Understanding C/EBPβ LAP/LIP Transcriptional and Adipogenic Potential through Regulation by HDAC1 and GCN5

Houssein Salem Abdou

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements
For the Ph.D degree in Biochemistry

Department of Biochemistry, Microbiology and Immunology
Faculty of Medicine
University of Ottawa

© Houssein Salem Abdou, Ottawa, Canada, 2011
I dedicate this thesis to my nephew Mohamed.
Abstract

The CCAAT/Enhancer Binding Protein Beta (C/EBPβ) is part of the leucine zipper family of transcription factors and is involved in a myriad of processes including cellular proliferation and differentiation. C/EBPβ is expressed as three isoforms (LAP*, LAP, LIP), translated from a single mRNA by a leaky ribosomal scanning mechanism. While LAP* and LAP have activating functions, LIP is recognized as being a repressor of transcription due to its lack of activation domains.

Numerous studies have shown that C/EBPβ acetylation state modulates its activity in a promoter-specific manner. For instance, the acetyltransferases GCN5/PCAF and the deacetylase complex mSin3A/HDAC1 regulate C/EBPβ activity on the C/EBPα promoter. GCN5/PCAF-mediated acetylation of C/EBPβ was shown to positively affect its transcriptional activity in a steroid-dependent mechanism via the glucocorticoid receptor (GR). GR relieves HDAC1 association from C/EBPβ by targeting the deacetylase for proteasomal degradation, hence favouring GCN5-mediated acetylation of C/EBPβ and allowing maximum activation capacity to be reached. In order to further elucidate C/EBPβ activation, I sought to characterize the interplay between GCN5 and HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ.

I identified a minimal domain located within regulatory domain 1 (RD1) of C/EBPβ that is required for both GCN5 and HDAC1 binding. Furthermore, the loss of the identified domain in C/EBPβ appears to partially mimic the GR effect, thus giving C/EBPβ a higher basal transcriptional activity that accelerates NIH 3T3 and 3T3 L1 adipogenesis. Moreover, I also showed that the LIP isoform inhibitory mode of action is partially mediated through the mSin3A/HDAC1 repressor complex, which gives LIP an active repressor function. In addition to LIP inhibitory function, I also showed that a cysteine residue located in LAP* negatively regulates its transactivating function during murine adipogenesis.

Although RD1 of C/EBPβ has been suggested to act as a negative regulatory domain, I showed that only five residues are responsible for most of its inhibitory effect. Hence, in an attempt to further define sub-domains within RD1, I characterized a new positive regulatory...
domain at its N-terminal region, which seems to be required for C/EBPβ activity in a promoter-specific manner.

In conclusion, this study not only supports previously hypothesized mechanisms by which C/EBPβ is regulated, but it also redefines the contribution of LAP*, LAP and LIP in regulating transcription. Most importantly, the results emphasize the countless possibilities by which C/EBPβ transactivation potential could be modulated during cellular differentiation.
Acknowledgements

Working in Dr Robert Haché’s laboratory has taught me invaluable knowledge. Dr Haché has been my supervisor since I first started working in a research lab in 2004 as a summer student. He has been continuously supporting my projects and constantly challenging my scientific abilities with a sincere enthusiasm for science. For that, thank you.

I would also like to acknowledge members of my thesis advisory committee, Dr Steffany Bennett and Dr Stephen Lee, for their advice and encouragement on my research project. Also, thank you for allowing me to write and present my progress reports in French. Your willingness to discuss science in French during all the meetings that we had was very much appreciated and I hope that you enjoyed it as much as I did.

I was very lucky and grateful to be surrounded by wonderful lab members throughout my undergraduate and graduate studies, without whom research would have been unbearable. I would first like to acknowledge Dr Ella Atlas for her constant support and supervision and for reviewing my thesis on her own time. Thank you for all of your help. I also want to thank Dr Sebastien Soubeyrand for reviewing many of my progress reports in French and for insightful discussion about ‘science’ and many protocols that I used in this thesis. Also many thanks to Kyna Caminiti and Rahin Farzadfar for their friendship, support and for helping me improve my English throughout the years.

I would like to acknowledge the Heart and Stroke Foundation of Ontario and the Canadian Institutes of Health Research for funding my graduate studies over the past 5 years.

J’aimerai remercier ma belle-sœur Marie-France pour son encouragement et support constant durant toutes mes études universitaires; ma nièce Nadia et mes neveux Nouradin,
Mohamed et Amir qui, de part leur présence, m’ont toujours fait sourire et oublier les
difficultés que j’ai rencontré depuis la dernière décennie. Finalement, j’aimerai remercier
mes parents, Nadira et Salem, qui m’ont toujours encouragé, malgré la grande distance qui
nous sépare.

Merci à tous!
Table of Contents

Title Page .. i
Dedication .. ii
Abstract .. iii
Acknowledgements .. v
Table of Contents ... vii
List of Abbreviations ... xiii
List of Tables ... xiv
List of Figures .. xv

CHAPTER 1 - INTRODUCTION .. 1

1.1 General concepts in transcriptional regulation ... 1
 1.1.1 Brief description of the chromatin fiber ... 1
 1.1.2 The histone code ... 3
 1.1.3 Chromatin remodeling machinery ... 4
 1.1.4 The epigenetic era ... 5
 1.1.5 Histone deacetylases (HDACs) ... 6
 1.1.6 PCAF/GCN5-histone acetyltransferases (HATs) .. 8

1.2 Adipogenesis .. 10
 1.2.1 Obesity .. 10
 1.2.2 Murine adipogenesis .. 12
 1.2.3 NIH 3T3 adipocyte differentiation ... 13
 1.2.4 Transcriptional cascade during adipogenesis .. 14

1.3 Families of transcription factors involved in adipogenesis .. 18
 1.3.1 CCAAT/Enhancer-Binding Proteins ... 18
 1.3.2 Peroxysome proliferator activated receptors ... 22
 1.3.3 Glucocorticoid receptor ... 23
 1.3.4 C/EBPα regulation in preadipocytes .. 25

1.4 C/EBPβ transcriptional potential ... 27
 1.4.1 C/EBPβ transcriptional regulation ... 27
1.4.2 Differential roles of LAP*, LAP and LIP during adipogenesis........ 31

1.5 Rationale and objectives .. 32

CHAPTER 2 - MATERIALS AND METHODS.. 35

2.1 Plasmid constructs and preparations .. 35

2.2 Cell culture and transient transfection .. 36
 2.2.1 Cos7 and Phoenix Ampho cells ... 36
 2.2.2 NIH 3T3 and 3T3 L1 .. 37
 2.2.3 Transient transfection ... 37

2.3 Retroviral infection of murine cells ... 38
 2.3.1 Transfection of the Phoenix Ampho packaging cells 38
 2.3.2 Infection of NIH 3T3 and 3T3 L1 .. 38

2.4 Differentiation of NIH 3T3 and 3T3 L1 cells ... 39
 2.4.1 Differentiation protocol ... 39
 2.4.2 Oil Red O staining .. 39

2.5 Mammalian cell extracts and Western analysis .. 40
 2.5.1 Whole cell extracts .. 40
 2.5.2 SDS-PAGE and Western transfer ... 41
 2.5.3 Western blot analysis .. 41
 2.5.4 Indirect immunofluorescence ... 42
 2.5.5 Immunoprecipitation .. 43
 2.5.6 Chromatin immunoprecipitation ... 44
 2.5.7 ³H-thymidine incorporation assay .. 46

2.6 Dual Luciferase assay ... 46
 2.6.1 C/EBPα-Luciferase assay ... 46
 2.6.2 PPARγ-Luciferase assay .. 47

2.7 Real time reverse-transcriptase PCR reaction .. 47
 2.7.1 RNA extraction and reverse transcriptase reaction 47
 2.7.2 Quantitative PCR reaction ... 48

2.8 Acetylation and GST pulldown assays ... 49
2.8.1 Acetylation assay ... 49
2.8.2 GST pulldown assay ... 49

2.9 Statistical analysis .. 50

CHAPTER 3 - RESULTS ... 51

3.1 Characterizing the interplay of GCN5 and mSin3A/HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis 51

3.1.1 Identifying mSin3A and GCN5 binding domain in C/EBPβ 52

3.1.1.1 PCAF/GCN5-mediated acetylation of C/EBPβ reduces its in vitro binding to mSin3A ... 52
3.1.1.2 Amino acids 153-156 in C/EBPβ are required for GCN5 association .. 54
3.1.1.3 Amino acids 153-156 in C/EBPβ are also required for mSin3A binding .. 59

3.1.2 Characterization of C/EBPβ∆153-156 transcriptional activity and adipogenic Potential ... 63

3.1.2.1 C/EBPβ∆153-156 transcriptional activity is enhanced on the C/EBPα promoter but not on the PPARγ promoter .. 63
3.1.2.2 C/EBPβ∆153-156 is more efficient at inducing the differentiation of the NIH 3T3 cells into mature adipocytes by recruiting less HDAC1 to its target promoters .. 68
3.1.2.3 C/EBPβ∆153-156 adipogenic potential is also increased in 3T3 L1 cells .. 70
3.1.2.4 C/EBPβK98-102R transcriptional activity and adipogenic potential are increased upon deletion of amino acids 153-156 70

3.1.3 Characterizing C/EBPβ LIP repressive effect during adipogenesis 74

3.1.3.1 LIP inhibitory function is partially due to its association with mSin3A/HDAC1 ... 74
3.1.3.2 Deletion of the first 4 amino acids in LIP alleviates its inhibitory function in preadipocyte differentiation 76

3.1.4 Characterizing HDAC1 involvement on 3T3 L1 MCE through LAP/LIP ... 78

3.1.4.1 C/EBPβwt expressing cells show a slightly increased DNA replication rate than cells expressing C/EBPβ∆153-156 during MCE 78
3.1.4.2 Over-expression of LIP$_{wt}$ and LIP$_{6C}$ does not alter MCE during 3T3 L1 adipogenesis in the presence of the full adipogenic inducers 81

3.1.5 Defining the inhibitory contribution of LIP and mSin3A/HDAC1 in repressing C/EBPβ adipogenic potential ... 82

3.1.5.1 C/EBP$\beta$$_{M152A}$ and C/EBP$\beta$$_{A151-156}$ have similar transcriptional activity .. 82
3.1.5.2 HDAC1 presence is decreased from the C/EBPα promoter in NIH 3T3 cells expressing C/EBP$\beta$$_{A151-156}$ but not C/EBP$\beta$$_{M152A}$ 84
3.1.5.3 C/EBP$\beta$$_{A151-156}$ has the highest dex-dependent adipogenic potential when compared to C/EBP$\beta$$_{wt}$, C/EBP$\beta$$_{A153-156}$ or C/EBP$\beta$$_{M152A}$ 86
3.1.5.4 C/EBP$\beta$$_{M152A}$ and C/EBP$\beta$$_{A151-156}$ activate C/EBPα and PPARγ2 mRNA expression more efficiently than C/EBP$\beta$$_{wt}$ 88
3.1.5.5 C/EBP$\beta$$_{A151-156}$ is a more potent activator of GLUT4 expression than C/EBP$\beta$$_{wt}$ or C/EBP$\beta$$_{M152A}$.. 91

3.1.6 Investigating C/EBPβ LAP* adipogenic potential 91

3.1.6.1 HA-tagged LAP* is transcriptionally inactive on the C/EBPα promoter ... 91
3.1.6.2 GR-dependent activation of LAP* requires expression of LIP 94
3.1.6.3 Cystein 11 in C/EBPβ is partially responsible for the inability of LAP* to activate transcription .. 96

3.2 Elucidating the contribution of C/EBPβ regulatory domains in potentiating NIH 3T3 and 3T3 L1 adipogenesis ... 99

3.2.1 C/EBP$\beta$$_{A141-149}$ is transcriptionally inactive on the C/EBPα promoter .. 99
3.2.2 C/EBP$\beta$$_{A141-149}$ interacts with mSin3A/HDAC1 and GCN5 101
3.2.3 The ability of C/EBP$\beta$$_{A141-149}$ to induce NIH 3T3 differentiation to adipocytes is compromised .. 106
3.2.4 C/EBP$\beta$$_{A141-149}$ inability to activate the C/EBPα promoter seems to be partially dependent on HDAC1 activity 108
3.2.5 Cystein 143 within RD1 is partially required for C/EBPβ–dependent activation of C/EBPα .. 112
CHAPTER 4 - DISCUSSION .. 115

4.1 A hydrophobic domain in C/EBPβ is required for mSin3A/HDAC1 binding 115

4.2 Titration of HDAC1 from C/EBPβ accounts for a fraction of GR-mediated transactivation of the C/EBPα promoter ... 117

4.3 Implication of a shared binding domain between co-activators and co-repressors .. 119

4.4 LIP actively represses LAP activity via its association with mSin3A/HDAC1: a newly identified inhibitory mechanism ... 123

4.5 Acetylation of lysines 98, 101 and 102 of C/EBPβ is not required for maximum activity to be reached when HDAC1 association is compromised 125

4.6 HDAC1-repression of C/EBPβ activity differentially regulates the expression of adipogenic markers ... 128

4.7 Proposed C/EBPβ transcriptional regulation model .. 130

4.8 Cysteine 11 in LAP* interferes with the glucocorticoid-induced potentiation ... 133

4.9 LAP*-N-terminal domain reveals potentially diverse inhibitory mechanisms ... 137

4.10 A new positive regulatory domain identified in C/EBPβ LAP*/LAP 139

4.11 Cysteine 143 is not vital for C/EBPβ LAP*/LAP activation potential 140

4.12 HDAC1 and the absence of C143 both suppress C/EBPβΔ141-149 activity 141

4.13 Insights into the adipogenic transcriptional cascade during NIH 3T3 adipogenesis .. 145

4.14 The significance of C/EBPβ-HDAC1 in tissues other than WAT 151

4.15 New venues to explore ... 154

4.16 Concluding remarks .. 156

REFERENCES .. 158

APPENDICES .. 182
Appendix 1: Primers used for cloning... 182
Appendix 2: Retroviral vectors constructed and plasmids obtained from other laboratories ... 185
Appendix 3: Antibodies used.. 187
Appendix 4: Primers for qPCR and ChIP.. 188
Appendix 5: Schema of all deletion mutants used ... 189
Appendix 6: Summary of the properties of C/EBPβ deletion mutants 190
Appendix 7: Protein sequence of murine C/EBPβ highlighting its different domains .. 191
Appendix 8: Additional experimental figures ... 192
Appendix 9: Contribution of collaborators... 194

Curriculum Vitae ... 195
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>activation domain</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>aP2</td>
<td>fatty acid binding protein (also FABP)</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>bZIP</td>
<td>basic leucine zipper</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic AMP</td>
</tr>
<tr>
<td>C/EBP</td>
<td>CCAAT/enhancer-binding protein</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin immunoprecipitation</td>
</tr>
<tr>
<td>CoIP</td>
<td>co-immunoprecipitation</td>
</tr>
<tr>
<td>CS</td>
<td>calf serum</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA binding domain</td>
</tr>
<tr>
<td>dex</td>
<td>dexamethasone</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>GR</td>
<td>glucocorticoid receptor</td>
</tr>
<tr>
<td>GRE</td>
<td>glucocorticoid receptor element</td>
</tr>
<tr>
<td>GSK3β</td>
<td>glycogen synthase kinase</td>
</tr>
<tr>
<td>HAT</td>
<td>histone acetyl transferase</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>Hsp</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>IP</td>
<td>immunoprecipitation</td>
</tr>
<tr>
<td>LAP*</td>
<td>liver-enriched activating protein 1</td>
</tr>
<tr>
<td>LAP</td>
<td>liver-enriched activating protein 2</td>
</tr>
<tr>
<td>LIP</td>
<td>liver-enriched inhibitory protein</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogene-activated protein kinase</td>
</tr>
<tr>
<td>MCE</td>
<td>mitotic clonal expansion</td>
</tr>
<tr>
<td>MI</td>
<td>MIX and insulin</td>
</tr>
<tr>
<td>MIX</td>
<td>3-isobutyl-1-methyl-xanthine</td>
</tr>
<tr>
<td>MID</td>
<td>MIX, insulin and dex</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NP-40</td>
<td>nonidet P40</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>RD</td>
<td>regulatory domain</td>
</tr>
<tr>
<td>RLU</td>
<td>relative luciferase units</td>
</tr>
<tr>
<td>RU</td>
<td>relative units</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SD (or s.d.)</td>
<td>standard deviation</td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
</tr>
</tbody>
</table>
List of tables

Appendix 1

Table 1: GST fusion constructs for bacterial protein expression used in the *in vitro* binding assays

Table 2: Mammalian expression constructs for transient transfection experiments in NIH 3T3, 3T3 L1 and Cos7 cells. All cDNA were cloned between the EcoRI and BamHI sites of the pcDNA3.1(-) vector.

Table 3: Mammalian expression constructs for transient transfection experiments in NIH 3T3 and Cos7 cells

Appendix 2

Table 4: Retroviral vectors constructed for stable expression of C/EBPβ proteins in murine NIH 3T3 and 3T3 L1 cells

Table 5: Additional constructs used for some of the experiments that were already in Dr Robert Haché’s laboratory

Appendix 3

Table 6: Antibodies used for western blot analysis, immunofluorescence and/or immunoprecipitation

Appendix 4

Table 7: Primers used for real time PCR reactions and ChIP assays (murine sequences)

Appendix 5

Table 8: Summary of the properties of C/EBPβ deletion mutants from various assays (approximate values in % compared to WT)
List of figures

Results of Chapter 3.1

Figure 1: The murine adipogenesis model
Figure 2: The CCAAT/Enhancer-Binding Proteins family of transcription factors
Figure 3: C/EBPβ-dependent regulation of C/EBPα transcription in preadipocytes: hypothesized model
Figure 4: GCN5/PCAF mediated acetylation of C/EBPβ decreases mSin3A binding \textit{in vitro}
Figure 5: Amino acids 151-156 of C/EBPβ are required for GCN5 binding \textit{in vitro} and \textit{in vivo}
Figure 6: Amino acids 151-156 and the bZIP domain of C/EBPβ are required for mSin3A binding \textit{in vitro}
Figure 7: C/EBPβ_{Δ153-156} interacts less efficiently with HDAC1 compared to WT C/EBPβ
Figure 8: C/EBPβ_{Δ153-156} has a higher transcriptional activity than C/EBPβ_{wt}
Figure 9: C/EBPβ_{Δ153-156} transcribes endogenous C/EBPα more efficiently when compared to C/EBPβ_{wt}
Figure 10: C/EBPβ_{Δ153-156}, differentiates the NIH 3T3 fibroblastic cell line more efficiently when compared to C/EBPβ_{wt} in the absence of dex
Figure 11: C/EBPβ_{Δ153-156} differentiates more efficiently the 3T3 L1 preadipocyte cell line when compared to C/EBPβ_{wt} in the absence of the inducer cocktail
Figure 12: C/EBPβ_{K98-102R,Δ153-156} is a more potent inducer of preadipocyte differentiation than C/EBPβ_{wt}
Figure 13: The LIP_{6C} isoform is a less potent inhibitor of C/EBPβ activity when compared to LIP_{wt}
Figure 14: LIP_{6C} inhibits less efficiently C/EBPα, PPARγ2 and adipsin protein expression during preadipocyte differentiation
Figure 15: Ectopic expression of WT C/EBPβ affect the expression of some of the cell cycle regulators during 3T3 L1 differentiation
Figure 16: C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} both have a higher transcriptional activity than C/EBPβ_{wt}.

Figure 17: C/EBPβ_{M152A} but not C/EBPβ_{Δ151-156} recruits HDAC1 to the C/EBPα promoter.

Figure 18: C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} both have a higher adipogenic potential than either C/EBPβ_{Δ153-156} or C/EBPβ_{wt}.

Figure 19: C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} transcribe more efficiently endogenous C/EBPα and PPARγ2 when compared to C/EBPβ_{wt}.

Figure 20: LAP* is transcriptionally inactive on the C/EBPα promoter.

Figure 21: LIP expression is required for a GR-dependent activation of C/EBPβ LAP* activity on the C/EBPα promoter.

Figure 22: C/EBPβ_{C11A,M22,152A} is a more potent inducer of preadipocyte differentiation than C/EBPβ_{M22,152A}.

Results of Chapter 3.2

Figure 23: C/EBPβ_{Δ141-149} transcriptional activity is compromised on the C/EBPα promoter.

Figure 24: C/EBPβ_{Δ141-149} transcriptional activity is comparable to WT C/EBPβ on the PPARγ2 promoter.

Figure 25: C/EBPβ_{Δ141-149} interaction with mSin3A/HDAC1 or GCN5 is not compromised in vivo.

Figure 26: C/EBPβ_{Δ141-149} recruits HDAC1 and GCN5 to the C/EBPα promoter.

Figure 27: C/EBPβ_{Δ141-149} has a lower adipogenic potential than C/EBPβ_{wt}.

Figure 28: C/EBPβ_{Δ141-149} transcribes endogenous PPARγ2 but not C/EBPα.

Figure 29: C/EBPβ_{Δ141-149} transcriptional activity is increased on the C/EBPα promoter when co-expressed with an inactive HDAC1.

Figure 30: C/EBPβ_{C143A} has a similar adipogenic potential than C/EBPβ_{wt} during NIH 3T3 differentiation.
Discussion
Figure 31: Dual regulation of C/EBPβ by mSin3A/HDAC1 and GCN5
Figure 32: Proposed model highlighting the active repressor role of the C/EPBβ LIP isoform in regulating LAP
Figure 33: Potential model explaining cysteine 11 inhibitory effect
Figure 34: Fundamental differences between NIH 3T3 and 3T3 L1 differentiation

Appendix 7: Additional experimental figures
(A) Ectopic expression of C/EBPβ in NIH 3T3 cells induces C/EBPα protein expression only when its expression is maintained for a longer period.
(B) Sumoylation profile of C/EBPβ-associated proteins during the early phase of 3T3 L1 differentiation.
CHAPTER 1 - INTRODUCTION

Obesity is currently one of the major health issues worldwide. Obesity is characterized by an excess of fat that is stored in the white adipose tissue (WAT) in response to excess of nutrient availability. Glucocorticoids seem to facilitate WAT development and favour central (or visceral) obesity, a condition that is strongly associated with insulin resistance, type 2 diabetes and heart diseases.

Studies performed over the past two decades have defined a transcriptional cascade responsible for the differentiation of preadipocytes. Such a process involves members of the basic leucine zipper (bZIP) family of transcription factors (CCAAT/enhancer binding proteins or C/EBPs) and members of the class I and II nuclear receptors (glucocorticoid receptor and peroxisome proliferator activated receptor gamma or PPARγ, respectively). Moreover, our laboratory has linked the pro-adipogenic effect of the glucocorticoid receptor (GR) to C/EBPβ transcriptional activity. Thus, my thesis work has focused on understanding the interplay between transcriptional regulatory complexes that are implicated in the activation of C/EBPα transcription by C/EBPβ in preadipocytes at the onset of differentiation. My objective has been to define the interaction of the co-regulatory factors PCAF/GCN5 and mSin3A/HDAC1 to C/EBPβ that is regulated by GR during murine adipogenesis.

1.1 General concepts in transcriptional regulation

1.1.1 Brief description of the chromatin fiber

Eukaryotic cells have evolved elegant ways to store and use the genetic information that is encoded within their DNA. The enormous size of this genomic material is confined
within the walls of a single organelle, where it can be read and maintained: the cell nucleus. Within the nucleus, DNA is packaged with histone proteins to form a highly condensed structure known as the chromatin fiber. The DNA molecule is packaged in a manner that 146 base pairs are wrapped around an octomer of core histones composed of two copies of each of the histones H2A, H2B, H3 and H4. Further, the octomer of histones is formed when two copies of H2A-H2B heterodimer independently associate with a heterotetramer composed of two histones H3 and H4 bound together (1-3).

The DNA-histones complex unit is called the nucleosome and represents the first of several levels of compaction. Nucleosomes have been proposed to form units of trinucleosomes arranged in a way that facilitates a triple helix structure that is seen under the microscope as a 30nm chromatin fiber (2). This rearrangement requires histone H1, which binds to the DNA sequence between adjacent nucleosomes (linker DNA) to bring them closer to each other and thus further condense them (2). Chromatin exhibits various levels of condensation at different loci, which allows the cell to have a meticulous control of gene expression by regulating the interactions between the DNA molecule and histones and non-histone proteins. Cell biology research is slowly providing a clearer picture of the processes by which such remarkable organization occurs into focus.

The chromatin fibers consist of two types of heterochromatin (constitutive and facultative) and euchromatin regions. The numbers, locations and lengths of these regions within the chromatin fiber vary between cell types, and such variations give rise to different phenotypes. While the constitutive heterochromatin is a highly compact regions mostly composed of repetitive satellite DNA (as in the centromeres and telomeres of chromosomes), the facultative heterochromatin harbour genetic materials that are silenced during development (4). Euchromatin is, however, a more loosely packed chromatin that is prone
for transcription. Gene expression within the euchromatin regions is regulated by coordinating the epigenomic state of the cell (the cytosine methylation state of DNA and histone N-terminal tail post-translational modification) and the recruitment of chromatin remodeling complexes and transcription factors. In short, the basic steps of gene transcription could be summarized as follows: 1) localization of gene locus by already expressed factors; 2) opening of promoter region by remodeling complexes; 3) binding of transcription factors to consensus sequences on promoters and recruitment of co-factors; 4) DNA-bound transcription factors and/or their co-factors will recruit the pre-initiation complex; 5) pre-initiation complex recruits RNA polymerase II to start transcription.

1.1.2 The histones code

Histone-core proteins are post-translationaly modified on their N and C-terminal ‘‘tails’’ by a large number of enzymes. Example modifications include acetylation, sumoylation and ubiquitylation of lysines (5-9), poly-ADP ribosylation of arginines, aspartic/glutamic acids (mostly on H1) (7), phosphorylation of serine and threonines (10-12), methylation of lysines (mono,di,tri) and arginines (13-15) among others. Such covalent modifications modulate nucleosome positioning by affecting the DNA-histones interactions that will result in regulating transcription factors access to their regulatory elements. Generally speaking, deacetylated histones are associated with repressed genes (i.e. heterochromatin) (6) whereas acetylation and methylation of histones are associated with transcriptional activation of genes (5, 16-18). There are cases where specific combinations of lysine acetylation and methylation of tail histones could, however, repress gene expression.

Biochemical analysis has shown that histone acetylation weakens DNA-histone interactions because the acetyl group neutralizes the positive charge on basic lysines and thus reduces the electrostatic interactions holding them together (19). On the other hand, while
histone sumoylation generally represses transcription by recruiting HDACs and heterochromatin proteins to gene loci (8, 20), ubiquitylation has been shown to be associated both with transcriptional activation and repression depending on the promoter context (21-23). Phosphorylation of histones also weakens histones-DNA interactions because of charge repulsion from histone phosphate and DNA phosphate groups (24-25) and thus favours gene activation (26-27).

Due to the diversity of histone modifications and their downstream effect on gene expression, Strahl and Allis proposed a ‘‘histone code’’ hypothesis in 2000. They proposed that a certain pattern of histone tail modifications on a locus will lead to a specific gene response on that locus (28). This hypothesis is now widely accepted as an extensive number of independent studies corroborated their observations using genome wide mapping of histone acetylation and methylation (29-32).

1.1.3 Chromatin remodeling machinery

The epigenome, transcriptome and proteome of a given cell dictate the loci to be transcribed to maintain a defined cellular state (33-34). Because of the obvious interconnection between the genome, transcriptome and proteome, any change that could occur in one will influence the others. Thus, given that some promoters are epigenetically more inclined or poised for transcription (caused by the cytosine methylation profile and histone modifications), chromatin remodeling complexes will destabilise DNA-histone interactions to allow recruitment of DNA-binding transcription factors to either activate or repress specific gene expression (33).

Since DNA-histones interactions are not covalent, certain fluidity could be expected in nucleosomes. In fact, sliding of histones along the DNA in the nucleosomes has been shown to occur in vitro (35-36) and to be sequence-dependent (37-38), although the detailed
mechanism is still controversial. Evidently, changes in histone-DNA juxtapositioning require energy that could either be thermal or chemical; the latter provided by chromatin remodeling complexes through the hydrolysis of ATP molecules.

Chromatin remodeling proteins that alter DNA-histone interactions are conserved through species. Different complexes have been identified, based partially by their substrate specificity, such as SWI/SNF, CHRAC, ISWI and NuRD (reviewed in 39). For example, yeast chromatin remodeling complex SWI/SNF has been characterized to contain, in part, SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 and also the ATP-hydrolysis function of SWI2 was not required to form such a complex (40). SWI/SNF complexes have been shown to have DNA-binding abilities in yeast, thus shedding more light into their mechanism of action (41). Interestingly, mutation of yeast histones (equivalent of H3/H4) residues, implicated in nucleosomes stabilization through interaction with DNA, partially replaces the need of SWI/SNF complex in gene activation, thus supporting the SWI/SNF remodeling function (42).

SWI/SNF has been shown to either be recruited by transcriptional activators to promoters (43) or recruit transcription factors to promoters, as shown by E-RC1 (EKLF coactivator-remodeling complex 1)-dependent activation of the human beta-globin gene by EKLF (erythroid kruppel-like factor) (44). Interestingly, the RNA polymerase II holoenzyme complex has also been shown to contain SWI/SNF proteins and this observation was proposed to facilitate the transcription elongation step by the polymerase (45).

1.1.4 The epigenetic era

Post-translational modifications of histones can be triggered indirectly in response to environmental clues that will alter the activity of modifying enzymes and thus alter the transcriptome and proteome of the cell. It was long thought that this was as far as external
stimuli could affect gene expression. It was not until the discovery of covalent modifications of DNA molecules that the scientific community started to realize the significant role and impact that our environment plays in re-programming the genome through generations. Cytosine methylation by DNA methyltransferases on CpG regions have been reported for some time now (46-47) and are generally associated with gene repression and enriched in heterochromatin (16, 20). The importance of DNA methylation is evident from an increasing amount of studies investigating genome wide mapping of cytosine-methylation in different disease conditions in an attempt to elucidate methylation patterns that could promote cellular dysfunction (48-52). For instance, methylation of over 200 CpG regions was observed in normal and cancerous pancreas, whose patterns affect numerous gene expression changes associated with pancreatic cancer (48). Moreover, genome wide DNA methylation profiling shows a cell-type specificity that is associated with the different levels of CpG-methylation sites (52).

1.1.5 Histone deacetylases (HDACs)

The RNA polymerase II core promoter elements (approximately -40 to +40 nucleotides, where +1 is defined to be the transcription start site) are now known to vary depending on the genes. For instance, most promoters lack a TATA box which is replaced by other core promoter elements sufficient to recruit the pre-initiation complex (53-54). The TATA binding protein (TBP) can be replaced by TBP-related factors (TRFs) to bind TATA-less promoters and these factors are usually associated with the transcription factor IID (TFIID) complex (55). The composition of TFIID varies depending on the promoter/cellular context but is usually composed of several (12 to 15) transcription associated factors (TAFs) in addition to either TBP or TRF (55), whose recruitment are regulated by transcriptional repressors and activators.
Initiation of mRNA synthesis by RNA polymerase II requires that the chromatin remodeling factors and the DNA-binding transcription factors reorganize promoters by altering the post-translational modifications of histones, displacing nucleosomes and thus promoting exposure of the core promoter elements that will further allow nucleation of the pre-initiation complex on the promoter. Several co-repressor complexes have been identified (e.g. NCoR (nuclear receptor co-repressor), SMRT (silencing mediator of retinoid and thyroid hormone receptor), Sin3A/B and NuRD (nucleosome remodelling and histone deacetylation) (56-58)) and their protein composition varies depending on the cell type and the promoter.

NuRD and Sin3 complexes share common functions and proteins. NuRD possesses deacetylase activity mediated by class I HDACs containing complexes composed of RbAp46/48 (or Rbbp7/4), HDAC1/2 in addition to nucleosome remodelling function by Mi-2α/β, among others co-factors (57, 59-60). Like NuRD, mammalian Sin3A/B complexes also contain the core Rbbp4/7/HDAC1/2 deacetylases where Rbbp4/7 and Suds3 (or mSds3) mediate HDAC1/2 interaction with histones and Sin3 respectively (58, 61-62). Although having redundant functions, Sin3A/B protein composition varies and both complexes independently regulate different promoters and processes like cell proliferation, cell cycle progression, apoptosis and T-cell development (63-70).

Sin3 proteins act as adapter proteins linking DNA-bound transcription factors to the HDAC1/2 deacetylases. For example, p53-mediated inhibition of the Map4, stathmin and c-Myb is dependent on p53-mSin3A direct interaction whereas p53 does not directly interact with the HDACs (71-72). Moreover, mSin3A has been proposed to mediate the connection between HDAC1 and the TAL1 transcription factor (73) and between HDAC1/2 and C/EBPβ (66), further supporting the adapter role of this protein. Although only Sin3A
examples have been given due to extensive studies on Sin3A, the high homology between Sin3A/B suggests a similar role in their respective complexes.

It is important to note that although only HDAC1 and HDAC2 are discussed here, there are numerous other deacetylases which are classified into 3 different classes. HDAC1 and HDAC2 belong in the first class of these deacetylases, along with HDAC3 (found in SMRT/NCoR complexes) and HDAC8. Class I HDACs are inhibited by the drug trichostatin A, ubiquitously expressed in mammalian tissue and localized mainly in the nucleus (56, 74-77). Class 2 HDACs includes HDAC4/5/6/7/9/10 which are involved in diverse processes including myocyte development (78-82), glucose uptake (83) and microtubule-dependent cell motility (84-86). Class 2 HDACs are also trichostatin sensitive but, unlike class 1 HDACs, they are not exclusively found in the nucleus, with evidence of an active shuttling mechanism regulating their activity (78-82, 87-88). The last HDAC so far identified is HDAC11 and, due to lack of homology with the other 2 HDAC classes, a third class has been proposed to accommodate this particular enzyme (89). So far, HDAC11 has been shown to be involved in neuronal cell development and T-cell activation (90-92) and to be inhibited by the trichostatin A analog trapoxin (89).

1.1.6 PCAF/GCN5-histone acetyltransferases (HATs)

Contrasting co-repressors, transcriptional co-activators usually promote chromatin relaxation and recruitment of the pre-initiation complex to allow transcription to occur by generally altering the histone/DNA interactions and by promoting co-repressor exclusion from promoters. Acetyltransferases have been extensively studied and their role in promoting gene transcription by acetylating histones and non-histone proteins is now widely acknowledged. Different families of acetylases (classified by homology) have been identified including p300/CBP (p300/CREB-binding protein), the GNAT family (Gcn5-related N-
acetyltransferase including GCN5 and p300/CBP-associated factor or PCAF, among others),
the MYST family (for its members MOZ, Ybf2/Sas2/3 and Tip60), TAF1 (for TATA-
binding protein-associated factor 1), among others, as reviewed in (93-94).

GCN5 and PCAF bear 75% sequence homology and are ubiquitously expressed and
both have an acetyltransferase domain and a bromo domain that mediates histone acetylation
and interaction, respectively (95-97). GCN5 and PCAF have been shown to acetylate lysine
residues on histone H3 and H4 N-terminal tails, although they differentially acetylate
specific lysine substrates within histones (98-99). The specificity for their substrate depends
on the composition of the complexes into which they associate, including the human STAGA
(SPT3-TAF9-GCN5) complex and its yeast equivalent SAGA (SPT-ADA-GCN5), TFTC
(TBP-free-TAF complex) and TRRAP (transactivation/ transformation domain associated
protein), where GCN5 and PCAF can be interchanged (93, 100-102). These complexes share
common proteins subunits and the presence of either GCN5 or PCAF influences their
interacting partners.

In addition to histones, GCN5 and PCAF also acetylate non-histone proteins. For
instance, PCAF-mediated acetylation of the tumour suppressor p53 has been shown to
increase its DNA binding ability, thus activating it (103). Furthermore, MyoD transcriptional
activity during myogenesis has also been shown to be activated by PCAF-mediated
acetylation (104-105). It has been shown that the GCN5-mediated acetylation of C/EBPβ and
nuclear receptor SF-1 (steroidogenic factor-1) promotes their transcriptional activity;
conversely, it appears to have an inhibitory effect on the transcriptional activity of
peroxisome proliferators gamma co-activator 1 (PGC-1) (106-108). Collectively, these
results show that GCN5/PCAF-mediated acetylation of non-histone proteins modulate their function and transcriptional activity, hence indirectly regulate gene expression.

By contrast to PCAF, GCN5 expression occurs during embryonic development whereas during adulthood, they are differentially expressed in the mouse organs (109). The significance of GCN5 has been demonstrated in studies showing that GCN5 knockout mice die during embryogenesis, thus suggesting an essential role for GCN5 during early development. PCAF deficiency however did not elicit any abnormalities (109). Although PCAF functions were thought to be dispensable in mice, it was recently proven otherwise. When behavioural studies were done in mice lacking PCAF, it was observed that these animals show an impaired short-term memory and response to stress due to high corticosterone levels, decreased number of CA1 cells in their hippocampus and altered learning capacities thus suggesting that PCAF function in the brain cannot be replaced by GCN5 (110-111).

1.2 Adipogenesis

1.2.1 Obesity

Obesity is currently a worldwide issue. The World Health Organisation (WHO) estimates that over one billion people are overweight or obese, with a body mass index (BMI) higher than 25 kg/m2. Obesity is characterized by an excess of fat in the body due to the unbalance between caloric intake and energy expenditure. Numerous factors contribute to the caloric unbalance seen in obese patient, such as heredity, food habit, physical activity, environmental factors and stress. The consequences of obesity could impact an individual physically, psychologically and socially, thus making this condition a serious health hazard. Moreover, knowing that obesity increases the risk of a variety of diseases in addition to
affecting the psychosocial state of an individual, numerous studies have been conducted to discover the genetic factors associated with this condition.

Adipose tissue represents an important resource of energy for the organism. Since adipocytes are filled with lipids, their primary function has been long considered to be solely a depot of metabolic energy to be used in a negative energy balance situation. However, it is now known that adipose tissue is an endocrine gland that produces hormones such as TNF-\(\alpha\) (tumour necrosis factor-\(\alpha\)), PAI-1 (plasminogen activator inhibitor-1), leptin and glucocorticoids, among others (\textit{112-115}). Thus, the adipose tissue can be considered as a major organ in maintaining the body’s energy homeostasis and metabolic balance.

There are two main types of adipose tissues found within the body: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more predominant type of adipose tissue in the body and the adipocytes that constitute it present with a small number of very large lipid droplets that occupy most of their cytoplasm. BAT cells however consist of a high number of smaller droplets and contain higher mitochondrial content (reviewed in \textit{116}). The most significant difference between WAT and BAT is that BAT cells express an uncoupling protein (UCP-1) in their internal mitochondrial membrane that allows them to dissipate the gradient of protons produced by lipid oxidation which causes the cells to produce heat instead of ATP.

We now know that preadipocytes originate from multipotent mesodermal stem cells. Characterization of adipocyte biology increased dramatically after murine 3T3 L1 and 3T3 F442A cell models from 3T3 swiss albino mouse embryos were isolated and extensively studied in culture (\textit{117}). Subcutaneous injection of 3T3 F442A in \textit{Balb C} mouse lead to a normal development of fat deposit, thus validating their \textit{in vivo} adipogenic potential (\textit{118}).
These findings have helped to create a cell culture differentiation protocol for murine preadipocytes that is now widely used to study adipogenesis.

Even if most of the current knowledge about preadipocyte differentiation arose from studies performed with the 3T3 L1 model, studies using primary preadipocytes that can be isolated from subcutaneous and visceral adipose tissue in mouse and human have corroborated most of the findings obtained from the immortalized 3T3 L1 cell line (119). Moreover, the transcriptional cascade that occurs prior to the maturation of preadipocytes (discussed on page 14) follows a similar trend between the 3T3 L1 model and human primary preadipocytes (120). Although studies using the human primary preadipocytes are more relevant when investigating adipogenesis, there are some key limitations. Not only do they take longer to differentiate (two weeks at least), they also cannot be cultured for a longer time to expand the limited initial material, thus creating more variability when using cells from different donors.

1.2.2 Murine adipogenesis

Adipocyte differentiation is initiated by treating preadipocytes or fibroblastic/stem cells with a defined cocktail of inducers two days after their confluency, causing growth arrest. Treatment with insulin, a synthetic glucocorticoid hormone dexamethasone (or dex) and a cAMP phosphodiesterase inhibitor 1-methyl 3-isobutyl xanthine (or MIX), will start the differentiation process very efficiently in culture (121). This treatment will then cause a series of 2-3 cell divisions, known as mitotic clonal expansion (or MCE), required for adipogenesis, as shown by numerous studies (122-126); however opposing results have also been published (127).

Although insulin treatment of preadipocytes is not required for a proper differentiation process, the hormone accelerates lipid accumulation (128-129). In addition to
increasing glucose import via the glucose transporter-4 (GLUT-4), insulin initiates the Ras signalling pathway by binding to the insulin-like growth factor-1 (IGF-1). This binding will result in the activation of mitogen-activating protein kinase (MAP kinase), whose role will be described in greater detail later. The importance of the Ras-signaling pathway is underlined by the fact that an active Ras-GTP can replace insulin during adipogenesis (130-131).

The increased concentration of cAMP levels caused by MIX during the initial phase of adipogenesis allows for expression of the cyclic AMP response element binding protein (CREB), followed by its activation by the protein kinase A (PKA)-dependent phosphorylation. CREB then acts to activate C/EBPβ expression by recruiting the co-activator complex p300/CREB binding protein (p300/CBP) to the CRE elements on its promoter (132-135).

The last inducer used in the differentiation process is dexamethasone. The precise mechanism of action of glucocorticoids during adipogenesis has been a mystery for some time now and remains to be fully elucidated despite significant progress in understanding GR’s role in transcriptional regulation. Briefly, GR has been shown to induce C/EBPδ expression directly by binding to a GRE on its promoter, to repress the anti-adipogenic preadipocyte factor 1 and to activate C/EBPβ transcriptional activity during adipogenesis (66, 106, 136-138). The detailed molecular mechanism of C/EBPβ activation during adipocyte differentiation will be discussed in a later section.

1.2.3 NIH 3T3 adipocyte differentiation

The NIH 3T3 cell line is a pluripotent fibroblastic cell line originating from Swiss mouse embryos. They have the ability to differentiate into myoblast, chondrocyte and
adipocyte lineages in response to specific stimuli. Ectopic expression of C/EBPβ, C/EBPα or PPARγ drives adipogenesis in NIH 3T3 cells following treatment of the cells with the standard inducer cocktail \((106, 139-142)\). Although over-expression of C/EBPδ induces 3T3 L1 differentiation only in the presence of inducers, the number of fully differentiated cells is lower than induction by C/EBPβ over-expression \((140)\). This difference in C/EBPδ adipogenic potential is further evidenced in NIH 3T3 cells where its over expression results in much less differentiation than cells expressing C/EBPβ, thus highlighting C/EBPβ as a more prominent factor in adipogenesis in both fibroblastic and preadipocyte cell lines \((140)\). Given these facts, it is important to note that some discrepancies still exist in the use of the NIH 3T3 system when investigating murine adipogenesis. For instance, the NIH 3T3 cells have been suggested to have a compromised glucose import function due to an absence of glucose transporter 4 (GLUT4) expression, which makes them insensitive to insulin \((139, 143)\). Since it has been suggested that such a phenotype could be caused by a lack of C/EBPα expression \((139, 143)\) and since our laboratory has previously showed that C/EBPα is in fact expressed in NIH 3T3 cells \((66, 106)\), the reason why such conflicting results are observed will be discussed later on in relation to new findings presented in this thesis.

1.2.4 Transcriptional cascade during adipogenesis

It is now well established that C/EBPβ and C/EBPδ expression is detected within 2-4h after induction of differentiation, whereas C/EBPα and PPARγ are downstream of the former two proteins \((137, 140, 144)\) (see figure 1 for a summary of the differentiation program). The function of C/EBPα and PPARγ are required for the completion of adipogenesis and also for maintaining their own expression at elevated levels \((145)\). The relevance of C/EBPβ, C/EBPδ, C/EBPα and PPARγ in adipogenesis is evidenced in loss-of-
Figure 1: The murine adipogenesis model.

Two days post-confluent 3T3 L1 cells are induced to differentiate with MIX, insulin and dexamethasone (referred to as MID). The elevation of cyclic AMP levels will activate CREB, which will then bind and recruit the co-activator complex p300/CBP to the C/EBPβ promoter. In parallel, translocation of GR to the nucleus upon binding to its ligand (dex) will activate C/EBPδ expression. Additionally, the expression level of the inhibitory protein CHOP10 will start decreasing gradually, until its suppression at around 12-14h post-induction, time point after which C/EBPβ and C/EBPδ will start binding to the C/EBPα and PPARγ promoters and thus initiate their transcription. Concomitantly, both C/EBPβ and C/EBPδ will also initiate the mitotic clonal expansion process that will increase the cell number. Once C/EBPα and PPARγ proteins are expressed (48h post-induction), they will cross-regulate each others expression without further need of C/EBPβ and C/EBPδ activity, whose expression will interestingly be suppressed by day 4. Lastly, C/EBPα and PPARγ will initiate transcription of their target promoters and the ensuing proteins will then give rise to the mature adipocyte phenotype.
3T3 L1 preadipocytes differentiation program

Day -2
Cells at confluency

Day 0
Treatment with MIX, insulin and dexamethasone (MID)

0h-24h
- p300/CBP
- CREB
- C/EBPβ

4h-48h
- β
- GR
- C/EBPδ

16h-48h
- C/EBPα
- PPARγ

48h
- α
- γ

48h+
- C/EBPα
- PPARγ
- Adipocyte markers

Day 2
Day 5
Day 8

CHOP10 protein level
Cell number

Images of cellular differentiation progression.
function studies using knockout mice models. C/EBPβ−/− and/or C/EBPδ−/− mice have impaired adipose tissue development as shown by smaller fat pads (146). More recently, C/EBPβ−/− mice were shown to be resistant to a high fat diet-induced obesity, exhibited increased beta-oxidation in their BAT, when compared to their wild type (WT) counterparts (147) and reduction of diabetes in Lepr mice (148). C/EBPα knockout mice exhibited severely impaired energy homeostasis and these animals died a few hours after birth (149). Adipocytes did not accumulate lipids as well as in WT mice, glycogen storage and neoglucogenesis in hepatocytes were severely decreased, and intriguingly, UCP-1 protein expression in BAT was also altered (149). Given that C/EBPβ−/−δ−/− or C/EBPα−/− mice still showed WAT tissue, the results suggest that these factors could compensate for the absence of one another during WAT development. Since PPARγ knockout mice died during embryonic development due to a severe heart defect, chimeric mice were developed by injecting PPARγ−/− embryonic stem (ES) cells into blastocysts and the proportion of adipose tissue in PPARγ−/− chimeric mice were compared to those expressing PPARγ in the derived mice (150-151). The results show that PPARγ is indeed essential for adipogenesis and ES cells lacking PPARγ do not undergo differentiation (151).

When two days post-confluent 3T3 L1 cells are treated with the inducer cocktail, it triggers a relatively fast expression of C/EBPβ and C/EBPδ that reaches maximum levels at approximately 24h (137, 152). Although their protein levels can be detected 4 hours after induction, these two transcription factors are initially unable to regulate gene transcription. This is because the known C/EBP inhibitory protein, C/EBPζ/CHOP10, is expressed during the initial phase of preadipocyte differentiation (153) and inhibits C/EBPβ and C/EBPδ transcriptional capacities by suppressing their DNA-binding ability (153-155).
CHOP10 expression starts to decrease as soon as 4h post-treatment and continues to do so until it is not detected at around 16h, hence allowing C/EBPβ and C/EBPδ to be transcriptionally functional (153).

Even if one might expect C/EBPβ DNA-binding capacity to start with CHOP10 downregulation (i.e. 4h post-treatment), it does not occur until about 16h post-treatment (153, 156). This observation suggested that another mechanism regulates C/EBPβ DNA-binding ability. Indeed, it has been shown that C/EBPβ is phosphorylated at residue Thr188 by MAPK within 4h post-treatment, followed by GSK3β mediated phosphorylation of Thr179 and Ser184 (156). Interestingly, MAPK-mediated phosphorylation is a pre-requisite for GSK3β-mediated phosphorylation (156-157). These post-translational modifications are thought not only to expose the DNA-binding domain of C/EBPβ, but also to facilitate oxidation and disulfide bond formation between monomers to stabilise C/EBPβ binding to its target promoters (156, 158-159). Interestingly, numerous studies have shown the involvement of C/EBPβ DNA-binding capabilities in the MCE during adipogenesis (124-125, 152, 160-166) by binding to centromeric satellite DNA (152). Even though C/EBPδ has been shown to also bind centromeric satellite DNA, its involvement in MCE has not been studied as extensively as C/EBPβ (152, 167).

When C/EBPβ DNA-binding ability is acquired, its activity is further regulated by its acetylation state, to reach its maximum level at about 24h post-treatment (66, 106). The delayed activation of C/EBPβ is thought to prevent a premature C/EBPα expression to allow mitotic clonal expansion to occur since C/EBPα is a highly anti-mitotic factor (168-170). Activation of C/EBPβ (along with C/EBPδ) will initiate C/EBPα and PPARγ transcription, the two commitment factors in adipogenesis (171-175). Although it is still unclear whether
C/EBPα expression precedes PPARγ, there is some evidence suggesting this sequence of expression (174, 176). The PPARγ promoter has a KLF5 (kruppel-like factor 5) response element, in addition to its C/EBP element (176), thus possibly making its activation more complex than that of C/EBPα. This implies that the KLF5 transcription factor expression has to be upstream of PPARγ expression. Interestingly, C/EBPβ/δ have been shown to activate KLF5 expression thus adding another player in the initial transcriptional cascade (176).

Together, these findings suggest that PPARγ expression requires either C/EBPβ/δ and KLF5 or C/EBPα (either alone or with KLF5, as no data is currently available supporting either regulation), hence making it more likely to be expressed after C/EBPα.

Once expressed in preadipocytes, C/EBPα and PPARγ are sufficient to finalize the adipogenic phenotype by expressing the adipocyte markers (such as aP2, adiponectin, adipisin, leptin, among others) (177-181), to maintain their own expression and to also cross-regulate each others’ expression (145, 182) (figure 1). If either C/EBPα or PPARγ is over-expressed in preadipocytes, adipogenesis will efficiently occur without pre-treatment with MIX, insulin and dex, otherwise required to reach a similar level of differentiation (183-184). Although nearly all of the adipogenic genes require both C/EBPα and PPARγ transcriptional activity, the insulin-sensitivity phenotype is thought to be more dependent on C/EBPα expression (145, 185). Even if a recent genome wide ChIP-on-chip study confirmed the overlap in promoter-binding of C/EBPα and PPARγ to adipocyte-specific markers (186), PPARγ seems to have the primary role in fulfilling the final adipocyte phenotype (151).

1.3 Families of transcription factors involved in adipogenesis

1.3.1 CCAAT/Enhancer-Binding Proteins
More than two decades ago, the first member of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors has been cloned and its basic leucine zipper (bZIP) domain was characterized as being able to bind to the palindromic ATTGCGCAAT sequence in a ‘’scissor grip’’ way (187-190) (figure 2A). Soon after C/EBP purification and characterization from rat livers, Spiegelman’s group linked for the first time the role of this C/EBP protein in regulating aP2 (or FABP, fatty acid binding protein) expression in adipocytes (191). This C/EBP protein is now known as C/EBPα.

C/EBPβ was independently identified by numerous laboratories. Its first characterization was in the activation of interleukin 6 in the acute phase response following bacterial LPS treatment of cells and was consequently named nuclear factor for interleukin 6 (NF-IL6) (192-193). Additionally, Cortise’s and Lee’s group showed C/EBPβ involvement in IL-6 signal transduction (naming it IL-6DBP) and in alpha 1-acid glycoprotein expression (naming it AGP/EBP) (194), respectively. Moreover, Schibler’s group characterized it as being a liver-enriched transcriptional activator protein (or LAP) that regulates albumin expression and that could dimerize with C/EBPα (195).

Soon after C/EBPβ, C/EBPγ was identified in B-cells and was shown to bind to CCAAT elements in the variable heavy chain locus during B-cell development and to heterodimerize with C/EBPα (196). Johnson’s group then identified two new C/EBP members, C/EBPε (which they named CRP-1) and C/EBPδ (or CRP3), along with the known C/EBPβ (here referred to as CRP2) (197). After identifying C/EBPα, McKnight’s group identified C/EBPβ and C/EBPδ together and showed that they can heterodimerize and activate the albumin gene promoter, as previously showed by Schibler’s group (137). More importantly, McKnight’s study was the first one to identify the transcriptional cascade that
Figure 2: The CCAAT/Enhancer-Binding Protein family of transcription factors.

Schematic representation of C/EBPα/β/γ/δ/ε and ζ showing their activation domains (AD), regulatory domains (RD), basic DNA-binding domain (B) and the leucine zipper dimerization domain (zip). The figure also shows the different translation product for C/EBPα (42 and 30 KDa proteins), C/EBPβ (34, 30 and 15 KDa proteins) and C/EBPε (32, 30, 27 and 14 KDa proteins). Note that C/EBPζ (or CHOP) has a compromised DNA-binding domain, which makes it a dominant-negative dimerization partner. The lower panel shows the crystal structure of what two bZIP domains (blue and red) bound to DNA (green) look like. Notice the “scissor grip” way by which the two bZIP domains bind to their target DNA.
Ramji et al. (2002)
occurs in murine adipogenesis involving C/EBPα, C/EBPβ and C/EBPδ (137).

The last C/EBP member identified was C/EBPζ (also known as CHOP-10 or gadd153) (198). Due to its distinct structure, its homology to the other members was not immediately noticed (see figure 2B). CHOP-10 has been shown to bind and inhibit C/EBPα and C/EBPβ activity by Ron et al. (1992). It has a disrupted DNA-binding domain that prevents its binding to the CCAAT DNA sequence and thus acts as a dominant-negative factor for all the other C/EBPs (155). Together, these studies have shown that the C/EBPα, C/EBPβ, C/EBPγ and C/EBPδ genes are a family of intronless genes that have a bZIP domain that is highly conserved, except for CHOP-10 which lacks a functional basic domain. By contrast to the other members, CHOP-10 and C/EBPγ are ubiquitously expressed (196, 198).

The C/EBPs bZIP domain is composed of a heptad repeat of leucine residues that form alpha-helices exposing the leucine hydrophobicity in a way that allows them to interact with the monomeric leucine region and then allows the dimer to form a scissor-like structure (190). C/EBPs can heterodimerize with other bZIP proteins like ATFs, CREB, FOS and JUN (reviewed in 199). C/EBPβ binds to Fos and Jun in vitro independently of DNA and this interaction represses its activation potential, most likely due to a weaker interaction with the C/EBPβ cognate promoter elements (200). However, C/EBPβ has been shown to heterodimerize with another family of bZIP proteins without losing its activity, as shown by its dimerization with ATF4 that allows them to promote osteoblast maturation by activating the osteocalcin promoter (201).

Knowing that these transcription factors could form homo- and/or heterodimers, one could expect that each dimer will behave differently thus causing a differential gene
expression profile. In fact, EMSA analysis using the same oligonucleotide showed that C/EBPβ binds DNA with a higher affinity when compared to C/EBPα or C/EBPδ, based on their dissociation constant (137). When Luciferase-based transcription assays were done in mammalian cells, each homo- or heterodimer exhibited different transactivation potential on the PPARγ, albumin, IR1, IR2 or aP2 promoters (137, 145, 171). Since there are no crystal structures of any of the full length C/EBPs, it is challenging to understand how these proteins position themselves on DNA molecules in their homo/heterodimers form; although structural and biochemical studies are slowly unveiling this mystery.

1.3.2 Peroxysome proliferator activated receptors

The peroxysome proliferator activated receptors (PPARs) belong to the second class of nuclear receptors, along with the thyroid, vitamin D and retinoic acid receptors that function as transcriptional regulators that are activated upon binding to their ligands. They bind to their cognate DNA sequence as obligate heterodimers with the retinoic X receptor (202-205). There are currently three known members of the PPAR subfamily (α, β/δ and γ) identified in vertebrates and they are all involved in tissue development, energy metabolism and inflammation (reviewed in 206). Although it is established that unsaturated fatty acids are PPARs’ ligands (206), endogenous ones have yet to be identified.

PPARγ transcription produces two mRNAs (1 and 2) via usage of two different promoter elements that give rise to two protein isoforms (PPARγ1 and 2), where the first one has an extra N-terminal domain composed of 30 residues in human (28 in rodent) (207-209). Although PPARγ1 expression is more ubiquitous than that of PPARγ2, the latter is expressed at the highest level in adipose tissue, thus making it the primary PPAR transcription factor involved in energy metabolism (205, 210).
1.3.3 Glucocorticoid receptor

Cushing syndrome is a human condition characterized by an elevated level of cortisol due to a pituitary or an adrenal gland tumour causing elevated protein catabolism, immune system suppression and ultimately visceral fat accumulation (211). Moreover, when patients with inflammatory diseases are treated with glucocorticoids, they also show similar symptoms as those observed in individuals with Cushing syndrome (211-213). It has been long known that the effect of the steroid hormone cortisol is mediated through the glucocorticoid receptor (GR). The function of this protein is almost omnipotent in an individual due to its ubiquitous expression, therefore underlining its physiological importance (211).

GR is part of the class I nuclear receptor family which includes the mineralocorticoid, progesterone and androgen receptors. GR is a transcription factor that regulates diverse processes like cell growth, differentiation, inflammation and thus various physiological responses (214-218). The importance of GR is evident in studies carried out with mice where the GR gene was disrupted. These mice died a few hours after birth mainly due to lung atelectasis (219). These mice exhibited several phenotypes including impaired neoglucogenesis and elevated corticosterone and adrenocorticotropic hormone (ACTH) levels, which the authors speculate may be the result of altered pro-opiomelanocortin (POMC) expression (219). GR has been extensively studied and this summary will be to emphasize the mechanism of action of GR in transcriptional regulation of preadipocyte differentiation.

Prior to binding to its ligand, GR is found in a cytosolic complex partly composed of heat shock proteins (HSP) 90/70/50/20, which keeps GR in an inactive state, while maximizing its ligand-binding potential (211). Physiologically, GR is activated upon binding
to its glucocorticoid ligands secreted by the adrenal cortex during time of stress (220). The GR-ligand complex translocates to the nucleus where it positively/negatively regulates gene transcription by either binding to glucocorticoid response element (GRE)-containing promoters as a homodimer and/or by modulating the transcriptional activity of other DNA-bound transcription factors (221-223).

The GR consist of four main domains that includes an N-terminal regulatory domain, followed by a DNA-binding, a highly flexible hinge domain and a ligand binding domain at its C-terminal end (224-225). The presence of the activation domains AF-1 and AF-2 in GR’s N-terminal and C-terminal domains, respectively, differentially modulate its activity and the latter domain requires the receptor to be bound to its ligand for it to be functional (226). Although full length GR (GRα) possesses all of its domains, it is also translated in an isoform (GRβ) which lacks a portion of its steroid binding domain that functions as a dominant negative isoform in the GRα/GRβ dimer (224, 227). As previously mentioned, GR regulates gene expression by directly binding to GREs on promoters, preferentially as a homodimer as opposed to a monomer (228). In many instances, GR activating function depends on recruitment of p160 co-activators family member and the SWI/SNF chromatin remodelling complexes to gene promoters (229-232).

GR can positively and negatively regulate gene expression via its ability to bind GRE on promoters. For instance, GR can activate the AGP (alpha1-acid glycoprotein) gene along with C/EBPβ and transcriptional intermediary factor 1β (TIF1β) (233). GR DNA-binding ability has also been shown to inhibit the osteocalcin expression by competing with the TBP to bind the immediate promoter region since the GRE was overlapping with the TATA box (234). Interestingly, GR activity could also be modulated by binding to variant GRE
sequences that decrease its affinity to DNA (235). Moreover, the inhibitory role of GR can be initiated via recruitment of co-repressor complexes, as shown by the SMRT co-repressor complex recruitment on the glutathione S-transferase (GST) A2 gene (236). These observations underline the important concept of gradual gene expression regulation that could be caused by the number of transcription factors that bind to different elements on a promoter and by their affinity for their respective DNA sequence.

Although the previous examples illustrate the GRE-dependent mechanisms by which GR regulates gene expression, a DNA-independent mechanism also exists. For instance GR inhibited activator protein 1 (AP-1) activity via protein-protein interaction (237) and inhibited vasopressin expression from a promoter construct that did not contain GREs (238). Moreover, a GR construct lacking its DNA binding domain has been shown to regulate C/EBPα transcription during murine adipogenesis (66). Finally, the fact that mice lacking GR DNA-binding domain are still viable confirms the important function of the DNA-independent modes of action of GR (239-240).

1.3.4 C/EBPα regulation in preadipocytes

The significance of C/EBPα in white adipose tissue is well established as to its role in mediating not only the insulin-sensitivity phenotype in mature cells but also in co-regulating and maintaining, along with PPARγ, the final differentiation markers’ expression, including themselves (186). Although C/EBPα is required for white adipose tissue, it is dispensable for brown adipose tissue development (241). Regulation of C/EBPα expression has been studied thoroughly, but the precise mechanism of its activation remains to be elucidated. We know that C/EBPα expression is repressed in preadipocytes and that the repressed state is thought to be caused by the presence of two CUP (C/EBPα undifferentiated protein) elements in the
proximal 5’ promoter and in the 5’ untranslated region of C/EBPα gene; and by the binding of the Sp1 DNA-binding protein on its promoter element, immediately upstream to the C/EBP element (242-243). Therefore, in preadipocytes, the C/EBPα promoter is in a repressed state characterized by the presence of DNA-binding factors that restrain C/EBPβ access to its sequence-specific site and thus keeping C/EBPα expression minimal until MCE occurs. Nonetheless, this promoter is in an accessible state in preadipocytes (as opposed to the fibroblastic NIH 3T3 cell line), as shown by its histone H4 acetylation state, therefore suggesting that it is poised for transcriptional activation (66). Moreover, this acetylation is thought to be mediated by the Sp1-dependent recruitment of p300/CBP acetylase complex to the C/EBPα promoter. Sp1 and p300 association within the same regulatory complex has been shown to regulate numerous gene promoters, including p16(INK4a) (244), involucrin (245), keratin 16 (246), cytochrome P450scc (247), among others, therefore further supporting the previous hypothesis.

The treatment of preadipocytes with the differentiation cocktail MIX and insulin displaces Sp1 from the C/EBP element on the C/EBPα promoter and allows binding of C/EBPβ since Sp1 and C/EBPβ elements overlap (thus making Sp1 an inhibitor of C/EBPα expression in adipocytes) (242). It is suggested that Sp1 displacement is caused by MIX and that it occurs in two ways: by an increase in proteasomal degradation and by a decreased DNA-binding ability due to increase in its phosphorylation state (242, 248). Insulin may also contribute to Sp1 inactivation since the ERK/MAPK pathway has been linked to Sp1 transcriptional regulation on the versican promoter (249).

Once bound to the C/EBPα promoter, C/EBPβ recruits an acetylase complex (p300/GCN5) and a deacetylase complex (mSin3A/HDAC1), as shown by chromatin
immunoprecipitation analysis at 24h post-treatment (66, 106). Furthermore, HDAC1 recruitment to the promoter decreases histone H4 acetylation, counteracts the p300/GCN5 co-activator effect and prevents recruitment of the pre-initiation complex (66). However, upon the addition of glucocorticoid to the MIX and insulin duo, GR translocates to the nucleus where it helps increase C/EBPα expression. Chromatin immunoprecipitation assays in these conditions showed that, 24h following treatment, mSin3A/HDAC1 occupancy decreases from the C/EBPα promoter, thus allowing the co-activator complex p300/GCN5 to acetylate local histone H4 and C/EBPβ, consequently recruiting RNA polymerase II holoenzyme complex to initiate transcription (66, 106). Although the precise role of GR in this activation is not fully understood, evidence from our laboratory and others suggest that this receptor will not only promote the 26S proteasomal-mediated degradation of HDAC1 but it will also decrease HDAC1 activity by promoting p300-mediated acetylation of HDAC1 (66, 250). Interestingly, GR is not detected at the promoter after treatment with either MI or MID; although its immunoprecipitation with HDAC1 after glucocorticoid treatment suggests that GR is directly involved in regulating HDAC1 activity possibly by promoting its proteasomal degradation (66).

1.4 C/EBPβ transcriptional potential

1.4.1 C/EBPβ transcriptional regulation

C/EBPβ is involved in a myriad of processes as it is highly expressed in many organs including, but not limited to, the liver, intestine, lung, adipose tissue, kidney and spleen (137, 192, 195, 251). C/EBPβ has been shown to activate cytokine and chemokine expression in the acute phase response after inflammation (193, 252), differentiation of macrophages
(253), tumour cell proliferation (254-255), breast cancer progression (255-258), prostate cancer (259-260), apoptosis (261-264), liver proliferation and function (265-269) and adipocyte differentiation (137), amongst others.

Although C/EBPβ is translated from one messenger RNA, three protein isoforms are produced from the first three in-frame methionines due to a leaky ribosomal scanning mechanism (270-271). These isoforms are called liver-enriched activating protein 1, 2 and liver-enriched inhibitory protein, referred to as LAP*, LAP and LIP, respectively. C/EBPβ transcriptional activity has been thoroughly studied and its transcriptional activation domains mapped and are located roughly between amino acids 22 to 93, as shown by sequence homology analysis with C/EBPα, C/EBPδ, C/EBPε and by deletion analysis using transcription assays (158, 272-273). LAP* and LAP are considered to be transcription activators since they both have the activation and bZIP domains, while LIP has only the bZIP domain, and is considered to function as a passive transcriptional repressor (schema in figure 3A) (158, 270). Importantly, LIP has been shown to inhibit LAP activity at substoichiometric levels since the majority of LIP forms LAP/LIP heterodimers, making it a potent passive inhibitor of C/EBP proteins (270). Although LIP and CHOP are C/EBP inhibitory proteins, it is important to keep in mind that they differ in their modes of action.

Other than being regulated by heterodimerization with various isoforms, C/EBPβ has been proposed to have two additional intrinsic transcriptional regulatory domains, RD1 and RD2, located between amino acids 138-169 and 183-211, respectively. RD1 has been shown to have general negative regulatory activity whereas RD2 was shown to affect C/EBPβ DNA-binding ability in a fibroblastic cell line only (158). The authors proposed that these two domains act independently to regulate C/EBPβ transcriptional activity. It was speculated
Figure 3: C/EBPβ-dependent regulation of C/EBPα transcription in preadipocytes: hypothesized model.

(A) Schematic representation of the C/EBPβ LAP* showing the N-terminal activation domains (AD) and the bZIP domain composed of the DNA binding (DBD) and the leucine zipper dimerization (zip). Some of C/EBPβ’s post-translational modifications include methylation at arginine 3, GCN5/PCAF dependent acetylation (Ac) at lysines 98, 101, 102, sumoylation (SUMO) at lysine 133, phosphorylation (Ph) at threonine 179, 188, and serine 184 (located in RD2). The regulatory domain 1 (amino acids 136-166) and 2 (amino acids 183-211) are identified as RD1 and RD2, respectively. The activating LAP and inhibitory LIP isoforms are also represented.

(B) In 3T3 L1 preadipocytes not induced to differentiate, C/EBPα expression is not upregulated and histone 4 is acetylated due to the presence of the HATs p300 and GCN5. When 3T3 L1 cells are induced to differentiate with MIX and insulin alone (MI) C/EBPβ binds and recruits an HDAC1-containing complex that leads to histone 4 deacetylation and low transcriptional activity is observed. Addition of dexamethasone to the differentiation cocktail (MID) results in GCN5-mediated acetylation of C/EBPβ, exclusion of HDAC1 from the C/EBPβ-interacting complex, increased acetylation of histone 4 and subsequent recruitment of RNA Pol II to the promoter.

(C) By contrast to the 3T3 L1 preadipocytes, the NIH 3T3 fibroblasts do not show histone H4 acetylation on the C/EBPα promoter. Only ectopic expression of C/EBPβ will result in recruitment of the mSin3A/HDAC1 and GCN5/p300 containing complexes on the promoter. Like in 3T3 L1 preadipocytes, addition of dexamethasone will also result in potentiation of transcription.
that RD1 inhibits transcription by interfering with the activation domains via steric interactions whereas RD2 blocks the DNA-binding ability by interacting with the bZIP domain (158).

In addition to its intrinsic regulatory properties, C/EBPβ activity is also modulated by post-translational modifications. For instance, phosphorylation at threonine 188 has been shown to be required for growth hormone (GH)-induced c-fos expression (274) and for the induction of C/EBPα and adiponectin expression during adipogenesis (157). Additionally, phosphorylation at threonine 188 by MAPK followed by phosphorylation at serine 184 and threonine 179 by GSK3β has been shown to activate C/EBPβ DNA-binding ability (156).

Other than phosphorylation, acetylation of lysines 39, 98, 101 and 102 by p300/PCAF/GCN5 has also been shown to be required for C/EBPβ activity on the C/EBPα, PPARγ, leptin and GLUT4 promoters (65, 106, 275). Additionally, mSin3A/HDAC1 activity has been shown to negatively regulate C/EBPβ activity by deacetylation on the aforementioned promoters (66, 275).

C/EBPβ has also been shown to be methylated at arginine 3 (present on LAP* but not LAP) via an interaction with the methyl transferase PRMT4/CARM1 (276). This modification impairs the interaction of C/EBPβ with the SWI/SNF complex and MAPK-mediated phosphorylation and thus decreases its activity (276). Since C/EBPβ undergoes numerous modifications that affect its interaction with partners and consequently its activity, the researchers proposed that C/EBPβ modifications exemplify a “transcription factor code of modifications that tunes transregulatory functions”, in analogy to the histone code (276).

Although a small fraction of the literature is used to describe the C/EBP family in this text, the complex role and regulation of these few genes and their products reflect on how a
small number of genes can have such a profound impact at the cellular level. When the human genome was sequenced, the scientific community was expecting to discover thousands of new genes to explain the complexity of the cell and the human body. Surprisingly, less than 27000 protein-coding transcripts were identified and their sequences span only 1.1% of the genome whereas the introns by themselves cover 24% of genomic DNA (277). Seemingly a small number of transcripts, we now know that the determining phenotypes of an organism arise from the combinatorial effect of transcripts splicing, level of expression, localization and post-translational modification of proteins.

1.4.2 Differential roles of LAP*, LAP and LIP during murine adipogenesis

Although it is widely accepted that the differential expression of C/EBPβ isoforms is tightly regulated in different cellular contexts, little is known about LAP* and LAP contribution to the activation of C/EBPα and adipocyte differentiation. We know that LIP inhibits adipogenesis when expressed in 3T3 L1 and NIH 3T3 cells (140). LIP decreases C/EBPβ and C/EBPδ activity by forming heterodimers that lack one of the activation domains located at the N-terminal domain of either LAP*, LAP or C/EBPδ dimers (158, 270), thus making LIP mode of action a passive repression mechanism.

While both LAP* and LAP isoforms have the same activation domains, LAP* does not seem to activate transcription as efficiently as LAP. Numerous studies suggest that C/EBPβ may be susceptible to sumoylation (278-281) where LAP* sumoylation is inhibitory to its activity (278, 281). Interestingly, the first 21 amino acids (in murine C/EBPβ) are not sumoylated. The conserved SUMO consensus ([I/V/L]KXEP) site is located upstream of the RD1 and lysine residue 133 has been shown to be sumoylated within the consensus LKAEL in LAP* (280-281).
A second reason why LAP* activity may be reduced is that its N-terminal domain contains a cysteine (Cys11) that has been suggested to form an intramolecular disulfide bond with Cys33 that acts as an inhibitor of transcription by diminishing LAP* DNA-binding ability \textit{in vitro} (282). Moreover, oxidation of cysteines present in the C-terminal domain of LAP* (upstream and downstream of the bZIP domain) have been shown to also decrease LAP*/LAP DNA-binding ability and thus its transcriptional activity (283). Together, these findings support an important role of the nuclear redox state in modulating C/EBPβ transcriptional activity.

1.5 Rationale and objectives

C/EBPβ transcriptional activity has been shown to be regulated by numerous post-translational modifications mediated by its interacting partners. Current evidence suggests that the increasing diversity of these modifications differentially regulates C/EBPβ activity depending on the cellular environment in which it is expressed. Although numerous regulatory domains (i.e RD1 and RD2 as negative regulatory domains) have been proposed to regulate the basal transactivation potential of C/EBPβ, their hypothesized modes of action were speculative because the conclusions were based on results obtained from the analysis of relatively large deletions of C/EBPβ LAP and from transcription assays only. To circumvent this problem, I sought to delineate smaller domains and to define their contributions in regulating C/EBPβ transcriptional activity with respect to the known mSin3A/HDAC1 and PCAF/GCN5 co-regulatory complexes involved in modulating its activity. Moreover, since C/EBPβ is one of the main factors regulating adipogenesis, I also assessed the contribution of the identified domains in potentiating preadipocyte differentiation.
I hypothesized that GR regulates the dynamic interaction of GCN5 and mSin3A/HDAC1 with C/EBPβ to modulate C/EBPβ adipogenic potential through its ability to induce C/EBPα transcription at the onset of differentiation. To elucidate the mechanism of action of C/EBPβ during murine adipogenesis, the result section was divided in two main sections:

1. To characterize GCN5 and mSin3A/HDAC1 interplay in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ;

2. To elucidate the contribution of newly identified C/EBPβ regulatory domains in potentiating NIH 3T3 and 3T3 L1 adipogenesis.

To test my hypotheses, standard assays in transcriptional regulation were used. To examine the transcriptional activity of C/EBPβ, Luciferase-based transcription assays were used, where the proximal promoter of C/EBPα or PPARγ were cloned upstream of the Luciferase cDNA. This method allows us to measure the rate at which a transcription factor would activate a known promoter and also helps us predict quickly if a factor regulates a potential promoter bearing the DNA regulatory element of interest. The sensitivity and simplicity of this method allows us to quickly test hypotheses before performing more complex but physiologically relevant experiments. Since it is now widely known that distal regulatory elements of genes modulate their expression as much as the proximal ones, their absence in the Luciferase-based assays represent an important limitation as it excludes the contribution of distal co-regulators. Moreover, since epigenetic modifications account for a major fraction of gene regulation, the absence of a well chromatinized DNA on the
Luciferase plasmids adds a great limitation as to how epigenetic modifications could affect the transcriptional activation of the factor studied.

To support results from the Luciferase-based transcription assays, endogenous mRNA levels of the target genes are also measured to confirm that the transcription factor studied behaves similarly in a more physiological system. This method however does not measure the transcription rate of one factor as multiple transcription factors collaborate to modulate the level of gene expression in vivo.

Further, chromatin immunoprecipitation assays are used to show that the transcription factor of interest can be recruited to a known promoter. This method however does not differentiate direct or indirect binding to promoters. Such a limitation could be resolved by using the in vitro electromobility shift assay (EMSA), which assesses direct binding of a factor to a DNA template.

In summary, my results established that the interaction of mSin3A/HDAC1 with C/EBPβ occurs through all of its three isoforms (LAP*, LAP and LIP) and thus identified a new HDAC1-dependent mechanism by which LIP inhibitory function occurs on the C/EBPα promoter during murine adipogenesis. Moreover, I showed that GCN5-dependent activation of C/EBPβ seems to be dispensable in conditions where HDAC1 is unable to associate with C/EBPβ, hence making HDAC1 a dominant inhibitor of C/EPBβ activity when investigated on the C/EBPα promoter and preadipocyte differentiation. I also showed that GR-dependent activation of C/EBPβ LAP* requires expression of the LIP isoform and that some of LAP* inhibitory function is mediated through the redox-state of cysteine 11. Finally, I defined region 141-149 of C/EBPβ as being required for a suitable activation of C/EBPα transcription, but not of PPARγ, by LAP*/LAP, when investigated in murine adipogenesis.
CHAPTER 2 - MATERIALS AND METHODS

2.1 Plasmid constructs and preparations

Cloning was performed using standard techniques. The list of primers used to generate all constructs and plasmids used in the subsequent experiments are listed in Appendix 1. Briefly, C/EBPβ mutants 108C, N107, N140, N168, N184 and N217 were constructed by a PCR strategy to amplify the region of interest using pMSV-C/EBPβ as template (kindly provided to our lab by Dr S.K. McKnight). Forward primers had an EcoRI restriction site upstream of the first ATG and reverse primers had a BamHI restriction downstream of the stop codon. The PCR was performed using Vent DNA polymerase (New England BioLabs) as per the manufacturer instructions, with 5% DMSO to reduce non-specific amplifications. After performing the PCR reaction, the amplified fragments were separated on a 1% agarose gel and the fragment of interest was purified from the gel using a commercially available gel purification kit (Qiagen). After purification, the sample was digested with BamHI and EcoRI (New England BioLabs), followed by heat-inactivation of the enzymes and then used in a ligation reaction with T4 Ligase (New England BioLabs). Inserts were ligated with the pGEX-2T vector (GE healthcare), which was also pre-digested with the appropriate enzymes. The ligated plasmids were then transformed into competent Escherichia coli (E. coli) DH5α.

C/EBPβ was subcloned from pMSV-C/EBPβ to the mammalian pcDNA3.1(-) vector (Invitrogen) between the BamHI and EcoRI restriction site located in the multiple cloning sites. To do so, full length C/EBPβ was PCR amplified using a forward primer with a BamHI restriction site upstream of the first ATG and a reverse primer with an EcoRI restriction
downstream of the stop codon. C/EBPβLIP and C/EBPβLIP 6C were PCR amplified and cloned in pcDNA3.1(-) in the same manner (refer to appendix 1 for primers).

For the internal deletion mutants, an inverse PCR strategy was used to amplify the region of interest. The primers used in all internal deletions were first phosphorylated with the T4 polynucleotide kinase (New England BioLabs) prior to the PCR reaction. Briefly, C/EBPβΔ141-168, Δ141-149, Δ141-156, Δ151-156, Δ153-156 were PCR amplified using the Pfu polymerase (Stratagene) following the manufacturer instructions, with 5% DMSO to reduce non-specific amplifications, using either pGEX2T-C/EBPβ, pMSV-C/EBPβ or pcDNA3.1(-)-C/EBPβ as templates. The samples were resolved on a 1% agarose gel, after which the fragment of interest was purified from the gel, digested with DpnI to remove any parental plasmids, ligated and transformed into competent E. coli DH5α by electroporation using the electromax instrument (BioRad).

All pLXSN (Clonetech) constructs were subcloned from pcDNA3.1(-) constructs. Briefly, the pcDNA3.1 constructs were digested with EcoRI and BamHI to isolate the appropriate inserts, after which they were ligated into the pLXSN plasmids and transformed into E. coli DH5α. In all cases, clones were sequenced to ensure the absence of any PCR-generated mutations and the plasmids were amplified using the Maxi-prep kit from Qiagen.

Note: All constructs are listed in appendix 2.

2.2 Cell culture and transient transfection

2.2.1 Cos7 and Phoenix Ampho cells

Cos7 (ATCC CRL-1651) and Phoenix Ampho (Orbigen RVC-10001) cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, 4.5 g/L) supplemented with
penicillin, streptomycin, 10% fetal bovine serum (FBS) and grown in an incubator at 37°C and 5% carbon dioxide (CO\textsubscript{2}). Cos7 cells were maintained with 25 µg/ml of plasmocin to eliminate mycoplasma contamination (Invivogen).

2.2.2 NIH 3T3 and 3T3 L1

NIH 3T3 cells (ATCC CRL-1658) were maintained in DMEM supplemented with penicillin, streptomycin, 10% calf serum (CS) and grown in an incubator at 37°C and 10% CO\textsubscript{2}. 3T3 L1 cells (ATCC CL-173) were maintained as per the NIH 3T3 cells, however a low glucose DMEM was used instead (1.5 g glucose per litre).

For the dual luciferase assay, NIH 3T3 cells were maintained and grown as previously described. However, when the cells were ready to be split, they were re-suspended and seeded into 6 well dishes (7-8X104 cells per well) in a phenol red-free DMEM supplemented with sodium pyruvate, penicillin, streptomycin and 10% charcoal stripped FBS.

All DMEM media, sodium pyruvate, antibiotics and serums are from GIBCO, Invitrogen and used as recommended by the manufacturer. In all cases, the media is changed every two days to ensure proper growth.

2.2.3 Transient Transfection

Cos7, NIH 3T3 and Phoenix cells were transfected using the FuGENE HD reagent (Roche) as recommended by the manufacturer. The quantity of DNA transfected is specified in each experimental section that follows and the FuGENE:DNA ratio used was 3µl:1µg respectively. Briefly, the FuGENE HD reagent was first mixed with either DMEM (with no supplements) or OptiMEM (GIBCO) at a ratio of 3µl FuGENE HD per 100µl media (for each 1µg of DNA) and left at room temperature for 5-10 minutes. The FuGENE/media was then added to the DNA sample, mixed and incubated at room temperature for 15-30 minutes.
2.3 Retroviral infection of murine cells

2.3.1 Transfection of the Phoenix Ampho packaging cells

In order to generate replication incompetent retroviruses, Phoenix cells were transfected with 2µg of pLXSN construct using the FuGENE HD reagent after being seeded onto 10 cm plates (70-80% confluency). The following day, the media was changed and replaced with 6 mL of fresh media. Two days post-transfection, the supernatant containing the viruses was removed and filtered through a 0.45µm filter using a 5mL sterile syringe. The virus stock was either used directly for infection or was stored at -80°C in a 15mL falcon tube.

2.3.2 Infection of 3T3 L1 and NIH 3T3

Prior to infection, 3T3 L1 and NIH 3T3 cells were seeded at approximately 70% confluency onto 10 cm plates. The next day, the media was replaced with 5mL of fresh media and 5 mL of the viral supernatant was added to the cells in addition to 4µg/mL of polybrene (Millipore). The following day, the media was changed and the cells were grown for an additional day before being split to avoid confluency. Thereafter, cells were maintained with the geneticin antibiotic (G418, 400µg/mL) for 10 days, which was sufficient to select for cells expressing the constructs.
2.4 Differentiation of NIH 3T3 and 3T3 L1 cells

2.4.1 Differentiation protocol

Two days post-confluent 3T3 L1 and NIH 3T3 cells were treated with either 1-methyl 3-isobutyl xanthine (MIX, 500µM), insulin (100 nM) or MIX, insulin and dexamethasone (dex, 250 nM) for 48h, designated as MI or MID respectively. Cells were subsequently incubated in their respective media supplemented with 100nM insulin until they were harvested, as specified in each experimental section. Differentiation of LIP-expressing 3T3 L1 cells was done with increased inducer’s concentration (1mM MIX, 200nM insulin and 1µM dex) to promote a higher differentiation level.

The differentiation experiments were performed in 6 well dishes for western analysis, RNA extraction for real time RT-PCR and Oil Red O staining. Ten centimetres plates were used for all co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) experiments.

The calf serum used for the 3T3 L1 and NIH 3T3 cells was previously screened from different lots before being used in any experiments. Regular differentiation experiments were done using the 3T3 L1 cells and the lot that displayed a low adipogenic potential without the hormone was kept and used throughout all other experiments to ensure a consistent glucocorticoid response.

2.4.2 Oil Red O staining

3T3 L1 cells were differentiated for 8 days and NIH 3T3 cells for 6 days before being stained. Briefly, each well of cells was gently washed twice with 1mL of PBS (phosphate buffer) before being fixed for 30-60 minutes in 1mL of 4% formaldehyde (10% formalin). Following the fixation period, the wells were rinsed twice with PBS before adding 500µl of Oil Red O stain (Sigma-Aldrich) dissolved in propylene glycol (3.5g/500mL) for either 2h or
overnight. Cells were then extensively washed with water to remove as much Oil Red O excess as possible to decrease background colouration and were stored at 4°C in water.

After the staining process, cells were visualised with a phase contrast light microscope at 2X magnification in order to have a visual representation of the lipid accumulation in the cells, by detecting the red lipid-Oil Red O complex. The pictures taken typically represent most of the well, whereas the extremities were usually avoided. The cells around these areas tended to lift more than the center area, and most likely occurred during media replacement. The photomicrographs shown are a representation of 3 to 4 different experiments.

2.5 Mammalian cell extracts and Western analysis

2.5.1 Whole cell extracts

For all Western analyses, whole cell extracts from 3T3 L1 and NIH 3T3 cells were prepared as follows. Cells were washed twice with 1mL of cold PBS, scraped, collected into a 1.5mL eppendorf tube and centrifuged for 4 minutes at 4000g at 4°C. The cell pellet from each well was re-suspended in 100µl of a lysis buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 5mM EDTA, 0.5% nonidet P-40 and freshly added 1mM DTT and 1X complete protease inhibitor cocktail from Roche), incubated on ice for 10 minutes to swell and then sonicated for 10 seconds, at power level 10% with a Branson Sonifier 450 sonicator. The extract was then centrifuged at a minimum of 10,000g for 5 minutes at 4°C to pellet cellular debris and the supernatant was transferred to a new tube. A Bradford assay was used to quantify the protein content of the sample and 30-50µg of total protein was used for the subsequent electrophoresis.
2.5.2 SDS-PAGE and Western transfer

SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis) gels were prepared using standard protocols with the mini-PROTEAN kit (BioRad). Either 10%, 12% or 15% acrylamide SDS-PAGE were made. Proteins samples were denatured using the Laemmli loading buffer (62.5mM Tris pH6.8, 10% Glycerol, 2% sodium dodecyl sulphate (SDS), 0.05% bromophenol blue, 355mM 2-mercaptoethanol), boiled at 95°C for 5 minutes, centrifuged at 10,000g for 1 minute, loaded in the appropriate acrylamide gel and then migrated until desired resolution was obtained. Transfer of the gels was performed according to standard transfer protocols using a PVDF membrane (BioRad).

2.5.3 Western blot analysis

After the transfer of proteins, the PVDF membranes were blocked for either 1h at room temperature or overnight at 4°C in 5% (m/v) skim milk solubilized in 30mL PBS-T (PBS with 0.1% (v/v) of Tween-20 detergent). Incubation with the primary antibody (see appendix 3 for details) was performed in 5% skim milk in PBS-T for 2h at room temperature or overnight at 4°C on a nutator, after which the membranes were washed 3 times with approximately 50mL PBS-T for 10 minutes each. The membranes were then incubated with a horseradish peroxidise (HRP)-conjugated secondary antibody for 1h at room temperature. The dilution used was 1:10,000 for anti-rabbit (GE Healthcare), 1:10,000 for anti-goat (Santa Cruz Biotechnology) and 1:50,000 for anti-mouse (GE Healthcare) in 5% skim milk PBS-T. Following the secondary antibody incubation, the membranes were again washed with approximately 50mL PBS-T 3 times for 10 minutes each. The ECL developing reagent mix (enhanced chemiluminescence, Perkin Elmer) was then added to the membranes, which were then exposed on an autoradiography film (Kodak BioMax). Following exposure, the
membranes were stripped using the re-blot plus solution (Millipore) for 20 minutes at room temperature and the whole procedure was repeated with another antibody.

2.5.4 Indirect immunofluorescence

Prior to seeding cells in 6 well dishes, sterilized coverslips were added to each well. Coverslips were sterilized by ethanol dip and passed through a flame. The cells were then added to the dishes and spread carefully to ensure an even distribution of cells on the surface of the coverslip. The following day, the cells were transfected with 500ng of the pcDNA-C/EBPβ constructs using the FuGENE HD reagent. Two days post-transfection, the cells were washed twice with 1X PBS and then fixed with 4% formaldehyde for 30 minutes in a dark fridge. Cells were then permeabilized with 2mL of 0.5% Triton X-100 in PBS for 30 minutes at room temperature. The permeabilization buffer was then replaced with 0.5mL of blocking solution (5% bovine serum albumin (BSA)) in PBS for 1h rocking at room temperature. The blocking buffer was replaced with 0.5mL of a primary antibody against C/EBPβ (C-19) (Santa Cruz Biotechnology) re-suspended in PBS-T (dilution 1:400) for 2h at room temperature. The wells were then washed 3 times with PBS for 2 minutes each time. Five hundred microlitres of the Alexa 488-conjugated (donkey anti-rabbit, 1:400 dilution in PBS) (Molecular Probes) secondary antibody was then added to the cells for 45 minutes on a rocking platform at room temperature with an aluminum cover. The coverslips were washed again 3 times with PBS for 2 minutes each time, dried and placed face down on top on a drop of Vectashield mounting medium with DAPI (Vector Laboratories) on slides. Nail-polish was used to seal the edge of the coverslip to the slide, which were then wrapped in aluminum foil and stored at -20°C. A fluorescence microscope was used to visualise the green fluorescence (Zeiss-Axiovert, 200M microscope) with 63X objective lens and pictures were
taken using the multi channel acquisition function so that overlap between DAPI and C/EBPβ could be seen.

2.5.5 Immunoprecipitation

Cos7 cells grown to 80% confluency were transiently transfected with 2 µg of the expression plasmid for either Flag-HDAC1 or Flag-GCN5 and 2ug of the pcDNA-C/EBPβ constructs using the FuGENE HD reagent using a 3:1 ratio for 16h. The media was changed the next day and cells were allowed to grow for an additional 16-24h. Cells were then lysed using a lysis buffer (150mM NaCl, 1mM EDTA pH 8.0, 50mM Tris-HCl pH 7.0, 0.5% NP-40 and freshly added 1mM DTT and 1X protease inhibitor cocktails) for 25 minutes at 4°C on a rotating wheel. Whole cell extract was obtained by spinning the lysed cells at 4°C for 10 minutes at 10,000g.

HDAC1 immunoprecipitation was performed with 500µg of total protein (1µg protein per 1µl buffer) in the lysis buffer with 0.15% NP-40 for 2h at 4°C using 30µl of the M2 FLAG resin (Sigma). Following 3X1mL washes with the same buffer (0.15% NP-40), proteins were resolved on a 10% SDS-PAGE and transferred to a PVDF membrane. Blots were probed with antibodies against C/EBPβ (C-19) (Santa Cruz Biotechnology) and FLAG (FLAG M2 monoclonal, Sigma). GCN5 immunoprecipitation was performed similarly. However, following the protein extraction in the lysis buffer containing 150mM NaCl, the sodium chloride and NP-40 content was reduced to 100mM and 0.10%, respectively, during the binding with the M2 FLAG resin and during the washes.

For the endogenous HDAC1 immunoprecipitation in NIH 3T3 and 3T3 L1 cells stably expressing the C/EBPβ constructs, 2µg of the HDAC1 C-19 antibody (Santa Cruz Biotechnology) was used for 2h 4°C on a rotating wheel. For the negative control, 2µg of a
non-specific antibody was used (Gal4 DBD N-19, Santa Cruz Biotechnology). Following the incubation, 40µl of protein-G sepharose slurry (Sigma Aldrich) was added to the samples and incubated for 1h at 4°C on a rotating wheel. The precipitates were then washed 3X1mL with the lysis buffer and the proteins resolved on a 10% SDS-PAGE and transferred to a PVDF membrane. The same HDAC1 antibody (1:400 dilution) used in the immunoprecipitation reaction was used to probe the membrane.

2.5.6 Chromatin immunoprecipitation

NIH 3T3 and 3T3 L1 cells stably expressing the various C/EBPβ constructs were grown and treated with MIX (500µM) and insulin (100 nM) at 2 days post-confluency for 24h. Cells were then washed twice in serum free media, collected via scraping, transferred to a 15mL falcon tube in 5mL serum free media and fixed with 1% formaldehyde for 10 minutes at room temperature, on a rotating wheel. Tubes were then centrifuged using a tabletop centrifuge for 4 minutes at 2000g, at 4°C and the cells were then washed twice with 1mL of cold PBS. Pelleted cells were washed with two sets of 10 minutes washes at 4°C with 1mL of cold buffer I (0.25% Triton X-100, 10mM EDTA, 0.5mM EGTA, 10mM HEPES pH 6.5) and then once with 1mL cold buffer II (200mM NaCl, 1mM EDTA, 0.5mM EGTA, 10mM HEPES pH 6.5). The cell pellet was then re-suspended in 100µL sonication buffer (1% SDS, 10mM EDTA, 50mM Tris pH 8.0, freshly added 1mM DTT and 1X complete protease inhibitor cocktail), sonicated twice for 10 seconds at power level 10% with the Branson Sonifier 450 sonicator and then centrifuged at 4°C for 10 minutes at 10,000g. Ten microlitres of the supernatant was used as input control by adding to it 290µL of extraction buffer (1% SDS, 0.1M NaHCO₃), incubated overnight at 65°C to reverse the cross-linking reaction and then stored at -20°C until the immunoprecipitates were ready. Eighty microlitres of the
supernatant were used for the immunoprecipitation. Briefly, the sample was diluted 20X in
dilution buffer (1% Triton X-100, 150mM NaCl, 2mM EDTA, 50mM Tris pH 8.0, freshly
added 1mM DTT and 1X complete protease inhibitor cocktail). The diluted sample was pre-
cleared with 60µl of protein-G sepharose slurry (Sigma Aldrich) and 2µg of sheared salmon
sperm DNA (Invitrogen) for 2h at 4°C on a rotating wheel. The sample was then centrifuged
for 2 minutes at 2,000g at 4°C and the supernatant was transferred to a new tube where it was
incubated with 5µg of HDAC1 C-19 antibody (Santa Cruz Biotechnology) overnight at 4°C
on a rotating wheel. The following day, the precipitation reaction was accomplished by
adding 60µL of the protein-G sepharose slurry (Sigma Aldrich) to the sample with 2µg of
sheared salmon sperm DNA and incubated for 1h at 4°C on a rotating wheel. The precipitates
were then washed sequentially with 1mL of TSE I (0.1% SDS, 1% Triton X-100, 2 mM
EDTA, 20mM Tris pH 8.0, 150mM NaCl), TSE II (0.1% SDS, 1% Triton X-100, 2 mM
EDTA, 20mM Tris pH 8.0, 500mM NaCl), buffer III (0.25M LiCl, 1% NP-40, 1% sodium
deoxycholate, 1mM EDTA, 10mM Tris pH 8.0) and twice in TE. All washes were performed
at 4°C on a rotating wheel. For the extraction, the precipitates were extracted 3 times in
100µL of 1% SDS, 0.1M NaHCO₃ at room temperatures for 10 minutes each time. To
reverse the cross-linking reaction, the eluates were incubated overnight at 65°C. The DNA
fragments from the immunoprecipitates and from the input were purified using the QIAquick
PCR purification kit (Qiagen). A PCR reaction using Taq DNA polymerase (Invitrogen) was
then performed with primers against the murine C/EBPα promoter -334/-118 (sequence in
appendix 4). Sonicated genomic DNA from NIH 3T3 cells was always used as a positive
control for PCR while H₂O was used as a negative control to ensure a specific amplification
of immunoprecipitated DNA. Each ChIP experiment was independently repeated 3 times.
2.5.7 3H-thymidine incorporation assay

To evaluate DNA synthesis in 3T3 L1 undergoing differentiation without or with the inducer cocktails, the cells were plated in 12 well dishes (each condition in triplicate) and pulsed with 2uCi 3H-thymidine (Amersham) for 6h before harvesting. Following exposure to the thymidine, the cells were washed with ice-cold PBS and then incubated with ice-cold 5% TCA twice for 15 minutes at room temperature. Following an additional wash with PBS, the cellular extracts were scraped with 0.250mL of 0.5N NaOH/0.5% SDS and transferred to scintillation vials. Once all time points were collected, DPM values of incorporated 3H-thymidine were measured in a scintillation counter (Beckman Coulter LS6500).

2.6 Dual Luciferase assay

2.6.1 C/EBPα-Luciferase assay

Approximately 7X104 NIH 3T3 cells were seeded in each well of a 6 well dish and maintained in standard phenol red-free media supplemented with charcoal stripped FBS, as in the cell culture protocol section. The next day, 200 ng of the C/EBPα-promoter (-350 to +6 of murine gene) Firefly Luciferase reporter plasmid, 100 ng of pTL-GR construct (full length rat glucocorticoid receptor), 25 ng of the CMV-driven Renilla-Luciferase reporter plasmid as an internal control (Promega) and 50 ng of the different pcDNA-C/EBPβ constructs were transfected in each well. For transcription assays with the LIP isoforms, the same protocol was applied with the addition of 50 ng of either LIP$_{wt}$ or LIP$_{6C}$. Total transfected DNA was brought to 1 ug with the addition of empty pcDNA plasmid and the FuGENE HD reagent was used (3:1 ratio). Sixteen hours after transfection, media was changed and the cells were treated with either ethanol (vehicle) or 1µM dexamethasone.
Approximately 16-24h later, cells were washed twice with 1mL PBS, lysed directly in their well using 300µl of the 1X passive lysis buffer provided in the dual luciferase reporter assay kit (Promega) and incubated for 20-30 minutes at room temperature before acquiring Luciferase readings for each sample. Twenty microlitres of each well was added to a 96 well plate and the Luciferase activity of each sample was read using a luminometer (LUMIstar, BMG Labtech), as per the manufacturer instructions. Each experiment was performed 3 times (each condition in duplicate or triplicate where indicated) and corrected for transfection efficiency by using the cotransfected renilla expression plasmid. Values were expressed in relative luciferase units since they were normalized independently.

2.6.2 PPARγ-Luciferase assay

The same procedure as the C/EBPα protocol was used with few modifications. Briefly, the NIH 3T3 cells were transfected with 400ng of the PPARγ-promoter (-609 to +52 of the murine gene) Firefly Luciferase reporter plasmid, 100 ng of pTL-GR construct, 25 ng of the CMV-driven Renilla-Luciferase reporter plasmid and 200 ng of the different pcDNA-C/BPβ constructs or 400ng of the pMSV-C/EBPα, pMSV-C/EBPβ, pMSV-C/EBPδ (from Dr McKnight). Total transfected DNA was brought to 1 ug with the pcDNA3.1(-) plasmid and the FuGENE HD reagent was used with a 3:1 ratio.

2.7 Real time reverse-transcriptase PCR reaction

2.7.1 RNA extraction and reverse transcriptase reaction

On the day of extraction, cells were washed twice with 1mL PBS and then RNA was extracted using the RNeasy Mini Kit (Qiagen), as per the manufacturer’s instructions. Total RNA was quantified and 5 to 10µg of RNA was used for the reverse transcriptase reaction,
as follows for every sample. Two and a half microlitres of 10X DnaseI buffer and 0.5µL DnaseI enzyme were added to the RNA sample, for a total volume of 25µL, and incubated at 37°C for 10 minutes. Two and a half microlitres of 50mM EDTA (pH 7.5) was added to the sample and incubated for 10 minutes at 65°C to inactivate DnaseI. After being quick chilled on ice, 22µL of the sample was added to a new tube with 2µL of Oligo (dT) universal primer (Invitrogen) and 2µL of 10mM dNTPs followed by an incubation of 5 minutes at 70°C to ensure annealing of the primers to the cDNA. The sample was again quick chilled on ice, centrifuged and 8µL of 5X First-Strand Buffer, 4µL 0.1M DTT and 0.2µL Rnasin were added. The reaction mixture was incubated for 2 minutes at 42°C, after which 1µL of Superscript II DNA polymerase (Invitrogen) was added and incubated as follows: 50 minutes at 42°C, 15 minutes at 70°C and finally cooled down to 4°C. Samples were stored at -20°C until subsequent quantification.

2.7.2 Quantitative PCR reaction

To quantify C/EBPα and PPARγ (β-actin as an internal control), 12.5µL of a 2X SYBR green Master Mix (Applied Biosystems) was used with 2-4µL of cDNA (a blank reaction with no DNA was also used), 0.75µL of each primer (10µM) in a total volume brought to 25µL using ddH₂O. An addition of 1µL DMSO was added to the C/EBPα reactions to reduce non-specific amplification. Standards containing 1pg, 0.1pg, 0.01pg, 0.001pg, 0.0001pg of the appropriate DNA fragment were also run. Each sample was run in duplicate, excluding the blank reaction, on a 96 well plate (Applied Biosystems) that was properly sealed with its appropriate plastic cover (Applied Biosystems). The 7500 Real Time PCR System LightCycler (Applied Biosystems) was used and the results were quantified using the 7500 System SDS Software. All primers used are listed in appendix 4.
2.8 Acetylation and GST pulldown assays

2.8.1 Acetylation assay

GST fusion proteins bound to GST-Sepharose beads were expressed in *Escherichia coli* BL21 following GE Healthcare protocols. To ensure proper expression, proteins were resolved by 10% SDS-PAGE, stained with the Coomassie Blue Brilliant (0.1%, Sigma) and quantified relative to BSA protein standards of known concentration that were run on the same gel.

For the acetylation reactions, 2µg of GST fusion proteins (bound to GST-Sepharose beads) were incubated with either 500ng of recombinant PCAF (Upstate Biotechnology) or 1µg of recombinant His-GCN5 (bacterially expressed and purified using the TALON® His-Tag Purification Resins (Clontech)) in HAT buffer (50mM Tris pH 8.0, 0.1mM EDTA, 1mM DTT, 10% glycerol, 5µM TSA) with 0.2µCi of 14C-labeled acetyl-CoA at 30°C for 1h. The mix was then resolved on a 10% SDS-PAGE and stained with Coomassie Blue (0.1%, Sigma). After drying the gel, each GST-fusion protein band was excised from the gel, put into a scintillation tube containing 3mL of scintillation liquid and the radioactivity was read with a scintillation counter (Beckman).

2.8.2 GST pulldown assay

In vitro translated (TNT coupled reticulocyte lysate system, Promega) and 35S-labeled GCN5 and mSIN3A proteins were produced following the manufacturer’s instruction. To verify proper translation, 1µL (out of 50µL) of translated proteins were migrated on a 10% SDS-PAGE, dried and the radioactive signal was visualised by PhosphoImager analysis (Typhoon Molecular Dynamics). GST fusion proteins were produced as mentioned before.

Once expression of both *in vitro* translated and bacterially expressed proteins were confirmed, 5µL of the *in vitro* translated proteins were incubated with 1-2µg of GST fusion
proteins (bound to GST-Sepharose beads) for 2h at 4°C in 0.6X lysis buffer (25mM Herpes pH 9.9, 100mM KCl, 2mM EDTA, 20% glycerol and freshly added 2mM DTT and 1mM PMSF) containing 0.15% NP40. After 3X1mL washes using the same binding buffer, proteins were resolved by 10% SDS-PAGE, stained with Coomassie Blue (0.1%, Sigma) and dried. Binding was visualised by PhospholImager analysis (Typhoon Molecular Dynamics). The levels of either mSin3A or GCN5 that were pulled-down with the GST-C/EBPβ fusion peptides were quantified using the ImageQuant software by taking into accounts the amount of the GST-C/EBPβ peptides used in the binding assay.

2.9 Statistical analysis

All P-values were calculated with the Microsoft Excel software using the one-tailed, paired Student’s t-tests. A P-value smaller than 0.05 was considered significant.
CHAPTER 3 - RESULTS

3.1 Characterizing the interplay of GCN5 and mSin3A/HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis

Previous studies from the Haché laboratory and other groups have revealed the involvement of HDAC1-mediated deacetylation and p300/PCAF/GCN5-mediated acetylation of C/EBPβ in regulating gene expression, as mentioned previously (65-66, 106, 275, 284-288). However, the mechanism by which C/EBPβ is activated and the interplay between the acetylases and deacetylases on C/EBPβ-targeted promoters is still poorly defined.

To start investigating C/EBPβ transcriptional regulation by GR, HDAC1 and GCN5, I hypothesized that: 1) mutation in either the HDAC1 or the GCN5 binding domain in C/EBPβ will differentially the activation of C/EBPβ and 2) GR will regulate the activity of C/EBPβ LAP/LIP isoforms by affecting their interacting partners. My first objective was set to characterize C/EBPβ interaction with mSin3A after being acetylated by either PCAF or GCN5 in vitro and then to map the GCN5 and mSin3A binding domain in C/EBPβ. Following the delineation of the binding domains, my second objective was to characterize the transcriptional activity of C/EBPβ mutants lacking either GCN5 or mSin3A/HDAC1 binding domains in various assays. Luciferase-based assays of the C/EBPα promoter were used, in addition to the murine preadipocyte differentiation system to confirm the physiological importance of GCN5 and mSin3A in modulating C/EBPβ adipogenic potential.
My final objective was to define GR involvement in regulating the transcriptional activity of C/EBPβ isoforms (LAP*, LAP and LIP) during preadipocyte differentiation.

3.1.1 Identifying mSin3A and GCN5 binding domains in C/EBPβ

3.1.1.1 PCAF/GCN5-mediated acetylation of C/EBPβ reduces its in vitro binding to mSin3A

GR-dependent acetylation of C/EBPβ at lysine residues 98, 101 and 102 by PCAF/GCN5 has been shown to promote C/EBPβ activity, and this activation coincides with mSin3A/HDAC1 displacement from C/EBPβ upon treatment of cells with glucocorticoids (106). Therefore, I hypothesized that PCAF/GCN5-mediated acetylation of C/EBPβ at lysines 98-102 might interfere with the association between C/EBPβ and mSin3A. I sought to test this hypothesis by performing binding assays between in vitro acetylated (by either recombinant PCAF or GCN5) bacterially expressed GST-C/EBPβ fusion proteins and in vitro translated, 35S-labelled, mSin3A.

The WT or the acetylation-compromised MT (mutant, where Lys 98,101,102 were substituted by Arg) GST-C/EBPβ proteins were first bacterially expressed, purified and in vitro acetylated with either recombinant GCN5 (bacterially expressed and His-tag purified) or recombinant PCAF (commercially available). The specificity of the acetylation reactions were assessed by counting the incorporated 14C-acetate levels of GST alone, GST-C/EBPβwt and GST-C/EBPβK98,101,102R (referred to as βmt). GCN5 and PCAF-mediated acetylation of GST-C/EBPβwt were 5 and 10 fold higher than background levels (GST alone) respectively (figure 4A). Moreover, the 14C-acetate incorporation count of GST-C/EBPβK98-102R
Figure 4: GCN5/PCAF-mediated acetylation of C/EBPβ decreases mSin3A binding in vitro.

(A) GST-C/EBPβ (referred to as β) and GST-C/EBPβK98,101,102R (βmt) were bacterially expressed, purified with glutathione sepharose beads and subjected to an in vitro acetylation assay with either bacterially expressed recombinant GCN5 (left panel) or commercially available recombinant PCAF (right panel) with 14C-Acetyl-CoA as an acetate donor. Following washes of the GST-fusion peptides bound to the sepharose beads, the incorporated 14C-acetate was determined by liquid scintillation count. The results are presented relative to WT GST-C/EBPβ, which was set to 100% acetylation level (N=3, ± s.d.). (B,C) Following confirmation of the acetylation reactions, a separate sample of each of the acetylated GST-fusion peptides were also used in an in vitro binding assay with in vitro translated and 35S-labelled mSin3A. Briefly, following acetylation by either GCN5 (B) or PCAF (C), the acetylated proteins were incubated with mSin3A, followed by extensive washes and then resolved by SDS-PAGE. The left panels show the radioblot of 35S-labelled mSin3A that was pulled down with GST-C/EBPβ fusion peptides. The Coomassie stain of the GST-fusion peptides is also shown as a loading control underneath the radioblot. The right panels show the quantification of the binding (N=3, ± s.d.).
A) GCN5 acetylation and PCAF acetylation

B) Effects of GCN5 and PCAF on mSin3A interaction with GST-β and GST-βmt

C) Comparative analysis of mSin3A interaction with GST-β and GST-βmt under different conditions.
was reduced by 40% when compared to WT GST-C/EBPβ, when either GCN5 or PCAF were used as acetylases (figure 4A). The reduced acetylation observed with GST-C/EBPβK98,101,102R was not due to a compromised interaction with GCN5 or PCAF (106), thus confirming that lysines 98,101,102 are among the residues that are in fact acetylated by GCN5 or PCAF. That the acetylation of GST-C/EBPβK98-102R was not abolished suggests that PCAF and GCN5 could acetylate other residues. Indeed, murine C/EBPβ bears 21 lysines, of which 4 (lysines 39, 117, 215, 216) were also shown to be acetylated by PCAF (275).

Following the confirmation of the in vitro acetylation reactions of the GST-fusion peptides, I performed an in vitro binding assay using the acetylated WT or MT GST-C/EBPβ proteins with in vitro translated and 35S-labelled mSin3A. The results indicate that the interaction of mSin3A with C/EBPβ is decreased by 50% when the latter is acetylated by either GCN5 (figure 4B, left panel, lanes 2 and 5 of the radioblot and quantification in the right panel) or PCAF (figure 4C, left panel, lanes 2 and 5 of the radioblot and quantification in the right panel). When the interaction between C/EBPβK98,101,102R and mSin3A was tested, no change was observed following either GCN5 or PCAF-mediated acetylation (figure 4B and 4C, lanes 3 and 6 of the radioblots). Together, these results suggest that PCAF/GCN5-mediated acetylation of C/EBPβ at lysines 98, 101, 102 interferes with mSin3A binding (published in 106).

3.1.1.2 Amino acids 153-156 in C/EBPβ are required for GCN5 association

GCN5 has been shown to actively regulate C/EBPβ activity by acetylating lysines 98, 101 and 102, thus increasing C/EBPβ transcriptional activity in a GR-dependent manner (106). Moreover, this acetylation reaction has been shown to favour mSin3A dissociation from C/EBPβ (106). To further characterize the interplay between GCN5 and
mSin3A/HDAC1 in regulating C/EBPβ activity, the GCN5 binding domain was determined. To do so, N and C-terminal deletions of C/EBPβ, including either both the activation domains and the cluster of lysines 98-102 (C/EBPβN107, C/EBPβN140 and C/EBPβN168,) or both the DNA binding and dimerization domain (C/EBPβ108C) were constructed (see appendix 5 for schemas of the constructs).

Bacterially expressed GST-C/EBPβ fusion proteins were tested for in vitro binding to 35S-labelled in vitro translated GCN5. Although this approach is not the preferred one as it does not reflect physiological systems, it is a good way to test for direct binding between two factors. Small scale bacterial expression of proteins allows us to get a high quantity of start up material (microgram range), whereas in vitro translated reactions using mammalian systems generates much lower amount of proteins (few nanograms). The latter system is however closer to in vivo conditions as the rabbit reticulocytes lysate used contain most determinants required for proper folding and for some post-translational modifications. Therefore, combining the two systems allows us to create an artificial system that is optimal to test for direct interactions of proteins of interests. In our case, the mammalian in vitro translation system was used for the bigger proteins (GCN5 in this case) to mimic as much as we can proper in vivo folding. However, results from such assay always need to be confirmed in vivo by co-immunoprecipitation assays.

The results in figure 5A (radioblot upper-left panel and quantification of the binding in the right panel) show that GCN5 interaction with a C/EBPβ protein lacking the N-terminal 107 amino acids (β108C) is only slightly decreased. However, when the first 107 or 140 amino acids of C/EBPβ (βN107 and βN140 respectively) were tested for interaction with GCN5, both peptides showed an 80% decrease in binding with GCN5. Since the previous results
suggested that a domain located downstream of amino acid 140 might be responsible for mediating GCN5 interaction, I generated additional constructs with smaller C-terminal deletions to further delineate GCN5 binding domain in C/EBPβ. When I deleted the C-terminal domains of C/EBPβ encompassing either amino acids 169-296 (referred to as βN168), 185-296 or 218-296 (βN184 or βN217 respectively, data not shown) and performed the binding assays, all three C/EBPβ peptides showed similar binding capacity to GCN5 compared to WT C/EBPβ (figure 5A). Hence, the results suggested that the binding was likely to require amino acids 141-168.

To confirm the potential location of the binding domain in a C/EBPβ construct that closely mimics its WT counterpart by having most of its functional domains, a C/EBPβ construct with an internal deletion was generated by removing amino acids 141-168 (referred to as C/EBPβΔ141-168). Yet again, C/EBPβΔ141-168 showed an 80% decreased association with GCN5 (figure 5B), thus suggesting that amino acids 141-168 are in fact required for binding with GCN5.

Using online bioinformatic tools that allow predictions of protein secondary structures using different algorithms (i.e. HNN, PHD, DPM) was unsuccessful in predicting a definite structural nature of the domain covering amino acids 141-168 in C/EBPβ. However, residues located within region 141-156 had a 20% probability of forming α-helical structures. I thus sought to generate two C/EBPβ constructs with smaller deletions that lacked either amino acids 141-149 or 151-156 to define more specific residues involved in GCN5 binding and to also limit structural changes that might occur due to the deletions. When C/EBPβΔ141-149 and C/EBPβΔ151-156 were tested for their ability to bind GCN5 in vitro, they showed a 60% and 80% decrease in binding with GCN5, respectively (figure 5B).
Figure 5: Amino acids 151-156 of C/EBPβ are required for GCN5 binding \textit{in vitro} and \textit{in vivo}.

(A) N-terminal and C-terminal deletions of GST-C/EBPβ were constructed, bacterially expressed and subjected to an \textit{in vitro} binding assay with \textit{in vitro} translated and 35S-labelled GCN5. The left panel shows the radioblot of 35S-labelled GCN5 that was pulled down with GST-C/EBPβ fusion peptides. The Coomassie stain of the GST-fusion peptides is also shown as a loading control. The right panel shows the quantified binding (N=3, + s.d.). (B) Internal deletions of C/EBPβ lacking amino acids 151-156, 141-149 and 141-168 (C/EBPβ$_{Δ151-156}$, C/EBPβ$_{Δ141-149}$ and C/EBPβ$_{Δ141-168}$ respectively) were tested for GCN5 binding, as in (A) (N=3, + s.d.). (C) Cos7 cells were co-transfected with expression plasmids for flag-GCN5 and either pcDNA-C/EBPβ$_{wt}$ or C/EBPβ$_{Δ153-156}$. Whole cell lysates were immunoprecipitated with a FLAG affinity resin. Only the LAP isoform is shown because of a non-specific band that overlaps with LAP* (N=3, + s.d.). (D) GST-C/EBPβ constructs were bacterially expressed and subjected to an \textit{in vitro} acetylation assay with PCAF using 14C-Acetyl-CoA as an acetate donor. After the acetylation reaction, the proteins were loaded on a SDS-PAGE gel, which was Coomassie stained and the bands corresponding to GST-C/EBPβ were cut from the gel (inset as loading control) and the radioactivity was determined with a scintillation counter (N=3, +s.d).
Consequently, I hypothesized that the minimal domain encompassing amino acids 141-156 in C/EBPβ was required for binding with GCN5, in an *in vitro* setting, where both domains 141-149 and 151-156 were required for such an interaction to occur.

Since the previous results were obtained with purified and bacterially expressed GST-C/EBPβ, one can argue that this system does not mimic the physiological environment of the factor due to a large amount of protein used in the assay and to a lack of post-translational modifications that usually occurs in mammalian cells to ensure proper folding. To circumvent this limitation, a co-immunoprecipitation (CoIP) assay was done in Cos7 cells by transiently co-transfecting constructs expressing FLAG-GCN5 and the different C/EBPβ constructs. Although this system is still artificial, it is better than the *in vitro* GST-pulldown assay as it closely mimics a physiological environment. Moreover, since C/EBPβ_{Δ151-156} does not encode the C/EBPβ LIP isoform, as it lacks the initiator methionine 152, I prepared another deletion mutant (C/EBPβ_{Δ153-156}), which retains expression of LIP.

When FLAG-GCN5 and either C/EBPβ_{wt}, C/EBPβ_{Δ153-156} or C/EBPβ_{Δ141-149} were transiently co-expressed in Cos7 cells, almost no C/EBPβ_{Δ153-156} immunoprecipitated with FLAG-GCN5, when compared to C/EBPβ_{wt} (figure 5C). C/EBPβ_{Δ141-149} interaction was however not affected (data is shown in the second result section, figure 25). Only the LAP isoform of C/EBPβ is shown on the Western blot due to a band that overlaps with LAP*.

Moreover, when GCN5’s ability to acetylate C/EBPβ_{Δ153-156} was assessed *in vitro*, there was a 40% decrease in ¹⁴C-acetate incorporation in C/EBPβ_{Δ153-156} when compared to WT C/EBPβ (figure 5D). We can thus suggest with confidence that amino acids 153-156 in C/EBPβ are required for GCN5 interaction both *in vitro* and *in vivo.*
3.1.1.3 Amino acids 153-156 in C/EBPβ are also required for mSin3A binding

Since the interaction of mSin3A (and consequently HDAC1) is compromised by C/EBPβ acetylation at lysines 98, 101 and 102, one might expect that the mSin3A binding domain could be located in close proximity to these residues. To validate this hypothesis and to further delineate the extent to which GR-mediated titration of mSin3A/HDAC1 from C/EBPβ affects C/EBPβ activity, I sought to map the mSin3A binding domain in C/EBPβ. To do so, the same N and C-terminal deletions of C/EBPβ that were used for GCN5 binding (see appendix 5 for schemas) were used in an in vitro binding assay with 35S-labelled mSin3A.

Similar to GCN5, C/EBPβ108C was able to efficiently associate with mSin3A whereas C/EBPβN107 and C/EBPβN140 were not (figure 6A). As opposed to GCN5, however, C/EBPβN168, C/EBPβN184 and C/EBPβN217 were all unable to efficiently bind to mSin3A, with a 60-80% decrease in their binding when compared to C/EBPβwt (figure 6A). These observations suggested that either (1) the bZIP domain is important for the interaction between the two factors and its deletion prevents proper binding or (2) that the mSin3A binding domain is located downstream of amino acids 217. To test whether the bZIP domain was in fact required, I tried the same internal deletion mutants used for binding with GCN5.

Fortuitously, the GST-pulldown assays showed that both C/EBPβΔ141-168 and C/EBPβΔ151-156 interact less efficiently with mSin3A when compared to C/EBPβwt (figure 6B), as it was previously shown for GCN5 (figure 5). Thus, four conclusions could be drawn from these experiments: 1) the absence of lysines 98, 101 and 102 (whose acetylation impaired mSin3A binding) did not significantly affect mSin3A interaction with C/EBPβ; 2) mSin3A binding depended strongly on amino acids 151-156 in C/EBPβ; 3) the bZIP domain
Figure 6: Amino acids 151-156 and the bZIP domain of C/EBPβ are required for mSin3A binding in vitro.

(A) N-terminal and C-terminal deletions of GST-C/EBPβ were constructed, bacterially expressed and subjected to an in vitro binding assay with in vitro translated and 35S-labelled mSin3A. The upper panel shows the radioblot of 35S-labelled mSin3A that was pulled down with GST-C/EBPβ fusion peptides. The Coomassie stain of the GST-fusion peptides is also shown as a loading control. The lower panel shows the quantified binding (N=3, + s.d.). (B) Internal deletions of C/EBPβ lacking amino acids 151-156 and 141-168 (C/EBPβ$_{\Delta 151-156}$ and C/EBPβ$_{\Delta 141-168}$ respectively) were tested for mSin3A binding, as in A (N=3, +s.d.).
appears to be required for optimal interaction between C/EBPβ and mSin3A in vitro and 4) the required site for GCN5 and mSin3A binding with C/EBPβ appears to overlap closely in that binding of both factors depends on amino acids 151-156. Further, since C/EBPδ was also shown to require its bZIP domain to mediate a proper interaction with mSin3A (289), it supports our third conclusion.

In co-immunoprecipitation experiments, C/EBPβΔ153-156 precipitated 70% less with HDAC1, when compared to WT C/EBPβ, thus confirming the in vitro binding assay (figure 7A). These results further support the suggestion that GCN5 and mSin3A might have overlapping requirements in C/EBPβ, hence placing them in potential competition for interaction with C/EBPβ.

Although a decreased interaction in a transient transfection experiment is sufficient to validate the in vitro binding assays, such a method has an important limitation: it causes a very high expression of the proteins in the cells in a relatively short period of time (figure 7B). To assess C/EBPβ and HDAC1 interaction in a physiologically more relevant condition, both C/EBPβ constructs were stably expressed in NIH 3T3 cells using a retroviral transduction strategy. When endogenous HDAC1 was immunoprecipitated, C/EBPβΔ153-156 was still unable to properly associate with HDAC1 (figure 7C), therefore confirming that amino acids 153-156 of C/EBPβ are required for an optimal interaction with mSin3A/HDAC1 in vivo.
Figure 7: \(\text{C/EBP}_\beta^{\Delta153-156} \) interacts less efficiently with HDAC1 compared to WT \(\text{C/EBP}_\beta \)

(A) Cos7 cells were co-transfected with expression plasmids for flag-HDAC1 and either pcDNA-C/EBP\(\beta_{\text{wt}} \) or C/EBP\(\beta^{\Delta153-156} \). Whole cell lysates were immunoprecipitated with a FLAG affinity resin. Data represent results observed in three independent experiments. (B) Western blot showing the C/EBP\(\beta \) expression levels in NIH 3T3 transiently transfected with the pcDNA3.1-C/EBP\(\beta \) vector or stably expressing C/EBP\(\beta \) by retroviral transduction. (C) NIH 3T3 cells stably expressing C/EBP\(\beta \) and C/EBP\(\beta^{\Delta153-156} \) were subjected to an immunoprecipitation assay with an HDAC1 antibody (and Gal4 DBD as a non specific control). Data represent results observed in two independent experiments.
A

IP: FLAG

<table>
<thead>
<tr>
<th></th>
<th>C/EBPβ<sub>wt</sub></th>
<th>C/EBPβ<sub>Δ153-156</sub></th>
<th>FLAG-HDAC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ / + / -</td>
<td>- / - / +</td>
<td>- / + / +</td>
<td></td>
</tr>
</tbody>
</table>

FLAG

LAP*
LAP

10% input

<table>
<thead>
<tr>
<th></th>
<th>FLAG</th>
<th>LAP*</th>
<th>LAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3 ± 0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

plXSN

β_e = transfected
β_s = stably expressed

<table>
<thead>
<tr>
<th></th>
<th>LAP*</th>
<th>LAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

IP

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>HDAC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/EBPβ<sub>wt</sub></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C/EBPβ<sub>Δ153-156</sub></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

HDAC1

<table>
<thead>
<tr>
<th></th>
<th>LAP*</th>
<th>LAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10% input

<table>
<thead>
<tr>
<th></th>
<th>HDAC1</th>
<th>LAP*</th>
<th>LAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 % input</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.2 Characterization of C/EBP\(_{\Delta153-156}\) transcriptional activity and adipogenic potential

3.1.2.1 C/EBP\(_{\Delta153-156}\) transcriptional activity is enhanced on the C/EBP\(\alpha\) promoter but not on the PPAR\(\gamma\) promoter

As the \(\Delta153-156\) deletion in C/EBP\(\beta\) compromised both GCN5 and mSin3A interaction, it would be expected to impact on the transcriptional regulatory potential of C/EBP\(\beta\), although the specific effect was difficult to predict. Nonetheless, the increase of C/EBP\(\beta\) activity would be expected to be proportional to the loss of HDAC1 activity and to the acetylase activity of GCN5 on the C/EBP\(\beta\) targeted promoters.

To test C/EBP\(_{\Delta153-156}\) transcriptional activity, a Luciferase reporter assay was performed in NIH 3T3 cells by transient transfection experiments where the transcription of the reporter was driven by the C/EBP\(\alpha\) promoter (-355/+7) (figure 8A,B). C/EBP\(_{\Delta153-156}\) proved to be a more potent activator of transcription with an almost two fold increase in the baseline state when compared to WT C/EBP\(\beta\). Moreover, treatment of the NIH 3T3 cells with the synthetic glucocorticoid hormone dexamethasone (dex) resulted in a three fold increase of transcription by WT C/EBP\(\beta\) as predicted, since it is known that GR promotes C/EBP\(\beta\) activity by targeting HDAC1 for proteasomal degradation and hence favouring acetylation of C/EBP\(\beta\) and the C/EBP\(\alpha\) promoter environment (66, 106). When C/EBP\(_{\Delta153-156}\) activity was tested in the presence of dex, it also displayed an increase in transcription from the C/EBP\(\alpha\) promoter (approximately 2.5 fold) when compared to its basal state, although the overall level of transcription was still higher than that of WT C/EBP\(\beta\) (figure 7D). To verify whether the increase in transcription observed with C/EBP\(_{\Delta153-156}\) was not
Figure 8: \(C/EBP\beta_{\Delta 153-156} \) has a higher transcriptional activity than \(C/EBP\beta_{\text{wt}} \)

(A) Schematic presentation of \(C/EBP\beta_{\text{wt}} \) or \(C/EBP\beta_{\Delta 153-156} \) showing the different isoforms expressed. (B) \(C/EBP\beta \) activity is measured by the Luciferase reporter assay from the -350/+7 \(C/EBP\alpha \) promoter. \(C/EBP\beta_{\text{wt}} \) or \(C/EBP\beta_{\Delta 153-156} \) were transfected in NIH 3T3 cells along with the \(C/EBP\alpha \)-luciferase reporter and the glucocorticoid receptor constructs. Cells were treated with either vehicle (□) or 1\(\mu \)M dex (■) the following day for 16h. Luciferase activity was corrected for transfection efficiency by using a co-transfected Renilla expression plasmid (N=4 duplicates, + s.e.m.). (C) Western analysis showing the expression level of endogenous \(C/EBP\beta \), exogenous \(C/EBP\beta_{\text{wt}} \) or \(C/EBP\beta_{\Delta 153-156} \) in NIH 3T3 cells treated with either vehicle or dex. Data represent results observed in three independent experiments.
due to increase in its protein expression, a Western blot analysis was performed and confirmed similar expression levels of the constructs (figure 8C).

Since C/EBPβΔ153-156 still required dex to reach higher transcriptional activity, we can suggest that GR-induced activation was still able to increase its activity by means that could be HDAC1-independent. As GR-dependent activation of C/EBPβ involves exclusion of HDAC1, the initial absence of the co-repressor complex from C/EBPβΔ153-156 could also allow it to recruit co-activators faster than the WT counterpart independently of GR.

Moreover, since stable expression of C/EBPβ has been shown to activate C/EBPα and PPARγ2 expression in the NIH 3T3 fibroblastic cell line when promoting adipogenesis (66, 106, 139-140), I sought to evaluate if the increased potential of C/EBPβΔ153-156 to activate C/EBPα transcription would also be reproduced on the endogenous C/EBPα promoter. To test this, I performed a quantitative RT-PCR (qRT-PCR) analysis of C/EBPα mRNA levels in extracts of NIH 3T3 cells stably expressing the C/EBPβ constructs and induced to differentiate either with MIX and insulin (MI) or MIX, insulin and dex (MID). To focus on the initial activation of C/EBPα that is C/EBPβ-dependent, the qRT-PCR reaction was performed on RNA prepared 24h after inducing the cells to differentiate.

Consistent with the transient transfection results, C/EBPα mRNA levels were increased significantly by two fold in the absence of dex in cells stably expressing C/EBPβΔ153-156 (figure 9A, left panel, MI condition). However, addition of glucocorticoid did not further increase C/EBPβΔ153-156 transcriptional activity, when compared to WT C/EBPβ (figure 9A, left panel, MID condition), by contrast to the results obtained in the transient transcription assay (figure 8B). The same trend continued 48h post-induction (figure 9A, right panel). Notably, these results show that C/EBPβΔ153-156 activity in the absence of dex
Figure 9: C/EBPβΔ153-156 transcribes endogenous C/EBPα more efficiently when compared to C/EBPβwt.

NIH 3T3 cells stably expressing either C/EBPβwt or C/EBPβΔ153-156 were subjected to a quantitative RT-PCR reaction 24h and 48h after induction of differentiation without (MI) or with (MID) dex. The C/EBPα (A) and PPARγ2 (B) mRNA levels were normalized to actin (N=3, + s.d.). Quantification of C/EBPα and PPARγ2 are relative to the MI pLXSN control condition where the values are defined as 1 relative unit (RU). (C) The NIH 3T3 cells were also harvested at day 1, 2 and 3 for western analysis of PPARγ2 protein expression. Data represent results observed in three independent experiments. (D) The glucose transporter 4 (GLUT4) mRNA levels were also assessed 48h after induction of differentiation (N=3, + s.d.).
was not restored to the same level as C/EBPβ_{wt} in the presence of dex, indicating that (1) the effect of GR on C/EBPβ activation is probably not limited to the titration of the mSin3A/HDAC1 co-repressor complex and (2) that GR is essential for C/EBPβ to reach its maximal activity.

C/EBPβ has been shown to bind and activate the PPARγ promoter in transcription assays and upon differentiation of the 3T3 L1 preadipocytes (65, 174). Since previous results from Dr Haché’s laboratory suggested HDAC1-mediated repression of C/EBPβ was important for C/EBPα but not PPARγ expression (66), I sought to determine whether Δ153-156 of C/EBPβ would affect PPARγ2 expression. A quantitative RT-PCR analysis of RNA extracted from NIH 3T3 cells (as in figure 9A) showed that both C/EBPβ_{wt} and C/EBPβ_{Δ153-156} activated PPARγ2 transcription equally (figure 9B, left and right panels). Additionally, PPARγ2 protein levels were also shown to be similar in the cells expressing either WT or MT C/EBPβ (figure 9C). Thus, the results suggest that the effect of mSin3A/HDAC1 on C/EBPβ could be promoter-specific.

The glucose transporter 4 (GLUT4) is one of the adipogenic markers whose expression has been shown to be induced by the collective action of C/EBPβ (or C/EBPα) and PPARγ2 together (145). When the mRNA levels of GLUT4 was assessed 48h post-induction of differentiation (figure 9D), its expression was slightly, but significantly, increased in cells expressing C/EBPβ_{Δ153-156} in the absence of dex. Since the expression of PPARγ2 was not detected in the absence of dex in cells expressing WT or Δ153-156 C/EBPβ (figure 9C, MI condition), the higher basal GLUT4 mRNA level could be due to the increased transcriptional activity of C/EBPβ_{Δ153-156}.
3.1.2.2 C/EBPβ\textsubscript{Δ153-156} is more efficient at inducing the differentiation of the NIH 3T3 cells into mature adipocytes by recruiting less HDAC1 to its target promoters.

Since ectopic expression of C/EBPβ in the NIH 3T3 fibroblastic cell line promotes adipogenesis upon treatment of the cells with glucocorticoids (139-140), this system provides the opportunity for evaluating the effect of the Δ153-156 of C/EBPβ in the induction of adipocyte differentiation. Using a retroviral transduction strategy, C/EBPβ\textsubscript{wt} and C/EBPβ\textsubscript{Δ153-156} were stably expressed in NIH 3T3 cells at near physiological levels and they both showed similar expression (figure 10A).

Following induction of differentiation, cells expressing C/EBPβ\textsubscript{Δ153-156} consistently differentiated to a greater extent into mature adipocytes when compared to cells expressing C/EBPβ\textsubscript{wt}, in the absence of dex, as shown by western analysis of the adipocyte marker adipsin and by Oil red O staining of the lipids, 4 and 6 days post-treatment, respectively (figure 10B, C). Hence, the results confirm that C/EBPβ\textsubscript{Δ153-156} has indeed a higher adipogenic potential than WT C/EBPβ.

As previously shown in our laboratory, treatment of 3T3 L1 (and NIH 3T3) cells with dex results in GR-mediated titration of HDAC1 from the C/EBPα promoter, thus potentiating C/EBPα transcription during adipogenesis (66, 106). Knowing that C/EBPβ\textsubscript{Δ153-156} interacts less efficiently with HDAC1 when compared to C/EBPβ\textsubscript{wt}, HDAC1 occupancy would be predicted to be decreased on C/EBPβ\textsubscript{Δ153-156}-targeted promoters. To verify this hypothesis, a chromatin-immunoprecipitation (ChIP) assay was performed 24h after induction of differentiation of NIH 3T3 cells stably expressing C/EBPβ\textsubscript{Δ153-156} (figure 10D).

In cells expressing WT C/EBPβ, HDAC1 was effectively recruited on the C/EBPα promoter as previously demonstrated (66,106). However, the recruitment of HDAC1 was
NIH 3T3 cells that were retrovirally transduced to express either C/EBPβ wt or C/EBPβΔ153-156 were harvested at either day 0 (A) or day 4 (B) post-induction of differentiation without (MI) or with (MID) dex and subjected to a western analysis with the C/EBPβ (A) or adipsin (B) antibodies. (C) The cells were also stained with Oil red O 6 days after induction of differentiation to qualitatively assess lipid accumulation. (D) A chromatin immunoprecipitation analysis was also performed in NIH 3T3 cells expressing C/EBPβ. Briefly, the cells were treated with MI for 24h, harvested, cross-linked and the nuclear extract was immunoprecipitated using an HDAC1 antibody. Following several washes, the precipitated DNA was isolated and subjected to a PCR reaction that amplifies region -460/-244 of the C/EBPα promoter. The figure represents results observed in three independent experiments.
highly compromised from the C/EBPα promoter in cells expressing C/EBPβΔ153-156 (figure 10D). Taken together, these results validate the hypothesized molecular mechanism by which the co-repressor complex mSin3A/HDAC1 represses C/EBPα transcription during murine adipogenesis through its recruitment by C/EBPβ in the absence of glucocorticoids (figure 3).

3.1.2.3 C/EBPβΔ153-156 adipogenic potential is also increased in 3T3 L1 cells

While NIH 3T3 cells are a good model for testing C/EBPβ activity, they are pluripotent fibroblasts, rather than preadipocytes. On the other hand, 3T3 L1 cells are preadipocytes in which ectopic expression of C/EBPβ is sufficient to induce adipogenesis without the need of the differentiation inducers (140, 173, 183). To verify the adipogenic potential of C/EBPβΔ153-156 in a cell line committed to the adipocyte lineage, the transcription factor was stably expressed in the 3T3 L1 cell line and its adipogenic potential was tested.

Similarly to the NIH 3T3 cells, 3T3 L1 cells expressing C/EBPβΔ153-156 differentiated more efficiently into mature adipocytes in the absence of any treatment (i.e. without MIX, insulin and/or dex) (figure 11). The early expression of C/EBPα by C/EBPβΔ153-156 was able to induce more effectively the expression of the adipocyte markers PPARγ and adipin (figure 11A). Furthermore, lipid accumulation was also increased in cells expressing C/EBPβΔ153-156, as shown by the Oil Red O stain (figure 11B). The reason why PPARγ expression was more effectively increased in 3T3 L1 cells expressing C/EBPβΔ153-156 and not in the NIH 3T3 cells will be discussed in the discussion (pages 144-145). Together, the results suggest that the increased activity of C/EBPβΔ153-156 could be responsible for the increased adipogenesis observed.

3.1.2.4 C/EBPβK98-102R transcriptional activity and adipogenic potential are increased upon deletion of amino acids 153-156
Figure 11: C/EBPβΔ153-156 differentiates more efficiently the 3T3 L1 preadipocyte cell line when compared to C/EBPβwt in the absence of the inducer cocktail.

(A) 3T3 L1 cells were retrovirally transduced to express either empty pLXSN plasmid, C/EBPβwt or C/EBPβΔ153-156, grown for 10 days after confluency with no differentiation inducers and harvested for immunoblot analysis to assess the expression profile of some of the adipogenic markers. Note that only the smaller isoform (30KDa) of C/EBPα is shown because of a non-specific overlapping band with the 42KDa isoform. (B) The cells were also stained with Oil red O to assess lipid accumulation. The figure represents results observed in three independent experiments.
A

3T3 L1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Adipsin</th>
<th>C/EBPα</th>
<th>PPARγ</th>
<th>Actin</th>
<th>C/EBPβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLXSN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/EBPβ<sub>wt</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/EBPβ<sub>Δ153-156</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LAP* and LIP are indicated by arrows.

B

3T3 L1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pLXSN</th>
<th>C/EBPβ<sub>wt</sub></th>
<th>C/EBPβ<sub>Δ153-156</sub></th>
</tr>
</thead>
</table>

Images show protein expression levels for each treatment group.
In a previous study in the Haché laboratory where Lys 98,101,102 of C/EBPβ were mutated to compromise GCN5-mediated acetylation, C/EBPβ$_{K98,101,102R}$ showed a reduced transcriptional activity on the C/EBPα promoter and a compromised adipogenic potential (106). The resultant phenotype was correlated with the persistent interaction of C/EBPβ$_{K98-102R}$ with HDAC1 and with the occupancy of HDAC1 on the C/EBPα promoter even upon dex treatment. Thus abrogation of HDAC1 binding via Δ153-156 might be expected to restore C/EBPβ$_{K98-102R}$ transcriptional activity and adipogenic potential.

C/EBPβ$_{K98-102R}$ transcriptional activity was first confirmed to be compromised when compared to C/EBPβ$_{wt}$ in a reporter assay where transcription is driven by the C/EBPα promoter (figure 12A). Moreover, when amino acids 153-156 were deleted from C/EBPβ$_{K98-102R}$ (giving rise to C/EBPβ$_{K98-102R,Δ153-156}$), the new mutant exhibited a transcriptional potential that was higher than C/EBPβ$_{K98-102R}$ in the absence and presence of glucocorticoids (figure 12A and the protein expression levels in 12B). The activity of C/EBPβ$_{K98-102R,Δ153-156}$ reached that of WT C/EBPβ levels but not C/EBPβ$_{Δ153-156}$, therefore suggesting that the acetylation of lysines 98,101 and 102 might be required for maximal activity.

Most notably, when C/EBPβ$_{K98-102R,Δ153-156}$ adipogenic potential was assessed in 3T3 L1 cells, it induced adipogenesis more efficiently than WT C/EBPβ (figure 12C,D) and to a level similar to that of C/EBPβ$_{Δ153-156}$ (see quantification of the protein levels in figure 12E). These results thus suggest that acetylation of C/EBPβ at lysines 98,101,102 by GCN5 is of secondary importance when HDAC1 is unable to bind to (and thus repress) C/EBPβ. The inconsistency between the transcription assay and the differentiation assay is further discussed on pages 125-128.
Figure 12: C/EBPβ\textsubscript{K98-102R,Δ153-156} is a more potent inducer of preadipocyte differentiation than C/EBPβ\textsubscript{wt}.

(A) C/EBPβ activity is measured by the Luciferase reporter assay from the C/EBPα promoter (-350/+7), as previously mentioned. The pMSV-C/EBPβ constructs (200ng) were co-transfected in NIH 3T3 cells along with the C/EBPα-Luciferase reporter and the glucocorticoid receptor constructs. Cells were treated with either vehicle or 1µM dexamethasone the following day for 16h. Luciferase activity was corrected for transfection efficiency by using a co-transfected Renilla expression plasmid (N=3 duplicates, ± s.e.m.). (B) Western analysis showing the expression level of endogenous C/EBPβ, exogenous C/EBPβ\textsubscript{wt}, C/EBPβ\textsubscript{K98-102R} or C/EBPβ\textsubscript{K98-102R,Δ153-156} in NIH 3T3 cells. (C) 3T3 L1 cells were retrovirally transduced to express either empty pLXSN plasmid, C/EBPβ\textsubscript{wt} or C/EBPβ\textsubscript{K98-102R,Δ153-156}, grown for 10 days after confluency with no differentiation inducers and harvested for immunoblot analysis to assess the expression profile of some of the adipogenic markers. (D) The cells were also stained with Oil red O to assess lipid accumulation. The figure represents results observed in two independent experiments. (E) Relative expression of the adipin, C/EBPα and PPARγ\textsubscript{2} protein levels from cells expressing either C/EBPβ\textsubscript{wt}, C/EBPβ\textsubscript{Δ153-156} or C/EBPβ\textsubscript{K98-102R,Δ153-156} (N=2, ± s.d., where * is p < 0.02).
C/EBPα promoter

- Luc

A

![Bar graph showing RLU (+SEM) for pcMSV, β_{wt}, β_{K98-102R}, and β_{K98-102R,Δ153-156}]

P<0.02

P<0.05

C/EBPβ

pcDNA

β_{wt}

β_{K98-102R},Δ153-156

LAP*

LAP

LIP

C/EBPα promoter

Luc

C/EBPα

LAP*

LAP

Actin

LIP

C/EBPβ

Adipsin

C/EBPα

PPARγ2

Actin

D

3T3 L1

Day 8

pLXSN

β_{wt}

β_{K98-102R,Δ153-156}

pLXSN

β_{wt}

β_{K98-102R,Δ153-156}

E

<table>
<thead>
<tr>
<th></th>
<th>C/EBPβ<sub>wt</sub></th>
<th>C/EBPβ<sub>Δ153-156</sub></th>
<th>C/EBPβ<sub>K98-102R,Δ153-156</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipsin</td>
<td>1</td>
<td>6 ± 0.5*</td>
<td>5 ± 0.8*</td>
</tr>
<tr>
<td>C/EBPα</td>
<td>1</td>
<td>3 ± 0.2*</td>
<td>3 ± 0.6*</td>
</tr>
<tr>
<td>PPARγ2</td>
<td>1</td>
<td>2 ± 0.2*</td>
<td>1 ± 0.2</td>
</tr>
</tbody>
</table>
3.1.3 Characterizing C/EBPβ LIP repressive effect during adipogenesis

3.1.3.1 LIP inhibitory function is partially due to its association with mSin3A/HDAC1

As shown previously in figure 7, amino acids 153-156 of C/EBPβ were required for mSin3A/HDAC1 binding. Interestingly, these amino acids are not only located in a regulatory domain (RD1), but they also represent the N-terminal region of the C/EBPβ LIP isoform, which is defined as C/EBPβ152C (figure 13A). This observation implies that the mSin3A/HDAC1 co-repressor complex could bind to the N-terminal domain of LIP and that LIP might function as an active transcriptional repressor.

CoIP experiment performed in 3T3 L1 cells stably expressing LIP at near physiological levels clearly validated its association with HDAC1 (figure 13B). Moreover, when a LIP mutant lacking the first four amino acids following its first methionine (LIP6C) was used instead of WT LIP, its co-immunoprecipitation with HDAC1 was reduced by approximately 50%, further supporting the importance of amino acids 153-156 for binding to the co-repressor complex. That the interaction between LIP6C and HDAC1 was not completely abolished is most likely due to the heterodimerization between endogenous C/EBPβ isoforms (i.e. LAP*, LAP and LIP) with exogenous LIP6C.

Since LIP6C association with HDAC1 appeared compromised, I sought to test if its inhibitory function would also be affected. Prior to the transcription assay, the protein level of the LIP isoforms were assessed by western blot analysis (figure 13C). Using the C/EBPα-promoter driven Luciferase assay, as previously described in figure 8B, the results showed that increasing expression of LIP proportionally decreased C/EBPβ basal activity,
Figure 13: The LIP$_{6C}$ isoform is a less potent inhibitor of C/EBPβ activity when compared to LIP$_{wt}$.

(A) Schematic representation of C/EBPβ LAP* indicating the first methionine residue in the LIP isoform, located within the RD1. (B) 3T3 L1 cells stably expressing either LIP or LIP$_{6C}$ were subjected to a co-immunoprecipitation assay with endogenous HDAC1. Whole cell lysates were immunoprecipitated with an HDAC1 or a non-specific antibody (Gal4 DBD) followed by incubation with protein-G sepharose beads for antibody precipitation. Data represents results observed in three independent experiments (Student’s t-test P value was less than 0.05). (C) Western analysis showing the expression level of either exogenous C/EBPβ alone (50 ng) or co-transfected with 100 ng of either LIP or LIP$_{6C}$ two days post-transfection in NIH 3T3 cells that were either untreated or treated with dex. (D) C/EBPβ activity is measured by the Luciferase reporter assay from the C/EBPα promoter (-350/+7). C/EBPβ$_{wt}$ with increasing DNA quantity of pcDNA-LIP or pcDNA-LIP$_{6C}$ were co-transfected in NIH 3T3 cells along with the C/EBPα-Luciferase reporter and the glucocorticoid receptor constructs. Cells were treated with either vehicle (left panel) or 1 µM dex (right panel) the following day for 16h. Luciferase activity was corrected for transfection efficiency by using a co-transfected Renilla expression plasmid. The two conditions are shown in two separate graphs to easily evidence the phenotype observed in the condition with no steroids. (N=3 duplicates, ± s.e.m.).
approaching two fold inhibition at 100ng of transfected plasmid (figure 13D, left panel). LIP$_{6C}$ failed to significantly affect C/EBPβ activity. Although the same trend in LIP-mediated inhibition of C/EBPβ was observed in the presence of glucocorticoids, LIP$_{6C}$ was in this condition able to slightly (approximately 25%) decrease C/EBPβ activity, only at higher expression levels (figure 13D, right panel). One should notice that the overall activity of C/EBPβ in the presence of dex was still higher than in its absence (compare right panel to left panel of figure 13D, where C/EBPβ activity in the absence of dex is defined as 1 RLU).

3.1.3.2 Deletion of the first 4 amino acids in LIP alleviates its inhibitory function in preadipocyte differentiation

Since ectopic expression of LIP in 3T3 L1 cells completely abolishes adipogenesis (140), I sought to test the extent to which LIP$_{6C}$ retains this inhibitory function. After stably expressing LIP or LIP$_{6C}$, 3T3 L1 cells were differentiated with MID and adipogenesis was monitored 8 days post-treatment. As shown in figure 14A,B, 3T3 L1 cells infected with the pLXSN control plasmid differentiated efficiently, showing high levels of adipsin, C/EBPα, PPARγ2 and high lipid accumulation, as seen by Oil red O staining. Expression of LIP however strongly reduced adipsin, C/EBPα and PPARγ2 expression. While 3T3 L1 cells expressing LIP$_{6C}$ differentiated poorly when compared to control cells, they still showed an intermediate level of adipogenesis, as shown by Western analysis of C/EBPα, PPARγ2, adipsin and Oil Red O staining of the lipids.

When expressed from a retroviral vector, LIP and LIP$_{6C}$ expression persists throughout differentiation (figure 14A). However, endogenous LIP expression ceases within 3 days of the induction of differentiation (figure 14C), as C/EBPβ expression is replaced by C/EBPα (137, 140). To exclude the possibility of an artifactual effect of the sustained
Figure 14: LIP_{6C} inhibits less efficiently C/EBPα, PPARγ2 and adipsin protein expression during preadipocyte differentiation.

3T3 L1 cells were retrovirally transduced to express either pLXSN vector, LIP or LIP_{6C}, grown for 8 days following MID treatment. Cells were either harvested for western analysis using the adipsin, C/EBPα or PPARγ2 and actin antibodies (A) or stained with Oil red O (B). In the PLXSN mock condition, only 25% of the protein lysate was loaded to avoid a saturated signal. Data represent results observed in three independent experiments. (C) Time-course western analysis of endogenous C/EBPβ levels in 3T3 L1 cells following their treatment with either MI (-) or MID (+) at two days post-confluency. Data represent results observed in three independent experiments. (D) Western blot analysis showing the expression level of either endogenous (pcDNA mock plasmid) or exogenous LIP in 3T3 L1 cells three days following transfection with 100ng of the DNA constructs. (E) The transfected 3T3 L1 cells were also harvested two days post-treatment (or 5 days following transfection with the LIP constructs) to evidence decrease in exogenous LIP expression, as shown by similar expression levels in all three lanes. (F) One day before confluency, 3T3 L1 cells were transiently transfected with increasing DNA quantity of the pcDNA-LIP or pcDNA-LIP_{6C} constructs. Three days later, the cells were induced to differentiate with MID for 8 days and harvested for immunoblot analysis of the adipogenic markers. Data represent results observed in two independent experiments.
expression of LIP in the differentiation of preadipocytes, I repeated the 3T3 L1 differentiation experiments with cells in which LIP and LIP\(_{6C}\) were expressed by transient transfection prior to the initiation of differentiation. In this case, the levels of exogenous LIP were elevated over endogenous LIP at day 0 (figure 14D), but had declined by day 2 so that an increase in LIP expression over the endogenous factor was no longer evident (figure 14E). Under these conditions, LIP still effectively inhibited preadipocyte differentiation at the early stages of differentiation (when C/EBP\(\beta\) is expressed prior to C/EBP\(\alpha\) and PPAR\(\gamma\)) as reflected by a reduction in adipin, C/EBP\(\alpha\) and PPAR\(\gamma2\) at day 8 of differentiation, with the strongest inhibition at higher expression levels (figure 14F). Again, LIP\(_{6C}\) was only partially effective in repressing differentiation compared to LIP, even at elevated expression levels.

To briefly summarize the results in this section, I showed that the mSin3A/HDAC1 complex depends on a domain encompassing amino acids 153-156 of C/EBP\(\beta\) for its interaction with C/EBP\(\beta\). Further, I have identified amino acids 153-156 as conferring active transcriptional repression on LIP that plays an important role in the dampening of adipogenesis.

3.1.4 Characterizing HDAC1 involvement on 3T3 L1 MCE through LAP/LIP

3.1.4.1 C/EBP\(\beta_{\text{wt}}\) expressing cells show a slightly increased DNA replication rate than cells expressing C/EBP\(\beta_{\Delta153-156}\) during MCE

An extensive body of evidence shows C/EBP\(\beta\) involvement in the mitotic clonal expansion (MCE) process that is required for adipogenesis (162-163, 290-291). However, it is not known how precisely C/EBP\(\beta\) promotes MCE, although its DNA-binding ability has been shown to be required in this process (162). Additionally, HDAC1 has been shown to
promote proliferation in liver cells through C/EBPβ (285), hence suggesting that C/EBPβ activity could be involved in potentiating cellular proliferation that occurs during MCE.

Since we altered C/EBPβ_{Δ153-156} activity by compromising its interaction with HDAC1, I sought to assess if the absence of HDAC1 would actually decrease MCE during 3T3 L1 differentiation by first evaluating the expression levels of some of the key cell cycle regulators. We know that upon treatment of 3T3 L1 cells with the differentiation cocktail, upregulation of cyclin A and cyclin B1 occurs as early as 16h post-induction whereas p27/kip1, whose expression blocks the G_{1}-S checkpoint by inhibitory interactions with cyclin A, decreases gradually to reach its lowest level at about 16h post-treatment (123, 162, 291). The concomitant increase of cyclin A and decrease of p27/kip1 are thus markers for MCE in 3T3 L1 cells.

Curiously, untreated cells expressing either C/EBPβ_{wt} or C/EBPβ_{Δ153-156} that were harvested 3 days post-confluency (where 2 days post-confluency is when the cells are usually treated with the inducers) did not express any detectable cyclin A and had relatively higher levels of p27/kip1 (figure 15A, lane 1-3), thus suggesting that the cells cannot enter the S phase to initiate DNA replication. In fact, an ^{3}H-thymidine incorporation assay also confirmed that MCE was not initiated in these conditions (figure 15B, left panel), when compared to the MI condition (figure 15B, right panel), which has been shown to be sufficient to induce mitosis (120). These results thus confirm that the increased adipogenesis observed in 3T3 L1 cells expressing C/EBPβ_{Δ153-156} in the absence of inducers was not due to its ability to increase cell number, but mainly to its higher transactivation potential on adipogenic promoters.
Figure 15: Ectopic expression of WT C/EBPβ affects the expression of some of the cell cycle regulators during 3T3 L1 differentiation

(A) 3T3 L1 cells were retrovirally transduced to express either empty pLXSN plasmid, C/EBPβ_{wt} or C/EBPβ_{Δ153-156}, grown for three days post-confluence (where two days post-confluence is defined as being day 0) either with no treatment (−) or with MI during the third day. The cells were then harvested for immunoblot analysis of the cell cycle regulators cyclin B1, cyclin A and p27/kip1. Data represent results observed in three independent experiments. (B) DNA synthesis was also evaluated in 3T3 L1 cells by ³H-thymidine incorporation assay at 6h, 24h and 48h following treatment of 3T3 L1 with either MI or untreated, as specified. Each condition was performed in triplicate (N=2, ±SEM) (C) 3T3 L1 cells stably expressing either the pLXSN vector, LIP or LIP_{6C} were harvested either prior to treatment (day 0), 4h or 24h following treatment with MID and subjected to western blot analysis as in (A). Data represent results observed in three independent experiments. (D) DNA synthesis was evaluated as in (B), but in 3T3 L1 cells stably expressing pLXSN, LIP or LIP_{6C}. Each condition was performed in triplicate (N=2, ±SEM)
When the cells were treated with MI, an increased expression of cyclin A and decreased p27/kip1 expression was observed (figure 15A, lane 4-6), thus favouring mitosis (figure 15B, right panel). Curiously, p27/kip1 expression was constantly observed to be the lowest in cells expressing C/EBPβ_{wt} than C/EBPβ_{Δ153-156}, in the MI condition (figure 15A, compare lane 5 and lane 6).

Furthermore, cells expressing C/EBPβ_{wt} also showed a slightly higher DNA replication level than mock infected and C/EBPβ_{Δ153-156} expressing cells, as shown by a thymidine incorporation assay (~17000 VS 15000 DPM respectively, figure 15B, right panel). Collectively, these results suggest that treatment of 3T3 L1 cells with MI is required for the cells to initiate mitosis during adipogenesis and that HDAC1 association with C/EBPβ might play an important role in promoting MCE. However, the over-expression of C/EBPβ by itself was not sufficient to replace the effect of the cocktail treatment in inducing cell division when MCE was evaluated 3 days following confluency. Although these results suggest that in conditions where C/EBPβ is over-expressed, MCE is not vital for adipogenesis to occur, this process amplifies the adipogenic program as a MI treatment of 3T3 L1 cells stably expressing C/EBPβ results in more differentiation when compared to a condition without the inducers (data not shown).

3.1.4.2 Over-expression of LIP_{wt} and LIP_{6C} did not alter MCE during 3T3 L1 adipogenesis in the presence of the full adipogenic inducers

As previously mentioned, HDAC1 seems to be involved in regulating C/EBPβ-dependent cellular proliferation (285). More importantly, LIP has also been shown to regulate cellular proliferation (292-293), thus making it a good candidate to promote MCE. In light of these findings, I sought to confirm whether LIP over-expression might affect MCE
during adipogenesis. Analysis of some of the key cell cycle regulators suggests that there is no major difference in cellular proliferation in cells over-expressing either LIP or LIP$_{6C}$ when compared to pLXSN infected cells, as seen by a similar increase in cyclin A expression and similar decrease in p27/kip1 levels (figure 15C, lane 7-9). Again, 3H-thymidine incorporation assay did not show any significant differences (p > 0.25) when evaluated during the first 48h of differentiation in the presence of the differentiation inducers. These results thus suggest that over-expression of LIP did not affect MCE and that the increased differentiation in cells expressing LIP$_{6C}$ is not due to increased MCE.

3.1.5 Defining the inhibitory contribution of LIP and mSin3A/HDAC1 in repressing C/EBPβ adipogenic potential

3.1.5.1 C/EBPβ_{M152A} and C/EBP$\beta_{\Delta151-156}$ have similar transcriptional activity

Given that LIP and mSin3A/HDAC1 are both involved in inhibiting C/EBPβ LAP activity by decreasing the number of activation domains (passive repression by decreasing co-activator loading on LAP*/LAP) and by deacetylating LAP*/LAP and the promoter environment (active repression), respectively, I sought to determine whether their inhibitory effects were additive. If they are additive, then a C/EBPβ protein that lacks both mSin3A binding domain and can not express LIP would be much more transcriptionally active than one that lacks either mSin3A binding domain or can not express LIP. To address this question, two additional mutants were constructed: C/EBPβ_{M152A} (compromised for LIP expression) and C/EBP$\beta_{\Delta151-156}$ (compromised for both LIP expression and mSin3A binding). Transient transfection experiments performed in Cos7 cells confirmed that
Figure 16: C/EBPβM152A and C/EBPβΔ151-156 both have a higher transcriptional activity than C/EBPβwt

(A) Cos 7 cells were co-transfected with expression plasmids for flag-HDAC1 and either C/EBPβwt, C/EBPβM152A or C/EBPβΔ151-156. Whole cell lysates were immunoprecipitated with a FLAG affinity resin. Data represent results observed in three independent experiments. Only the LAP isoform is shown because of a non-specific band that overlaps with LAP*. (B) Summary of the different C/EBPβ constructs with respect to LAP*/LAP and LIP expression and to HDAC1 binding. (C) Schema of the different constructs used. (D) Upper panel: C/EBPβ activity was measured by the Luciferase reporter assay from the -350/+7 C/EBPα promoter. C/EBPβwt, C/EBPβΔ153-156, C/EBPβM152A and C/EBPβΔ151-156 were transfected in NIH 3T3 cells along with the C/EBPα-Luciferase reporter and the glucocorticoid receptor constructs. Cells were treated with either vehicle (□) or 1µM dex (■) the following day for 16h. Luciferase activity was corrected for transfection efficiency by using a co-transfected Renilla expression plasmid (N=4 duplicates, ± s.e.m.). Right panel: Western analysis showing the expression level of the transfected C/EBPβ constructs in NIH 3T3 cells.
A. IP: FLAG

<table>
<thead>
<tr>
<th></th>
<th>C/EBPβ<sub>wt</sub></th>
<th>C/EBPβ<sub>Δ151-156</sub></th>
<th>C/EBPβ<sub>M152A</sub></th>
<th>Flag-HDAC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAP</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FLAG</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10% input</td>
<td>LAP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FLAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. LAP*/LAP LIP HDAC1 binding

<table>
<thead>
<tr>
<th></th>
<th>LAP*/LAP</th>
<th>LIP</th>
<th>HDAC1 binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>β<sub>wt</sub></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β<sub>Δ153-156</sub></td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>β<sub>M152A</sub></td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>β<sub>Δ151-156</sub></td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

C. C/EBPβ_{Δ153-156}

D. C/EBPα promoter Luc

<table>
<thead>
<tr>
<th></th>
<th>pcDNA</th>
<th>β<sub>wt</sub></th>
<th>β<sub>Δ153-156</sub></th>
<th>β<sub>M152A</sub></th>
<th>β<sub>Δ151-156</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>RLU (+ SEM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C/EBPβM152A, but not C/EBPβΔ151-156, co-immunoprecipitated with HDAC1 (figure 16A and summary in 16B).

To compare their transcriptional activity, a C/EBPα-promoter driven Luciferase assay was performed and C/EBPβwt, C/EBPβΔ153-156, C/EBPβM152A and C/EBPβΔ151-156 (schema in figure 16C) activity were tested either in the absence or presence of dex. As illustrated in figure 16D, all three mutated proteins behaved similarly in the absence and presence of dex: they were all more transcriptionally active than C/EBPβwt. Western blot analysis (figure 16D, right panel) shows that this effect was not attributable to discrepancies between the expression levels of each protein. Hence, LIP and mSin3A/HDAC1 inhibitory effects were not additive in this assay.

3.1.5.2 HDAC1 presence is decreased from the C/EBPα promoter in NIH 3T3 cells expressing C/EBPβΔ151-156 but not C/EBPβM152A

Since LAP and LIP can independently associate with HDAC1, I sought to determine whether HDAC1 recruitment to the C/EBPα promoter depends exclusively on LIP expressed from the WT C/EBPβ transcript. To clarify this question, I performed a ChIP experiment by immunoprecipitating HDAC1 24h after MI treatment of the NIH 3T3 cells stably expressing either WT C/EBPβ or C/EBPβM152A, which lacks the initiator methionine encoding LIP. As illustrated in figure 17A, HDAC1 was confirmed to be recruited on the C/EBPα promoter by LAP*/LAP without further requirement for LIP expression, in cells expressing C/EBPβM152A. Furthermore, when the minimal domain encompassing amino acids 153-156 required for HDAC1 binding in C/EBPβ was removed from C/EBPβM152A, giving rise to C/EBPβΔ151-156, HDAC1 recruitment was eliminated from the C/EBPα promoter (figure 17B).
C/EBPβM152A but not C/EBPβΔ151-156 recruits HDAC1 to the C/EBPα promoter.

C/EBPβ expressing NIH 3T3 cells were treated with MI for 24h to assess HDAC1 recruitment on the C/EBPα promoter by either (A) C/EBPβM152A or (B) C/EBPβΔ151-156. The cells were then harvested, cross-linked and the nuclear extract was immunoprecipitated using an HDAC1 antibody. Following several washes, the precipitated DNA was isolated and subjected to a PCR reaction that amplifies region -460/-244 of the C/EBPα promoter (N=2 for each C/EBPβ construct).
A

<table>
<thead>
<tr>
<th></th>
<th>C/EBPα promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLXSN</td>
<td>+</td>
</tr>
<tr>
<td>C/EBPβ<sub>wt</sub></td>
<td>-</td>
</tr>
<tr>
<td>C/EBPβ<sub>M152A</sub></td>
<td>-</td>
</tr>
<tr>
<td>HDAC1 IP</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>C/EBPα promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLXSN</td>
<td>+</td>
</tr>
<tr>
<td>C/EBPβ<sub>wt</sub></td>
<td>-</td>
</tr>
<tr>
<td>C/EBPβ<sub>Δ151-156</sub></td>
<td>-</td>
</tr>
<tr>
<td>HDAC1 IP</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>
These results thus confirm that LAP*/LAP are sufficient to recruit HDAC1 to the C/EBP\(\alpha\) promoter independently of LIP. Moreover the elevated activity of C/EBP\(\beta\)\textsubscript{M152A} could be due to a higher number of activation domains present on the promoter (from LAP-LAP homodimers), rather than decreased co-repressor association due to absence of LIP since LAP can still bind to HDAC1. We could therefore speculate that the activating effect of C/EBP\(\beta\) activation domains could be dominant over the repressive effect of mSin3A/HDAC1, thus explaining why C/EBP\(\beta\)\textsubscript{\(\Delta151-156\)} (no LIP and no mSin3A/HDAC1 interaction) activity was not higher than that of C/EBP\(\beta\)\textsubscript{M152A} on the synthetic C/EBP\(\alpha\) promoter (figure 16B,C).

3.1.5.3 C/EBP\(\beta\)\textsubscript{\(\Delta151-156\)} has the highest dex-dependent adipogenic potential when compared to C/EBP\(\beta\)\textsubscript{wt}, C/EBP\(\beta\)\textsubscript{\(\Delta153-156\)} or C/EBP\(\beta\)\textsubscript{M152A}.

Given that the transcription assay did not show any additive effect when comparing C/EBP\(\beta\)\textsubscript{M152A} and C/EBP\(\beta\)\textsubscript{\(\Delta151-156\)} under the conditions employed, I sought to confirm these observations in a more physiologically relevant system. To do so, I stably expressed the mutant constructs in NIH 3T3 cells and monitored their adipogenic potential. Figure 18 shows that NIH 3T3 cells expressing C/EBP\(\beta\)\textsubscript{M152A} or C/EBP\(\beta\)\textsubscript{\(\Delta151-156\)} differentiated much more efficiently into mature adipocytes than C/EBP\(\beta\)\textsubscript{wt} and C/EBP\(\beta\)\textsubscript{\(\Delta153-156\)}, as shown by the Western analysis of the adipogenic marker adipsin (figure 18A) and the Oil Red O staining of lipids (figure 18B). Interestingly, cells expressing C/EBP\(\beta\)\textsubscript{\(\Delta151-156\)} consistently showed the highest adipsin levels in conditions where dex was added to the differentiation media, thus suggesting that the effect of both the absence of LIP and HDAC1 were additive when it comes to adipsin induction in a dex-dependent manner.
Figure 18: C/EBPβ_{M152A} and C/EBPβ_{A151-156} both have a higher adipogenic potential than either C/EBPβ_{A153-156} or C/EBPβ_{wt}.

(A) NIH 3T3 cells that were retrovirally transduced to express the C/EBPβ constructs were harvested 4 days post-induction without (MI) or with (MID) 250nM dex and subjected to a western analysis with the adipsin and actin antibodies. Quantification of the adipsin level was obtained from three independent experiments (p<0.05). (B) The cells were also stained with Oil red O 6 days after induction of differentiation to qualitatively assess lipid accumulation. Data represents results observed in two independent experiments.
A

NIH 3T3
Day 4

\[\beta_{\text{wt}} \quad \beta_{\Delta 153-156} \quad \beta_{\Delta 151-156} \]

MI MID MI MID MI MID MI MID

\text{Adipsin}

\text{PPAR}\gamma

\text{Actin}

\text{PPAR}\gamma 2

B

\[\beta_{\text{wt}} \quad \beta_{\Delta 153-156} \quad \beta_{M152A} \quad \beta_{\Delta 151-156} \]

MI

NIH 3T3
Day 6

MID
3.1.5.4 C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} activate C/EBPα and PPARγ2 mRNA expression more efficiently than C/EBPβ_{wt}

The best time to test for C/EBPβ activity is at the beginning of the differentiation process when the protein levels of C/EBPα and/or PPARγ are undetectable by Western analysis. Knowing that these two transcription factors cross-regulate the expression of one another, having one of them expressed might interfere with the conclusions reached when C/EBPβ activity is involved. To avoid incorrect interpretation of the results, C/EBPβ activity was measured on the first 2 days post-treatment by quantifying C/EBPα and PPARγ2 mRNA levels by a quantitative RT-PCR reaction.

As illustrated in figure 19A (left panel), C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} both induced C/EBPα expression to the same extent when its level was measured 24h post-treatment. Moreover, C/EBPα expression induced by C/EBPβ_{wt} in the presence of steroids was similar to C/EBPα levels induced by C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} in the absence of glucocorticoids. Interestingly, addition of dex in cells expressing either C/EBPβ_{M152A} or C/EBPβ_{Δ151-156} further increased C/EBPα expression levels two fold, as we can see with ratio of MID/MI.

When C/EBPα mRNA expression was assessed 48h post-induction (figure 19A, right panel), the trends of its expression was similar to the 24h time period, although the overall levels of C/EBPα mRNA expression was higher in all C/EBPβ-expressing cells when compared to the pLXSN-infected cells. Moreover, the dex-dependent induction of C/EBPα in cells expressing C/EBPβ_{wt}, C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} were all higher (approximately 7, 3 and 3 fold increase in the ratio of MID/MI, respectively), probably due
Figure 19: C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} transcribe more efficiently endogenous C/EBPα and PPARγ2 when compared to C/EBPβ_{wt}.

NIH 3T3 cells stably expressing either C/EBPβ_{wt}, C/EBPβ_{M152A} or C/EBPβ_{Δ151-156} were subjected to a real time RT-PCR reaction 24h (left panels) and 48h (right panels) after induction of differentiation without (MI) or with (MID) dex. (A) C/EBPα and (B) PPARγ2 mRNA levels were normalized to actin (N=3, + s.d.). (C) The glucose transporter 4 (GLUT4) mRNA levels were also assessed 48h after induction of differentiation (N=3, + s.d.).
A

Day 1 - C/EBPα mRNA

Day 2 - C/EBPα mRNA

B

Day 1 – PPARγ2 mRNA

Day 2 – PPARγ2 mRNA

C

Day 2 – GLUT4 mRNA
to PPARγ2 activity, which has been shown to be detected by Western analysis at 48h post-treatment (figure 9C).

Furthermore, knowing that PPARγ expression cannot be induced by C/EBPδ alone in NIH 3T3 cells (175), we can infer that the induction of PPARγ observed in our case is mostly C/EBPβ-dependent. When PPARγ2 mRNA expression was quantified, C/EBPβM152A and C/EBPβΔ151-156 dependent activation were not significantly different from that of C/EBPβwt in conditions where dex was omitted from the differentiation cocktail. Hence, this observation suggests that, unlike C/EBPα activation, PPARγ activation seems to be unaffected by the absence of LIP or mSin3A/HDAC1 earlier in the differentiation process (figure 19B, left panel), corroborating the results presented in figure 9. However, when cells were treated with dex, PPARγ expression in cells expressing C/EBPβM152A or C/EBPβΔ151-156 increased substantially, suggesting that their transcriptional activity on the PPARγ promoter is more efficient in the presence of dex. Moreover, the dex-dependent fold induction of both mutants was similar to that of WT C/EBPβ as this 24h time point.

Interestingly, when the PPARγ2 levels were measured 48h post-induction of differentiation, both C/EBPβM152A and C/EBPβΔ151-156 seemed to activate PPARγ transcription independently of dex and to an even greater extent with the hormone, when compared to C/EBPβwt (figure 19B, right panel). Once more, there was no significant difference between C/EBPβM152A and C/EBPβΔ151-156 transcriptional activity. Given that a longer time point proved to be more beneficial for C/EBPβM152A and C/EBPβΔ151-156 to activate the PPARγ promoter in a dex-independent manner, the presence of additional co-factors might have favoured their transcriptional potential under such conditions. Similar reasoning might explain the increased dex-dependent fold induction at this 48h time point.
3.1.5.5 C/EBPβ_{Δ151-156} is a more potent activator of GLUT4 expression than C/EBPβ_{wt} or C/EBPβ_{M152A}

As shown in figure 17A, C/EBPβ_{Δ151-156} seems to induce a higher adipsin level during NIH 3T3 differentiation. One might argue that this induction could not necessarily be due to C/EBPβ_{Δ151-156} activity since the adipsin level was measured in a later time point during the induction of differentiation. However, when the adipsin level was assessed at an earlier time point (i.e. two days post-induction), the same trend was also observed (data not shown), thus suggesting that C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} might behave differently depending on their promoter environment. To further support this hypothesis, I sought to test C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} transcriptional activity on a different downstream target. To do so, I measured GLUT4 mRNA levels by qRT-PCR reaction 48h post-induction of differentiation, as previously performed in figure 9. Although both C/EBPβ_{M152A} and C/EBPβ_{Δ151-156} induced GLUT4 mRNA more effectively than C/EBPβ_{wt}, C/EBPβ_{Δ151-156} showed the highest transcriptional activity in the presence of dex (figure 19C), paralleling the adipsin expression profile (figure 18A). To conclude, the results presented strongly suggest that LIP and mSin3A/HDAC1-dependent regulation of C/EBPβ activity varies depending on the promoter context.

3.1.6 Investigating C/EBPβ_{LAP*} adipogenic potential

3.1.6.1 HA-tagged LAP* is transcriptionally inactive on the C/EBPα promoter

During the optimization procedure of the previously mentioned CoIP experiments, an interesting result was observed. During this process, an HA tag was cloned upstream of the first initiation codon of C/EBPβ (thus upstream of LAP*) for use in subsequent CoIP assays.
Additionally, the adipogenic potential of HA-C/EBPβ_{wt} and HA-C/EBPβ_{Δ151-156} were compared. After the standard retroviral transduction protocol, the constructs were stably expressed in NIH 3T3 cells before inducing differentiation with the cocktail of MIX, insulin and dex. Curiously, no differentiation phenotype was observed (i.e. no lipid accumulation and no detectable adipisin expression). To troubleshoot these results, a transcription assay on the C/EBPα promoter was performed using the WT C/EBPβ construct in addition to the HA-C/EBPβ. Surprisingly, the results clearly showed that the activity of HA-C/EBPβ was highly compromised when compared to C/EBPβ_{wt} (figure 20A). Curiously, the ratio of HA-LAP*/LAP was also higher than the ratio observed with WT C/EBPβ (inset), giving rise to much more LAP* isoform when compared to LAP.

A paper by Uematsu and colleagues (294) presented results involving the activity of C/EBPβ LAP* and LAP isoforms. When comparing WT, C/EBPβ knock-out and C/EBPβ_{M22A} knock-in mice (only expressing LAP* and LIP isoforms), the study showed that C/EBPβ knock-out macrophages and macrophages expressing LAP*/LIP were similarly unable to express their target genes, thus suggesting an inhibitory role for LAP* in transcriptional regulation (294). Interestingly, LAP* has been shown to be preferentially sumoylated over LAP and this modification was shown to inhibit its activity on the cyclin D1 promoter (281). These findings thus suggested that LAP* has an inhibitory function on the promoters tested.

To confirm that LAP* was inhibitory in our system (i.e. C/EBPα-promoter activation) and that this effect was not caused by the HA tag cloned at its N-terminal domain, I constructed another clone where the HA tag was cloned upstream of the second initiation codon, thus encoding LAP but not LAP* (HA-C/EBPβ_{22C}, figure 20B, inset). When a
Figure 20: LAP* is transcriptionally inactive on the C/EBPα promoter.

(A,B) C/EBPβ activity was measured by the Luciferase reporter assay from the -350/+7 C/EBPα promoter, as previously described (N=3 duplicates, + s.e.m.). HA-C/EBPβ was produced by cloning the HA tag sequence upstream of the LAP* initiator codon, while in HA-C/EBPβ_{22C} the tag was cloned upstream of the LAP initiator codon (encoding methionine 22).
transcription assay was performed, the results clearly showed that HA-C/EBPβ22C activity was higher than that of C/EBPβwt, both in the absence and presence of dex (figure 20B), thus supporting the activating property of LAP. I hence concluded that amino acids 1-21 in C/EBPβ were in fact negatively regulating its transcriptional activity on the C/EBPα promoter.

3.1.6.2 GR-dependent activation of LAP* requires expression of LIP

When LAP* activity was assessed on the C/EBPα promoter, the construct used also expressed the LIP inhibitory isoform, whose translation initiation starts at amino acid 152. Therefore, the inhibitory phenotype observed in the aforementioned situation (figure 20A) could be due to the collective effect of LAP* and/or LIP. To further define the contribution of LAP* in inhibiting LAP activity, I sought to compare the inhibitory effect induced by either LAP* alone or by LAP* and LIP (see schema of the constructs used in figure 21A). The transcriptional activity of a C/EBPβ mutant protein expressing only the LAP* isoform (C/EBPβM22,152A) was similar to that of WT C/EBPβ in conditions where glucocorticoids were not used (figure 21B, -dex). However, LAP* did not show any dex-induced potentiation on the C/EBPα promoter (+dex), thus suggesting that this construct was insensitive to the glucocorticoid in this system.

When LIP was co-expressed with LAP* in C/EBPβM22A, a reduced activity was observed in the absence of dex (figure 21B), which was predictable knowing that LIP lacks its activation domain and can also function as an active repressor of LAP*/LAP. Interestingly, treatment with the steroid restored the dex-induced potentiation to a level that approached that of WT C/EBPβ (3 fold increase of +dex/-dex ratio), although C/EBPβM22A overall activity was reduced to about 60% of WT C/EBPβ, with and without dex.
Figure 21: LIP expression is required for a GR-dependent activation of C/EBPβ LAP* activity on the C/EBPα promoter.

(A) Schematic representation of each of the C/EBPβ constructs used in (B) showing the different isoforms encoded by C/EBPβ_{wt}, C/EBPβ_{M22A,152A} and C/EBPβ_{M22A}. The ‘x’ refers to a mutation from a methionine to an alanine residue. (B) C/EBPβ activity was measured by the Luciferase reporter assay from the -350/+7 C/EBPα promoter as described previously (N=3 duplicates, + s.e.m.). (C) Sequence comparison of the N-terminal domain of C/EBPβ across different species highlighting some of their conserved and functional residues.
A

C/EBPβ

LAP*
LAP
LIP

C/EBPβM22A

B

C/EBPα promoter

Luc

RLU (+ SEM)

P<0.05

- Dex
+ Dex

pcDNA
β
βM22A,152A
βM22A

LIP expression

C

Mouse

Human

Chimpanzee

Rat

Chicken
Given that 1) LAP*, LAP and LIP all associate with HDAC1 (figure 7,13); 2) when C/EBPβ_{wt} (expressing LAP*, LAP and LIP) or C/EBPβ_{M22A} (expressing LAP* and LIP) are expressed, the dex-mediated potentiation of C/EBPβ_{wt} is at least 3 fold; and 3) suppression of LIP co-expression with LAP* (as in C/EBPβ_{M22A,152A}) abolishes the dex-dependent potentiation of LAP*, it is possible that GR’s ability to potentiate LAP* homodimer is compromised because of the absence of LIP.

3.1.6.3 Cysteine 11 in C/EBPβ is partially responsible for the inability of LAP* to activate transcription

C/EBPβ’s N-terminal domain is highly conserved throughout species (figure 21C). The murine protein contains two arginine residues (position 3 and 20) susceptible to post-translational modifications and one cysteine (position 11) that could potentially form a disulfide bridge. Interestingly, R3 dimethylation has been shown to repress LAP* activity on a subset of its target promoters by decreasing its interaction with a SWI/SNF chromatin remodelling complex (276). No reports, however, have investigated C11 or R20 involvement in regulating LAP* transcriptional activity during murine adipogenesis.

Since C/EBPβ’s redox state has been shown to affect its dimerization and DNA-binding ability (159, 282), I hypothesized that the presence of C11 in LAP* could form a disulfide bond that could be required for its activating potential. To test this hypothesis, I mutated C11 to alanine in C/EBPβ_{M22,152A} (LAP*_{C11A}) and assessed its transcriptional and adipogenic potential (figure 22).

To confirm that LAP*_{C11A} protein expression was similar to that of WT LAP*, I performed a Western analysis. Figure 22A shows that LAP* and LAP*_{C11A} both have similar LAP* to endogenous LAP/LIP ratio, where the LAP* isoform was clearly over-expressed.
Figure 22: C/EBPβ_{C11A,M22,152A} is a more potent inducer of preadipocyte differentiation than C/EBPβ_{M22,152A}.

(A) Western analysis showing the expression level of endogenous C/EBPβ, exogenous C/EBPβ_{wt}, C/EBPβ_{M22,152A} (LAP*) or C/EBPβ_{C11A,M22,152A} (LAP*_{C11A}) in NIH 3T3 cells. (B) C/EBPβ activity is measured by the Luciferase reporter assay from the C/EBPα promoter (-350/+7), as previously mentioned. The C/EBPβ constructs were co-transfected in NIH 3T3 cells along with the C/EBPα-Luciferase reporter and the glucocorticoid receptor constructs. Cells were treated with either vehicle or 1µM dexamethasone the following day for 16h. Luciferase activity was corrected for transfection efficiency by using a co-transfected Renilla expression plasmid (N=3 duplicates, + s.e.m.). (C) 3T3 L1 cells were retrovirally transduced to express either empty pLXSN plasmid, C/EBPβ_{wt}, C/EBPβ_{M22,152A} (LAP*), C/EBPβ_{C11A,M22,152A} (LAP*_{C11A}) or C/EBPβ_{22C,M152A} (LAP), grown for 10 days after confluence with no differentiation inducers and harvested for immunoblot analysis to assess the expression profile of some of the adipogenic markers. (D) The cells were also stained with Oil red O to assess lipid accumulation. The figure represents results observed in two independent experiments.
A

B

C

D

3T3 L1
Day 8

C/EBPβ

Adipsin

Actin

C/EBPβ

LAP*

LAP

LIP

P<0.02

P<0.05

3T3 L1
Day 8

β_{wt}

LAP*

LAP_{C11A}

LAP

RLU (+ SEM)

pcDNA

β_{wt}

LAP_{C11A}

Luc

P<0.05

P<0.02

- Dex

+ Dex

C/EBP_α promoter

Luc

3T3 L1

β_{wt}

LAP*

LAP_{C11A}

LAP

Adipsin

Actin

C/EBPβ

β_{wt}

LAP*

LAP_{C11A}

LAP
when compared to the pcDNA-transfected cell extracts. WT C/EBPβ has the highest LAP to LAP* ratio. When the transient transfection experiment was repeated with the reporter construct driven by the C/EBPα promoter, LAP*\textsubscript{C11A} showed an almost two fold increase in its transcriptional potential when compared to C/EBPβ\textsubscript{wt} in the absence of glucocorticoids (figure 22B). Since C/EBPβ\textsubscript{wt} and LAP* (C/EBPβ\textsubscript{M22,152A}) showed similar activation potential (figure 21B), we can thus infer that LAP*\textsubscript{C11A} also has a better transactivation potential than LAP*. Moreover, LAP*\textsubscript{C11A} glucocorticoid response was also increased more than two fold.

LAP*\textsubscript{C11A} induced more efficiently 3T3 L1 differentiation when compared to WT LAP* or C/EBPβ\textsubscript{wt}, as shown by the adipin expression profile and by the Oil red O staining of lipids (figure 22C,D). For comparison purposes, C/EBPβ\textsubscript{22C,M152A} (encoding only the LAP isoform) showed the highest adipogenic potential, as predicted (figure 22 C,D).

All together, these results not only support the importance of LIP in conveying the activating effect of GR on C/EBPβ LAP* activity, but they also show for the first time a repressive role for cysteine 11 on C/EBPα transactivation and adipogenesis. Moreover, C11 is suggested to be involved at inducing LAP* activating potential in a glucocorticoid-dependent manner based on the transcription assays on the C/EBPα promoter.
3.2 Elucidating the contribution of C/EBPβ regulatory domains in potentiating NIH 3T3 and 3T3 L1 adipogenesis

One of the first deletion mutants that I generated lacked most of the RD1 domain (C/EBPβΔ141-168) and I showed that this mutant interaction with mSin3A and GCN5 was compromised in an *in vitro* assay (figure 4B) and in a CoIP experiment (data not shown). Since the LIP translational methionine is located at amino acid 152 and mSin3A/HDAC1 binding domain is potentially located between amino acids 153-156 on C/EBPβ, the increased transcriptional activity observed when RD1 was deleted was not unforeseen. Moreover, since the C-terminal domain of RD1 (amino acids downstream of methionine 152) was shown to be inhibitory and since region 141-149 (see figure 23A for schema) was initially thought to be a functional domain due its possible α-helical structure as suggested by a bioinformatic analysis, I hypothesized that the RD1 region of C/EBPβ might contain at least two sub-domains that might independently regulate its activity. To test my hypothesis, I set out three objectives. My first objective was to generate a C/EBPβ mutant lacking part of the N-terminal domain of RD1 (Δ141-149), to test its transcriptional activity and its interaction with mSin3A/HDAC1 and GCN5. My second objective was to define the effect of this deletion in regulating C/EBPβ activity during murine adipogenesis.

3.2.1 C/EBPβΔ141-149 is transcriptionally inactive on the C/EBPα promoter

To evaluate C/EBPβΔ141-149 transcriptional activity, I performed a Luciferase-based transcription assay driven by the C/EBPα promoter, by transiently transfecting NIH 3T3 cells. C/EBPβΔ141-149 did not show any transcriptional potential, as its activity was similar.
Figure 23: C/EBPβ_{Δ141-149} transcriptional activity is compromised on the C/EBPα promoter.

(A) Amino acid sequence of one of the hypothesized C/EBPβ regulatory domain highlighting the LIP initiator methionine and a potentially independent N-terminus domain within RD1, located upstream of the negative regulatory domain identified in chapter 3.1. (B) C/EBPβ activity was measured by the Luciferase reporter assay from the -350/+7 C/EBPα promoter. C/EBPβ_{wt} or C/EBPβ_{Δ141-149} were transfected in NIH 3T3 cells along with the C/EBPα-luciferase reporter and the glucocorticoid receptor constructs. Cells were treated with either vehicle (□) or 1µM dex (■) the following day for 16h. Luciferase activity was corrected for transfection efficiency by using a co-transfected Renilla expression plasmid (N=4 duplicates, + s.e.m.). (C) Western analysis showing the expression level of transfected C/EBPβ_{wt} or C/EBPβ_{Δ141-149} in NIH 3T3 cells. (D) The C/EBPβ constructs were transiently transfected in NIH 3T3 cells and an indirect immunofluorescence was performed using the C/EBPβ antibody. A fluorescence microscope was used to visualise the green fluorescein with 63X objective lens and pictures were taken using the multi channel acquisition function so that overlap between DAPI and C/EBPβ could be seen.
to that of the background level where empty pcDNA vector was transfected (figure 23B). Western analysis confirmed that this mutant was properly expressed and that its LAP:LIP ratio was not affected (figure 23C). Further, to confirm that C/EBPβΔ141-149 retained its nuclear import capacity, an indirect immunofluorescence experiment was performed in NIH 3T3 cells by transient transfection of the C/EBPβ constructs. As seen in figure 23D, C/EBPβΔ141-149 was localized in the nucleus to the same extent as WT C/EBPβ.

Since localization to the nucleus does not preclude that a transcription factor can not bind to DNA, I next sought to confirm that C/EBPβΔ141-149 can still activate another promoter containing CCAAT elements. A PPARγ-promoter Luciferase construct that has been previously shown to be activated by C/EBPβ was used (65). C/EBPδ was included as a positive control since it was shown to effectively activate transcription from this PPARγ-Luciferase construct (171-172). Not only was C/EBPβΔ141-149 able to transactivate the PPARγ promoter to levels similar to WT C/EBPβ, but it also showed a glucocorticoid response that was equivalent to levels observed on the C/EBPα promoter (figure 24). Thus, C/EBPβΔ141-149 was not transcriptionally compromised per se, but specifically inactive for transcription at the C/EBPα promoter. These results suggest for either a differential recruitment of co-factors to these two promoters or for a conformational change in the protein that might affect C/EBPβΔ141-149 activity in a promoter specific manner.

3.2.2 C/EBPβΔ141-149 interacts with mSin3A/HDAC1 and GCN5

Since we know that the co-repressor complex mSin3A/HDAC1 and the co-activator GCN5 both interacted directly with C/EBPβ, I hypothesized that Δ141-149 in C/EBPβ might
Figure 24: C/EBPβ\textsubscript{Δ141-149} transcriptional activity is comparable to WT C/EBPβ on the PPARγ2 promoter.

C/EBPβ activity was measured by the Luciferase reporter assay from the -609/+52 PPARγ promoter. C/EBPδ (as a positive control), C/EBPβ\textsubscript{wt} or C/EBPβ\textsubscript{Δ141-149} were transfected in NIH 3T3 cells along with the PPARγ-luciferase reporter and the glucocorticoid receptor constructs. Cells were treated with either vehicle (□) or 1µM dex (■) the following day for 16h. Luciferase activity was corrected for transfection efficiency by using a co-transfected Renilla expression plasmid (N=4 duplicates, + s.e.m.).
RLU (+SEM) -Dex +Dex

2000 3000 4000 5000 6000 7000

PPARγ promoter

Luc

PPARγ promoter

Luc

RLU (+SEM)

0 1000 2000 3000 4000 5000 6000 7000

pMSV δ βwt βΔ141-149

□ -Dex
■ +Dex
affect binding with the co-factors in a way that favours HDAC1 interaction, thus explaining the minimal activity observed on the C/EBPα promoter since HDAC1 effect is specific for C/EBPα but not PPARγ transcription (chapter 3.1). When the interaction of C/EBPβΔ141-149 with HDAC1 and GCN5 was tested in a transient transfection experiment of Cos7 cells by CoIP, it was observed that C/EBPβΔ141-149 co-precipitated with both exogenously expressed HDAC1 and GCN5 (figure 25A and B respectively), as opposed to C/EBPβΔ153-156 which was included as an additional negative control.

C/EBPβ activity has been shown to be regulated by its acetylation status, where acetylation of lysines 98-102 and/or lysine 39 was shown to be required for C/EBPβ to reach higher transactivation levels (65, 106, 275). To further confirm that C/EBPβΔ141-149 activity was not due to a decrease in GCN5/PCAF-mediated acetylation, I performed an in vitro acetylation assay using GST-fusion C/EBPβ constructs that were bacterially expressed as substrate for a commercially available PCAF. Both WT C/EBPβ and C/EBPβΔ141-149 showed a similar level of 14C-acetate incorporation following incubation with PCAF (figure 25C), thus suggesting that a decrease of its acetylation status was probably not responsible for the phenotype observed on the C/EBPα promoter.

To explore how C/EBPβΔ141-149 affected the recruitment of HDAC1 and GCN5 to the C/EBPα promoter, I performed ChIP experiments on NIH 3T3 cells stably expressing either the mock pLXSN plasmid, WT C/EBPβ or C/EBPβΔ141-149 24h following treatment of the cells with MI only (figure 26). Both HDAC1 and GCN5 were recruited to the C/EBPα promoter when the NIH 3T3 cells expressed WT C/EBPβ, but not the pLXSN mock plasmid, as shown previously (chapter 3.1 and 66, 106). The fact no HDAC1 or GCN5 are observed in the pLXSN condition confirms that the C/EBPα promoter in this fibroblastic cell line is...
Cos7 cells were co-transfected with expression plasmids for flag-HDAC1 (A) or GCN5 (B) and either C/EBPβ_{wt}, C/EBPβ_{Δ153-156} (as a negative control) or C/EBPβ_{Δ141-149}. Whole cell lysates were immunoprecipitated with a FLAG affinity resin. Data represent results observed in three independent experiments. (C) GST-C/EBPβ constructs were bacterially expressed and subjected to an in vitro acetylation assay with PCAF using ¹⁴C-Acetyl-CoA as an acetate donor. After the acetylation reaction, the proteins were loaded on an SDS-PAGE gel, which was Coomassie stained and the bands corresponding to GST-C/EBPβ were cut from the gel (inset as loading control) and the radioactivity was counted with a scintillation counter (N=3, +s.d.).

Figure 25: C/EBPβ_{Δ141-149} interaction with mSin3A/HDAC1 or GCN5 is not compromised in vivo.
A

<table>
<thead>
<tr>
<th></th>
<th>IP: FLAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/EBPβ<sub>wt</sub></td>
<td>+ + - -</td>
</tr>
<tr>
<td>C/EBPβ<sub>Δ153-156</sub></td>
<td>- - + -</td>
</tr>
<tr>
<td>C/EBPβ<sub>Δ141-149</sub></td>
<td>- - - +</td>
</tr>
<tr>
<td>Flag-HDAC1</td>
<td>- + + +</td>
</tr>
</tbody>
</table>

LAP

FLAG

10% input

FLAG

B

<table>
<thead>
<tr>
<th></th>
<th>IP: FLAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/EBPβ<sub>wt</sub></td>
<td>+ + - -</td>
</tr>
<tr>
<td>C/EBPβ<sub>Δ153-156</sub></td>
<td>- - + -</td>
</tr>
<tr>
<td>C/EBPβ<sub>Δ141-149</sub></td>
<td>- - - +</td>
</tr>
<tr>
<td>Flag-GCN5</td>
<td>- + + +</td>
</tr>
</tbody>
</table>

LAP

FLAG

10% input

FLAG

C

Relative γC count (%)

<table>
<thead>
<tr>
<th></th>
<th>GST</th>
<th>β<sub>wt</sub></th>
<th>β<sub>Δ141-149</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td></td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 26: C/EBPβ\textsubscript{Δ141-149} recruits HDAC1 and GCN5 to the C/EBPα promoter.

C/EBPβ expressing NIH 3T3 cells were treated with MI for 24h to assess HDAC1 and GCN5 recruitment on the C/EBPα promoter by C/EBPβ\textsubscript{Δ141-149}. The cells were then harvested, cross-linked and the nuclear extract was immunoprecipitated using an HDAC1 or a GCN5 antibody. Following several washes, the precipitated DNA was isolated and subjected to a PCR reaction that amplifies region -460/-244 of the C/EBPα promoter (N=3 for each).
<table>
<thead>
<tr>
<th></th>
<th>C/EBPα promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLXSN</td>
<td>+ - -</td>
</tr>
<tr>
<td>C/EBPβ\text{wt}</td>
<td>- + -</td>
</tr>
<tr>
<td>C/EBPβ\text{Δ141-149}</td>
<td>- - +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC1 IP</td>
<td>[Image]</td>
</tr>
<tr>
<td>GCN5 IP</td>
<td>[Image]</td>
</tr>
<tr>
<td>1% input</td>
<td>[Image]</td>
</tr>
</tbody>
</table>
not accessible by GCN5 or HDAC1 unless C/EBPβ is over-expressed (66, 106). When C/EBPβ\textsubscript{Δ141-149} was expressed in the NIH 3T3 cells, it also effectively recruited both factors to a level that was similar to WT C/EBPβ (figure 26), thus corroborating the CoIP experiments.

3.2.3 The ability of C/EBPβ\textsubscript{Δ141-149} to induce NIH 3T3 differentiation to adipocytes is compromised

Although C/EBPα expression is required for a fully functional adipocyte, PPARγ expression alone is sufficient to give rise to mature adipocytes. These adipocytes retain the ability to express their specific markers and accumulate lipids; however they are deficient in their insulin sensitivity (145, 151, 185). Thus I hypothesized that if C/EBPβ\textsubscript{Δ141-149} can activate PPARγ but not C/EBPα, adipogenesis could still occur and PPARγ would still be able to activate C/EBPα.

To test its adipogenic potential, C/EBPβ\textsubscript{Δ141-149} was stably expressed in NIH 3T3 cells using the retroviral transduction system (figure 27A). The stably-infected cells were then differentiated using the standard protocol and analysed. Western analysis confirmed the expression of the adipsin marker in cells expressing C/EBPβ\textsubscript{wt} or C/EBPβ\textsubscript{Δ141-149}, although the adipsin level was approximately 40% lower in cells expressing the deletion mutant (figure 27B). Oil red O staining of the cells did not show a notable difference (figure 27C).

Given that C/EBPβ\textsubscript{Δ141-149} was not capable of activating a Luciferase reporter gene under the control of the C/EBPα promoter, I sought to investigate if its transcriptional activity would still be abolished on the endogenous C/EBPα gene. As this gene is present in the natural chromatin environment of the cells, this scenario represents a more
Figure 27: C/EBPβΔ141-149 has a lower adipogenic potential than C/EBPβ_{wt}.

NIH 3T3 cells that were retrovirally transduced to express the C/EBPβ constructs were harvested prior to the differentiation process (A) and 4 days post-induction without (MI) or with (MID) 250nM dex (B) and subjected to western analysis (N=3, +s.d. p < 0.05). (C) The cells were also stained with Oil red O 6 days after induction of differentiation to qualitatively assess lipid accumulation. Data represents results observed in three independent experiments.
A

NIH 3T3
Day 0

PLXSN β_{wt} β_{Δ141-149}

C/EBPβ

Actin

B

NIH 3T3
Day 4

<table>
<thead>
<tr>
<th>β_{wt}</th>
<th>β_{Δ141-149}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI MID</td>
<td>MI MID</td>
</tr>
</tbody>
</table>

Adipsin

| 1 | 0.6±0.2 |

Actin

C

NIH 3T3
Day 6

β_{wt} β_{Δ141-149}

MI

MID
physiologically relevant experiment. To do so, I measured C/EBP\(\alpha\) mRNA expression 24h after initiation of differentiation of the NIH 3T3 cells (equivalent treatment with dex in the reporter assay). The analysis showed that cells expressing C/EBP\(\beta_{\Delta 141-149}\) had a C/EBP\(\alpha\) mRNA level similar to that observed in the pLXSN infected cells and significantly lower than that observed in cells expressing C/EBP\(\beta_{\text{wt}}\) (figure 28A, left panel), confirming that C/EBP\(\beta_{\Delta 141-149}\) activity was compromised on the C/EBP\(\alpha\) promoter even though HDAC1 and GCN5 recruitment was unaffected. Additionally, PPAR\(\gamma\) expression was not affected by the C/EBP\(\beta\) deletion, as its mRNA level was similar in cells expressing C/EBP\(\beta_{\text{wt}}\) or C/EBP\(\beta_{\Delta 141-149}\), both in the absence or presence of steroids (figure 28B, left panel) thus supporting the transcription assay results in figure 24.

By 48h post-treatment, C/EBP\(\alpha\) mRNA levels in cells expressing C/EBP\(\beta_{\Delta 141-149}\) largely caught up to that of C/EBP\(\beta_{\text{wt}}\) expressing cells (figure 28A, right panel) likely due to activation by PPAR\(\gamma\), as its expression was induced normally by C/EBP\(\beta_{\Delta 141-149}\) (figure 28B). Finally, when GLUT4 (whose activation requires both C/EBP\(\beta\) and PPAR\(\gamma\)) mRNA levels were measured, it also showed a reduced level in cells expressing C/EBP\(\beta_{\Delta 141-149}\) (figure 28C), thus confirming the inability of C/EBP\(\beta_{\Delta 141-149}\) in selectively activating some promoters.

3.2.4 C/EBP\(\beta_{\Delta 141-149}\) inability to activate the C/EBP\(\alpha\) promoter seems to be partially dependent on HDAC1 activity

Since the interaction of C/EBP\(\beta_{\Delta 141-149}\) with mSin3A/HDAC1 was not compromised and its recruitment to the C/EBP\(\alpha\) promoter was unaffected, I sought to test whether HDAC1 activity might be responsible for the C/EBP\(\beta_{\Delta 141-149}\) transcriptional phenotype. To test this
Figure 28: C/EBPβΔ141-149 transcribes endogenous PPARγ2 but not C/EBPα.

NIH 3T3 cells stably expressing either C/EBPβwt or C/EBPβΔ141-149 were subjected to a real time RT-PCR reaction 24h and 48h after a standard induction of differentiation without (□) or with (■) dex. The C/EBPα (A) and PPARγ2 (B) mRNA levels were normalized to actin (N=3, + s.d.). Quantification of C/EBPα and PPARγ2 values are relative to the MID βwt condition, which is defined as 1 RU. (C) The glucose transporter 4 (GLUT4) mRNA levels were also assessed 48h after induction of differentiation without (□) or with (■) dex (N=3, + s.d.).
A
Day 1 - C/EBPα mRNA

Day 2 - C/EBPα mRNA

P<0.01

P<0.05

B
Day 1 - PPARγ2 mRNA

Day 2 - PPARγ2 mRNA

C
Day 2 – GLUT4 mRNA (MI)

Day 2 – GLUT4 mRNA (MID)

P<0.05
hypothesis, an inactive HDAC1, whose charge relay system responsible for deacetylating its
substrate was disrupted by mutating aspartic acid 181 to alanine, was used (Kuzmochka et al.
unpublished results and (295)). When inactive HDAC1\textsubscript{D181A} was co-transfected with WT
C/EBP\(\beta\), it significantly increased its activity in the presence of glucocorticoids exclusively
(figure 29A). Interestingly, when C/EBP\(\beta\)\textsubscript{\(\Delta 141-149\)} was co-expressed with HDAC1 instead of
WT C/EBP\(\beta\), its activity was significantly increased in the absence and presence of
glucocorticoids when compared to pcDNA control condition. This finding suggests that
HDAC1 activity accounts for a fraction of the inhibition observed in C/EBP\(\beta\)\textsubscript{\(\Delta 141-149\)} since
C/EBP\(\beta\)\textsubscript{\(\Delta 141-149\)} did not reach the transcriptional activity of WT C/EBP\(\beta\) in the presence of
inactive HDAC1\textsubscript{D181A} (figure 29A).

When amino acids 150-156 were also deleted in addition to \(\Delta 141-149\) to reduce
mSin3A/HDAC1 binding, C/EBP\(\beta\)\textsubscript{\(\Delta 141-156\)} showed a further increase in transcription in the
absence and presence of glucocorticoids, when compared to WT or \(\Delta 141-149\) C/EBP\(\beta\)
(figure 29B). These results suggest that reduction of mSin3A/HDAC1 binding from
LAP*/LAP overcomes the inhibition caused by the absence of amino acids 141-149 in the
presence of glucocorticoids and they establish a link between the \(\Delta 141-149\) phenotype and a
requirement for HDAC1. The fact that C/EBP\(\beta\)\textsubscript{\(\Delta 141-156\)} activity did not reach the
transcriptional level observed in C/EBP\(\beta\)\textsubscript{\(\Delta 151-156\)} in the presence of glucocorticoids implies
that some of the activating properties of amino acids 141-149 are still required to display a
maximal dex-dependent activity (figure 29B).
Figure 29: C/EBPβΔ141-149 transcriptional activity is increased on the C/EBPα promoter when co-expressed with an inactive HDAC1.

(A,B) C/EBPβ activity was measured by the Luciferase reporter assay from the -350/+7 C/EBPα promoter as described previously. Catalytically inactive HDAC1D181A was co-transfected where indicated (N=3 duplicates, + s.e.m.). The protein expression level of the different C/EBPβ constructs is also shown in the lower panel of B. (C) Amino acid sequence of the N-terminal domain of RD1 in C/EBPβ highlighting conserved residues among different species.
A

C/EBPα promoter

Luc

RLU (+ SEM)

P<0.05 P<0.05

0 5000 10000 15000 20000

peDNA βwt βwt βΔ141-149

HDAC1D181A + + - +

B

C/EBPα promoter

Luc

RLU (+ SEM)

P<0.05 P<0.05

0 2000 4000 6000 8000

βΔ141-149 βwt βΔ141-156 βΔ151-156

LIP expression + + - -

HDAC1 association + + - -

C/EBPβ

LAP

LAP*

Actin

C

LAP*

RD1

b-zip

141 AD-CK--RADD 149 Mouse
182 AD-CK--RKEEA 190 Human
149 AD-CK--RKEEA 157 Chimpanzee
142 AD-CK--RADD 150 Rat
164 LDSCKGPRKEEG 175 Chicken
3.2.5 Cysteine 143 within RD1 is partially required for C/EBPβ-dependent activation of C/EBPα

Comparison of the amino acid sequence of the N-terminus domain of RD1 shows several residues that are highly conserved (figure 29C). The charged residues could participate in increasing solubility of this domain since they have been proposed to be exposed to the environmental solvent (296), thus favouring a thermodynamically stable structure. The presence of a cysteine residue also suggests disulfide bond formation that might help to stabilize LAP/LAP dimer formation, as previously suggested (159). Although cysteine 143 (C143) was previously proposed to be an important residue in regulating C/EBPβ activity, its precise role in vivo was not evaluated (282-283). C143 has been suggested to form an intermolecular disulfide bond in LAP/LAP homodimer (283) or an intramolecular bond with C123 within the LAP* monomer. Notably, C143 was proposed to be in a constitutive reduced state in LAP (282).

In an attempt to verify that the phenotype observed by C/EBPβΔ141-149 was not caused by the deletion of C143, I generated a mutant C/EBPβ where cysteine 143 was substituted by an alanine residue and then tested C/EBPβC143A for transcriptional and adipogenic potential. When a transient transfection experiment evaluating WT and C143A C/EBPβ ability to induce expression of a reporter driven by the C/EBPα promoter was performed, the latter one showed only a 25% decrease in its transactivation potential when compared to WT C/EBPβ, in the presence of glucocorticoids only (figure 30A,B). Thus, we can suggest that C143 was not completely responsible for the C/EBPβΔ141-149 phenotype.

When C/EBPβC143A adipogenic potential was tested in NIH 3T3 cells, it showed a similar adipogenic potential as WT C/EBPβ, as evidenced by the adipsin level and the Oil
Figure 30: C/EBPβ_{C143A} has a similar adipogenic potential than C/EBPβ_{wt} during NIH 3T3 differentiation

(A) C/EBPβ activity was measured by the Luciferase reporter assay from the -350/+7 C/EBPα promoter as described previously (N=3 duplicates, ± s.e.m.). The protein expression level are also illustrated in (B) NIH 3T3 cells that were retrovirally transduced to express the C/EBPβ constructs were harvested at day 0 (C) or 4 days post-induction (D) without (MI) or with (MID) dex and subjected to a Western analysis to assess the C/EBPβ and adipsin levels. Data represents results observed in two independent experiments. (E) The cells were also stained with Oil red O 6 days after induction of differentiation to qualitatively assess lipid accumulation. (F) NIH 3T3 cells stably expressing C/EBPβ_{wt} or C/EBPβ_{C143A} were also subjected to a real time RT-PCR reaction 48h after a standard induction of differentiation without (□) or with (■) dex. The C/EBPα (left panel) and PPARγ2 (right panel) mRNA levels were normalized to actin (N=3, ± s.d.).
A

C/EBPα promoter Luc

[Graph showing RLU (+ SEM) for pcDNA, β_wt, and β_{C143A} with shaded bars for -Dex and solid bars for +Dex, with P<0.05 indicated.]

B

peDNA3.1 β_wt β_{C143A}

C/EBPβ LAP* LAP LIP Actin

C

NIH 3T3 Day 0

C/EBPβ LAP* LAP LIP Actin

D

NIH 3T3 Day 4

β_wt β_{C143A}

LAP* LAP LIP Adipsin Actin

MI MID MID

E

NIH 3T3 Day 6

β_wt β_{C143A} β_{C143A}

MID MID MI

F

Day 2 - C/EBPα mRNA

Day 2 - PPARγ2 mRNA

[Bar graphs showing RLU (+SD) for β_wt and β_{C143A} for both C/EBPα and PPARγ2 mRNAs with shaded bars for MI and solid bars for MID.]
red O staining of lipids (figure 30D,E). Unlike C/EBPβΔ141-149 whose adipogenic potential was reduced when assessed in NIH 3T3 cells (figure 27C,D), mutation of C143 did not reduce differentiation. Moreover, when endogenous C/EBPα and PPARγ2 mRNA levels were quantified (figure 30F), they showed no significant differences between cells expressing WT or C143A C/EBPβ. These results hence suggest that the residues surrounding C143 are important for C/EBPβ activation.

In summary, I showed in this chapter that amino acids 141-149 in C/EBPβ are required for the transcription factor to reach its maximal activating potential on the C/EBPα promoter, but not on the PPARγ promoter. I also proposed that HDAC1 activity might participate in keeping C/EBPβΔ141-149 in a repressed state more effectively than it does with WT C/EBPβ. Finally, the presence of a cysteine residue within amino acids 141-149 of C/EBPβ was shown not to be responsible for mediating C/EBPα transcription. Again, these results strongly suggest multiple modes of regulation that could occur through the N-terminus of RD1 and that this region could in fact have a positive effect on LAP*/LAP activation properties, in addition to the repressive effect mediated by LIP translation and mSin3A/HDAC1 association.
CHAPTER 4 - DISCUSSION

Recently, Leutz’s group proposed a ‘‘transcription factor code’’, in analogy to the histone code, that underline how the post-translational modification profile in a transcription factor will differentially modulate its activity (276). In keeping with this code, C/EBPβ transcriptional activity is regulated by numerous post-translational modifications that affect its DNA-binding ability and its interactions with other partners. Although sumoylation and methylation are associated with C/EBPβ repression, acetylation and phosphorylation have been shown to positively affect its activity (65, 106, 164, 275-276, 279, 281, 283, 297). In this thesis, I present evidence that helps to explain the mechanism through which C/EBPβ LAP*/LAP/LIP activity are modulated via their interaction with co-regulatory complexes.

4.1 A hydrophobic domain in C/EBPβ is required for mSin3A/HDAC1 binding

When William and co-workers studied C/EBPβ transcriptional activity, they characterized two domains, covering amino acids 136-166 (RD1) and 183-211 (RD2), as being negative regulatory domains. The authors hypothesized that RD1 and RD2 block C/EBPβ activity by interacting and masking the activation and the DNA-binding domain, respectively (158). In my work, key determinants for mSin3A/HDAC1 binding to C/EBPβ were mapped within RD1 (figures 6,7). The negative effect of the RD1 observed by William and colleagues can therefore partially be explained by the deletion of amino acids 153-156 that abrogates mSin3A/HDAC1 binding domain (see appendix 6 for a summary of results).

The minimal domain that I identified as being required for a proper interaction with mSin3A/HDAC1 is composed of four amino acids (AAGF) located in the middle of a highly
hydrophobic domain (amino acids 149-160, see appendix 7 for sequences). This observation suggests that a hydrophobic interface could be created when mSin3A and C/EBPβ are in close proximity. Such an occurrence could not only stabilize the interaction between the two proteins, but it could also minimize any misfolding that could occur from exposing the hydrophobic residues to the hydrophilic cellular environment. Although I have not shown that a minimal peptide composed of the 30 amino acids covering RD1 of C/EBPβ is sufficient to bind with mSin3A, the fact that elimination of amino acids 153-156, but not amino acids 141-149 (figure 25), was sufficient to compromise binding strongly suggests that residues 153-156 create one of the interfaces responsible for mediating mSin3A interaction.

A closer look at the protein sequence shows three additional conserved domains composed almost exclusively of hydrophobic amino acids (residues 9-19, 118-131 and 196-210) with, curiously, a cysteine residue in the middle of each of these domains (see appendix 7, residues in bold). Interestingly, three of these four hydrophobic regions have been shown by my results (figure 7-9, 20-21) and others (158, 294) to negatively regulate C/EBPβ activity. Additionally, none of these domains are located either in the activation or the bZIP domains. Hence it is most likely that they independently regulate C/EBPβ activity via diverse mechanisms, one of which identified in here as being required for binding to a co-repressor complex (figure 6-7) and another one involving the redox-state of the protein (figure 22). Although RD2 (which includes the hydrophobic domain 196-210) has been stipulated to inhibit C/EBPβ activity by masking its DNA-binding domain, it is also plausible that a misfolded hydrophobic domain compromises the function of its bZIP.
4.2 Titration of HDAC1 from C/EBPβ accounts for a fraction of GR-mediated transactivation of the C/EBPα promoter

Several studies showed that an HDAC1-containing complex inhibits C/EBPβ activity on several promoters (65-66, 285, 287). Moreover, to explain how C/EBPβ transcriptional activity is increased upon steroid treatment of the cells in which it is expressed, results from our laboratory suggested that C/EBPβ de-repression involves reduction of its interaction with the mSin3A/HDAC1 co-repressor complex via GR-dependent degradation of HDAC1 through the 26S proteasomal pathway (66). We have also shown that GCN5/PCAF-mediated acetylation of C/EBPβ decreases its interaction with mSin3A (106), thus suggesting a two step process in the titration of mSin3A/HDAC1 complex from C/EBPβ.

Given that GR has been shown to contribute to C/EBPβ activation by decreasing the mSin3A/HDAC1 complex association, I hypothesized that an initial absence of this co-repressor from C/EBPβ would not require GR-dependent function to reach maximal activity. However, when C/EBPβΔ153-156 activity was tested on the C/EBPα promoter, the results clearly showed that compromising mSin3A/HDAC1 binding does not fully replace the dex effect. Hence, these observations could be explained by either: 1) the role of GR in activating C/EBPα goes beyond just promoting mSin3A/HDAC1 displacement from the promoter. For instance, studies in our laboratory have identified LMO3, a member of the LIM-only adaptor proteins, as a potential target of GR that might recruit additional regulators to the C/EBPα promoter. LMO3 mRNA expression was shown to be rapidly induced by GR (4h following treatment with dex) and its over-expression in 3T3 L1 preadipocytes was shown to enhance differentiation. 2) Since mSin3A/HDAC1 dissociation from C/EBPβΔ153-156 was incomplete (70% reduction), this mutant might retain some of its binding ability through association of
mSin3A with the unacetylated lysines 98-102 that require GCN5-mediated acetylation to completely abolish binding with the co-repressor complex. Further binding assays are required to determine the exact mechanism by which GR eliminates mSin3A/HDAC1 binding from C/EBPβ.

Since C/EBPδ has been proposed to have two independent domains mediating mSin3A/HDAC1 binding in its C-terminal region, as shown by in vitro and in vivo GST pulldown assays, a dual binding domain in C/EBPβ might actually be possible (289). The same study also showed that the C/EBPδ bZIP domain was important for mediating the interaction with the mSin3A/HDAC1 complex, thus supporting the hypothesis that C/EBPβ dimerization is required for its association with mSin3A (figure 5). When a C/EBPβ deletion mutant Δ121-198 lacking most of its internal regulatory domains (but still including its bZIP and activation domains) was tested for binding with mSin3A in vitro, it showed a highly compromised binding that was similar to C/EBPβΔ151-156 (80% less binding). Although C/EBPβΔ121-198 interaction assays were not performed in vivo, it is most likely that the outcome will be the same as C/EBPβΔ153-156 (figure 7) or C/EBPβΔ141-168 (figure 7), whose interactions with the mSin3A/HDAC1 was highly compromised. From these observations, we can hence suggest that it is highly likely that the role of GR in promoting C/EBPβ activation is less straightforward than just favouring mSin3A/HDAC1 displacement from C/EBPβ-targeted promoters.

It appears that the GR-dependent titration of mSin3A/HDAC1 occurs most likely in several steps, as follow: 1) it will promote HDAC1 proteasomal degradation from the C/EBPβ/mSin3A/HDAC1 complex; 2) thus allowing an active acetylation of C/EBPβ by GCN5; 3) that will further promote mSin3A dissociation (66, 106). The GR-dependent
dissociation of mSin3A after HDAC1 degradation is an important step toward C/EBPβ activation even if mSin3A does not have any deacetylase activity. If the activation of C/EBPβ by GR only requires the removal of the deacetylase portion (i.e. HDAC1) from the co-repressor complex, then an inactive HDAC1 in the complex will not need GR-mediated titration of HDAC1 to activate C/EBPβ.

On that account, when a transcription assay on the C/EBPα promoter was performed using a catalytically inactive HDAC1 (D181A mutant), the results showed that co-expression of HDAC1_{D181A} with C/EBPβ did not increase C/EBPβ activity in the absence of dex, by contrast to C/EBPβ_{Δ153-156} dex-independent activity, which lacks mSin3A/HDAC1 binding (see figure 29A of chapter 3.2). Only GR-mediated activation increased C/EBPβ activity. This observation was also confirmed with a real time RT-PCR reaction performed to quantify endogenous C/EBPα expression during 3T3 L1 preadipocyte differentiation (Kuzmochka \textit{et al.}, unpublished results). These results hence strongly suggest that HDAC1 activity and mSin3A association can independently inhibit C/EBPβ transcriptional activity. Due to its higher molecular weight (approximately 130 KDa), mSin3A could repress C/EBPβ activity by interfering with co-activators recruitment via steric interaction and/or by preventing C/EBPβ to form a suitable conformation for co-activators association.

4.3 Implication of a shared binding domain between co-activators and co-repressors

In an attempt to delineate two independent domains required for GCN5 and mSin3A binding in C/EBPβ, I showed that GCN5 and mSin3A required amino acids 153-156 but not amino acids 141-149 to properly associate with C/EBPβ (figure 25). However, unlike mSin3A, GCN5 binding did not require C/EBPβ bZIP domain (figure 5). It is possible that
the large molecular size of mSin3A requires numerous interfaces on C/EBPβ to mediate an interaction whereas the smaller size of GCN5 (approximately 55KDa) required less determinants to mediate binding (i.e. only amino acids 153-156 are sufficient). From these findings, we can therefore suggest that it is unlikely that both mSin3A and GCN5 could simultaneously bind to C/EBPβ. Interestingly, however, it seems that mSin3A binding to C/EBPβ is stronger than that of GCN5 because when I performed the CoIP experiments in more stringent conditions (150-175mM NaCl and 0.15-2% NP-40), GCN5 association was lost, while mSin3A binding was retained. These results further support the dominant-negative role of the co-repressor complex as HDAC1 recruitment to the C/EBPα promoter decreases histone H4 acetylation, counteracts p300/GCN5 co-activator’ effect and prevents the transcriptional pre-initiation complex recruitment (66). Thus, the decrease of both HDAC1 and GCN5 interaction with C/EBPβΔ153-156 showed an increase in adipogenesis since the initial absence of the association of HDAC1 does not require acetylation of C/EBPβ by GCN5 to decrease the co-repressor occupancy from the C/EBPα promoter.

Since two independent CoIP experiments showed that C/EBPβ interacts with both GCN5 and mSin3A/HDAC1 and that GR’s activation only reduces the interaction with mSin3A/HDAC1 without affecting that of GCN5 (66, 106), an equilibrium model has been proposed to explain the interaction profile between these factors (figure 31A). In conditions where GR is not active, C/EBPβ is hypothesized to exist in complexes that include, among other co-factors, either mSin3A/HDAC1 or GCN5. Upon dex treatment, GR translocates to the nucleus and promotes HDAC1-polyubiquilation via the E3 ligase TIF1β, thus favouring C/EBPβ acetylation by GCN5, which will then promote mSin3A dissociation (66, 106 and Tomlinson et al., unpublished). This model thus suggests that C/EBPβ is present in at least
Figure 31: Dual regulation of C/EBPβ by mSin3A/HDAC1 and GCN5.

(A) In an equilibrium interaction model between mSin3A/HDAC1 or GCN5 with C/EBPβ, titration of the co-repressor complex from C/EBPβ will favour more GCN5/C/EBPβ complex formation. (B) However, since GCN5 or C/EBPβ presence is not increased on the C/EBPα promoter following the dex-induced HDAC1 titration, it is more likely that there is only one population of C/EBPβ complex on the C/EBPα promoter that includes both co-regulatory complexes, where GCN5 is indirectly bound to C/EBPβ through possibly HDAC1. Dex-treatment allows HDAC1 titration, thus promoting GCN5-mediated acetylation of C/EBPβ and consequently mSin3A dissociation. (C) It is also possible that p300-mediated acetylation of HDAC1 decreases its binding from GCN5, thus allowing the latter to acetylate C/EBPβ and thus decreases mSin3A (and indirectly HDAC1) binding.
two sub-populations of complexes (with either mSin3A/HDAC1 or GCN5, among others) that will compete for target promoters.

Taking these findings into consideration, one might expect to see an increase in GCN5 presence on the promoter in the presence of glucocorticoids since the C/EBPβ-competing complex containing mSin3A/HDAC1 will be reduced in number, thus favouring the equilibrium toward more C/EBPβ/GCN5 occupancy of the C/EBPα promoter. When chromatin immunoprecipitation assays were performed on the C/EBPα promoter, it showed that both mSin3A/HDAC1 and GCN5 were located on the promoter, in the absence of steroids (66, 106). Upon dex treatment, mSin3A/HDAC1 was reduced from the C/EBPα promoter, whereas no change was observed with respect to GCN5 occupancy (106), therefore contradicting our predictions.

To reconcile the ChIP experiments with the equilibrium hypothesis, another model is thus required. It is hence possible that, initially, GCN5 association with C/EBPβ occurs through an indirect association with other co-factors present on the C/EBPβ-Sin3A/HDAC1 complex. For instance, since PCAF, another homologous acetylase, has been shown to directly associate with HDAC1 (298), GCN5-HDAC1 association is thus possible. Two possibilities are however likely to occur in such situation. Firstly, the addition of dex will trigger HDAC1 titration from the complex by the TIF1β-mediated ubiquilation (Tomlinson et al. unpublished); this event will create an intermediary state in which GCN5 association will be decreased from HDAC1 and thus promote C/EBPβ acetylation. Such acetylation will then decrease mSin3A association, which will favour more C/EBPβ/GCN5 complex formation and increasing target promoter acetylation (figure 31B). Secondly, since HDAC1 activity has been shown to be suppressed by a dex-dependent acetylation mediated by p300
(250) and since HDAC1 and p300 co-precipitate with GR as early as 4h following glucocorticoid treatment (66), it is thus plausible that reduction of the deacetylase activity from the complex will favour GCN5-mediated acetylation of C/EBPβ and thus a further decrease in mSin3A association (figure 31C). These hypotheses imply that GR-induced HDAC1 post-translational modifications might compromise its association with GCN5, thus allowing the latter to acetylate its target proteins on the promoter region. CoIP experiments in 3T3 L1 cells induced to differentiate in conditions with MI and MID treatment by immunoprecipitating endogenous GCN5 will support such predictions.

4.4 LIP actively represses LAP activity via its association with mSin3A/HDAC1: a newly identified inhibitory mechanism

The absence of activation domains in CEBPβ LIP has led to the hypothesis that its repressive effect is mainly due to its ability to either compete for CCAAT promoter elements with other bZIP factors and/or to heterodimerize with these transcription factors thus reducing their activation potential (270, 299). When the potential mSin3A/HDAC1 binding domain in C/EBPβ was located to the first few amino acids of LIP, it suggested that LIP can also bind to the co-repressor complex and thus may in fact be an active repressor of transcription. CoIP experiments confirmed not only the interaction of LIP with HDAC1, but also identified, for the first time, a minimal domain required to mediate such association (figure 13).

Interestingly, the findings presented here suggest a novel inhibitory mechanism by which LIP mediates gene silencing. LIP was shown to inhibit LAP activity on the C/EBPα promoter when it was expressed at a ratio of 2LIP to 1LAP*/LAP (figure 13C,D). However,
a 50% reduction in interaction between LIP$_{6C}$ and HDAC1 was enough to suppress the LIP inhibitory effect when co-expressed at the same ratio. When C/EBPβ activity further increased in the presence of dex in part due to the dissociation of HDAC1, LIP$_{6C}$ was still able to repress LAP activity most likely by a passive repression mechanism which will act to reduce the co-activators loading on LAP/LIP$_{6C}$ dimers since LIP lacks the activation domains. We can thus infer that the HDAC1-dependent active repression of LIP might be the dominant mechanism by which LIP functions (figure 13-14). Hence, the inhibitory function of LIP on C/EBPα activation and adipogenesis is the result of at least two mechanisms: the originally hypothesized passive repression by which LIP heterodimerization with other bZIP members reduces the number of activation domains on the formed dimer (158, 270); and the new HDAC1-dependent repressive effect identified here.

When C/EBPβ$_{Δ153-156}$ (which expresses LIP$_{6C}$ but not WT LIP) activity was assessed with respect to PPARγ activation, it showed no significant increased activity (figure 9B), thus confirming that the HDAC1-repressive effect on C/EBPβ activity is promoter specific (66). Also, when the adipsin level was analysed during the induction of differentiation of NIH 3T3 cells in the absence of glucocorticoids (figure 10B, MI condition), its expression was detected without the need for a high PPARγ protein expression, which was still undetectable even at three days post-induction (figure 9C, MI). This observation suggests that C/EBPβ$_{Δ153-156}$ might, indirectly, render PPARγ activity more efficient, most likely by decreasing the overall mSin3A/HDAC1 co-repressor recruitment to their target promoters. If PPARγ was not expressed at all, then the level of expression of adipsin that was observed could have been due to C/EBPβ$_{Δ153-156}$ alone. Since HDAC1 recruitment is expected to be decreased on C/EBPβ$_{Δ153-156}$-targeted promoters, a ChIP assay assessing
histone acetylation profiles on overlapping C/EBPβ and PPARγ target promoters in cells expressing C/EBPβΔ153-156 needs to be performed to confirm this hypothesis.

By contrast to selectively reducing the HDAC1 presence from promoters without affecting LIP expression, when C/EBPβM152A activity was measured, it increased expression of all C/EBPβ target genes tested, and more efficiently than C/EBPβΔ153-156 (compare figures 9-10 to figures 18-19), despite an unaffected affinity of C/EBPβM152A with HDAC1 (figure 16-17). These results hence show that elimination of LIP is more efficient in promoting LAP activity due to the resulting increase in the recruitment of activation domains to promoters. Since LIP also inhibits C/EBPδ (154), the overall increased activity could also be due to an additional contribution from C/EBPδ activity. In other words, the results underline the dominant activating property of having two activation domains (i.e. from LAP/LAP homodimers) over HDAC1-mediated repression.

4.5 Acetylation of lysines 98, 101 and 102 of C/EBPβ is not required for maximum activity to be reached when HDAC1 association is compromised

Previous results from our laboratory have shown that the dex-dependent activation of C/EBPβ not only involves HDAC1 titration from its target promoters, but that dex-treatment also promotes C/EBPβ acetylation, an event that coincides with the displacement of the mSin3A/HDAC1 co-repressor complex (106). Although we know that HDAC1 titration from C/EBPβ is caused by a reduction in its level due to the dex-dependent degradation through the proteasomal pathway (66), the mechanism by which mSin3A association with C/EBPβ is decreased was not fully defined. Since CoIP and ChIP assays showed that mSin3A association with C/EBPβ was decreased 24h following glucocorticoid treatment, a time point
at which the acetylation levels of histone H4 on the C/EBPα promoter and of C/EBPβ was increased (66, 106), we hypothesized that structural changes caused by this post-translational modification could impact C/EBPβ association with mSin3A. This is indeed what was observed since GCN5-mediated acetylation of C/EBPβ decreased its association with mSin3A (figure 4). Moreover, since lysines 98, 101, 102 of C/EBPβ have been identified as being acetylated by GCN5 and PCAF (106), when an acetylation mutant (C/EBPβK98-102R) interaction with mSin3A was assessed, it showed no decreased interaction with mSin3A upon exposure to either GCN5 or PCAF activity (figure 4), thus supporting the required acetylation event to reduce mSin3A association from C/EBPβ.

Knowing that C/EBPβK98-102R activity and adipogenic potential are compromised, I sought to verify the extent to which acetylation of lysines 98-102 are important for C/EBPβ transcriptional activity in conditions where the transcription factor does not interact with mSin3A/HDAC1. When I deleted the domain required for mSin3A/HDAC1 binding in C/EBPβK98-102R (giving rise to a double mutant C/EBPβK98-102R,∆153-156), the new mutant showed an increased adipogenic and transcriptional potential on the C/EBPα promoter in the absence and presence of glucocorticoids when compared to C/EBPβK98-102R, whose activity was highly compromised (figure 12). The fact that C/EBPβK98-102R,∆153-156 activity on the C/EBPα promoter was still lower than that of C/EBPβ∆153-156 in the presence of glucocorticoids suggested that acetylation at lysines 98-102 in this system has an additional activating role in addition to promoting mSin3A dissociation. For instance, like lysine 39, this cluster of lysines might participate in potentiating the activating properties of the activation domain immediately upstream of K98 (65).
Since I showed that C/EBPβΔ153-156 interaction with GCN5 was compromised and that its in vitro acetylation level was also reduced by approximately 40% (figure 5), it is possible that another enzyme could be involved in acetylating lysines 98, 101 and/or 102 in C/EBPβΔ153-156, whose interaction could not be affected by the deletion of amino acids 153-156. This hypothesis is plausible as p300 has been shown to bind and acetylate C/EBPβ at lysine 98 (275, 300-301). More importantly, p300 has been proposed to bind to the N-terminal domain of C/EBPβ located upstream of amino acids 110 (300), hence suggesting that Δ153-156 will most likely not affect p300 binding.

Further, since the dex-dependent increase of C/EBPβK98-102R,Δ153-156 was similar to that of WT C/EBPβ (figure 12A), it confirms that GR has other roles than potentiating mSin3A/HDAC1 dissociation and acetylation of lysines 98-102. It could be that the increased expression of LMO3 following dex treatment (Tomlinson et al., unpublished results) or others unknown co-factors translate some of GR’s activating properties. Since LMO3 is a small protein that acts as an adapter that mediates interactions with others proteins (302), it might bind and recruit co-activators to the C/EBPα promoter.

By contrast to the transcription assay results, when C/EBPβK98-102R,Δ153-156 adipogenic potential was assessed, it increased 3T3 L1 adipogenesis to levels statistically similar to C/EBPβΔ153-156, as shown by the quantification of adipsin and C/EBPα protein levels (figure 12E). Curiously, however, early induction of PPARγ was not observed when C/EBPβK98-102R,Δ153-156 was ectopically expressed, unlike C/EBPβΔ153-156. Because of the established cross regulation of C/EBPα and PPARγ, increased expression of the former is expected to also increase expression of the latter. However, it is also possible that C/EBPβK98-102R,Δ153-156 could inhibit PPARγ expression. If it is the case, then a competition between C/EBPβK98-
and C/EBPα for binding to the PPARγ promoter will result in less transcription, as opposed to C/EBPβΔ153-156, whose activity with respect to PPARγ transcription is similar to C/EBPβwt. To confirm this hypothesis, a real time RT-PCR reaction needs to be done in NIH 3T3 cells evaluating the early (24h) induction of PPARγ2 mRNA levels by C/EBPβK98R,Δ153-156, which is expected to be lower than that of WT or Δ153-156 C/EBPβ.

The results presented herein suggest a complex modulation of C/EBPβ transactivation potential by its diverse regulatory domains, mSin3A/HDAC1 and GCN5. However, its acetylation status following disruption of the deacetylase interaction was not evaluated. Although the in vitro acetylation assay showed decrease acetate incorporation into C/EBPβΔ153-156 when compared to the WT counterpart, evaluating the acetylation of the specific lysines involved in the interaction with mSin3A would be of great asset to confirm GCN5-dependent acetylation in vivo. To do so, antibodies against acetylated lysines 98-102 need to be generated to evaluate the in vivo C/EBPβΔ153-156 acetylation status.

4.6 HDAC1-repression of C/EBPβ activity differentially regulates the expression of adipogenic markers

The de-repression mechanism involving HDAC1-exclusion from transcription factors other than C/EBPβ and promoters other than C/EBPα is now relatively common. Just to name a few, such regulation has been shown to happen to HMGA1/RB (303-304) and C/EBPδ (289). Additionally, the basic helix loop helix transcription factor MyoD involved in skeletal myogenesis is also activated by exclusion of an HDAC1-containing complex (300, 305), suggesting that there might be a conserved transcriptional repression/activation mechanism throughout diverse families of transcription factors.
The fact that both LIP and mSin3A/HDAC1 can inhibit C/EBPβ LAP activity by decreasing the number of activation domains and by deacetylating LAP and the promoter environment adds another level of complexity in explaining the activating potential of the different C/EBPβ isoforms. Since at least two mechanisms are involved in inhibiting LAP activity, I sought to determine whether the two inhibitory effects were additive.

When an engineered LAP lacking LIP initiation methionine and compromised for its binding with HDAC1 (C/EBPβ\(_{\Delta151-156}\)) was used in the differentiation assay, it curiously showed promoter specificity (figure 18-19). Interestingly enough, C/EBPβ\(_{\Delta151-156}\) did not highly activate all promoters tested, as it was the case of C/EBPβ\(_{\Delta151-156}\). This hence suggests that the collective suppression of LIP and HDAC1 binding in C/EBPβ\(_{\Delta151-156}\) gives rise to a highly effective LAP only on some promoters (i.e. GLUT4 and adipsin, but not C/EBPα and PPARγ, when compared to C/EBPβ\(_{M152A}\)) and does so in a dex-dependent manner exclusively (figure 18-19). Although the higher GLUT4 mRNA level and the higher adipsin protein level suggest that C/EBPβ\(_{\Delta151-156}\) might directly cause the phenotype observed, evaluating mRNA and protein levels does not necessarily prove a higher transcriptional rate. To confirm that C/EBPβ\(_{\Delta151-156}\) provides in fact the highest transcriptional rate, reporter assays with the GLUT4 and adipsin promoters, among other factors, need to be performed.

The main difference between the two groups of target genes is the fact that GLUT4 and adipsin require both PPARγ and C/EBPβ (or C/EBPα) activity for them to be transcribed, as opposed to C/EBPα and PPARγ whose transcriptional activation could be activated by C/EBPβ and/or C/EBPδ. Since glucocorticoids mediate C/EBPδ expression (140, 306) and since C/EBPδ has been shown to preferentially activate the PPARγ promoter in comparison to C/EBPβ (172), it is thus plausible that the dex requirement is to allow
PPARγ protein expression to occur, which will then allow for an enhancement of C/EBPβ_{Δ151-156} activity on their collective target promoters by increasing co-activator recruitment. Accordingly, C/EBPβ_{Δ151-156} increased activity on downstream adipocyte target genes (i.e. GLUT4 and adipsin) is not observed in the glucocorticoid-free condition probably because of an absence of PPARγ proteins (figure 18A).

4.7 Proposed C/EBPβ transcriptional regulation model

The mSin3A/HDAC1 complex is proposed to require the domain encompassing amino acids 153-156 of C/EBPβ for proper binding. Since this domain represents the first few amino acids in the LIP isoform, I hypothesized that mSin3A/HDAC1 binding domain could also be located in the LIP isoform. Together, my results suggest that the inhibitory effect of LIP is due not only to its lack of its activation domains, but also to its ability to bind and therefore recruit a co-repressor complex to its target promoters. To explain LIP mechanism of inhibition, a model is proposed in figure 32.

In conditions where LIP is expressed in the absence of glucocorticoids, all the LAP/LAP and LAP/LIP dimers will be bound and actively repressed by mSin3A/HDAC1 (scenario 1 and 2). Since LIP expression decreases LAP/LAP activity, as opposed to LIP_{6C}, whose interaction with mSin3A/HDAC1 is compromised, we could then infer that the inhibitory effect observed in this situation is mainly due to mSin3A/HDAC1 active repressive effect. We cannot however neglect passive repression by LIP homodimers that will compete for the same promoters in conditions where the LIP/LAP ratio is higher than one.
Figure 32: Proposed model highlighting the active repressor role of the C/EPBβ LIP isoform in regulating LAP.

In the absence of glucocorticoids (-DEX), LAP activity is inhibited by its association with the mSin3A/HDAC1 co-repressor complex and thus little transcription is observed. Over expression of LIP favours LAP/LIP dimers formation, thus decreasing the number of activation domains and further decreasing LAP activity (lower panel). In the presence of glucocorticoids (+DEX) however, LAP/LAP activity is increased due to an initial absence of mSin3A/HDAC1. Over expression of LIP in this case causes a LAP/LIP dimer formation and LIP homodimer associated with mSin3A alone since HDAC1 is degraded by the 26S proteasome upon steroids treatment. The different shading of p300/GCN5 symbolizes a stronger (dark) or modest (light) association of p300/GCN5 with LAP isoforms.
Moreover, since LAP/LIP_{6C} dimers show similar activity to LAP homodimers, we can also suggest that the mSin3A/HDAC1 repressive effect of LAP homodimers cancels the activating property of one activation domain since exclusion of mSin3A/HDAC1 and one activation domain results in an unchanged activation potential in LAP/LIP_{6C}. Accordingly, the presence of two activation domains in a LAP homodimer that is unable to associate with mSin3A/HDAC1 nearly doubles its transactivation property (figure 8).

In conditions where glucocorticoids are present, the mechanism of inhibition by LIP occurs through passive repression only (figure 31, +DEX). A LAP homodimer exposed to GR-dependent activation is initially not associated with mSin3A/HDAC1 and shows the highest transcriptional potential (scenario 3). In conditions where LAP and LIP are co-expressed (as in WT C/EBPβ), the formation of LAP/LIP heterodimers would cause a decrease in the number of activation domains when compared to a LAP/LAP homodimers, thus resulting in a reduced transactivation potential (scenario 4). When LIP:LAP ratio is high, the formation of LIP homodimer (in addition to LAP/LIP heterodimer formation) can recruit mSin3A alone to promoters and thus additionally inhibits transcription since HDAC1 is generally titrated upon dex treatment. This model supposes the requirement of lysines 98-102 in decreasing mSin3A binding from LAP; thus the absence of this cluster of lysines from LIP could still favour mSin3A binding and thus inhibits activation (scenario 5).

Although the results suggest that mSin3A associates with LAP*/LAP/LIP and that its interaction with LAP*/LAP is compromised upon acetylation of lysines 98-102, I hypothesize that LIP homodimer will show a sustained association with mSin3A even in the presence of glucocorticoids (figure 32), due to its lack of lysines 98-102. Thus, a CoIP experiment in a C/EBPβ knockout cell line stably expressing FLAG-tagged LIP needs to be
performed. A FLAG resin (Sigma Aldrich) could be used to precipitate LIP from cellular extracts of cells that were exposed to vehicle or dex. Such experiment does not, however, guaranty that LIP will not heterodimerize with other bZIP proteins (i.e. FOS, JUN, CREB) and thus obscure interpretations.

4.8 Cysteine 11 in LAP* interferes with the glucocorticoid-induced potentiation

Since the results presented in figures 20-22 and other studies convincingly demonstrate the inhibitory role of LAP* in regulating diverse promoters (281-282, 294), I sought to determine LAP* mechanism of reduced activation on the C/EBPα promoter and during adipogenesis. LAP* has six conserved cysteine residues (C11, C33, C123, C143, C201 and C296) where C11 is absent from LAP. Mutation of C11 to serine on LAP* partially explained its reduced activation since it increased the LPS-induced transcription of the IL-6 gene (282). The authors also suggested that the intramolecular disulfide bond formation between C11 and C33 in LAP* might eliminate its ability to bind DNA due to resultant structural change, thus explaining its phenotype.

Although Lee and colleagues convincingly demonstrated how an intramolecular disulfide bond impacts LAP* transcriptional activity (282), its activity with respect to LAP or LIP presence was not discussed. When LAP* activity was tested on the C/EBPα promoter, it showed an unpredicted phenotype. Not only that LAP* was refractory to glucocorticoid treatment, but when co-expressed with LIP, the dex-induced potentiation was restored to levels similar to WT C/EBPβ (3 fold increase, figure 21B). On the other hand, LAP does not seem to require LIP expression to respond to glucocorticoids (figure 20B and Douvris et al, unpublished results), although its dex-induced potentiation was still lower.
than that of WT C/EBPβ (2 fold increase versus 3 fold, respectively). Moreover, while mutation of C11 in LAP* nearly doubled its basal activity, the dex treatment increased its activity to the same extent as LAP (i.e. 2 fold increase) (figure 22A). We can thus conclude that the inhibition caused by cysteine 11 prevents glucocorticoid potentiation of LAP* activity on the C/EBPα promoter.

Whether mSin3A/HDAC1 association is lost from LAP* homodimers upon dex treatment is not established since the immunoprecipitation evaluating such association was done using an antibody that precipitates all three C/EBPβ isoforms (66, 106). Data presented here favour the hypothesis that acetylation of lysines 98, 101, 102 in either LAP* or LAP compromises their binding with mSin3A. In either case, LAP* reduced activation could be explained as follows (figure 33).

When LIP is co-expressed with LAP* homodimer in the absence of glucocorticoids, the LAP*/LIP dimer activity decreases as it only has 1 activation domain (RU=1). Counter intuitively, the LAP* homodimer does not show an increase in activity upon dex treatment. Even if mSin3A/HDAC1 is excluded, the formation of an intermolecular disulfide (S-S) bond between the two monomers could inhibit its activity by interfering with co-activator recruitment (RU=2). Although C11 has been shown to form an intramolecular disulfide bond with cysteine 33 in a different cellular context that decreased its DNA-binding ability (282), this observation does not explain how a LAP* homodimer has a lower activity than a LAP*/LIP heterodimers in the presence of dex since a decrease in activation domain (from LAP* to LIP) should also reduce its transactivation potential (compare RU=2 to RU=3, +dex).
The transition between LAP*/LAP* to LAP*/LIP dimer in the absence of dex reduces the former’s dimer activity because of a reduced number of activation domains (RU 2 to 1, -dex). By contrast to LAP*/LIP dimer, LAP*/LAP* dimer activity is refractory to glucocorticoids treatment (RU 2, +dex). Mutation of cysteine 11 in LAP*/LAP* increases its activity in a dex-independent manner (RU 3, -dex) and LAP*\textsubscript{C11A} homodimer shows a two fold dex effect (RU 3 –dex to RU 6 + dex). These observations collectively suggest that, like LIP (RU 2 to RU 3, + dex), C11 might be involved in the glucocorticoid-dependent potentiation of LAP* activity; although this residue seems to have an inhibitory effect most likely by forming a disulfide bridge between two adjacent LAP* and therefore preventing proper co-activators recruitment. Note that in this assay, LAP*\textsubscript{C11A} homodimer and LAP*/LAP heterodimers both have similar activity (RU 6, +dex). However, LAP homodimer still has the highest activation potential, as its dex-dependent potentiation would reach RU 8-10 in this schema (data not shown).
A potential explanation is to evoke a co-dependency model where two LAP* will have a reduced activation potential due to an intermolecular S-S bond between their C11, as shown in the model. This hypothesis is plausible since two additional intermolecular S-S bond formation between two C143 and two C296 have been documented (159). As opposed to the inhibitory role of C11 however, C143 and C296 oxidation were shown to confer stability to LAP homodimers upon binding to DNA (159). Moreover, regulation of bZIP transcription factors by intermolecular S-S bond formation is evidenced with Fos and Jun since their oxidation has been shown to prevent DNA binding (307).

Accordingly, we can speculate that LIP-induced activation of LAP* occurs by reducing S-S bond formation between two LAP* (RU=3, +dex), thus explaining the increased activity observed. Additionally, the presence of LAP with LAP*, instead of LIP, further increases transcription by two fold (RU=6 +dex, extrapolated from C/EBPβM152A activity in figure 16), demonstrating the additive effect of the activation domains in the absence of a potential intermolecular S-S bond between two LAP*. Interestingly, the dex-induced potentiation of the homodimer LAP*C11A was also translated by a two fold increase (RU=3 to RU=6 +dex), reaching an activity similar to that of C/EBPβM152A (expressing LAP* and LAP).

These observations strongly support the inhibitory role of C11 in LAP* on the C/EBPα promoter and during adipogenesis. Although preliminary, these results delineate the relative contribution of each C/EBPβ isoform is potentiating transcription in a glucocorticoid-dependent manner. Whether the mSin3A/HDAC1 association with LAP* is affected by C11 needs more investigation. Only immunoprecipitation analysis of tagged LAP* with endogenous mSin3A/HDAC1 in the absence and presence of glucocorticoids, as
well as ChIP analysis on the C/EBPα promoter, will give a definite, yet important, answer to the predictions discussed.

Finally, even if the most reported post-translational modification of cysteine residues in protein is oxidation (and the only modification reported in C/EBPβ), one could not neglect possible prenylation (addition of a hydrophobic chain) that might increase the hydrophobic potential of this domain and thus modulate LAP*’ activity. Unfortunately, no data is currently available on possible prenylation of the transcription factors involved in the early stage of the adipogenic cascade.

4.9 LAP*-N-terminal domain reveals potentially diverse inhibitory mechanisms

Given that the MAPK-dependent phosphorylation of LAP* requires the MID cocktail during preadipocyte differentiation (156), and since MAPK phosphorylation is also required to decrease the PRMT4/CARM1-dependent arginine 3 dimethylation (276), the inhibition of LAP* activity in untreated 3T3 L1 differentiation could be attributed to the constitutive association (and activity) of the methylase. Moreover, the R3 dimethylation in LAP* has been shown to negatively regulate its activity by restraining its interaction with the SWI/SNF complex (276), a factor that was previously shown to be essential in activating C/EBPβ target genes (308). Further, when LAP adipogenic potential was assessed in the absence of inducers, it showed an approximate 20 fold increase when compared to LAP* (figure 22C,D). This increase is most likely due to an effective SWI/SNF recruitment to promoters because of the absence of R3 methylation in LAP. Additionally, the absence of C11 in LAP is also responsible for a significant fraction of the adipogenic increase since induction of differentiation with LAP*_{C11A} was approximately 5 times higher than LAP* (figure 22C,D).
Even if the chromatin remodelling activity of the SWI/SNF complex might not apply to the Luciferase-based transcription assay since this system does not involve a well organized chromatin-based structure that needs alteration, LAP* association with the PRMT4/CARM1 methylase through its activation domains (276) could interfere with co-activator recruitment and thus explain its reduced activity on the C/EBPα promoter (figure 21B). Whether R3 dimethylation is responsible for a fraction of the decreased activity observed with LAP*$_{C11A}$ (when compared to LAP) independently of PRMT4/CARM1 association needs to be determined. Neutralization of the R3 positive charge by methylation increases the N-terminal domain hydrophobicity and may impair LAP* N-terminus folding. Such an event could impact activation domain function. The fact that the first 21 amino acids in LAP* are already composed of 75% hydrophobic residues suggests either a preferential folding to accommodate such an interface or a docking site for a repressor whose interaction could be increased by R3 dimethylation.

Lastly, the CoIP results presented in figure 7 show that LAP* precipitates more effectively with HDAC1 than LAP. It is thus possible that a fraction of LAP* inhibitory effect is also mediated through HDAC1, similarly to LIP. Since amino acids 153-156 of C/EBPβ are present in LAP*/LAP and are required for binding with HDAC1, a conformational change induced by the hydrophobic N-terminal domain of LAP* could favour binding with the co-repressor. Moreover, we can also speculate that R3 dimethylation in LAP* could also modulate HDAC1 binding (308) like acetylation of lysines 98, 101, 102 in LAP*/LAP do (figure 4 and 106).
4.10 A new positive regulatory domain identified in C/EBPβ LAP*/LAP

In this study, the characterization of amino acids 141-149 as being required for mediating LAP*/LAP activity at the C/EBPα promoter during preadipocyte differentiation is a novel finding that explains part of this transcription factor regulatory potential. To start with, I showed that deletion of amino acids 141-149 completely abolished C/EBPβ transcriptional activity on the C/EBPα, but not on the PPARγ, promoter, both on a transiently transfected plasmid and an endogenous chromatinized environment (figure 23, 24, 28). Hence, it appears that this region confers C/EBPβ promoter specificity. In parallel, a study performed by Schwartz and colleagues identified region 105-212 (including both RD1 and RD2) to differentially influence transactivation of MCP-1 and IL-6 transcription in a luciferase-based assay and by semi-quantitative northern analysis of their mRNA levels (309).

From my results, I could therefore propose that the region encompassing amino acids 141-149 needs to provide the correct environment for C/EBPβ to be able to regulate different promoters likely due to interaction with promoter-specific co-factors or dimerization partners. Although C/EBPβΔ141-149 interaction with mSin3A/HDAC1 and GCN5 did not seem to be affected, as shown by CoIP experiments (figure 25), structural changes caused by this deletion might affect other binding partners. Indeed, a direct interaction of C/EBPβ with CRSP130/Sur2, a subunit of a mammalian Mediator Complex that activates C/EBPβ, has been shown to occur partially through the N-terminal domain of RD1 (310). Thus, evaluating if a decreased interaction with CRSP130/Sur2 is responsible for the decreased phenotype observed in C/EBPβΔ141-149, in addition to HDAC1 effect, may explain the activating property of region 141-149.
The presence of highly conserved charged residues within amino acids 141-149 (figure 6C) that are exposed to the solvent (296) implies that such region might have an important role in positioning RD1 in a way that allows de-repression from LIP and/or from mSin3A/HDAC1. One possibility is that lysine 144 and/or arginine 145 are subject to post-translational modifications that regulate activity. A possible future study where only these two lysines could be mutated either alone or together would establish their potential involvement in regulating LAP*/LAP activity. For instance, one could mutate lysine 144 to glutamine to mimic acetylation and then evaluate C/EBPβ activity to finally define the different mechanisms by which RD1 acts as a positive regulatory domain. Additionally, since C/EBPβ has been shown to interact with the methyltransferase PRMT4/CARM1, it is thus possible that this enzyme methylates arginine 145 to activate C/EBPβ transactivation potential by favouring co-activators recruitment, as previously shown with arginine 3 dimethylation (276).

If region 141-149 of C/EBPβ mediates interaction with specific co-activators, then co-immunoprecipitation (using a tandem affinity purification procedure, or TAP-tag) followed by LC-MS/MS analysis could identify differential partners between of WT C/EBPβ and C/EBPβΔ141-149. Such an analysis could be performed if the experiments proposed in the previous paragraph were to be unsuccessful.

4.11 Cysteine 143 is not vital for C/EBPβ LAP*/LAP activation potential

Other than the acidic and basic residues discussed previously, RD1 also has a conserved cysteine that has been suggested to form an intramolecular disulfide bond only in LAP* and an intermolecular bond in LAP homodimers in vitro (282-283). However, cysteine
143’s definite role in conferring LAP*/LAP activating properties has not been evaluated. If C143 was in fact required \textit{in vivo} for two LAP* and/or LAP to form a functional dimer (in addition with C202 and C296), then mutation of this residue should completely abolish C/EβP activity to levels observed in C/EβP̄141-149. My results, however, show that C/EβP_{C143A} displayed transcriptional activity on the C/EβPα promoter that was only slightly compromised in the presence of glucocorticoids and showed no discernable differences in promoting NIH 3T3 adipogenesis, when compared to WT C/EβP (figure 30).

There are only two reports that investigated C/EβP redox-state and another one showing that exposure of cells to reactive oxygen species (ROS) activates C/EβP during preadipocyte differentiation (159, 282, 311). Thus, it is not established that disulfide bond formation by C143 is critical in activating the transcription factor. My study provides for the first time evidence suggesting that C143 in C/EβP has little role in promoting murine adipogenesis. One way to confirm whether C143 is involved in disulfide bond formation would be to subject immunoprecipitates of WT and C143A C/EβP during the initial phase of adipocyte differentiation to reducing and non-reducing gel electrophoresis to assess changes in mobility. Such experiments will also allow us to see whether intramolecular and/or intermolecular disulfide bond occur during adipogenesis based on monomers and dimers electrophoretic mobility.

4.12 HDAC1 and the absence of C143 both suppress C/EβP_{Δ141-149} activity

Functionally, region 141-149 of C/EβP seems to be required for this transcription factor to reach its normal transactivation potential on the C/EβPα promoter, whereas it showed no effect on the PPARγ promoter. Whether structural changes are solely responsible
for such phenotype is unlikely since this domain could also mediate interaction with co-activators that might be required for C/EBPβ to activate some promoters. Although I initially hypothesized that the amino acids 141-149 might selectively mediate GCN5 interaction, CoIP experiments showed no requirement for this region for a proper interaction with exogenously expressed GCN5, or HDAC1 for that matter (figure 25). However, co-expression of an inactive HDAC1 with C/EBPβ\(_{\Delta141-149}\) was able to significantly increase its activity in the presence of glucocorticoids. This suggests that HDAC1 could be in fact required for keeping C/EBPβ\(_{\Delta141-149}\) in an inactive state.

There are at least two potential explanations for why C/EBPβ\(_{\Delta141-149}\) displayed a lower activation potential than WT C/EBPβ when co-expressed with inactive HDAC1\(_{D181A}\). First, the deletion of C143 contributed to C/EBPβ\(_{\Delta141-149}\) reduced activation since C/EBPβ\(_{C143A}\) showed a 25% decrease in its activity on the C/EBPα promoter when compared to WT C/EBPβ. Secondly, it is possible that the exclusion of mSin3A/HDAC1 upon glucocorticoid treatment occurs completely with WT than Δ141-149 C/EBPβ. Since GCN5–mediated acetylation of C/EBPβ occurs more effectively after the dex-dependent decrease of HDAC1 occupancy on the C/EBPα promoter (106) and concomitantly after the p300-mediated acetylation of HDAC1 that has been reported to decrease its deacetylase activity (250), it is hence plausible to propose that alteration of the kinetics of these events by Δ141-149 might be the reason why C/EBPβ\(_{\Delta141-149}\) has a much lower activation. To support this hypothesis, I decided to eliminate HDAC1 binding domain in C/EBPβ\(_{\Delta141-149}\) and then to test the activating property of the new mutant (which is C/EBPβ\(_{\Delta141-156}\)). If the repressive effect of HDAC1 is responsible for the suppression of C/EBPβ\(_{\Delta141-149}\) transcriptional activity, then decreasing its binding will result in an increase of its transcriptional activity. In fact,
C/EBP\textsubscript{β}\textsubscript{Δ141-156} showed a higher activation potential than C/EBP\textsubscript{β}\textsubscript{Δ141-149} (without and with glucocorticoids, figure 29B). Further, C/EBP\textsubscript{β}\textsubscript{Δ141-156} also showed a higher activity than WT C/EBP\textsubscript{β} in the absence of dex, thus mimicking the transcriptional capacity of C/EBP\textsubscript{β}\textsubscript{Δ151-156} (figure 29B). This result suggested that relieving HDAC1 interaction from C/EBP\textsubscript{β}\textsubscript{Δ141-149} by eliminating region 151-156 was sufficient to increase its activity in a manner that was independent of glucocorticoid treatment. Moreover, in the presence of glucocorticoids, C/EBP\textsubscript{β}\textsubscript{Δ141-156} transcriptional activity was further increased and it showed the same activation potential as WT C/EBP\textsubscript{β} (in the presence of glucocorticoids).

Interestingly however, C/EBP\textsubscript{β}\textsubscript{Δ141-156} had an activation level that was approximately 30% lower than that of C/EBP\textsubscript{β}\textsubscript{Δ151-156} in the presence of glucocorticoids. Since both mutants do not express LIP and do not properly associate with HDAC1, it means that the absence of region 141-149 in C/EBP\textsubscript{β}\textsubscript{Δ141-156} still caused a diminution in its activity. Since mutation of cysteine 143 within region 141-149 reduced the transcriptional activity of C/EBP\textsubscript{β} by approximately 25% (figure 29A), the absence of this residue from C/EBP\textsubscript{β}\textsubscript{Δ141-156} is most likely the reason why it had an activation potential that was 30% lower than C/EBP\textsubscript{β}\textsubscript{Δ151-156}.

Other experiments that could be done to further support the hypothesis of a slower HDAC1 release from C/EBP\textsubscript{β}\textsubscript{Δ141-149} in the presence of glucocorticoids include a time-course CoIP analysis of the two factors. Most importantly, a ChIP experiment on the C/EBP\textsubscript{α} promoter in cells expressing C/EBP\textsubscript{β}\textsubscript{Δ141-149} could be performed to evaluate the glucocorticoid-dependent decrease of HDAC1 and the increase in acetylation of lysines 98, 101 and 102 of C/EBP\textsubscript{β} using an antibody specific to these acetylated lysines (which needs to be generated).
In addition to a delayed HDAC1-release caused by Δ141-149 in C/EBPβ, it is possible that the structural change caused by this deletion affects p300 association with the N-terminal domain of LAP (300). Such an impact could consequently decrease p300 recruitment to the C/EBPα promoter, thus decreasing the p300-dependent inhibition of HDAC1. Such a delay in HDAC1 inactivation could also explain the lower C/EBPβΔ141-149 activation potential. Moreover, since GR-induced acetylation of HDAC1 by p300 occurs within 4h post-treatment (250) and since HDAC1 titration requires longer exposure to the glucocorticoid (between 16h-24h) (66), it is possible that HDAC1 inhibition by acetylation could be delayed in cells expressing C/EBPβΔ141-149. Furthermore, when co-expression of an inactive HDAC1 was performed, C/EBPβΔ141-149 transcriptional activation was increased maybe because the initial lag in p300-dependent inactivation of HDAC1 was not crucial, hence making Δ141-149 a minor setback with respect to C/EBPβ transcriptional activation when HDAC1 is inactive. Finally, the fact that co-expression of inactive HDAC1 with C/EBPβΔ141-149 still showed an activation potential that was approximately 30% lower than that of WT C/EBPβ (in the presence of inactive HDAC1D181A, figure 29A) could be explained by the absence of cysteine 143, as previously discussed. Thus I can suggest that the activating property of the N-terminal region of RD1 occurs in an HDAC1-independent mechanism involving cysteine 143 and in an HDAC1-dependent mechanism that could possibly help relieving HDAC1 from C/EBPβ.

Testing of the predictions could start with a time-course ChIP analysis during the first 48h of NIH 3T3 differentiation evaluating the presence of acetylated and unacetylated HDAC1 on the C/EBPα promoter at 8h intervals. Since Hager and colleagues (250) identified the HDAC1 lysines modified by p300, antibodies against these specific residues
could be generated for the purpose of these experiments. Additionally, the level of histone H4 acetylation could also be evaluated, as it will be expected to be detected earlier in WT than Δ141-149 C/EBPβ.

One fundamental observation from these results is that the inactive HDAC1 was not able to increase WT or Δ141-149 C/EBPβ activity in the absence of glucocorticoids, most likely because of the persistent association of mSin3A/HDAC1 with the transcription factor. Such a phenotype emphasizes the importance of dex in decreasing the overall deacetylase activity from the C/EBPβ complex by promoting p300-dependent acetylation of HDAC1 and then titration of HDAC1 from the promoter by mediating its proteasomal degradation through the 26S proteasomal pathway (66, 250).

4.13 Insights into the adipogenic transcriptional cascade during NIH 3T3 adipogenesis

The importance of the excess energy that is stored in WAT in the form of triglycerides is of vital necessity for animals when food is scarce. However, the increase in size of the adipose tissue caused by a higher number of adipocytes and lipid content leads to a metabolic dysfunction that alters the body’s homeostasis. The current lifestyle in our societies, in which the abundance of hypercaloric diets favours increased storage of lipids forecast an epidemic arising from the metabolic syndromes. Hence, studying the development of adipose tissue is vital in order to determine means by which adipocyte development might be modulated and WAT overdevelopment restrained.

The results presented in this thesis highlight the role of C/EBPβ in modulating preadipocyte differentiation through its many regulatory domains. I identified two
subdomains within RD1 that have interdependent roles in regulating expression of the major adipogenic factors C/EBPα and PPARγ. I also showed significant data that explains some of the specific phenotypes mediated by C/EBPβ LAP*/LAP/LIP isoforms. Finally, the results also emphasize the importance of C/EBPβ redox state in regulating gene transcription of adipocyte markers.

When the initial transcription experiments were performed using C/EBPβΔ141-149, it was surprising to notice that, albeit inactive on the C/EBPα promoter, C/EBPβΔ141-149 was able to effectively induce preadipocyte differentiation in a fibroblastic cell line. These results suggested that direct activation of PPARγ by C/EBPβΔ141-149 accounted for the final phenotype observed. Although the mechanism of C/EBPβ-dependent activation of PPARγ is still unclear, the results presented here and others clearly suggest that C/EBPβ is able to directly activate PPARγ transcription, as showed by Luciferase-based transcription assays using the proximal PPARγ promoter, ChIP analysis and quantitative RT-PCR (65, 140, 174).

Knowing that C/EBPδ expression is activated by GR, the dex-dependent effect observed in PPARγ activation might be caused not only by increased C/EBPδ expression but also to GR-dependent activation of C/EBPβ. Since C/EBPδ alone cannot efficiently induce endogenous PPARγ expression and thus NIH 3T3 differentiation (139-140), we could therefore infer that the cooperative effect of C/EBPδ/C/EBPβ heterodimer and C/EBPβ homodimers are more crucial for PPARγ induction than C/EBPδ homodimers. This hypothesis is further supported by the C/EBPδ/C/EBPβ knockout studies. PPARγ mRNA levels were shown to be highly decreased in C/EBPβ−/− primary embryonic fibroblast when compared to C/EBPδ−/− cells and was almost suppressed in double KO.
(C/EBPβ−/−/C/EBPδ−/−) cells (146). Nonetheless, C/EBPδ−/− cells still showed less PPARγ expression than WT cells, thus giving C/EBPδ some implication in regulating this important adipogenic factor.

Even if the repression of PPARγ expression by HDAC1 through C/EBPβ was not observed in the Δ153-156 mutant, this does not preclude a possible HDAC1-dependent regulation through other factors. For instance, since inhibition of C/EBPδ activity by the mSin3A/HDAC1 co-repressor complex has already been reported (289, 312), this transcription factor could also repress PPARγ expression when glucocorticoids are absent since the HDAC1 protein levels are only reduced upon treatment with dex during adipogenesis (66). Hence, the dex-dependent proteasomal degradation of HDAC1 could also relieve C/EBPδ association from the co-repressor complex. Interestingly, HDAC1 was shown to be reduced on the heptaglobin promoter following treatment of intestinal epithelial cells by the pro-inflammatory cytokine IL-1β (289), thus relieving C/EBPδ from inhibition, which shows a parallel to the glucocorticoid-dependent activation of C/EBPα expression by C/EBPβ during murine adipogenesis.

Based on these observations, whether C/EBPβ/δ heterodimers will be similarly regulated by the mSin3A/HDAC1 co-repressor complex when compared to C/EBPβ or C/EBPδ homodimers is not known and thus requires further investigations. Since mSin3A/HDAC1 binding interfaces on C/EBPβ or C/EBPδ differ (chapter 3.1 and 289), heterodimers formation by these two factors might not dispose of an optimal spatial arrangement to either accommodate binding or to allow regulation by displacement of the co-repressor complex upon hormone treatment. That C/EBPβ encodes three different isoforms, all of which are able to associate with mSin3A/HDAC1, adds another level of complexity...
when it comes to heterodimers formation with C/EBPδ alone and regulation by the co-repressor complex.

Earlier studies suggested that NIH 3T3 and 3T3 L1 cells differed in their differentiation in that NIH 3T3 cells were insensitive to insulin and failed to induce C/EBPα expression at the onset of differentiation (139, 143). The authors confirmed by Northern blot analysis that NIH 3T3 cells ectopically expressing C/EBPβ do not express C/EBPα or GLUT4 mRNA. However, the increased sensitivity of the qRT-PCR experiments performed in this study confirm that both factors could be transcribed from their promoters when C/EBPβ is over-expressed, although to levels probably undetectable by Northern analysis. Moreover, the low level of C/EBPα mRNA is most likely below the threshold required to effectively translate the transcripts, hence explaining why no C/EBPα protein expression was detected by Western blot analysis when investigated in NIH 3T3 differentiation upon expression of ectopic C/EBPβ.

Surprisingly, however, when the NIH 3T3 cells stably expressing C/EBPβ were cultured for a longer period of time before induction of differentiation, the protein expression of both C/EBPα isoforms were detected when assessed by Western analysis (appendix 8A). Over-exposure of the Western blot after the first round of differentiation (i.e. two weeks following the stable expression of C/EBPβ) showed non-specific protein bands, as opposed to the second round of differentiation, performed two weeks later. Only cells expressing C/EBPβ and treated with the full differentiation cocktail, including glucocorticoids, expressed C/EBPα as expected.

These findings suggested that a sustained expression of C/EBPβ in the NIH 3T3 fibroblastic cell line is able to reprogram the cells to probably favour a higher expression of
C/EBPα mRNA that will reach the minimal threshold for it to be effectively translated. A lower level of C/EBPα mRNA could be one of many possibilities explaining why C/EBPα protein expression is initially not effectively detected. For instance, since C/EBPα protein half-life has been shown to be regulated by its ubiquitylation status and hence degraded through the proteasomal pathway (313-314), an increased degradation rate might be one of the answers. Moreover, regulation of its mRNA shuttling between the nucleus and cytoplasm could also account for reduction of the translation level during adipogenesis via retention of the messenger by a RNA-binding protein, as previously demonstrated for C/EBPβ whose mRNA were sequestered in the nucleus by HuR, causing reduction of its translation and adipogenesis in MEF cells (160). On that account, FMIP (Fms interacting protein) has been suggested to affect C/EBPα mRNA processing and export during adipogenesis of the multipotent C2C12 cells (315) whereas CUGBP1 (CUG binding protein 1) and CRT (calreticulin) have been shown to bind C/EBPα mRNA and inhibit its translation (316). Together, these findings suggest that the absence of C/EBPα protein expression in NIH 3T3 could be due to post-transcriptional regulation of its transcripts.

Since ectopic expression of PPARγ is not sufficient to induce C/EBPα expression (139), we can conclude that during NIH 3T3 differentiation, these cells require a constant expression of C/EBPβ to eventually induce higher levels of C/EBPα mRNA and protein (see figure 34), possibly by regulating the expression or the function of factors involved in C/EBPα mRNA processing or proteasomal degradation.
Figure 34: Fundamental differences between NIH 3T3 and 3T3 L1 differentiation.

(A) Ectopic expression of PPARγ in NIH 3T3 cells is not sufficient to induce C/EBPα protein expression, but is still able to effectively promote adipogenesis. The cells are unresponsive to insulin and do not uptake glucose. (B) When C/EBPβ is stably expressed in NIH 3T3 cells, C/EBPα protein expression is detected only after a longer duration of C/EBPβ expression. C/EBPα induction is hence much slower in NIH 3T3 cells even in the presence of glucocorticoids. However, its expression is much more effective in 3T3 L1 over-expressing C/EBPβ, even in the absence of hormone, most likely due to the primed state of the promoter (also refer to figure 3).
A

NIH 3T3 over-expressing PPARγ

C/EBPα ➔ PPARγ ➔ Adipocyte markers

γ

***Cells are insulin insensitive, hence do not uptake glucose

B

NIH 3T3 and 3T3 L1 over-expressing C/EBPβ

C/EBPα ➔ PPARγ ➔ Adipocyte markers

β

α

γ

Slower induction in NIH 3T3 cells
4.14 The significance of C/EBPβ-HDAC1 in tissues other than WAT

The fact that C/EBPβ is expressed in most tissues suggests that this factor has an important physiological function in individuals. C/EBPβ is shown to be involved in the development and function of an increasing number of organs like the liver, intestine, lung, adipose tissue, kidney, spleen, testis, ovaries, mammary gland, bones, and brain (137, 192, 195, 201, 251, 317-319). Other than its role in regulating energy metabolism (146-148, 320), C/EBPβ plays a central role in the acute phase response and immunity (193, 252-253), as well as tumour cell proliferation (254-255) and progression of diverse cancers (255-260). Despite the relatively high number of studies investigating the functions of C/EBPβ in diverse tissues, the detailed mechanism characterizing the interplay between its three isoforms on gene regulation is still unclear.

Since C/EBPβ is involved in various processes (cell proliferation/differentiation, among others), it is evident that this factor’s malfunction might promote disease. What is important to consider when studying C/EBPβ activity is the fact that a differential alteration of its activity either via any change of its isoform’s ratio or via mutation of any subdomains within its central region (which is located downstream of the AD1-3 and upstream of the bZIP) could give rise to diverse phenotypes only within one cellular context. When mutations that alter C/EBPβ activity occur in a complex organism, the multitude of defects that could arise within each organ could be disastrous. Luckily, the presence of various C/EBP members with some redundant functions could partially rescue C/EBPβ defects, as previously shown in mice (146-147, 268, 320).

The broad role of C/EBPβ is further reflected by its inhibition of insulin expression in pancreatic beta-cell via its association with E47, where its expression is associated with a
hyperglycemic state and unbalanced insulin secretion (321-322). Knowing that C/EBPβ activity is inhibited by the co-repressor complex mSin3A/HDAC1 (65-66) and since C/EBPβΔ153-156 interaction with the repressor complex is compromised (chapter 3.1), studies using the hyperactive C/EBPβΔ153-156 may help us understand if the effect of HDAC1 is what causes inhibition of insulin expression and secretion. If it is the case, targeting HDAC1 activity using deacetylase inhibitors (i.e. TSA or VPA) in diabetic mice model would be a good future study on type II diabetes. Since TSA and VPA are not specific for HDAC1, they could give us valuable information as to what extent HDAC1 could affect insulin secretion.

Another implication of C/EBPβ is evidenced by its anti-tumorigenic effect through restoration of TGFβ cytostatic properties in some breast cancers (255). The importance of C/EBPβ activity is shown by a high LIP:LAP ratio (hence low transcriptional activity) that favours cell proliferation and breast cancer evolution and metastasis (255). Therefore using C/EBPβΔ153-156 in some cancer studies would be an easy way to assess HDAC1 involvement in the context of C/EBPβ without the use of deacetylase inhibitors. Moreover, the identification of LIP as an HDAC1-associating factor could also explain why an increased LIP:LAP ratio favours cellular proliferation since HDAC1 has been extensively implicated in promoting such process via regulation of the cell cycle checkpoints (323-326).

Repression of the tumour suppressor p53 by HDAC1 also helps to explain its pro-proliferative properties (327). Since LIP and HDAC1 have been independently implicated in promoting cellular proliferation (285, 328), this thesis provides a new molecular clue linking LIP and HDAC1 functions in such process. Interestingly, the fact that upregulation of LIP in some tumour cells correlated with p53 suppression (329) and that C/EBPβ has been shown to bind to the p53 promoter (330) suggest that the cooperative function of LIP and HDAC1
might be one of the mechanism responsible for downregulation of p53 expression in
tumourigenic cells. Furthermore, given that C/EBPβ has been demonstrated to directly
associate with p53 through its C-terminus domain (also present in LIP) causing
downregulation of p53 activity (331) adds another rationalization by which the combined
effect of LIP-HDAC1 association and p53 anti-proliferative properties could generally
modulate cellular proliferation in cells in which they are all expressed.

Although the role of HDAC1 in promoting MCE has not been investigated in
preadipocyte differentiation, the preliminary results presented in the first part of this thesis
imply that its association with LAP/LIP could be one of the means by which C/EBPβ
promotes this important process during the differentiation of murine adipogenesis. Hence,
further analysis of HDAC1 requirement for MCE through LAP and LIP could provide
valuable mechanistic information explaining how cellular proliferation is driven by C/EBPβ.
The results presented herein were all performed in cultured cell lines. Although they can give
great indications as to the role of proteins in defined conditions, it is hard to predict how a
complex organism would react to mutations that alter the protein function in vivo. Thus,
generating knock-in mice with the mutants constructed in the present study could be of great
interest to the general readers since C/EBPβ’s function is ubiquitous. If one could confirm
the phenotypes observed from the analysis obtained from our in vitro studies (that
C/EBPβΔ153-156 could increase the size of adipose tissue in mice, while C/EBPβΔ141-149 could
not), it would help us predict if some humans bearing mutation in region equivalent to 153-
156 or 141-149 of the C/EBPβ gene are more or less prone for central obesity, respectively,
than individuals with the WT gene. Further, if HDAC1 proliferative activity truly occurs
through C/EBPβ, then mice expressing C/EBPβΔ153-156 might show less tumour formation since the cooperative role of C/EBPβΔ153-156 and HDAC1 would be partially disrupted.

4.15 New venues to explore

SUMOylation is an important post-translational modification involved in a broad cellular processes and parallel ubiquitylation but does not directly and necessarily target proteins for degradation. This process involves SUMO proteins (small ubiquitin-like modifier) and there are currently four paralogues identified in mammals (SUMO 1-4) (recently reviewed in 332). These SUMO proteins are conjugated to lysine residues of their target proteins by the Ubc9 (ubiquitin-conjugating 9) enzyme.

Currently, very little is known about the role of SUMO proteins in adipocytes. For instance, desumoylation of C/EBPβ-SUMO-1 at lysine 133 has been shown to be involved in its stability by decreasing its proteasomal degradation, increasing its activity, its binding to C/EBPα and PPARγ promoters and hence increasing 3T3 L1 differentiation (333). Moreover, PPARγ sumoylation at lysine 107 decreases NIH 3T3 differentiation when compared to mutant PPARγK107R, thus suggesting that PPARγ sumoylation inhibits its transcriptional activity (334-335). Ubc9 has been shown to be an important regulator of GLUT4 turnover and thus increases insulin-sensitivity in 3T3 L1 cells (336-337).

Ubc9’ target has not been identified in 3T3 L1 cells but we could infer that Ubc9 could sumoylate a transcription factor upstream of GLUT4 that will allow its de-repression. mSin3A/HDAC1 could be proposed as a target since HDAC1 sumoylation has been shown to decrease its deacetylase activity and repression of a GAL4-based Luciferase assay without affecting its interaction with mSin3A (338). Interestingly, a recent study has shown that
sumoylation is associated with gene repression via modulation of transcription factor-associated proteins (recruitment of HDACs and deacetylation of histones) (339). Taken together, these studies clearly suggest an involvement of SUMO proteins in regulating adipogenesis. Although more investigation is required to define how SUMO-mediated regulation is involved in the earlier transcriptional cascade.

To further clarify the role of sumoylation during murine adipogenesis, I sought to evaluate whether changes in the sumoylation status of proteins associated with C/EBPβ during the initial phase of adipogenesis took place in a glucocorticoid-dependent manner. To assess the sumoylated profile of proteins during the initial phase of preadipocyte differentiation, a Western blot analysis was performed using 3T3 L1 extracts at specific time-points following induction of differentiation. In this case, no discernable differences were observed between the MI and MID conditions when antibodies against SUMO 1,2,3 were used (data not shown). Such observation, however, does not exclude small differences that could occur within specific protein complexes during the differentiation process. In fact, when endogenous C/EBPβ was immunoprecipitated, a SUMO-reactive 100KDa band was detected in conditions where glucocorticoids were omitted from the differentiation cocktail, 16h following induction of differentiation (appendix 8B). Interestingly, the addition of the hormone prevented its association. Since the band intensity was also decreased at the 24h time-point in the absence of dex, it could be that glucocorticoids accelerate this (these) protein(s) dissociation from C/EBPβ, and that the presence of the hormone it not solely needed for such dissociation.

Given that C/EBPβ starts to bind to DNA approximately 16h following induction of differentiation (153, 156), it is plausible to suggest that its interaction with a sumoylated
protein at the promoter would keep it inactive in the absence of dex and that glucocorticoids would in fact displace such factor, as shown with mSin3A/HDAC1 (66, 106). To identify such an unknown factor, a TAP-TAG immunoprecipitation assay could be performed in 3T3 L1 cells 16h following differentiation, after which immunoprecipitates could be analysed by LC-MS/MS.

4.16 Concluding remarks

In the present study, I showed that GCN5 and mSin3A require the same determinants for binding to C/EBPβ and that only mSin3A requires the bZIP domain to mediate interaction. Further, I confirmed that not only the mSin3A/HDAC1 co-repressor complex is partially responsible for C/EBPβ LAP*/LAP inhibition, but also that the shorter LIP isoform mediates an active repression mechanism which involves recruitment of the mSin3A/HDAC1 to LAP*/LAP, and thus to their target promoters. This finding elucidates a new active repression mechanism by which LIP acts to suppress transcription. Moreover, the preliminary results investigating C/EBPβ redox-state strongly suggest for a differential role for C11 located in LAP* in modulating LAP*/LAP and LIP activity in heterodimers formation. Surprisingly, C11-mediated repression of LAP* seems to suppress the LAP* homodimer response to glucocorticoids whereas co-expression of LIP with LAP* to form LAP*/LIP heterodimer restores the glucocorticoid effect.

Further, I showed that RD1 in LAP*/LAP is composed of at least two sub-regulatory domains that define their transcriptional potentials. By contrast to the previous hypotheses stating that the full region of RD1 negatively regulates C/EBPβ activity, I showed that its N-terminal region composed of amino acids 141-149 positively mediates LAP*/LAP activation
potential on the C/EBPα, but not the PPARγ promoter by different means, which include a
minor involvement of C143. The results also suggest a role for amino acids 141-149 in
relieving mSin3A/HDAC1-mediated inhibition of C/EBPβ that could provide the suitable
environment for modulation of mSin3A/HDAC1-C/EBPβ interaction.

The results presented in this thesis present only a beginning of the diverse means by
which C/EBPβ transcriptional activity is regulated during cellular development. The
identification of specific regulatory domains within C/EBPβ, each with independent
properties, contributes to a better understanding of the limitless possibilities by which
C/EBPβ transcriptional activity is modulated within different cellular context. The prominent
role of C/EBPβ in cellular growth and differentiation makes it a pivotal factor that require
further investigations to characterize details in its complex functioning. Although increasing
reports focus on elucidating its mode of action, having a crystal structure of this factor will
help us predict much more effectively how interaction with co-factors might impact
regulation of its target promoters.
REFERENCES

175. Wu, Z., Bucher NLR and Farmer SR. (1996) Induction of peroxisome proliferator-activated receptor g during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPb, C/EBPd and glucocorticoids, *Molecular and Cellular Biology* 16, 4128-4136.

receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms, *Proc Natl Acad Sci U S A* 92, 7921-7925.

173

244. Wang, X., Pan, L., Feng, Y., Wang, Y., Han, Q., Han, L., Han, S., Guo, J., Huang, B., and Lu, J. (2008) P300 plays a role in p16(INK4a) expression and cell cycle arrest, Oncogene 27, 1894-1904.

APPENDICES

Appendix 1 Primers used for cloning

Table 1: GST fusion constructs for bacterial protein expression used in the in vitro binding assays.

<table>
<thead>
<tr>
<th>Plasmid name</th>
<th>Primers used for cloning</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEX2T-C/EBPβ</td>
<td>Construct generated by Louise Pope (full length LAP*)</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>K98-102R</sub></td>
<td>Construct generated by Dr Nadine Wiper-Bergeron (106)</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>108C</sub></td>
<td>Forward: ACTCGGATCCCTACGTCGACCTCGGCAGGC
Reverse: ACCGAATTCCAGTCGGCCGGCCTTCTTG</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>N107</sub></td>
<td>Forward: ACTCGGATCCATGCACCGCCTGCTGGCCTG
Reverse: ACCGAATTCCAGTCGGCCGGCCTTCTTG</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>N140</sub></td>
<td>Forward: ACTCGGATCCATGCACCGCCTGCTGGCCTG
Reverse: ACCGAATTCCAGTCGGCCGGCCTTCTTG</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>N168</sub></td>
<td>Forward: ACTCGGATCCATGCACCGCCTGCTGGCCTG
Reverse: ACCGAATTCCAGTCGGCCGGCCTTCTTG</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>N217</sub></td>
<td>Forward: ACTCGGATCCATGCACCGCCTGCTGGCCTG
Reverse: ACCGAATTCCAGTCGGCCGGCCTTCTTG</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>1513156</sub></td>
<td>Upper: GGGCGCCGTCGCGCGCGCGGCGCTT
Lower: CCGCCGTCCGCGCCGGCCTT</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>1413149</sub></td>
<td>Upper: GGGCGCCGTCGCGCGCGCGGCGCTT
Lower: CCGCCGTCCGCGCCGGCCTT</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>1413168</sub></td>
<td>Upper: GGGCGCCGTCGCGCGCGCGGCGCTT
Lower: CCGCCGTCCGCGCCGGCCTT</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>1293168</sub></td>
<td>Upper: GGGCGCCGTCGCGCGCGCGGCGCTT
Lower: CCGCCGTCCGCGCCGGCCTT</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>1413184</sub></td>
<td>Upper: GGGCGCCGTCGCGCGCGCGGCGCTT
Lower: CCGCCGTCCGCGCCGGCCTT</td>
</tr>
<tr>
<td>pGEX2T-C/EBPβ<sub>1293184</sub></td>
<td>Upper: GGGCGCCGTCGCGCGCGCGGCGCTT
Lower: CCGCCGTCCGCGCCGGCCTT</td>
</tr>
</tbody>
</table>
Table 2: Mammalian expression constructs for transient transfection experiments in NIH 3T3, 3T3 L1 and Cos7 cells. All cDNA were cloned between the EcoRI and BamHI sites of the pcDNA3.1(-) vector.

<table>
<thead>
<tr>
<th>Plasmid name</th>
<th>Primers used for cloning</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcDNA3.1(-)</td>
<td>Plasmid obtained from Invitrogen and used for subsequent cloning</td>
</tr>
<tr>
<td>pcDNA-C/EBPβ</td>
<td>Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC</td>
</tr>
<tr>
<td>pcDNA-C/EBPβΔ153-156</td>
<td>Upper: CATGCCGCGCCGGTGTCCCGCCGCTTGCAGTC Lower: CCGTGTCGCCCTGCGCGCTACC Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβΔ151-156</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC (pGEX2T-C/EBPβΔ151-156 used as template) Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβΔ141-149</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC (pGEX2T-C/EBPβΔ141-149 used as template) Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβΔ141-168</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC (pGEX2T-C/EBPβΔ141-168 used as template) Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβLIP</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβLIP 6C</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβM152A</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC Upper: GAA ACC GGC CGC Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC Lower: GAC GAC GCG CCC GCC</td>
</tr>
<tr>
<td>pcDNA-C/EBPβM22,152A</td>
<td>Constructed by Adrianna Douvris, a former honour student Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβ22C,M152A</td>
<td>Constructed by Adrianna Douvris, a former honour student Forward: ACTCGAATTCATGCACCGCCTGCTGGCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβC11A,M22,152A</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC CGACGACCGCGCTCCCG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβC143A</td>
<td>Upper: CGCGCGGCTTGGCGGTCCCGCGGGGTCCG Lower: CGAACCCCGGGGAGCGCAAGCGCGCG-3 Forward: ACTCGAATTCATGTACCATCATATGATGGTCCTG</td>
</tr>
<tr>
<td>pcDNA-HA-C/EBPβ</td>
<td>ACTATGCTATGCAACCCTGCTGGCCCTG Forward: ACTCGAATTCATGTACCATCATATGATGGTCCTG</td>
</tr>
<tr>
<td>pcDNA-HA-C/EBPβ22C</td>
<td>ACTATGCTATGGAAGTGGCCAAACTTCTAC Forward: ACTCGAATTCATGTACCATCATATGATGGTCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβ22C</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC Forward: ACTCGAATTCATGTACCATCATATGATGGTCCTG</td>
</tr>
<tr>
<td>pcDNA-C/EBPβ22C</td>
<td>Reverse: ACGCGGATCCCTAGCAGTGGCCCGCGAGGC Forward: ACTCGAATTCATGTACCATCATATGATGGTCCTG</td>
</tr>
</tbody>
</table>

Table 3: Mammalian expression constructs for transient transfection experiments in NIH 3T3 and Cos7 cells.

<table>
<thead>
<tr>
<th>Plasmid name</th>
<th>Primers used for cloning</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMSV-C/EBPβ</td>
<td>Plasmid obtained from Dr McKnight for expression of full length murine C/EBPβ and used as template for further deletion mutants</td>
</tr>
<tr>
<td>pMSV-C/EBPβΔ151-156</td>
<td>Upper: GGGCGCGTCGTCCCGCGCGCTTG Lower: CCGTTCGCCCTGCGCGCCTACC</td>
</tr>
<tr>
<td>pMSV-C/EBPβΔ141-149</td>
<td>Upper: GGGTTCGAAGCCCGGGCTCCGC Lower: CCCGCCATGGCGGCCGGTTTC</td>
</tr>
<tr>
<td>pMSV-C/EBPβΔ141-152</td>
<td>Upper: GGGTTCGAAGCCCGGGCTCCGC Lower: CCGTTCGCCCTGCGCGCCTACC</td>
</tr>
<tr>
<td>pMSV-C/EBPβΔ141-152</td>
<td>Upper: GGGTTCGAAGCCCGGGCTCCGC Lower: ATGCGGGCGTTGTTCCCGTTCG</td>
</tr>
</tbody>
</table>
Appendix 2 Retroviral vectors constructed and plasmids obtained from other laboratories

Table 4: Retroviral vectors constructed for stable expression of C/EBPβ proteins in murine NIH 3T3 and 3T3 L1 cells

<table>
<thead>
<tr>
<th>Plasmid name</th>
<th>Cloning method</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLXSN from Clonetech</td>
<td>For mammalian cell infection experiments Cloned between the EcoRI and BamHI restriction site. Insert was cut from the pcDNA-C/EBPβ construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβ</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβ construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβΔ153-156</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβΔ153-156 construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβΔ151-156</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβΔ151-156 construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβΔ141-149</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβΔ141-149 construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβΔ141-168</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβΔ141-168 construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβLIP</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβLIP construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβLIP6C</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβLIP6C construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβM152A</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβM152A construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβM22,152A</td>
<td>Constructed by Adrianna Douvris using the same procedure.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβC11A,M22,152A</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβC11A,M22,152A construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβ22C,M152A</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβ22C,M152A construct and ligated into pLXSN.</td>
</tr>
<tr>
<td>pLXSN -C/EBPβC143A</td>
<td>Insert was cut using EcoRI and BamHI enzymes from the pcDNA- C/EBPβC143A construct and ligated into pLXSN.</td>
</tr>
</tbody>
</table>
Table 5: Additional constructs used for some of the experiments that were already in Dr Robert Haché’s laboratory

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Type</th>
<th>Description</th>
<th>Original source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTL-GR</td>
<td>Mammalian expression vector</td>
<td>For expression of full length rat GR</td>
<td>Joanne Savory</td>
</tr>
<tr>
<td>pMSV-C/EBPα</td>
<td>Mammalian expression vector</td>
<td>For expression of full length murine C/EBPα</td>
<td>Dr. S.K. McKnight</td>
</tr>
<tr>
<td>pMSV-C/EBPβ</td>
<td>Mammalian expression vector</td>
<td>For expression of full length murine C/EBPβ</td>
<td>Dr. S.K. McKnight</td>
</tr>
<tr>
<td>pMSV-C/EBPδ</td>
<td>Mammalian expression vector</td>
<td>For expression of full length murine C/EBPδ</td>
<td>Dr. S.K. McKnight</td>
</tr>
<tr>
<td>pRL-CMV</td>
<td>Reporter vector</td>
<td>Plasmid containing the CMV promoter upstream of the Renilla Luciferase cDNA</td>
<td>Promega</td>
</tr>
<tr>
<td>pCX14/12</td>
<td>Reporter vector</td>
<td>Plasmid containing the murine C/EBPα promoter (-350 to +7) upstream of the Luciferase cDNA</td>
<td>Dr. P. Antonsen</td>
</tr>
<tr>
<td>pC478</td>
<td>Reporter vector</td>
<td>Plasmid containing the murine PPARγ promoter (-609 to +52) upstream of the Luciferase cDNA</td>
<td>Dr. J. Gimble</td>
</tr>
<tr>
<td>pcDNA3.1(-)-mSin3A</td>
<td>Mammalian expression vector and in vitro translation</td>
<td>For expression of human mSin3A</td>
<td>Dr X.J. Yang</td>
</tr>
<tr>
<td>pcDNA3.1(-)-HDAC1</td>
<td>Mammalian expression vector and in vitro translation</td>
<td>For expression of human HDAC1 with a C-terminal HA and FLAG tag</td>
<td>Dr X.J. Yang</td>
</tr>
<tr>
<td>pFLAG-hGCN5</td>
<td>Mammalian expression vector</td>
<td>For expression of human FLAG-GCN5</td>
<td>Dr S. Kochbin</td>
</tr>
<tr>
<td>pHIS-hGCN5</td>
<td>Bacterial expression</td>
<td>For expression of human GCN5 in bacteria and purification using the 6XHis tag</td>
<td>Dr S. Kochbin</td>
</tr>
<tr>
<td>pmmGCN5</td>
<td>Mammalian expression vector and in vitro translation</td>
<td>For expression of murine GCN5</td>
<td>Dr S. Roth</td>
</tr>
</tbody>
</table>
Appendix 3 Antibodies used

Table 6: Antibodies used for western blot analysis, immunofluorescence and/or immunoprecipitation

<table>
<thead>
<tr>
<th>1° antibody</th>
<th>Supplier (Dilution for western blotting)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/EBPα (14-AA)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>C/EBPβ (C-19)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot and immunoprecipitation</td>
</tr>
<tr>
<td>PPARγ (H-100)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>Adipsin (P1-6)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>Actin (H-300)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>HDAC1 (C-19)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot and immunoprecipitation</td>
</tr>
<tr>
<td>GCN5 (H-75)</td>
<td>Santa Cruz Biotechnology</td>
<td>Immunoprecipitation</td>
</tr>
<tr>
<td>Gal4 (DBD)</td>
<td>Santa Cruz Biotechnology</td>
<td>Immunoprecipitation</td>
</tr>
<tr>
<td>Cyclin A (C-19)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>Cyclin B1 (H-433)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>SUMO1 (FL-101)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>SUMO2/3 (FL-103)</td>
<td>Santa Cruz Biotechnology (1:400)</td>
<td>Western blot</td>
</tr>
<tr>
<td>FLAG M2 monoclonal</td>
<td>Sigma Aldrich (1:1000)</td>
<td>Western blot</td>
</tr>
<tr>
<td>P27/Kip1</td>
<td>BD (1:500)</td>
<td>Western blot</td>
</tr>
</tbody>
</table>
Appendix 4 Primers for qPCR and ChIP

Table 7: Primers used for real time PCR reactions and ChIP assays (murine sequences)

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer</th>
<th>Application</th>
</tr>
</thead>
</table>
| PPARγ2 | Forward: GAA ACT CTG GGA GAT TCT CC
 Reverse: GCT GGA GAA ATC AAC TGT GG | Real time RT-PCR |
| C/EBPα | Forward: TGG ACA AGA ACA GCA ACG AG
 Reverse: CCA TGG CCT TGA CCA AGG AG | Real time RT-PCR |
| β actin | Forward: GAC TTC GAG CAA GAG ATG GC
 Reverse: CCA GAC AGC ACT GTG TTG GC | Real time RT-PCR |
| C/EBPα Promoter | Forward: TAGTGTTGGCTGGAAGTGCGGTGACTTACGGGCA
 Reverse: TTCTCGTCACTTTCCAAGCGGTGAGTG | Chromatin |

Chromatin immunoprecipitation
Appendix 5 Schema of all deletion mutants used

LIP

LAP

LAP*

Activation Domains
(22-31, 54-73, 84-93)
N LS
Acetylation sites
(98-KPSKK-102)
Leucine zipper
Dimerization
DNA binding

108C

N107

N140

N168

N184

N217

Δ141-168

Δ141-156

Δ141-149

Δ151-156

Δ153-156

LIP

LIP_{6C}
Appendix 6 Summary of the properties of C/EBPβ deletion mutants

Table 8: Summary of the properties of C/EBPβ deletion mutants from various assays (approximate values in % compared to WT)

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>Δ151-156</th>
<th>Δ141-149</th>
<th>ΔM152A</th>
<th>Δ153-156</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIP expression</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>In vitro Acetylation with</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>PCAF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction with HDAC1</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Interaction with GCN5</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Recruitment of HDAC1 to</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>the C/EBPα promoter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/EBPα -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>promoter transcription assay</td>
<td>- Dex</td>
<td>20</td>
<td>60</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>+ Dex</td>
<td>100</td>
<td>150</td>
<td>10</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>C/EBPα mRNA</td>
<td>Day 1</td>
<td>25</td>
<td>80</td>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>MI</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>PPAR mRNA</td>
<td>Day 1</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>MI</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Differentiation</td>
<td>MI</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>(Adipsin level)</td>
<td>MID</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>
Appendix 7 Protein sequence of murine C/EBPβ highlighting its different domains

The different hydrophobic domains represent the residues in bold, the activation domains are underlined, the basic and the leucine residues in the bZIP domain (219-296) are underlined and in bold, respectively.

1 MHRLLAWDAACLPPPPAAFRP
22 MEVANFYYEPDCLAYGAKAARAAPRAPA
50 AEPAIGEHERAIDFSPYLEPLAPAAADFAAP
80 APAHHDFLSDLFADDYGAKPSKKPADYGY
109 VSLGRAGAKAAPPACFPPPPPAALKAEPGFE
140 PADCKRADDAPAMAAGFPFALRAYLGYQA
169 TPSGSSGSLSTSSSSPPTSPAD
194 AKAAAPAACFAGPPAAPAKAKAKTV
219 DKLSDXEYKMRRENRNIAVRKSRDKAKMRNLETQ
252 HKVLELTAENERLQKKEQLSRELSTLRNLFKQLPEPLLASAGHC
Appendix 7 Additional experimental figures

(A) Ectopic expression of C/EBPβ in NIH 3T3 cells induces C/EBPa protein expression only when its expression is maintained for a longer period.

NIH 3T3 cells stably expressing C/EBPβ were induced to differentiate with the inducer cocktails and harvested 4 days later to assess C/EBPa protein expression. The first round of differentiation refers to induction of differentiation approximately two weeks after infection of the cells with the retroviruses to stably express the transcription factor, whereas the second round is when induction of differentiation was performed four weeks following infection.
(B) Sumoylation profile of C/EBPβ-associated proteins during the early phase of 3T3 L1 differentiation.

3T3 L1 cells were differentiated with the inducer cocktail prior to immunoprecipitation of endogenous C/EBPβ. Each experiment was performed twice at the indicated time-point, where 0h represents the time at which the cells were treated with either MI (-) or MID (+), at 2 days post-confluency. Western blot of the Sumo 2/3 (A) and Sumo 1 (B) - associated proteins are shown.
Appendix 9 Contribution of collaborators

An honours undergraduate student, Adrianna Douvris, generated the pcDNA-C/EBPβM22,152A and the pcDNA-C/EBPβ22C,152A constructs and performed some of the replicate experiments in figure 21B.