit them together without laying undue stress on either.

(2) "The Essay was the first deliberate attempt, in modern philosophy, to engage in what might now be called epistemological inquiry, but mixed up by Locke with questions logical, psychological, and ontological; all subordinated in his design to 'what may be of use to us, in our present state,' and to 'our concerns as human beings.' Locke inaugurated the modern epistemological era, characteristic of philosophy in the eighteenth century, which culminated in Kant..." Alexander Campbell Fraser, in An Essay Concerning Human Understanding, by John Locke, 2 vols., Oxford: the Clarendon Press, Fraser's "Preface," p. iv.

Both the rationalist and empiricist schools treated the problem of scientific and mathematical abstraction somewhat cavalierly. The rationalist theory of science in Descartes, Spinoza and Leibniz, influenced by mathematics, inclined to an identification of all sciences, with no regard towards a careful mental process of abstraction. Certainty, exactness, clarity and intuitive ideas were the scientific measures. Fields of speculative research in which these goals were unattainable were either denied scientific status or "rationalised" to meet the ideal standard. This propensity to homogenise the probability and intricacy inherent in our knowledge of nature, of psychology morals and politics, was due to their mathematicism. The rationalists overlooked the composite nature of man and offered an "angelic" epistemology (4) which led them to misunderstand the morality of moral knowledge, to propose a non-ultimate attitude to ethics, psychology and politics, and to deny the appositeness of any other science.

The same denial of abstraction, though on different grounds, characterised British empiricism. Attempting to model philosophical truth and method on the experimental-mathematical method of Newtonian science, the British empiricists applied a purely descriptive process to mental states. Though starting with metaphysical presuppositions (5) --

(5) Gibson writes of Locke: "Thus, like many other thinkers, he was destined to prove an illustration of the truth that metaphysics has a way of avenging itself on those who slight or disregard it, and that its deepest entanglements are often reserved for those who think they have discovered a path, by following which its difficulties may evade." James Gibson, Locke's Theory of Knowledge and its Historical Relations, Cambridge: The University Press, 1931, p. 11.
yet denying the rightfulness of wondering about ultimate causes -- this approach, initiated by John Locke, culminated in the rabid scepticism of David Hume and inspired Kant to bemoan previous metaphysicians' imitation of mathematics and science (c).

I. Newton

Isaac Newton (1642-1727), who wielded a powerful influence on British empiricism (7), may well be looked upon as the reflection of the various new movements initiated with the Renaissance (c) and as their temporary culmination. He gathered unto himself the mathematical current that came through Copernicus, Kepler, Galileo and Descartes, the emphasis on observation of Bacon, Harvey, Gilbert, Boyle and Locke, and the tempering influence of religion and morals from the Cambridge Platonists. Locke, Berkeley, Hume and Kant, though they disagreed with the philosophical aspects in Newton -- especially his metaphysics of space and time -- admired the system wrought by his genius. His speculations were the springs of the geosmogeny later proposed by Kant and Laplace. And although he was an anti-Cartesian, Newton continues the Cartesian spirit which reappears in the cosmological and evolutionary systems of the eighteenth and nineteenth centuries.

Newton's mathematical system of the universe, often referred to as the classical view, lasted until the more recent relativity and quantum theories. It had, in turn, dethroned the Cartesian physics and astronomy. Descartes, with characteristic mathematical apriorism, had proposed to

(g) See Chapter VI, below.

(c) For the interaction of Newton and Locke, Newton and his contemporaries, see James Gibson, op. cit., Chapter I, "Locke and Contemporary English Philosophy," pp. 225-266.

establish the universal laws of nature on the basis of some arbitrarily
chosen hypothesis according to which the facts were to become rationalized (9).
For example, in explaining the origin and nature of the universe, he proposed
the notion of homogenous corporeal mass to which the Creator gave an
original motion. In this way, vertical or whirlpool movements were set up
and absolute extension broke into a manifold (10).

Newton opposed Descartes' scientific procedure and results with his own
scientific contributions and his empirical-mathematical method which he
constantly refers to as his own (11). His famous dictum, "hypotheses non
fingere" (12), is the negative property of his method voicing disapproval of
the choice of arbitrary principles and assumptions in the knowledge of
nature. He proposed as a positive measure, that the proper orientation
of science lay in an observational analysis of nature by experiments which
yield facts and properties (13). Each property was then designated by
an appropriate symbol and their mutual interdependence could be analysed

(10) A. Boyce Citeea, The Philosophy of Descartes, London: Methuen &
(11) For a study of Newton's method see Henry S. Burke, "Sir Isaac
Newton's Formal Conception of Scientific Method," The New Scholasticism,
(12) "If any one offers conjectures about the truth of things from the
mere possibility of hypotheses, I do not see how anything can be determined
in any science... Therefore I judged that one should abstain from considering
hypotheses, as from a fallacious argument," Sir Isaac Newton, Sir Isaac
Newton's Mathematical Principles of Natural Philosophy and His System of the
World, translated in English by Andrew Motte in 1729, edited by Florian
Cajori, Berkeley: University of California Press, 1948, General Scholium,
pp. 399-400. References to Newton are from this edition.

(13) "No other way know the extension of bodies than by our sense,
or do these reach it in all bodies; but because we perceive extension in all
bodies that are sensible, therefore we ascribe it universally to all others
also. That abundance of bodies are hard we learn by experience... That all
bodies are impenetrable we gather not from reason, but from sensation.,
Ibid., Rule III, p. 399.
mathematically (14). Through this synthetic mathematical combination one could predict and deduce further phenomena (15). Even for this process, experiments were constantly to guide and verify procedure (16).

Newton may be looked upon as a protagonist of the philosophy of science that is met today and as embodying the stress and strain between the two types of scientists, the mathematically-minded and the physically or empirically-minded (17). For the first, mathematics is the queen of the sciences and the validity of mathematical truths, grasped by a mental intuition or viewed as a free creation of the mind, is unquestionable. Pure mathematics is a frame into which all natural events are to be fitted, and the laws of nature as formulated in equations express the quantitative character of nature and allow further laws to be deduced.

(14) "...and therefore I offer this work as the mathematical principles of philosophy...by the propositions mathematically demonstrated in the first book, we then derive from the celestial phenomena the forces of gravity with which bodies tend to the sun and the several planets. These forces, by other propositions which are also mathematical, we deduce the motions of the planets, the comets, the moon, and the sea. I wish we could derive the rest of the phenomena of nature by the same kind of reasoning from mathematical principles..." Ibid., Preface, pp. xvii-xviii.

(15) "...the whole burden of philosophy seems to consist in this from the phenomena of motions to investigate the forces of nature, and then from these forces to demonstrate the other phenomena..." Ibid., pp. xvii-xviii.

(16) "In experimental philosophy we are to look upon propositions inferred by general induction from phenomena as accurately or very nearly true, notwithstanding any contrary hypotheses that may be imagined, till such time as other phenomena occur, by which they may either be made more accurate, or liable to exceptions. This rule we may follow, that the argument of induction may not be evaded by hypotheses." Ibid., Preface, Fourth Rule, p. 400.

For the empirically-minded scientist, mathematics is but a tool, the handmaiden of the sciences. Mathematical entities arise from observing nature and their validity is tested there, and mathematics is but a handy tool or symbolic language devised for interpreting physical facts. Strictly speaking, for this view, nothing is deducible, and we can only ascertain that nature is purely quantitative through observation. By his insistence on the priority of experiment, Newton seems to have favored the latter view (16).

Moreover, in his attitude towards science as the exact mathematical formulation of the laws of the universe and by his positivistic notion that one can learn truths about nature without presupposing or implicating any hypothesis or theory on the ultimate nature of things, Newton fostered an outlook which is common today.

The spiritualistic and anti-mechanistic aspect of Newton is evident in his participation in current theological debates and in his religious writings (19). Science itself, as he writes in the Critics, leads us to God through our recognition of the order and adaptation of nature. God's chief attribute is His providence, which Newton construes in such fashion that God is a species of "cosmic plumber" who keeps the fixed stars from collapsing in the center of space (20), and patches up the irregularities of the universe that are constantly increasing. God is able to function in this wise because He is a perfect spirit, universally extended in space and time. This is Newton's ultimate explanation.

of absolute space and time; they are — with a tribute to Berkeley — the omnipresence and eternity of God, the Divine sensorium.

The acceptance of this "scientific God" is paralleled, in Newton, with belief in the "scientific man." Newton accepts the current hyperdualism of Descartes and all its implications together with the notion that secondary qualities are mere modifications of the perceiver (21). Finally, the Newtonian world itself is "scientific." Only primary qualities subject to mathematical consideration are real. The universal theory of gravity, the reduction of all motion to three universal laws, atomism, the concept of absolute space and time which he tried to prove scientifically, and his notion of ether as a medium in which the forces and motions are propagated and recreated after being spent — all add up to the picture of the universe, in Newton's whole view, as a large machine, with God introduced as a mechanical appendage (22).

II. Locke

Before the time of John Locke (1632-1704), two earlier English philosophers had held a somewhat pejorative view of mathematical abstraction. Francis Bacon had viewed it as an afterthought to Physics (23);
and Thomas Hobbes, whose philosophy can be classified as sensualistic mathematicism, proposed a non-abstractive notion of mathematics tantamount to the denial of mathematical abstraction itself (24).

In the meantime, mathematics had gained an enviable reputation. Newton's mathematics served but to intensify the high regard in which mathematics had come to be held in seventeenth-century England. For most thinkers of this time mathematics, and especially geometry, was the ideal type and standard of all knowledge (25). Locke was subjugated to the influence of this view of mathematics, along with his training in Scholasticism, knowledge of Cartesianism and the currents of contemporary English thought (26). This varied philosophical conditioning stands out especially in his main work, An Essay Concerning Human Understanding.

The Essay grew out of a discussion in which Locke had engaged with five or six friends, the question at issue being the validity of

(24) Hobbes, the arch-materialist, is a unique example of sensualistic mathematicism. Reasoning for him was but a kind of addition and subtraction. Mathematics was almost akin to sensory experience, for he could not admit that lines and surfaces were deprived of slight dimensionality even in their conception; Carl B. Boyer, op. cit., p. 176.

(25) "The views of Hobbes, Locke and (later) Condillac are illustrative, in a general way, of the logical conceptions prevalent in the interim that separates Leibniz from Descartes. For these thinkers, just as for Descartes, the ideal type of all knowledge is that which they understood by mathematical. Outside the absolute certainty guaranteed by rigorous mathematical demonstration only probability remained. This however was not to limit all our knowledge to mathematics, since it was still held that the method employed so successfully in that field could also be adapted to other matter." Harold A. Smart, The Philosophical Presuppositions of Mathematical Logic, p. 6.

the principles of morality and revealed religion (27), which the
Cambridge Platonists had sought to put on a sound basis (28). It
was this aim that prompted Locke in writing the Essay (29). Its
purpose was,

to inquire into the original, certainty, and extent of human
knowledge, together with the grounds and degrees of belief,
opinion, and assurance (30).

The essay was conceived, however, as merely preliminary to the es-
establishment of the validity of human knowledge with respect to morals
and religion (31). For,

in an age that produces such masters as the great Bayle, and the
incomparable Mr. Newton, with some other of that strain, it is ambition
even, to be employed as an under-labourer in clearing the ground a
little, and removing some of the rubbish that lies in the way to
knowledge (32).

(27) "Our business here is not to know all things, but those which con-

(28) See pp. xvi-xvii of Fraser's prolegomena in An Essay Concerning Human
Understanding by John Locke, (Collated and Annotated with Prolegomena,
Biographical, Critical, and Historical by Alexander Campbell Fraser, two
volumes, Oxford: The Clarendon Press, 1894). All quotations from Locke
are taken from this edition.

(29) "We may now sum up our account of the primary and main prob-
lem of the Essay. In it Locke undertakes the investigation of the nature and
conditions of a knowledge which is at once absolutely certain, strictly
universal, 'instructive' or synthetical, and 'real'; the consequent deter-
mination of the possible extent of such knowledge; and the examination of
its distinction from and relation to other forms of cognition, which are
deficient in some of the respects enumerated. While the mathematical
sciences furnish us with the typical example of such knowledge, its most
important contents are held to refer to the objects of our moral and
religious consciousness." James Gibson, Locke's Theory of Knowledge and
its Historical Relations, Cambridge: at the University Press, 1931, p. 7.
Gibson points out, in chapter one of his fine study, how Locke came to
write the Essay. See also N. I. Aaron, John Locke, London: Oxford, 1887, p. 66.

(31) "Dear as was his interest in the scientific discoveries of his day,
he leaves no room for doubt that in his opinion the knowledge which is of
greatest importance for man is that which relates to his duty, and to the
existence of the Divine Being, whose law he conceived this duty to be."
James Gibson, op. cit., p. 6.

Locke's theory of knowledge is gradually developed in the *Essay*. After showing, in the first book, that he holds no brief with a theory of innate ideas, he examines the origin of knowledge in the second book. All our ideas (33), from which our judgments or true knowledge are formed and which arise from the twofold experience of sensation and reflection, are either simple or complex. A man is not able to make up simple ideas; the mind is passive in getting them from experience. Simple ideas arise in diverse ways, from one sense or more, from reflection or reflection combined with sensation. (Locke then distinguished the simple ideas of primary or mathematical qualities which have real existence from those of secondary or imputed qualities which only virtually exist). By combining and extending simple ideas or "originals," the mind exhibits its power of producing new ideas in the activity of comparison, composition and abstraction, which yield complex ideas called modes, substances and relations. The third book deals with Locke's theory of the nature, meaning and use of language.

It is in the fourth book, the most important of the *Essay*, that Locke deals with knowledge in general. The judgment in which we have knowledge is "but the perception of the connection and agreement, or disagreement and repugnancy of any of our ideas" (34). Universal propositions are the makeup of knowledge which bears the distinctive badge of certainty and is

(33) Locke's wide use of "idea" is evident throughout his *Essay*. "Whatever is meant by phantasy, notion, species, or whatever it is which the mind can be employed about in thinking." *Essay*, Vol. I, I, p. 16. Gibson says, "as the universal implicate of cognition, ideas are involved alike in the sensible apprehension of a colour and in the thought of an abstract object or relation, which cannot be presented to the sense. For the word he disclaims any special partiality, and avows himself ready to 'change the term idea for a better' as soon as his critics can help him to one which will bear as well the required width of denotation." James Gibson, op. cit., p. 15.

referent to a reality independent of the mind; knowledge is "real."

Of the two main kinds of knowledge, "demonstrative knowledge is much more imperfect than intuitive (35)." In the latter, "the mind perceives the agreement or disagreement of two ideas immediately by themselves, without the intervention of any other (36)," "and this kind of knowledge is the clearest and the most certain that human frailty is capable of. This part of knowledge is irresistible..." (37). In demonstrative knowledge, though its certainty is unquestionable, the mind must operate "by the intervention of other ideas (one or more, as it happens), to discover the agreement or disagreement which it searches..." (38). Proceeded by doubt, the stage of demonstrative knowledge is not as easy to obtain as intuitive; demonstrative knowledge is forced to rely on the ideas of intuitive knowledge which it uses as "proofs."

The most perfect type of demonstrative knowledge is mathematics.

But although "it has been generally taken for granted that mathematics alone are capable of demonstrative certainty" (39), this is not the case. The reason for this, Locke says,

Has been not only the general usefulness of those sciences, but because, in comparing their equality or excess, the modes of numbers have every the least difference very clear and perceivable...

But in other simple ideas...we have not so nice and accurate a distinction of their differences as to perceive or find ways to measure their just equality or the least differences (40).

Other sciences, then, are capable of demonstrative certainty.

Continuing, Locke examines the extent of human knowledge with regard to the four sorts of affirmation or negation we can make, identity, co-existence, relation and real existence. Under relation, he makes a strong case for our demonstrative knowledge of morality in comparison to mathematics. The complexity and sensible representations accompanying moral knowledge have made people think it incapable of demonstration. Mathematics, by comparison, has the advantage, since it uses sensible marks which are "not liable to the uncertainty that words carry in their signification (41)." Secondly, the moral ideas are more complex than those of mathematics, hence their names are of more uncertain signification and it is more difficult for the mind to retain these precise combinations.

Thirdly, the weakness of human memory is not as evident in remembering mathematical as moral demonstrations, for

the numerical characters are helps to the memory, to record and retain the several ideas about which the demonstration is made, whereby a man may know how far his intuitive knowledge in surveying several of the particulars has proceeded; that so he may without confusion go on to what is yet unknown, and at last have in one view before him the result of all his perceptions and reasonings (42).

In concluding his comparison, Locke suggests that the difficulties of other demonstrative knowledge, such as morality, be resolved by accurate definitions, universally accepted and retained,

and what methods algebra or something of that kind may hereafter suggest, to remove the other difficulties... (43).

Chapter four of the fourth book of the Essay deals with the reality of human knowledge. Simple ideas yield real knowledge, since they are but "the products of things operating on the mind in a natural way (44)." With regard to complex ideas, all of them, except for substance,

being archetypes of the mind's own making, not intended to be the copies of anything, not referred to the existence of anything as to their originals, cannot want any conformity necessary to real knowledge (45).

Mathematical knowledge, since it is of this type, is of unquestionable reality and certainty, for

it is only of our own ideas. The mathematician considers, the truth and properties belonging to a rectangle or circle, only as they are in idea of his own mind. For it is possible he never found either of them existing mathematically, i.e., precisely true, in his life (46). Locke's analysis of mathematical knowledge holds that it is the mere perception of agreement or disagreement of ideas; its demonstration is but the perception of this agreement through other ideas or mediums. Moral knowledge is of the same nature, and hence has similar validity.

For, just as

all the discourses of the mathematicians about the squaring of a circle, conic sections, or any other part of mathematics, concern not the existence of any of those figures, but their demonstrations, which depend on their ideas, are the same, whether there be any square or circle existing in the world, or not... (47).

So it is likewise true that

the truth and certainty of moral discourses abstracts from the lives of men, and the existence of those virtues in the world whereof they treat... (48).

(46) Essay, Ibid.
(48) Essay, Ibid.
The methods of improving our knowledge are considered in chapter twelve.
Not from maxims of "certain praecognita," but rather from the comparing
of clear and distinct ideas to which we annex proper and constant names,
is our knowledge improved. The best way to do this,

is to be learned in the schools of the mathematicians, who from
very plain and easy beginnings, by gentle degrees and a continued
chain of reasonings, proceed to the discovery and demonstration
of truths...(49).

These strong and successive claims for the excellence of mathematics,
the surety of its method and the felicity of its symbols, Locke attributed
to the elementary subjects of arithmetic and geometry. Both of these
subjects, though they originated from the experience of primary qualities
and could be applied to the world, were independent of the existence of
objects conformable to them. Of the two, that of arithmetic or number
offers greater precision and accuracy and is more perfect. The mind
immediately, in fact, perceives the truth of simple arithmetical opera-
tions. The quantities of geometry, however, cannot be expressed with
such precision and finish. Continuous extension does not lend itself
as readily to every minute difference of quantity.

These characteristics of mathematics, then, signalize its distinction
and value; though, Locke insists, knowledge of moral matters is more im-
portant and equally as certain. His frequent use of examples taken from
mathematics or quantitative notions and his very account of knowledge
itself, reveal a strong bias for mathematics and a prescivity to model

(49) Essay, Book IV, Chapter 12, V, Vol. II, p. 266.
all science and demonstration accordingly. It is these factors which lead one to believe that Locke not only had an inadequate view of mathematics as such, but that he inclined to a mild form of materialism.

III. Berkeley.

Then but a young man of twenty at Trinity College, Dublin, George Berkeley (1685-1753) published two works, *Arithmetica absque Algebra* and *Euclidides Demonstratus* and *Miscellanea Mathematica*, which are indicative of his early interest and competence in mathematics. At the same college Berkeley was exposed to the new spirit in philosophy through the study of Bacon, Hobbes, Descartes, Locke, and John Toland the free-thinker, as well as to the scientific discoveries of Leibniz and Newton. How these philosophers and scientists affected him is recorded, fortunately enough, in his *Commonplace-Book*, his diary from his twentieth to his twenty-fourth year. It was during this early period that he formed his famous rejection of substantiality to matter, his chief title to fame in philosophical annals. His opposition to the atheistic trends of his time and to free-thinkers in moral and mathematical matters, moreover, were an important factor in determining the progress of mathematics and science (80).

Locke's theory of primary and secondary qualities is the point of departure for the philosophy of Berkeley. Locke proposed a distinction between the reality of the mathematical and quantitative qualities of matter, which he called primary and which were real, from the hazy experience of the secondary qualities of touch and taste, which were less

real. Lecke also left an unsuccessful analysis of substance, equivalent to a denial of its reality.

...not imagining how these simple ideas can subsist by themselves, we accustomed ourselves to suppose some substratum wherein they do subsist, and from which they do result; which therefore we call substance (81).

Berkeley, however, could see no reason for maintaining the first distinction. He points out, in A Treatise Concerning the Principles of Human Knowledge, that some of the primary qualities themselves are given through the same senses which yield secondary qualities. Further, primary qualities themselves only arise through combinations of secondary qualities; Berkeley confidently concluded,

in short, extension, figure, and motion, abstracted from all other qualities, are insusceptible. Wherefore the other sensible qualities are, there must these be also, to wit, in the mind and nowhere else (82).

Once Berkeley has disposed of the first, Locke's weak defence of substance is no longer required. Berkeley rejects substance which is not perceived and retains that which is perceived: esse est percipi et percipi (85).

This phrase contains both Berkeley's speculative position and the answer that he will thrust against the free-thinkers and materialists: materiality removed from matter, substantiality from substance, with matter or substance being but an exteriorisation or extraposition of the Divine (84).

(85) Ibid., n. 3, p. 109.
Armed with this doctrine, and with his pointed gifts of wit and sarcasm, Berkeley bravely wanders off into the camps of the free-thinkers of his time (55). He states that the acceptance of the doctrine in the

Principles can achieve a refutation of scepticism; a liberation of thought from unnecessary and meaningless abstractions; a purification of natural philosophy which becomes but the interpretation of the ideas of sense, the Divine language of nature; a simplification of mathematics with its meaningless infinitesimals and series discarded; an explanation of belief in the existence of others; a vindication of faith in God Who signifies and is signified in the world of nature.

This initial work of Berkeley's had been preceded, in 1709, by An Essay toward a New Theory of Vision (56), which was both a prelude to his main theory on substance and also an attack on Newton's conception of nature. The work contains his investigation of the relations of the sense of sight to space, distance, magnitude and plane. Berkeley followed these two works with another in 1713, written in dialogue form, entitled *Three Dialogues between Hylas and Philonous*. In this work, Philonous represents Berkeley, while Hylas argues against Berkeley's position on substance. During this same year, Berkeley contributed a number of essays to an English magazine, the *Guardian*, whose main content is directed again towards the free-thinkers. In one of these essays he shows his wit and satire both in the content of the essays and in their titles, "A visit to the Pincal Gland" of a free-thinker," and "The Pincal Gland of a Free-Thinker." Berkeley imagines himself a

(55) The Principles has the following subtitle: "Wherein the Chief Causes of Error and Difficulty in the Sciences, with the Grounds of Scepticism, Atheism and Infidelity are Inquired Into." Vol. I, p. 211.

(56) "The Essay was a pioneer, meant to open the way for the disclosure of the secret with which he was burdened, lest the world might be shocked by an abrupt disclosure." Works, "Life of Berkeley by the editor," Vol. I, p. xxvii.
hemispherical travelling about in the contents of the free-thinker's mind, and exposes its shameful contents.

Others of Berkeley's works are along the same strain. His De iatro (67) and Alciphron, or The Minute Philosopher aim to justify religion and oppose scepticism. With the appearance of The Analyst Or, A Discourse Addressed to an Infidel Mathematician (58) Berkeley's hitherto scattered remarks about the mathematics and mathematicians of his time were expanded. Fraser says of The Analyst,

It was followed by a controversy in which some of the most eminent mathematicians took part. Mathematics exist in mysteria might have been the motto of the Analyst. The assumptions in mathematics, it is argued, are as mysterious as those of theologians and metaphysicians. Mathematics cannot translate into perfectly intelligible thought their own doctrines in fluxions (69).

Berkeley's criticism had a profound effect on the inadequately formulated foundations of the Calculus in Newton and Leibniz, and was one of the factors that paved the way towards a rigorous formulation of its bases (60).

In addition to his direct criticism of mathematicians, Berkeley did some analysis of mathematics itself. In the Principles, for example, he proposed a species of mathematical nominalism, similar to Hobbes' (87) Fraser writes (Life of Berkeley by the Editor, Vol. I, p. xlvi), "The material world, chiefly under the category of substance, inspired the Principles. The material world, under the category of cause or power, inspired the De iatro...Males evolvit et agitat montes might be taken as the formula of the materialism he sought to dissolve. Non servatus et agitat montes significat, sunt esse est percipi expresses what Berkeley would substitute for the materialistic formula."

The subtitle of the Analyst reads: "Wherein it is examined whether the Object, Principles, and Inferences of the Modern Analysis are more distinctly conceived, or more evidently deduced, than Religious Mysteries." (58) Works, Vol. III, p. 1.

(60) For a fine presentation of Berkeley's criticisms and of their effect, see Carl B. Boyer, op. cit., Chapter VI, "The Period of Indecision," pp. 224-230, passim.
sensualistic mathematics. Arithmetical, he writes, "hath been thought to
have for its object abstract ideas of number (61)." But, argues Berkeley,
number is but a collection of units, and since he has previously established
that there be no such thing as unity, or unit in abstract,
there are no ideas of numbers in abstract, denoted by the
numerical names and figures (62).

Numerical relations, therefore, are only realised in concrete experience.

For, in Arithmetic,

we regard not the things but the signs, which nevertheless
are not regarded for their own sake, but because they direct
us how to act with relation to things, and dispose rightly
of them... it is evident from what has been said, those things
which pass for abstract truths and theorems concerning numbers,
are in reality conversant about no object distinct from particular
numerable things... (63).

The same reasoning is applied to Geometry. Noted by the loose use
of "infinites" and "infinitesimals" of his time, he says,

The infinite divisibility of finite extension, though it is not
expressly laid down either as an axiom or theorem in the elements
of that science, yet is throughout the same everywhere supposed,
and thought to have so inseparable and essential a connection
with the principles and demonstrations in Geometry that mathemati-
cians never admit it into doubt, or make the least question of
it (64).

This notion of the infinite is the source of the paradoxes which militate
against common sense; and which make mathematics difficult and tedious.

Berkeley argues from the nature of our ideas that no finite extension
either contains innumerable parts or is infinitely divisible. Berkeley
imagines someone objecting to his elimination of the infinite that it

(62) Ibid., n. 180, p. 325.
(63) Ibid., n. 122, p. 386.
(64) Ibid., n. 183, p. 387.
would destroy the very foundations of Geometry, and those great men who have raised that science to so astonishing a height, have been all the while building a castle in the air (63).

He answers, significantly,

that whatever is useful in geometry, and promotes the benefit of human life, does still remain firm and unshaken on our Principles; that science considered as practical will rather receive advantage than any prejudice from what has been said (64). For the rest, though it should follow that some of the more intricate and subtle parts of Speculative Mathematics may be pared off without any prejudice to truth, yet I do not see what damage will be thence derived to mankind (67).

In this, and in his other works, Berkeley, when he speaks of mathematics, inclines towards a nominalist view and appears to introduce a pragmatic test of usefulness for ascertaining the validity of mathematical notions.

IV. Name.

David Hume (1711-1776) applied the procedures of the new sciences to the study in his Treatise of Human Nature (66). Both this work and his Essay Concerning Human Understanding were merely introductory studies to morals and politics which claimed his foremost interest (69). With these

(63) Ibid., p. 181, p. 331.
(64) Ibid.
(67) Ibid., p. 181, p. 333.
two works he hoped to show that neither mathematics nor physics had any greater claim to exactness than the science of man (70). A great admirer of Newton (71), Hume proposed to use the experimental method of observation in all the human sciences, without any attempt to deal with ultimate explanations, the use of hypotheses or preconceived theories. In this way, Hume helped to further interest and enthusiasm for the sciences of men which were extensively developed in the nineteenth century (72).

Locke and Berkeley had likewise attempted to justify moral and religious knowledge by equating them to mathematics and science. Hume, though within their tradition and greatly obligated to both (73), was

(72) "It is evident, that all the sciences have a relation greater or less, to human nature; and that however wide any of them may seem to run from it, they still return back by one passage or another. Even Mathematics, Natural Philosophy and Natural Religion, are in some measure dependent on the science of Man; since they lie under the omniscience of Man, and are fulfilled by their powers and faculties." Treatise, Introduction, p. 976.

(73) "Hume wrote them as a builder of the Science of Human Nature, and so it was as such that he exercised his main influence on his successors. He encouraged in us the hope of the successful extension of scientific progress to human nature itself, thus filling some a reasoned, definitive and accurate answer to all problems — religious, moral, social and political...Here was a rationalist indeed: the founder, with Butler and Bartley, of that belief in and enthusiasm for the Science of Human Nature which was so important in the philosophy and in the practical politics of the nineteenth century." C. E. Morris, Locke, Berkeley, Hume, Oxford: The Clarendon Press, 1981, p. 115.

(74) "The spiritual philosophy of Berkeley in Ireland was thus a development in one direction of elements latent in Locke's Essay. The next succeeding evolution of philosophy in these lands, of historical importance, occurred in Scotland, in an opposite direction. Hume's Treatise of Human Nature and his Inquiry Concerning Human Understanding, were published half a century after the Essay; the one some years before, and the other rather later than Siris. Locke's Essay was the new philosophical influence at work at Edinburgh in Hume's youth, and the negative side of Berkeley's new conception of the world of the senses was engaging attention there then, as a sceptical paradox. Hume awoke into intellectual life in this atmosphere, with a natural disposition to doubt, and to apply sceptical paradox to the existing philosophy, as he found it in Locke's Essay. His agnostic criticism emptied the Essay of most of its fundamental elements, and in particular banished the 'propositions of real existence' that Locke took as presupposed in all knowledge by means of ideas." Alexander Campbell Fraser, editor, An Essay Concerning Human Understanding by John Locke, Vol. I, p. cxxxiv.
dissatisfied with their account and initiated a fresh start. Treating the mind as an object is treated in physical science and carefully analyzing its contents, he reached a surprising and sceptical conclusion: all knowledge and science were explicable by the impressions of sense associated through custom or habit.

In order to hold to his original contention that the richness and complexity of scientific knowledge was due solely to the habitual association of primitive perceptions (74), and that no sciences go beyond experience (75), Hume was forced to do violence to the notion of abstraction. Hume quoted the opinion of Berkeley, "a great philosopher," approvingly:

...all general ideas are nothing but particular ones, annexed to a certain term, which gives them a more extensive signification, and makes them recall upon occasion other individuals, which are similar to them (76).

Abstract ideas were not universal or conceptual; their nature is such that they are

...in themselves individual, however they may become general in their representation. The image in the mind is only that of a particular object, the application of it in our reasoning be the same, as if it were universal (77).

(74) "All the perceptions of the human mind resolve themselves into two distinct kinds, which I shall call impressions and ideas." Treatise, Bk. I, Part I, Sect. I, p. 1.
(75) "But if the impossibility of explaining ultimate principles should be esteemed a defect in the science of man, I will venture to affirm, that 'tis a defect common to it with all the sciences, and all the arts, in which we can employ ourselves, whether they be such as are cultivated in the schools of the philosophers, or practised in the shops of the meanest artisans. None of them can go beyond experience, or establish any principles which are not founded on that authority." Treatise, Introduction, p. xxii.
(76) "Treatise, Book I, Part VII, Sect. II, p. 17. Hume was indebted to Locke for the principle that all our knowledge comes from experience and the concomitant problem of reconciling this principle with the doctrine of the generality of ideas. Locke concluded with the inconsistency of abstract ideas which Berkeley denied; Hume followed the position of Berkeley.
(77) Ibid., p. 20.
Hume then claimed that a repetition of experience is associated by custom and given a name. The utterance of that name "revives that custom" we have acquired and one or more of these originally experienced ideas. The mind then separates or partially considers those ideas which are demanded by occasions and by the purpose of life.

Hume considered mathematics and science under the complex ideas of relation (78). Complex ideas arose from simple ideas through the law of association, which Hume compared to the idea of attraction in physics (79). Of the seven types of relations (80) he admitted, resemblance, contrariety, degrees in quality and quantitative or numerical proportion constituted the realm of mathematics and science. These relations depended solely on ideas, and could be the objects of knowledge and certainty. The first three of these relations "are discoverable at first sight, and fall more properly under the province of intuition than demonstration (81)." It is under the fourth, proportions in quantity or number, that Hume considers mathematics.

(79) "Here is a kind of attraction, which in the mental world will be found to have an extraordinary effects as in the natural, and to show itself in as many and as various forms. Its effects are every where conspicuous; but as to its causes, they are mostly unknown, and must be resolv'd into original qualities of human nature, which I pretend not to explain. Nothing is more requisite for a true philosopher, than to restrain the intemperate desire of searching into causes, and having establish'd any doctrine upon a sufficient number of experiments, rest contented with that, when he sees a farther examination would lead him into obscure and uncertain speculations." Treatise, Bk. I, Part I, Sect. IV, pp. 12–13.
(80) The seven relations which Hume distinguishes are divided into two classes. The first comprises the four listed above. The second class includes identity, relations of time and place and causation. Treatise, Bk. I, Part III, Section I, pp. 69–73.
(81) Ibid., p. 72.
In his treatment of mathematics, Hume distinguished between geometry and arithmetic. In his view, geometry is but an empirical doctrine, founded on observation of the rough appearances of physical facts:

...geometry...tho' it much excels, both in universality and exactness, the loose judgments of the senses and imagination; yet never attains a perfect precision and exactness. Its first principles are still drawn from the general appearance of the objects; and that appearance can never afford us any security, when we examine the prodigious minuteness of which nature is susceptible (82).

Geometry lacks exactness; we only approximate the abstractness of its figures or propositions.

When geometry decides anything concerning the proportions of quantity, we ought not to look for the utmost precision and exactness. None of its proofs extend so far. It takes the dimensions and proportions of figures justly, but roughly, and with some liberty. Its errors are never considerable; nor would it err at all, did it not aspire to such an absolute perfection (83).

The ideas then, of perfect lines, figures and angles have no real existence. In pretending to use abstract ideas, mathematicians are like philosophers who use them as a means to "cover many of their absurdities (84)."

Hume viewed arithmetic and algebra differently, for exactness and certainty could be achieved in these subjects. In them

We are possess of a precise standard, by which we can judge of the equality and proportions of numbers; and according as they correspond or not to that standard, we determine their relations, without any possibility of error. When two numbers are so combin'd, as that the one has always an unite answering to every unite of the other, we pronounce them equal; and 'tis for want of such a standard of equality in extension, that geometry can scarce be esteem'd a perfect and infallible science (85).

(82) Ibid., pp. 72-73.
(83) Ibid., Bk. I, Part II, Section IV, p. 45.
(84) Ibid., Bk. I, Part III, Section I, p. 72.
(85) Ibid., p. 71.
Hume seems to have held this view of the exactness of arithmetic and algebra because of his psychological atomism which proposed that each element of conscious experience is preserved as a unit. In Hume's view, geometry, arithmetic and algebra, in keeping with all demonstrative sciences, contained a fair amount of probability. No algebraist or mathematician is so expert or so confident, however, that he immediately believes truth on its discovery; he regards it rather as a mere possibility which gradually increases towards a certainty that is never perfectly attained (86).
Chapter VI. Idealism and Positivism.

I. Kant.

Immanuel Kant (1724-1804) it appeared that Descartes, Locke and their followers had been seduced in metaphysics, for they had unsuccessfully attempted to introduce the method and abstractive processes of mathematics and science into philosophical research (1). The accent being laid, in the Cartesian tradition, on pure mathematics, various forms of idealism and rationalism ensued. Under Newton's influence, the British philosophers had, instead, stressed the physical and observational aspect of applied mathematics, concluding with empiricism, positivism and scepticism. Kant seconded the high regard with which both schools had looked upon mathematics and science, whose success made them self-justified. Consequently he directed his philosophical efforts towards demonstrating how they were true and at ascertaining what felicitous functioning of reason enabled them to reason so successfully (2). On the other hand, metaphysics, championed

(2) "On il est frappé par un double fait. D'un cote, on trouve les sciences, au sens moderne du mot: les mathématiques, la géometrie et la physique mathématique qui, avec l'astronomie de Newton, s'imposaient dorénavant sans conteste; de celles-ci, la valeur est consacrée par le succès, c'est à dire par l'accord de tous les penseurs, et le progres constant de leurs découvertes. De l'autre cote, on voit la métaphysique au sens devenu traditionnel depuis Descartes: c'est a dire l'étude des trois principales substances: le monde (cosmologie), l'ame humaine (psychologie) et Dieu (théologie); et celles-ci n'est au contraire qu'une perpetuelle succession de systèmes contradictoires qui s'entrelacent." P.-J. Thiers, Proses d'Histoire de la Philosophe, p. 585.
alternatively by idealism and empiricism, had been embroiled in successive contradictory systems and had seemingly failed in the pursuit of truth. Kant aimed, then, to name the constitutive elements of mathematics and science whose certainty was unquestionable and to define the value and sphere of metaphysics by properly articulating the extremes of rationalism as typified in the Leibniz-Wolff philosophy with that of Hume's empiricism (8).

Kant's philosophy of transcendental criticism — in which the respective roles of reason and experience were critiqued and then reunited in a transcendent synthesis — was formed over a number of years. His early career was marked by the study of Newtonian science and rationalist philosophy (4). In his "Thoughts on the True Estimate of Vis Viva" of 1747, he entered the current dispute of the Cartesian and Leibnizians with regard to the proper expression for the amount of a force. Newton's influence led to his "General History and Theory of the Heavens" of 1755, in which he applied Newton's conception of the solar system to the sidereal universe (6). His philosophical training during this period was that of the Leibniz-Wolff tradition, which presented Leibniz's philosophy

as a science of pure possibility (6). Kant was much concerned, in this early period, with attempts to compromise Newton and the Leibniz when he knew (7).

A gradual break with the Wolffian philosophy and a tendency towards Hume's empiricism marked the second period of Kant's formation. He wrote a number of treatises concerned with the question that was to become capital in his future speculations, the relation of mathematics and science to metaphysics. Noteworthy among these is the essay he submitted to the contest sponsored in 1763 by the Berlin Academy of Sciences on the question, "Is metaphysics capable of a certainty equal to mathematics?" In this essay, "On the Evidence of the Principles of Natural Theology and Morals," Kant censured those thinkers who had mistakenly attempted to make metaphysics like mathematics (8), claiming that they had misunderstood the nature of metaphysics, physics and mathematics. Mathematical certainty was due mainly to the mind; the mathematician begins with axioms and definitions, forming concepts by synthetic construction in a special intuition. Past physics had been too a priori; by beginning with postulates and definitions, it had attempted to model itself too strictly on mathematics. Recent physics, especially that of Newton, had begun rightly with observation and quantitative measurements. Physical method is more akin

(7) S. D. Liddell, Kant, London: Ernest Benn, 1934, Chapter II, "Kant's Pre-critical Writings and his relation to his predecessors."
(8) Joseph ter Meulen, op. cit., pp. 67-76.
to metaphysics, for the metaphysician must begin with such concepts as body, soul, space and time, which were complex items of experience. Mathematics, then, was synthetic; while physics and metaphysics were analytic (9). In this essay Kant had little hope for the future of metaphysics — no one had as yet written a metaphysics; metaphysics must change its nature in order to attain truth.

Kant's inaugural dissertation of 1770 marked his first definitive synthesis between rationalism and empiricism (10). In this work, "A Dissertation on the Form and Principles of the Sensible and Intelligible World," Kant reaffirmed his faith in and hope for metaphysics (11).

(9) "Thus — at the outset at any rate — mathematics and philosophy proceed in opposite ways. The method of mathematics is synthetic or direct from the first, inasmuch as it provides its own definitions and proceeds straightway to formulate its axioms, and from these and its definitions to deduce their consequences. The method of metaphysics, on the other hand, must be analytic or inverse so long as its definitions and axioms are still to seek." James Ward, *A Study of Kant*, Cambridge: the University Press, 1925, p. 22.

(10) "It has often been noticed that Kant, from the beginning to the end of his career, shows a tendency to seek for some middle term or higher reconciling principles between opposite schools of thought. He is in a way defending the honour of human reason, when we reconcile it with itself in the persons of different writers of high intelligence, and discover the truth, which by such men is never entirely missed, even in their contradictory utterances." This sentence quoted from the first published essay of Kant, in which he endeavors to find a way of combining the different views of Descartes and Leibniz upon *via vitæ*, gives the keynote of most of his subsequent writing. To mediate between Leibniz and Newton was the aim of his first philosophical essays; to mediate between the English Empiricism and the German Rationalism may be said to be one of the main objects of the Critical Philosophy," Edward Cairns, op. cit., Volume I, p. 161.

(11) Kant's interest in metaphysics was partly renewed by the reading of Leibniz's *Nouveaux Essais*, which had recently been published; see A. D. Lindsay, op. cit., pp. 29-32. On Kant's relation to Leibniz, see Robert Latte, op. cit., appendix I, "Kant on his Relation to Leibniz," pp. 208-211.
Maintaining that "sensitive cogitata esse rerum representationes uti apparent, Intellectualia autem siouti sunt" (12), Kant distinguished the phenomenal world of the passivity of sense from the noumenal world of the activity of intelligence. Within each, he subdistinguished matter and form. Though sensations were the matter of sensible knowledge, they were received in a certain spatial and temporal ordering (the intuitions of his latter Kritik) (13). With respect to active, intelligible knowledge, Kant spoke of a logical and a real use of intelligence. In its logical use, intelligence actively organised the appearances of sense into empirical knowledge as in physics for the external senses, and as in psychology for the internal sense. The real use of intelligence occurred in metaphysics which dealt with the intelligible world proper, the noumenal realm. The matter of the noumenal world lay in its ultimate, simple parts, the laws of our mental activity in relation to experience; the form was the interaction between the substances of which the noumenal world was constituted. Metaphysics was concerned with noumenal or real world, science with the phenomenal world.

(12) Kant,Werke, "De mundi Sensibilis atque Intelligibilis Forma et Principia," Supplement-Band, p. 107, See also A.D. Lindsay, op. cit., pp. 44-45.

(13) "Il y a une autre question préliminaire, plus difficile à reconsidérer: c'est de savoir quelles sont les sciences que Kant a considérées comme faisant partie de la Mathematique pure, et quel est leur rapport aux deux formes a priori de la sensibilité qui en sont solemnis l'ordre. La pensée de Kant est singulièrement flottante sur ces deux points, pourtant essentiels. Dans la Dissertation de 1770, l'espace était l'objet de la Géométrie, le temps celui de la Dynamique pure, et ces deux sciences faisaient partie de la Mathematique pure. Louis Couturat, "La Philosophie des Mathematiques de Kant," Revue de Metaphysique et de Morale, 12(1904), p. 336.
Eleven years later, in 1781, Kant published the *Kritik der reinen Vernunft*, which embodied his ultimate synthesis concerning the possibility of speculative truth in metaphysics, mathematics and science (14). In this work Kant was not concerned with a doctrine of abstraction as the clue to the nature of science and metaphysics; in fact, he used the word "abstraction" to designate mental constructs having no absolute reference to things or their appearances. Kant was concerned, instead, with the nature of judgments, their origin and role in acquiring truth. Dismissing analytical judgments as mere tautologies for they "add nothing to the notion of the subject" (15), Kant limited the *Kritik* to synthetic judgments which "add to the subject a predicate not at all thought in it" (16); only these judgments were ampliative and increased knowledge (17).

(14) "La question fondamentale de la Critique de la Raison pure est: 'Comment des jugements synthétiques a priori sont-ils possibles?' Qu'il existe de tels jugements, c'est ce dont Kant ne doute pas un instant, car ce sont de tels jugements qui constituent, selon lui, la métaphysique et la mathématique pure. Expliquer comment ces jugements sont légitimes en mathématique et illégitimes en métaphysique, tel paraît être le but de la Critique de la Raison pure; tel est en tout cas l'objet de la *Methodologie transcendentale.* Ibid., p. 321; see also Joseph Mareschal, *Le Point de Départ de la Métaphysique,* Cahier III, pp. 87-92.

(16) Ibid., p. 66.

(17) "The belief in the power of analysis has been the result of reflection on mathematical processes. The certain assurance in that field of new knowledge, apparently got by analysis, while analytical reasoning appear the true type of all a priori knowledge, Kant, however, insists that mathematical discovery is not a mere matter of analysis. It always involves a synthetical element: even the result of a simple sum is not got by analysis, but by counting or some kind of construction. He challenges, therefore, the rationalist assumption that a prior judgments are necessary analytic." A. J. Lindsay, *op. cit.* pp. 58-59.
Not all synthetic judgments were alike. _Synthetic a priori_ judgments, concerned with accidental and contingent material, lack the notes of universality and necessity proper to true, scientific knowledge. These latter could not furnish universal and necessary truth. Hence the scientific character of these judgments arose from a source prior to experience; a pure contribution of the mind. They were a synthesis of the matter of sense data and the form which the mind contributed to these shapeless data of sense. Kant then proposed that a true theory of scientific knowledge had to inquire into the nature of this double contribution in sense perception (Transcendental Aesthetic), in pure understanding (Transcendental Analytic), and in pure reasoning (Transcendental Dialectic). Kant's aim, to show how synthetic _a posteriori_ judgments were possible, was equivalent, in his eyes, to solving the question of the nature of metaphysics and demonstrating the possibility of mathematics, and science. The conclusion of the _Kritik_ and of the Kantian synthesis was that only mathematics and science, which dealt with the phenomenal world, were marked as genuine science; metaphysical speculations was relegated to the realm of practical necessity, its objects — God, nature and the world — were merely noumenal unknowable realities which averted the absolute door of metaphysics, morals and religion forecasted in the closing pages of the _Kritik der reinen Vernunft_.

The first part of Kant's _Kritik der reinen Vernunft_ contains his non-abstractive solution to the nature of mathematics and science under
the title of Transcendental Aesthetic (18). While he regarded Newton's and Leibniz's notions of space and time as inadequate, he held fast to the finality of Newtonian physics (19) and was largely influenced by the results of Leibniz's mathematicism (20). Using arguments from geometry and arithmetic, Kant proposed that space and time were but

(18) "If we take the Aesthetic by itself, we may view it as directed against Scepticism, in so far as it shows that the determinations of our space and time are not discovered by analysis but developed by synthesis, and that they are not pure 'relations of ideas' but have objective reality. At the same time, as it proves that this a priori synthesis has reference to the forms of sense, it shows that the objective reality in question can be regarded only as phenomenal, and that, therefore, no inference can be drawn from the objective value of mathematical science to support the idea of the possibility of knowing things in themselves. The ultimate result of the Aesthetic, therefore, seems to fall on the side of Scepticism, in so far as it confines knowledge to phenomena, or at least gives no encouragement to the idea of its extension beyond phenomena; and on the side of Dogmatism, in so far as it proves that mathematical truth is due to a priori synthesis, and yet objective. Edward Caird, op. cit., Volume I, p. 229.

(19) "He happily began his work by appropriating all the mathematical and physical science of his age, and he made it the stable foundation and criterion of all his subsequent thinking. He was a faithful disciple of Newton, to whose principles and method he owed most of his formative power. He laid it down that the 'genuine method of Metaphysics are one and the same in principle with that which Newton introduced into physical science.' E. Hassie, op. cit., p. xvii.

(20) "From Leibniz also Kant derived the distinction between knowledge of things in themselves, which is given in pure intellectual concepts and knowledge of phenomena, and the conception that space and time are concerned with phenomena not with things in themselves." A. D. Lindsay, op. cit., p. 29.
the forms in which all appearances of things were manifested; they were
were the subjective conditions of sensibility which rendered external and
internal sensation possible (21). To be raised to the distinctive level
of judgments, these resultants of sensibility must receive the character
of universality and necessity from the \emph{a priori} forms of intelligibility
supplied by conception.

The process of conferring intelligibility on sensibility through the
twelve categories -- the \emph{a priori} forms of pure understanding yielding
judgments -- was demonstrated in the Transcendental Analytic (22). In
this realm, pure understanding mediated between the categories and space.
Time was the \emph{schema} according to which the understanding functioned, each
category possessing its own \emph{schema} which was somehow related to time and re­s
sulted in judgments (23).

In the Transcendental Dialectic Kant explained how the final unity of
judgments arose and how the definitive stamp of science was given to math­
ematical and scientific knowledge. Pure reason was given this task through
the three \emph{a priori} forms, the ego, the world and God. These ideas did not
contribute to, but merely regulated knowledge. With the aid of these three,
reason forms the three sciences of psychology, cosmology and theology. It ultimate

\begin{itemize}
 \item \textbf{(21)} Kant, \textit{Kritik der reinen Vernunft, "Von der Zeit,"} Band I,
 pp. 91-95.
 \item \textbf{(22)} "When we go to the Analytic...it is there shown that the \emph{a priori}
 forms of conception cannot, any more than the \emph{a priori} forms of perception, sup­
 ply an instrument by which we may reach any knowledge of reality not given in
 sense; while they do supply, and are needed to supply, principles for empiri­
 cal knowledge, i.e., for knowledge of phenomenal reality." \textit{Edward Caird, \textit{op. cit.,}}
 Volume I, p. 230
 \item \textbf{(23)} \textit{Louis Couturat, \textit{op. cit.,}} pp. 348-352
\end{itemize}
referred all phenomena to the ego as their unknowable common ground, seeing all external events and phenomena as parts of a systematised, inexplicable universe, and thinking all things to be the result of a supreme, unknowable intelligence. The temptation to consider the three ideas as constitutive and not merely regulative of experience had been succumbed to by philosophers in the past. By the paralogism of pure reason Kant attempted to show the errors of such views.

Thus the Kritik der reinen Vernunft concluded with the unknowability of the noumenal world for metaphysics and the quasi-knowledge of things as they appear in mathematics and science. Kant devoted his second critique, the Kritik der praktischer Vernunft, to show how the truths which he removed from the province of speculative reason, the freedom of the will, the immortality of the soul and the existence of God, arose; the obligatory weight of the moral law was the basis for their acceptance. In the third critique, Kritik der Urtheils Kraft, Kant employed the faculty of aesthetic experience as the mediating link between the abstract conceptions of pure reason and the practical view of the moral order in practical reason.

Kant had begun with this problem: the miserable plight of metaphysics as alternately subjected to the strains of dogmatism or empiricism and the contrasting success of mathematics and science. History, he saw, revealed that applying mathematical and scientific procedure to the spiritual world yielded barren, sceptical results. The only conclusion he could validate was to credit mathematics and science with knowledge of the appearances of sense, and to deny the possibility of speculative, metaphysical knowledge of the nature of noumenal things. In the Kritik
by comparing the method of mathematics with that of metaphysics, Kant showed why the method of the one did not obtain in the other. First, mathematics began with axioms or synthetic a priori principles (25), an initial procedure which was impossible for philosophy. Second, mathematical definitions were created by an arbitrary synthesis and thus were indisputable. Contrariwise, were we even to attempt definition in philosophy, there was no assurance that a definition of an empirical or pure concept was adequate, since these definitions never revealed the noumenal thing itself; nor can philosophical concepts as substance or causality be necessarily and universally known either in perception or concepts for they were merely relativistic notions. Third, mathematics alone was capable of irrefutable demonstrations; it presented, by its axioms and definitions, the measures of necessity and universality necessary for science. Metaphysics, by opposition, could never produce the intuitive representation of noumenal things in themselves. Metaphysical speculation, then, was radically impossible.

Kant’s conception of human nature and the mind — his primitive, unproved assumptions — were such as to make true knowledge either in science, mathematics, metaphysics or theology unattainable. It was the overbearing influence of mathematics and physics on Kant’s philosophy

which helped bring out this deplorable solution (26). His successors, like the followers of Cartesian idealism and Lockean empiricism, accepted his conclusions as the only instruments with which they could approach the questions of the possibility and of the types of speculative knowledge: The confusion of mathematical, logical, scientific and metaphysical abstraction with each other and their disastrous results in ancient and previous forms of mathematicism led Kant to the same mental imasses: the separation of God from His creation, the bifurcation of the intelligible and sensible realms, the denial of the analogy of being and the theoretical closure of man's efforts to answer the Kantian questions: 'what can I know? what can I hope for? and what ought I do?'

II. Comte

In a more extensive sense than any of his predecessors -- Descartes, Newton, Kant or the English empiricists -- Auguste Comte (1798-1857) was fascinated with the new sciences (27). It is true that Descartes had, by his mechanism, made it fashionable to consider living things as devoid of life. The supposed impossibility of explaining the interaction of matter and spirit -- a problem posed by Descartes -- had engendered a progressive materialisation of psychological study and an increasing predilection to consider mental phenomena as governed by the laws of

(27) For an analysis of Comte's reverence for the sciences and his attitude to them, see pp. 7-17 of Gouhier's introduction to Auguste Comte: Oeuvres choisies (avec une introduction par Henri Gouhier, Paris: Aubier, 1933).
physical science. A host of materialists and pan-phenomenalists arose, in most of whom, however, strains of metaphysics were still discernible. The English empiricists, stirred by the ascendancy of mathematical and physical science, attempted to safeguard religious and moral knowledge by emulating the methods of science.

Kant's strictures on intellectual knowledge, and his favorization of physics, mathematics and the exact sciences of experience, canonicalized this general trend. But all these multiple movements towards making knowledge mathematical and scientific were encompassed in the positive philosophy of Auguste Comte (28).

Comte had achieved some show of brilliance in mathematics when but a young man, and later earned his daily bread by teaching mathematics both privately and at the Ecole Polytechnique. His association as student and secretary to Saint-Simon gave him a vigorous impulse towards the social sciences. Disagreeing with the notes of urgency and immediacy that Saint-Simon connected with his social reform program, Comte left him to establish his own school of thought.

Both Joseph De Maistre and Condorcet contributed greatly to the central idea of his positive philosophy: the gradual replacement of dogma and metaphysics by a unified mathematical science (29).

Comte's Cours de Philosophie Positive (30) embodies this new

(29) In life Comte entered a "mystical" period. He aimed to unify not only human thought, but the entirety of human existence under his positive religion which is expounded in his Systeme de Politique Positive. See Henri Gouhier, op. cit., pp. 17-31.

(30) All quotations are taken from Cours de Philosophie Positive par Auguste Comte, Quatrieme edition augmentee de la Preface d'un disciple et d'une etude sur le progress du positivisme par F. Littre, Six volumes, Paris: Librairie J.-B. Bailliere et Fils, 1877.
doctrine in the form of sixty lectures. It opens with some brief considerations on the progress of the human race as exemplified by his law of the three stages (31). In the first, or theological era, men sought for an absolute and transcendent meaning of nature, richly indulging in the use of the imagination. This synthetic view proposed by theology had been, for a time, both successful and useful. Gradually the second or metaphysical stage, searching yet for an absolute though immanent answer to man's queries, supplanted the theological. It likewise was characterized by vain and imaginative solutions, but it proved itself to be neither resourceful nor satisfactory. The third, or final era, is the positive. Abandoning the quest for an absolute, it is content with the relative, and supplants the use of imaginary fictions by an increasing use of observation and by its growing collection of the facts of experience. The inner incompatibility of the three stages is not absolute. They can coexist in a single era or in a single man (32); more advanced peoples, however, will be recognizable by their ascription to positivistic doctrines, of which Corte proclaimed himself the high priest and to which he invited disciples.

To the question, what is positive philosophy? Corte answers that

(32) "Chaque de nous, en contemplant sa propre histoire, ne se souvient-il pas qu'il a été successivement, quant à ses notions les plus importantes, théologien dans son enfance, métaphysicien dans sa jeunesse, et physicien dans sa virilité? Cette vérification est facile aujourd'hui pour tous les hommes au niveau de leur siècle." Course, Vol. I, pp. 11-12.
le caractère fondamental de la philosophie positive est de regarder tous les phénomènes comme assujettis à des lois naturelles invariables, dont la découverte précise et la réduction au moindre nombre possible sont le but de tous nos efforts, en considérant comme absolument inaccessible et vide de sens pour nous rechercher de ce qu'on appelle les causes, soit premières, soit finales (35).

This is the originality, then, of the Comtean doctrine: a) the negation of philosophical abstraction or the search for final and first causes; b) the affirmation of the basic identity of all sciences. All other problems are to be regarded as insoluble and left to the imagination of the theologians and the subtleties of the metaphysicians (34).

Six sciences comprise the corpus of positivist doctrine. They are based on Comte’s law of the encyclopedic division of the sciences, that of decreasing generality and increasing complexity. Mathematics is the highest and the greatest science and knows bodies as such (35). It has the simplest objects and the most universal laws; it functions as the universalizing and unifying doctrine. The other sciences merely consider special groups of bodies; astronomy deals with the stars, physics with our planet, chemistry with terrestrial and mineral bodies, and physiology with organized or living bodies. Sociology, or social physics, deals with human facts; its objects are the most complex, and its laws, the least universal. The order listed above is, Comte claims, both a rational order and the order of the historical appearance of these sciences.

(34) Ibid., p. 17.
(36) Comte definitely excludes metaphysics from his purview, and attributes a metaphysical knowledge to mathematics; Etienne Gilson, op. cit., pp. 261-266.
The aims of positive philosophy, a special and general one, are inseparable. The special aim, "le plus grand et le plus pressant besoin de notre intelligence", is to terminate the system of observation sciences by founding social physics (56). The general aim identifies the Cours as one of positive philosophy; it is to insulate a knowledge of general scientific relations and laws, to coordinate previous knowledge as branches of the great tree of positivistic science (57). This ambitious program warrants a division of labor among scientists, for which Comte pleads by pointing out the salutary effects to the positive program for society: the general laws of logic will be clarified; a needed reform in education will ensue, and the six sciences will be studied in the proper order of procedures from the simple to the complex; the progress of positive science will be promoted; a social reorganisation will originate (58).

The unifying science, in the Comtian scheme, and the ideal to which the others were to be made conformable, was mathematics. Comte had really aspired to constitute an objective synthesis of the sciences through mathematics; but, as he complains, an insufficient development of positivistic philosophy made him be content with a subjective,

(56) "Maintenant que l'esprit humain a fondé la physique céleste, la physique terrestre, soit mécanique, soit chimique; la physique organique, soit végétale, soit animale, il lui reste à terminer le système des sciences d'observation en fondant la physique sociale." Cours, p. 22.
(57) Ibid., p. 28.
(58) "La grande crise politique et morale des sociétés actuelles tient, en dernière analyse, à l'ensemble intellectuel...le désordre actuel des intelligences tient, en dernière analyse, à l'emploi simultané des trois philosophies radicalement incompatibles: la philosophie théologique, la philosophie métaphysique et la philosophie positive." Ibid., p. 41.
personal synthesis. His mathematicism, then, is evidently a bold and extensive program. It is the most ambitious of all types of mathematicism, uniquely envisaging all orders of truth as comprised under the fundamental notions of mathematical abstraction: figure, movement, quantity and number. Only in mathematics do we achieve universality and accuracy. It renders precise and exact the indefiniteness of observable phenomena (39).

Before presenting his important division of mathematics as concrete and abstract, Comte considers mathematics in general. It is to be viewed as "n'étant autre chose qu'une immense extension admirable de la logique naturelle à un certain ordre de déductions (40)."

Comte pays warm tributes to its unity and its ancient character, but is piqued at its former definitions and divisions, vague and insignificant as they were. The first problem, then, since mathematics is now sufficiently perfected, is to coordinate its parts and to prepare it for progress.

Mathematics has been "ill-defined as the "science des grandeurs" or "la science qui a pour but la mesure des grandeurs" (41);" for

(39) "Dans l'état actuel de développement de nos connaissances positives, il convient, je crois de regarder la science mathématique, moins comme une partie constitutante de la philosophie naturelle proprement dite, que comme étant, depuis Descartes et Newton, la vraie base fondamentale de toute cette philosophie, quelque, a parler exactement, elle suit à la fois l'âme et l'autre. Aujourd'hui, en effet, la science mathématique est bien moins importante par les connaissances, très-réelles et très-précieuses nécessaires, qui la composent directement, que comme constituant l'instrument le plus puissant que l'esprit humain puisse employer dans la recherche des lois des phénomènes naturels." Ibid., Deuxième Lecture, p. 87.

(40) Ibid., p. 87.

(41) Ibid., Troisième Lecture, p. 90.
"est aporou scolastique" is only basically correct. It merely implies a direct and naive comparison of object to object-measure. Such measurement is often impossible, say, in the case of celestial distances. From this quasi-impracticability, Comte claims, an imperius was given to form the mathematical sciences by instituting a search for indirect measurement; this solution was found by mathematicians.

They substituted indirect measures which are directly measurable; then, by diagnosing the relations between the indirect but known measures, the direct and unknown measures could be found. In this way mathematics supplied the power for the measurement of all of nature, and its exact definition is given, "en lui assignant pour but la mesure indirecte des grandeurs, et disant qu'on s'y propose constamment de déterminer les grandeurs les unes par les autres, d'après les relations précises qui existent entre elles" (42). But this definition, Comte argues, is equivalent to the Greek idea of science in general, and not the modern designation of mathematics as "la science par excellence (43)." For science has no other purpose but to determine the relations of phenomena and coordinate facts (44). Mathematical research,

(42) "Cet ensemble, au lieu de donner seulement d'idée d'un art, comme le font jusqu'ici toutes les définitions ordinaires, caractérise immédiatement une véritable science, et la montre sur-le-champ composée d'un immense enchaînement d'opérations intellectuelles, qui pourront évidemment devenir très-compliquées, à raison de la suite d'intermédiaires qu'il faudra établir entre quantités inconnues et celles qui comportent une mesure directe, du nombre des variables existantes dans la question proposée, et de la nature des relations qui fournissent entre toutes ces diverses grandeurs les phénomènes considérés." Ibid., p. 88.

(43) Ibid., p. 97.

(44) "...de déterminer des phénomènes les uns par les autres, d'après les relations qui existent entre eux. Toute science consiste dans la coordination des faits; si les diverses observations étaient entièrement isolées, il n'y aurait pas de science. On peut même dire que la science est essentiellement destinée à dispense, autant que le comportent les divers phénomènes, de toute observation directe, en permettant de déduire le plus petit nombre possible de données immédiates le plus grand nombre possible de résultats." Ibid., p. 99.
in fact, deals with both the quantitative and the qualitative in a higher and more perfect way than each lower science considers its sphere of objects. It is the perfect science and is the highest abstraction attainable in the positivist era (45).

Comte gives a twofold division of mathematics into abstract and concrete. This principal division (the secondary division is into astronomy, physics, chemistry, physiology, and social physics) is seen to arise from the consideration of any mathematical problem. The order of research constituting concrete mathematics aims to know the precise relations which hold between quantities under consideration. Once this has been accomplished, abstract mathematics is simply a question of determining the unknown numbers from the precise relations of the known. For example, Galileo used concrete mathematics to establish the law of falling bodies; once he had found the law, then, knowing the height of the body, he could learn the unknown time of fall, or vice versa. Both branches, Comte concludes, are equivalent in point of difficulty and understanding (46).

Concrete mathematics is the basis of all science. It considers the phenomena of the universe either in their static aspect as general geometry, or in their dynamic aspect as in mechanics. Both branches of concrete mathematics aim to discover the equations which unify phenomena, and they comprise

(46) "C'est donc par l'étude des mathématiques, et seulement par elle, que l'on veut se faire une idée juste et approfondie de ce que c'est qu'une science. C'est la unique moins qu'on doit chercher à connaître avec pricision la méthode générale que l'esprit humain exploite constamment dans toutes ses recherches positives... C'est la seule que notre entendement a donné les plus grandes preuves de sa force, parce que les idées qu'il y considère sont du plus haut degré d'abstraction possible dans l'ordre positif. Toute éducation scientifique qui ne commence point par une telle étude pêche donc nécessairement par sa base." *Ibid.*, p. 99-100, (italics inserted).

the two fundamental sciences (47). Concrete mathematics, under both aspects is basically and essentially experimental, founded on direct observation. The simplicity of the phenomena which it considers, yields a high degree of systematisation, "qui a pu quelque fois faire reconnaître le caractère experimental de leurs premières principes (48)."

Unlike abstract mathematics, concrete mathematics necessarily varies its laws when new phenomena are introduced. It is, therefore, special, and immediately concerned with phenomena. In its present development, however, the program of concrete mathematics has only been completely applied to astronomical phenomena and to a part of terrestrial physics.

Abstract mathematics is general in nature. It is purely logical, rational, consists of "une série de déductions rationnelles plus ou moins prolongées" (49), and is composed of what is called the calculus or mathematical analysis. The terms of concrete mathematics, equations, are its point of departure, and abstract mathematics has for its purpose "démouir toujours les valeurs des quantités inconnues par celles des quantités connues (50)." If we compare abstract to concrete mathematics, we find that analytical ideas are more abstract, general and simple than geometrical or mechanical ideas (51). Mathematical analysis is, in fact, the basis of positivist knowledge; its ideas are most universal, abstract.

(47) "Ainsi la géométrie et la mécanique constituent, par elles-mêmes, les deux sciences naturelles fondamentales, en ce sens, que tous les effets naturels sont déjà connus comme des simples résultats nécessaires, ou des lois de l'entendu, où des lois du mouvement." Ibid., p. 108.

(48) Ibid., p. 107.

(49) Ibid., p. 104.

(50) Ibid., p. 106.

(51) "Les idées analytiques sont évidemment à la fois plus abstraites, plus générales et plus simples que les idées géométriques ou mécaniques." Ibid., pp. 109-110.
and simple (63). Mathematical abstraction is the highest man is capable of. If one attempts to probe more deeply, he will fall "inévitablement dans les rêveries metaphysiques" (63). This high perfection of mathematical analysis is not due, as Condillac and the metaphysicians argue, to the nature of the concise and general signs employed as instruments in reasoning. This, Comte says, is an exaggerated idea. All the great conceptions of analysis, he says, were discovered without recourse to signs; they were due to the extreme simplicity of the ideas of analysis which can be expressed in any kind of signs.

The domain of both concrete and abstract mathematics is, from the logical viewpoint, necessarily and rigorously universal, and ultimately reducible to a question of numbers (64). That all our researches are ultimately pointed to a question of numbers Comte illustrates by an example taken from living bodies -- a class of phenomena least accessible to "l'esprit mathématique (55)." Similar to the Pythagorean conception of a harmony in the body, Comte's illustration holds that in every pathological case the therapeutic questions involved can be envisaged as a mere determination of quantities which are necessary for the normal existence of the organism (55). In practice, Comte admits, the phenomena

(52) "La véritable base rationnelle du système entier de nos connaissances positives, il est constitué la première et la plus parfaite de toutes les sciences fondamentales. Les idées dont elle s'occupe sont les plus universelles, les plus abstraites et les plus simples que nous puissions réellement concevoir." Ibid., p. 109.

(53) Ibid., p. 109.

(54) "Car il n'y a pas de question quelconque qui ne puisse finalement être connue comme consistant à déterminer des quantités les unes par les autres d'après certaines relations, et, par conséquent, comme reducible, en dernière analyse, à une simple question de nombres." Ibid., p. 111.

(55) Ibid., p. 112.

(56) "...dans le cas pathologique, n'est-il pas manifeste que toutes les questions de thérapeutique peuvent être envisagées comme consistant à déterminer les quantités de tous les divers modificateurs de l'organisme qui doivent agir sur lui pour le ramener à l'état normal, en admettant, suivant l'usage des géomètres, les valeurs nulles, négatives, ou même contradictoires, pour quelques-unes de ces quantités dans certain cas?" Ibid., p. 112.
are so complex that we are presented with unsurmountable difficulties in using this method, but it is an aim worthy of attainment (57).

Comte's mathematicism and sociologism had a widespread and telling effect on the future study of science, psychology and sociology. Three Comtian directions were followed explicitly: first, we only know sense phenomena and their laws; second, hypotheses can be utilized to coordinate, conciliate and interpret these phenomena, but without seeking into deeper causes; third, the mathematical-scientific emphasis and method was adopted. Biological science, under Darwin and Spencer, was garbed in a positivist interpretation, leading to the theories of socialism and Marxism. A gradual mathematicisation of psychology resulted in the foundation of the psychophysics of Tundt and the dynamic psychology of Ribot. Finally, the sociology of Durkheim and his school, applied the positive philosophy to Comte's dream of a social physics (58).

(87) "Pensez que il y a evidentement impossibilite totale d'obtenir jamais de veritables lois mathematiques, ce n'est pas neanmoins qu'on doive cesser, d'apres cela, de concevoir, en these philosophique generale, les phenomenes de tous les ordres comme necessairement soumis par eux-memes a des lois mathematiques." Ibid., p. 117. ...C'est par les mathematiques que la philosophie positive a commence a se former; c'est d'elles que nous vient la methode. Il etait donc naturellement ines-vitable que, lorsque la meme maniere de proceder a du s'entendre a chaque des autres sciences fondamentales, on s'efforcait d'y introduire l'esprit mathematique a un plus haut degre que ne le comportaient les phenomenes correspondent..." Ibid., p. 132.

Chapter VII. Contemporary Directions.

Only two other historical periods, that of the Greeks and that of the resurgence of mathematics in the seventeenth to eighteenth centuries, witnessed the close conjunction of mathematics and philosophy that exists today (1). Soon after its birth as a science, mathematics successively ran the gauntlet of Pythagorean realism and Platonic idealism; it became an abstractive science for Aristotle and then passed into the irresponsible hands of mysticism, electricism and scepticism (2). The rise of mathematics in the seventeenth and eighteenth centuries shows similar trends in the philosophical view on mathematics expressed by Euclid, Galileo, Descartes and Leibniz, by the British empiricists and Kant. After this period the philosophy of mathematics was given comparatively little attention by either philosophers or mathematicians; while mathematicians busied themselves with furthering their science and in establishing the calculus on a sound basis, philosophers, for the most part, turned their efforts in the direction of the social and psychological sciences (3).

Of the large number of historical factors responsible for the present self-consciousness of mathematicians, the following can be

(3) For a summary view of the major philosophical tendencies during this period see P.-J. Thomard, *op. cit.*, Chapitre IV, "Le Positivisme."
signalized as being mathematically the most significant and formative.

Already in the eighteenth century, the acute discussions which had arisen on the foundations of the infinitesimal calculus (4) led to difficulties with the theory of infinite series and stimulated a more rigorous approach to mathematics. The gradual rise of various algebras and geometries after an uninterrupted reign of Euclid for thirteen centuries occasioned a further, critical wonder concerning the nature of deductive reasoning and of mathematics itself (5). Weierstrass' quite successful attempt to found mathematical analysis on arithmetical basis, Cantor's introduction of the theory of infinite sets, and Peano's, Frege's and Dedekind's aim (6) to base mathematics on pure logic followed each other in rapid succession (7). Kronecker vigorously objected to these views, especially to those of Cantor, maintaining that all valid mathematics must be expressible in terms of the natural numbers, but his objections were passed over and Cantor's ideas, fruitful for

(6) Richard Dedekind, Essays on the Theory of Numbers: I, Continuity and Irrational Numbers; II, The Nature and Meaning of Numbers, authorized translation of Wooster Woodruff Beman, Chicago: Open Court, 1901. In the preface to the first edition of The Nature and Meaning of Numbers, Dedekind speaks of the number concept as an immediate inference from the laws of thought (p. 31), and of the possibility of bringing our notions of space and time into harmony with the number-domain which is thus created; see pp. 31-40 for this interesting preface.

mathematical discoveries as they were found to be, prevailed (8). With the introduction of the antinomies and arithmetics which Cantor's theory of sets provoked (9), however, discussion became more acute; mathematicians became more severely critical of the nature of mathematical abstraction, and a number of schools of thought arose. One school demanded that all mathematical notions be definitely definable and that definitions be verifiable by a finite number of operations (10). The Paris School, headed by such men as Borel, Lebesgue, Caire and Hadamard, though primarily concerned with functions and measure theory, joined the current philosophical speculations on the finite and the infinite. Russell and Whitehead's *Principia Mathematica*, ultimately derived from the work of Peano and Frege, attempted to establish the validity and consistency of mathematics on the basis of primitive logical concepts (11). The school of Hilbert, known as formalism, emphasized postulational procedure and attempted to retain the whole of formal mathematics by proving its freedom from contradiction through introduction of the

(n) In the introduction to Contributions to the Founding of the Theory of Transfinite Numbers by Georg Cantor (Translated, and provided with an Introduction and Notes, by Philip J. B. Jourdain, La Salle: Open Court, 1947), Jourdain points out the influence of previous work on Cantor, especially that of Weierstrass (pp. 10-23). Jourdain also summarizes Cantor's philosophical attempts towards justifying the introduction of the transfinite numbers (pp. 67-71), and summarizes the development of the theory (pp. 72-92).

motion of metamathematics. Brouwer, whose views trace back to
Kant and E. Kromeker, proposed his intuitionist view which regards all
mathematics as constructible from a basal mathematical intuition and
which would eliminate a large part of the infinite in mathematics.

The self-critical analysis of mathematics which arose, in part,
from these and other factors, is significant inasmuch as it is a
field of research principally the concern of mathematicians. Ini-
tially concerned with what is generally termed a criticism of the
foundations of mathematics, the investigations carried on by math-
ematicians have spread into other sciences -- history, logic psychology
and metaphysics -- and are rightfully viewed as a confrontation of
mathematics to philosophy (12).

In attempting to present a partial but synthetic view of con-
temporary speculation stemming from mathematics or radiating towards
it, the classification offered in chapter one of this essay will be
followed. Under the pre-scientific view, the many attempts to popu-
larize mathematical and scientific doctrine will be briefly summarized.
Since the use of mathematics, especially in the physical sciences, has
likewise bred speculation on the nature of mathematics, the views of
the scientists and philosophers of nature will form the second group.

(12) This fact is increasingly being brought to the people by math-
ematicians. For examples of conceptions of the philosophy of mathematics,
see Max Black, op. cit., "Introduction," pp. 1-6; Hermann Weyl, The Open
World, Chapter XIII "Infinite," pp. 57-58; Bertrand Russell, Our Knowledge
of the External World, New York: W. W. Norton & Company, 1920, Chapter II,
"Logic as the Essence of Philosophy," pp. 35-64.
The view of logical abstraction, forming a third group, will summarize those views which still maintain a distinction of logic from mathematics. The fourth group will deal with speculations offered by mathematicians themselves; despite the variation of opinion, the three schools of logicism, formalism and intuitionism are still distinguishable and will be treated in that order (13). Inasmuch as a number of philosophers have concerned themselves with the nature of mathematics as they have of science in general, their theories, forming a fifth group, will be briefly outlined in conclusion to this historical survey.

Each of the theories on the nature of mathematical abstraction which are presented below necessarily implicate a metaphysical position on mathematics. It is only metaphysics which has, as its proper concern, a view which is completely outside that of any particular science. For, if a mathematical physicist claims that mathematics is pure thought, his theory expresses a view of the entire edifice of mathematics; it is a mental stance completely outside the formal, content and meaning of either mathematics or physics. It is frequently conceded that metaphysical theories have some bearing on mathematics, but merely a critical one (14). But no theory merely

voices critical comments without being accompanied by a doctrinal, expository position. If I say that mathematics is not to be identified with logic, I usually lend reasons in support of this view implicating me in some doctrinal position on the nature of both of these sciences (15).

A clarifying remark should be put here on the relations between mathematics and metaphysics. In presenting the theories below, no claim is being made here that the mathematician is not to develop mathematics at top and bottom; that is to say, the mathematician is not only to develop his science, but should even exhibit a rightful concern qua mathematician with mathematical ultimates and with the methods and bases of his science (16). The mathematician turned philosopher, however, may maintain that beyond the mathematical ultimate nothing more is to be sought; or he may freely indulge in metaphysical speculation on mathematics with little regard to the implications involved. Consequently, the views presented below aim

(16) "We are here concerned with the nature of the positive integers which are known also as natural numbers. Contemporary mathematical opinion follows that of previous centuries in regarding these numbers as the keystone of the mathematical structure... However, unlike our predecessors of only half a century ago, we do not think of mathematics as beginning with the natural numbers as its basic elements and proceeding thence to the development of its various branches. The latest views tend to assign to these numbers a middle position in the structure of this science. The lower portions are devoted to the foundations of mathematics which are established in the general theories of relation, order, sets, and groups as well as of logic. Above the level of the natural numbers have been erected the various specific mathematical disciplines such as the theory of numbers, algebra and the various theories of functions, as well as most of the geometrical studies." Abraham A. Fraenkel, "Natural Numbers as Cardinals," Scripta Mathematica, 6 (1939), p. 69.
to compress, with some measure of completeness and exactitude, a metaphysical presentation of the leading theories of the nature of mathematics, whether offered by a logician, mathematician, psychologist or philosopher.

I. Pre-Scientific Influences

residing from current number-mysticism and astrological practices which seem an inevitable counterpart of civilization, the relation of mathematics to the pre-scientific man can be seen in the growing number of books which attempt to popularize mathematics. The first class of these books merely aim to teach mathematics as such. Filled with useful information and delightful examples, aiming to unveil the mystery which one imagines is cast about mathematics and to popularize its ideas, these books boast of a large sale and a broad influence (17). A careful perusal of some of these works, however, shows that besides a presentation of mathematical doctrine, their authors are likewise interested in presenting definite commitments on the nature of society, philosophy, religion and science — on the whole field of human culture (18). Historical inaccuracies and aprioristic views neither proved nor capable of proof are mingled with the presentation of mathematical facts, procedures and content (19).

(18) See, for example, Hollis J. Cooley et al, Introduction to Mathematics, Chapter 1 and Chapters XVIII-XXI; see also E. Richardson, Fundamentals of Mathematics, Chapters I, II, XVIII, or Gaylord E. Harriman, To Discover Mathematics, Chapters 2, 13 and passim.

(19) As has been indicated above, Lancelet Hogben's Mathematics for the Millions and Science for the Citizens are noteworthy examples of an extreme and biased interpretation of the entire realm of human culture.
In this regard, these books are similar to another class of books about mathematics which have a more philosophical purpose. Combined of the delights of mathematics, its historical and cultural importance, mathematicians and speculative thinkers generally will present reflected views on what mathematics is and how it is related as a social force to civilization and culture (20). Here, likewise, little regard is often had for truth, and there seems to be more concern in presenting one's private, arm-chair musings on "mathematics as a culture clue" (21).

II. Scientists and Philosophers of Nature

The second group of speculations forming the contemporary mathematical pattern, comprises the speculations of a number of scientists, cosmologists and historians on the nature of mathematics. A half-expressed tendency towards idealism or scepticism is frequently discernible among scientists, a tendency which may be described as the belief that reality as such can be placed into partial or complete correspondence to mathematical ideas or mathematical thinking; consequently, all available knowledge is coextensive to mathematics and

(20) See the recent Mathematics: Our Great Heritage, edited by William J. Schoen, and referred to previously, for a typical example of a group of conflicting views on the nature of mathematics and its value as a social force.

(21) The essays and books of Cassius J. Keyser (See Bibliography at the end of this essay) are good illustrations of this free, liberal view; see, for example, Lectures I, IX, and Lectures XVIII-XXI of this book, Mathematical Philosophy: A Study of Fate and Freedom; Lectures for Educated Laymen, New York, E. P. Dutton & Co., 1937. For a similar example, see the two books of Tobie Ronaing, Aspects of Science (New York, The Macmillan Company, 1937), Number: The Language of Science; A Critical Survey Written for the Cultured Non-Mathematician (Third edition, revised and enlarged, New York: The Macmillan Company, 1941). The series Que Sais-je? issued by Presses Universitaires of Paris, France, has a similar purpose, but is an attempt to cover the whole field of learning.
mathematical method is the only reliable procedure for thought (22).

This theory is "inspired in various expressions: the mathematician
creates his science (23), he exercises an activity of pure thought (24),
mathematical laws are "the laws of all pure and exact thought (25), the
mathematician seizes mathematics independently of all experience (26).

The genius of nature to a mathematical interpretation has been
partly responsible, it seems, for the views that point in this direction (27),
although it is a commonplace but necessary warning to note that an absolute
proposal of this type of mathematicism is not frequently made nor clearly

(22) A. Cornelius Benjamin, op. cit., Chapter XX, "The Nature of Reality,"
pp. 438-442; see also "Tiemke Gilson, The Unity of Philosophical Experience,
pp. 132-152, and Paul Waro, "Les mathématiques et l'Idéalisme philosophique,"
in les grands courants de la pensée mathématique, présentes par P. de Lion-

(23) "We shall see more clearly the important bearing of this latter
remark when we come to discuss more closely in another chapter how the
universe is largely the construction of each individual mind." Karl Pearson,
The Grammar of Science, Part II: Physical, London: Adam and Charles Black,
1911, p. 15.

(24) "La science mathématique a pour essence de jouir perpétuellement
sur la mutation de forme-loi en forme-objet et réciproquement." L. Gaval
et G. -T. Guibaud, Le raisonnement mathématique, Paris: Presses Universi-
taires, 1952; see also pp. 135-136 and pp. 145-145.

(25) "Likewise the mathematician, these many centuries, has been
searching for logical structure and finding it everywhere...the vast
domain of purely mathematical thought forms and for irrefutable testimony
that the subject as well as the objective world is mathematical. Thus
with Descartes he will declare Omnia mundi mathematica fiat — with
me everything turns into mathematics. "George D. Birkhoff, "Mathematics:
Quantity and Order," in Science for a New World, edited by J. C. Gower,

(26) "Today mathematics is unbound; it has cast off its chains.
Whatever its essence, we recognize it to be as free as the mind, as pre-
hensile as the imagination. Non-Euclidean geometry is proof that math-
ematics, unlike the music of the spheres, is man's own handiwork, subject
only to the limitations imposed by the laws of thought." Edward Kasner
and James Newman, Mathematics and the Imagination, p. 359; cf. also pp.
361-362.

and Windus, 1938, p. 231.
formulated, and may later be revoked (28).

The position of Sir James Jeans, for example, is well known and his doctrine has been frequently presented and criticised (29). Jeans maintains that mathematics enters the universe from above — through the Divine creative process — and all our knowledge is but a gradual intussusception of the mathematical universe created by the Divine Mathematician (30). Though he has given no definite formulation of his views, Einstein, in a number of places, seems to lead towards idealism (31). A number of other thinkers show a similar tendency in this direction (32).

That mathematics is to be regarded as merely an extrinsic tool or instrument distinct from physical ideas which the mind employs in

physical science if also a popular view entertained by mathematical physicists (33). In fact, by generally failing to grant that the truth of human knowledge lies in its conformableness to the real, the major tendency of mathematical physics seems oriented toward a sceptical attitude towards the truth and validity of both mathematics and the physical sciences (34). Disallowing for the truth of either ordinary and philosophical knowledge, many scientists hold that physical science itself regards truth and yields nothing but mere conjecture or plausibility (35) — to which they add postscripted tributes to the mystical experience (36) or the reality of mathematical universals or relations (37).

Though he has frequently been accused of mathematical idealism, A. S. Eddington seemingly supports the conception of mathematics as being a tool or instrument for physical science (38), even considering geometry as merely an experimental science (39). Physical science, 4a.

(33) "Mathematics is a tool specially suitable for dealing with abstract concepts of any kind and there is "limit to its power in this field. For this reason a book on the new physics, if not purely descriptive of experimental work, must be essentially mathematical. All the same the mathematics is only a tool and one should learn to hold the physical ideas in one's mind without reference to the mathematical form." P. Dirac, The Principles of Quantum Mechanics, New York: Oxford University Press, 1958, Preface, p. vii.

(34) Of the many statements that could be adduced in support of this tendency towards scepticism, see, for example, Bertrand Russell, Human Knowledge: Its Scope and Limits, New York: Simon and Schuster, 1948, Part Three, Chapter IV, "Physics and Experience," pp. 195-209, and Part Four, passim.

(37) For a brief presentation of this view, see Antonio Allotta, "Recent Developments in Logic," in Science for a New World, edited by J. G. Crowther, pp. 140-141.

(38) Sir Arthur Eddington, The Philosophy of Physical Science, p. 74 and pp. 177-140.

(39) I do not think that it can be disputed that, both etymologically and traditionally, geometry is the science of measurement of the space about us; and however much the mathematical superstructure may now overwhelm the observational basis, it is properly speaking an experimental science." A. S. Eddington, The Nature of the Physical World, p. 142.
in Eddington's view, has escaped the tyranny of the engineer only to be subjected to the yoke of the mathematician; neither mathematics nor physics, he concludes, give us a true knowledge of the world, a knowledge which is only to be had through either ordinary or the mystical experience (40).

The term cosmologists, as here employed, refers to the relatively small number of thinkers who adhere to the distinction and prominence of a philosophical study of nature distinct from science and from metaphysics (41). Abstracting from the soundness of their cosmological doctrine, there is discernible, in this group, a tendency to consider the abstractive nature of mathematics from a cosmological instead of a metaphysical point of view (42). For example, it may be proposed that the mathematician properly receives his understanding of infinity, motion and other speculative conceptions from the cosmologist (43). Similarly, one easily finds an unsatisfactory understanding of the nature of such mathematical abstractions.

(40) See footnote 32, above; see also "Conclusion," (pp. 343-363) of The Nature of the Physical World.

(41) For an historical-critical study of the gradual displacement of the philosophy of nature by science, see Jacques Maritain, La Philosophie de la Nature, Chapitres I et II; for a statement on the connection and relation of the philosophy and the sciences of nature, see Chapitre III, ibid. A recent attempt to relate physical science and philosophy is that of Jean Daunay, L'œuvre de l'intelligence en physique, referred to previously.

(42) See, for example, Priderius Saintonge, Summa Cosmologica seu Philosophia Naturalis Generalis, Montreal: Imprimerie au Messager, 1941, Caput V et VI, or Jacobus Gustavus Moran, Cosmologia, Mexico: Buena Frensa, 1944, Caput II. These authors seem to confuse a physical and a mathematical view of quantity.

(43) See, for example, Jacques Maritain, The Degrees of Knowledge, pp. 98-99 and p. 345; see also his La Philosophie de la Nature, pp. 90-93, where he speaks of the philosophy of nature as being a wisdom secundum quid, imitative of metaphysical wisdom.
as number (44), or the mistaken attribution of a cosmological
conception of quantity and its determinations to the quantitative
consideration proper to mathematics (45).

History, being a science concerned with speculatively knowing
the universal causes and reasons of the past, contingent mobility
and change of man and his cultural efforts, lies on the same level
of speculative science as physics, cosmology and psychology (46).
Among historians, a large number, perhaps unwittingly, adopt this
view and succeed, as much as is possible, in re-actualizing the ances-
tral conditioning of man. Thus, the work of T. L. Heath (47) and
Carl B. Boyer (48), among others, is a frank portrayal and appraisal
of what mathematics was in the past, and of the necessary reasons why
it developed as it did. The predominant influence of Comte's positivism,
however, is seen in many historians of mathematics and science. Even the
work of the noted historian George Sarton (49), admirable and painstaking

(44) This seems to be the basis for the criticism of Marcel Lallemand,
Les Traces de la logique et de la metaphysique, Paris: Desclée de Brouwer et Cie,
1934.

(45) This, unfortunately, seems to characterize the good pioneer work
of V. Heineken, in Cosmologia (Rome: Apud Aedes Fanti, Universitatis Grego-
riane, 1846), Sect. VII, "De Spatialis Metagometricis," pp. 453-462, and in a
series of articles appearing in the Gregorianum (see Bibliography to this
essay). His attitude and that of other authors in the philosophical
tradition may be due to their proposal of three degrees of formal abstraction
for speculative science, in which a certain kind of continuity holds be-
tween these three levels of speculative science.

(46) See Chapter IX, below, for a presentation of the distinction of
speculative sciences.

(47) T. L. Heath's work has been done especially in the history of Greek
mathematics; see Bibliography at the end of this essay.

(48) Carl B. Boyer's The Concepts of the Calculus is an accurate and quiet
complete study of the many factors which helped or retarded the invention of the
calculus.

(49) The influence of Comte on Sarton is discernible in scattered remarks
in his Introduction to the History of Science, in The History of Science and
the New Humanism, Cambridge: Harvard University Press, 1937, and in Essays In
Science and the New Humanism.
research though it is, is interspersed by comments which show
Comte's influence. Other historians, such as E. T. Bell, judge
past mathematics on the present merits of the science, and make
free, interpretative remarks on the historical nature of mathematics
that have little factual or theoretical foundation (50). Similarly,
there is a number of historical-critical essays and books in which
an attempt is made to establish the continuous unity of mathematical
thought, sometimes misusing or restricting past conceptions to fit
a privately adopted philosophical pattern (51).

III. Logicians

Although many contemporary mathematicians view mathematics
as identical with logic, as will be shown below, and although many
scientists (52) and others have adopted this view (53), there is a
growing number of speculative thinkers from all fields who deny that
this proposition of equivalency has been established (54). In various

(50) See, for example, The Development of Mathematics or The Magic
(51) As an example, see Chapters I-III of Tobias Jantsch's Aspects
of Science.
(52) "Logic in its purest form, which is mathematics, only coordinates
and articulates one truth with another. It gives harmony to the superstructure
of science, but it cannot provide the foundation or the building-stones."
Max Planck, Where Is Science Going?, Prologue by Albert Einstein, translation
and biographical notes by James Murphy, New York: W. W. Norton & Company,
1932, p. 65.
(53) For example, in the conclusion to The Concepts of the Calculus, Carl
Bayer writes: "Materialistic and idealistic philosophies have both failed to
appreciate the nature of mathematics, as accepted at the present time. Mathematics
is neither a description of nature nor an explanation of its operation; it
is not concerned with physical motion or with the metaphysical generation of
quantities. It is merely the symbolic logic of possible relations, and as such
is concerned with neither approximate nor absolute truth, but only with hypo-
thetical truth. That is, mathematics determines what conclusions will follow
logically from given premises," p. 306.
(54) See, for example, Morris L. Cohen and Ernest Nagel, An Introduction to
Logic and Scientific Method, Preface; see also John C. Cooley, A Primer of Forms
critical studies, it has been pointed out that the tenets of logicism in Leibniz, Boole, Peano, Frege, Russell and others (55), is based on an implicit or explicit metaphysical position whose falsity is undeniable. Further, the supposed difference of Aristotelian and Symbolic Logic (56) or the proposed supplanting of Aristotelian and classical logic by a non-Aristotelian system (57), are merely speculative positions whose validity is questionable (58). In fact, in a number of writers dealing with the problem of Aristotelian and Symbolic Logic, there is discernible a basic solution for reuniting classical and symbolic logic, as there is for validating the unity of Logic and its distinction from mathematics (59).

IV. Mathematicians

The first of the theories currently proposed by the mathematicians

(55) See, for example, Andre Carbon, La philosophie des Mathématiques, for a recent, critical study of logicism; see also Hermann Weyl, "Mathematics and Logic: A Brief Survey serving as a preface to a review of The Philosophy of Bertrand Russell," The American Mathematical Monthly, 53(1946), pp. 2-15.

who form the fourth group under consideration is逻辑ism (60), in
which emphasis is placed on the close affinities that hold between
mathematics and logic. Harking back to a dream of Raymond Lullie,
Leibniz had already hoped to establish a universal characteristic
for all thought which would be analogous to the symbolism of mathe-
matics, enabling man to think and reason merely with symbols. His
efforts in this direction were taken up and abetted by such men as
Augustus De Morgan (1806-1871) and George Boole (1815-1864), the
latter being usually credited with founding symbolic logic (61).
The more effective direction from which current logicism sprang,
however, was due to the work of Frege and Peano (62), to whose
inspiration Russell and Whitehead were indebted for Principia Math-
ematica (63). Contemporary investigators, of whom there is a large

(60) For an introductory account of logicism, see Louis O. Kattsoff,
(op. cit., Chapter Eight, "The Foundations of Mathematics I, Logicist
Foundations," pp. 92-119, or see the article referred to above by Karl
Menger. For a quite complete picture of the contemporary scene in logic,
see Encyclopede Francaise, Tome I: L'Outillage Mental, Pensées, Langage,
Mathematiques, Paris: Librairie Larousse, 1927, Section 5, La Pensée
Logique, Chapitre III, "La Critique Contemporaine," p. 10, 10-11, which also contains a sketch of the effect of the new develop-
ments on mathematics and experimental knowledge.

(61) For a brief historical summary of logicism see W. T. Bell, op. cit.,
pp. 316-336. A strong presentation of the case for logicism is given in
pp. 10-32, and in Frank Plumpton Ramsey, The Foundations of Mathematics and
Other Logical Essays, edited by R. B. Braithwaite, with a preface by U. F.
of Science, contains a metaphysical and cultural plea for logicism, see
especially pp. 19-23.

(62) See Black, op. cit., pp. 16-19, and Louis C. Kattsoff, op. cit.,
pp. 94-95.

(63) See Harold R. Smift, The Philo-}

(64) For a summary account of the
development of mathematical logic and an able criticism of its proposals.
number, include such men as Chwistek (64), Tarski (65) and Lukasiewics
in the Polish School (66); C. I. Lewis (67), Alonzo Church (68), Max
Black (69), and Quine (70) in the United States, and a growing number
of contemporaries (71).

(64) Leon Chwistek's work, The Limits of Science, contains a fine
"Introduction" (pp. xxi-lvii) to his work by the translator. For a summary
of his technical contributions, see Louis O. Kattsoff, op. cit.; pp. 107-
115. Chwistek's work is one of the most recent in which a metaphysical
critique accompanies a technical contribution to the field of Symbolic
Logic.

(65) A summary view of the work of Alfred Tarski is available in
his Introduction to Logic and to the Methodology of Deductive Sciences,
translated by Olaf Helmer, enlarged and revised edition, New York:
Oxford University Press, 1941, see Author's prefaces.

(66) E. Jordan, The Development of Mathematical Logic and of
Logical Positivism in Poland between the two Wars, Polish Science and

(67) C. I. Lewis is author of A Survey of Symbolic Logic (Berkeley:
University of California Press, 1918), which traces the history of
symbolic logic from the time of Leibniz.

(68) For a summary account of Church's work see Louis O. Kattsoff,
op. cit., Chapter Ten, "Church's Elementalist: Mathematical Combinatory

(69) Max Black, author of The Nature of Mathematics frequently cited
here, has recently published Critical Thinking on Introduction to Logic
and Scientific Method, New York: Prentice-Hall, 1946, in which he speaks
of the value of mathematics as due to its symbolic and deductive character;
pp. 355-356. Its distinction from other sciences is, however, adopted;
"respect and admiration for mathematics should, however, always be tem­
pered by the obvious reflection that scientists using mathematics must
have something to count; however important, mathematics is but an instru­
ment of science, and without the measurement of the products of experience,
the mathematical quantities occurring in scientific theory would have no
link with the real world." p. 356.

(70) N. F. Quine, Mathematical Logic, New York: N. Y. Norton Company,
1940.

(71) It is beyond our purpose here to attempt to list the growing
amount of research being done in logicism. For a broad, summary picture,
see E. T. Bell, The Development of Mathematics, pp. 516-556. In the United
States, The Association for Symbolic Logic, issued a bibliography of
Symbolic Logic for 1926-1935 in its official publication, The Journal of
Symbolic Logic, 1 (1935), pp. 121-218; this bibliography is being supplemented
by reviews and indexes, and can be seen for a list of the more prominent con­
tributors to both logicism and symbolic logic.
The proposition fundamental to all these investigations is that mathematics has a closer relationship to logic than had previously been realized and that mathematics is ultimately based on logic. The aim of logicism is to erect mathematics as a closed deductive system on the basis of logical ultimates to which all mathematical propositions and concepts, it is claimed, are reducible (72). Although the exact speculative relationship between these two sciences is not frequently stressed, the views on their interaction vary from Bertrand Russell's overt identification of them (73) to that of merely analyzing the speculative proximity of their nature and methods (74). The use of symbolism in this reductive process of mathematics to logic is of utmost importance, and the problem of mathematics and logic is looked upon as a part of a more global concern which is the formal structure of deductive reasoning as investigated by the symbolic method (75).

Two basic concerns of logicism are the elucidation of the notion of number and the concept of the continuum. In attempting to reduce these two problems to logical nature and formulation, logicism encountered the problem of the finite and the infinite in mathematics.

(72) Max Black, op. cit., pp. 7-8.
(74) "I do not feel that much of a case can be made for the necessity of reducing mathematics to pure logic..." John B. Cooley, op. cit., "Preface," p. vii; see also his presentation of the Peano postulates for the natural number system, pp. 271-281 and of the class definition of number, pp. 281-294.
with the result that a number of paradoxes, inconsistencies and
apparent contradictions developed (76). To solve these paradoxes,
various extra-logical axioms and postulates were proposed, which,
however, failed to absolve logicism from failure (77).

The theory now known as formalism can properly be viewed as
having its historical genesis in the method of axioms and postulates
that traces back to Euclid's *Elements* (78). Its distinction as a theory,
however, lies more immediately in the use of non-Euclidean geometries
and in the rise of algebra through the efforts of Lobachevsky, Riemann,
George Peacock, Hamilton and De Morgan. Formalism today, though closely
allied to these historical antecedents and to logicism, aims to combat
the ever-emphasis placed on logic or a recourse to intuition by a stress
on pre-logical or pre-mathematical symbols. Also known as axiomatics or
postulationism, formalism is principally due to David Hilbert (79)
(1862-1934), and his collaborators, Von Neumann, Bernays and Ackerman (80).

(76) For a summary of these, see Clarence Irving Lewis and Cooper
p. 87-92.

(77) "The relation between mathematics and logic is neither identity
nor that of conclusions to premises, but consists in the fact that mathe-
matics must be used in the systematic development of logic (as of all
organized systems); and the similarities between logic and mathematics
spring from the fact that the first, in its 'philosophic' aspect, is the
syntax of possible states of affairs, while the second is the syntax of
all organized systems," Max Black, *op. cit.,* p. 144. This remark is
preceded, pp. 138-144, by a short summary of arguments against the pro-
posed identification of logic with mathematics.

(78) T. T. Bell, *op. cit.,* Chapter 9, "Towards Mathematical Structure:

(79) See Hermann Weyl, "David Hilbert and his Mathematical Work,
Bulletin of the American Mathematical Society, 60(1954), pp. 612-655, for
a fine presentation of Hilbert's work. For a technical presentation of
formalism, see Louis O. Kattsoff, *op. cit.,* Chapter nine, "The Foundations

(80) P. Cometh, *Philosophie mathematique, le formalism Hilbertien,*
pp. 49-61.
Moved by the many paradoxes to which logicism and Cantor's theory of sets had given occasion, Hilbert wished to erect both classical mathematics and set theory as a complete and non-contradictory system under the form of a sheer calculus devoid of interpretation and content. Formalism claims that mathematics comprises two divisions, mathematics and metamathematics (81). Mathematics itself is composed of arbitrary marks or symbols. Of these we have a pre-mathematical insight, which we are able to manipulate almost mechanically without reference to any actual mathematical entities. Though sometimes presented as though the symbols were meaningless, formalism really holds that we can manipulate the symbols into a consistent system without any concern, in so doing, as to whether or not the symbols have meaning or an application. Metamathematics deals with the theory of proof for mathematics itself; it is concerned with proving consistency, independence and categoricalness of a set of mathematical axioms (82).

In a broader view, Hilbert seems to hold that mathematics expresses the ideal conditions of any science, and that metamathematics is a description of the rules according to which all rational thinking proceeds (83). Hence it is interesting to note that despite its success in postulate-systems and axiomatics, the two aims which characterize formalism -- that of

(81) "Formalism is a technique first, and only secondarily a philosophy; a technique for the investigation of the logical interrelation of branches of mathematics and a philosophy to account for the success of that technique," Max Black, op. cit., p. 149.

(83) Max Black, op. cit., pp. 147-162.
formalising all mathematics and logic and of demonstrating the formal consistency of this formalisation -- led to the interesting theorem of Gödel. Gödel demonstrated that though everything mathematical can be formalised, all of mathematics cannot be exhausted in any one system; consequently, he showed that there exist undecidable formulae which cannot be formalised within the system itself, for each formal system requires a wider and more inclusive system to demonstrate its own formalisations (84).

The postulation technique embodied in Hilbert's formalism and the emphasis on logical analysis were two factors which encouraged the rise of twentieth century logical positivism. Wittgenstein and Hans Hahn, for example, maintained that mathematics is nothing more than a vast tautology (85). Wittgenstein's views had a strong influence on the positivism of the Vienna Circle, which had been organised under

(84) Ibid., pp. 167-168. "If, as is agreed, the formal systems can be used to systematised fields of knowledge, and if the Gödel theorem applies to such applications, it would mean that no field of knowledge so systematised can ever be complete. At any stage there will always be questions formulable in the system that need a wider system for their solution. Since it is the contention of the author of this book that logic and mathematics do tell us something about reality, the Gödel theorem tells us that there can never be a complete and final theory of reality, i.e., metaphysics. This does not lead to mysticism, but to an evolutionary scheme of reality." Louis I. Kuttsoff, op. cit., pp. 164-165. A non-technical presentation of the theorem can be found in J. B. Rosser, "An informal exposition of proofs of Gödel's theorems and Church's theorem," Journal of Symbolic Logic, 4(1939), pp. 55-60.

Schlick and which is presently advocated by Carnap (86), Reichenbach (87),
Frank (88) and others (89). The aim of the logical positivists is not
restricted to mathematics, but is concerned with an analysis of all
languages and their semantics, and with a completely negative attitude
towards metaphysics (90).

(86) For Rudolf Carnap’s views see The Logical Syntax of Language,
and Mathematics, Volume I, Number 3 of International Encyclopedia of
(87) Hans Reichenbach, in Experience and Prediction (Chicago:
The university of Chicago Press, 1938), speaks of the movement of
logistic empiricism as being both a strict disavowal of the metaphor-
language of metaphysics and a submission to the postulates of intellec-
tual discipline; Preface, p. v. Similar views are expressed in his
Philosophic Foundations of Quantum Mechanics, Berkeley: University
(88) Philip Frank, Between Physics and Philosophy, Cambridge:
Harvard University Press, 1941, passim. See his remarks in his
biography of Einstein called Einstein: His Life and Times, translated
by George Rosen, edited and revised by Schulchi Kusuki, New York:
(89) A summary view of positivism can be found in Yves Simon,
Prevoir et savoir, Montreal: Editions de l’arbre, 1944, Chapitre
III, “L’école de Vienne,” pp. 117-139, and A. Cornelius Benjamin,
An Introduction to the Philosophy of Science, Chapter VIII, “Theories
(90) A growing movement called the Unity of Science Movement
is concerned with unifying science especially through the analysis
of languages, meta-languages, logics and meta-logics. See P. Gomello,
op. cit., “VI. Le mouvement de l’unite de la science,” pp. 80-82,
and the publications being issued from the University of Chicago
Press under the general title of International Encyclopedia of
Unified Science.
The intuitionism of Brouwer, sometimes called finitism or neo-intuitionism (91) can be viewed as developing from the views of Kant, the mathematician Kronecker, Poincaré, and the Paris School of mathematicians (92). The brilliant efforts of Weierstrass towards the arithmetization of all of mathematics by orienting mathematical analysis towards an arithmetical basis instead of its previous geometric foundation, was soon followed by Cantor's theory of infinite sets. These two discoveries led to a fruitful development of the theory of functions and stimulated efforts towards greater rigor through abstractness and generality. Weierstrass' efforts were favorably viewed by Kronecker (1823-1891), who made the extreme demand that all mathematical results are and must be shown to be results issuing from the natural numbers, and who forcibly rejected the Cantor theory of infinite sets (93).

Kronecker's position had an undoubted influence on many mathematicians among whom was Henri Poincaré (1854-1912). Though Poincaré held to a formalist attitude in geometry (94), he vigorously opposed both logicism and formalism (95). Holding to a finitist attitude towards mathematics, he insisted that everything mathematical except the

\[(\text{91) Abraham A. Fraenkel}, \text{ The Recent Controversies about the Foundations of Mathematics,} \text{ p. 25.}\]
\[(\text{92) Ibid., pp. 23-24.}\]
\[(\text{93) E. T. Bell, \text{ op. cit.}, \text{ Chapter 9, \text{"Towards Mathematical Structure: 1801-1910," pp. 175-201.}})\]
\[(\text{94) \"The axioms of geometry therefore are neither synthetic a priori judgments nor experimental facts. They are conventions; our choice among all possible conventions is guided by experimental facts, but it remains free and is limited only by the necessity of avoiding all contradiction. Thus it is that the postulates can remain rigorously true even though the experimental laws which have determined their adoption are approximative. In other words, the Axioms of geometry (I do not speak of those of arithmetic) are merely disguised definitions.\" Henri Poincaré, \text{ op. cit., p. 472-488.}\]
\[(\text{95) See, for example, Chapter V, \text{\text{"The Latest Efforts of the Logicians," Ibid., pp. 472-488.}\}}]
set of natural numbers be finitely definable, and proposed that the body of mathematics is ultimately rooted in the principle of mathematical induction, whose validity is intuitively ascertained (96). Identifying mathematical existence with any demonstration of non-contradiction, he rejected the choice axiom (97) and claimed that it merely begged the question and did not demonstratively yield mathematical existence.

The Paris School of pure mathematics, comprised of Borel, Baire and Lebesgue, together with Hadamard — who differs from the first three — was concerned mainly with function theory and its establishment on a sound basis (98). In a series of letters to each other (99), these men entered into a discussion concerning the validity of Zermelo's multiplicative or choice axiom. The interest of this school centers mainly in function and set theory in relation to the foundations of mathematics.

Brouwer (1881—) and the Dutch school of intuitionism which

(96) "Mathematical induction, that is, demonstration by recurrence, on the contrary, imposes itself necessarily because it is only the affirmation of a property of the mind itself." Ibid., p. 40, see also p. 41, 220 and pp. 483-485.
(97) Ibid., p. 482-483.
includes Heyting (100), Kolmogoroff (101), and Mamoury (102),
proposed a quite complete and systematic basis for the foundations
and nature of mathematics (103). In order to get a clear under­
standing of the opposing theories on the foundations, Brouwer
maintains that one must understand what we mean by existence as a
social force, and relate mathematics to its psychological and
sociological origins. The mathematical attitude, for Brouwer,
is based ultimately on man's intuitive recognition of structure
akin to the early man's recognition of structure in the family or
in society. Mathematics, as a branch of scientific thought con­
cerned with the structure of phenomena, arises from man’s intui­
tion of time as abstracted from all emotional content and yields
the fundamental phenomena of mathematical thinking: the intuition
of two-oneness (104). From such a basic intuition, this school

(100) A statement of the intuitionist position by Arend
Heyting can be found in F. Gonseth, Philosophie mathematique,
"Les Fondements des mathématiques du point de vue intuitioniste" pps. 72-78.
(101) Ibid., pp. 62-64.
(102) A presentation of Mamoury's position is given in Louis
C. Katzoff, op. cit., Chapter Thirteen, "Mamoury's Signific Point
(103) L. E. J. Brouwer's inaugural address at the University of
Amsterdam in 1912 announcing the intuitionist program has been re­
printed as "Intuitionism and Formalism," Bulletin of the American
Mathematical Society, 20(1913), pp. 81-96. See also Arnold Dresden,
"Brouwer's Contributions to the Foundations of Mathematics," Bulletin
(104) Max Black, op. cit., pp. 188-189 and p. 193. See also
Everett N. Largier, "Brouwerian Philosophy of Mathematics," Scripta
Mathematica, 7(1940), pp. 69-78.
claims to develop not merely the numbers one and two and all the natural numbers; but, by a modification and repeated application of this same method, it proposes to derive all other legitimate mathematical entities.

Hence, for Brouwer, the origin of mathematics is directly connected with the psychological intuition of two-oneness, while mathematical existence is coincident with constructibility, and mathematical truth is likewise assured by constructibility in a finite number of steps. Brouwer would not admit that a mere proof of freedom from contradiction gives the status of existence to a mathematical concept or theorem. Brouwer was led, by the logical consequences of his theory to deny the validity of the tertium non datur, or principle of excluded middle, though not in the generally accepted understanding of the logical principle itself. Emphasizing, from his outlook, the inability of mathematicians to give a rule whereby the necessary construction of proposed mathematical entities can be carried out, he concludes that there are mathematical theorems which apparently can be neither proved nor disproved. Thus he denies the solvability of all mathematical problems (103).

(106) "So the dispute between Brouwer and more orthodox philosophers with respect to the validity of the tertium non datur is seen to be one as to the nature of mathematical existence rather than as to the validity of the logical principle... Brouwer, indeed, is not denying the tertium non datur in the generally accepted interpretation of that logical principle, but rather emphasizing that existence in mathematics is synonymous with constructibility, and that the truth, and indeed significance, of mathematical theorems is conditional on the possibility of constructing the entities which occur in their formulation." Max Black, op. cit., p. 106.
In the larger view of his philosophy, Brouwer holds that mathematics is equivalent to all exact and precise formulation of thought and of itself bears no necessary relation to experience. In this regard, Brouwer indicates his indebtedness to Kant (106). For though Brouwer rejected Kant's notion of intuitive space, he retained his teaching that time is a pure intuition given a priori. Likewise, his denial of the principle of the excluded middle appears to be little more than a reinterpretation of Kant's insistence on the necessity of constructing mathematical concepts. Brouwer's insistence of the independence of mathematics (intuitive mathematics) from mathematical speech (its symbolic expression) indicates his leaning towards Kantian idealism; for mathematical speech or language, he says, is merely needed for communication and for man's memory (107).

V. Metaphysicists

Professional philosophers, generally regarding mathematics as the most certain and yet the most difficult of sciences, have, as rule, left untouched the vastness of modern mathematical research and speculation. Those who have not partaken in an outright professionally philosophical study of mathematics, generally view it, as did Kant, as unimpeachable evidence of man's ability to achieve certainty, and generally

(106) Ibid., pp. 187-191. In Philosophie Mathematique, P. Geneth suggests that Brouwer's views hold a stronger kinship to Spinoza than to Kant; see p. 66.

speaking, philosophers accept statements from mathematicians without criticism. Others, of course, adopt an extreme, anti-mathematical attitude. However, the number of philosophers representative of a properly metaphysical view on the nature of mathematics in the recent past is sufficiently large to dwarf the supposed prominence of any one thinker. Consequently, a broad classification of philosophical speculation on mathematics will be adopted as showing directions towards scepticism, idealism, anti-intellectualism and a final group of distinct and diverse tendencies.

Though not frequently nor openly advocated, scepticism, as a philosophical explanation of mathematical science, has its modern as well as its ancient defenders. Being a proposal which appears in various disguises, it can generally be recognized as negating the possibility of mathematics as a science concerned with real being and as affirming that the perfection of mathematics is but a refined derivative of sense impressions (108). Mathematics, in this view, is frequently viewed as a mere language or a facile instrument of research (109), as dealing with no specific subject matter (110), or as being reducible to the abstraction of lower sciences (111).

Theories which may have a surface as cut of idealism or logicism,

(109) This seems to be the view of Ernst Mach; see his The Science of Mechanics: A Critical and Historic Account of Its Development, Translated from the German by T. J. McCormack, fifth edition, La Salle: Open Court, 1925.

(110) This view is generally advanced by those who over-emphasize the formal character of mathematical reasoning.

(111) In some way, scientists and cosmologists generally incline to this "physical" view of mathematics.
or which lay undue emphasis on logic or thought (112), often lead, by the principle of the interreduction of error, to a sceptical view of mathematical science.

Both in his *La problem de l'abstraction* and in *L'idée de nécessité*, Jean Laporte ably presents the sceptical position. In the latter work, he undertakes an analysis of the property of hypothetico-deductive necessity attributed to mathematics by such men as Descartes, Bertrand Russell, Pierre Boutroux, Louis Couturat, Cavailles, and of the current proposals by formalists and logicists that mathematical demonstration is equivalent to construction (113). Since both proposals, he points out, ultimately maintain that necessity in mathematics and its mode of demonstration are due ultimately to mere mental conventions of some sort, necessity in mathematics is but a pseudo-idea and mathematics itself can hardly be viewed as a genuine science (114).

To counteract these views, he proposes that what has ordinarily been termed the process of abstraction be viewed as reducible to more tendencies or sentiments regarding the real. These subjective sentiments have some resemblance or analogy to the real; and, though not yielding speculative knowledge, enable us to deal with the real, existing sensible...

(112) Marcel Boll and Jacques Reinhardt, *Les Étapes de la logique*, Paris: Presses Universitaires, 1944; see Chapitre IX, "L'unité de la science," (pp. 117-123), where the authors view logic as the primary science, and mathematics as applied logic.

(113) Jean Laporte, *L'idée de nécessité*, Paris: Presses Universitaires, 1941. In the introduction (p.xi), Laporte claims that there are but two types of rational necessity; the first, based on existence, is causal or physical, while the second, based on essence, is ideal or logico-mathematical. In part one he concludes, with Malebranche and Rame, that causal necessity must be abandoned. Part two, pp. 75-148, contains a summary of current views on the nature of demonstration and necessity in mathematics, and on the first principles of logic.

(114) Ibid., "Conclusion," pp. 149-156.
world (116).

An undue stress on the creative ability of the mind is portrayed by a group of philosophers who are either outright idealists or whose basic tenets and final philosophical decisions are unmistakably marked by an inclination in this direction. Prominent among these is Leo Strauss (116), who has done much commendable work on the philosophy of mathematics, of importance equal to that of Brentano. While Heysererek's acute analysis of science, his sound criticism of the history of mathematics and science, or positivism, and of the philosophical tenets proposed by scientists is, unfortunately, tinged with a vestige of idealism (117). The mathematician and philosopher Hermann Weyl, who presently turns to intuitionism on the foundations of mathematics, is an outstanding example of the delights of metaphysics presented from the mathematical view (116).

A special group under idealism is that of logicism as a broader view, comprising a number of thinkers for whom logic is both an art of reasoning and a theory of reality, as Jean Cavailles and P. Genseth (118), for others the field of science and thought is largely self-created, and mathematics is presented as being the science of pure creation by

(116) "La pensée abstraite demeure confinée aux alentours de réel; elle ne prend pas sur lui, elle nous aide à le manier; elle ne nous le fait pas connaître." Jean Laporte, Le problème de l'abstraction. Presses Universitaires, 1940, p. 109.

(118) See, for example, Weyl's The Open World, Chapter 11, "Infinity."

(119) P. Genseth has shown a continued interest in the philosophy of mathematics and has proposed a theory on the foundations of mathematics which he calls ideism; see his Qu'est-ce que la logique?, Paris: Hermann & Cie, 1937.
Anti-intellectualist theories, which are widespread today, are similar in their denial of an intellectual truth-content to mathematical as to all scientific knowledge. By denouncing the validity of all scientific knowledge on actionary, affective or volitional bases, these theories must be regarded as being little else than complicated expressions of scepticism with regard to the attainment of speculative science. Mathematics, in these views, is regarded as being merely symbolic (121), or it is subsumed under a pragmatic (122), an instrumentalist (123), or a phenomenological attitude (124).

In the final group of those who have devoted themselves to speculations on mathematics in the total view of philosophy are those who, while remaining within the traditional sobriety of philosophy itself, have attempted to establish a speculative rapport between metaphysics and mathematics. Among mathematicians, for example, a large number give evidence of a sound philosophical attitude on the nature, function and teaching of mathematics. Among scientists, the view of Jean Daujat and M. A. Thompson, and the views of such professional philosophers as Jacques Maritain, Vincent Edward Smith, Thomas Greenwood, Robert Feyn, Harold R. Smart, Gerard des Lauriers, Louis C. Katsko and Max Black are indicative of a thoughtful consideration of the

(120) For a recent example of this view, see F. C. Northrop's The Logic of the Sciences and the Humanities, (New York: The Macmillan Company, 1947); Preface and Chapter XXI.

many problems disclosed by present mathematical research, and
point towards the possibility of establishing a speculative harmony
between metaphysics and mathematics.
PART II: THE NATURE OF MATHEMATICAL ABSTRACTION

Chapter VIII. The Distinction of Speculative Sciences.

The preceding historical sketch argues for the existence of two antithetical tendencies in philosophical views of mathematics and its position in the wider domain of science (1). Of frequent occurrence and popular today, the monist view of idealistic mathematicism argues for the generic and specific identity of speculative science and the legality of but one science, mathematics (2). Resurrecting the ancient Pythagorean-Platonic outlook, the tradition of Gauss, Kepler and Descartes became a powerful influence in speculation and fathered many attempts at mathematical monism (3). By overemphasizing the role and freedom of the mind in mathematical science which recognizes no intermediary stages between the mathematically true or false, this view engenders an absolute demand — unequivocally certain and exact knowledge or none — and a reductionist

(1) "We find, accordingly, that idealists have tended more and more to regard all mathematics as dealing with mere appearance, while empiricists have held everything mathematical to be an approximation to some exact truth about which they had nothing to tell us." Bertrand Russell, The Principles of Mathematics, p. 4.

(2) "The whole philosophy of Descartes was virtually contained in that initial decision, for the think, hence I am is the first principle of Descartes' philosophy, but it is his pledge to mathematical evidence that led Descartes to the I think. This, I am afraid, was one of those initial decisions, which begat systems of philosophy where everything is conclusively justified, except their very principle. If we need a philosophy whose certainty is equal to that of mathematics, our first principle will have to be the I think; but do we need such a philosophy? And supposing we do, can we have it? In other words, are we sure that everything that is is susceptible of a mathematically evident interpretation? The answer, of course, is arbitrary. You have a full right to bet on the affirmative, but it is gambling, and if by any chance you happen to be wrong, you will be playing a losing game from beginning to end. Everything will be mathematically proved in your philosophy, save only this, that everything can, and must be, mathematically proved." Etienne Gilson, The Unity of Philosophical Experience, pp. 132-133.

(3) Ibid., Part Two, "The Cartesian Experiment," pp. 125-223. Gilson points out how Cartesian mathematicism was succeeded by the physics of Kant and the sociologism of Comte.
program — all sciences must conform to mathematical rigor. How
impatient is the thought of Plato, Descartes, Spinoza and Leibniz
to brand all matters of speculative thought with the deductive
corner of mathematics, with its certainty, clarity and abstractness.
Once an initial proposition is found as a point of departure, their
reasoning, like an infinite series, continues precipitately in the
unilateral direction of sheer deduction (4). With regard to mathematics
itself, idealism apparently holds that the mind, severed from all de-
pendence or relevance to sense data or the world, generates mathematical
natures in virginal fashion (5). When pressed for an ultimate response
concerning the origin of mathematical entities, the idealist can only
have recourse to innate ideas, intuitions or other inexplicable ultimates (6).

The empiricist trend which issues finally in scepticism and materialism
and of which Hobbes, Hume and some contemporaries are typical, has not
been as often upheld. Laying undue stress on the element of sensation which
occurs in mathematics and in all science, this sceptical view endangers or

(4) Harold R. Smart, The Philosophical Presuppositions of Mathematical
Logic, pp. 6-8.
(5) “It is the merest truism, evident at once to unsophisticated
observation, that mathematics is a human invention.” P. W. Bridgman, The
“Today mathematics is unbound; it has cast off its chains. Whatever its
essence, we recognize it to be as free as the mind, as prehensible as
the imagination. Non-Euclidean geometry is proof that mathematics, un-
like the music of the spheres, is man’s own handiwork, subject only to
the limitations imposed by the laws of thought.” Edward Kasner and James
Herman, Mathematics and the Imagination. New York: Simon and Schuster,
1940, p. 269.
(6) For a brief analysis of mathematical idealism see C. G. E. Joad,
Guide to Modern Thought. London: Faber & Faber, 1933, Section VI,
“Reality conceived as mental or spiritual,” pp. 96-100; or A. Cornelius
denies the abstract character of mathematical reasoning. An earthy philosophy, it usually undertakes a piecemeal analysis of ideas, aiming to reduce them to mere impressions. Loath to grant the marks of universality, necessity and stability to human knowledge, it is slow to credit man's abstractive efforts in mathematics with any exactness or precision (7). A one-sided and disjointed explanation of mathematical science results. Human nature is conceived as a sponge or blank wall upon which impressions somehow impinge, leaving traces termed ideas. The existence of mind or its active importance in forming, retaining and refining mathematical concepts is denied (8).

In response to questioning, the sceptic may merely repeat his opening position, "All I know is sensation," or "All ideas are but copies of impressions," or humbly and apologetically aver that man can know little.

Apparently proficiency in mathematics is of such a nature that the mathematician who philosophizes seems to be easy prey to the extremes of idealism or materialism (9). As will be pointed out below, mathematics

(7) The logical positivists apparently deny any relation between mathematics and reality. "For the positivists, mathematics is a branch of logic, and logic is merely a language, all of whose statements are tautologies. In so far as mathematics is a language, it is a construct of symbols formed by the investigator for the purpose of preserving his empirical data." Louis C. Fattoff, The Nature of Mathematics, p. 248.

(8) For example, in The Logical Syntax of Language, (New York: Barcourt, 1937), Rudolf Carnap maintains, "Metaphysical philosophy tries to go beyond the empirical scientific questions of a domain of science and to ask questions concerning the nature of the objects of the domain. These questions we hold to be pseudo-questions," p. 331. The formalist view of the nature of mathematics seems to point to a sceptical or nominalist attitude; see J. Jürgensen, Treatises of Formal Logic, volume three, p.85, Copenhagen: 1931.

(9) "But if the entities of which the universe is on a naively realistic view supposed to consist; substance and space-time, turn out to be mathematical, that is completely resolvable into mathematical formulae, and if to be mathematical is to be mental, more will be implied by the various statements asserting the mathematical nature of things than that the universe is describable in terms of mathematics; it will be implied that the universe somehow is mathematics. And, since mathematics is thought, to be mathematical will also be to be mathematical through. J. A. M. Jod, Philosophical Aspects of Modern Science, New York: The Macmillan Company, 1982, p. 65. See also Gaston Milhaud, op. cit., Introduction, pp. 1-40 for the study of the influence of mathematical science on philosophy.
is an abstract science; it may consider concepts in their very state
of abstraction with a quasi-indifference to their ultimate origin
from sensation or their reapplicability to reality. Consequently the
distinction of mathematical from logical and metaphysical concepts
is precise and delicate, making it easy for the mind to fall into idealism
and identify them. On the other hand, mathematical concepts retain a
trace of their origin from sense data and are greatly dependent on the
imagination. Hence any application to the real world which assumes the
existence of a real mathematical order is necessarily materialist; and
mathematicism can, as in the case of Hobbes, lead to brute materialism.

While it is proper to develop mathematical science and to apply
it wherever possible; while it is of speculative import to study and
discern its relation to metaphysics, chemistry and the numerous sciences,
idealism supports an erroneous extreme in maintaining that all sciences
are mathematics, just as does materialism in considering the universe
mathematical in essence. Such statements, often cast off as speculative
pearls of wisdom, have no meaning (10). No man is a daily-bread ma-
thematician or scientist; the same mathematician who may write that God
is a mathematician, or the scientist who maintains in a lecture-environment
that a table is a whirlpool of electrons, complains that his electronic
coffee is cold or distasteful. The whole of life and the life of thought
is greater and richer than mathematics.

(10) In commenting on Book II of Aristotle's Metaphysics, Saint
Thomas Aquinas points out how custom and training can influence a man's
attitude to truth: "Here he shows how in the consideration of truth
men accept it in various ways, saying that some do not accept what is
said to them except it be put in a mathematical manner. Indeed, due to
custom, this attitude is characteristic of those who were nourished on
The proposition contrasted to idealism and materialism that there is a plurality of sciences—however the distinction between them is specified—appears in some form in Aristotle, the medieval schoolmen, Locke, Berkeley, Kant and many contemporaries (11). Concerned as they were with the inroads made by mathematics and science and its encroachments on the validity of other views of the universe, these thinkers aimed to place mathematics within the wider domain of speculative and practical science. To this purpose, they investigated the nature, conditions and methods of knowledge in general and in particular, hoping to establish a correspondence between the unity of multiplicity in the universe with that of a number of distinct sciences. Many contemporary philosophers, mathematicians and scientists exhibit a like concern towards substantiating the authenticity and legality of different branches of knowledge, corroborating, in this way, the cogency of different viewpoints on reality (12).

It is this larger view of things, then, with which the present chapter is concerned. By placing mathematics in its proper place

(11) For a sketch of such theories, see J. Arthur Thomson, Introduction to Science, London: Williams & Norgate, 1911, Chapter IV, "Classification of the Sciences," pp. 82-124; but Thomson concluded (pp. 123-4) that it is a mere matter of discussion whether science is one or manifold. See also A. Cronelius Benjamin, An Introduction to the Philosophy of Science, Chapter XVIII, "The Classification of the Sciences," pp. 399-417, or Jean Poucart, Note sur la philosophie des sciences, Paris: Presses Universitaires, 1948.

(12) This appears to be the trend of the philosopher-scientists, as Eddington, Jeans, Whitehead, Franck and others; and of the philosopher-mathematicians as Weyl, Russell, Feinsauer. For an inclusive study of this type, see Jean Dauzet, L'Oeuvre de l'Intelligence en Physique, Paris: Presses Universitaires, 1948; see also L. W. Hobson, The Domain of Natural Science, Cambridge: The University Press, 1925, Chapter I, "Introduction," pp. 1-33; and Chapter XIX, "Natural Science and General Thought," pp. 453-477.
within the domain of knowledge and thus showing that, in common with all sciences, it arises through the mental action of abstraction from sense data, the theory of a plurality of sciences which is here proposed validates the existence of different sciences each with its own principles, questions and methods, unified by metaphysics. Mathematics, in this view, occupies a unique position; it has its own fitness in the range of human knowledge and a singular pertinence in man's study of reality. The validity of this enquiry, however, takes into account the truth that the unity of human nature arises from a twofold principle, soul and matter. This metaphysical dualism, once poorly understood and rejected by Descartes and by many today, alone gives proper emphasis to the germ of truth contained in the empiricist's emphasis on sensation and the idealist's stress on mind. True philosophy takes into account things as they are, letting its thought of reality be measured by the realities about which it thinks and reasons in mathematics, philosophy and in all knowledge (13).

Knowledge in general

The question here proposed on the nature of mathematical abstraction can only be satisfactorily answered when it is viewed as part of a more comprehensive problem, the nature of knowledge in general. For, in order to

(13) For an earnest and patient study of the function of philosophy in dealing with the problems of reality inclusive of the questions proposed by contemporary science and mathematics see Jacques Maritain, The Degrees of Knowledge, Part One, "The Degrees of Rational Knowledge," pp. 27-301.
point out how pure mathematics is a speculative science which originates
from the mental action of formal abstraction from things, it is necessary,
first, to show the relation of all scientific knowledge to pre-scientific
knowledge by reviewing the nature of knowledge in general and pointing
out that both actual and habitual science is but a more perfect possession
of knowledge. Once the meaning of the elusive term "science" has been
resolved in this way (14), the manner of distinguishing speculative from
practical science and the distinction of three specific types of specula-
tive science -- metaphysical, mathematical and physical science -- can
be more readily ascertained (15).

In the larger comprehension of knowledge, it is apparent that not
only scientists or philosophers possess true knowledge, but every man
who enjoys the use of reason possesses some truth and is able to enumerate
something true assignifying the interior quality of consideration and
reflection (16). When we commonly assert that a man shows something --

(14) It is generally admitted that the word science is currently
used with different meanings. For a summary analysis of five current
theories on the nature of science and of philosophy, see L. Cornelius
Benjamin, *op. cit.*, pp. 3-40.

(15) The fundamental tenets on which the above inquiry rests, that
doctrine of human knowledge, the unity of human nature and the dis-
tinction of faculties in man, though they lie beyond the scope of this
inquiry, are propositions without which one cannot philosophize and
attain truth. The historical reasons for denying these truths are summa-
rized in various places; for example, see Etienne Gilson, *The Unity of

of the nature of pre-scientific knowledge and its relation to science and
philosophy, see W. N. Lamb, "Introduction to Philosophy," *The Thomist*,
1(1938), pp. 195-212.
as when we helplessly say "I can do nothing save with him; he knows what he is doing" — we attribute a content of some kind to that person which is distinctly his and is directive of his actions. All our dealings with our fellow men assume that this content resides, in some way, within him; for whether we make the professor of astronomy at night to question him about the stars or rouse some doctor or mechanic for professional purposes, we are confident that their ordinary and technical knowledge is part of their makeup.

That all knowledge, whether pre-scientific or scientific, speculative or practical, sense or intellectual, is habitual to a person is a matter of common belief and a foundation for social organization and action (17).

The knowledge which a man holds within him is the union of his power to know with what is knowable in things; it is his mental possession of the truth about things of all sorts; numbers, waves, motors, horses, symbols, and the whole of extra-mental reality. Philosophers, in this connection, make the essential nature of knowledge clear when they say that the essence of an actual act of knowledge lies in the identification of the intellect with the thing known (18). The man who is asked to bespeak for us his

(18) "The most general idea of knowledge is that of the extension of a being, or rather of the to-be of the knower, beyond itself. In order to know, one must somehow become another, for to know is to be another. It is a sort of participation in the to-be of another, not inasmuch as this other, the object, is an individual, existing distinct and separate from the knowing subject, but inasmuch as the subject by knowing becomes in the intentional order and lives the idea, the reality, which is the object," Geinitz, "The Problem of Knowledge in General," The Modern Schoolman, 24(1946), p. 1.
knowledge of radium is psychologically aware of the knowledge he possesses and of how he orders the incoherent notes of the nature and properties of radium so that he can present them as being in one to one correspondence with that which he knows of radium itself.

Here, of course, as in all human matters, the differences between men and their possession of truth may be strikingly diverse; the knowledge which an expert has achieved is vastly superior and more perfect than that of a tyro, while heredity, early education and environment, individual talents, the nature and difficulty of the objects we aim to know and various psychical factors help partially in accounting for these differences (19).

True philosophy has always argued with idealists and sceptics and maintained that our minds know things and not merely impressions or ideas of things. Were we to hold seriously that we do not know things and that we know not what but our own images, then everything we perceived would be true; in this case man would be the measure of all things and their first principle, and Socrates' ancient denial of Protagoras for his theory of knowledge would apply: "I wonder that he did not begin his book on Truth with a declaration that a pig... which has sensation is the measure of all things (20)." It has been the

(19) A thorough and studied explanation of the reasons for these differences can be found in Leo M. Bond, "The Effect of Bodily Temperament on Psychical Characteristics," The Thomist, 10(1947), pp. 465-501, and 11(1948), pp. 28-104.

(20) I am charmed with his doctrine, that what appears is to each one, but I wonder that he did not begin his book on Truth with a declaration that a pig or dog-faced baboon, or some other yet stranger monster which has sensation is the measure of all things... For if truth is only sensation, and no man can discern another's feelings better than he, or has any superior right to determine whether his opinion is true or false, but each, as we have several times repeated, is to himself the sole judge, and everything that he judges is true and right, why, my friend should Protagoras be preferred to the place of wisdom and instruction, and deserve to be well paid, and we poor ignoramuses have to go to him, if each one is the measure of his own wisdom? Plato, The Dialogues, pp. 163-164. See also Saint Thomas Aquinas, Summa Theologicae, q. 86, art. 2 o.; and, by the same author, In XI Metaphysicorum, Lect. 5, n. 2224.
philosophic sport of idealism and scepticism, through an erroneous analysis of the judgment and through their neglect of either mind or reality in explaining knowledge, to deny the existence of true knowledge conformable to things, thus leaving a see-saw effect in the history of philosophy (21).

Since all intellectual knowledge is, in some way, an identification of that which knows with the thing known and the human mind has true knowledge of things, an unassailably necessary condition for pre-scientific or scientific knowledge is immateriality (22). When I say "I know tobacco" or "I am a connoisseur of wines" I do not mean that I have peppered my mind with tobacco or drowned it in wine, but I do mean that my judgment of what each of these things is and which I hold in an intellectual manner within the nature and essence of each -- has a real, objective counterpart in tobacco or in wine. Similarly, when I chide a student at an incorrect answer or refuse to give him a passing mark for an inept definition of a function, I do not merely assume that he has not memorized the definition but, more specifically, that he has not assimilated that which is knowable. Knowledge as embodied in judgment is thus a quality which delineates and specifies the human mind with the knowable being of real, extra-mental being; the knowable nature, quantity, qualities and properties of things immutably exist within the mind, and a relation of similitude

between these notes as known by the mind and as existentially resident in things, obtains (23).

Immateriality, the condition of all intellectual knowledge, is not however immediately attainable by the human mind which is bound to matter and must act through man's sensory makeup, nor is removal from matter, which is the necessary property of man's knowledge, immediately given to the mind from things as they exist in existential concretion (24). Hence we find that in the actions of acquiring and perfecting knowledge, man's mind exercises the complex combination of mental actions which are traditionally familiar as simple apprehension, judgment and reasoning (25). It is through the exercise of these three actions of his mind that man becomes the knower, subsuming the rich content

(23) "This becoming another without losing one's own individuality may seem an implicit denial of the principle of contradiction. In point of fact, however, there is no such denial here for the simple reason that the one knowing becomes the object in the order of intention (the intentional order) while remaining what he is — man — in the order of nature. Now the order of intention is the order of the mind, the order of knowledge, and, for man, is the order of immaterial representation. Consequently, to the end that the subject may become the object in the order of intention while remaining itself in the order of nature, it is necessary that the corporal object be received not physically, as it exists in reality, but intentionally, that is by means of an immaterial representation in the subject." Henri Bergson, op. cit., p. 6.

(24) "Knowledge and sensation are divided to correspond with the realities, potential knowledge and sensation answering to potentialities, actual knowledge and sensation to actualities. Within the soul the faculties of knowledge and sensation are potentially these objects, the one what is knowable, the other what is sensible. They must be either the things themselves or their forms. The former alternative is of course impossible; it is not the stone which is present in the soul but its form." Aristotle, On the Soul, 431b 24-30.

of things unto himself and acquiring an immaterial counterpart, within his mind, of the truth about things (26).

Through the aid of internal and external sensory powers, man's mind is able to effectuate a liaison with reality in the phantasm through which the thing is preferred to the mind and, on the basis of which, the mind realises for itself the immateriality in the thing (27). This attainment of the requisite immateriality is initially achieved through simple apprehension. For, although the truth or falsity of human knowledge resides in judgments which are mental pronouncements on the very existence of things, simple apprehension is the first actualisation of the mind's potentiality to know (28). In achieving immateriality through this complex psychological action, man's mind is concerned merely with the simple natures of things as they are presented through the auxiliary imagery of the external and internal.

(26) Most thinkers recognise the fact that the human mind has an unlimited potentiality to know; this seems to be the meaning of the phrase of NormanHayl, for example, in The Open World (New Haven: Yale University Press, 1924), "the infinite is accessible to the mind intuitively in the form of the field of possibilities open into infinity... p. 88.

(27) In the Summa Theologica (q. 66, art. VII, 1.), Saint Thomas Aquinas shows that man's sensory faculties are required for acquiring knowledge and for utilizing knowledge already possessed.

(28) However they may have terminated their reasoning on this question, philosophers have recognized that the problem of human knowledge ultimately rests on two pivotal questions: 1) Is truth a conformity of mind to thing? and 2) In what operation of the mind does truth reside? A decision on either of these questions implicates a decision on the other; for example, if truth is said to be conformity of mind to thing, then it must be decided in what acts of the mind this conformity occurs. Scepticism seems to answer that there is no mind, but that man, being merely receptive, achieves some kind of conformity; idealism seems to lodge the ultimate truth of human knowledge in the acts of simple apprehension in which the mind creates or produces ideas. For a statement of the solution to this question, see Gerald B. Helan, "Verum Sequitur Rosa Rosa," Medieval Studies, 1(1939), pp. 11-22; see also Saint Thomas Aquinas, op. cit., q. 85, art. 2, a.
sensory powers. The mind does not consider that with which a simple
nature may be joined; it rather prescinds from spatio-temporal
characteristics. By giving the attention and consideration, it merely
apprehends or perceives the nature of the thing present to the mind.

For example, if I were to present the odd-shaped, covered object to
my class, they would merely, in simple apprehension, perceive it as
a "thing"; after removing its cover, they would perceive a clock,
face, or minute-hand -- dependent, among other factors, on whether
they direct their attention and consideration. Each of these mental
actions is a simple leisure by my mind of a nature, of that which the
ting is. It is a universal concept abstracted from the particular
thing, which, though it may be joined with other things in reality,
is capable of being separately considered and conceived by the mind.

Summari ly, then, though the thing itself is the point of departure
in my pursuit of knowledge, the first terminal point which I achieve
is the immaterial similitude that the mind has thus formed unto itself (20).

Having once acquired, through simple apprehension, concepts which
are mental presentations of the natures of things, the mind is able
to enunciate a judgment by which it possesses the truth of things or
discerns their falsity (30), in this act of mental composition or

(20) For a good explanation of this relation of mind to being, see
Sti enno Gilson, Le Th omisme, Deuxi ème Partie: La N ature, Chapitre VII,
"Connaissance et verite," pp. 313-351.

(30) "In fact, it is our judgments alone that are capable of being
ture or false. Concepts and concepts, on the other hand, can never be
false. Their function is simply to represent -- to make mentally present
what is really present." George Barry O'Toole, op. cit., pp. 1-2.
division, the mind affirms or denies the correspondence of what is within the mind to what is true of things themselves. For example, having once shown to me some object which I am told is a clock, and having apprehended its nature, I am able in the future to make a judgment affirming or denying the nature of clock as I understand it of any object shown to me. It is, therefore, in the action of judging and the mental act of reasoning which ultimately issues in judgments, that the truth of human knowledge lies. Thus both simple apprehension and reasoning are only related to truth to the extent that I make a mental or spoken affirmal or denial concerning extra-mental reality in the judgment (51).

Through my judgments, then, my mental knowledge identifies itself with what is true or false in things themselves, and is exhibited as having or lacking such conformity. If I am taking a course in electrical measurements and falsely judge the positive to be the negative pole with disastrous results, or if a mechanic judges that my automobile will not function properly because it lacks oil, or if I state that the space of our experience is curved —

I am making mental pronouncements and decisions which either have an exact counterpart in things and are true, or lack this counterpart and are false.

(51) "To say of what is that it is not, or of what is not that it is, is false, while to say of what is that it is, and of what is not that it is not, is true, so that he who says of anything that it is, or that it is not, will say either what is true or what is false..." Aristotle, *Metaphysics*, 1011b 26-29. See also Gerald J. Fehlan, op. cit., pp. 17-48.
But all judgments, though they may be true, are not qualified by the same degree of certainty or firmness, and it is this variable relation to truth as doubtfully, probably or necessarily true which the mind may possess that differentiates human knowledge into the two large classes of pre-scientifically and of scientifically true judgments (32). For example, a mechanic is ignorant or doubtful of why my automobile does not function when he arrives in answer to my call for assistance; he may, however, have a large number of possible judgments that his experience tells him may probably apply; after I have informed him of what occurred, he may finally and certainly judge that the automobile lacks gasoline or some other necessary element. The same range of the plausible and the certain, the contingent and necessary, holds for other practical affairs, as it does for speculative science itself. I may truly judge that certain reactions can be explained if I suppose that light exhibits a wave-like motion, while a corpuscle-like action may explain others and a quantum judgment will explain some or most observable phenomena (33).

(32) The distinction of pre-scientific and scientific knowledge and the validity of the former is gradually being recognised. See for example, the interesting remarks made by George Boole (Volume II: The Laws of Thought in George Boole's Collected Logical Works, edited by V. F. H. Jourdain, Chicago: Open Court, 1946), on the nature of science, pp. 414-448. See Ohristek's concern with demarcating the distinction between these two types of knowledge, and in combating the excessive claims of scientists in Lenn Ohristek, The Limits of Science, Chapter I, "Introduction," pp. 1-23 and Chapter II, "The Limits of Sound Reason," pp. 24-62. Salome Maysers's tendencies in this regard are well known, see for example her article, "Le sens normal de la Connaissance?" Revue de Metaphysique et de Morale, 30(1925), pp. 13-21, and Salome Maysers, Identity and Reality, Chapter XI, "Common Sense."

In all these cases I am making true judgments; their difference lies in the degree of certainty and extent of applicability to real effects, having as its lower bound perplexity, uncertainty or sheer doubt, and for its upper bound the absolute certitude, necessity and demonstrability of science itself (34).

It is important, then, in any philosophical view of science, to consider that the realm of pre-scientific knowledge is an area in which truth has been attained and is attainable and likewise that much of what is frequently paraded as certain is later seen to be merely conjectural or probable. The distinguishing features, in fact, of scientific knowledge are its comprehension of a universal necessity in nature itself, and a consequent certitude and firmness of adherence to a judgment on the part of the mind itself. Is it not, in fact, true, that a man usually progresses through various stages before he acquires scientific knowledge (35)? Our senses are the principles from which knowledge originates; through the acquisition of

(34) The failure to recognize the distinction of pre-scientific and scientific knowledge and the consequent inability to distinguish the nature of certainty and truth is found in many writers on the philosophical aspects of mathematics and science. The various stages may be outlined as follows: the judgments of pre-scientific knowledge may go from doubt through suspicion and probability to the certainty of science. In all these cases except doubt, the mind can make true judgments. Truth, on the other hand, formally considered as such, does not admit of degrees; however, it can be said to be more perfect as knowing an object completely or in piecemeal fashion, or by the firmness to which the mind assests to the true judgment. For an account of the likenesses and differences of pre-scientific and scientific knowledge, see L. R. Thomas, Science and Common Sense, Chapter I, "Introduction," pp. 1-8 and Chapter II, "Common Sense and Science," pp. 9-16.

(35) It is perhaps a petulant remark to recall that many writers forget or neglect the psychological origins of science from extra-mental reality, through the aid of parents, teachers and various other influences, in this connection see Vincent Herr, How We Influence One Another: The Psychology of Social Interaction, Milwaukee: Bruce Publishing Company, 1945, Chapter IV, "Social Learning," pp. 60-61.
experience, art, and the aid of memory, a man advances towards the
goal of scientific possession of truth (36).

This vast realm of pre-scientific knowledge or imperfect
possession of truth is preambulatory and propaedeutic to that of
science and arranges itself in a hierarchical order (37). Estimation,
the lowest type, is the relation of the mind to truth usually associated
with poetry which emphasizes the appeal to the senses or the delights
of regular movements, and is merely representative of truth itself.
The mind is not overly concerned with the truth or falsity of that
about which the poet sings, but is pleased to accept and enjoy the
images and ideas which are suggested. The mind is more definitely
related to truth in the state of doubt, for it has begun to ruminate
and reason about possible judgments, though it actually embraces none
of them for lack of evidence. Rhetoric, be it that of the mathematician,
sorcerer, politician or friar, stirs the mind and inclines it to accept
one, rather than another part of a contradiction and breeds a state of
mind called suspicion of truth. The fourth imperfect relation to truth
by which the mind charters its way towards science is the state of
opinion, belief or probability. Actually adopting one part of a con-
tradictory, the mind yet fears it may be in error and runs back and
forth in cogitative fashion, seeking for truth in the matter concerned.

(36) Aristotle, Metaphysics, 980b 22-983a 23.
(37) Aristotle, Posterior Analytics, 71a 1-71b 8;
The sources of opinion or belief are probable propositions which are true in the most cases, generally accepted, or which seem to be generally accepted but are not really such (38). Probability is investigated in a domain of reasoning which philosophers call dialectics (39); it is in this realm that, cumulatively speaking, common public opinion is formed on matters of politics and prudence, advertisement of manufactured products molds opinion, and popularised information on mathematical and scientific matters is presented (40).

(38) The history of all the sciences is illustrative of how conjectures and generalisations of a high degree of probability and acceptability in explaining a number of effects were helpful in furthering knowledge or in achieving scientific certitude. Even the progress of science today is much assisted by hypotheses, conjectures and manipulations. See, for example, Sir William Cecil Dampier, op. cit., Chapter V, "Nineteenth-Century Physics," pp. 317-338. This same point is brought out strikingly in Thomas Greenwood, Prolegomena a la Théorie des Conjectures, passim.

(39) The term is used here as denoting that part of logic, frequently neglected, concerned with the method of reasoning from probable propositions which are based on common knowledge, the use of induction and hypotheses. All science, in its progress, uses dialectical material which it may later discard or revamp into a more accurate approximation. For an explanation and illustration of the term quite close to its usage here, see Mortimer J. Adler, Dialectic, New York: Harcourt, Brace and Company, 1927, "Introductory," pp. 1-25. As D. Carmichael's book, The Logic of Discovery, (Chicago: Open Court: 1930) is an attempt in dialectics, as is also Jacques Hadamard, The Psychology of Invention in the Mathematical Field.

(40) The question of the extent to which a thoughtful person should allow himself to be influenced by public opinion is studied in Max Osibowksi, "Public Opinion and Thomistic Principles," The New Scholasticism, 19(1945), pp. 136-180. Leon Christer in The Limits of Science, soundly criticises the erroneous views which are current today and propagated as scientific truths; pp. 47-52.
In the latter realm of probability, moreover, much of the true knowledge that science proposes is to be allocated. For it is being more generally admitted that the truth of many scientific proposals, theories and conclusions are not certain science but probably or conjecturally true (41). In the history of mathematics, for example, the scientific demonstration of the mathematical truth of the calculus was not at all evident to its inventors; a comparatively long period of time elapsed, in fact, before the notions of function, limit and number had themselves become sufficiently clear to mathematicians to be subsequently utilized in establishing the calculus as mathematically scientific doctrine (42). Or, as another illustration, it can be pointed out that both the theory of Newton and of Einstein truly apply to the universe; the degree of their application, however, is limited not so much by our mathematics as by our imperfect and hence probable knowledge of the nature of the universe (43). For, as will be pointed out later on, a mathematical scheme or system is but one way in which the mathematician may conjecture that the continuity of the universe is ordered; the application of a mathematical scheme to extra-mental reality of living or non-living nature discloses, consequently, our limited and merely probable knowledge of its actual

(41) Of the frequent utterances made by scientists in this regard, see, for example, A. S. Eddington, The Nature of the Physical World, pp. 308-315 and, by the same author, The Philosophy of Physical Science, pp. 89-105 and passim. Many scientists however, expect to find absolute certainty on all matters and are led, as a consequence, to apparently sceptical conclusions on matters of science; for example, see the conclusion in Bertrand Russell, Human Knowledge: Its Scope and Limits, New York: Simon and Schuster, 1948, p. 501

(42) Carl B. Boyer's The Concepts of the Calculus excellently illustrates this dialectical development of the calculus; see his remarks in Chapter VIII, "Conclusion," pp. 289-309.

(43) In The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta, (New York: Simon and Schuster, 1942) Albert Einstein and Leopold Infeld illustrate the use of probability and conjecture in the progress of physics; the authors, however, frequently represent this progress as due to a "creation" of the mind; see, for example, the concluding remarks, pp. 310-318.
II. Scientific Knowledge

When we consider the domain of science or perfect knowledge, we are no longer concerned with a fluctuating or unstable, but a firm and unshakable adoption by the mind of one part of a contradictory proposition (44). The mind no longer has fear of error; after much doubt, uncertainty and difficulty, it has finally assimilated the truth of things. The mind now knows that the truth of its judgment has been demonstrated with unshakable certitude, that the judgment deals with what is necessarily such in extra-mental reality and is capable of demonstration (45). If we compare the distinction between the knowledge, say, of a professional mathematician and a mechanic, a baker and a politician, it is seen that each is concerned with the things of experience, but each in his own way. Here the baker, who might be skilled in his practical art, to maintain that democracy is the best form of government, he would be unable, as a rule, to demonstrate this proposition or to support his assertion by sufficiently scientific reasons; and a mechanic who had a passing, popularised acquaintance with relativity theory would, no doubt, fail an examination on the mathematics of relativity. Education and personal initiative are two of the many factors which accentuate the genuine

(45) Aristotle, Posterior Analytics, 72b 5-73a 20.
difference between pre-scientific and scientific knowledge, and
which enable us to understand how science is marked by a firm tenure
of the mind to the truth it knows (46).

The many roads which lead to scientific knowledge as a certain
and necessary condition of what we had vaguely known, or as leading
from the unknown to the known, all originate, consequently, in prior,
pre-scientific knowledge (47). Science is acquired on the basis of
this precognition by a demonstration of the existence of a thing or of
a property of the thing. Whether actually taught us by another as a
body of doctrine or whether we ourselves acquire it as a discipline,
science arises from precognitions of various sorts ultimately classifi-
cable as three: 1) the complex principles or sources of demonstration,
2) the subject of demonstration, which is that which the demonstration
concerns, and 3) the properties we demonstrate as true of the subject
matter under consideration (48).

The unproveable complex principles, needless to say, may be general
axioms common to all scientific endeavor or proper to a certain field
of investigation, and their number for science as such or for a particular

(46) "We suppose ourselves to possess unqualified scientific knowledge
of a thing, as opposed to knowing it in the accidental way in which the
sophist knows, when we think that we know the cause on which the fact
depends, as the cause of that fact and of no other, and, further, that
the fact could not be other than it is. Now that scientific knowing is
something of this sort is evident -- witness both those who falsely
claim it and those who actually possess it, since the former merely
imagine themselves to be, while the latter are also actually, in the
condition described." Aristotle, ibid., 715 a 8-14.

(47) Aristotle, ibid., 71a 1-71b 7; see also Owenijemett, op. cit.,
Chapter III, "The Pre-Existent Knowledge Necessary for the Demonstrative

(48) George K. Barkeley, The Nature and Unity of Metaphysics, Chapter I,
Science may be large. Frequently, of course, what may be assumed as a principle early in an investigation, may later be seen either to be a false assumption or capable of proof (49). While each particular science has its own principles, the principles of identity, contradiction, sufficient reason, causality, and uniformity of nature are general axioms (50).

With regard to the precognition of a proper subject matter for a given science, it is manifest that no teacher or student can proceed unless, in some way, the subject matter is foreknown before actual demonstration (51). Were a student of plane geometry to question the existence of points, lines, or planes, I might credit him with metaphysical astuteness; but would likewise endeavor to demonstrate, by definition and construction, the existence of a circle or square which form part of the proper subject matter of geometry. In physical science, moreover, due to the spatio-temporal existence of the subject, a demonstration of the existence of subject matter is frequently done more immediately by experiment. Much of physical science is, in fact, concerned with sense—

(50) Morris R. Cohen and Ernest Nagel, op. cit., Chapter II, "Some Problems of Logic," see especially pp. 181-187, where the authors show the basis of logical principles in extra-mental reality. See also James Bacon Sullivan, An Examination of First Principles in Thought and Being, Washington: Catholic University of America Press, 1933; see Chapter I (pp. 1-34) for a study of general principles, and Chapter II (pp. 85-96) for particular principles.

Immediate demonstration of subjects of demonstration as when I show, by various experiments, the existence of atoms or of electricity to a doubting pupil.

Finally, what I endeavor to do with the subject matter, say, of geometry, is to demonstrate the properties of any of its continuous quantities, as of a circle or a triangle. Again, before I can proceed to demonstrate properties of equality, similarity or collinearity as genuinely attributable to the subject matter, I must first inform the student what these properties are; only then can their proper inference in the subject be established (52).

It is in this manner, by acts of scientific demonstration based on previous knowledge and combined with illustrations and various imaginative insights, that science is self-acquired or taught, and likewise reaches out to include the previously unknown. The teacher of mathematical science, for instance, has guiding principles for his reasoning process which enable him habitually to reason with facility, confidence and surety about the existence or non-existence of a countless number of quantitative relations and properties attributable to continuous or discrete quantities. Similarly, the existence of a micro-universe of unique, uni-cellular animals opened for biologists a new subject matter of investigation which has grown both in complexity and vastness while revealing, at the same time, a realm in which much of our knowledge is

(52) Ibid., pp. 242-245.
not as yet scientific, but conjectural, opinionative and probable (53).

Consequently, demonstrative science, concerned with principles, subject matter and properties, shows the intimate connectedness of scientific to pre-scientific knowledge and reveals both how the habit of science is acquired and that it is either an individual mental action or a habit of mind (54), which characterises and differentiates some knowledge as certain, capable of demonstration and concerned with what is necessary and universal in extra-mental reality. Our cultural belief and intercommunication substantiate these characteristics of scientific knowledge (55). If I perform a number of experiments on light and publish the scientifically certain results in a treatise or scientific journal, I have no fear that the universal and certain knowledge contained in my experiments can be understood and verified, if account is made of various conditions that may exist in different parts of the world.

(54) The "habit" of science here refers to an intellectual virtue or to what is more commonly but loosely called the "scientific outlook", the "scientific habit" or l'esprit scientifique. These current expressions, though vague and undetermined in their use, are surely indicative of some internal view, aspect or content within man -- an intellectual habit or virtue as here maintained -- which a man may or does possess. For example see Jean Ullin, "La position moderne du débat: esprit géométrique, esprit de finesse," (pp. 331-338) or Émile Bures, "La mathématique, objet de culture et outil de travail," (pp. 355-365) in Les grands courants de la pensée mathématique, présentés par P. Lédonnais. For an explanation of the term as here used, see Étienne Gilson, op. cit., Deuxième partie, Chapitre VI, "L'Intelligence et la connaissance rationnelle," pp. 291-312.

True, it is not the same, identical experiment; but the sameness and the identity of the universality, certainty and necessity which it contains are the properties of scientific knowledge which my publication purports to express and which furnish the basis for historical study (88).

The argument holds equally well with regard to mathematical science. Suppose, for example, that I publish the results of a proposition in number theory or formulate a mathematical system hitherto not invented. Were I even to use words instead of symbolism to express my mathematically scientific conclusions, a contemporary or future mathematician would be capable of understanding the meaning of my scientific efforts and results (67). As in other sciences, it is apparent that mathematical concepts are universal, have unequivocal certainty, are characterized by necessity and are capable of demonstration. Mathematical doctrines, in fact, possess such indifference to reality that they do not, as a rule, provoke the heated arguments that sociological or psychological judgments or propositions usually incite.

Based on a difference of purpose or principle, habitual science is commonly looked upon as being either pure science -- theoretical or speculative -- or applied science (68). The end for which a man seeks speculative science is to acquire truth -- mathematical, biological, metaphysical or any sort. The purpose of practical knowledge is some good to be achieved, the proper functioning of any action or work outside the mind itself (69).

When a pupil grasps the notion of function, number, limit, group or operator, he has acquired speculative mathematics; the application of these truths to practical problems and other sciences constitutes applied mathematics.

The principles, or ultimate sources from which speculative or practical science arises 'is the second means of distinguishing them (60).

(66) There are, of course, many current theories which negate the distinction between speculative (pure) and practical (applied) science. Positivism, operationalism, instrumentalism and existentialism are generally alike in denying the existence or validity of speculative knowledge and emphasizes the volitional, active or effective aspect in man as the source of knowledge. The two books of Felix Klein, Elementary Mathematics from an Advanced Standpoint, (translated from the third German edition by E. F. Hedrick and C. A. Noble, Volume II: Arithmetic, Algebra, Analytic, New York: Dover Publications, 1943, and Volume III: Geometry, New York: The Macmillan Company, 1955), are excellent illustrations of the difference between pure and applied mathematics. For a recent philosophical study of the distinction between speculative and practical knowledge in general, see Jean Petrin, Connaissance Speculative et Connaissance Pratique: Fondements de leur distinction, Ottawa: Les Éditions de l'Université d'Ottawa, 1949.

(59) This does not deny the possibility of an ordering or construction within the mind as speculative art which is done in logic and mathematics, as will be pointed out below. See, in this connection, Saint Thomas Aquinas, De Veritate, q. 3, art. 3, a.

(60) Jean Petrin, op. cit., pp. 23-54.
For speculative knowledge, things themselves or extra-mental reality are the principles from which, in final analysis, speculative science arises and by which it is measured. The movement can be viewed as going from things to the mind; for the incipient reaction of man on impressions from objects results, under proper conditions, in his acquiring knowledge of what these things are. In practical knowledge, on the contrary, the principles are within the mind and the movement is from the mind to things; in phraseology analogous to mathematics, the mind is measured in speculative science by things, while the mind is the measure of things in practical or productive science (61).

This manner of distinguishing these two species of science is readily verified in mathematics. In the teaching of mathematics at the elementary, secondary, college and university levels, we corroborate the difference which we hold to exist between pure and applied mathematics in the same fashion that we do for science in general (62). As the history of science points out, the application or applicability of mathematics to relativity, to quantum theory and to the subject matter of other sciences which has resulted in such combinational sciences as mathematical physics, physical chemistry, mathematical biology and so forth, further validates the distinction.

(62) There is, of course, a tendency in those occupied with the practical application of mathematics to speak of physical geometry or chemical mathematics as there is frequently a tendency to neglect or despise the applications of mathematics. For an illustration of the tension between these two attitudes, see Pierre Duhem, op. cit., Chapitre IV, "Les théories abstraites et les modèles mécaniques," pp. 77-81.
of pure from applied science (65).

Leaving aside, for the present, the realm of practical science especially as applicable to mathematics (64), we ask whether there is but one science or many: is the truth of things speculatively knowable in uniquely different modes which exhibit themselves as specifically distinct habits of speculative science? This question -- science as both a unity and a multiplicity, or how the same thing can be known in different sciences -- requires that both the common character of science and its principle of diversification be considered. The habit of science, while being similar to pre-scientific knowledge as a mental possession by way of identification with the knowable, is yet different from pre-scientific knowledge by being causal and certain knowledge concerned with what is universal and necessary in extra-mental reality. To answer the question regarding the nature and distinction of speculative sciences, then, due attention must be paid both to the manner in which men holds scientific knowledge and to the part which things themselves play in its acquisition (65).

(65) This is brought out well in E. T. Bell's The Development of Mathematics, Chapter 16, "The Impulse from Science," pp. 338-343 and Chapter 17, "From Mechanics to Generalised Variables," pp. 344-355. In the following Chapter, "From Applications to Abstractions," (pp. 356-373), Bell points up the interaction between mathematics and the sciences to which it is applied.

(64) For a fine study of the application of mathematics to physics, see Jean Daujat, L'oeuvre de l'intelligence en physique, especially Chapters IV and V. On the relation of mathematics to biology, see H. R. Thompson, Science and Common Science, Chapters 5 and 6.

The basic condition of all knowledge and hence of science is immateriality. Unable to know things in their ephemeral subjection to the unpredictable vicissitudes of change and motion which typify their actual existence, the mind, by dematerialising things, constitutes them as scientific objects (68). Since, moreover, science deals with what is necessarily such in reality and not with what is contingent or capable of being other than it is, immobility or removal from change is an additional requirement for the judgments of scientific knowledge (67).

Both requisites, immateriality and immobility or removal from matter and motion, are achieved by the mind in simple apprehension through abstraction from sense data or through the second operation of the mind in which a judgment of separation is pronounced (68). In simple apprehension the mind forms unto itself a scientific concept as formally signifying the immaterially and immobilely conceived nature of a thing, while in the judgment it indicates separation (69). Were it not for the fact that an objective stratification in reality corresponds to this abstractive or separative action of the mind, knowledge might be considered idealist—a falsification of reality. Consequently, in what follows, a consideration of abstraction as total or formal, and of the judgment of separation, will be seen to disclose a triple

(68) Thomas Von Aquin, ibid., p. 28.
(69) Ibid., pp. 81-92.
distinction of what is immaterial, necessary and immobile in reality itself, and yield three types of sciences: physical science arising from total abstraction, mathematical, from formal abstraction, metaphysical, from the judgment of separation (70).

As the history of science and our own experience assure us, the mind of man is not constantly considering reality in a state of scientific abstraction, nor does the mind readily do so (71). Although man is constantly being affected in his sensory makeup by matter and motion of all sorts, he is not constantly exercising an actual scientific action on these many influences and sense impressions; nor is the scientist is constantly engaged in issuing scientific judgments. In fact, before achieving the actions of judgments and reasonings on extra-mental reality, in this process he is stimulated, of course, by books, conversations and arguments, lectures, his own musings — and any number of extra-mental impressions. The immobile conception and consideration of objects necessary for scientific knowledge is attained either through a more perfect, sustained and patient consideration of reality in simple apprehension in which the mind actually

(71) This plea for the distinction of the scientist as actually engaged in scientific abstraction or the details attendant upon scientific work from the scientist as a man is frequently ignored despite its relevance in recognizing a distinction of science from the pre-scientific and science from life. The part that pre-scientific knowledge of mathematics plays in learning the science of mathematics is pointed out to some extent, for example, in Cookey, Bolles R. et al., Introduction to Mathematics, passim, and Felix Klein, op. cit., passim.
engages in total or formal abstraction, or through the close, scientific realization of reality which the mind can acquire in the separation of metaphysics. Confused concepts and the probable truth of judgments become clear and fixed in the mind in such wise that the scientific judgments made are perfectly conformable to reality. Accordingly, steady attention, prolonged consideration and a complex set of psychological factors -- dependent on individual talents and makeup -- are required, so that the mind may form unto itself a formal signification of the nature presented to it in the phantasm and achieve scientific judgments (72).

Since it is the indeterminacy and potentiality of matter which is the source of change and movement of every type, the difficulty of a scientific appraisal of things invested with matter and subject to motion and change lies in this very fact: the relation of dependence or independence which things bear to matter for their very existence (73). A scientific consideration of things show that they can be considered

(73) This entire question of matter and its relevance for the nature of mathematical abstraction has received comparatively little attention by philosophers or philosophising mathematicians, possibly because of a biased attitude towards ontological and epistemological dualism. Basically Aristotelian, the distinction of the various types of matter that is used here is also brought out, in various places, by Saint Thomas Aquinas; see, for example, In VII Metaphysicorum, Lect. II, n. 1501-1536 where he points out its use in distinguishing speculative sciences; see also In III de Anima, Lect. 6, n. 705-717, and Summa Theologica, q. 86, art. 1, ad 2.
(a) in the science and philosophy of nature as dependent on matter for their existence and in order to be known; (b) in mathematical science as dependent on matter for their existence but not in order to be known; (c) in metaphysical science as independent of matter for existence and in order to be known.

The first scientific study of things in the philosophy and in the sciences of nature is one which is based on the intrinsic and necessary relation which things have to be joined to matter for their very existence and, accordingly, to be known. Trishie, the cat with whom the children play, an elm tree which shades the yard, a huge mastiff which frightens the children out of the yard and out of their wits -- exist in sensible matter (74). Extra-mental reality as considered under this first scientific point of view is the reality of animals, men, trees, chemicals, and existing things which are concreted in individual sensible matter; as, for example, the privately possessed fur, claws, flesh and teeth of a dog. The scientific mind, however, in total abstraction, constitutes these things as scientific objects by proceeding from their individual traits and forms the universals: it abstract the universal, potential whole from the parts in which the thing exists as subject. Thus, to know scientifically the nature of dog, I cannot

(74) The term sensible matter is here used as being either individual or common. Individual sensible matter refers to the personal, private matter of flesh and bones which an individual, existing substance possesses in its spatio-temporal existence; common sensible matter refers to the mind’s abstracted, universal conception of individual sensible matter as freed by the mind from the determinations of dimensions, time, and individualising, private qualities. The speculative sciences of total abstraction abstract from individual sensible matter, and judge, reason and define in terms of common sensible matter.
scientifically consider him without reference to matter at all, but the matter in which I scientifically envision him is the matter common to all material things and technically known as common sensible matter; the dog has legs, fur, claws, teeth, etc., in the scientific study of electricity, light, skin or hydrogen, although I use individual instances of these as my point of departure, my interest in these objects is their common nature, properties and accidents as the terminal point of science (75).

In order to have the genus of science, this first point of departure of abstraction -- that of relinquishing things in their concretion -- is requisite. Inasmuch as matter is the basis of motion, concomitant with this abstraction from matter is the correlative requirement of abstraction from particular movements which are featured in the flux and variation of individual things. That which is subject to change and movement can be what it is one instant, and be changed the next; thus it is required for the attainment of the scientific level that natures, essences, common properties -- the necessary and unchanging reasons of that which in itself is subject to mobility and contingency -- be achieved (76). Relinquishing, then, to mobility and contingency -- he achieved (76). Relinquishing, then,

(76) Though the science, meaning and nature of science is disputed, it is commonly granted that science is concerned with the general, the abstract, and the universal. Even logical positivists allow same type of generalisation and temporary synthesis. For some references to the idea of abstractness and generality in mathematics, see G. H. Hardy, A Mathematician's Apology, Cambridge: The University Press, pp. 28-52, or the remarks of Julian Lowell Coolidge in the "Epilogue" to A History of Geometrical Methods (Oxford: Clarendon Press, 1940), pp. 422-423.
the private, personal, individuating characteristic of sensible
matter, the mind, in total abstraction, considers the universal
nature which it has actualised unto itself from the phantasms, as
abstracted from the parts in which it is actually the subject.
Once the mental terminus is thus achieved for scientific consider-
ation, the mind is able to utter scientific judgments bearing on
extra-mental reality (77).

All speculative sciences are characterised by the first degree
of abstracting the universal from particular things which is called
total abstraction since it abstracts a universal whole — a totum —
from its subjective parts. While familiar with and knowing the in-
dividual things of experience in daily life, man has no strict science
of the concrete individual thing which is ineffable; mentally and
verbally the individual thing is, for science, an unspeakable and
unDescribable heterogeneity (78). Though the mind does not directly
of itself attain a knowledge of the singular thing in its concretion,
it reflects on the phantasm or image supplied by its internal powers or
memory and imagination, and thus has a reflective knowledge of individual
things. If, for example, I ask you if you liked the sketch of Napoleon
Bonaparte which I showed you yesterday, memory and imagination supply
you with the image upon which the mind reflects and reaches out to attain

(77) The entire psychological process by which the mind is led to
scientific judgments is a pertinent part of the growing philosophy of
science and philosophy of mathematics. Felix Klein, in the two volumes
of Elementary Mathematics from an Advanced Standpoint, Jacques Hadamard,
in his Psychology of Invention in the Mathematical Field, and Henri Poincaré,
in Science and Hypothesis, among others, have concerned themselves with the
mathematical aspects of this question.

(78) H. C. Thompson, op. cit., Chapter III, "The Nature of Science,"
a knowledge of the singular thing. The immediate sense experience of the astronomer at the telescope, for example, enables him to identify a star; but his means of identification are mainly sensory and his sensory faculties fulfill these functions by supplying the necessary imagery. This reflective knowledge is manifestly different from the knowledge he exhibits in a lecture on the nature and constitution of the stars (79).

Our knowledge, then, in this first level of science and in all science, is that of a mind joined with matter and dependent on matter for its information about things. The mind deals with universal nature, accidents and properties, and with such general conceptions as culture lag, minimum threshold of experience; but, for full and complete knowledge (and in order to add to our comprehension of things and re-embrace them in wider and more accurate generalities) we must, as men, be concerned with the individual and the singular; in this way we compensate for the mental retreat into abstractness and generality by a correlative movement towards the singular which we aim, ultimately, to know as it is (80).

(79) "Our mind cannot directly know the singular, but the singular is directly known by us through the sensitive powers, which are receptive of forms from things in a corporeal organ; thus our sensitive powers receive these forms under determinate dimensions and in this way lead to the knowledge of the singular material thing." Saint Thomas Aquinas, De Veritate, Ch. 10, art. 5, 6.

(80) "...Science is concerned with something in two ways: in one way primarily and principally and thus science is founded on the universal reasons of which it deals; in another way science deals with some things secondarily and by a certain reflection, and thus it concerns those things of which these are the reasons, inasmuch as it applies the universal reasons of particular things even to particular things by the help of the inferior powers. For the knower uses the universal reason both as the thing known and as a means of knowing. I am able, for example, through the universal reason of men, to judge about this or that man. All the universal reasons of things, however, are immobile; consequently, in this regard, every science deals with the necessary, some of the things, however, of which these are the reasons are necessary and immobile, and some are contingent and mobile; in this way there are said to be sciences of contingent and mobile things." Thomas Von Aquin, op. cit., Quaestio V, art. 2, ad 4; p. 38. See also Harold P. Smart, The Logic of Science, pp. 80-81.
The sciences contained under this first degree of total abstraction are generally called physical sciences or the sciences and philosophy of nature, and include many particular branches — physics, chemistry, geology, psychology, ethics, sociology and others. Though each has its own questions, methods and principles, they are alike specifically in abstracting from sensible matter and movement, considering reality in terms of common matter, and requiring, for the full realisation of knowledge, the aim to know things in their ultimate concretion. Though much of our knowledge in these sciences has not as yet been crowned with the certitude of science, our aim in knowing is, evidently, to achieve this perfect certitude. Granting the distinction of the ordinary man's knowledge from highly probable judgments and from the certain judgments of science, and conceding the distinction between those speculative sciences in each of which certitude is attainable, the dialectical movement of knowledge towards science and the tension and strain which frequently arise between the sciences and scientists is readily explicable (61).

Philosophers have rightly contended that in this lowest, yet perfect type of scientific knowledge, we first find man confronted with the proper formal object of his mind: the quiddity or nature of sensible things as given him in simple apprehension whose truth

(61) Emil Lévy's *Identity and Reality* is a close study of this inter-scientific tension and the relation of scientific to pre-scientific knowledge.
is attained in judgments on the very existence and nature of extra-mental reality (62). The difficulty of attaining knowledge of reality in this type of scientific endeavor was already understood by Plato who condemned all these sciences to the realm of probability; he was unable to explain how man could achieve rationality from the multiple, irrational movements and changes which characterize things in this level of science. Like many a subsequent thinker, he failed to grasp that here the scientific mind, though faced with mobility and materiality, is well able immaterially and immobilely to conceive and judge of reality; and, by reflection on phantasms, compare its true knowledge with things themselves and know the nature of mobile being (63).

The judgments and definitions of the coterie of sciences which lay on this first level of science, are in terms of common, sensible matter. Abstracting from their mathematical formulation, electricity, atoms, nitrogen and skin tissue, if they are sufficiently known to man to be defined, are defined in terms of common matter. Our difficulty in defining these things lies in the fact that we may as yet be ignorant or have merely probable knowledge of their natures, and both the rise and the multiplication of sciences on this first level is due to the fact that nature, being highly determined and actual, contains much

(62) "Natural things are known through abstraction from individual matter, though not through complete abstraction from sensible matter. For man is known as composed of flesh and bones; through abstraction, however, from this flesh and these bones. Thus it is that not the intellect but the senses or imagination directly know singulars." Saint Thomas Aquinas, In III de Anima, Lect. 8, n. 716; see also his Summa Theologica, I, q. 85, art. 5, ad 3.
(63) Thomas Von Aquin, Quaestio V, Art. 2, p. 34.
that man can know. Further, our manner of knowing through abstraction adds to the difficulties attendant on knowing immaterially and immobile, those things which are being subjected to ceaseless motion and change.

The ultimate justification of the principles which are used as bases of demonstration or guiding principles in these sciences, for example, the uniformity of nature or the principle of causality, is due to metaphysics. Any questioning of the validity of these principles, or any attempt to validate their use, while a frequent indulgence of scientists in this realm, is properly a metaphysical view outside the scope of these first sciences (84).

In formal abstraction, the second type of scientific abstraction proper to mathematical science, the activity of simple apprehension is uniquely distinct in its point of termination within the mind, although alike in its points of departure or origin. Mathematical natures originate by abstraction from the data of sense, but in a different manner from the physical natures of total abstraction. In total abstraction, as has been seen, the mind prescinds from the singular characteristics and concentrates on the universal nature, thus yielding a whole with its subjective, potentially predictable parts. On the other hand, in mathematical abstraction, we are asked to consider, for example, a regular polygon or a line drawn on a blackboard or imperfectly realised as the limits of some physical body. In this mental

(84) See George W. Bunker, op. cit., pp. 208-210, where the author briefly shows the relationship of metaphysics to the particular sciences.
action, we neglect in either or both cases, all the sense
qualities, the color, weight, texture of the object presented
to us and merely consider the order of the parts of the given
object; the order, namely, which gives the thing a hexagonal,
circular, ellipsoidal or other structure. In this case the
mind abstracts form from the matter to which it is essentially
joined in reality and from which it is seized — through the
aid of the sensory powers — and presented by the imagination
to the mind (65).

The termination of this abstraction with a mathematical
nature, whether it be a circle, a set, a group or a number is
vastly different from the first. In total abstraction the mind
is concerned with a formal representation of the nature of the
things; in formal abstraction, the mind prescinds from what the
thing is — a circular apple or quasi-continuous pieces of chalk
forming a hexagonal figure — and forms a signification of the
thing merely as indicative of the order of its parts (66).

The scientific consideration of the universe in mathematical
science, consequently, is not concerned with the reality of plants,
horses and sounds; but, by prescinding from all the qualities of
these material objects and forming a conceptual signification of
them only as in some way quantified things, the mind forms an
abstracted universe unto itself. Reality, then, as the basis

(65) Thomas Von Aquin, Quaecstio VII, Art. 2, c., p. 65.
(66) Ibid., Quaecstio V, Art. 8, ad 5, p. 41.
and the measure of my knowledge in speculative mathematical science, is not reality as such but reality only as quantified. The things with which mathematics deals are dependent on sensible matter to exist but not to be known: if anything circular, square, or ellipsoidal is to exist, it does so with sensible matter in the real, extra-mental world; in mathematical abstraction, however, I proceed from sensible matter both as individual and as common.

I do not, however, relinquish all reference to matter in mathematical science. Quantity, being an accident of bodies, cannot exist or be conceived apart from some reference to matter. In mathematical abstraction I abstract quantified substance. In this case, though, substance is merely considered as the subject in which quantity properly and really resides in reality — as that in which quantity or the order of the parts of substance are — and as the subject in which I abstractively consider it with the mind. Inasmuch as the first level has spoken of sensible matter — that is, matter as perceptible to the senses — as individual or common, the achievement of mathematical abstraction, not attaining complete freedom from all reference to matter as such, is technically referred to as 'intelligible matter' (67). Intelligible matter, or matter

(67) Intelligible matter refers to substance as abstracted from all qualities and merely affected by quantity; inasmuch as we retain quantified substance, we retain matter, though intelligible matter is not directly attainable as such by the senses except through the qualities and by proceeding from the qualities. Intelligible matter is individual or common. Individual intelligible matter refers to single instances of substance as affected by quantity as visualized in the imagination, for example, three concentric circles; common intelligible matter is the common nature — for example, of concentric circles — as known by the mind. The mathematical sciences are concerned with common intelligible matter in its qualitative state of discontinuity or continuity, through the aid of the individuation and multiplication of quantified substances in the imagination. See in this connection, footnotes 76 and 74, above. Metaphysical science, as will be pointed out, abstracts from all matter.
which is the principle of indetermination and potentiality as made quasi-intelligible to the mind, is likewise individual or common. The mind attains the common nature of mathematical entities by conceptualizing from the individual phantasms of the imagination; the multiplication of mathematical natures in this "mathematical universe" is done by acts of the imagination. For example, I may ask my class to consider three circles lying on their common tangent; the multiplication of circles is a task which man achieves through the aid of the imagination, while the nature of the circle and its definition are limited merely by this imaginative content, and hence, in a sense, as unlimited as the imagination.

Since the mathematical universe bears a furtive likeness to the physical universe, it is important to lay emphasis on this notion of intelligible matter. The fact that my abstract knowledge of man is seen to be true of each man has given occasion to some philosophers and scientists to conclude that there is a human nature which exists apart from all men and in which they share; the apparent incongruity of being able to multiply mathematical instances of circles, numbers and other entities and of being able quite successfully to apply mathematical knowledge to reality has also led thinkers and mathematicians to

(68) It should be pointed out that the above explanation does not grant that mathematics is a free creation of the mind or that the laws of mathematical thought are imposed by the mind on reality. Instead, it is here maintained that the laws of mathematical thinking are imposed on the mind from the very nature of quantified substance as given to the mind as it abstracts from the phantasms given by the senses from extra-mental reality. A more detailed explanation on this point is offered in the following chapter.
substantify mathematical natures and to speak of the externality of mathematical relations (89). This speculative error can be obviated only if it is borne in mind that in mathematical abstraction and judgment, the mathematician considers that which is in reality—substance and the accident—quantity—not as it is in reality where it is always joined to sensible matter, qualities motion and change, but as abstracted from reality by a mental removal of these features; the mathematician considers substance and quantity in terms of intelligible matter with the help of the imagination. Hence, though it has happened in the past that mathematicians have erred in identifying the imaginative 'presentation' of space with its intelligible content, it is clear that such judgments bearing on extra-mental reality are not the proper function of speculative mathematical science as such (90). Each of the recent progress in mathematical science is due to the progressive realization that imaginative entities are not to be identified with the intelligibility of the quantity of mathematics; just as much of the speculative confusion retarding progress is due to a continued lack in understanding the nature of abstraction in mathematics (91).

(89) This is the metaphysical implication of the theory of logicism, especially that of Bertrand Russell; see André Darben, La Philosophie des Mathématiques; Étude sur la logistique de Russell, publiée par Madeleine La Grass-Darben avec la collaboration de François Chatelet, Préface de René Poirier, Paris: Presses Universitaires, 1949, Seizième Léçon, "Le Réalisme Logique," pp. 177-197.

(90) The question of applying mathematical principles to other sciences and consequently to reality is, of course, based on the fact that quantified substance is abstracted from extra-mental reality and re-applies there if due account is taken of qualities, motion and change.

Certain points of similarity and difference between total and formal abstraction will help to clarify them. Both types of abstraction and the judgments of the speculative sciences developed from them are ultimately measured by reality; however, it is the familiar world of things with sounds, colors and tastes whose scientific nature is ultimately sought in the physical sciences, and all its judgments ultimately terminate there; while in mathematics, the nature of the real world—only as abstractively considered as quantified substance is sought, and its judgments terminate in the imagination (93). In both cases, the ultimate point of departure for the abstraction peculiar to each science is sensible matter; the point of arrival, however, or the manner in which the formal object of each science is constituted, though alike in being universal, is different inasmuch as the universal of total abstraction is a universal whole based on the composition in reality of a whole with its parts, while that of mathematics is the universal of quantified form based on the composition in reality of matter and form (93). Further the process of total or formal abstraction is alike inasmuch as what is abstracted and considered abstractively by the mind, is really joined in reality: whether I abstract the nature of man from an individual man, or the nature of circle from a circular object, I am considering things which are not so separated

in reality, but merely as constituted as scientific objects.

Finally, there is a difference in the intelligibility which each of these sciences yields. The movement of the mind in total abstraction is an ascension from the particular to the universal and thence to the more universal, as when the mind proceeds from the nature of brute and man to that of animal, going towards what is more general in extension and less in comprehension. A similar case is the progressive generalisation of physical theories, which, though capable of including more phenomena, contain less intelligibility and comprehensibility in themselves. In total abstraction, as a consequence, the farther the mind becomes removed from the determination and actuality of extra-mental reality, the more congeniality and intelligibility there is for the scientist. In the case of formal abstraction, however, the abstracted natures of mathematics are more intelligible to us in the abstractive state than in their extra-mental existence. For example, the nature of a circle or an algebraic group is more knowable to us than is an extra-mental circular object or some imperfect realisation of an algebraic group (94).

The distinction of the movement of the mind as being simply apprehensive in which the mind obtains simple quiddities, natures

or essences is vastly different from that which is proper to the
judgment which directly attains existence. Since the mind is con-
cerned in metaphysical science with the very being of things, it
no longer abstracts that which is joined as such in reality, for
that would be equivalent to a separation of the very existence of
things and the mind would be in error (95). In the judgments of
metaphysics one can only separate that which is really separated
in reality, as when I say a-man-is-not-a-mountain; or being is
not equivalent to non-being; consequently, metaphysics is more
properly said to be based on a process of separation rather than
on a process of abstraction (96).

The scientific judgments of metaphysical science, then, are
pronouncements on the very texture of reality itself primarily
through separation and negation. For example, it is only by know-
ing the separation of a being from other beings that I am able to
discern that being is; similarly, it is only by grasping the actual
division of a thing from other things and the lack of division in the
thing itself that I am able to affirm that being has unity (97). In
the total or formal abstraction of simple apprehension the mind is only
concerned with a particular aspect of being; it abstracts one thing
without knowing and considering another to which the thing may be joined,

(95) Thomas Von Aquin, op. cit., Quaestio V, Art. 3, a., p. 39.
(96) For a more detailed examination of the notions of abstraction
and separation see J.-D. Robert, op. cit., pp. 209-222, or L.-B. Geiser,
op. cit., pp. 15-40.
(97) Saint Thomas Aquinas, De Veritate, q. 1, art. 1.
and is concerned with judgments about this particular aspect of reality. In metaphysical science the mind aims to know the very existence of things and the ontological texture of reality itself; its initial processes, in consequence, are concerned in pronouncing on the very separation of things in order to make consequent affirmations on the nature of reality.

Metaphysics, like all sciences, originates ultimately from the senses; the things with which it concerns itself by constituting them as scientific objects, however, being independent of matter in their existence, are likewise independent of matter in being conceived, known and defined (98). In this immaterial manner I know those things which in some cases do exist in matter as substance, being, potentiality and actuality, but to whose essence it is not necessary that they be joined to matter. Furthermore, I am also capable by a process of negation, removal of imperfections and analogy, to attain the knowledge of God, the ultimate principle of all being (99). Metaphysics is properly said to deal with whatever is, inasmuch as it is, or, as is frequently said, it deals with being as such (100).

The inherent excellence of metaphysics, then, is due to the fact that it is a scientific attainment of the very being of reality, and that

(98) Thomas Aquinas, op. cit., Quaestio VI, Art. 2, ch., p. 64.
(99) Ibid., Quaestio VI, Art. 3, ch., pp. 67-70, and Quaestio VI, Art. 4, ch., pp. 74-75.
it is the most perfect manner of knowing of which the human mind is capable (101). Inasmuch as it deals with whatever is in any manner, metaphysics is not only a science concerned with extra-mental reality as the universe of substance, accidents, actuality and potentiality, but it has a legitimate concern with the being and nature of the particular sciences and the relation between sciences; it is, in fact, the universal science of which thinkers have dreamed and whose knowledge is sought for by philosophizing scientists and mathematicians (102). Metaphysics offers a welt- sanaSchmaug and a lebensanschaung that is only limited by the limits of whatever is or can be; and, as a corollary to this scientific, doctrinal function which it exercises, metaphysics has a defensive and corollary role which is often spoken of as epistemological, the philosophy of science or the philosophy of mathematics (103). If a speculative thinker, however, renounces its critical part while denying the existence of metaphysics, he thereby places himself in the awkward, contradictory position of denying the relevance of a view which he himself has adopted (104).

(101) Aristotle, Metaphysics, 982a 24, and 982b 30-983a 30.
(102) "There is a science which investigates being as being and the attributes which belong to this in virtue of its own nature. Now this is not the same as any of the so-called special sciences; for none of these others treats universally of being as being. They cut off a part of being and investigate the attributes of this part; this is what the mathematical sciences for instance do." Ibid., 1003a 21-26; see also 1003b 26-1003b 34, passim.
Logics, which has supplanted metaphysical fane for many a
contemporary thinker, is not a speculative science of total or
formal abstraction nor of separation. Logical consideration is
traditionally designated as dealing with second intentions (106),
though it has a close affinity with metacritical, mathematical,
and physical science. For example, I can scientifically know the
nature of man on the basis of this knowledge my mind can reflect on its
own action, consider man as known by my mind and realize that this
nature with its abstraction from the conditions of matter can be at-
tributed to, and really is, in other individuals. In this way I form
the second intention, the universal as predictable of man, and it is
thus that the mind, acting in mode logics, supplies the notions of
difference, genus, species, difference, accident and property (106).

Logics, in the sense of being a science and an art of the mind,
considers these second intentions absolutely, regardless of their
materiality or immateriality, corruptibility or incorruptibility
in extra-mental reality, and is not concerned with the essences
of things as such (107). The lack of properly distinguishing a
logical and a dialectical reasoning about things which need not
apply except as sheer possibility to the real, from a physical,
mathematical or metaphysical consideration of reality, readily leads to speculative confusion (106). In this connection, not only the open claim that mathematics and logic are identical, but the frequent logical investigation of reality and ordering of the sciences is due to a failure to recognize the oblique nature of logic. Here again, of course, the multiple aspects open to science are revealed: there is a metaphysical, physical and mathematical science of reality, and there is a metaphysics of science and mathematics as well as a logic of science and mathematics (106).

The hierarchy of three speculative sciences, based as they are on the nature of the mind and of things, is consonant to a similar gradation in man's powers to know. Each of the sciences originates with the senses, and, ultimately considered, terminates there (110), through more immediately at other sense powers. Inasmuch as the concepts and definitions of total abstraction are in terms of common sensible matter, the ultimate test of their veracity -- as the entire mode of procedure in the sciences and philosophy of nature indicates -- lies in the evidence furnished by naive experience or the more refined experience of scientifie

(106) This has been pointed out in Etienne Gilson's The Unity of Philosophical Experience.
(110) Saint Thomas Aquinas, De Veritate, Q. 12, art. 3, ad 3.
Instruments (111). Since, in the formal abstraction of mathematical science, the mind is free of sensible matter in its conceptions and definitions, it does not necessarily terminate in the external senses (112). However, in its retention of intelligible matter or substance as quantified mathematics demands verification in the imagination which reproduces individual mathematical entities (113). Finally, in metaphysics, though the mind begins with external sense evidence, it achieves immateriality as such, and the truth of metaphysical judgments lies within the first principles of being as known by the mind.

In summary, then, a certain and evident knowledge of what a thing is and why it cannot be other than it is, speculative science is the habit, the qualitative facility of obtaining true conclusions in matters of scientific concern about extra-mental reality. This quality of mind, the scientific, is already induced though merely in its inchoative state, by the first scientific act of demonstration which an individual mind realises; but this is an imperfect, defective and relative state of the scientific habit. Such a man can, perhaps, deduce some scientific conclusions but only with difficulty and through a laborious process. As a perfect habit of mind, science actualises

(111) "For the truth of the conclusions of physical science, observation is the supreme Court of Appeal...I do not think that anyone — least of all, those who are critical of the modern tendencies of physics — will disagree with the first axiom of scientific epistemology, namely that the knowledge obtained by the methods of physical science is limited to observational knowledge in the sense explained above." Sir Arthur Eddington, The Philosophy of Physical Science, pp. 6-10; see also Thomas Von Aquin, op. cit., Quaestio VI, Art. 2, c. pp. 65-66.

(112) It is sometimes suggested that the ultimate validity of mathematics rests on its applicability of external objects. This theory, however, seems to deny the speculative nature of mathematics and reduces it to practical mathematics. For an expression of this view, see Louis O. Katzoff, op. cit., pp. 250-255.

(113) Thomas Von Aquin, op. cit., Quaestio VI, Art. 2, c., p. 65.
the mind's potentiality to know in such wise that the mind is easily able to ratiocinate concerning those matters which appertain to a full scientific knowledge of extra-mental reality and to point out errors in scientific matters. Even in a long or difficult demonstration, the man who perfectly enjoys the scientific habit can proceed surely and confidently, not needing teachers or books as an aid to his reasoning process.

This distinction of a perfect and imperfect habit of science is one which we frequently find validated in daily life; among the pupils who present themselves to us each year, there are always some who grasp the matter quickly and without difficulty, and who soon become adept at reasoning in a given subject, while others, we know, never seem to develop beyond an imperfect adaptation to scientific truth. These latter pupils achieve a high degree of faith and probability but lack the habit of science. Even among men of scientific calibre there are the weak and the strong, and not all teachers or habits of science achieve the perfect possession of habitual science. Acquired as it is through personal acts of demonstration, and disposing its possessor to demonstrate freely and surely the truth he possesses, the habit of science can be intensively increased by repeated acts and extensively by the wider scope of objects to which it is seen to apply, as it can, by lack of use, gradually lose its force.

One of the happy results of possessing the scientific habit is the ability to order, arrange and systematize the concepts which we possess into a system of science. The principles of the science, its definitions,
divisions and proofs are coordinated, arranged in a logical order, and thus presented to the pupil or recorded in articles and books. This important aspect of science is all important inasmuch as it has a bearing on the current endeavor of mathematicians to deduce the whole content of mathematical science from a basic, given content, and on similar efforts toward systematising other sciences. This logical arrangement does not always conform to the historical order of the invention of the science, nor to the best pedagogical method of teaching; it aims, rather, to effect a logical order of inferring and demonstrating the unknown from the previously known.

Perfect science, the complete realisation of similitude between the mind and the total knowable content of things, is an ideal towards which an individual man may tend but never realises. An unaccountable number of facts militate against the individual's mind becoming all things, or perfectly reflecting the total order of the universe; by our combined efforts, however, we are able to contribute greatly towards the advance of metaphysical, physical and mathematical science (114).

Chapter IX. The Nature of Mathematical Abstraction

It has been pointed out in the preceding analysis of the distinc­tion of speculative science into the three classes of metaphysics, mathematics, and physics, that the inherent supremacy of metaphysics — dealing, as it does with anything that is in any way at all — qualifies it to study the nature of the being which is investigated by any science (1). Consequently, the question concerning the nature of mathematical abstraction, if asked by a speculative thinker as legislator, cosmologist, psychologist, or mathematician is not properly posed in this manner and can only lead to speculative error. Evidently if I ask What is mathematics? I have stepped outside of the confines of mathematics; holding it at bay and at a reflective distance, I scrutinize its nature and envision it in the relationship which coordinates it to the other sciences and to all that is (2).

(1) "It is philosophy, for example, not mathematics, which tells us whether irrational numbers and indefinite numbers are real beings or only rational beings, whether the non-euclidean geometries are rational constructions built on euclidean geometry and which leave the latter its privileged position, or if, on the contrary, they constitute a much greater system of which euclidean geometry is only one specimen; whether mathematics and logic are divided or not by immovably drawn frontiers, etc. In a word, it is philosophy which assigns the order which reigns between the sciences: sapientia est ordinare,"Jacques Maritain, The Degrees of Knowledge, p. 92.

(2) "In general one might raise the question, to what kind of science it belongs to discuss the difficulties about the matter of the objects of mathematics. Neither to physics (because the whole inquiry of the physicist is about the things that have in themselves a principle of movement and rest), nor yet to the science which inquires into demonstration and sciences; for this is just the subject which it investigates. It remains then that it is the philosophy which we have set before ourselves that treats of those subjects." Aristotle, Metaphysics, 1089b 18-20.
The first distinction, then, that is involved in any attempted investigation of current mathematical research is that which holds between the mathematician and the metaphysician (3). In the domain of mathematics itself, one meets such mathematical entities as point, number, unit, and order, whose meaning and use the mathematician investigates as possible points of departure for mathematical demonstration; sided by these foundational elements and by other influences, the mathematician develops mathematical science. This development of mathematics at top and bottom way, for the sake of clarity, be analogously termed a uni-dimensional concern with mathematics (4); moreover, since

(3) This distinction seems to be in the background of the following quotation: "However, unlike our predecessors of only half a century ago, we do not think of mathematics as beginning with the natural numbers as its basic elements and proceeding thence to the development of its various branches. The latest views tend to assign to these numbers a middle position in the structure of this science. The lower portions are devoted to the foundations of mathematics which are established in the general theories of relations, order, sets, and groups as well as of logic. Above the level of the natural numbers have been erected the various specific mathematical disciplines such as the theory of numbers, algebra, and the various theories of functions, as well as most of the geometrical studies."

Abraham A. Fraenkel. "Natural Numbers as Cardinals, Scripta Mathematica, 6 (1959), p. 69. The distinction between the metaphysician and the mathematician is brought out in Edward W. Strong, Procedures and Metaphysics, see Chapters I and II; books twelve and thirteen of Aristotle's Metaphysics contain the resume of his arguments for this distinction in opposition to the Pythagoreans and Platoists.

(4) "We must state whether it belongs to one or to different sciences to inquire into the truths which are in mathematics called axioms, and into substance. Evidently, the inquiry into these also belongs to one science, and that the science of the philosopher for these truths hold good for everything that is, and not for some special genus apart from others. And all men use them, because they are true of being qua being and each genus has being. But men use them just so as to satisfy their purposes; that is, as far as the genus to which their demonstrations refer extends. Therefore since these truths clearly hold good for all things qua being (for this is what is common to them), to him who studies being qua being belongs the inquiry into these as well. And for this reason no one who is conducting a special inquiry tries to say anything about their truth or falsity — neither the geometer nor the arithmetician."

they only deal with a particular aspect of being and not with being as such, a similar uni-dimensional and limited development characterises all other sciences but metaphysics. Any failure to recognise the limitations intrinsic to the very nature of each of these special science -- chemistry, geology, mathematics and psychology, for example -- implies that a man has unwittingly succumbed to uttering ultimate pronouncements on the nature of things from the specialised view of his science, and is hard put to escape speculative errors (5).

The second, broader domain of current research on mathematics comprises any further questioning on the nature of these mathematical ultimates or on the foundations and nature of mathematics as a speculative science; were the mathematician or speculative thinker, having recourse to a reflective analysis (6) of mathematics, has turned philosopher and metaphysician (7). It is mathematics as currently envisioned in

(5) This attempted deduction of reality according to the limited measure of some particular science, is, of course, a chronic speculative sickness of mind. Etienne Gilson's The Unity of Philosophical Experience illustrates how metaphysics became a logicism, a mathematicism, a physicist and a sociologist -- a process which is being repeated today. The mind's desire for truth and unity can only be satisfied with the ultimate answers of metaphysics.

(6) Reflective as used here does not mean private opinion or armchair speculation, but rather refers to a redirection of the mind on the content of its own actions; see Jacques Maritain, The Degrees of Knowledge, Part One: The Degrees of Rational Knowledge, Chapter IV, "Metaphysical Knowledge," pp. 246-301.

(7) Of course, a prevalent anti-metaphysical and anti-philosophical attitude would deny that the mathematician is currently engaged in metaphysical speculation. The only retort that can be made to such a denial is that of Aristotle: "You say, wrote Aristotle in a celebrated dilemma, one must philosophise. Then you must philosophise. You say one should not philosophise. Then (to prove your contention) you must philosophise. In any case you must philosophise." Jacques Maritain, An Introduction to Philosophy, p. 76.
this second domain — a reflective study of its nature, position
in the wide domain of knowledge and culture — which is that proper
to the philosophy of mathematics and which may be termed its multi-
dimensional aspect, with which this essay and a great amount of current
speculation is primarily concerned (8).

Viewed from this multi-dimensional aspect afforded by metaphysics,
it is readily seen that the full meaning of current self-consciousness
in mathematics is really but a confrontation of mathematics to metaphysics.
Disavowing the existence or relevance of metaphysics, however, speculative
thinkers variously incline to logicism, physiceism, mathematicism, and, in
the breadth of their own metaphysical position, to idealism or to
skepticism (9). If, for example, I write that whatever philosophy
there be is merely critical, controversial and persuasive, and that
mathematics, as equivalent to logic, is contrastingly deductive and
constructive, I propose an ultimate view (10); though erroneous, this

(8) Louis G. Hattsoff, op. cit., Chapter Sixteen, "Mathematics and
Reality", pp. 244-265.
(9) See the discussion of G. Bouligand, "Le mathe maticien au seuil
306-331. Bouligand concludes, "...je crois pouvoir conclure que chaque
mathématicien se réclame d'une métaphysique; elle varie d'une varie d'une
personne à l'autre, et dans l'ensemble elle balance entre la règle de la
simplicité jointe à la généralité maxim, qui nous sollicitait a l'instant,
et celui de la constructibilité, qui fascine toujours les praticiens."
p. 321. See also the interesting preface of Jacques Hadamard (pp. v-xii)
in P. Gouset, Les Fondements des mathématiques.
(10) "The distinction of philosophy and mathematics is broadly one
of point of view; mathematics is constructive and deductive, philosophy
is critical, and in a certain impersonal sense controversial. Wherever we
have deductive reasoning, we have mathematics; but the principles of deduction,
the recognition of indefinable entities, and the distinguishing between
such entities are the business of philosophy. Philosophy is, in fact, mainly
a question of insight and perception." Bertrand Russell, The Principles of
Mathematics, p. 129.
view tempers and colors my consideration of both real and logical existence and I am caught, alternately, in denouncing the nature of reality with logical fiction or mathematical rigor (10). The principles, methods; the very abstractive and limited view of some special science is, by an act of the will (12), thus confounded with the view of metaphysics, and even reality itself is unable to rectify the adoption of such an erroneous view (13).

The aforementioned distinction between a metaphysician and a mathematician readily explains the contemporary metaphysical situation in regard to mathematics. The contemporary mathematician, having fallen heir to a highly developed science, is attempting to reassemble and reestablish this inherited body of mathematical doctrine into a systematic and independent science. Though mathematics has frequently been prompted and stimulated in its historical or individual development by practical needs, by problems from physics, chemistry and other

(10) "...philosophical argument, strictly speaking, consists mainly of an endeavor to cause the reader to perceive what has been perceived by the author. The argument, in short, is not of the nature of proof, but of exhortation. Thus the question of the present chapter: Is there any indefinable set of entities commonly called numbers, and different from the set of entities above defined? is an essentially philosophical question, to be settled by inspection rather than by accurate chains of reasoning. Ibid., p. 130.

(13) For example, if a solipsist is asked to explain how he can get along with the reality of knives and forks, dogs, cats and telephone poles, he is unable to adequately include these things in his outlook; see, in this regard, Bertrand Russell, Human Knowledge: Its Scope and Limits, Part Three, Chapter II, "Solipsism," pp. 175-181.
sciences, by influences suggested through experience and intuitions of all sorts (14), these factors are looked upon as extraneous. Aiming to reduce the complexity of mathematical doctrine to a bare minimum of elements (15), the mathematician methodically directs his efforts towards a constant resimplification and reduction of principles by a recourse to logical, psychological or symbolic ultimates, or by denying the need of metaphysical or extra-mathematical notions and appeals (16). Summarily, then, the metaphysical endeavors of many mathematicians can be described as comprising 1) a previous acceptance of the entire corpus of current mathematical doctrine as valid; 2) an attempt to determine the simple, ultimate mathematical natures; 3) a consequent rebuilding of this initially accepted mathematical truth with the hope of being able to denominate mathematics as an articulate, coherent, self-consistent, systematic and self-contained science (17).

(14) See, in this connection, the interesting analysis of the difference between invention and description in mathematics and its effect on a sound view of the nature of mathematics in Thomas Greenwood, "Invention and Description in Mathematics," Proceedings of the Aristotelian Society, n.s., 30 (1930), pp. 77-19.

(15) This attempt to attain the minimum elements of mathematics is common to all philosophical excursions on the foundations of mathematics; see Louis C. Kattsoff, op. cit., Chapter Three, "The Nature of the Objects of Mathematics," pp. 16-72.

(16) In The Limits of Science, Leon Christel argues strongly against a metaphysical reference for mathematics. See Chapters II and III.

(17) In The Nature of Mathematics, Max Black points out how the formalist and logicist theory on the nature of mathematics, presenting mathematics as something which has been achieved, is a static view; he mentions the dynamic aspect of intuitionism as one of the points in its favor; pp. 169-173.
In his endeavor to re-orient the corps of mathematical doctrine, the mathematician has frequently bounded into extra-mathematical territory and found himself confronted with logic, history, psychology, metaphysics and reality. His efforts, in consequence, have a philosophical significance, for they show first, that in his philosophical conditioning the mathematician has fallen heir to either a pronounced idealist or empiricist outlook (18). By proposing that the whole content of mathematics is virtually and solely resident in a basic, simple intuition or in a small number of simple, mental natures immediately given and known — out of which the whole complex content of mathematics is woven by the mind — the mathematician adheres to a philosophical theory on the nature of mathematics which is frequently referred to as mathematical atomism (19).

His philosophical theory on the nature of mathematical reasoning is, in this connection, similar to the idealist rationale of Descartes; he proposes something as "given" for his point of departure a movement of deduction by the mind towards a desired, foreknown goal, and a point of arrival which is really synonymous with the initial starting point (20).

(18) "We find accordingly, that idealists have tended more and more to regard all mathematics as dealing with mere appearance, while empiricists have held everything mathematical to be approximation to some exact truth about which they had nothing to tell us." Bertrand Russell, op. cit., p. 4. See also Phillip Frank, Between Physics and Philosophy, Chapter IV, "Is there a Trend toward idealism and Physics?" pp. 104-108.

(20) Speaking of Hobbes, Locke and Condillac, Harold R. Smart writes:

"The fundamental conception common to all of the thinkers mentioned, and perhaps inherent in their mutual insistence upon the supremacy of mathematics, together with the implied emphasis on the quantitative aspect of things, is what has come to be liked, in our own day, the 'linear' conception of inference, such differences as that between Hobbes's advocacy of the syllogism and Locke's partial rejection of it, or between the various absolutely fixed starting-points of knowledge, such as 'simple ideas' or 'intuitions' did not prevent these thinkers from adopting as their own, and uncritically accepting as an adequate account of inference, the Cartesian schema of a demonstrative chain of reasoning, mechanically 'compounded' or added and subtracted, link by link, from premises or definitions to the conclusion. So much these philosophers gleaned from a logical study of Euclidean and Cartesian geometry."

Harold R. Smart, The Philosophical Presuppositions of Mathematical Logic, pp. 6-7.
The adoption of this philosophical theory on the nature of mathematical reasoning (21) seems to underly the frequent statements which are made accepting the natural numbers as mathematically "given" and the accompanying claims that an historical, psychological or metaphysical reference for the individual mathematician, or for the science in general, is irrelevant (22). As another example, in the development of function theory from the natural numbers as point of departure, it is sometimes claimed that the mind builds up the whole complex doctrine of mathematics in this fashion (23). Is this not rather a simple case of the scientific mathematician possessing the

(21) This is not the place for a detailed philosophical or psychological analysis of mathematics. Only a few points should be stressed. There seems to be a great danger in the prevailing overemphasis on the deductive-postulational character of mathematics. True, the element of constructive invention, of directing and motivating intuition, is apt to elude a simple philosophical formulation; but it remains the core of any mathematical achievement, even in the most abstract fields. If the crystallized deductive form is the goal, intuition and construction are at least the driving forces. A serious threat to the very life of science is implied in the assertion that mathematics is nothing but a system of conclusions drawn from definitions and postulates that must be consistent but otherwise can be created by the free will of the mathematician. If this description were accurate, mathematics could not attract any intelligent person. It would be a game with definitions, rules and syllogisms, without motive or goal. The notion that the intellect can create meaningful postulational systems at its whim is a deceptive half-truth." Richard Courant and Herbert Robbins, *What is Mathematics?*, p. xvii; see also Harold C. Smarthe, *The Logic of Science*, p. 71.

(22) For a summary of these recent views, see Leon Chwistek, op. cit., Chapter III, "The Development of the Concept of Number," pp. 53-82.

habit of mathematical science, using this habitual ability, employing memory and imagination, introducing lemmas to include extraneous matter, and employing various illustrations to demonstratively teach the rich content of the subject matter under consideration? (24).

A further, second point of philosophical significance in current speculation lies in the evident failure to distinguish the multiple aspects of the problems under consideration (25). The question, what are the foundations of mathematics? is but part of a more global question, requiring, for a complete response, that we be concerned with 1) the nature of mathematical abstraction itself as a speculative science, which is properly the metaphysical aspect of the problem; 2) its psychological origins, which includes its order of learning and order of invention; 3) its historical origins; 4) its logic, or the nature of proof, manner of demonstration, the problems of consistency, freedom from contradiction, as well as its dialectical aspects; as the notion of probability in mathematics. Only after such distinctions are made can, for example, such a question as the notion of mathematical "existence" — so frequently confused with tests for its validity and

(24) This view is aptly illustrated in both volumes of Felix Klein's Elementary Mathematics from an Advanced Standpoint. Klein's presentation, his critical remarks and his efforts to offset excessive formalism in the teaching of mathematics, are well known.

(25) Chapters three and four on the mathematical sciences in Harold R. Smart's The Logic of Science argue for the merit of these distinct consideration of mathematics.
constructibility -- be seen to mean the habit of science in an indi-
vidual mathematician, or the abstraction of quantified substance as
the proper concern of mathematics, or the historical records of the
science in books and articles (26).

The distinction of the metaphysician from the mathematician and
the distinction of the many parts of the question on the nature of
mathematics are especially neglected in discussions on its foundation(27).
Though much concerned with ultimates, statements of an individual in-
vestigator are sometimes unclear as to whether he believes there is an
ultimate in mathematics which mathematics alone can find and beyond
no further questions are possible (28), or whether he grants the pos-

(26) See, for example, Aristotle's discussion on the notion of
mathematical existence in Book Thirteen of the Metaphysics, especially
1076a 17-1078b 6. In his discussions with Pythagoreans and Platonists,
Aristotle faced many problems on the nature of mathematics that are
discussed today.

(27) It has been brought out in a number of places that each
of these theories on the foundations -- logicism, formalism and in-
tuitionism -- are characterized both by a method and a philosophical
theory; for logicism, see Thomas Greenwood, Les fondements de la
logique symbolique, tome I, passim, and, by the same author, Études
sur la Connaissance Mathématique, pp. 1-7 and pp. 33-35, or see André
Baron, La philosophie des mathématiques, pp. 1-6; for formalism, see
Max Black, op. cit., 147-160 and Louis C. Kattsoff, op. cit., pp. 116-
118 and pp. 134-155; for intuitionism, see Max Black, op. cit., pp.
A broad, critical view of the three schools can be found in Abraham A.
Fraenkel's article, "The Recent Controversies about the Foundations of
Mathematics."

(28) This seems to be the basic assumption of Leon Cristie; his
impassioned comments and critical remarks on all sciences but mathematical
logic are scattered throughout The Limits of Science.
sibility of an ultimate within the science — for which he seeks — without denying the relevance of metaphysics as supplying and as pointing out the relations of mathematics to experience, existence and to the sciences (29). Formalism, insisting on marks and symbols as ultimate natures, brings out, it is true, the formal character of mathematical method, the dialectical aspect of mathematics and the importance of symbolism; it fails, however, to answer adequately what mathematics itself is. Formalism does not consider the origin and relation of mathematics to non-mathematical sciences, nor does it answer how a mere repetition or arrangement of supposedly meaningless marks is mathematical science or allows us to count real objects (30). Logicism has brought to the front the fact that mathematics is a close ally to logic, and, under the form of mathematical logic has opened a wide

(29) "It has turned out that (under the assumption that modern mathematics is consistent) the solution of certain arithmetical problems requires the use of assumptions essentially transcending arithmetic, i.e., the domain of the kind of elementary indisputable evidence that may be most fittingly compared with sense perception. Furthermore it seems likely that for deciding certain propositions of abstract set theory and even for certain related questions of the theory of real numbers new axioms based on some hitherto unknown idea will be necessary. Perhaps also the apparently insurmountable difficulties which some other mathematical problems have been presenting for many years are due to the fact that the necessary axioms have not yet been found," Kurt Gödel, "Russell's Mathematical Logic," in The Philosophy of Bertrand Russell, Volume V, The Library of Living Philosophers, edited by Paul Arthur Schlipp, Evanston and Chicago: Northwestern University, 1944, pp. 127-128. In this connection, see the interesting article by the same author on the continuum problem: "What is Cantor's Continuum Problem?" The American Mathematical Monthly, 54(1947), pp. 515-525, where he concludes that possibly a new set of axioms or a new mathematical outlook is required to solve the problem of the continuum.

bances in the whole problem of deductive reasoning, symbolism and
mathematical methodology. Its assertion of mathematical and logical
equivalence and its proposed logical ultimates, however, are as yet
unreviewed and logicism has left untouched a whole network of genuine
speculative problems (31). Even though it reintroduces the close
relationship of psychology and experience to mathematics, intuitionism,
by ruling that the mathematical intuition is the original experience
of man and by attempting to equate mathematics with constructibility,
proposes an incomplete solution that bristles with metaphysical,
historical and psychological assumptions (32).

Taken, then, as philosophical proposals explaining the complete
nature of mathematics, these theories appear to implicate a metaphysics
of knowledge and incline towards idealism or empiricism. They are but
common indications of an outspoken contemporary metaphysical bias (33),
a prejudicial reward for all philosophical speculation as such (34), and

(32) Max Black, op. cit., pp. 186-200; see the interesting description
of the mutual criticism of formalism and intuitionism in F. T. Bell, The
Development of Mathematics, pp. 525-528, and pp. 530-532.
(34) "In the appendix to The Foundations of Mathematics and Other
Logical Essays," Frank W. L. Ramsey, referring to a lecture by Bertrand
Russell on "What I believe," writes: "Of course his main statement about
value might be disputed, but most of us would agree that the objectivity
of good was a thing we had settled and dismissed with the existence of God.
Theology and absolute Ethics are two famous subjects which we have realized
to have no real objects." pp. 267-268. A little later he concludes: "This
brings me back to Russell and "What I believe." If I was to write a self-
agreement I should call it not "What I believe" but "What I feel." This
is connected with Wittgenstein's view that philosophy does not give us
beliefs, but merely relieves feelings of intellectual discomfort." pp. 290-291,
a lack of metaphysical training and insight (35), -- all of which
have influenced the realm of speculative reflection on mathematics.
At the same time, however, this global examination of the foundations
of mathematics and related questions has again disclosed the multi-
dimensional and manifold relations which inseparably bind mathematics
to metaphysics, logic psychology and the sciences, and, in a broader
view, to civilisation and culture itself (36).

It will be our purpose in this section and in the following
chapter, to indicate, as much as possible, how these recent discussions
have, from the metaphysical point of view, served to polarize the
intrinsic relatedness by which mathematics is secured in its proper
place within the order of speculative sciences (37). To propose,

(35) "Philosophy can only contemplate, examine, and clarify the
forms of coordinate thought and principles by means of which a coordinate
sphere of thought gains systematic unity. The special sciences provide
the empirical filling which, by controlling these principles, makes them
coordinate with actual events. It helps to give an integrated view of our
knowledge as regards direction and ideal; it is in this sense that it may
be called the science of sciences," Irwin Biser, A General Scheme for
Natural Systems (Nature Considered as a Function of Types of Selectivity

This remark is later followed by "It is hoped that on the appropriate
occasion the contours of this view will be filled out with richer concrete
detail and that the identity of philosophy and science may be more con-
clusively shown." Ibid., p. 140.

(36) Richard Courant and Herbert Robbins, op. cit., pp. xv-xix; see
also Chapter Twenty-one, "The Further Significance of Mathematics for Other
Fields of Knowledge," in Hellis R. Cooley et al., Introduction to Mathematics,
pp. 583-615.

(37) Impossible as it would be here to disclose the existence and validity
of the philosophical sciences of metaphysics, cosmology and psychology, their
pertinence for mathematics and relatedness to it is claimed throughout this
eSSay. The only alternative to this view is to claim that all sciences must
ultimately bear to the pronouncements of mathematics or logic or mere private
opinion. While it is here claimed that metaphysics is effectively able to
attain speculative truth and that it determines the nature of sciences and
orders them with respect to each other, at the same time each science has a
legitimate concern with its own principles, questions, methods, consistency,
sources of truth and problems of error. For a presentation of this view see
consequently, as is here done, that speculative mathematics is an
abstractive, speculative science is not to take a position that runs
counter to all contemporary preferred by mathematicians (38). Many
of the theories commonly proposed, it will be seen, are partial emphases
and aspects of the total nature of mathematics as a speculative science;
they frequently deal with matters on the fringes and periphery of math-
ematics, and need to be properly ordered to indicate how, as partial truths
or partial errors, they lie within the common ground of metaphysics and
mathematics (39).

The resolution of both the basic and the peripheral problems which
comprise the metaphysical investigation on the nature of mathematics are
here seen to cluster about the centripetal problem: an adequate specification
and determination of the intellectual habit of mathematics as an
abstractive science. Since speculative science is measured by the truth
of things, an objective, extra-mental foundation for mathematics in
reality must be pointed out 1) as revealing, in some way, the laws
of mathematical being to the mind; 2) as being the point of departure
for each man who acquires mathematical science; 3) as containing an
objective content concerning which the mind reasons and to which the
mind becomes identified by judgments in the habit of mathematical science;

(38) For example, mathematics is generally conceded to be a science
of abstractions or as dealing with generalities; see, for example, the
following selected references: Eric T. Bell, The Development of Math-
ematics, p. 8, Chapters 8 and 9, passim; and, by the same author, The
Queen of the Sciences, p. 14; Julian Lowell Coolidge, A History of Geometrical
Methods, Epilogue, pp. 422-423; George David Birkhoff, Mathematics:
Quantity and Order, p. 306.

(39) Logicism, for example, has merely considered the relation of
mathematics to logic; intuitionism, to psychology and formalism has em-
phasized mathematical method.
4) as insuring the objective "giveness" upon which the mathematician
invents and elaborates mathematical science in various ways. The aim
of this chapter is to determine the mathematical outlook, and to summarily
point out its distinction from all late-ness to the other speculative
sciences.

In the process of simple apprehension, when a mathematical figure
is pointed out for the first time and called a "hexagon," the mind merely
abstracts mathematical natures from sense data. This psychic state
is manifestly different from one in which a peculiarly complex looking
curve is drawn, astonishingly called a simple curve, and a mathematical
judgment is uttered: "a simple curve is no where crosses upon
itself." (41). In the case of simple apprehension the mind abstracts

(40) A complete philosophy of mathematics as here envisioned would
necessitate a consideration of problems suggested in this outline.

MATHEMATICS

<table>
<thead>
<tr>
<th>MATHEMATICS</th>
<th>Objective basis in reality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Originates from total abstraction (Intuitionism)</td>
</tr>
<tr>
<td></td>
<td>Yielding its ultimate: Continuous</td>
</tr>
<tr>
<td></td>
<td>Quantities</td>
</tr>
<tr>
<td></td>
<td>Discrete</td>
</tr>
</tbody>
</table>

LOGIC

<table>
<thead>
<tr>
<th>LOGIC</th>
<th>Formal causality (Formalism; and Logicism)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method of demonstration</td>
</tr>
<tr>
<td></td>
<td>Logic of Mathematical Demonstration</td>
</tr>
</tbody>
</table>

MATHMATICS

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Propositions.</td>
</tr>
<tr>
<td></td>
<td>3. Reasoning.</td>
</tr>
<tr>
<td></td>
<td>Applied Mathematics.</td>
</tr>
</tbody>
</table>

(41) "Here there are really two distinct categories of things of which
an account must be given — the ideas or concepts of mathematics, and the
prepositions of mathematics. This distinction is neither artificial nor un-
necessary, for the great majority of writers on the subject have concentrated
their attention on the explanation of one or other of these categories, and
erroneously supposed that a satisfactory explanation of the other would im-
natures which are not abstracted or separated in reality; or, as
is frequently and correctly said, the perfect circle, line or group
of mathematical abstraction does not exist as such in reality but only
as held in abstraction by the mind. Hence it follows that we cannot
lift this abstraction as such to a judgment and say "The mathematical
circle exists in this circle drawn on the board," or "This object is the
number one." Nor, on the other hand, can we judge that "the circle
exists apart from all matter," or the natural numbers really exercise
a separate existence." It can only be said that with the aid of the
imagination, the mind, by abstracting from sensible matter, is able to
consider and judge the curve of a mathematical nature in abstracto.
The objects, therefore, which are given to the mathematician for his
consideration in the process of simple apprehension, are seen to depend
on sensible matter for their extra-mental, imperfect existence as more
terminal points of the extension of any sense-perceptible thing, but do
not depend on sensible matter for being conceived, imagined, defined and
considered in mathematical science; they are conceived and defined in terms
of intelligible matter (42).

(42) The use of the technical term "intelligible matter," will surely
meet with adverse reaction. Simply stated, the necessity of defining or
conceiving of mathematical entities in terms of intelligible matter means:
1) I only know singular imaginative or constructed instances of a circle
by knowing the universal nature of circle; 2) to define or adequately
designate the universal nature of circle I must place circle in the larger
class of figure or infinite set of points (in the continuum of intelligible
matter) and determine its formal nature by distinguishing it from the class
or set in which it belongs. Intelligible matter, then, ultimately is con-
tinuity itself, or a determined kind of continuity, as when I limit a math-
ematical investigation to what determination of the infinitely potential line
from zero to one. See, in this connection, Aristotle's Metaphysics, 1034b
30-1036a 25 and the commentary of Saint Thomas Aquinas on this passage.
Thus, in mathematical abstraction, a form which philosophers have traditionally designated as quantified substance, is abstracted from sensible matter. Technically, philosophers have said that this form is abstracted from sensible matter to which it is necessarily united *secundum esse* — for its very being — but not necessarily jointed to it *secundum intellectum* — for it to be known (43). This is equivalent to asserting that mathematical natures are seen not to be realisable as such in reality, though it likewise means that if anything circular or hexagonal is to exist, it only exists in nature as the imperfect dimensional terminations of a physical body.

The attribution of quantity as the formal object of mathematical abstraction and as the ultimate subject matter of mathematical demonstration requires some elucidation because of the frequent denial that this denomination is no longer valid for contemporary or modern mathematics. From the many criticisms voiced in this regard (44), one would almost conclude that quantity in the sense of sheer matter, weight, dimensions and measurements were being proposed as the proper concern of mathematicians. It is said, for example, that quantity can be considered the object of Greek or classical mathematics (45); modern mathematics has no subject

matter but pure form (48), or the zero deduction of any premises (47). On the other hand, an equally frequent denomination of mathematics as dealing with the discrete and continuous (48), as concerned with form and structure (49), or as investigating order and number (50), point towards the recognition of quantity as the basic consideration of mathematics.

The notion of quantity which metaphysics designates as the formal object of mathematics and in which the laws of mathematical being are contained means the order of the parts of substance (51). In this sense, quantity does not mean the bulk or weight of an object whose impact we feel upon physical contact. Rather, quantity here responds to the ultimate quest of the mathematician: the scientific knowledge of the order of the parts of quantified substance as abstracted from nature, through possession of a scientific intellectual habit which is specifically mathematical. Hence, in contrast to idealist or empiricist notions, mathematics is not created from nothing by the mind nor is it reducible to mere exact sense-impressions (52). Quantity as "given" through the

(46) See the definition under "Group 2" in Louis O. Kettsoff, op. cit., pp. 11-12.
(50) The author's position on the nature of mathematics is not consistent throughout the entire article.
(52) Thomas Greenwood, "Invention and Description in Mathematics," pp. 60-80.
mental process of scientific abstraction --- though not reflectively

known, analyzed or considered by the mathematician as quantity itself

which is a metaphysical consideration --- is substance considered solely

as quantified and defined as the order of the parts of substance. Hence,

metaphysically speaking, both the ontological ultimate in nature and the

psychological ultimate which is given through simple apprehension and in

the first scientific act of mathematical abstraction, is not a simple but

a complex thing, indefinitely rich in content (53). The essential determi-

nation of the scientific habit of mathematical abstraction lies in

having the mind become conformable and identifiable to the nature of

substance solely as quantified; in this way the mathematician possesses

the readiness and facility to judge and to reason further concerning the

order of the parts of substance with the aid of his sensory makeup and

many other extra-mathematical suggestions and insights (54). The main

difficulty of understanding quantity as the formal object of mathematics,

of course, lies in realizing that substance and quantity alone do not

\[\text{(53)}\] "But the mind can also consider objects abstracted and purified

from matter in so far as it is the general ground of the sensible properties,

whether active or passive, of bodies. In this case it considers only one

property which it detaches from bodies --- what remains when all the sensible

is removed --- quantity, number and extension taken as such: an object of

thought which cannot exist without sensible matter, but which can be con-

ceived without it, e.g., nothing sensible or experimental enters into the

definition of an ellipse or a square-root. This is the great kingdom of

Mathematics: the knowledge of quantity as such, in its rightful relations

of order and measurement." Jaques Maritain, The Degrees of Knowledge, pp.

48-46.

\[\text{(54)}\] See Thomas Greenwood, "Invention and Description in Mathematica,

for a description of the habit of mathematical reasoning. The two volumes

of Felix Klein's Elementary Mathematics from an Advanced Standpoint are an

excellent illustration of the many, complex factors which are concerned in

mathematical inventiveness and demonstration.
exist as such and as separated from qualities in nature, but only as conceivable and abstractible by the mind (55).

One of the reasons why quantity was previously accorded by mathematicians as their proper consideration and why it is not so regarded today, no doubt lies in the fact that pure mathematics has been more clearly distinguished from applied mathematics (56) and also in the fact that philosophical discussions on the foundations of mathematics, lodging the mathematical ultimate in logic, symbolism or intuition, have had a pronounced influence on mathematical thought (57).

A more detailed presentation of the role of metaphysicians on quantity, however, will show how mathematics is the study of quantified substance even in its present emphasis on correspondence, order and measure (58).

Quantity is analogously divided by metaphysicians into transcendental and predicamental. They point out that transcendental quantity, a field of metaphysical inquiry, is used to signify the amount of perfection or entitative being which a thing possesses (59). The being of a giraffe...

(55) "...for in mathematical science the mind lays hold on the constituent elements of entities and constructs and reconstructs in its own right what it has drawn from sensible data or built upon the treating what in the real (when they are entia realia) are the accidents or properties of bodies as if they were substantial beings and as if the notions which it holds of them were free of any experimental origin..." Jacques Maritain, op. cit., p. 41.

for example, is intrinsically greater than the being of a stone.

Transcendental quantity, as based on the substantial or accidental
perfection of a being -- on its amount or "latitude of perfection" --
is spoken of as virtual quantity, while that based on a consideration
of a plurality of such beings is spoken of as transcendental quantity
or transcendental number. This quantity is denominated as transcendental
because it deals with the very being, truth, unity and goodness of things
which are properties transcending the categories of substance and
accidents (60). Predicamental quantity or that "proper to the categories,
is the designation of quantity as the order of parts outside of parts in
a quantified whole. The word order here does not signify the relation
of order itself, but the basis of this relation or the fact that parts
are arranged according to priority and inferiority (61). Predicamental
quantity, then, contains both the notion of a multitude, class, or set
of parts, and the order of these parts according to some measure or
standard of reference.

Predicamental quantity, of which mathematics is an abstractive
study, is either that of continuity and content or discreteness and

(60) See, in this connection, Gaston Isaye, La théorie de la mesure
et d'existence d'un maximum selon Saint Thomas; Archives de Philosophie,

(61) A. Cornelius Benjamin, An Introduction to the Philosophy of
Science, pp. 284-290; for a mathematical analysis of the notions of order,
sets and the continuum, see Edward V. Huntington, The Continuum and Other
Types of Serial Order, With an Introduction to Cantor's Transfinite Numbers,
Second edition, Cambridge: Harvard University Press, 1942, Chapter 11,
"General Properties of Simply Ordered Classes or Series," pp. 10-16.
determination (62). Continuity in quantity is that signified by the juxtaposed continuation of its parts; it is often called magnitude or is reputed especially for the intrinsic potentiality and indetermination which it possesses as well as for its divisibility or separability into parts of like nature. The geometer or topologist determines this potentiality of the continuum (63) — this intelligible matter — in various qualitative ways; it is the field, domain or potential background for various figures, their qualitative states, their fictive movements of translation and rotation, their transformations, mutual relations, equivalence and eventual reducibility within its infinitely potential content (64). Continuous quantity when its

(62) "Now it is obvious that in these remarkably similar pronouncements, by scientists and philosophers of the greatest diversity of outlook and training, there is implicit something of the utmost importance for the logician to consider. These thinkers actually confirm each other in the view that homogeneity and externality — or, better, continuity and discreteness — belong as complementary formal characteristics, to all mathematically constituted objects, to the entire content of mathematical science." Harold A. Sutt, The Logic of Science, p. 89; see p. 87-84 for Sutt's discussion on this point.

(63) "Nous dirons encore quelque mots d'un troisième grand type de structure, les structures topologiques (ou topologies): elle fournit une formulation mathématique abstraite des notions intuitives de voisinage, de limite et de continuité, auxquelles nous conduis notre conception de l'espace." Nicolas Bourbaki, L'Architecture des mathématiques: La mathématique, ou les Mathématiciens, in Les Grands Courants de la pensée mathématique, p. 42; see Bourbaki's whole article (pp. 35-47) for an interesting analysis of how the determination of the continuum may be regarded.

(64) "The reason for this is that matter, which is the principle of individuation, is not known in itself and is known only through form, from which the universal reason is taken. And therefore singular things are not in us in their absence except through universals. Matter, however, is not only a principle of individuation in singular sensible things, but also in mathematical matters, one kind of matter is sensible, another is intelligible. Bronze and wood are examples of sensible matter, or any kind of mobile matter as fire and water and all others of this kind. b: such matter singular sensible things are individuated. Intelligible matter, however, is that which is in sensible things not inasmuch as they are sensible — as are mathematical things, for just as the form of man is in this matter which is an organic body, so the form of a circle or triangle is in this matter, which is either continuity, or a surface or a body." Saint Thomas Aquinas, In VII Metaphysicorum, Dict. It. n. 1466. In this seventh lesson on the metaphysics, Saint Thomas frequently points out that continuity itself, r as a determined type of continuity, is the background and basis of mathematical actions and operations.
determined in some way by a formal causality (85) of some type, may be determined mathematically in any number of dimensions (65).

Emphasizing, in contrast, the units of continuity, discrete quantity is at once more determined than continuous and yet arises, in diverse manners, from the continuous. Although number, like form, arises from abstraction (67), not all numbers arise in this way; to the mathematician, in fact, all numbers can be regarded as mathematically alike and arise, in some way, from the abstractive consideration of the seeds of the continuum (68). Discreteness involves the separateness

(65) The traditional view, that mathematics is primarily concerned with formal causality, can be seen as being substantiated today by the current emphasis which logic-, formalism and even intuitionism place on the formal aspect in mathematical science. See Thomas Von Aquin, op. cit., Questio VI, Art. 1, c., n. 57.

(66) The notion of dimensionality in mathematics, though analogously derived from the pre-scientific and scientific experience of the mathematician is unique, and is not a study of extra-mental dimensionality. Philosophers, in judging the results, worth and merit of mathematics, frequently fail to realize that the mathematical universe only bears a likeness to the extra-mental universe. For a quite accurate presentation of this notion, see Victor F. Lensen, The Nature of Physical Theory: A Study in Theory of Knowledge, New York: John Wiley & Sons, 1931, Chapter II, "Euclid's Geometry, p. 50-74.

(67) M. Cornelius Benjamin, op. cit., pp. 260-271. The author quite clearly points out the relevance of pre-scientific experience for the mathematician's notion of number, and stresses the difference of mathematical numbers from those which are used in ordinary processes of counting and measuring.

(68) "All measurement which obtains in continuous quantities is derived, in some way, from number. Consequently the relations which hold of continuous quantity, also are attributable to number." Saint Thomas Aquinas, In V Metaphysicorum, Lect. 17, n. 1007. The close relationship and interrelation between form and number held by Aristotle (see, for example, Metaphysica, 1020b 22-31) and by Saint Thomas Aquinas, is quite in keeping with current thought on the numerical determination of the continuum. For a philosophico-mathematical study exemplifying these notions, see Thomas Greenwood, La Nature du Transfini, Ottawa: Les Editions de l'Universite d'Ottawa, 1945, passim; see especially "Conclusions Philosophiques," pp. 55-66.
or separability of a multitude of continuities, each of which is viewed as a determined continuum and whose amount is measured by adopting some unit as a measure. For example, by imbedding numbers and points in the continuum we determine its potential, indeterminate parts (69); in so doing, of course, the correspondence or matching of parts may be emphasized, or their juxtaposition, position, or other type of order. The ultimate units of discreteness which arise from the measurement of the continuum are numbers of some sort -- natural, real or even groups of numbers as in transfinite consideration -- for any of these numbers is but one type of ordering and measuring the indeterminacy of the continuum (70).

Both continuous and discrete quantity, then, admit of various qualitative, formal determinations (71). A non-terminating line or a

(69) For an introductory account of the determination of the continuum numerically, see John Wesley Young, Lectures on Fundamental Concepts of Algebra and Geometry, Lectures VI-XII.

(70) See Wacław Sierpiński, Hypothèses du Continu, Warsaw: Lwow, 1934, “Preface,” (pp. iii-v) for a recent statement on both the hypothesis and the problem of the continuum; Sierpiński approaches the hypothesis of the continuum from the notion of quantity and from that of order. Throughout he is concerned with the problem of effectively determining continuous potentiality with the discrete determination of number and series of numbers. For a more recent statement of the continuum problem, see Kurt Gödel, “What is Cantor's Continuum Problem,” The American Mathematical Monthly, 54(1947), pp. 515-525; Gödel conjectures, in concluding, that possibly a new set of axioms may help resolve the present difficulties on the continuum.

(71) The insistence on quantity as the proper object of mathematics should not be taken to exclude the vast realm of the qualitative which obtains in mathematics. That with which mathematics is concerned is quantified substance (without sensible qualities); the determinations of this quantified substance are obtained through mathematically qualitative attributions. This can be seen especially in Topological considerations and in projective geometry. For a fine discussion on the interrelation between the mathematically quantitative and qualitative, see Leibniz, The Monadology and other philosophical Writings, translated by Robert Latta, Introduction, Part III, “Detailed Statement of the Philosophy of Leibniz,” (pp. 76-80), where Latta discusses Leibniz's mathematics in relation to his philosophy.
line from zero to one, the qualities of obliqueness, angularity, curvature, denseness, collinearity, connectivity and dimensionality are but a random number of these formalities which denominatively lie in the domain of intelligible matter. These various determinations, in fact, give the lie to both idealistic and sceptical attitudes to mathematics (72). The very names of these mathematical formalities indicate their importation from the world of sensation, as do the names for the mathematical operations of adding, imbedding, making a set dense about a point. At the same time, the creativeness of man the mathematician is strikingly illustrated by this mode of procedure in the mathematical realm; in this realm, stimulated by his own previous investigations, the pleasures of mathematical reasoning, the desire for unity, the urge to solve problems and by various needs and insights, the mathematician specifies and determines the unlimited potentiality of intelligible matter (73).

(72) "We have found that the mathematician shares with other natural scientists the content supplied by the world of existential phenomena. But he studies this world only in its quantitative aspects, i.e., only in so far as the objects of that world may be regarded as at the same time more or less completely homogeneous with, and external or indifferent to, one another. And we know now, as logicians and philosophers, what to think of the doctrine that pure mathematics is a completely a priori science, constructed by pure thought, functioning apart from all experience. That doctrine turns out to be the product, not of an analysis of actual mathematical conceptions and methods, but of a gratuitous metaphysical hypothesis. This hypothesis, to the effect that thought and experience are separate somewhat, sending us, as it does, in all sorts of impossible dualisms and irresolvable contradictions, so far from being confirmed by any science, is the enemy of all science and of all philosophy." Harold R. Smart, op. cit., p. 93.

(73) See Henri Poincare's presentation of the creation of the mathematical continuum in the Foundations of Science (pp. 46-54); abstracting from the philosophical insertions, a somewhat accurate picture of the inventiveness of mathematical reasoning is given.
Mathematics also treats of other entities which, though not quantitative of themselves, have an accidental correlation with quantity as being somehow dependent on it. Time and motion, as viewed by the mathematician, are capable of quantitative treatment because that to which time and motion belong, are themselves quantified and divisible (74). Time is both divisible and continuous because of the successive continuity of motion; time is motion conceived as a uni-dimensional current. Motion is divisible and measurable not primarily due to itself, but ultimately because of the continuous magnitude or medium in which motion occurs.

Similarly, space as studied in mathematics is not the real space of our experience, though ultimately real space is the foundation for the mathematician's study (75). The mathematician regards space by viewing it under the formality of simultaneous continuity; in this multi-dimensional context, he regards the continuum of intelligible matter as possessing limitless potentiality and content which he variously determines by the mathematical concept of dimensionality (76).

Another group of entities to which a mathematical treatment is

(74) See A. Cornelius van der Waerden, op. cit., Chapter XIV, "Space, Time," pp. 279-311, for a quite accurate analysis of the notions of space and time in ordinary and in scientific considerations.

(75) The mathematical notions of space, time and dimension, reductively and retroactively viewed, arise from experience; in the process of mathematical abstraction, however, only an analogous likeness to extra-mental space and time are retained. This conception helps explain the reason why philosophers and mathematicians frequently make confusing statements about mathematical space and time, and, at the same time, explains how these mathematical space or time systems are applicable, with varying measures of exactness, to extra-mental dimensionality in space and time.

(76) For an introduction to the mathematical consideration of dimensionality, see John Wesley Young, op. cit., Lectures XIII-XVII.
accidentally or connectedly attributable are qualities, such as the color of an object, or the quality of being a musician or mathematician. Here, of course, there is an indirect measurement of the qualitative accidents of some subject who possesses these modifications; various methods of measuring these qualitative perfections are invented and properly lie in the realm of applied mathematics, which attempts a correlation of the principles and conclusions of mathematics to quantity as subject to qualities, matter and motion on the first level of science (77). In passing, it should be remarked, that whatever is joined, in some way, to quantity, as dependent essentially or accidentally for its existence and operation upon quantity, can somehow be given an analogously quantitative consideration (78).

In quantity as given in mathematical abstraction, then, both the notion of continuity and discreteness are potentially contained; quantity can be abstractly viewed as an undivided and indivisible unity — a number, or as an actually undivided form or whole, though potentially divisible ad infinitum (79). Even in a simple consideration of a circle we can distinguish the abstracted substance of the circle as given, and as capable of being viewed in its discrete determination as a unit or one circle, or in

(77) For a recent study of the applications of mathematics, see Vincent Edward Smith, The Philosophical Frontiers of Physics, Chapters II and III.

(79) "New notion is supposed to belong to the class of things which are continuous; and the infinite presents itself first in the continuous -- that is how it comes about that 'infinite' is often used in definitions of the continuous ('what is infinitely divisible is continuous')." Aristotle, Physics, 200b 17-18.
it* flu*eu*tim* indct*rtdn*tion *• * continuou* fora er flrurc.

In thie'ee?meett*«i, frequent tetrHoa 1* nod* In mat been tl eel literature
of the evei—retmrrcnt *r*bl*a of the M terete tnd the ocntiauec •• th*
the fecal nrebieet ef methemati**| it 1* feinted o><-<w the tension between -
these two 'jualitetd state* of mathematical quantity hat been • puzzling
question, yet, withal, a fruitful source of mathematical inventiveness' (80).

The three types of circulative science, then, deal with quantity in
a different manner, and there is an objective basis for this difference.
In the first degree of total abstraction, the mind considers quantity as
the accident proper to mobile, quantified bodies; in the philosophy and
the physical sciences of nature, bodies are considered in their existential
determination in space-time, and as subjected to genuine quantitative and
qualitative change and motion (81). On the other hand, mathematics considers
bodies as merely quantified substances through abstracting from the qualities
and changes which are part and parcel of sensibly existent things; while
applicable to the extra-mental world with some measure of exactness, mathe-
matical conceptions and systems of space, time and the order of the parts

(80) "Abraham A. Fraenkel, "The Recent Controversies About the Founda-
tions of Mathematics," passing the author seems to conclude (p. 36), by ad-
mitting some type of "pre-existence" of the continuum. This interplay of the
continuous and discrete not only occurs throughout the history of mathematics
(see F. P. Bell, The Development of Mathematics, p. 3viz.), but also in physics;
see, for example, Louis de Broglie, "Le rôle des mathématiques dans le de-
véloppement de la physique théorique contemporaine," in Les Grands Courants
de la pensée mathématique, présentés par F. Le Lionnais, pp. 399-412.

(81) "This homogeneity and externality of part and whole which obtains
when objects are considered mathematically may be contrasted with the relative
diversity of heterogeneity and interpenetration of art and whole when objects
are considered more concretely. In the latter case the part is never in any
important sense of the same nature as the whole into which it enters, and both
part and whole 'undergo essential modification of nature as a result of any
change in the one relatively to the other." Harold N. Vart, op. cit., p. 50.
of quantified bodies never correspond exactly to extra-mental reality
where qualities, mobility and change characterize real existence (82).

This diversity of consideration between total and formal abstraction
is necessarily emphasized in order to safeguard these two legitimate views
of quantity, confused as they frequently are. For example, if a scientist,
philosopher or cosmologist maintains that it is absurd to speak of four,
five or n-dimensions or transfinite numbers (93), he is confounding the
quantity of mathematics and that of the sciences and the philosophy of nature.
Pure mathematics does not pronounce its scientific judgments on the extra-mental
real, but only on abstracted, quantified substance -- a state in which things
do not exist except in mathematical abstraction (84).

In contrast to the view of quantity afforded either in total or formal
abstraction, metaphysics regards predicamental quantity as a principle of
being, the ontological accident which belongs to the categories, and likewise
studies the analogous notion of transcendental quantity. With regard to pre-
dicamental quantity, metaphysicians point out that though substance is prior to
all the accidents of being, quantity has a priority of nature over the other
accidents. Frequently termed, for this reason, the first accident, quantity
orders the parts of material substance and is the basis of extension and
other corporeal properties (85). All sensible qualities are directly rooted
in quantity as their immediate principle of being; through quantity, these
sensible accidents are rooted in the individual substance. This is the ultimate

(82) This trait of mathematics -- its partial and approximative applica-
tions to extra-mental reality -- is quite generally admitted, so that it would
be futile to insist on this point.

(83) See, for example, the conclusions of Marcel Lallemand in La Trans-
finité Sa logique et sa métaphysique, pp. 201-207.

reason why whatever is qualitative or rooted in quantity can be given an analogously quantitative consideration; through various mathematical measures, the principles of mathematics are applied to qualitative states (86).

This ontological juxtaposition of quantity to substance gives quantity a prominence and pre-eminence over the other accidents which is unique and distinct. In fact, many thinkers have been led to substantify the various mathematical abstractions of form, number and solids, by attributing an extra-mental existence to the abstractions of mathematical science (87), or to deny the existence of secondary, qualitative characteristics. One of the reasons for this ready attribution of an extra-mental existence to mathematical abstractions lies in the fact that though quantity is an accident, it is rightly treated as the subject matter of mathematical science with its own definable qualitative properties (88). Unless some sound, metaphysical reflection points out that quantity is here considered as intelligible matter -- substance joined merely to quantity -- the jump from the mathematical to the real order can readily occur.

Quantified substance, then, as dealt with by the mathematician separates from quantity as reflectively known, and viewed as a principle of being, by the metaphysician, as it does from extra-mental quantity of physical science. The same sort of similar questions about quantity, moreover, may be

(86) Thomas Von Aquin, op. cit., Quaestio V, art. 3, ad 2, n. 12.
(87) As has been frequently pointed out, the school of logician has been led to this view; see, for example, Thomas Greenwood, Les Fondements de la logique symbolique, Tome I: Critique du nominalisme logistique, passim, and Mabrd, "La logique logistique," The Philosophical Presuppositions of Mathematical Logic, passim.
(88) Mathematicians of past and present have looked upon the natural numbers, the continuum, and mathematical relations as being somehow "real." A collection of these attributions of extra-mental reality of some sort to mathematical entities would be both interesting and instructive.
The problem of infinity in quantity, may be considered by each, though the three responses to the question of infinity in quantity cannot be contradictory inasmuch as ultimately, they refer to extra-mental quantity as abstractly viewed under three distinct scientific aspects. In the view of total abstraction, corporeal substance or its whole sumation may be looked upon as actually finite and potentially infinite; from the mathematical view, the question of actual infinity in quantity is of little import compared to the potential infinity of quantified substance abstractively considered; in the metaphysical view, the very nature and being of infinity and its relation to the infinity of physical and mathematical science is considered.

The above comparison between three views of quantity illustrates how the greater immateriality of a science gives it a speculative hegemony over the sciences below it. Metaphysics is, the most immaterial science and needs the least speculative principles. Mathematics, inasmuch as it adds quantity to substance, is less immaterial, and not only needs the principles of metaphysics but additional ones; physical science, dealing not merely with substance and quantity, but adding quality and mobility, and aiming to know mobile being, is the most complex of the three levels of science (91). While both mathematics and physics receive their principles of speculation from metaphysics, mathematics exercises a speculative function over the conclusions.

(90) Zeno's famous paradoxes of motion, for example, are frequently looked upon as solved only through the aid of recent mathematics. (See Bertrand Russell, Our Knowledge of the External World, New York: John Wiley & Sons, 1929, Lecture VI, "The Problem of Infinity Historically Considered," pp. 169-198.) It is here maintained, that these paradoxes can be considered and solved on all three levels of speculative science.

(92) It is interesting to note that many mathematicians have considered the problem of infinity under the physical, mathematical and metaphysical aspect even though they may conclude that only the mathematical answer has validity. See the remarks of Philip E. B. Jourdain in Contributions to the Founding of the Theory of Transfinite Numbers by Georg Cantor, "Introduction," p. 55-56.

(91) A summary of this doctrine on the number and dependence of the principles of speculative science can be found in Thomas Von Aquin, op. cit., Question V, Art. 3, ad 6, p. 48.
of physical science. If, for example, it is mathematically certain that no contradiction results from considering quantified substance as potentially divisible ad infinitum, then it will not be possible for the philosophy of science of nature to disprove certainly the possibility of an infinite multitude (92).

It should be emphasised that quantity as the formal object of mathematics is not to be confused or identified with its analysis in the philosophy or science of nature; nor is mathematical quantity to be looked upon as identical to one or all of the common sensibles or secondary qualities (93). This "physical" view of mathematics, though frequently found, is due either to a lack of grasping the nature of mathematical abstraction, or perhaps to the fact that the quantity of mathematics is psychologically attained through the sensible qualities of things (94). These and similar difficulties can only be obviated if the legitimacy of both total and formal abstraction and of metaphysics is conceded.

Somewhat in contrast, then, to current philosophical theories on the existence and nature of the mathematical ultimate, it is here maintained that quantity as given to the mathematician is not a simple but a complex subject, indefinitely rich in content. There is, in things, the real accident of quantity inseparably joined to an existing substance with concomitant accidents of color, taste, weight and shape; in mathematics, the mind actualises only

(94) Jacques Maritain, op. cit., p. 175 and p. 256.
the formality of substance and quantity by abstraction, thus making
the potential formality in the thing an intelligible formality and
denominating quantified substance as a scientific object (96). The
specification of the habit of mathematical science consists, accordingly,
in having the mind become conformable to quantified substance considered
abstractly as denuded of qualities, motion and change; possession of this
habit causes the mind not only with a conformity to quantified substance but
also with the readiness and facility to reason further concerning the order
of the arts of substance (96).

Similar to all knowledge and specifically to speculative science,
mathematics as a science consists in judgments which are the result of the
second operation of the mind and not of simple apprehension. The nature, ori­
gin, necessity and truth of these judgments, is, of course, a matter closely
allied to one's view on the nature of both science and mathematics itself (97).
For example, Plato, holding an innatist theory, laid the origin of the math­
ematical judgment in the process of recalling what had previously been known
i.e., a pre-existent contemplation of the world of Ideas, while the Pythagoreans
located the surety of mathematical judgments in their applicability to reality
itself. Descartes idealistically pinned the certainty of mathematical judg­
ments on the badge of clarity and self-evidence which they possessed, and
was forced to resort to an innatist view; while the British empiricists, imple­

(96) See, in this connection, Saint Thomas Aquinas' description of the
manner of procedure in total and formal abstraction and in metaphysics;
(98) See the following Chapter for a presentation of the role of reason­
ing in mathematical science.
(97) Émile Layerson, *Le cheminement de la pensee, 3 tomes, Paris: Felix
Alcan, 1931, Livre III, Le raisonnement mathématique, Chapitre premier, "Les
ning towards the extremes of the Pythagorean outlook, made reality itself the measure of the exactness of our mathematical ideas. For Immanuel Kant, the indubitable certainty of mathematical judgments was due to special categories of the mind which impressed the fluctuating impressions of sense, while for Comte the rival of the mathematical era was, in itself, the historico-sociological guarantee of their certainty. In the contemporary sense, this vacillation towards idealism or scepticism on the nature of the mathematical judgment is seen in logicism, intuitionism and formalism (96).

A rational solution to the origin and nature of the mathematical judgment is tended by viewing mathematics as an abstractive speculative science. Like all science and knowledge, the hallmark of mathematics arises originally by abstraction from the senses, though the preciseness of this point of origin may differ in manner for each individual (99). Those who have the mysterious and unknown combination of gifts which are called mathematical talent or genius, frequently require little previous experience with

(99) "Nous avons, d'autre part, pris a tache autrefois de montrer qu'en ce qui concerne leur nature intime, les etres qui sont sensibles comporser le rire de n tre perception directe celui dont le sens commun nous impose la presence quand nous ouvrons les yeux le matin, ne sont en rien differente de ceux des theories scientifiques, s'assimilent au contraire entierement a ces dernieres; le sens commun, en son ensemble, n'est qu'une premiere etape de theorie scientifique et philosophique, d'elaboration entierement inconscience, mais confectionee selon des procedes tres analogues a ceux que suit la pensee conscience, aussi bien en science qu'en philosophie." Emile Meyerson, pp. cit., Livre III, p. 358. Though experience is the point of departure for the formal abstraction of mathematics, it plays a suggestive and not a direct, regulatory role in mathematics. This notion will be briefly considered in the following chapter.
realms, or little tutoring to acquire the mathematical habit; in fact, one act of scientific demonstration may be sufficient. Others, who may even later become capable mathematicians, require a more close and more frequent liaison with the mathematical content of extra-mental reality, before the habit is induced within them (100). In all cases, however, pre-scientific knowledge and the use of the senses and the imagination are the principles from which mathematical abstraction arises; the speculative thinker who may adopt an idealistic or sceptical position in this regard is but denying the history of his own experience, and that of mathematics itself (101).

Since it is here claimed that mathematical judgments are neither pronouncements self-evident to the mind as in an idealist theory, nor yet merely such as to be verified only if applicable to reality, what is the mathematical judgment, and in what does its truth consist? It has been pointed out that unlike total abstraction, the formal abstraction of mathematics considers things as independent of sensible matter for being conceived, but dependent on intelligible matter; and that it is in the imagination that quantified substance is visualised as individual intelligible matter. The mathematical judgments, accordingly, terminate in the

(100) See the off-hand remarks of Henri Poincaré on this point in The Foundations of Science, Part II: Number and Magnitude, Chapter I, "On the Nature of Mathematical Reasoning," pp. 31-42.

(101) The main point on which we wish to insist is that mathematics is not innate or sheerly a self-creative affair; except for the views of absolute idealists, there is quite general agreement, it seems, that experience furnishes at least the point of departure for mathematics. In The Development of Mathematics, B. T. Y. Bell brings this point out in a number of places; see, for example, pp. 5-18, pp. 144-150, p. 190 and p. 194.
imagination, where their truth is seen to be resident in their capability of being imaginatively realised or actualised; once this has been achieved, and the judgment verified, a further validation is no longer necessary, and a more abstract formulation of the judgment may ensue (102).

The frequent statement that modern mathematics has shed intuitive appeals, seems, of course, to deny this reference to intelligible matter. However, as in the case of imagining non-Euclidean geometry, it must be recalled that the imagination and memory supply other images than visual. If I mention the delights of consuming a choice steak or the touch of a cool breeze on a warm, clammy night, such word images are sufficient for my statement to be understood, even though memory and imagination may, in the case of a steak, have taste or visual images or both, and in the case of a breeze, touch or visual images, or both (103). Consequently, in non-Euclidean terminology, when it is said that the "sum of three angles is greater than a straight angle" it is not necessary that this judgment be pictorially visualised and verified in the imagination just as it is not

(102) In "Invention and Description in Mathematics," Thomas Greenwood points out that this close dependence of mathematics on the imagination is especially seen in the process of invention and that the results of invention are, however, usually presented in a simple, logical form. See, in this connection, Henri Poincaré, *op. cit.* Art. 1, The Mathematical Sciences, Chapter I, "Intuition and Logic in Mathematics," pp. 210-222. For an expression of the traditional view on this matter, see Thomas Von Aquin, *op. cit.*, Quaestio VII, Art. 3, op. cit., pp. 63-64. Within the framework of speculative science itself, of course, the mathematician is free to set up mathematical criteria which must be fulfilled in order to validate the existence of mathematical entities; it is at this point that much of the current discussion on the foundations of mathematics is lodged.

necessary for the proposition of the sum of three angles equalling a straight angle (104). Or if I say that the first transfinite number is the number we have reached by summation of all denumerable infinities. I may attempt to illustrate this judgment with a line as continuum, but it is not necessary that this be done. In these cases, it is sufficient that the meaning of the words and symbols used be known, and that the order of the parts of substance be conceptually and imaginatively attainable, as being the ordinal character of quantified substance — the ultimate subject of attribution in these cases (105).

When it is asked whether there is a correspondence of mathematical judgments to extra-mental reality, it is clear from what has been said, that no one-to-one correspondence exists. Mathematics is not scientifically concerned with the determinate, extra-mental qualitative, quantity of individual things. This question, in fact, can best be answered by comparing its judgments with those of metaphysical science and with those of the philosophy and sciences of nature (106). In the latter two classes of science, a direct correspondence holds between the way things objectively exist and the way in which man utters scientific judgments upon them. For example,

(104) The frequent statement that a non-euclidean geometry cannot be imaginatively visualized seems to imply that the imagination is limited to visualizing in three-dimensional space. This seems to contain an implicit confusion of visual with imaginative representation, and an attribution of dimensionality to the imagination not consonant with its nature. Strictly speaking, according to such a view, one should not be able to "imagine" a uni-dimensional line or a two-dimensional plane.

(105) A good illustration of the close dependence of topology on the imagination can be found in Richard Courant and Herbert Robbins, What is Mathematics?, pp. 235-248. This section helps illustrate the remarkable capabilities of the imagination, as it representatively deforms and transforms mathematical natures.

(106) See, in this connection, the close analysis in Thomas Von Aquin, op. cit., Quaestio VI, Art. 1, c., pp. 55-61.
considering either the judgment that man is a matter-soul composite,
or the judgment that man is a rational animal in contrast to the judg-
ment that every part of a circle is equidistant from a point within called
the center, I see that the first judgment is in the first degree of abstraction;
it prescinds from the matter and soul proper to an individual man, knows the
specific nature of a man, and considers the nature as intelligible of inferiors.
In the second judgment, the metaphysical definition, the judgment terminates
in the intelligible as such without matter; we are emphasizing the immaterial,
though extra-mental points of intelligibility in man. In the mathematical
judgment, no extra-mental circle fulfills the definition; however, if we
prescind from sensible matter completely and consider form or quantified
matter, the circle can be conceived, defined and imagined as fulfilling this
definition in terms of intelligible matter alone (107).

Mathematical judgments, then, lying between those of metaphysics and
the lower sciences, are unique. In fact, the nature of the mathematical
judgment is such that it also lies between those of logic, which exclude
existence, and those of mere possibility which retain some inner relation
to existence; the mathematical judgment is indifferent to real, logical or
possible existence. While the habit of mathematical science is a perfection
of the mind as is any other scientific habit, the mode in which existence of
mathematical judgments is formulated, guaranteed and verified is unique.

(107) In the eleventh lesson of his commentary on the seventh book
Saint Thomas Aquinas explains the close analogy that obtains between the
definitions and judgments of the three levels of speculative science.
Mathematical judgments are in a universe, as it were, by themselves, for the mathematician treats abstract things as abstract (108). Yet, the subject matter of mathematics is not merely mind-made nor completely discovered in nature as we discover the properties of radium; the mind receives quantified substance from nature, and, aided by the past pre-scientific and scientific experience of the mathematician, induces mathematics with the aid of the imagination (109).

The intermediary position which the mathematical judgment holds between logical and possible being begets a propensity in the mathematician to reach out into both directions. On the one hand, mathematics, like all science, makes a rich use of the logical intentions which it reflectively forms from its consideration with the direct study of mathematical natures.

(108) "The mathematician cannot, however, take much satisfaction in this immunity from being proved wrong by the facts of nature, for the price of this immunity is that his science has no necessary application to nature. Mathematics has been so widely applicable is due to the fact that the postulates and axioms were first chosen in the light of what experience had disclosed nature to be. But mathematics itself affords no guarantee that the choice of postulates represents an absolutely correct description of the mathematical properties of nature to all times and places. The mathematician is on certain ground only so long as he stays within a closed system and asserts merely that his theorems follow from given premises without making any claim for the factual truth of those premises." Albert O. Humpcrger, Philosophies of Science, New York: F. S. Crofts & Co., 1942, p. 188; with the next sentence, however, the author concludes, "Mathematics is a purely analytical science."

(109) While mathematics is not to be viewed as an experimental science, it should be pointed out that being a science of quantified substance (abstracting from sensible qualities), it is a direct science, concerned with real and not logical being. This is pointed out well in the following quotation: "The mathematician, abstracting, does not consider a thing other than it is. For he does not understand the line to be without sensible matter, but he considers the line and its properties without the consideration of sensible matter; and thus there is no dissonance between the intellect and the thing, because that which is of the nature of line secundum rem. does not depend on that which takes matter sensible, but rather the converse obtains..." Thomas Aquinas, op. cit., Quaestio V; Art. 3, ed 1, p. 41.
within the imagination; it will speak of series of numbers and proofs of systems, which may appear to be as real to the mathematician as a number of an equation (110). The proximity of mathematical to possible being, on the other hand, and its intimate connection with sense experience, will tempt the mathematician to attribute an extra-mental reality to his conceptions and judgments. Ultimately considered, in fact, any true mathematical judgment or self-coherent mathematical system contains the inner possibility of being re-applicable, with varying degrees of success, to extra-mental qualified substance (111).

Truth, then, and the scientific characters of necessity, universality and certainty are not, for the mathematician, a matter of correspondence with

(110) The use of logical beings in the invention and development of mathematical science will be considered in the following chapter. It should be pointed out here, however, that dialectics (logico utens) plays a large part in mathematical inventiveness, development and demonstration, as it does in all speculative sciences. That in fact may at first appear merely to be a logical being in mathematics, will, in the course of time, turn out to be a mathematical being. In connection, for example, the frequent denomination of transfinite numbers or non-euclidean geometry as purely logical beings, is too hastily a generalization. It is here maintained that non-euclidean geometry is no more nor less real than euclidean to the mathematician, nor are transfinite numbers more or less real than imaginaries, irrationals or transcendentals. The main point at issue, it seems, is that thus far the mathematician has not as yet been able to give a mathematical demonstration of their existence, and the proof for the existence of these new mathematical entities is still in the dialectical stage.

(111) Probably because he has not a proper sense of mathematical abstraction from the view of metaphysics, Louis C. Kattsoff, in his fine summary of current theories on the foundations of mathematics, concludes: "From what has been said, it follows that there is no real distinction between pure and applied mathematics. Pure mathematics is pure only in so far as it can be applied, and applied mathematics can be applied only as it is pure. If we wish to keep such a distinction we might say that the pure mathematician is interested in mathematical propositions as tautologies, the applied mathematician in the non-tautological aspect of these same propositions." Louis C. Kattsoff, op. cit., p. 280; see also p. 250-253. The position which he here maintained is that the principles of quantified substance, having been scientifically ascertained by abstraction from mobile reality, are re-applicable to their ultimate source with a measure of success that is limited precisely by the addition of the principles of mobile being. See, in this connection, Thomas à Kempis, op. cit. Quæstio VII, Art. 3, ad 3, ad 6 and ad 8, pp. 41-42.
reality as such -- in its mobile being (112). Dealing with a realm of knowable natures and beings, mathematics is, in truth, a direct science; neglecting the qualitative changes and motions in extra- mental reality, however, mathematics construes its own world within the imagination which is modelled, through the architectonic art of the mathematician, on the real world from his past experience and creative insights. Consequently, the mathematical judgment is one to which the conformity notion of truth applies as an ultimate criterion; the mind becomes conformable to quantified substance in mathematical science (113). A more immediate criterion with which the mathematicians are largely concerned at present, is the coherence notion of truth; it is here, especially that the mathematician demands the notion of constructibility, or requires consistency, categorialness and interpretation of axiom-sets (114).

(112) "And similarly with regard to any one type of geometry; Euclidean geometry was never absolutely true in the sense in which certain philosophers conceived it to be, owing mainly, perhaps, to its seeming stability. Neither is it now correctly interpreted as a merely 'conventional' system of definitions, postulates, and their formal consequences, telling us nothing about the real nature of space. The truth lies between these extremes. The researches of mathematicians and other scientists are simply demonstrating that no one system of geometry can exhaust the richness of content included in the general field of their investigations. Old elements prove capable of entering into new and hitherto unsuspected relationships, and new elements are naturally brought to light in the same process of development." Harold .

Smart, op. cit., pp. 110-111.

(113) See the quotation from Saint Thomas Aquinas in footnote 109, above.

(114) For an introductory example of this notion, see Louis O. Kattsoff, op. cit., Chapter Fourteen, "The Structure of the Mathematical System," pp. 207-113 and Chapter Fifteen, "Formulational Methods," pp. 245-263. For a simple, introductory account, see John Wesley Young, Lectures on Fundamental Concepts of Algebra and Geometry, Lectures IV-V, pp. 58-60. It is possible, of course, to regard this study of consistency and categorialness as referring to the minimum requirements for dialectical propositions, a contention which will not be developed in this essay.
in these endeavors, the coherence notion of truth is a matter of setting up the minimum requirements for the admission of a mathematical conception, judgment or system; and, in this connection, it is obvious that not all of mathematics is certain, universal and demonstrable from the moment of its initial invention and that a long period of time may ensue before its scientific certainty is demonstrated (115).

The adaptability of the mind to mathematics, the readiness and facility with which it considers and reasons in this science, are likewise explicable by its intermediary position. Metaphysical science is difficult for the mind; joined as is the mind to sensible matter and dependent as it is upon the senses, the immateriality of metaphysics and its speculative distance from the world of the sense increase the difficulties of its acquisition (116). There are difficulties likewise in acquiring a perfect scientific knowledge in the physical sciences and in the philosophy of nature; the very things which we wish to know being immersed in mobility and materiality, speculative patience, detailed observation and renewed experience are required for knowledge of them (117). The sciences of politics, sociology and ethics, as well as the science of geology, physics and chemistry, only achieve increasing perfection and scientific status by a constant and studied concern with the very mobility and unpredictability of natural things themselves. Both difficulties are avoided in mathematics; on the one hand, mathematics

(115) As will be explained in the following chapter, it is here maintained that there is a dialectical tissue or periphery surrounding every science as the principal means by which science progresses. This fact, and the close connection of mathematical development on the imagination and the past experience of mathematician, has been aptly presented with regard to the development of the calculus in Carl B. Boyer's work, *The Concepts of the Calculus*, frequently referred to above.

(117) The whole history of these sciences of total abstraction bears out the fact that a constant rapport with extra-mental reality is a requisite for acquiring and for developing knowledge of mobile being.
does not achieve complete immateriality as does metaphysics, while, on
the other hand, though experience is necessary and frequently helpful,
it is not the minute and studied observation of mobile things in their
very mobility. In fact, the mathematical natures are most knowable in
themselves and also most knowable to us; we have induced them within
our imaginations and exercise a quasi-creative control over them (118).
Having once adequately determined the nature of mathematical entities,
we can, with the aid of a few principles, exhibit their inner coherence
by showing how they follow from a minimum number of principles (119).

The metaphysical view of mathematics as a speculative science arising
from abstraction, consequently, opens to view a new scope for what is commonly
called mathematical philosophy and which is more properly termed the philosophy
of mathematics (120). Disagreeing with the simplistic answer of "mind" offered
by idealists who would make a divine of human mathematics, and with the uninteresting reply of "impression" offered by empiricists who would reduce human to animal mathematics, the metaphysical answer afforded by mathematical abstraction is complex. But in its very complexity, in its insistence on the many relations which bind mathematics to reality, to other sciences and to the mind, in its insistence that the truth can be known and in its humble confession that there is much that is yet unknown, the nature of mathematics as an abstractive science opposes any conception of mathematics as regressive or static and insists on the progressive and dynamic view. Man the mathematician, in this view, does build up mathematics because of pragmatic needs, of demands from other sciences and from various other occasional stimulants; at the same time, by pointing out that the laws of mathematical thought derive from those of mathematical being, by insisting that mathematics is concerned with a definite content and that the mathematician does and has attained speculative mathematical truth, and by pointing out that there are other sciences and cultural endeavors open for speculation and enjoyment — the view of mathematics within the hierarchy of sciences and within the wider domain of human endeavor sets no limitations or bounds to human mathematical effort (121).

The interesting complexity and manifold relatedness of the philosophy

(121) One of the reasons why an abundance of speculative confusion obtains in current discussions on the foundations of mathematics is the neglect or denial of other sciences. If psychology, logic and metaphysics are not admitted to be genuine sciences and a mere mathematical analysis of mathematics is attempted, speculative confusion and error is unavoidable. Any reflective or speculative consideration of mathematics is metaphysical — it is a further abstraction on mathematical abstraction itself.
of mathematics is pointed up when we compare the universe of mathematical discourse with that of metaphysics and the lower sciences. The role of similitudes and analogies is both important and significant. Natural things, for example, which are studied in the first degree of science are composed of matter and form; through the aid of efficient and final causality, the realm of sensible matter is constantly shifting and changing. The mathematician, though, is not concerned with existence, with what comes to be or passes away; for, in relinquishing sensible matter, he has abstracted also from efficient and final causality, retained a mere likeness of material causality and is mainly concerned with formal causality (122). Yet the likeness to natural things are striking and readily deceitful. As there are many men under one species, so there are many triangles under the one species of triangle, many figures and groups, rings and ideals (123). In fact, intelligible matter plays the part of the material element in

(122) "...to act and to be acted upon does not pertain to beings as they exist in our consideration, but rather as they are in existence. The mathematician, however, considers abstract things only according to his consideration, and thus those things, to the extent that they are under the consideration of the mathematician, cannot be the principle and the term of motion; consequently, the mathematician does not demonstrate through efficient or final causes..." Thomas Von Aquin, op. cit. Question V, Art. 4, ad 7, p. 61.

(123) "There are some forms which, though not needing matter under the determined disposition of sensible qualities, nevertheless require matter existing in quantity -- as a triangle, a square, and similar things -- and these are called mathematical; they abstract from sensible matter, but not from intelligible matter, inasmuch as continuous quantity, abstracted from any sensible quality, remains within the intellect. Thus it appears that as natural things have form in matter, so do mathematical things; because of this, both in natural and in mathematical things there is a difference between the thing and that which it is; consequently, in both there are found many individuals under one species. For just as there are many men under one species, so there are many triangles under one species." Saint Thomas Aquinas, In III Ethicorum, Lect. VIII, p. 708.
mathematical conceptions and definitions analogous to the role of sensible matter in the first degree (124). Though mathematical natures are not generated and do not, strictly speaking, come into being or exist in a state of becoming, there is a fanciful resemblance in the imaginary movements and qualitative states which characterize THE mode of existence to that of the world of natural things.

The fact that there are no singular things in the mathematical realm but merely individual resemblances, indicates another unique property of mathematical science. The mathematical natures, though not capable of extra-mental existence as such, are not merely fictitious; it is the natural state of mathematical natures to be so abstracted and abstractly considered and mathematical natures are still one nature and not merely one rationis (125). Without adding anything further to determine or individualize it, a particular circle of any kind may be considered the universal circle and retains all the properties of circle as such. Consequently, in mathematics the general cases hold alike for the special; and, once mathematical natures have been properly denominated and understood, we are able to deduce the special cases from the universal formula (126).

(124) Saint Thomas Aquinas, In VII Metaphysicorum, Lect X, assim. This whole lesson should be consulted as a source for Saint Thomas Aquinas' philosophy of mathematics.

(125) There seems to be a tendency in those who speculate within the bounds of traditional philosophy, to attribute a merely logical being to such mathematical natures as have recently been invented. It is here maintained that though these are mathematical beings — exist realia — mathematicians as yet do not sufficiently understand their mathematical nature, and are only capable of establishing them dialectically.

(126) Thus we can proceed from a general mathematical formula, — for example, from the formula of a curve of the second order, — to the special geometrical forms of the circle, the ellipse, etc., by considering a certain parameter which occurs in them and permitting it to vary through a continuous series of magnitudes. Here the more universal concept shows itself also the more rich in content; whoever has it can deduce from it all the mathematical relations which concern the special problems not as isolated but as in continuous connection with each other, thus in their deeper systematic connections. The individual case is not excluded from consideration, but is fixed and retained as a perfectly determinate step in a general process of change. *Ernst Cassirer, Substance and Function and Einstein's Theory of Relativity, authorized translation by William Curtis Swaby and Marie Collins Swaby, Chicago: Open Court, 1925, p. 20.*
As mathematics increases in abstractness, it likewise increases in
generality, and the more universal mathematical nature is also more
rich in deductive content; from the formulation of higher forms of space,
the nature of Euclidean space is more clearly understood. Similarly,
from the formulation of transcendental and transfinite numbers, the nature of
mathematical number itself is clarified. Mathematics, dealing with abstract
things as such, naturally gravitates and develops towards increasing
abstraction (127).

In the multiplication of mathematical forms in the potential continuum
of intelligible matter, we can distinguish the thing — the imaginative
presentation of a parabola or line-segment — from what it is, its nature (128).
The mathematical nature is treated as if it were a substantial thing; we
attribute qualities to it, and subject it to various types of mathematical
operations and actions. Mathematical actions likewise bear but a furtive
likeness to other actions; extracting roots, multiplying, inbedding numbers
in the mathematical continuum, making a set dense — while they are physical
actions of man's mind and imagination — considered in their nature as multiplying or dividing are merely actions by a kind of similitude (129). Even
the use of potentiality and infinity in mathematics is analogous (130).

(127) See, in this connection, Alfred North Whitehead, Science and the
as an Element in the History of Thought," pp. 28-54.
(129) "For those things which obtain according to number, are not actions
except according to similitude, as to multiply, divide and others, as has already
been said in other places, namely, in the second book of the Physics,
where Aristotle shows that mathematics abstracts from motion, and consequently
there cannot be in them actions of this kind, which are according to motion.
Saint Thomas Aquinas, In V Metaphysicorum, Lec. 17, n. 1024.
(130) Ibid., In VIII Metaphysicorum, Lec. 1, n. 1774.
The infinity of points that I mathematically discern between zero and one, or the equivalence of geometrical systems or sets of postulates, are indicative of how metaphorically, imaginatively and quasi-creatively man is able to order and bring forth the mental universe of mathematical discourse.

The very analogy, metaphoricalness and similitude of this mathematical world, however, betrays both its dependence on and distinction from sense data, physical science, the philosophy of nature and metaphysics. The mathematician could not speak of the density of sets, of the inclusiveness of a group or ring, of the higher order of a differential equation, had he not himself learned and borrowed the meaning of density, groups and orders from his own previous experience of the universe. Nor could the mathematician respond to questionings on the validity of his mathematical actions and operations, unless he had recourse to some metaphysical and ultimately defensive doctrine.

The mathematical universe, though apparently forming a world of thought unto itself (131), occupies a median position within the field of speculative science. Above it lies the metaphysical realm of more perfect knowledge and of knowledge more satisfying in itself; for metaphysics by achieving immateriality as such, attains the very being of reality. Inasmuch as the ultimate determinations of the nature of mathematics are metaphysical, the mathematician is subject to metaphysical truths. In his multi-dimensional questionings on the nature of his science and in

(131) Aristotle, *Metaphysics*, 1076a 6-1076b 6. In this passage, Aristotle is concerned with determining the precise meaning in which mathematical objects can be said to "exist."
his very operations and reasonings as scientist, he makes frequent admission, at least by implication, of this metaphysical supremacy. Whenever he questions the difference between continuity and discreteness, the ultimate validity of geometrical reasoning, the origin of the natural numbers or number as such, the nature and types of infinite -- the mathematician is concerned with the very being and nature of his science.

The mathematician exercises a similar hegemony over the group of sciences in the first level of abstraction. Since his main concern is the study of quantity under the relations of order and measure, the mathematician is rightfully an authority in any domain where the quantitative is concerned. He has made a science, a wisdom, and an art of dealing with quantitative, to which the first level of science, interested as it is in knowing and adjudicating things in their mobility and materiality, looks for means of determining and dealing with the quantitative as invested in change and matter (132).

(132) "...Whatever impossibilities hold concerning mathematical bodies, necessarily hold for natural bodies; this is so because mathematical things arise through abstraction from natural things; mathematical things, however, are related oppositely to the mathematical (for they add sensible nature and motion to them, from which mathematical beings abstract); and thus it is evident that those things which hold of mathematics are preserved in natural things, but not the converse. Consequently, whatever inconvenient reasons are against mathematical beings are also against natural, but not the converse." Saint Thomas Aquinas, In III De Coelo at Mundo, Lect. 3, n. 4. In The Degrees of Knowledge, Jacques Maritain seems to argue that the philosophy of nature governs mathematical concepts; see p. 30, and Part One: The Degrees of Rational Knowledge, passim.
Chapter X. Mathematical Abstraction and Contemporary Mathematics.

History testifies to the fact that many philosophers, by introducing current mathematical proposals or supposedly certain mathematical statements as illustrative or confirmative of their doctrine, were sometimes required for this obeisance by a later condemnation (1). In fact, a mathematical condemnation of this sort is frequently viewed as being both a demonstration and an adequate refutation of the falsity of the philosophical proposals. In this apparent process of refuting philosophical teachings, however, there is not only found a certain amount of precipitancy in judging the whole philosophical system by some casual, illustrative example, but also a certain species of scientific dogmatism which may actually involve an uncertain, unproved or incompletely understood proposition (2).

(2) Writing about the new system of logic which was inaugurated with Russell and Whitehead's Principia Mathematica, Leon Chwistek maintains:

"When this new system is completely worked out, we will be able to say that we have at our disposal an infallible apparatus which sets off exact thought from other forms of thought.

The old dreams of the logicians concerning a consistent logical apparatus will no longer be a mirage. Just as we have calculating machines, in time we will have the apparatus necessary to derive the general theorems of semantics.

However, I think that there is no reason to wait until this ideal has been achieved.

The very confirmation of such a possibility offers weapons which are adequate to combat the attacks of the anti-rationalists and to free us from any possibility of attack by them.

A science which is based upon an infallible system of logic and which involves no irrational assumptions will be able to fulfill the mission towards society which Professor Matanov requires of it.

Such a science will not fall into error and will not be brought to a standstill as a result of its own illusions.

Such a science will be able to say to the nations: Construct new concepts if nothing else, but guard against operating arbitrarily with them." Leon Chwistek, The Limits of Science, pp. 22-23. Chwistek's whole book should be consulted as an instance of a defense of mathematical logic and as an example of an attack, sometimes virulent, against all other systems.
I may say, for example, that mathematics and logic are identical, and, on the basis of this postulated position, believe that I am able to refute all previous philosophical analyses of mathematical problems (3); at the same time, my very position or the scientific statement I employ as the measure of all truth, may itself be unproved or, perhaps, even incapable of proof (4). The error of Immanuel Kant’s philosophical position, for instance, is not at all pointed out by showing that his notion of absolute space is now mathematically untenable, though this may be employed as a confirmatory argument (5). The mathematician is not, as has frequently been pointed out, concerned with philosophy in his capacity as mathematician. Consequently, the philosophical error of Kant can only be

(3) This dogmatic position was adopted by Bertrand Russell, and expounded in a number of his writings, especially in The Principles of Mathematics; it is, further, the position of Leon Chwistek and others. F. E. C. Northrop, for example, in The Logic of the Sciences and the Humanities (New York: The Macmillan Company, 1947), substitutes logic for metaphysics throughout the book, with speculative fiction as a result.

(4) The supposed identity of mathematics with logic is slowly losing adherents. For a recent, thorough discussion of logicism and its metaphysical implications, see Andre Darbon, La philosophie des mathématiques.

(5) As has been pointed out in Chapter VIII above, metaphysics, mathematics, the philosophy and the sciences of nature are mutually harmonious and closely related. All these sciences are concerned, in their own ways, with true, scientific knowledge of extra-mental reality. Contradictions and disagreements between them are generally explicable by our inability, in a given historical period, of scientifically demonstrating the certitude of the truth we possess. Hence, conflicts between metaphysics and science cannot be real, but merely apparent. In this connection, one should not be speculatively precipitate and expect to garb each new, scientific proposal with philosophical adequacy.
refuted on philosophical grounds by showing, among other points, the error of his fundamental postulate of an a priority of categories in the mind. Similarly, to cast out Aristotle's, Descartes' or Leibniz's philosophy on the basis of some inaccurate mathematical statements is merely indulging in speculation which is dictated by an unprovable assumptions; science and mathematics are the determinants of what is true (6).

Consequently, it is not the aim of this chapter to support or to establish the metaphysical conclusions that have been offered by giving them a mathematical blessing, nor to attempt the even more difficult task of establishing a minute correspondence of metaphysics to mathematics (7). The present chapter, rather, aims to show an inner, basic harmony between metaphysics and current directions in mathematics and in the philosophy of mathematics. In this attempt, the general truths of metaphysics and the truths particularly relevant to the nature of mathematical abstraction serve as speculative guides in ordering the content and discussing the nature of the multiple questions which lie between the disputed frontiers of metaphysics and mathematics.

It should be noted, in passing, that the pronouncements of even great mathematicians on the method or on the nature of mathematics are to be judged on their own merits rather than on the authority from which they

(6) In his most recent book, Human Knowledge: Its Scope and Limits, Bertrand Russell proposes a philosophy which takes as its point of departure the commonly accepted scientific knowledge of our times; see "Introduction," pp. xi-xvi, and Part One: The World of Science, Chapter I, "Individual and Social Knowledge," pp. 3-8.

come (8). The common intellectual disease of requesting and subsequent-
ly venerating philosophical, religious and sociological pronouncements
from mathematicians who may have had no previous training in those fields
is, no doubt, incurable (9). However, as one naturally patronizes and
trusts a doctor for medical treatment but not necessarily for the history
of physics, so it is proper to judge metaphysical pronouncements both with
regard to their source and on their own merits (10).

(8) "No more than any other man does the scientist see himself think-
ing. Doubtless, if he has peculiarly powerful gifts, he may succeed, by a
slow and patient analysis, in sometimes recognizing the true path which his
thought has followed; but the fact of being a scientist, even a great
scientist, has nothing to do with it. Indeed, the distinctive quality of
a great scientist is a powerful scientific instinct, a sort of divination
which allows him to touch the high places only. The discovery, it has
often been noticed, comes to him suddenly—after long labor, of course; it
is a flash, a revelation: is it astonishing that he has not been able to
trace its genesis? And so it follows that we must not look to the scien-
tist for the principles which have really guided his thought; we must not
even believe him on his word when he tries to state them. He may have dis-
covered these principles in almost any other way than by a patient analysis
of his own thought. He has most often found them already fashioned in some
book; they penetrated him without his knowledge, because they pervaded the
intellectual atmosphere surrounding him." Emile Meyerson, Identity and Rea-
ality, p. 387.

(9) "This explains how one can go astray in searching for the prin-
ciples of science, even on the supposition that one is following closely the
scientists; their methodical ways are cheerfully accepted, without question-
ing whether the aforesaid methods had ever really been applied by the scien-
tists themselves." Ibid., pp. 387-388.

(10) No one has succeeded in pointing this out as well as Emile Mey-
erson in his historical-critical works. A study similar to that of Meyerson's,
though concerned only with mathematics, is Pierre Boutroux, L'Ideal scien-
tifique des mathématiciens (Paris: Felix Alcan, 1920); Boutroux, however,
offers some conclusions from his study with which it is difficult to agree.
The search for the unity of mathematics (11), a popular theme today, is akin to the search for the unity of any particular science, or of science in general. What we seek in our questionings on the unity of science is a principle of unity and of diversity; the principles must help to order the diverse parts of the science, and, at the same time, serve as the measure of both the perfections and limitations of the science, thus enabling us to adopt or discard matters, questions, problems, theories and judgments that are relevant or alien to the science itself. In their quest for the unity of mathematics, thinkers have been led to logic (12), to language (13), to symbolism (14), to intuition (15), to

(12) “En s'attachant ainsi chaque fois, non pas à la quantité des éléments, mais à l'existence ou à l'armature des êtres que l'on compare, on découvre ainsi entre le fini et l'infini des analogies de structure et des adaptations réciproques, d'où il ressort que l'unité des mathématiques est essentiellement celle des schémas logiques qui président à l'organisation de leurs édifices. Nous retrouvons ainsi des considérations qui rejoignent celles que nous avons développées dans notre these principale. Notre *Jas, es sur les notions de structure et d'existence en mathématiques* tend en effet à montrer qu'il est possible de retrouver au sein des théories mathématiques, des idées logiques inscrites dans le mouvement même de ces théories.” Albert Lautman, *op. cit.*, pp. 57-58.

(15) Quite a number of mathematicians and philosophers refer to “intuition” as a species of ultimate for mathematics, without accurately designating what the term means. This seems to be a mysterious answer or, at the least, a confession of facing an insoluble problem or of ignorance.
the natural numbers (16), to order (17), to the mind (18), and to reality itself (19); and, in all of these directions, a partial unity has been found (20). The problem of the unity of mathematics, however, approached through the insights offered by mathematical abstraction, is ultimately seen to reside in the notion of quantified substance. With this principle as the main guide, an attempt will be made, first, to point out the unity of the nature of mathematics; second, to illustrate this unity in the origin and development of mathematics; third, to correlate this unity with the logic of mathematics.

The nature of mathematical science is unified and specified by its ultimate subject matter, quantity, or the order of the parts of quantified substance. The historical development of mathematics (21), and the

(16) A short sketch of the adherents to natural numbers as an ultimate for mathematics, is found in Leon Chwistek, op. cit., Chapter III, "The Development of the Concept of Number," pp. 53-68.

(17) See the important part that the conception of order plays in Bertrand Russell, The Principles of Mathematics, Part IV: Order, pp. 199-256.

(18) The denomination of mind as the ultimate, unifying principle of mathematics generally stems from idealistic philosophy which conceives of the mind as somehow "creating" mathematics ex nihilo. See, for example, James Byrnie Shaw, op. cit., pp. 144-148.

(19) Reality is designated as the unifying principle of mathematics by empiricist-minded speculations which would, for example, even make geometry a physical science.

(20) It should be pointed out, again, that man as mathematician has a rightful concern with strictly mathematical ultimates. Objections arise only when these mathematical ultimates are given a metaphysical status.

(21) If the distinction between mathematics and the philosophy of mathematics is granted, then the history of mathematics can be seen to polarize about the notions of quantity, continuity and discreteness, number and form — on the ordering of the parts of quantified substance. See, for example, the remarks in J. T. Bell, The Development of Mathematics, Chapter I, "General Prospectus," pp. 5-24, or the remarks in Felix Klein, Elementary Mathematics from an Advanced Standpoint. Volume I: Arithmetic, Algebra, Analysis, pp. 6-16 and pp. 77-88.
testimony of mathematicians themselves (22), illustrate and help to confirm the consonance of mathematics itself to the metaphysical position on its nature. From the extra-polated view of mathematics which metaphysics affords, the alternating stress on number and form, the search for new methods and algorithms for treating number and form together or separately, are viewed as being a conflict intrinsic to the nature of quantity itself (23).

The unity of nature resident in mathematics requires not a static, but a developmental and dynamic unity which can account for the diverse considerations and emphases in the history of mathematics. It is sometimes contended that there is a dichotomy of some sort between ancient or classical and recent or modern mathematics (24). Note merely refer-

(22) One must likewise distinguish the mathematician proper from the philosophizing mathematician to see the full effect of this claim. There are, literally, hundreds of mathematicians who are concerning themselves with arithmetic, geometry, the calculus, and the various branches of mathematical investigation into continuous or discrete quantity. Historians of mathematics, mathematical congresses and mathematical journals are cumulative evidence of what mathematics is concerned with in its existential status today, as well as in the past.

(23) The opposition of formal principles exhibits itself in the science of mathematics as well. Ever since Pythagoras, this science has been facing the issue between continuity and discontinuity. This issue has exhibited itself in different theories on the relation between geometry and arithmetic. At different times in the history of science one of these sciences has been supposedly reduced to the other. In the modern world, the tendency has been to reduce geometry to arithmetic. But the reductions have never been decisive. F. C. N. Northrop, Science and First Principles, p. 241. Some view this conflict as being inherent in, and as an expression of occidental or oriental culture. See, for example, Oswald Spengler, The Decline of the East, Authorized translation with notes by Charles Francis Atkinson, 2 volumes, "New York: Alfred A. Knopf, 1928, Volume I, "Introduction." Spengler holds that the occidental mind emphasizes form and the oriental, number.

(24) The announcement of a new mathematics is usually accompanied by remarks which belittle past conceptions of mathematics as being somehow concerned with quantity. Alfred North Whitehead has been one of the able defenders of this new view; his proposals are summarized in The Philosophy of Alfred North Whitehead, Volume III: The Library of Living Philosophers, edited by Paul Arthur Schilpp, Evanston and Chicago: Northwestern University Press, 1941, "Whitehead's Philosophical Development," by Victor Lowe, see pp. 18–68.
ring to the fact that historians date the period of modern mathematics as having been initiated through the introduction of analytical geometry and the calculus, this conception of mathematics seems to imply either two mathematics, or that a new mathematics has been invented to supersede the old. As has been previously indicated, it is here maintained that the Greeks founded mathematics as a science; its consequent development and expansion are but evidence of a deeper understanding and clarification, on the part of man, of the science of quantity (25). If the unique nature of the judgments of mathematical abstraction had been properly understood by previous mathematicians and metaphysicians, there might possibly have been no misunderstanding concerning geometries of various dimensions of different methods in algebra, as there is no present need for doubting the reality of transfinite numbers. These inter-scientific clashes, however, may be beneficial to the scientists concerned and prevent misguided reasoning, loose terminology and extreme speculative statements; in this way, for example, the judgments of pure mathematics, though closely aligned, in their initial invention, to experience and to practical mathematics, eventually are seen to be capable of an abstract formulation, and generally such a formulation is fashioned (36).

That ancient and recent mathematics are but earlier and later manifestations of a unified mathematical science can be discerned by comparing

(25) In his Differential and Integral Calculus (translated by R. J. McShane, new revised edition, 2 volumes, New York: Interscience Publishers, 1946), Richard Courant points out that elementary or ancient mathematics is characterized by its association with and proclivity for geometry, whereas modern mathematics, besides having benefited by new methods, emphasizes number; see Volume I, pp. 1-5.

(26) This is the basic thesis of Carl B. Boyer's The Concepts of the Calculus; see his discussion in Chapter I, "Introduction," pp. 1-13.
them first, with respect to content, and second, with regard to method. The content of mathematics for the ancients included arithmetic, euclidean geometry, number theory; in addition, they had the essential elements of trigonometry in the conic sections and, in Archimedes especially, a rudimentary calculus (27). It is evident that the content of mathematics has immeasurably increased. This development, however, has not been of such a nature as to demand a new definition of the science in the sense that it no longer deals with quantity, but has become, instead, the logical deduction of premises of any sort, or the free and completely unlimited domain of human creativeness.

It is possible, in fact, to regard the content of ancient and recent mathematics reductively as being ultimately arithmetic — or reducible to the nature and to the science of discreteness; or, ultimately geometric — or reducible to the nature and to the science of continuity (28). In this view, more advanced branches of mathematics are elaborations or combinations of these two fundamental sciences. The striking differences between

(28) In the article, "L'Architecture des mathématiques: la mathématique, ou les mathématiques?" (in Les grands courants de la pensée mathématique, présentes par P. Le Lionnais), Nicholas Bourbaki writes: "Bien que plus actuelle que jamais, il ne faudrait pas croire que cette question soit nouvelle; elle s'est posée presque des les premiers pas de la science mathématique. C'est qu'en effet, même en négligeant les mathématiques appliquées, il subsiste, entre la géométrie et l'arithmétique (du moins sur leur aspect élémentaire) une évidente dualité d'origine, celle-ci étant initialement science du discret, celle-là de l'étendue continue, deux aspects qui s'opposent radicalement depuis la découverte des irrationnelles." p. 36. See, in this connection, the collection of statements on arithmetic, algebra and geometry in Robert Eduard Moritz, Memorabilia Mathematica, Chapters VII-VIII, pp. 261-321.
modern and previous mathematics is to be explained especially by the
invention of new methods, of a more perfect and supple symbolism, and
of an increased comprehension of the nature of continuity and discrete-
ness (29).

By relinquishing sensible matter, all the branches of mathematics
lie on the same level of abstraction; they are all concerned with abstract,
quantified substance. Two specifically distinct sciences, however, by
considering quantified substance as continuous or as discrete, comprise
the unified corps of mathematical science. This bifurcation of quantity
into the two irreducible types of arithmetic and geometry is based on the
very nature of quantity itself as given in mathematical abstraction. Since,
in mathematical abstraction, the laws of mathematical being are given to
the mind, the mutual irreducibility of these two branches of mathematics
resides, in last analysis, in the very nature of reality itself (30).

Of the two sciences, arithmetic is commonly credited with achieving
a higher type of immateriality, for discrete quantity is, by its very na-
ture, more determined, while continuous quantity is more indeterminate and
potential (31). With continuous quantity there is given to the mind a sub-
ject which has an infinite potentiality for determination within its very

(29) J. T. Bell, The Development of Mathematics, Chapter I, "General

(30) Louis de Broglie has insisted on this irreducible character of
the continuous and discrete in physics, mathematics and other sciences; see
his Matter and Light: The New Physics, Translated by H. H. Johnston, New
York: Dover Publications, 1946, Part V: Philosophical Studies on Quantum
Physics, pp. 217-272, and his article, "Le rôle des mathématiques dans le
développement de la physique théorique contemporaine," in Les grands cou-
rents de la pensée mathématique, présentés par F. le Lionnais, pp. 398-
412.

(31) Aristotle, Posterior Analytics, 87b 31-35.
nature; that which is continuous may be construed as a line, plane, or even a multi-dimensional domain (32). The discreteness of number, however, though it can be increased ad infinitum, is a potential infinity which is more properly viewed as lying outside the number being added to or increased, as is the case, for example, in transfinite numbers which can be viewed as groups of numbers determinately given (33).

Number, then, as a determination of discrete quantity, is definite and determined, while continuous quantity, though determined to a certain extent as form, contains an intrinsic indetermination in its very nature. This enables us to understand why it is that arithmetic is, in a sense, less dependent than geometry on the imagination. Though phantasms are needed to represent the conceptions of both, almost any phantasm qualifies to represent a number, whereas a specific phantasm is required to represent a parabola, a triply-connected domain or a torus (34). The indetermination of continuity in comparison to discreteness is emphasized and supported by the fact that geometry has more of the qualitative attached to it (35); in fact, it may readily be that this indeterminateness and qualitative character of geometry explains why geometry is sometimes regarded as a physical

(32) For a mathematical and philosophical presentation of geometry similar to the view adopted here, see Thomas Greenwood, *Essais sur la pensee geometrique*, Ottawa; Les editions de l'Universite d'Ottawa, 1943.

(34) This is not meant to deny the possibility of giving a formal definition to those geometrical entities; it is maintained here, however, that a definition of a mathematical entity or subject must be given under some form of intelligible matter -- surface, line, plane, and so forth, or continuity itself.

science of real space, and further explain how philosophers in the past have not credited it with the more perfect exactness of number (36).

Since these two sciences are specifically distinct and irreducible, in a sense, they may have their own principles, use their own methods and ask their own questions, for their opposed nature is rooted within the very nature of quantity itself. At the same time, since quantity is the ultimate subject of consideration, the methods of the one can be successfully and fruitfully applied to the other; even in this case, the methods of arithmetic are more readily applicable to geometry than the converse. The merit and utility of analytical geometry resides more in the fact that figures can be dealt with by numbers than the converse. To the mathematician who, we might say, is more "physical" minded and who for many reasons prefers geometry precisely because it relies more on the imagination, the study of continuity will be preferred to that of discreteness (37).

Recognition of the primacy of arithmetic over geometry, of number over the continuum follows not only from the metaphysical considerations of quantity, but can likewise be gleaned from the actual development of mathematics (38), and from the testimony of mathematicians themselves (39). The present, pronounced emphasis on number and the recognition of its priority, however, is matched with an equal recognition of the importance of the con-

(36) Émile Meyerson, Du cheminement de la pensée, Livre III, pp. 296-306.

(38) This notion of preference for one aspect of mathematics than another is probably based on hereditary, environmental and psycho-physical factors. Henri Poincaré has given some attention to this problem in The Foundations of Science, pp. 219-222, and Pierre Boutroux's Ideal scientifique des mathématiciens strikingly illustrates this preference for various branches of mathematics as well as for analytic, synthetic, deductive and inductive methods of presenting mathematical science.

(39) For a short summary of some of these opinions, see Leon Chwistek, The Limits of Science, Chapter III, pp. 53-55.
tinuum as a mathematical ultimate (40). The alternating stress on either of these two aspects of quantity illustrates the speculative dependence of mathematics on metaphysics; mathematicians of both past and present, frequently have recourse to metaphysical considerations for a more accurate determination of their conceptions (41). An interesting instance of the dependence of mathematics on metaphysics is illustrated in current discussion on the nature and origin of the "natural" numbers, which have been frequently signalized as mathematically ultimate. The speculative confusion which is presently attached to these discussion, however, can be partially cleared by recognizing that though mathematics deals with numbers, it only considers them as elements of mathematical abstraction. The natural numbers, in the mathematical view, are no more nor less real than transcendental numbers, equations, or complex roots. Before the mathematician abstracts, he has already learned to count with numbers; consequently the numbers with which man counts and the counting process itself are not given to children or to mankind by the mathematician, but the converse obtains. For it is on the basis of previous experience that the existence of mathematical numbers are ascertained and further developed in the scientific process.

(40) See, for example, the article by Kurt Gödel, "What is Cantor's Continuum Problem?" (The American Mathematical Monthly, 54 (1947), pp. 515-525, where the author shows the present points of tension between number and the continuum.

(41) Mathematicians, of course, will deny that any recourse to metaphysics is ever made. In questioning the ultimate origin of the natural numbers or the continuum, however, and in lodging these notions in logic or in attributing some sort of pre-existence to these numbers, mathematicians are seeking extra-mathematical answers which can only be supplied by metaphysics.
of mathematical abstraction (42).

The other issue of comparison between ancient and recent mathematics is that denominated by method. It is here, especially, that mathematics has made undeniable and significant progress which, besides improvement in notations and symbolism, includes the methodology of analytical geometry, the calculus, and the recent introduction of mathematical logic as an aid in formalizing and facilitating mathematical operations (45). Notable improvements in method are generally accompanied by an increased understanding of mathematical abstraction, even though the individual mathematician who fosters a major advance in method may not be reflectively conscious of this fact. At the same time, though new methods increase the extensive domain of mathematics as well as clarifying its content (44), they are not sufficient in themselves to alter the nature of mathematics; properly viewed, in fact, they but enhance its unity as the science of dist-

(42) Number for the mathematician is a mathematical being; consequently mathematical numbers lie on the second level of abstraction. At the same time, the mathematician, before he engages in mathematical abstraction, has already learned how to count and has been given the so-called "natural" numbers in this way. All the mathematical numbers which are developed arise from mathematical abstraction with the help of various insights and experience of all sorts. This dependence of science on pre-scientific experience has been brought out, partially, in Bertrand Russell, Human Knowledge: Its Scope and Limits, pp. 237-239.

(43) A fine study of the advances in mathematical method, especially emphasizing notation and symbolism, is Florian Cajori's A History of Mathematical Notations.

(44) For example, the recent success of formalizing much of mathematics can be regarded, quite accurately, as pointing up the character of formal causality proper to mathematics. These discoveries in method have clarified the content and increased the extensive domain of mathematics can be seen from a consideration of the quick development that followed the introduction of analytical geometry and the calculus; their methodology was instrumental in revealing hitherto unknown curves and relationships between number and form; see C. T.bell, The Development of Mathematics, Chapter 7.
One of the first differences of method usually emphasized as differentiating recent mathematics is its freedom from imaginative schemes, diagrams or constructions. This freedom from constructibility, however, is a claim made from the logicist or formalist view, and is inescapably connected with the doctrinal position of each of these schools — their denial of content to mathematics and their over-emphasis on the formal nature of mathematical reasoning. In opposition to logicism and formalism, intuitionism has insisted on the connectedness of mathematics with constructibility, and has contributed greatly towards a renewed consideration of mathematical method and rigor, especially in the current researches on the mathematical infinite (45). Mathematics of all times is heavily indebted to imaginative construction and schematic representation in its very nature, its development, process of invention and in teaching; it is to the merit of intuitionism that it has re-emphasized the connectedness of mathematics to pre-scientific experience and to psychology (46). In connection with constructibility, it should be pointed out that it is not quite true to say that the ancients used the synthetic method in contrast to the present emphasis on analytical methods; here, again, the history of mathematics and current practice show the employment of both methods freely (47).

(47) See in this connection, the study of Pierre Boutroux, L'ideal scientifique des mathématiciens. Boutroux studies the remarks which mathematicians themselves have made on mathematical methodology and on the nature of mathematics. He points out how one mathematician may merely prefer — an inexplicable fact — the analytic to the synthetic method, and how differently mathematicians have attempted to define each of these methods.
The closeness of early mathematics to experience and to practical needs has not been changed at all in recent mathematics; if anything, this close and suggestive relation of origin in experience, and the sphere of applicability to nature has immeasurably increased and helped further mathematical development (48). At the same time, the school of formalism has helped to stress the nature and use of deduction in mathematics, as well as the importance and fertility of symbolism and formal causality in mathematical demonstration. Though all the sciences deal with formal causality, their concern with material, efficient and final causality is not found in mathematics except analogously, and the notion of formal cause in mathematics is viewed as universal in itself and as having a deducible content. Once a given perfection has been achieved in mathematics, one can rearrange the order of invention into a logical order where the whole mathematical content or system is viewed as flowing from a few principles. This logical presentation of results, however, is but methodical; it need not be adopted except for purposes of rigor, logical coherence and mathematical elegance (49).

Differing not in ultimate content but mainly in method, ancient and recent mathematics exhibit the structural and developmental unity of the science concerned with ordering the parts of quantified substance. Even the

(48) The mutual interaction of mathematics and the sciences of total abstraction has benefited both. At the same time, quantitative methods are being introduced into almost all of these sciences. As an example of such an application prefaced by a philosophical discussion on its righteousness, see John Von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior. Princeton: Princeton University Press, 1944, Chapter I, "Formulation of Economic Problems," pp. 1-45.

(49) "The obvious conclusion is that mathematics cannot be identified in with their own description, or even with the deductive method which justifies this operation — no more than physics can be identified with the descriptive structure of a theory. However far is carried a deductive process applied to a group of mathematical notions, it is never possible for deduction to exhaust the potentialities of the notions considered." Thomas Greenwood, "Invention and Description in Mathematics," p. 34.
discussions on the foundations of mathematics serve to emphasize this unity which is vouchsafed to mathematics by metaphysics. The distinction of logic from mathematics is gradually being admitted anew, and a number of efforts are being made to align symbolic logic with traditional logic (50). This research reopens the possibility of removing the metaphysical assumptions which were implied in the early and later investigations in the field of symbolic logic, and suggests the further possibility of pointing out how mathematical logic is reducible in part to mathematical method and symbolism, and to the expression of quantitative order (51). By its striking distinction of mathematics from metamathematics, formalism can be viewed as insisting on distinguishing mathematics as such from metaphysical theories on mathematics and from other sciences; in fact, by distinguishing mathematics and a theory about mathematics, formalism itself is a metamathematics—a metaphysical theory on its nature (52). Aside from being rooted in idealistic philosophy, intuitionism, by insisting on the psychological, historical and sociological aspects of mathematics, has prevented the static conception of mathematics intrinsic to logicism and formalism from being overly influential, and has emphasized the intrinsic connectedness of man as

(52) This seems to be the meaning contained in Kurt Gödel's famous theorem; see Louis C. Fattoff, op. cit., pp. 194-195.
mathematician to man as pre-scientific, scientific and cultural (53).

A second mode in which mathematics manifests its unity as a science concerned with quantity is in its origin, in its relation to pre-scientific knowledge and to experience, and in its relation to the imagination. Of the two main questions which naturally suggest themselves, the origin of mathematical science from previous experience will be considered first, and then its psychology of invention. The basis for a distinct consideration is that since the first is the order of learning and the second is the order of invention, some differences exist between these two manners of acquiring mathematical science (54).

While mathematicians are much concerned with proofs, symbols, constructions and judgments, mathematics, like all sciences, has its origin in pre-scientific knowledge and in sense experience (55). While it is true that mathematics is a science, that it is abstractive, it is also true that no man is constantly exercising acts of mathematical abstraction. Mathematical abstraction as a scientific act may either be self-induced — as in mathematical genius, perhaps — or stimulated by parent, teacher or book. But even the ability to count or the use of the numbers commonly employed in the counting process are not acts of mathematical abstraction; numbering and counting in mathematics are merely operations analogous to the physical acts of counting real objects. A recognition of this pre-scientific basis would possibly prevent attribution of a mystical quality to the natur-

(55) Quite a number of testimonies could be adduced to support this conclusion; see, for example, C. L. N. Joad, Guide to Philosophy, London: Victor Gollancz, 1936, Chapter V, "Logic and the Laws of Thought," pp. 146-152, pp. 113-114. Henri Poincaré's The Foundations of Science, J. C. Bell's The Development of Mathematics, Carl B. Boyer's The Concepts of the Calculus, and Felix Klein's two volumes, Elementary Mathematics from an Advanced Stand-point are but a random number of studies which insist on the part of experience in mathematics.
natural numbers or arid, metaphysical speculation on how they are obtained. Questions on mathematical number are distinct from questions on number itself; the former are speculatively referable to metaphysics with regard to their nature and scientific content, and only reductively reducible in their origin to pre-scientific knowledge. In fact, the full meaning of the historical origins of mathematics indicates that (a) there was, as far as we can discover, a time when no man had as yet actually engaged in mathematical abstraction, and (b) whatever man it was who first, say, abstractly conceived of triangle and proved a necessary and universal property of triangle is the founder of mathematical science (56).

This historical lesson is analogous to the lesson that can be learned from daily life; without possibly ever having achieved mathematical abstraction, people count, add, multiply and subtract. A parallel case holds for abstraction in physical, and separation in metaphysical science (57). The lower bound of mathematics, consequently, both in its

(56) "In the case of mathematics, it is the Greek contribution which it is most essential to know, for it was the Greeks who first made mathematics a science. As Kant once wrote, 'a light broke upon the first man who demonstrated the property of the isosceles triangle (whether his name was Thales or what you will); since which time, thanks to 'that wonderful people the Greeks', mathematics has traveled 'the safe road of a science.' The Greeks in fact laid down the first principles in the shape of the indemonstrable axioms or postulates to be assumed, framed the definitions, fixed the terminology and invented the methods ab initio; and this they did with such unerring logic that, in the centuries which have since elapsed, there has been no need to reconstruct, still less to reject as unsound, any essential part of their doctrine." Thomas L. Heath, A Manual of Greek Mathematics, p. 1.

(57) That scientific knowledge is dependent in its origins on pre-scientific knowledge and closely connected with it, is being more widely admitted. Emil Meyerson has eloquently insisted on this fact; in his latest book, Human Knowledge: Its Scope and Limits, Bertrand Russell establishes a close tie between pre-scientific and scientific experience — though both are viewed as yielding merely probable knowledge.
historical and psychological origins, lies in pre-scientific knowledge and experience; in this sense, intuitionism has directed the philosophy of mathematics in its proper direction, as formalism and logicism have pointed out metaphysics and logic as the upper bound of mathematical development (58).

In all processes of mathematical reasoning, and in embodying the results of such reasoning in lectures, articles, or books, the mathematician and all scientists necessarily use phantasms, words, sensible signs and symbols -- a vindication of the sense origins and sense-dependence of human mathematics and science. The idealist who confusedly claims that mathematics is somehow a pure creation of the mind, denies his own experience and the testimony of the history of mathematics just as the empiricist, by denying the mental process of scientific abstraction, confounds pre-scientific and scientific knowledge. Mathematics is not made more palatable or attractive by being thus accoutered in idealistic or empiricist habit, and such erroneous positions on its nature are not the explicative causes for its growth and development, and, as a matter of fact, may not be followed in mathematical practice at all (59).

(58) It is here claimed that any attempt to write about mathematics -- whether done by a physicist, historian or cosmologist -- is basically and reducibly a metaphysical view of mathematics. Though acquaintance with the sciences on the first level of abstraction may help the mathematician further the development of his science and enable him to understand better the nature of mathematics, speculative remarks on mathematics or discussions on its relation to other sciences are the function of the metaphysician. For example, most of the essays in Les grands courants de la pensée mathématique (presentes par F. La Lionne), and in Mathematics: Our Great Heritage (edited by William L. Schaaf), are really written from the metaphysical view.

(59) This point is brought out in Pierre Boutroux's L'Ideal scientifique des mathématiciens, and has been strongly emphasized in Mile Reyerson's works.
To present mathematics as originating ultimately from previous experience and pre-scientific knowledge is not, of course, to present fully-developed mathematics. Any originative theory, harking back to humble beginnings, is, in a sense, regressive. Nor does this theory aim to place restrictions on mathematical freedom and inventiveness. In fact, it is true that by comparison with the experimentation necessary for the physicist or the acquaintance with detail proper to practical and political wisdom, a minimum of sense experience may suffice for the acquisition of mathematics (60). The history of mathematics is replete with examples of men -- some of them even pioneers -- who had reached mathematical maturity and creative power at an early age. At twenty-two, Descartes had founded analytical geometry. Pascal's precociousness permitted him, at the age of fourteen, to be admitted to the scientific discussions out of which the French Academy of Sciences developed. Newton laid the foundations for all his subsequent work in mathematics from the age of twenty-one to twenty-three. At fifteen, Leibniz had already possessed the idea of his combinatorial art, and many other mathematicians, Abel, Galois, Lobatschewsky and others, did good mathematical work about the age of twenty (61).

(60) This fact was already recognized by Aristotle; see his *Posterior Analytics*, 81b 1-6, and *Nichomachean Ethics*, 1143a 18-19.

This ready adaptability to mathematics at an early age, while it may be true of men of genius and, in a restricted sense, of any man who acquires the habit of mathematical science, must be properly understood. Though mathematics may arise from a minimum quote of sense experience, it is inevitably bound up with the imagination and the past experience of the individual mathematician. Consequently, while the physicist must be in constant liaison with extra-mental reality and while the mathematician need not have this intimate relationship, the mathematician relies, proportionately, on his imagination. Though a comparison of mathematician and physicist with respect to the origin of both sciences is frequently made, it must be recalled that mathematical natures are not existent as such in extra-mental reality, but merely in the imagination; hence the universe of the mathematician is one of imaginative construction and invention with the materials of his past experience. The physicist is more definitely limited by the complexity and mobility of extra-mental reality; in such median sciences as mathematical physics and mathematical biology, the physicist or biologist, after sufficient experimentation, reaches up to mathematical principles and conclusions as an aid in knowing and measuring extra-mental reality (68).

Thus mathematics, like all speculative sciences, has a double dependence on induction and experience. In the first place, the mathematician and all the scientists abstract the universal from singular things. Secondly, all sciences are concerned with the process of judging and reasoning, in which universal and necessary predicates are attributed to subjects. In both

(68) For an explanation of how the mathematician and the physicist are jointly concerned with knowing extra-mental reality, see Jean Descartes, op. cit., Chapitre IV, "L'Intelligibilité mathématique de la théorie physique," pp. 104-143.
senses, mathematics and the other sciences can be said to be dependent
on experience and induction. However, once mathematical abstraction has
been achieved, a minute and detailed analysis of extra-mental reality may
no longer be necessary, and the riches of mathematical experience lie o-
pen within the imagination, where the indetermination of intelligible mat-
ter is the infinitely potential support for qualitative determinations of
all sorts.

The ultimate origin of mathematical entities from extra-mental expe-
rience does not necessarily imply that a reduction of mathematics to phy-
sics is being proposed (63). But the theory does claim that in its histo-
ry, in its origin within each person and in its development, mathematics is
bounden to sense experience. The very concepts which are employed in math-
ematics -- structure, order, relation, domains, inclusiveness, greater, up-
per bound and countless others -- are eloquent testimony to the fact that
unless one had personally or vicariously learned what structure, order, re-
latedness, inclusiveness and so forth, are, he would not be able inventively-
ly to attribute these qualitative states to the mathematical natures in the
mathematical universe. Mathematical conceptions likewise carry with them
their relatedness and intimate conjunction with practical needs, and their
familiarity with the suggestions, insights and methods of all the sciences
of total abstraction (64).

The intimate affiliation of mathematics to previous pre-scientific,

(63) In his Lectures on the Philosophy of Mathematics, James Byrnes
Shaw labels as an empiricist or physical view (p. 10, pp. 154-155), and theo-
ry which attributes the origin of mathematics to the natural world of phe-
nomena.

(64) See, in this connection, Robert Deltheil, "L'Analogie en mathema-
tiques," in Les grands courants de la pensée mathématique, présentés par P.
Le Lionnais, pp. 48-53, where the author gives some illustrations of the ana-
logical insights suggested to mathematics from other sciences.
physical, mathematical, and even metaphysical knowledge is especially discernible in mathematical invention (65). Numerous examples abound in which analogies to physics (46), to previous mathematics (67), and even to metaphysical conceptions (68), afforded imaginative insight into mathematical inventiveness. Not serving as a hindrance but as a positive help and stimulant, extra-mathematical suggestions and references have proved to be aids to the greater fruition and powerful development of mathematical science; possibly because of the intermediary nature of mathematics and of its analogical character, mathematicians have, often unwittingly, transported the mathematical realm to that of extra-mental reality itself, to that of the physical and metaphysical sciences (69).

(65) This has been pointed out in Thomas Greenwood's article, "Invention and Description in Mathematics," passim.

(68) Georg Cantor is the best example of this; see his Contributions to the Founding of the Theory of Transfinite Numbers, translated by Philip J. J. Jourdain, Jourdain's Introduction, pp. 82-82.

In this regard, the presentation of a mathematical invention is rarely given in the multiplex and complex form in which its invention occurred, and most great mathematicians have, upon exorcising a mathematical contribution, presented it in a logical, neat and deductive form (70). In fact, it would be impossible, in most cases, to retrace all the steps, processes and ruminations through which the mind was carried and moved about in the process of invention. The attempts at outlining this process, complex though it is, form part of a psychology and logic of invention on which increasing attention is being focused (71).

The third mode in which mathematical abstraction serves to unify the apparent heterogeneity of present mathematical science as in its relation to logic. Not being a direct but a reflective science, logic is not, as such, concerned with extramental reality; it is wholly and directly dependent for the existence of its conceptions and determinations of its nature on metaphysics, and only partially and imperfectly on the other sciences. Theories on the nature of logic which disavow its dependence on metaphysics and attempt a logical analysis of reality, are, as a result, extremely complicated speculative conceptions; yet they can still be shown to be little else than apparent substitutions of logical for metaphysical pronouncements.

(70) Thomas Greenwood, "Invention and Description in Mathematics," pp. 80-81.

(71) Henri Poincare was one of the first scientists to give his attention to this subject; see his The Foundations of Science. See also the articles, "L'Invention scientifique: la mathematique," by Jacques Hadamard (in L'Invention, exposes et discussions par Charles Blondel, d. Claparède, J. Hadamard, L. De Broglie, Ed. Bauer, Paul Valery, Louis Braquet et M. Guynemart, Paris: Felix Alcan, 1938), or the more recent work of Jacques Hadamard, An Essay on the Psychology of Invention in the Mathematical Field. R. D. Carminotti has given some attention to these problems in his The Logic of Discovery (Chicago and London: Open Court, 1930).
Both logicism and formalism, for example, profess to be non-metaphysical in announcing the quasi-identity of mathematics with logic. However, as has been mentioned above, various studies have pointed out that logicism and formalism comprise both a doctrine and a method; not only has the metaphysical doctrine of each been successfully challenged and impugned, but a realignment of their method and symbolism into that of the traditional logical form gives promise of a future benefit to logic itself and to other sciences.

The partial formalization of mathematics, which is the meritorious contribution of both logicism and formalism, has, however, led to various extreme positions. Quite in contrast to the bland compliments of absolute necessity and rigor which were formerly attributed to it, mathematics is, at present, often viewed as offering merely probable truth (72). Stimulated by the recognition of treating mathematical demonstration in a completely formal manner, variegated opinions have arisen from discussion on the foundations of mathematics. The wide assortment of views includes a denial that mathematical reasoning has any content whatever and that it is but tautology (73), that it is but a hypothetico-deductive system (74), that it is based on the pragmatic choice of many possible systems (75), and that

(72) Harold R. Hart, The Logic of Science, pp. 64-72.
(73) Frank Plumpton Ramsey and L. Wittgenstein, close adherents to the logicism of Bertrand Russell, proposed the tautological nature of mathematical propositions; see Frank Plumpton Ramsey, The Foundations of Mathematics and Other Logical Essays, passim.
(75) See, for example, the Introduction (pp. 27-30) to Science and Hypothesis in Henri Poincare's The Foundations of Science; Poincare has consistently argued for this position.
it arises from the fact of the mathematical creator (76). In the view of mathematical abstraction here adopted, each of these and other current theories emphasizes but one, limited aspect of the nature or method of mathematics, and it is only because these theories generally are erected as the unique, ultimate explanation of the whole of mathematics, that their partial emphases on the truth are frequently lost sight of. For, while it is true that one can scientifically discourse with purely formal logic in mathematics as in other sciences, the subject matter of the demonstration, while temporarily suspended or not considered, returns again when there is question of estimating the merits of a mathematical system which may have thus been invented (77). Consequently, while there may be no limit to human inventiveness and indulgence in erecting formal systems, the relation of dependence of such systems on previous experience and imaginative abstractions and recombinations, as well as the question of the consistency of the system and the subject with which it is concerned in applicability or use, are extra-formal and indispensable influences (78).

Only a true conception of logic can exhibit not only the unity of mathematics in itself, but also its close kinship with both natural and scientific logic. The aptitude and natural inclination which man possesses to reason orderly in his discursive processes, though it has frequently been ill-used, is inherent in the very nature of man; logic itself, as the science of speculatively ascertaining how man reasons correctly, and as the

finished art of properly conducting reason, is but a development of this native ability (79). Logic as a science considers the reasoning process not only in mathematics, but in all sciences, for the science of logic is but the consideration of the mind’s reflective consideration of its own actions. Mathematical abstraction, consequently, considered as a method of arriving at true and scientifically certain mathematical conclusions, is unified to the method of other sciences and philosophy by the unity of the mind itself; whatever diversity from other types of scientific reasoning mathematics may possess, arises from the fact that mathematics is concerned with a different subject matter of demonstration.

Formal logic is the resolution of the mind’s discursive movements into its formal principles; it denominates and explains the mental motions which the mind is to take in order to preserve the right directions in reasoning (80). Formal logic, and its use in all the sciences, is not as such interested in truth; it is interested in the rightness and consistency of the mind’s movements; it encourages a simplicity of movements through the syllogism and through symbolic expression and abbreviation (81). Dealing with the study of the three main movements of the mind, simple apprehension, judgment and reasoning, formal logic does not as such include the imaginative and inventive ability of man, which is more proper to logic as dialectical, and to logic as an art combined with psychology (82). Just

(80) Ibid., p. 20.
as the formal rules of logic apply to any type of formal reason- ing, so, too, the general rules of material logic apply to any type of matter or sub- ject with which reasoning is concerned, that of mathematics as that of other sciences. Material logic, however, introduces a new consideration; by resolving reasoning or mental discourse into its matter or that about which reasoning is concerned, material logic considers the qualitative nature of the subject matter in order that a true conclusion may be formulated, whether its truth be scientifically certain, probable, or merely opinionative.

The fact that man can arrive at true conclusions which he may only hold as opinionative or as probable, is paralleled by a division of the body of logical science into demonstrative or doctrinal logic, and dialectical or useful logic (83). The logic of strictly scientific demonstration, concerned with the manner in which the mind may arrive at a certain, universal, and necessary knowledge, points out, among other features, the need and use of various pre-scientific and indemonstrably certain principles as pre-cognitions from which scientific demonstration arises. Doctrinal logic likewise includes a study of the nature of science and its distinctive divisions; in this latter as in its other functions, it is wholly and completely dependent on metaphysics to guide its reflective consideration.

While the study of demonstrative or doctrinal logic has been generally presented in teaching and in discussions on logic, the nature and use of dialectical logic has been widely neglected. Yet it is this reflective study that both modern science and mathematics have especially used to such advantage. In fact, there is a measure of dialectical reasoning in all the

sciences. The practice of Aristotle, though frequently dubbed as being too dogmatic, and the procedure of Saint Thomas Aquinas and the medievals, though often categorized as involvement in rapid and arid dialectical disputations, are the very methods that any man uses in the various routes and devious detours which his mind follows towards the goal of scientific truth, and these methods are employed in successful teaching (84).

In its dialectical movement, the mind is in inquisitive motion and in inventive research. It moves about within the set and limited sphere of discourse which it has outlined for itself, and, analogously speaking, runs back and forth in cogitative fashion from one element to another (85). It may be regarding a number of conceptions or propositions which have but a likeness of, and similitude to truth; the mind alternately but truly adopts this verisimilitude of what appears to be true — checking, in various ways, the plausibility of each proposition. Those propositions, the springs of dialectical reasoning, are of three main kinds: 1) they may be composed of purely logical terms which merely signify the second intentions of the mind, as genera, species and the other predicables, or analogously constructive inventions as group, system, set, or set of sets; 2) they may be principles which are not native to the science under consideration, but are borrowed from another science, or common to several sciences, as statements on mathematical continuity applied to physics or biology for purposes of comparison and insight; 3) they may be principles which, though probable

(84) Aristotle's use of dialectics can be seen especially in his Metaphysics; his theory of dialectical reasoning is scattered in his logical works, especially in the Posterior Analytics. The above presentation is based on Aristotle and on Saint Thomas Aquinas' commentaries on Aristotle.

(85) Saint Thomas Aquinas, In IV Metaphysicorum, Lect. IV, passim.
in themselves, are accepted as points of departure for reasoning as if they were certain premises, and only yield probable conclusions, as in the decisions of practical life and in mathematical probability (86). This interrogative dialectic of the mind may, in the first two instances, yield either probable or demonstrative conclusions, for in this case the principles of reasoning themselves are not probable, but the mind doubts their applicability to the matter under consideration. In the third case, since the very propositions themselves are not certain, only opinionative judgments can ensue — though these opinions, it must be emphasized, are true, probable judgments (87).

Dialectical reasoning plays a large part in mathematical demonstration and especially in its developmental invention. In the first type of dialectical reasoning, where purely logical terms come into consideration, the mind forms logical conceptions bearing only a furtive likeness to mathematical entities, and cogitates upon them in a close, inventive fashion. The description of Cantor's process of inventing transfinite numbers (88), for example, indicates how these logical beings, reflectively formed for consideration by the mind, led to his contribution. In fact, inasmuch as the rigorous proof and mathematical demonstration of transfinite numbers has not, it seems, been as yet formulated, the transfinite numbers — though the truth

(86) In his latest book, Human knowledge: Its Scope and Limits; Bertrand Russell denies that we have certain, demonstrative knowledge. His analysis of the probability and dialectical reasoning in pre-scientific and scientific knowledge — abstracting from his philosophical interpretations — is quite generally sound.

(87) Saint Thomas Aquinas, op. cit., n. 394.

about them is most likely known -- are only probably true and their certainly true existence as mathematical entities has not as yet been established (89).

In like fashion, the second manner of dialectical reasoning is frequently employed in mathematics with fruitful results. One may take arithmetical principles and apply them to the continuum, or the converse (90); one may even adopt physical or metaphysical principles and, with the insight thus afforded, induce or invent new mathematical natures. The demands of physics on mathematics (91), or Cantor's case can be referred to as two of the many instances in which the principles of other sciences may be wittingly or unwittingly employed in mathematics. Here again, however, a mathematical demonstration of the results affected by borrowing principles of other sciences may not be immediately forthcoming, and the mathematical conclusion may be truly held, but only with probability and a degree of certainty.

The first two methods of dialectical reasoning, then, are used by the mathematician, the scientist and the philosopher. The third type, that based on propositions which in themselves are only probable, is also used in all the sciences, but does not yield more than a probable conclusion, and seems to be capable of both a regressive and a progressive use. In the

(89) This contention -- that mathematical natures may at first only be capable of a dialectical existence -- needs further development, of course. In *An Essay on the Psychology of Invention in the Mathematical Field*, Jacques Hadamard seems to have this notion in mind; see pp. 43-55.

first, the regressive use, for example, it may appear to be quite probable that mathematics is completely expressible in logical or pre-logical symbols (92); in fact, in entering into the domain of mathematics with this principle and attempting to make mathematical natures lose their identity and be transformed into purely logical or pre-logical symbols, I may even achieve a phenomenal amount of success. However, there are two obstacles which I must yet overcome: 1) the proof of my initial proposition is lacking, and 2) I have only succeeded in formalizing that part of mathematics which has thus far been given historical and scientific status; consequently, though my method may produce some fruitful results, it has an empty, barren result as goal, and is a static conception of mathematical science. This method is likewise adaptable in other sciences: in philosophy, for example, I may adopt the position that I most likely can explain everything in terms of mathematics as did Descartes and as do many contemporaries, or in terms of spirit, as did Hegel.

In the second, or progressive use of a probable proposition, which is an employment of the method which may lead to new results, I adopt a certain number of probable propositions and then use this method of mental discourse to yield a conclusion which may have a greater amount of probability. For instance, all the sciences of total abstraction, aiming as they do to know nature in its mobile indetermination, make frequent and large use of this mental dialectic. Mathematics may analogously imitate this process. On the basis of some previously known, though probable propositions, I may construe further propositions which have a less, or equal probability. I may, for instance, take the existence of transfinite numbers as my point

(92) This attempt is true especially of logicism and formalism; see Harold A. Smart, The Logic of Science, pp. 95-99,
of departure, and launch out into new combinations of numbers, and leading me, perhaps, to new axioms and principles.

Viewing mathematics, then, as an abstractive science within the wider and richer domain of speculative science and the logic of science, its unity and quantitative character appears more plausible. For, in this conception, the mathematician is not viewed as in an idealist fashion, as merely contemplating quantitative substance and cut off from the richness of his previous pre-scientific and scientific experience, and yet his inventiveness and creativeness is sufficiently accounted for; neither is the mathematician viewed as in an empiricist analysis, as rooted to nature and limited by the sensations which are channelled into his sensory powers, where they may leave some limited impressions. In the view afford by the metaphysician, the nature of mathematical abstraction and its relation to metaphysics, to logic, to psychology, to history and to pre-scientific experience, as well as its applicability to the sciences, are seen to related parts of the complex, yet true and adequate determination of mathematics. While the essence of mathematics is its freedom, it can only purchase this freedom and make limitless progress by recognizing the speculative bounds and limitations inherent in its very nature. Though it has been said that God made the natural numbers and man made the rest, it is more correct, metaphysically and mathematically, to say that God made the mathematician and the universe, and the mathematician has abstractively and inventively construed the mathematics of the divinely fashioned universe.
Chapter XI. Conclusion

It has been well said that in the consideration of truth, men look upon it in various ways because of custom and training (1). The philosophizing mathematician, for example, accustomed to the freedom of mathematical reasoning and to the apparent rigor in which mathematics can be presented, does not generally look with speculative sympathy at the efforts of the sciences of total abstraction, or at metaphysical demonstrations. Similarly, philosophers and philosophizing scientists in the first abstractive level of science, frequently regard the precision of pure mathematics as exaggerated or as being somewhat too refined to be of practical use. Some men, looking upon mathematics, see it as a logical or aesthetic art, while others view it as the work of men the maker and practitioner. It is likewise true, however, that a diversity of speculative sciences requires that truth and certitude be sought in proportion to the things about which each science is concerned.

With regard to the nature of mathematical abstraction, diverse attitudes, stemming from an artistic, logical, absolutist, physical or practical bent of mind, have, throughout history, made of mathematics an aesthetic art, a sheer logic, a creative knowledge, a physical science and a system of computation and measurement. These positions on the nature of mathematics can be partly accounted for, it is true, by psychological reasons. However, the very nature of mathematical abstraction, dealing as it does with abstract, quantified substance, and bearing such close speculative analogies to metaphysics, to logic, to physics and to extra-mental reality, seems to be such

(1) Aristotle, Metaphysics, 994b 30-996a 20.
as to lend itself readily to erroneous positions and half-truths.

A first type of confusion to which mathematics has readily lent itself, is one which tends to identify the very nature of mathematics with the nature of other sciences. Already in the infancy of mathematics, Greek philosophical conceptions of mathematics included the views that mathematical conception was synonymous with physical or metaphysical, that mathematical conception revealed the very nature of the universe, that mathematical natures exercised a separately real existence, and even the sceptical view that mathematical abstraction was a falsification of reality from which ethical abstention was urged as a form of virtue.

A second kind of confusion on the nature of mathematical abstraction stems from a lack of distinguishing the question of its nature from its methodological procedure. Mathematical natures are somewhat alike and somewhat different from metaphysical, logical, dialectical, and merely possible natures, and these various types of conceptions may be confused due to the similarity of the scientific or dialectical reasoning process employed. Descartes himself, forgetting that mathematics was mainly concerned with formal causality and that other sciences used material, final and efficient causality because the nature of these sciences demanded such causal treatment, viewed the invention of analytical geometry as a prophetic and introductory gesture to employing the same method of formal mathematical deduction in all the sciences. The Cartesian habit of mind became a speculative fault that tainted consequent mathematical speculation; Descartes' followers did not properly distinguish mathematical from physical and metaphysical science, and seemed unable to rid themselves of this inherited, aprioristic bent of mind.
The partial truth which each of these historical positions on the nature of mathematical abstraction portrays and their inadequacy in yielding a complete explanation and a true judgment on the nature of mathematics, can only be ascertained when mathematics is viewed within the total pattern of speculative science and human knowledge. The contemporary schools of logicism, formalism and intuitionism have defaulted in their consideration of the nature of mathematics especially because their views derive from idealistic, empiricist or logicist philosophical ancestry. Further, since they generally consider speculations in mathematics as being non-metaphysical and purely mathematical questions or questions of logic, most contemporary views are tinged with mathematicism.

Within the total view of human knowledge, the proper makeup of mathematical abstraction is seen to involve 1) an extra-mental foundation for mathematics and its consequent connectedness to the precognitions of pre-scientific knowledge -- a truth which is partially brought out by intuitionism; 2) the mental movement of scientific abstraction, and the accompanying distinction of mathematical abstraction from the abstraction proper to the philosophy and the sciences of nature -- a truth largely neglected in current speculations; 3) the intimate connection and, at the same time, distinction of mathematical abstraction from the reflectivity and symbolism of logical abstraction -- a truth over-emphasized by logicism and formalism; 4) the close relatedness of mathematical abstraction to all human forms of endeavor in both practical and speculative science.
BIBLIOGRAPHY

Books

Born, Max. Experiment and Theory in Physics. Cambridge: The University Press, 19

Caird, A. The Critical Philosophy of Emmanuel Kant. two volumes. Glasgow: James Foulshouse & Sons, 1889.

Carroll, W. D. The Logic of Discovery. Chicago: Open Court, 1930.

Coffey, F. *Nietzsche or the Theory of Knowledge.* 2 volumes. New York: Peter Smith, 1938.

---. The World as I see It. Translated from the German by Alan Mai. New York: Covici, 1934.

Lindsay, A. D. *Kant.* London: Ernest Benn, 1934.

Moran, J. O. *Cosmologia.* Mexico: Buena Presa, 1944.

Articles.

Boyer, Carl B. "Zero: the Symbol, the Concept, the Number." National Mathematics Magazine, 18 (1944), pp. 325-330.

Edward Anthony Maziarcz was born in Milwaukee, Wisconsin, March 6, 1915. His elementary studies were pursued at St. Casimir’s parochial school in Milwaukee and at St. Mary’s high school in Burkettsville, Ohio. His college education was obtained at Saint Joseph’s College, Collegeville, Indiana. His courses in theology were obtained at Saint Charles Seminary, Carthage, Ohio, where, on September 8, 1940, he was ordained to the priesthood as a member of the Society of the Precious Blood. In that same month, he registered as a graduate student at the Catholic University of America, and received the degree of Master of Arts in philosophy in June, 1941. After teaching at Marian College, Fond du Lac, Wisconsin, for the scholastic year, 1941-1942, he returned to Saint Joseph’s College from which he received a Bachelor of Science degree in mathematics and physics, in June, 1944. After attending the 1944 summer session at the University of Virginia, he registered as a graduate student at the University of Michigan, where he obtained a Master of Science degree in mathematics, in September, 1945. He was appointed to an assistant professorship at Saint Joseph’s College in 1948, and was appointed Director of Student Welfare in 1946. In 1948 he registered as a graduate student at the University of Ottawa.