Identification of *Vaccinium* species by DNA barcoding:
Linking DNA sequence to phytochemistry

Name: Abenaya Muralidharan
Program: Biotechnology
Faculty Sponsor: Dr. Douglas Johnson

EXPERIMENTAL OUTLINE
- Collect *Vaccinium* samples from the Ottawa region
- Isolate DNA from the samples
- Using PCR, amplify sequence of interest
- Clone sequence
- Do PCR and gel electrophoresis to confirm the success of the clones
- Sequence the clones
- Analyze the sequences

BACKGROUND INFORMATION
Vaccinium
- Genes that consist of fruit-bearing shrubs.
- Examples: blueberries, cranberries, huckleberries
- They are found in the cooler areas of the northern hemisphere.
- About 30% of the world’s Vaccinium grows in Canada.
- Consist of 150 species worldwide
- Have high levels of compounds that can be used for medicinal purposes.
- Riberines (*Vaccinium corymbosum*) contain high levels of antioxidants that can be used to protect against cancer, heart and vascular disease, urinary tract infections, diabetes, cataracts and other neurological diseases.
- Recently Vaccinium species have been used to treat Type 2 Diabetes.

Why do we need to barocode Vaccinium?
- Barcoding chloroplast regions allows for a means of distinguishing between species and subspecies.

MAIN TECHNIQUES USED
- **Polymerase Chain Reaction (PCR)**
 - Closing of desired region of DNA
 - DNA is denatured using high temperatures resulting in two single strands
 - The forward and reverse primers create complementary strands of varying lengths using the single strands as templates.
 - This process repeats until about 20 copies are made
 - Since all clones differ in length, the ones of desired lengths need to be isolated using gel electrophoresis.

- **Gel Electrophoresis and DNA Sequencing**
 - In gel electrophoresis, the samples (~5µl) are loaded in wells in an agarose gel. A buffer is also added to maintain the pH levels.
 - An electric field is used. The negatively charged DNA migrates through the gel towards the positive end.
 - The bigger DNA strands migrate less than the smaller strands.
 - A marker containing strands of known size is also added to estimate the relative size of the strands nearby.

RESULTS

BIBLIOGRAPHY

Example: Gel run for Vaccinium

CLUSTAL multiple sequence alignment

DNA sequence of 1.v.o trn-psb region in Vaccinium

Analyzing sequences

In which species/accessions are similarities found?
What are the similarities?
What does that mean?

RESULTS ARE NOT IN YET!!!!

We have cloned several sequences that will be analyzed. Once the sequences are acquired, the above questions can be answered.