ENHANCED QOS SUPPORT IN CERTIFIED WIRELESS USB

By
Issam Al-Dalati

School of Information Technology and Engineering

Submitted in partial fulfillment of the requirements for the degree of Master of Applied Science

Faculty of Graduate and Postdoctoral Studies
The University of Ottawa
Ottawa, Ontario
May 2011

© Issam Al-Dalati, Ottawa, Canada, 2011

1The M.A.Sc. is part of The Ottawa-Carleton Institute for Electrical and Computer Engineering
Abstract

The growth of high speed internet wired access in buildings, home and offices are driving the need for a technology like UWB to provision bandwidth sharing over wireless devices. Certified Wireless Universal Serial Bus (WUSB) is one of different varieties of Wimedia standards for distributed Medium Access Control (MAC) protocol for UWB communications in the Wireless Personal Area Network (WPAN). To the best of our knowledge, no technical contributions exist in the open literature at present simulating WUSB and its performance.

Our study investigates the performance of the WUSB standards and compares it to the Wimedia Standard. The study showed that WUSB can achieve better throughput when bursting is enabled at the maximum burst size and it provides more accurate timing control of device activity than using the standard facilities of the WiMedia MAC. Our study also addresses protocol extensions and improvement to the original WUSB standard to support better Quality of Service (QoS). First improvement enables a different reservation mechanism along with contention based access to support higher priority security and medical system monitoring applications. Second improvement enables the host device to use an adaptive packet loss technique to change the packet size dynamically during the data transmission to achieve packet loss less than 10%. Third improvement enables redundancy in the cluster by adding a backup host to prevent mobility failures and changes. This backup host is chosen by a predefined cost weighting function.
Acknowledgements

I would like to express my deepest gratitude to both my thesis supervisor Professor Dr. Dimitrios Makrakis and my thesis co-supervisor Professor Dr. Ashraf Matrawy for their continuous support, supervision, patience and encouragement during this project. I would not have completed this thesis project successfully without their assistance.

I would like to thank my wife for her patience and support. I would also thank my parents for their prayers and their help to babysit my son Tarek in the last few months.
Dedication

Dedicated to my father and mother.
Contents

Abstract ii
Acknowledgements iii
Dedication iv
Acronyms 1

1 Introduction 5
1.1 Background Overview 5
1.2 Standardization ... 8
 1.2.1 Bluetooth 3.0 ... 11
 1.2.2 Wimedia Link Layer Protocol (WLP) 11
 1.2.3 Wireless 1394 (Wireless Firewire) 11
 1.2.4 Certified Wireless USB (WUSB) 12
1.3 UWB Applications ... 12
1.4 Motivation and Thesis Objectives 14
1.5 Thesis Contributions ... 14
1.6 Thesis Organizations ... 15

2 Certified WUSB 16
2.1 WUSB Cluster Architecture 16
 2.1.1 WUSB Host ... 17
 2.1.2 WUSB Device .. 17
2.1.3 WUSB DRD ... 18
2.2 Physical Layer .. 18
2.3 MAC Layer Channel ... 22
 2.3.1 Wimedia MAC Layer Channel 23
 2.3.1.1 DRP .. 24
 2.3.1.2 PCA .. 29
 2.3.2 WUSB MAC Layer Channel 30
2.4 WUSB MAC Layer Main Features 32
 2.4.1 Data Bursting .. 32
 2.4.2 Synchronization ... 34
 2.4.3 Resiliency Against Hidden Terminal Problem 34
2.5 WUSB Connection Setup 35
2.6 WUSB Data Transactions 36
 2.6.1 Bulk Data Transfers 38
 2.6.2 Isochronous Data Transfers 38
 2.6.3 Interrupt Data Transfers 38
 2.6.4 Control Data Transfers 39
 2.6.5 Asynchronous Device Notification Transfers 39
2.7 WUSB Bandwidth Reservation Policy 40
2.8 Packet Formats .. 41
 2.8.1 MAC General Header 41
 2.8.2 Beacon Packet ... 43
 2.8.3 BPOIE Format ... 44
 2.8.4 DRP IE Format ... 46
 2.8.5 WUSB Data Packet Header 47
 2.8.6 WUSB Data Packet Header for Isochronous Packets ... 49
 2.8.7 MMC Packet ... 50
2.9 Power Management ... 52
2.10 Security .. 53
 2.10.1 Association Method 54
 2.10.2 Authentication Method 55
2.10.3 Encryption Method ... 55

3 Related Work .. 56
3.1 Wimedia Related Work .. 56
3.1.1 DRP Reservation Based Only 56
3.1.2 PCA Contention Based Only 59
3.1.3 PCA and DRP Combination Study 60
3.1.4 Certified WUSB Related Work 61

4 Performance Analysis ... 63
4.1 Simulation Software ... 63
4.2 Simulation Process ... 66
4.3 Simulator Settings ... 67
4.4 Simulation Assumptions .. 69
4.5 Optimal Performance Analysis 69
4.5.1 Wimedia Theoretical Analysis 70
4.5.2 WUSB Theoretical Analysis 75
4.5.3 Simulation Analysis under Perfect Conditions 81
4.5.4 Simulation Analysis under Connection Failures 83

5 Protocol Improvements to Certified WUSB 84
5.1 Enabling Priority Option for Delay Sensitive Applications 84
5.1.1 Background and Motivation 84
5.1.2 Proposed Model ... 86
5.1.3 Simulation Results ... 87
5.2 Adaptive Packet Size Host Extension to Reduce Packet Loss 90
5.2.1 Background and Motivation 90
5.2.2 Proposed Model .. 92
5.2.3 Simulation Results ... 93
5.3 Dynamic Host Backup Selection (DHBS) Protocol in Certified WUSB 95
5.3.1 Background and Motivation 95
5.3.2 Proposed Model .. 96
5.3.3 Simulation Results

6 Conclusion and Recommendation for Future Work

Bibliography
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physical layer Modulation and Data rate Parameters</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Parameters of WUSB and Wimedia Wireless OFDM Symbol</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Zone priorities of Rule 3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Priority Parameters in Wimedia MAC</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>WUSB Bandwidth Reservation Policy Parameters</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>Packet Type Field Encoding</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>ACK Policy Field Encoding</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>WUSB PID Types</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Common Standard Parameters for WUSB and Wimedia MAC</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>NS-2 Simulation Parameters</td>
<td>88</td>
</tr>
<tr>
<td>11</td>
<td>Parameters in Backup Weighting Function of the DHBS Protocol</td>
<td>97</td>
</tr>
</tbody>
</table>
List of Figures

1 Relative Power of UWB Signal .. 7
2 FCC Spectral Mask for UWB Indoor Communication Systems [1] 8
3 UWB Five Frequency Bands of Multiband OFDM 9
4 Wimedia Physical, MAC and PAL Layers 10
5 Examples of Smart Home Wireless Network Applications based on UWB 13
6 WUSB cluster topologies and node types. 16
7 General ECMA-368 Packet Format. ... 21
8 Super Frame General Format. .. 24
9 General Model of Wimedia MAC Layer Channel. 25
10 MAS Allocation Rules. ... 28
11 General Model of WUSB MAC Layer Channel. 31
12 Data Bursting as Specified in WUSB Standard [9]. 33
13 UWSB Connection Setup State Diagram. 35
14 UWSB Data Transaction. ... 37
15 MAC Header General Format. .. 43
16 Beacon Packet General Format. .. 44
17 BPOIE Payload Format. .. 45
18 DRP IE Payload Format. .. 47
19 WUSB Data Packet Header Format. ... 48
20 WUSB Isochronous Data Packet Header Format. 49
21 MMC Packet Format. ... 51
22 Security fields addition in WUSB MAC Packet. 54
23 Connectivity Within a local network from [27] 64
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Mobility Scenario used to verify DHBS protocol</td>
<td>98</td>
</tr>
<tr>
<td>44</td>
<td>Packet Delivery Ratio Results with Mobility Scenario for DHBS Verification</td>
<td>99</td>
</tr>
<tr>
<td>45</td>
<td>Average Delay Packet Results with Mobility Scenario for DHBS Verification</td>
<td>99</td>
</tr>
</tbody>
</table>
Acronyms

AIFS Arbitration Inter-Frame Space
ARP Address Resolution Protocol
BPOIE Beacon Period Occupancy Information Element
CA Collision Avoidance
CBC Cipher Block Chaining Message Authentication Code
CSMA Carrier Sense Multiple Access
CTS Clear to Send
DCM Dual Carrier Modulation
EDCA Enhanced Distributed Channel Access
DHBS Dynamic Host Backup Selection
DLNA Digital Living Network Alliance
DNTS Device Notification Time Slot
DR Device Receive
DRD Dual Role Device
DRP Distributed Reservation Protocol
DS-CDMA Direct Sequence Code Division Multiple Access
DSP Digital Signal Processor
DT Device Transmit
DWA Device Wire Adapter
ECMA European Computer Manufacturers Association
ETSI European Telecommunications Standards Institute
FCC Federal Communications Commission
FEC Forward Error Correction
GPR Ground Penetrating Radar
GPS Global Positioning System
HDTV High Definition TV
HWA Host Wire Adapter
IE Information Element
IEEE Institute of Electrical and Electronics Engineers
ISIMA Improved Service Interval-based MAS Allocation
ISO International Organization for Standardization
LLC Logical Link Control
MAC Media Access Control
MAP Markovian Arrival Process
MAS Medium Access Slot
MBOA Multiband OFDM Alliance
MGM Matrix Geometric Method
MIC Message Integrity Code
MIFS Minimum Inter-Frame Spacing
MMC Micro-Scheduled Management Commands
MMPP Markov Modulated Poisson Process
NAK Negative Acknowledgement
NAV Network Allocation Vector
NFC Near Field Communication
NLMS Normalized Least Mean Square
NOAH No Ad Hoc Routing
NS-2 Network Simulator 2
OFDM Orthogonal Frequency Division Multiplexing
OSI Open System Interconnection
PAL Protocol Adaptation Layer
PCA Priority Contention Access
PER Packet Error Rate
PSD Power Spectral Density
QBD Quasi Birth and Death
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
RTS Request to Send
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDK</td>
<td>Software Development Kit</td>
</tr>
<tr>
<td>SFN</td>
<td>Secure Frame Number</td>
</tr>
<tr>
<td>SIFS</td>
<td>Short Inter-Frame Spacing</td>
</tr>
<tr>
<td>SIG</td>
<td>Special Interest Group</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>TG</td>
<td>Transaction Group</td>
</tr>
<tr>
<td>TKID</td>
<td>Temporal Key Identifier</td>
</tr>
<tr>
<td>TOA</td>
<td>Time of Arrival</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra Wide Band</td>
</tr>
<tr>
<td>WCTA</td>
<td>WUSB Channel Time Allocation</td>
</tr>
<tr>
<td>WLPI</td>
<td>Wimedia Link Protocol</td>
</tr>
<tr>
<td>WPAN</td>
<td>Wireless Personal Area Network</td>
</tr>
<tr>
<td>WSS</td>
<td>Wimedia Service Set</td>
</tr>
<tr>
<td>WUSB</td>
<td>Wireless Universal Serial Bus</td>
</tr>
<tr>
<td>WXP</td>
<td>Wimedia Extended Platform</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Background Overview

UWB is a Radio Frequency (RF) technology that transmits binary data, using low
energy and very short duration impulses or bursts (in the order of picoseconds) over
a wide spectrum of frequencies. On February 14 2002, Federal Communications
Commission (FCC) published a regulatory report allowing UWB signal transmissions
with radiated Power Spectral Density (PSD) below 42dBm/MHz in the 3.1GHz-10.6
GHz frequency range. The FCC defines a UWB radio signal as having the fractional
bandwidth of at least 0.20 or has a spectral bandwidth of at least 500 MHz [1]. In
other words, UWB signal should be meet the criteria in either equation (1) or (2).

\[
\left(\frac{f_H - f_L}{f_C} \right) > 0.20 \tag{1}
\]

Or

\[
(f_H - f_L) \geq 500 \text{MHz} \tag{2}
\]

Where \(f_H \) and \(f_L \) are the upper and lower frequency of the 10 dB emission point. \(f_C \)
is the centre frequency of the emission and can be calculated in equation (3)

\[
f_C = \frac{f_H + f_L}{2} \tag{3}
\]
The fractional bandwidth of an UWB emission is defined as ratio of the signals bandwidth to the signals center frequency as in (4)

\[
FractionalBandwidth(\%) = \frac{2 \ast (f_H - f_L)}{(f_H + f_L)} \ast 100 \tag{4}
\]

There are several advantages and features UWB technology offers:

According to the Shannon theorem, the channel capacity grows linearly with bandwidth and decreases logarithmically as the signal-to-noise ratio (SNR) decreases. This equation below suggests that the radio capacity can be increased more rapidly by increasing the occupied bandwidth than the (Signal to Noise) SNR ratio.

\[
C = B \ast \log_2(1 + \frac{S}{N}) \tag{5}
\]

C is the maximum channel capacity in (bits/second). B is the channel bandwidth in Hz. S is the signal power and N is the noise power in Watts. Therefore, UWB can achieve the highest data rate while maintaining a very low signal power density [2].

Another main advantage to UWB is it’s excellent immunity to multi path fading. Multipath around obstacles can cause a significant degradation in the propagation of the signals and decrease in the communication performance. This degradation would have a serious impact on tracking application that requires accuracy in resolving targets and positions. UWB have bandwidths exceeding 0.5 GHz which are capable of resolving multipath components with less than nanosecond delays. Those UWB multipath delays can be resolved and added constructively to provide gain over a single direct path in the multipath environment. This gain helps in achieving a better accuracy within a few centimetres [2]. The advantage of immunity to multi path fading also allows UWB to give high accurate distance estimation for location ranging between two nodes and estimating the location of an object. One of the most common ranging techniques is called Time of Arrival (TOA) where distance is calculated by measuring the delay between two nodes with a two way packet exchange method. This method doesn’t require synchronization between the sender and the receiver node [3].
UWB signal also incurs low loss when penetrating through material due to the various energy levels at different frequencies. The reason is that UWB pulse has a wide frequency spectrum and each pulse has a duration that is very small and short which leads to low energy consumption [4].

UWB is considered to have low lower spectral density. The reason FCC regulations limit UWB devices to low average power in order to minimize interference with narrowband systems. UWB is unique in that its radiated power is inherently ultra low as mandated by the FCC maximum of 560 µW, which is at least an order of magnitude less than the radiated power of narrowband systems see figure 1.

![Figure 1: Relative Power of UWB Signal](image)

For example, in indoor systems the average output power spectral density is limited to -41.3 dBm per MHz as in figure 2, which complies with the long standing Part 15 general emission limits to successfully control radio interference to other narrowband indoor wireless technologies [1].

The UWB technology can be also implemented on small size, low cost and low power devices which involve less complex Digital Signal Processors (DSPs). UWB
wireless signals don’t need transmitting power amplifiers which is a great advantage over narrowband systems that require amplifiers with significant power to support high order modulation waveforms for high data rates. Therefore, UWB can achieve higher data rates with much less complexity and much higher power efficiency than any of the narrower band technologies [2].

Last but not least, UWB signal is appropriate for security applications because it has low energy and it’s spectral density is below the noise floor of common receivers. It also occupies a wide bandwidth which is harder to detect than conventional radio. These main characteristics result in UWB secure transmissions with low probability of detection and low probability of interception by un-authorized users. In Addition, FCC defined AES-128 Symmetric security for payload protection and integrity [2].

1.2 Standardization

During the IEEE 802.15 High Rate Alternative PHY Task Group (TG3a) discussions for WPAN, two major contenders were trying to convince that IEEE work group to
accept one of the techniques suggested for that standard. One technique was impulse based called Direct Sequence Code Division Multiple Access (DS-CDMA) led by Xtreme Spectrum, Motorola and Parthus-Carva. It consists of stream of data divided into pulses where each is allocated to a frequency channel across the spectrum. That group went on to create the UWB Forum. The other technique was multi-carrier based which uses Orthogonal Frequency Division Multiplexing (OFDM) theory to transmit information on each of the spectrum sub-bands. It was led mainly by Intel and Texas Instruments. That IEEE TG3a workgroup decided to disband the group in January 2006 without reaching to an agreement for the standard. In June 2003, Intel created a group called Multiband OFDM alliance (MBOA) to produce a UWB physical specification using the OFDM approach. MBOA is divided into five channels. Each Channel contains three sub bands that are 528 MHz wide. The fifth channel only contains two sub bands where OFDM symbols are interleaved across that band as in figure 3. OFDM is widely used in wireless technologies mainly in IEEE 802.11a/g. It has high spectral efficiency, resilience to Radio Frequency interference, robustness to multi-path, easy collection of multi-path energy using a single RF chain and the ability to efficiently capture multi-path energy. In addition, it uses the standard CMOS technology to take advantage of the principles of Moores Law, speeding development and advancing performance.

Figure 3: UWB Five Frequency Bands of Multiband OFDM
MBOA group was then merged into a Wimedia Alliance which was initially created as a nonprofit organization to promote applications based on MBOA platform [5]. Wimedia then submitted the technical specification to an international standard called the European Computer Manufacturers Association (ECMA) in 2005. ECMA approved two specifications for Wimedia. One is called ECMA-368 based on the PHY layer and MAC sub-layer specification. The other one is called ECMA-369 and was around the interface between the physical and MAC layers [6]. The second specification is not mandatory for the manufacturers to follow. The ECMA-368 standard was also published by the International Organization for Standardization (ISO) and the European Telecommunications Standards Institute (ETSI). The thesis is based on ECMA-368 solely.

Wimedia is not only designed to specify the physical and MAC layers but also to facilitate heterogeneous devices from different manufactures to operate within the same WPAN. Wimedia defines a convergence layer after the MAC layer called Protocol Adaptation Layer (PAL). This layer supports a number of defined protocol adaptation layers; see figure 4. The most common protocol adaptation layers are listed in figure 4 and summarized in the following subsections.

![Figure 4: Wimedia Physical, MAC and PAL Layers](image-url)
1.2.1 Bluetooth 3.0

Bluetooth Special Interest Group (SIG) announced in 2006 that they will upgrade to Bluetooth 3.0 based on Wimedia UWB technology. However, Bluetooth 3.0 Specification required that each Bluetooth be backwards compatible with Bluetooth 2.1 which means that Bluetooth 3.0 will have two MAC platforms. One based on the old Bluetooth MAC and the other based on a different high rate MAC layer. The alternate Phy/MAC layer (AMP) feature of Bluetooth 3.0 is based on 802.11 and designed to be usable with other radios. Currently the Bluetooth SIG suspended development of the Wimedia PAL integration and its still in process of evaluating other options.

1.2.2 Wimedia Link Layer Protocol (WLP)

Wimedia specifications define a PAL that adds TCP/IP services to the Wimedia platform to model a behavior of an IEE 802.11 network. WLP basically ties the Wimedia MAC and physical layers to the the network layer by acting as the Logical Link sub Layer (LLC) in the data link layer. WLP uses a concept called Wimedia Service Set (WSS) which is a group of devices that share a security relationship. WLP is considered the only standalone PAL that is developed by Wimedia. Wimedia is currently working on Wimedia Extended Platform (WXP) which targets higher layers to allow fully interoperable IP-based applications. Wimedia is currently working with Digital Living Network Alliance (DLNA) to insure interoperability.

1.2.3 Wireless 1394 (Wireless Firewire)

Wireless Firewaire is a wireless version of the high speed Firewire communication protocol defined in IEEE 1394. In May 2004, the 1394 trade association approved the development of a PAL to have IEEE 1394 work over UWB with Wimedia integration. However, it also needs intelligent channel allocation time to transmit multimedia data by real time [7]. Moreover, Wireless Firewire has a limited applicability in that it can only be applied to newly developed 1394 devices since it requires that the physical and link layers be modified from the original 1394 standard [8].
1.2.4 Certified Wireless USB (WUSB)

The WUSB Promoter Group was formed at 2004 Intel Developer Forum and is comprised of seven industry leaders which are Agere Systems, HP, Intel, Microsoft Corporation, NEC, Philips Semiconductors and Samsung Electronics. WUSB is a short range wireless communication protocol and is considered the new wireless extension to USB. WUSB is not considered a PAL by itself. The UWUSB standard described it as a standalone MAC layer but WUSB uses the majority of the functionality of the Wimedia MAC layer.

1.3 UWB Applications

Two major things are deriving the market for UWB technology in WPANs. First one is the need to have less cable indoors and around home or entertainment networks. Second is the need for reliable easy to use high speed wireless networking devices. Initially UWB systems were used in military and mainly in radar imaging systems. It can obtain images of obstructed objects for applications such as wall/through-wall detection, ground penetrating radar, medical imaging, construction and home repair imaging, mining, and surveillance systems.

The growth of UWB technology will be mainly in wireless home networks that require high bit rate short communication devices running without cables. Smart wireless devices can be any electronic devices such as computers, digital cameras, printers, scanners, High Definition TV (HDTV) and various game consoles. For example, home theater environment could be constructed without cables and with minimum effect on performance. So a blue ray DVD player can broadcasted to the TV without cables. Also, Users can use their cell phone to send documents to print on the printer wirelessly (See figure 5).

The advantage of relying on the high ranging accuracy and target differentiation capability enabled by UWB can be integrated into cars to provide collision avoidance,
CHAPTER 1. INTRODUCTION

Figure 5: Examples of Smart Home Wireless Network Applications based on UWB detecting the movement and location of objects near a vehicle, improving airbag activation and suspension settings. UWB immunity to interference and being below narrowband noise level will help to not interfere with other technologies like Global Positioning System (GPS). Positioning devices could be used to assist vehicles to be guided along a highway by integrating UWB technology along the road. Security can use UWB technology in security applications such as Ground Penetrating Radar (GPR), through-wall surveillance, wireless monitoring of children, people with medical need and objects.

In this thesis, the focus will be around the use of UWB in wireless home networks or smart homes.
1.4 Motivation and Thesis Objectives

With the diverse traffic types supported in the wireless network with different requirements in terms of service parameters needed for each application to operate, UWB systems need to be designed to support the transfer of extremely high data rates over short distance with QoS support. MAC layer design is one of the important functions of that system since it handles channel access while maintaining QoS and Security. MAC design needs to tackle network issues like high packet loss rate, large packet delay, packet delay variations, mobility of users and security. WUSB appears to be superior to the other solutions because the integration with Wimedia is easier to implement than the other technologies. In addition, the WUSB standard has optional parameters that can be used to help meet QoS of certain applications in home wireless networks. Based on that fact and to the best of our knowledge there is no work in the open literature analyzing in detail the performance of WUSB. Our objective in this thesis is to analyze the performance of this promising technology, as well provide modifications that improve its performance and increase its capacity further to enhance the QoS support.

1.5 Thesis Contributions

In this thesis we propose three improvements to the current WUSB MAC layer to help in achieving better QoS for wireless home network. First proposal is to modify the WUSB standard to enable prioritization in both Distributed Reservations Protocol (DRP) and Priority Contention Access (PCA) types. We are going to proof in simulation implemented in ns-2 that soft DRP and PCA can be enabled in WUSB to support higher priority security or medical monitoring systems with guaranteed QoS. The second proposed method is to add to the host node a mechanism to dynamically change the packet size used in any data transfer to minimize the packet loss rate occurring in the network. This packet loss reduction and adjustment can help support voice and video multimedia applications to meet QoS standards. The third proposed method is to enable a redundant host in the cluster to backup the original host in case
of topology changes and mobility. We also came up with directions and suggestions for future research.

1.6 Thesis Organizations

The remainder of the thesis is organized as follows. In chapter 2, we will give an overview of WUSB MAC and the common functionality with Wimedia. In chapter 3, we will review the literature study around the performance of Wimedia in general and WUSB in specific. In chapter 4, We will also describe the simulator used in our project and verify the performance of both implementations of Wimedia and WUSB MAC layers. We will provide in chapter 5 the details of the protocol extensions we proposed for WUSB and simulations of the proposed models. Finally, chapter 6 concludes the thesis and discusses some future work.
Chapter 2

Certified WUSB

2.1 WUSB Cluster Architecture

WUSB architecture is considered very similar to USB 2.0 in terms of the design of basic communication flow components. The obvious difference is that WUSB devices are not physically attached to each other. WUSB system can be of different WUSB clustered combined to provide connectivity. Each WUSB cluster consists of one WUSB host and many WUSB devices.

Figure 6: WUSB cluster topologies and node types.
The cluster is a star topology where there is a point to point communication between each of the device directly back to the host as showed in figure 6. A cluster consists of two main nodes. One is called a host and the other is called a device. One WUSB host can logically connect to a maximum of 127 WUSB devices to create a WUSB cluster. Moreover, there is a special node called Dual Role Device (DRD) which acts as both a host and a device in a cluster.

2.1.1 WUSB Host

WUSB is the node that initiates beaconing in the wireless cluster after checking if there is no other existing beacon found. WUSB host should have the full functionality of the Wimedia MAC layer implemented in order to organize access to the wireless medium. WUSB hosts are required to support all data rates for both transmission and reception. A wired USB host can be enabled to become a WUSB host by adding an adapter. The adapter is called Host Wire Adapter (HWA) attached to the host device such as a PC to allow the PC to connect through the wireless medium. As shown in figure 6, a PC can become a WUSB host if a HWA is attached to one of its existing USB ports. This way it can create a cluster around it for a maximum of 10 meter range.

2.1.2 WUSB Device

A WUSB device is a wireless device that is connected to a cluster with an already established channel beaconing by a host. The device entity doesn’t need to initiate new beacons. It can just join an existing channel and stay as a WUSB device. In the WUSB standard, a WUSB device must support transmitting and receiving data rates of 53.3, 106.7 and 200 Mb/s. The remaining data rates of 80, 160, 320, 400 and 480 Mb/s are optional. A wired USB device can be enabled to become a WUSB device by adding an adapter. The adapter is called Device Wire Adapter (DWA) which allows wired devices to connect to the host wirelessly as well. WUSB device can be any of three possible categories of devices depending on the degree of the awareness of the MAC layer mechanisms:
- Self Beaconing Devices: They are devices who have the full implementation of the Wimedia MAC and can start performing beaconing process.

- Directed Beaconing Devices: They are devices that don't have the full implementation of the Wimedia MAC and rely on the host which directs them to perform beaconing in order to detect neighbor devices.

- Non Beaconing Devices: They are devices which have reduced power and receiver sensitivity so they don't interfere with any other device.

2.1.3 WUSB DRD

DRD is a device which supports both WUSB host and device functionalities. DRD nodes can be either a static DRD or a dynamic DRD:

- Static DRD: Static DRD can act as both a host or a device on the same channel. For example, as in figure 6, a printer can work as a WUSB device connected to a host PC and at the same time it can switch to work as a WUSB host to a mobile device.

- Dynamic DRD: Dynamic DRD can act as both WUSB host and device at the same time but on two different channels. For example, a combinational DRD like a printer can act as a device connected to a PC WUSB host through one channel and at the same time it can act as a WUSB host connected to a wireless mobile device on a different channel. Another example that can apply to dynamic DRD is a peer to peer DRD where two mobile devices can establish a one to one connection to share files.

2.2 Physical Layer

As stated earlier, the physical layer is based on OFDM technology to transmit information on each of the spectrum sub-bands. The OFDM channel is composed of continuous sequences called Symbols and each symbol is 312.5 ns in length. The physical layer can hop to a new center frequency at the end of each symbol. The
physical layer specified in ECMA-368 in [6] uses a concept called spreading in OFDM which is placing the same data on multiple subcarriers. This technique provides diversity to improve performance in fading channels. Spreading technique uses time and frequency type spreading. Based on that, the standard specifies three modes of operation. The modes are listed in table 1. The spreading factor for each type can have a value of 2 for enable and 1 for disable option. One mode involves having time and frequency spreading together. The second mode involve only time spreading. The third mode option has no spreading technique selected. The modulation techniques used along with each of those three modes is either Quadrature Phase Shift Keying (QPSK) or Dual-Carrier Modulation (DCM) which is a variation of 16 Quadrature Amplitude Modulation (16QAM). The supported data rates can be calculated as in equation (6):

$$\text{DataRate}(Mb/s) = \frac{F_b}{6} \times S_r$$ \hspace{1cm} (6)

Where S_r is the OFDM symbol length of 312.5 ns. F_b is the number of information bits per hop frame which is found from the modulation code rate:

$$F_b = R_c \times F_c$$ \hspace{1cm} (7)

F_c is the coded bits per frame and R_c is the code rate listed in table 1.

The main functionality of the physical layer is to provide service to the MAC layer and an interface to the wireless medium. The physical layer basic services are to switch between receive and transmit mode as per MAC layer instructions. The physical layer will handle the transportation of both control and data information. In addition, the physical layer can provide the upper layers with status of the wireless channel if it is busy or free.

The physical layer will transmit information on the channel in packets. Each packet is composed of three parts summarized in figure 7. The first part of the packet is called the preamble for acquisition which is a predetermined fixed number of bits that allow the receiver to detect the existence of a packet and to estimate the parameters used for accurate demodulation. Moreover, preamble time gives enough time for any device to turn around from receive to transmit mode and vice versa. There
Table 1: Physical layer Modulation and Data rate Parameters

are two types of preambles in WUSB communication. One type is called standard preamble and the other is called burst preamble. Using standard preamble, successive packets are separated with Short Inter-Frame Spacing (SIFS) duration of 10 \(\mu s \). On the other hand, in burst mode a sequence of packets will be sent from a single transmitter which means that there is no need for time between transmit and receive processes. Therefore, a short preamble is used in burst mode to increase the data rate and the duration used is called Minimum Inter-Frame Spacing (MIFS). The MIFS duration equals six OFDM symbols to total 1.875 \(\mu s \). Also, the first packet of every burst of packets in the burst mode must use the standard preamble [6].

The second part is called the header which is composed of both the MAC and physical layer headers. The header is transmitted at the lowest possible physical data rate of 53.3 Mb/s or at maximum reception reliability. It can be noticed from figure 7 that the physical header is put first in the packet header. The reason is that the receiver node requires the need to know the data rate information included in the physical header as soon as possible to prepare it for the demodulation and decoding of the incoming data before the data payload part actually arrives.

The physical header includes the following [6]:

- The packet length.
- The preamble type either standard or burst.
The data rate index corresponding to one of the possible data rates of 53.3, 80, 106.7, 160, 200, 320, 400 and 480 Mb/s calculated and listed in table 2.

The two bit scrambler seed used by the transmitter to help in reducing spectral artifacts such as spikes caused by the presence of correlation in the modulated symbols placed on the OFDM subcarriers.

The transmitting power.

Transmitting channel frequency and band group.

At the end of the header, the bits used for error correction are added using Forward Error Correction (FEC) based on both convolutional and ReedSolomon coding.

The last end of the packet is the data payload of the packet that contains the information needed to be sent, channel encoding and pad bits. Table 2 summaries
the physical layer parameters used.

<table>
<thead>
<tr>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolutional Encoding</td>
<td>Code = 1/3 and Rates = 1/2, 5/8, and 3/4</td>
</tr>
<tr>
<td>Subcarrier Modulation</td>
<td>QPSK and DCM</td>
</tr>
<tr>
<td>Number of Sub-carriers</td>
<td>128</td>
</tr>
<tr>
<td>Number of Data Carriers</td>
<td>100</td>
</tr>
<tr>
<td>Number of Pilot Carriers</td>
<td>12</td>
</tr>
<tr>
<td>Number of Guard Carriers</td>
<td>10</td>
</tr>
<tr>
<td>Sub-Carrier Frequency Spacing</td>
<td>528 Mhz</td>
</tr>
<tr>
<td>OFDM Symbol Duration</td>
<td>312.5 ns</td>
</tr>
</tbody>
</table>

Table 2: Parameters of WUSB and Wimedia Wireless OFDM Symbol.

2.3 MAC Layer Channel

The MAC layer is a sub-layer of the data link layer and it’s main function is to provide wireless channel access mechanisms and addressing which allows several network nodes to communicate within a network to provide unicast, multicast and broadcast communication service. The MAC layer sits between the Logical Link Control (LLC) sub-layer and the physical layer. WUSB is not considered to just have a separate PAL layer on top of the Wimedia MAC layer. In fact, The MAC layer in WUSB devices is not the same as the Wimedia MAC layer specified in ECMA-368 standard [6]. However, WUSB MAC layer uses the majority of the Wimedia MAC functionalities as it will be explained in this section.

The wireless MAC layer channel; as specified ECMA-368 [6] and Wimedia standards [5]; is divided into continuous super frames. Each super frame is 65 ms long and consisting of 256 Medium Access Slots (MASs) as show in figure 8. The super frame can also be represented as a 16x16 matrix having 16 zones and each zone contains 16 MAS. Super frames contain two main parts. One is called beacons and the other is the data phase. Beaconing is the principal control mechanism used to exchange information between devices. Beacons are transmitted at the start of each
super frame and are transmitted at the lowest payload data rate of 53.3Mbps. The beacon frame itself may be as short as approximately 15µs or as long as 63µs taking up all the first 32 MAS slots in each super frame depending on the number of nodes joining. The first two beacon slots are reserved and are not allocated by any node since they are used for signaling purposes. The device first scans the wireless medium for one super frame duration searching for any beacons. If no beacons found, then it starts its own beaconing with six beacon slots including the signal slots. On the other hand, if the device scanning finds existing beacons in the wireless medium, then those signaling slots come into play. The signaling slots can be used to accommodate new devices joining the existing cluster. For example, when a device has fixed number of beacon slots allocated and used by existing neighbor device, the new device joining the cluster won’t find any empty slot to choose from. Using those two reserved slots, it can randomly choose between the two slots to indicate to the device that it needs to expand its list of beacon slots to expand the new device request to join. In addition, every four super frames, the new device has to stop the use of the signaling slots to allow other devices use the signaling slots if needed.

Each beacon slot contains one beacon frame which contains the different control information data units called Information Elements (IEs) defined for that beacon. Sometimes the IE requires the allocation of more than one beacon slot. The data part that comes after the beacon period is where the WUSB MAC layer architecture differs from the general Wimedia standard MAC layer standard. We are going to summarize the architecture of both layouts in the next two sub sections.

2.3.1 Wimedia MAC Layer Channel

The Wimedia MAC combines both reservation based systems and priority contention based channel systems [5]. In figure 9, each super frame in the channel consist of two main portions sent continuously. The beacon period and the data transfer period. Nodes in the cluster can access channel through the data transfer period, using either
negotiated MAS slots with the DRP or a contention based communication technique known as PCA. Both channel access techniques provide support for QoS in a wireless shared medium. DRP allows heterogeneous nodes to reserve MAS for isochronous traffic while PCA is more appropriate for asynchronous transmissions. DRP rules define how nodes can negotiate their reservations. A node (both a host or a device) can make use of both DRP reservations and PCA to satisfy its traffic requirements.

2.3.1.1 DRP

DRP provides channel access through reservation and sharing resource using TDMA based scheme. It enables the fully distributed Wimedia MAC to provide contention-free channel reservation without the need of a central controller. DRP allows node in a cluster compete to reserve shared MAS slots using DRP IE parameters listed in

![Super Frame General Format](image-url)
Beacon Period DRP PCA DRP Beacon Period DRP PCA DRP

Figure 9: General Model of Wimedia MAC Layer Channel.

each beacon. The format of the DRP IE is explained in section 2.8.4. The reservation process starts by having a node initiating the request in their beacon when it is sent to a target node. The target node has to make sure that the reservation request won’t cause any issues first. The target node will respond to a reservation request either with Granted, Not Granted, or Pending. If granted then reservation process is successful. If response was Not Granted, the target node would sense that another neighbor device already reserved the requested MAS slot and would cause a conflict. In this case, the target node includes a DRP Availability IE in their beacon, which gives the MAS availability for that device. This will help the source node to adjust its reservation request in the next beacon interval according to the target’s DRP MAS availability IE. Finally, if the response for the request is Pending, it means that the
target node needs more time to respond with a final answer to the source node. DRP IE are kept in the beacons for a maximum of four super frames or until they get a response for the request. In the case that there is a conflict during the reservation request, both nodes that are asking for the same MAS will use both the Conflict Tie-Breaker bit of the DRP IE and the beacon slot number of the device. The Conflict Tie-Breaker bit is set to a random value by the reservation source at the time of reservation request. The two nodes will first compare each other Conflict Tie-Breaker bit. If the two bits are the same, then the node with the smaller beacon slot number wins and reserves the requested MAS slots. If the two Conflict Tie-Breaker bits are different in value, then the node with the higher beacon slot number wins.

There are four different types of reservation can be done in a cluster of nodes:

- Hard reservation where only the reservation owner may initiate a frame transmission (except for acknowledgements). Any unused time in the reservation may explicitly be released for PCA access.

- Soft reservation where the reservation owner has priority access to the channel without any delay at the start of each reservation block (contiguous portion of the reserved channel time). If the owner leaves the channel free for a certain interval of time, the rest of the nodes may contend for the channel using PCA rules.

- Private reservation where the channel access rules are defined by the owner and targets of the reservation. The Private Reservation is one of the major features of the WiMedia architecture and is the principle means by which other MAC protocols can share the UWB radio medium. For example, WUSB uses private reservation which will be explained in section 2.3.2.

- Alien beacon where some MAS slots will be reserved and not used by the cluster of node if there is another nearby cluster has those same MAS slots reserved. This type of reservation will minimize the conflict or interference that might be caused from having two neighbor clusters in the same wireless domain.
Hard and private DRPs don’t allow other types of traffic with different priorities. Soft DRP has the option to provide traffic at the highest priority as well as guaranteed service for nodes sharing the channel. This option can be very helpful for urgent security and medical applications in order to have the highest priority access, with the Arbitration Inter-Frame Space (AIFS) set to zero. Hard and Private DRP can release any unused time in the unsafe reservations. Host can signal to other users of the super frame that we are prepared to relinquish MAS if necessary.

There are MAC policies put in place on the channel usage in order to have fairness in the network and not have one client using all the channel bandwidth by itself. A device can reserve a maximum of 112 MAS out of 256 units available within the super frame without giving them up to other devices requesting slots. This means that a device can set a maximum 112 MAS slot to SAFE mode where no one else can reserve that. Any device can reserve more than 112 MAS only if free channel slots are available. Those extra slots over 112 MAS will be set to UNSAFE mode. This way the extra slots can be given away to any new device requesting those channel slots. This way channel slots are used fairly in the network. So if a node sees the unsafe bit set to 1 in the DRP IE portion, the node can send Relinquish Request IE back to that source node asking to reserve those unsafe slots. The source node should respond within 4 super frames by either granting those unsafe slots or changing the status of the slot to SAFE mode instead.

Different applications might require different reservation block sizes and service intervals within a super frame for their optimal operation. Column reservation is used for video applications that require continuous time slot in order to achieve high throughput. Row reservation is used for applications in need for low latency and small buffering requirements. In order to have both kind of row and column reservations exist, as per the Wimedia standard the largest number of continuous MAS blocks that can be reserved in the same zone is eight and set to SAFE mode (see figure 10).
Wimedia MAC standard compaction rules allow the maximum super frame utilization by applying only when reservations are in SAFE mode:

- **Rule 1**: All row reservation must be as close to the bottom of the MAS table as possible. The owner does not have to break its reservation block into two or more smaller chunks to meet this requirement.

- **Rule 2**: All column reservation blocks must be contained in the top half of the MAS table if possible. If not, then they should be as high up in the MAS table as possible. Also, each reservation block in each zone must be moved up as high in its zone as possible.

- **Rule 3**: While meeting Rule 2, when an option is available, a column-reservation
device must try to allocate its column blocks in zones according to the prioritized list of table 3 except for the Beacon zone 0. Priority 1 means the highest priority and Priority 4 the lowest. Figure 10 shows the distribution of each priority zone in the MAS table.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4 or 12</td>
</tr>
<tr>
<td>3</td>
<td>2,6,10 or 14</td>
</tr>
<tr>
<td>4</td>
<td>1,3,5,7,9,11,13 or 15</td>
</tr>
</tbody>
</table>

Table 3: Zone priorities of Rule 3.

2.3.1.2 PCA

A channel access priority is computed and the nodes contend with other nodes for the right to transmit via the shared channel based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). PCA priority rules are derived from EDCA 802.11e. The difference is that PCA uses four priority classes including audio, video, best effort and background while EDCA 802.11e uses seven priorities. The node implementing PCA will start by sensing activity on the channel. If there is an activity then the device will have to wait until the end of the activity. Once the channel is sensed to be free, the node will wait an AIFS time plus a random time period called the back-off slot. The AIFS value will depend on the type of the traffic, see table I. The shorter the AIFS of the traffic class is, the higher the priority of the class. In addition, each competing node may only use the medium for a limited period of time before it has to give up the medium and allow others to contend for it. For voice, this period is short since voice packets are not expected to contain as much information as the other traffic types. On the other hand, video traffic gets the longest of four MAS durations. Best effort and background traffic require two MAS slots.

The back-off value is uniformly distributed random integer number between zero and the minimum contention window of the corresponding traffic class (Cmin), as
listed in table 4. Once the back-off timer reaches zero count, it will transmit. If the transmission is not successful, the contention window will be doubled and continues doing so after every new collision of the frame and up until it reaches the maximum value (Cmax).

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>AIFS</th>
<th>Cmin</th>
<th>Cmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice</td>
<td>19µs</td>
<td>3µs</td>
<td>255µs</td>
</tr>
<tr>
<td>Video</td>
<td>28µs</td>
<td>7µs</td>
<td>511µs</td>
</tr>
<tr>
<td>Best Effort</td>
<td>46µs</td>
<td>15µs</td>
<td>1023µs</td>
</tr>
<tr>
<td>Background</td>
<td>73µs</td>
<td>15µs</td>
<td>1023µs</td>
</tr>
</tbody>
</table>

Table 4: Priority Parameters in Wimedia MAC

2.3.2 WUSB MAC Layer Channel

WUSB MAC takes some of main functionality of Wimedia MAC described before. It also integrates the general model of the wired USB transaction process with the wireless MAC layer. WUSB MAC is solely focused on reservation based network access [9]. The PCA mechanism used in Wimedia MAC is set to an option mode and disabled by default in the WUSB standard. In WUSB channel, each super frame is divided into a beacon period and a data transfer period. The data period is reserved via the beacon private DRP negotiations and based on the Wimedia MAC policies as described in section 2.3.1.1. However, the difference in WUSB that the data period consists of a sequence of Transaction Groups (TG). A transaction group contains controller packet called Micro-scheduled Management Commands (MMC) and the data time slots for data transmissions. As seen in figure 11, the WUSB channel after each beacon consist of continuous linked MMC control packets which are transmitted from the host and helps indentifying host information, pointers to the times when each incoming and outgoing data slots must start. In addition, MMC contains a time reference to the next MMC to indicate the next TG in sequence. Moreover, MMC header contains channel timestamps which allows devices to synchronize it’s clocks to each other. Therefore, the drift due to clock inaccuracy can be ignored since the devices will re-synchronize themselves to a common clock reference at the start of
The data time slots types in each TG can be described as incoming data, outgoing data, handshake response, or device notifications. The duration of each of these data time slots change from TG period to another. The time between each MMC in sequence is divided into three time slots as seen in figure 11. First time slot period is used for outgoing data received by the target device called Device Receive (DR) packets only. The second time slot period is used for Device Notification Time Slot (DNTS). The third time slot period is used for incoming data transmitted from the target device called Device Transmit (DT). The main reason for this order is to keep the time between outgoing and incoming data turnaround to minimum so we can achieve highest possible throughput.

Figure 11: General Model of WUSB MAC Layer Channel.

The DR time slots are used for all outgoing packets going from the host to the device. The DNTS slots are used for asynchronous transfers or requests from any device to the host. The mechanism used during the DNTS period is Slotted Aloha
Protocol. The DT time slots are used for all incoming packets going back from the device to the host. The handshake acknowledgement response is only done during the DT period to acknowledge the receiving of the data from the device perspective. The host acknowledgement is done through the MMC control packets. Therefore, WUSB has its own retransmission technique and doesn’t use the Wimedia MAC Acknowledgement policy so the acknowledgement policy field is set to No Ack in the WUSB MAC header.

2.4 WUSB MAC Layer Main Features

2.4.1 Data Bursting

Data bursting is a mechanism that enables source node to transmit more than one data packet per data phase and the destination node must provide information during the handshake phase acknowledging that data was received. Data bursting option is available for WUSB in order to help reduce significant packet overheads for wireless transmission. The maximum allowed burst size is 16 packets. It can be used for isochronous data transfer and bulk transfers.

The source node maintains a sliding transmit window that controls how sequence numbers are associated with each data packet sent in ascending order. The destination node also maintains a receive window that identifies which data sequence numbers it will retain for us from the next transaction as shown in figure 12. It will also provide a burst acknowledgment response during the handshake phase of the transaction. The general rules for data bursting between two nodes are:

- At initialization, transmit and receive windows are set to the maximum burst size of data packets.
- When the source node transmit all the data packets in its transmit window buffer, the receiver will advance the receive window one location per successfully
received packet. The advancement of the receive window is a modulo maximum sequence size.

- If the host is receiving data from a device, the burst acknowledgement is sent back in the MMC DT IE block in the MMC header and its a bit vector representation of the receive window. If the device is receiving the data, then the burst acknowledgment is sent back to the host via the data payload of the handshake packet.

Figure 12: Data Bursting as Specified in WUSB Standard [9].
2.4.2 Synchronization

There are two types of synchronization already done before in the ECMA-368 standard [6]. One is through the physical layer as part of the preamble synchronization sequence at the start of each packet. The other synchronization method is done through the Wimedia MAC standard by having all devices synchronize their clocks in each super frame by using the timing information found in the beacons. In addition, a 12 μs Guard Time in addition to the 10 μs SIFS duration is added by each device at the end of each reservation block. Moreover, the WUSB standard added that all nodes in the cluster reset their internal clocks to zero at the beginning of MMC header. So the WUSB host must provide a WUSB channel time stamp in each MMC [9].

2.4.3 Resiliency Against Hidden Terminal Problem

A beacon slot is available for occupancy by a device only if in the last four super frames the beacon slot was not reported as occupied by any of the transmitted or received BPOIEs. This way when a host checks the BPOIE received, it checks the beacon slot occupancy for a two-hop neighborhood. In addition when a negotiation process starts asking to reserve MAS periods between two nodes, a two way negotiation confirmation is done to make sure the new reserved period dont cause a conflict for each node neighbors.
2.5 WUSB Connection Setup

A host and device need to establish a logical connection through the wireless medium. This connection setup needs to be done in a secure way before data communication starts and WUSB function starts to be used. The following states displayed in figure 13 above will be explained during connection setup:

- Unconnected State: Devices reside in this state when they are not connected to any devices or they failed to establish a connection to any neighbor host. A device can only initiate connection request through listening to beacons and find the DNTS period for asynchronous requests. A device stays in this state until a specific WUSB host instructs the device to connect using the WUSB transactions process by sending a "Connect Acknowledgement" reply to the
request. When the host sends back the successful acknowledgment to the new
device, it adds the new device to the list of unauthenticated device addresses
which will be prepared for the next state. However, at this point the device is
considered connected in general as per figure 13.

- Unauthenticated State: Before authenticated communication exchanged be-
tween host and device is not secured. The host will then complete a 4 way
handshake process to establish data packet encryption. After this step, both
device and host are ready to encrypt all data phase and handshake phase trans-
action packet transmissions. Finally, the host will send a request to load the cur-
rent key back to the device so that the device can authenticate WUSB Channel
broadcast packets like MMC packets. More on the authentication methodology
will be explained in the security section 2.10

- Authenticated State: The device enters this state when it passes all the authen-
tication requests. The device will be considered at this stage normal, connected,
authenticated and ready for any data transactions. The device will stay in this
phase as long as its host receives periodic MMC broadcasts greater than a "Trust
Timeout" value of 4 seconds.

- Reconnecting State: This state is entered when either "Trust Timeout" is
reached or the 4 way handshake authentication failed. The device will try
to connect again to the host via the DNTS period. The only difference between
the requests in this state than the unconnected state is that the requests done
here are secured. The device will transition to the unconnected state if the host
does not respond to the reconnect device notification attempts after 6 attempts.

2.6 WUSB Data Transactions

The data exchange happens between MMC blocks. The MMC command gives both
the sender and receiver a time stamp indication when they should start sending to
each other. When a host is ready to start sending data, it transmits first a MMC
command to allocate three blocks as shown in figure 14. First block period DR for
the burst of data is transmitted completely to the device. Then a short DNTS block
is allocated for any asynchronous notifications. Finally, the third block DT is used
by the device to complete the transmission of any control handshake command back
to the host. Note that if there is not enough time to have the DT stage completed by
the device in the first transaction, the host can allocate the handshake period in the
next MMC. On the other hand, when a device wants to send back either a single or
multiple burst of data, it waits for a MMC block that gives the device the time stamp
to start transmitting its data. The MMC command received by the host is used to
adjust the device transmit window and transmission rate. In this direction, the host
wont allocate any time for itself, it will only allocate time for the DNTS period then
the DT period used by the device as shown in the device transmission cycle in figure

Figure 14: UWSB Data Transaction.
14. During the data phase time period, the host listens for incoming data packets. It observes the sequence numbers of received data packets and advances its receive window accordingly. The acknowledgement of which data packets the host received without error is communicated back to the device in the next MMC command which helps in saving channel time and protocol overhead. There are five types of data transactions defined in WUSB standard [9]:

2.6.1 Bulk Data Transfers

Devices use the bulk transfer mode if they need a guarantee from WUSB to send large amounts of data at variable data rate with no guarantees on bandwidth or latency. The maximum allowed burst size is 16 packets. The maximum packet size for a packet sent in burst mode is a value between 512 and 3584. The value should be a multiple of 512 (i.e. 512, 1024, 1536, 2048, 2560, 3072 and 3584). Bulk data transfer can be bi-directional between host and device.

2.6.2 Isochronous Data Transfers

Isochronous data transfer is used for applications that need guaranteed average constant data rate and periodic data transfers with bounded delays. It also guarantees data retries to achieve reliability of the wireless communication. Isochronous transfer is always unidirectional but it can be bi-directional with two separate streams. The maximum allowed burst size is 16 packets. The maximum packet size for a packet sent in burst mode is 3584. Different handshake mechanism retries and buffering choices had to be added to ensure the isochronous data transfer can be successful in the high error-rate conditions of the wireless medium.

2.6.3 Interrupt Data Transfers

Interrupt data transfer are unidirectional stream pipes of small amount of data with guaranteeing high reliability. This is done by guaranteeing retries during the service period if delivery of the data fails. This data transfer requires achieving the lowest
latency. The maximum allowed burst size is 1 packet. The maximum packet size for a packet sent is 1024 bytes.

2.6.4 Control Data Transfers

Control data transfer used to transfer WUSB protocol commands for device initialization and device management. Control data packets have a fixed data payload size of 512 bytes and have a maximum burst size of one. The delivery of control data packets are best effort based. Control packets are essentially used for the purpose of controlling traffic flow from devices to the cluster host and its main types sent in the data payload part are:

- Acknowledgements: they can be either an immediate acknowledgement to a single data burst or a burst acknowledgment for more than one data burst. This data indicates that a control transfer has been completed.

- Negative Acknowledgement (NAK) indicates that the transfer has not completed the action requested in the payload data portion.

- STALL is a handshake code indicates that the transfer has an error that prevents it from completing the communication.

2.6.5 Asynchronous Device Notification Transfers

Device notification messages are asynchronous and happens during the DNTS time period per transaction group. Those messages are always sent from the devices in the cluster to the host. The host schedules those DNTS periods randomly in each transaction group communication. The maximum allowable data payload for a device notification message is 32 bytes and the messages must always be transmitted at the PHY base signaling rate. The maximum duration of time slot for a maximum sized notification slot is 26 μs.
2.7 WUSB Bandwidth Reservation Policy

On top of the Wimedia MAC policies specified in section 2.3.1.1, WUSB defines extra limits depending on the type of data transaction is happening to allow fair bandwidth distribution among devices.

Any WUSB aware MAC node can have a safe MAS reservation of 16 MAS periods "MAX_WUSB_CHANNEL" as defined in table 5. When that node becomes a host to cluster and connects to at least one device, the limit of safe MAS reservation increase up to "ASYNC_MAC" of 64 MAS periods. However, this number might change depending on the type of the data transfer used.

If reservation is done for bulk, control or interrupt type of data transfers and no isochronous data transfer exists in the same cluster. The maximum limit of safe MAS periods is noted as SafeForAsync and calculated as:

\[\text{SafeForAsync} = \text{ASYNC_MAC} \]

If reservation is done for bulk, control or interrupt type of data transfers and isochronous data transfer exists in the same cluster:

\[\text{SafeForAsync} = \max(\text{ASYNC_MIN}, \text{ASYNC_MAX} - \text{SafeForPeriodic}) \]

The value of SafeForPeriodic for isochronous safe reservation is found by calculating the number of MAS that are needed to transfer the periodic isochronous data over "MIN_PERIODIC_RATE" listed in table 5 and based on maximum service interval, burst size and packet size.

Therefore, for any cluster the maximum number of MAS needed for safe reservation is:
Max MAS Limit for a cluster = \(\min(112, \text{SafeForPeriodic} + \text{SafeForAsync}) \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX_WUSB_CHANNEL</td>
<td>16</td>
</tr>
<tr>
<td>ASYNC_MAX</td>
<td>64</td>
</tr>
<tr>
<td>ASYNC_MIN</td>
<td>16</td>
</tr>
<tr>
<td>MIN_PERIODIC_RATE</td>
<td>200 Mbps</td>
</tr>
</tbody>
</table>

Table 5: WUSB Bandwidth Reservation Policy Parameters.

2.8 Packet Formats

2.8.1 MAC General Header

The MAC header is specified in ECMA-368 standard and its used in Wimedia as well as WUSB after the physical header. The MAC header is 10 bytes in fixed length and its five components are listed below and summarized in figure 15

- Frame Control Information:
 - Reserved field of 2 bits.
 - Retry bit is set to 1 in any data or command packet retransmissions.
 - Frame subtype is used to assist a receiver device in the proper processing of received packets. For MMC packets, its set to 1110 value
 - Frame type is the type of packet sent as listed in table 6.

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacon Packet</td>
<td>0</td>
</tr>
<tr>
<td>Control Packet</td>
<td>1</td>
</tr>
<tr>
<td>Command Packet</td>
<td>2</td>
</tr>
<tr>
<td>Data Packet</td>
<td>3</td>
</tr>
<tr>
<td>Aggregated Data Packet</td>
<td>4</td>
</tr>
<tr>
<td>Reserved</td>
<td>5-7</td>
</tr>
</tbody>
</table>

Table 6: Packet Type Field Encoding.
ACK Policy Type	Value
No-ACK | 0
Imm-ACK | 1
B-ACK | 2
B-ACK Request | 3

Table 7: ACK Policy Field Encoding.

- ACK policy field is set to the type of acknowledgement requested by the transmitting node. The values for this field is set in table 7 below.
- Secure bit is set to 1 to enable secure encapsulated packet.
- Protocol version field is set to zero in ECMA-368 standard.

- DestAddr is the destination address of the target destination of the packet. The field can specify single device for unicast packet, a group of devices for multicast packet or all devices for a broadcast packet.
- SrcAddr is the IP address of the transmitting or source node.
- Sequence Control field is 2 bytes containing the sequence number of the data block and the fragment number within each sequence. The "More Fragments" field is set to zero to indicate that the current fragment is the final fragment of the current sequence. Otherwise its set to 1 to indicate to the destination device to expect another fragment.
- Access Information has three blocks:
 - Access Method bit is set to 1 in all packets transmitted via private DRP in WUSB.
 - More Frames bit is set to 0 if the transmitter will not send further packets to the same device destination. Otherwise it is set to 1.
 - Duration field is set to an expected medium busy interval after the packet header and used to update the Network Allocation Vector (NAV)
2.8.2 Beacon Packet

Beacons always contain a standard preamble and are sent at the lowest data rate of 53.3 Mbps. As noticed from figure 16 that packet start with standard preamble and packet header then the beacon payload is encoded. The last two slots of guard and SIFS time are delays used after each beacon to minimize the effect of clock drift. Therefore, the maximum available duration for beacon packet transmission is

\[(85 \mu s) - (\text{Guard Time}) - (\text{SIFS}) = 63 \mu s\]

The destination address is set to the broadcast address in the packet header part. The beacon payload contains beacon parameters and different beacon related IEs.
Those IEs are used for different tasks. The length of each IE can also be different. We are listing two of the main ones. One is called Beacon Period Occupancy Information Element (BPOIE) and the other is called DRP IE as in figure 16 All beacon payloads for different IEs have the same beacon parameters at the start of each payload which consist the following three fixed parameters:

- Device Identifier which is a 48 bit unique identifier.
- Beacon slot number the beacon is occupying.
- Device control fields contains bits used to indicate if the beacon is sent in the signaling slot and if the beacon is moveable.

![Beacon Packet General Format](image)

Figure 16: Beacon Packet General Format.

2.8.3 BPOIE Format

As in figure 17, BPOIE parameters consist of:
• Element ID which is set to 1 by default in the standard.

• Length = 1 + K + 2*N. where K = (beacon length /4) and N is the number of neighbor addresses.

• Beacon Length is the length of the beacon period measured in beacon slots. The default value for this is 1 beacon slot. Some beacon periods require more than 1 slot.

• Beacon Slot Info Bitmap field consists of 2 bits to indicate if either the beacon slot is occupied, if the beacon frame was received with no error or if the beacon is movable.

• A list containing the neighboring addresses for devices which already received a beacon in the last super frame.

Figure 17: BPOIE Payload Format.
CHAPTER 2. CERTIFIED WUSB

2.8.4 DRP IE Format

DRP IE parameters are used for MAS reservation mechanism for negotiations purposes as in figure 18 which consists of:

- Element ID which is set to 9 by default in the standard.
- Length = 4 + 4*N. where N is the number of neighbor addresses.
- DRP control fields.
- IP Address: the address is set to the target destination device.
- DRP allocation fields: These are the MAS slots index location that is requested for reservation. Each field consists of two 16 bit values. The first value is called Zone Bitmap which identifies one of the 16 zones in the super frame. The second value is called MAS Bitmap which identifies one of the 16 MAS slots in a zone.

The DRP control fields as in figure 18 are identified as following:

- Safe/Unsafe field which indicates if the MAS slot is safely reserved so no other device can ask for it or if its unsafely reserved which means that other devices can overwrite that slot and take it.
- Conflict Tie Breaker bit which its a randomly chosen bit used to break a reservation conflict between two devices.
- Owner: this field indicates if the device sending this IE is the owner of the request or not.
- Reservation Status bit indicates if the reservation is successful or under a conflict situation.
- Reason Code value can be either accepted, in conflict, pending, denied, or modified.
- Stream Index field indicates which data stream is using the reservation.
• Reservation Type value can be either hard DRP, soft DRP, private DRP, alien beacon period or PCA type. Its set to private for WUSB.

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Packet Header</th>
<th>Beacon Packet</th>
<th>Guard Time</th>
<th>SIFS Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard = 30 Symbols</td>
<td>(12 symbols)</td>
<td>(0 - 320 Bytes)</td>
<td>12 µs</td>
<td>10 µs</td>
</tr>
</tbody>
</table>

- Beacon Payload
- Frame Check Seq (4 Bytes)
- Tail Bits (6 Bits)
- Pad Bits (0-7 Bits)
- Device ID (6 Bytes)
- Beacon Slot # (1 Byte)
- Controls (1 Byte)
- Element ID (1 Byte)
- Length (1 Byte)
- DRP Controls (2 Bytes)
- IP Address (2 Bytes)
- DRP Allocation 1 - n (4 Bytes)

- Reserved (3 Bits)
- Safe/Unsafe (1 Bit)
- Conflict Tie Breaker (1 Bit)
- Owner (1 Bit)
- Reservation Status (1 Bit)
- Reason Code (3 Bits)
- Stream Index (3 Bits)
- Reservation Type (3 Bits)

Figure 18: DRP IE Payload Format.

2.8.5 WUSB Data Packet Header

The WUSB header attached to the WUSB payload consists of 1 byte of attributes and 1 byte of status as in figure 19. The attributes field in WUSB header indicates the endpoint number and the packet ID. The endpoint number is used by the node to deliver the data to the correct endpoint buffer. The packet ID is used to describe the type of packet in the WUSB payload as listed in table 8.

The status field indicates the sequence number and status flags about the data or device itself. The first 5 bits indicates the burst sequence number if the packet ID
Table 8: WUSB PID Types.

used indicates DATA or IDATA values. Otherwise, the first 5 bits are set to zeros. The status flags are the last three bits used for handshake purposes.

The WUSB payload can be either data payload, isochronous payload, handshake payload, or notification payload. In the case of isochronous payload, isochronous header information is also embedded into the payload field.

Figure 19: WUSB Data Packet Header Format.
2.8.6 WUSB Data Packet Header for Isochronous Packets

Isochronous data packets have the PID field set to IDATA which means it can have an additional variable length header section following the common WUSB header. The additional information for headers with the IDATA PID must contain the fields for at least one data segment as shown in figure 20. Any additional fields for additional data segments are considered optional. The isochronous data packet header is stored in the payload areas of the WUSB packet. It contains the following fields shown in figure 20:

- bNumIsoSegments field indicates the number of data segments that are contained in the data payload of the WUSB packet.

- wPresentation Time field typically references a micro-frame time when the data is intended to be delivered to the receiver.

- WLength field indicates the length of data in particular segment. For example, there are two WLength fields in figure 20 for two data segments in sequence.

- Data number field contains the row data for each data segment in the payload.

Figure 20: WUSB Isochronous Data Packet Header Format.
2.8.7 MMC Packet

MMC control packets are always sent at the lowest data rate of 53.3 Mbps. The packet is transmitted using secure packet encapsulation with the "Encryption Offset" field in the security header set to the length of the MMC payload. The MMC packet consists of MMC header and MMC payload as in figure 21.

MMC header is 10 bytes in length and composed of the following elements:

- **WUSB Application Code**: This unique code identifies the WUSB technology and is set in the standard to 0100H.

- **MMC Code**: another unique identifier set to 01H in the standard to indicate the MMC Command type.

- **Next MMC Time**: this indicates the micro-seconds duration number from the beginning of this MMC to the beginning of the next MMC packet.

- **Reserved field**: should be set for zeros for 2 bytes duration.

- **Channel Time Stamp**: its the channel time communicated by the host which contains a 24 bit value that indicates when MMC was transmitted. The time stamp value consists of two parts. One part is (1/8)th millisecond 17 bit value that wraps to zero after reaching a value of all 1s. The second part is a microsecond counter that counts from 0 to 124. Each time the microsecond value wraps around from 124 to zero, the (1/8)th millisecond value increments. The accuracy of the host clock is +/- 40 nanoseconds.

The MMC payload consists of one or more IEs which are used to let the devices know what to expect next during the communication. One of the most common used IE is the WUSB Channel Time Allocation (WCTA) which contains channel allocation blocks and as summarized in figure 21. It has the following elements:

- **Length**: 1 byte field indicating the length of the WCTA IE.
• **IE Identifier**: the field indicates the type of the IE used in the MMC packet. For WCTA type, the standard uses the value 80H.

• **DR block** consists of array of block allocation times for 1 or more devices that are expecting data to be received.

• **DNTS field** is used for asynchronous transfer and consists of N slots where any device can access.

• **DT block** consists of array of block allocation times for 1 or more devices that are expecting data to be transmitted.

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Packet Header</th>
<th>MMC Packet</th>
<th>SIFS Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard = 30 Symbols</td>
<td>(12 symbols)</td>
<td>(10 Bytes)</td>
<td>10 µs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MMC Header</th>
<th>MMC Payload</th>
<th>Frame Check Seq</th>
<th>Tail Bits</th>
<th>Pad Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 Bytes)</td>
<td>(0 - 3574 Bytes)</td>
<td>(4 Bytes)</td>
<td>(6 Bits)</td>
<td>(0-7 Bits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WUSB Application Code</th>
<th>MMC Code</th>
<th>Next MMC Time</th>
<th>Reserved</th>
<th>Channel Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 Bytes)</td>
<td>(1 Byte)</td>
<td>(2 Bytes)</td>
<td>(2 Bytes)</td>
<td>(3 Bytes)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th>IE Identifier</th>
<th>DR Block Device 0</th>
<th>DR Block Device m</th>
<th>DNTS</th>
<th>DT Block Device 0</th>
<th>DT Block Device n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 Byte)</td>
<td>(1 Byte)</td>
<td>(4 Bytes)</td>
<td>(4 Bytes)</td>
<td>(4 Bytes)</td>
<td>(4 Bytes)</td>
<td>(4 Bytes)</td>
</tr>
</tbody>
</table>

Figure 21: MMC Packet Format.
2.9 Power Management

During the life time of the wireless channel, there exists period where no data transfer activity is happening between two nodes within a cluster. Therefore, WUSB standard introduces two ways to save node power consumption to increase their life time. Devices and host can use both sleep mode and master MMC in their cluster.

- **Sleep Mode**: Host or devices can go into sleep mode where they don’t send any communication to the channel. The host has the ability to send a command to certain devices in its cluster to ask them to go into sleep mode if there is no more data transfer. At the same time, device can send back a notification interrupt during the DNTS period indicating their intention to go into sleep mode. The power hibernation mode for the host is critical since it will turn down the channel and no more data transfer within its cluster.

- **Master MMC**: The master MMC concept has been introduced in the latest version of WUSB standard revision 1.1 [9]. The master MMC format is the same as the normal MMC except that it’s less frequent than the regular MMC frequency where the maximum number of allowed master MMC within a super frame is 16. This way it helps the host track transaction within the channel with reducing the MMC commands. As a result, it reduces the power consumptions that are used to transmit and receive those MMC commands.
2.10 Security

WUSB has the security bit in the Wimedia MAC header enabled by default. It uses most of the security feature that Wimedia MAC already provides. The WUSB packet will always have extra secure fields that are going to be used for authentication and encryption purposes as in figure 22 where few fields added in the payload data field for WUSB MAC Packet. The secure fields consist of the following components:

- Temporal Key Identifier (TKID) field holds either a single or group temporal key identifiers that identifies which of the internally stored keys are used to encrypt the WUSB payload.

- Encryption Offset field indicates the offset from the beginning of the WUSB payload where encryption starts. This feature is useful if not all the payload portion needs to be encrypted.

- Secure Frame Number (SFN) field is a 48 bit counter that is incremented for every transmitted packet which insures that the receiver won’t receive a repeat of the previous packet. This way it provides security against the replay attack.

- Message Integrity Code (MIC) field is used to provide authentication of the packet.

The process of securing each packet between any transmitter and receiver should go through main security methods. The association method is only added in the WUSB standard [9]. The encryption and authentication methods are used from the Wimedia MAC standard [5].
2.10.1 Association Method

The first critical part in establishing a secure connection between two nodes is sharing a master key that will be used in the authentication process later. This is a secret 128 bit key that can be established by either of three ways in WUSB.

- Use of a physical USB cable connection first to make sure that two devices are connected in a secure way to share the master key. Then disconnecting the physical cable and initiating new connection in the wireless medium.

- Use of numerical verification. It is based on the Diffie-Hellman protocol, which is a method of establishing a shared secret key between two parties over an insecure medium.
• Near Field Communication (NFC) where the host and the device are brought to very close proximity of each other (less than 10 cm). This property of NFC that allows communication to take place only in close distance to provide protection against man in the middle attacks.

2.10.2 Authentication Method

Once the association is established and master keys for different devices are shared, devices can then initiate a four way handshaking sequence. During the four way handshake, the device will use the shared master keys along with the device address and a randomly generated number, it creates temporal key and stores it in the TKID secure field in the WUSB packet payload. The temporal keys can be either single between two peers or group type for broadcast and multicast use. Then if the security bit is enabled in the MAC header, the receiver device will check the TKID frame to make sure it matches one of the installed single or group temporal keys. If there is no match found, the handshake process will be ignored and authentication will fail. If there is a match found, the transmitter and receiver will use the MIC field to match both outgoing and incoming message to insure the integrity of it and prevent the man in the middle security attack. Once the packet is authenticated, the device will check against replay attack by making sure that the replay counter is less than the SFN field in the WUSB payload.

2.10.3 Encryption Method

Encryption is important in wireless networks to help prevent attackers from decrypting information sent in the packet payload. This method is done for each sent packet. The encryption standard used in WUSB is called Advanced Encryption Standard (AES)-128 where its based on one block of 128 bits. This is a symmetric encryption algorithm that uses the AES counter block and Cipher Block Chaining Message Authentication Code (CBC) to create a robust stream cipher that can be used to provide integrity and encryption. Therefore, the complete encryption method used is called AES-128 Counter with CBC-MAC (CCM).
Chapter 3

Related Work

Related literature on Wimedia and Certified WUSB UWB are reviewed. We are going to divide the literature research into Wimedia related work and Certified WUSB related. The reason for listing the work for both standards is that Certified WUSB related research found is little and most of the main functionality of WUSB is based on the Wimedia standard.

3.1 Wimedia Related Work

3.1.1 DRP Reservation Based Only

One of those papers suggested a bi-dimensional markov chain model and argues that embedded markov chain assumes that packet departures happen evenly distributed in time which is not the case for Wimedia MAC since its not centrally controlled [10]. Their bi-dimensional method calculates the probability for the number of packets in queue, where one dimension is for number of packets and the other is for packet service point in the super frame. The allocation of the second dimension is determined by the slot reservation pattern used by DRP. The paper only models the expected delay at DRP option of Wimedia theoretically under different reservation patterns.
Their suggested analytical model to find the expected the average delay using predefined DRP patterns was verified with In-house simulations. In-house simulations were done on three DRP reservation predefined patterns by using a fixed packet size of 1500 Bytes and bit speed rate of 400Mbps. This paper didn't specify the DRP option type simulated and the simulator used. Moreover, it didn't take into consideration in their analytical model, the data burst feature by only relying on immediate ACK for each packet sent.

The second paper takes into consideration the shadowing effect in indoor environment and models the system as a discrete-time single server queue with devices not in service period. The analytical model estimated the network delay represented by Quasi Birth and Death (QBD) process and solved by a matrix geometric approach [11], [12]. The proposed theoretical model was based on vacation queuing model where the interval between two reservation periods is regarded as the vacation periods of the two nodes. The theoretical analysis was verified by comparing the results to simulations results from an implemented simulator written in Python language. The simulations were based on 2000 bytes size packets. The two papers analyzed both hard and soft DRP option of Wimedia considering the characteristics of the time varying UWB channels but only numerically. They found that soft DRP incurs longer delays than hard DRP. They also found out that soft DRP patterns are more sensitive to the variation in reservation patterns. However, the two papers didn't take into account the data bursting feature of Wimedia.

Another paper evaluated the performance of DRP in Wimedia MAC by following the Markovian Arrival Process (MAP) with different phase type distributions for various service times and applying the Matrix Geometric Method (MGM) technique. This paper calculated the probability mass function for the number of packets and the cumulative distribution function for packets waiting time in the DRP queue. The theoretical results were also compared to OPNET software simulation results [13]. The simulation was run using 5 nodes and on bit rate speed of 480 Mbps. They compared the results using a very large packet size of 15250 bytes which is larger than
the maximum size of 4096 bytes used in the Wimedia standard. The work also didn’t specify the DRP option used and didn’t compare it to PCA as well. In addition, it didn’t use the data burst feature in the analytical model and simulation.

There were also several papers that studied and proposed new methods for channel allocation for DRP in the super frame. The paper in [14] proposed a new resource allocation method to avoid collisions between nodes competing for reservation. This method is based on having devices maintain sending and receiving tables to track activities in the neighborhood. In addition, they proposed that bandwidth is allocated for video traffic based on traffic prediction using Normalized Least Mean Square (NLMS) algorithm. In-house simulations were based on using 6 MPEG-6 video traces to analyze the proposed allocation methods. However, those were simulations didn’t compare with the actual performance of the current DRP reservations methods in the standard and how it improves the utilization of the network as the paper suggest.

Two distributed reservation algorithms were also suggested for DRP Wimedia in [15]. One algorithm is called first-fit Algorithm. The first-fit algorithm starts from the first empty place in the super frame in the increasing order of the column priorities in binary search manner. It first looks for available MAS size then it checks the delay requirement for its video flow. The second algorithm is called best-fit algorithm. Best-fit Algorithm starts from the column that has the closest natural service interval to the flows requested delay and searches through the super frame from there. The simulations were done in NS-2 with using highest bit rate of 480 Mbps. In their simulations, the best-fit algorithm showed that it can utilize the wireless medium better and has a lower blocking probability compared with the first-fit algorithm. This work didn’t compare with the actual performance of DRP allocation scheme. It also didn’t consider the burst acknowledgment option.

Another algorithm is also suggested by [16] to improve DRP allocations in Wimedia called Improved Service Interval-based MAS Allocation (ISIMA) algorithm. This algorithm works if maximum service interval delay is less than or equal to 8.192ms,
the traffic is treated as row reservation, otherwise it is treated as a column reservation. If one request only provides the number of MASs without any service level delay requirement, then it belongs to the column reservation. After it decides on either row or column reservation the algorithm will search and allocates first empty MAS for row reservation and from the highest column priority for column reservation. Again the simulations were done in NS-2 and didn't specify the speed rate used. The paper didn't take into account the burst acknowledgement option.

3.1.2 PCA Contention Based Only

The work in [17] studied only the PCA part while focusing on bursty and correlated multimedia traffic. The arrival process is described by a Markov Modulated Poisson Process (MMPP) which is a nonrenewal doubly stochastic process. The rate process been determined by a two state continuous-time Markov chain. The paper has demonstrated the effect of AIFS when traffic load is high and inter-arrivals are highly bursty. However, Simulator wasn't specified to verify their analytical results. The paper used fixed packet size of 512 bytes. In their theoretical simulation, RTS/CTS handshake and burst mode were disabled. In Addition, the simulations were only numerically run to verify and compare different queuing algorithms.

Another paper simulated the PCA option of the Wimedia MAC only through ns-2 simulations and suggested different AIFS and identical contention window parameters to improve the offered throughput in the cluster [18]. The simulations were done on 20 mobile nodes with bit speed rate set to 480 Mbps. Their modified MAC layer with different AIFS can provide better throughput for higher priority traffic. This paper didn't provide any more details about the simulation parameters used like data burst size, packet size and the type of channel used in the simulations.
3.1.3 PCA and DRP Combination Study

In [19] the authors followed the work reported in [17] by using renewal reward theorem to analyze the performance of both PCA and DRP in saturated and unsaturated cases. They used both analytical models and ns-2 simulations to verify their results. The simulations had different percentage of DRP periods up to 50% of the super frame, the rest of the channel was used for PCA. The paper showed that it can provide a much tighter upper bound on the frame service time during the saturated case. However, they also assumed that there is no hidden terminal problem in their simulation scenario. Moreover, it didn’t use the data burst feature in the analytical model and simulations to show the advantages of having such a feature in both the Wimedia and WUSB standard.

The work in [19] has been extended to propose a mechanism to support bursty video traffic to provide better QoS by proposing a hybrid DRP and PCA MAC layer. Their proposal to have two buffers for video traffic. Their simulations through ns-2 were based on 1000 bytes size packets and bit rate of 480 Mbps. Their results showed that the two buffer method can maximize the resource utilization during the DRP periods and minimize the collision probability during the PCA periods [20]. Their method only works during short periodic DRP sessions. The drawback of this method that it requires more memory and their method only works through a certain DRP patterns.

Two more papers analyzed numerically the performance of PCA along with both soft and hard DRP scenarios [21], [22]. The authors used a tri-dimensional discrete time Markov chain. One dimension is for the back-off stage, the second is for the value of the back-off counter and the third is for the delay encountered by DRP transmission or beacon periods. The numerical simulations were done using two bit rates of 200 Mbps and 480 Mbps with setting the packet size to 4096 bytes. Both papers assumed a constant reserved DRP MAS slots in each super frame. In addition, both papers did only numerical analysis to measure the performance of the MAC layer.
Recently another paper modeled DRP as circuit switched traffic with blocking to determine bandwidth utilization and blocking probability. It also modeled the four access categories in PCA type to measure throughput and mean packet delay under non-saturated condition [23]. Numerical simulations were done using smaller packet than the one used in Wimedia of 125 bytes. Again, this paper only did numerical analysis without specifying if data burst feature was used in their model.

3.1.4 Certified WUSB Related Work

In regards to Certified WUSB, there were two experimental field measurements between one host and one device studying the performance of WUSB products. The first paper had the performance of WUSB devices measured and compared using custom designed WUSB nodes [24]. A Software Development Kit (SDK) was used which specifies the WUSB device MAC and Physical detailed specification. Experimental testing was done between two nodes to measure the actual bit rate with varying packet size and burst size as well. The results showed that a larger packet size with the use of burst mechanism can enhance the overall throughput achieved. The paper suggested that a more efficient WUSB host can be designed in a way to increase the performance and achieve higher throughput by handling more data in a given time. The paper didnt specify the distance used between the two nodes. It also didnt specific if the measurements were done in indoor or outdoor environments. In second paper [25], physical measurements in an indoor environment were done between two nodes to measure the Packet Error Rate (PER) with varying speed, distance and power of both nodes. The host received side used in the experiment was a NEC card connected to a laptop. The device transmitter side was Lucidport L800 RDK PCI card connected to PC. Both cards were based on Wimedia Alliance and implemented as WUSB standalone implementations. The packet size was fixed to 1024 Bytes in their experimentations. The paper only measured using three bit speed rates of 53.3 Mbps, 200 Mbps, and 480 Mbps. It showed that less than 3 meters, the speed rate at 480 Mbps can achieve high bit rates with low PER. The PER increases as distance
increase and after 3 meters, the speed rate of 480 Mbps drops dramatically to almost zero. On the other hand, speed rates of 53.3 Mbps and 200 Mbps can achieve high bit rates with low PER for more distance until 10 meters far. This paper didn't specify if immediate or bulk acknowledgement was used. It didn't compare using different packet sizes as well. In Summary, both WUSB papers experiments were only between two nodes and didn't expand to more users in the network.
Chapter 4

Performance Analysis

The simulation functionality is explained and then the performance analysis is done to verify WUSB and Wimedia MAC layer implementations.

4.1 Simulation Software

The Wimedia and Certified WUSB MAC layers were implemented and analyzed with the Network Simulator 2 (NS-2). NS-2 is an open source discrete event simulator used for networking research and developed initially at the University of California, Berkeley. The NS-2 version used in our research is version 2.29 and downloaded the "all-in-one" package from the NS-2 source site [26]. After downloading the package, the simulator was built with "configure" and "make" commands in the source directory.

The NS-2 simulator is an object oriented program consists of two types of hierarchy classes. One is called Otcl. The other is C++. Otcl is an extension of the tcl script language and its the front programming interface where programmers can use it to create and simulate a network topology. Otcl allows programmers to create a network of nodes, defines links between them, define sending and receiving agents, and use widely available network protocols and algorithms already implemented by
others. The programmer can define their own simulation scenarios with the existing programmed network simulation protocols and run them to generate results. However, if the programmer needs to program a new protocol or change algorithms used in existing implemented protocol, the programmer needs to do changes in the C++ hierarchy class of NS-2.

When a node is created in NS-2, the system will automatically create all the default Open System Interconnection (OSI) layers for each node. The focus of our modification resides mainly in the physical, MAC and link layers as show in figure 23

![Diagram of Connectivity Within a local network](image)

Figure 23: Connectivity Within a local network from [27]

The link layer object is responsible for packet fragmentation and reassembly. It also sets the MAC layer header and mapping of the IP address to the MAC address. The changes done in this layer were minimal and it was just few changes to make
sure that the new MAC layer communication works properly with the link layer. The major change that was done in the link layer is the disabling of the Address Resolution Protocol (ARP) mechanism after my simulation initialization. NS-2 is an open source and bugs can be found easily when new changes is implemented over existing ones. So it was found during the debugging phase that the default ARP protocol implementation wasn’t done perfectly and it can generate packet drops in the middle of my simulation. After some debugging in the link layer, when one packet is waiting for ARP reply, another packet which has the same destination address as the first packet arrives; the second packet will overwrite the first packet and send another ARP request at once. This happens regardless of whether the first ARP is timed out or not. I didn’t go to resolve this ARP issue. The workaround that was enabling ARP during the initialization part only and disabling it after initialization period because its causing dropped packet at high speed rate. I searched this issue on several NS-2 discussion forms and saw several problems around ARP in ns-2 which reflects my observation. This workaround didn’t cause any further problems on the overall network simulation.

The MAC layer object used simulates both the Wimedia MAC layer standard and the certified WUSB MAC layer standard. The changes were done to also make sure that sending and receiving packets to and from the adjacent layers are done correctly. For both MAC layers, the original IEEE 802.11e MAC layer for Enhanced Distributed Channel Access (EDCA) source code was extended from [28] to have both DRP and PCA for Wimedia MAC. WUSB MAC was programmed to have by default private DRP with enabling PCA as an option as the original WUSB standard suggests. The physical layer on the bottom is composed of two main objects as shown in figure 23. The channel which simulates the shared wireless medium based on the MAC layer control mechanism. The second object is the MAC classifier which is responsible for receiving, delivering and replicating packets sent over the channel to destination nodes.
4.2 Simulation Process

The process of the simulator program created goes into several blocks until we get the results as shown in figure 24. NS-2 will first run each scenario by first creating a new cluster topology based on the octl scripts run at the NS-2 command prompt. Each script will call different modules during predefined simulation time to generate real time results. The NS-2 program is composed of the network modules and event scheduler. The network modules includes all existing NS-2 modules with the new generated MAC layer modules created for WUSB and Wimedia. The event schedule is used to keep track of all time triggering events in a main event queue. The result of the simulation scenarios generates a real time trace text files containing detail simulation results. The trace files are processed using AWK program to calculate results such as throughput, delay and packet loss percentage for each scenario run. The final step after analyzing the trace file is to display the results in graphical representation. Matlab was used to generate figure to represent generated results.

![Simulation Process Steps](image)

Figure 24: Simulation Process Steps
CHAPTER 4. PERFORMANCE ANALYSIS

4.3 Simulator Settings

The following simulator settings are done in each simulation scenario script to initialize the NS-2 simulator as shown in the code figure 25 above.

- addressType is set as hierarchical in the simulation to enable IP addressing for each node.

- adhocRouting is set to NOAH which stands for No Ad-Hoc Routing. This static routing protocol NS-2 extension is developed to disable any routing related packets [29]. It also disables multi-hop routing. In our simulation we set static routes between nodes in the cluster. This way the source and destination nodes were predefined in the simulation initialization to focus on the analysis of the MAC layer. The NOAH protocol extension source code was taken from [29] and added to the original ns-2.29 simulator after recompiling all existing network models together again.
• llType set to LL representing default link layer.

• macType is either set to the implemented Certified WUSB MAC layer or Wimedia Layer. Either WUSB or Wimedia.

• phyType is set to the wireless physical layer medium.

• ifqType is set to DropTail which is a simple first in, first out queue.

• ifqLen which is the length of each receiving/sending buffer. It's set to 1000 to assume we have enough memory in each node.

• antType is set by default to Omni-directional antenna having unity gain for all mobile nodes.

• propType is set to FreeSpace. FreeSpace type assumes ideal propagation conditions and there is clear line of sight between the two nodes. The maximum range set is 10 meters so if a receiver is within a circle of 10 meters, it receives the packets. If it's outside the 10 meters range, it starts losing packets.

• channel is set to WirelessChannel to support the medium access mechanisms of MAC objects on the sending side of the transmission.

• topoInstance is used by default to provide a node with a handle and link it to the created topography network object.

• wiredRouting is set to OFF since we are not using a base station.

• agentTrace is set to ON to enable tracing at agent level which helps in debugging.

• routerTrace is set to OFF since we are using NOAH static routing without the need to have routing messages sent for static node scenarios.

• macTrace is set to ON to enable tracing at the MAC level for generate trace results.
4.4 Simulation Assumptions

The following assumptions were made in the simulations:

- The effect of channel errors is ignored in the simulations. In addition, UWB propagation and fading channel parameters were not included since they are not currently available for OFDM WUSB. The time to research and generate such parameters will take considerable time and can be considered in a separate project. We are currently using only Free Space channel propagation model in our simulation.

- No nodes are operating in power save mode. All nodes assumed to have enough power to remain active throughout the simulation period.

4.5 Optimal Performance Analysis

To reflect the performance of the Certified WUSB, we had to implement the Wimedia MAC Layer and compare both standard performances for two main reasons:

- Certified WUSB MAC layer takes most of its functionality from Wimedia MAC layer in terms of reusing the same super frame structure and defining its own private DRP method based on the Wimedia hard DRP type. In addition, it uses the exact same PCA methodology in Wimedia as an option that can be enabled.

- As shown in the related work section in this chapter, there is not enough study on Certified WUSB by itself but there are many researches and work that has been done analyzing the Wimedia MAC layer standard which can be compared with.

In order to verify the performance of the Wimedia and WUSB MAC layer, theoretical analysis has been done first to make sure the outcome of the NS-2 simulation agrees with the theoretical numbers. Since the PCA MAC layer is derived from the EDCA rules of 802.11e which are already been reused from the implemented NS-2
module [28]. The only difference that we changed PCA MAC layer to have four Priority Classes of Audio, Video, Best Efforts and Background whereas EDCA 802.11e uses seven. Therefore, theoretical analysis was done at the optimal performance and during DRP reservation phase only by computing results at Wimedia hard DRP and comparing it to what was achieved by the Private DRP in WUSB. Table 9 shows a summary of the common parameters between data packets. In addition, the beacon period of minimum of 4 MAS period will include a ”SIFS + Guard” Time at the end of the beacon packet. Note: D is the time between the start of the MMC and the start time of the current packet that must be received as defined in WUSB standard for calculating Guard Time parameters [9].

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFS</td>
<td>10µs</td>
</tr>
<tr>
<td>MIFS</td>
<td>1.875µs</td>
</tr>
<tr>
<td>Standard Preamble (Std_Prem)</td>
<td>9.375µs</td>
</tr>
<tr>
<td>Burst Preamble (Burst_Prem)</td>
<td>5.625µs</td>
</tr>
<tr>
<td>Wimedia Guard Time (Wimedia_GT)</td>
<td>12µs</td>
</tr>
<tr>
<td>WUSB Guard Time (WUSB_GT)</td>
<td>1µs where D ≤ 25ms</td>
</tr>
<tr>
<td></td>
<td>2µs where 25ms ≤ D ≤ 50ms</td>
</tr>
<tr>
<td></td>
<td>3µs where D ≥ 50ms</td>
</tr>
<tr>
<td>Transaction Turn Time (Trans_TT)</td>
<td>SIFS + Guard Time</td>
</tr>
<tr>
<td>Packet Header (Pkt_Hdr)</td>
<td>3.75 µs</td>
</tr>
<tr>
<td>MAS</td>
<td>256µs</td>
</tr>
<tr>
<td>Minimum Beacon Period</td>
<td>4µs</td>
</tr>
<tr>
<td>Super Frame Period</td>
<td>256 MAS</td>
</tr>
<tr>
<td>Maximum Wimedia Packet Size</td>
<td>4095 Bytes</td>
</tr>
<tr>
<td>Maximum WUSB Packet Size</td>
<td>3584 Bytes</td>
</tr>
</tbody>
</table>

Table 9: Common Standard Parameters for WUSB and Wimedia MAC.

4.5.1 Wimedia Theoretical Analysis

To achieve the optimal saturated performance in Wimedia MAC layer without taking into consideration any channel impairments, we calculated the throughput achieved
between two nodes at close distance between each other. We assumed that a connection is already established between the two devices and beacons were exchanged. First, the analysis will be done on the case where there is an acknowledgement for each data packet sent. The source node or host will start sending data at different rate to the device with having only an immediate acknowledgment sent back to the source node for each received packet. In addition, figure 26 shows the channel components and delays between two nodes in a super frame packet that will be used in the calculation to find the actual throughput T_a as per equation (8)

$$Throughput\,Percentage = \frac{T_a}{PhySpeed}$$

(8)

Where T_a is the actual received throughput and PhySpeed is the channel speed. The Actual time it takes to transmit each data payload ($Data\,Transmit$) of packet depends on the size of the packet ($Pkt\,Size$) and the physical speed of the channel as calculated in the following equation

$$Data\,Transmit = \frac{Pkt\,Size}{PhySpeed}$$

(9)

Based on the components described for one transaction, the time it takes for a transmission is the same in both direction based on figure 26. The transaction period can be calculated from table 9 and depending on the data packet size, ACK packet size and channel speed as following:

$$TransactionPeriodOutgoing(\text{Incoming}) = Strd\,Prem + Pkt\,Hdr + Data\,Transmit + SIFS + W\,media\,GT + Strd\,Prem + Pkt\,Hdr + ACK\,Transmit + SIFS + W\,media\,GT$$

(10)

After that the number of transaction period ($Num\,Trans$) in a super frame can be calculated as following:

$$Num\,Trans = \frac{MAS}{TransactionPeriodOutgoing(\text{Incoming})} * 255$$

(11)
The actual throughput can be found by calculating how much percentage the actual data transaction takes from the super frame.

\[T_a = \frac{Phy_Speed \times Num_Trans \times Data_Transmit}{256} \times MAS \]

(12)

Figure 26: (a) Wimedia Immediate ACK Outgoing Data Transfer. (b) Wimedia Immediate ACK Incoming Data Transfer.

Second analysis will be done on the case where there is a burst acknowledgement for a data burst size of 16 data packets which represent the maximum case. The source node or host will start sending data at different rate to the device with having only one burst acknowledgment sent back to the source node after the last received packet in one transaction. In addition, figure 27 shows the channel components and delays between two nodes in a super frame packet. Based on the components described for one transaction, the time it takes for a transmission is the same in both direction based on figure 26 for Wimedia burst data phase. The transaction period
can be calculated from table 9 and depending on the data packet size, ACK packet size and channel speed as following:

\[
\text{TransactionPeriodOutgoing(Incoming)} = \text{Strd.Prem} + \text{PktHdr} + \text{DataTransmit}
+ 15 \times (\text{MIFS + Wimedia_GT + Burst.Prem}
+ \text{PktHdr} + \text{DataTransmit})
+ \text{SIFS + Wimedia_GT + Strd.Prem + PktHdr}
+ \text{BurstACK_Transmit}
+ \text{SIFS + Wimedia_GT}
\]

(13)

Note that the burst preamble is used only for bit rates higher than 200 Mbps. For any lower bit rate, the standard preamble is used. Finally, the transaction period can be plugged in equation (11) to find the total number of transaction periods to be used in calculating the actual throughput in equation (12).

The theoretical values for both immediate ACK and burst ACK cases are shown in figure 28 for all supported bit speeds and fixing the packet size to the maximum value of 4095 bytes. The burst size of 16 is used to simulate the optimal performance case theoretically. It can be noticed from the plot that the packet delivery ratio is a lot higher for the burst ACK case which improves throughput of the network considerably. The reason is that when using the burst case, the delay between data packets sent is smaller and set to MIFS instead of SIFS for the immediate ACK case. In addition, we are sending one ACK packet back for each 16 successfully received. Moreover, it can be from noticed that as the data rate used is increased, the actual throughput received is lower. For example, when the speed rate is set to 480 Mbps, the actual throughput received is around 336 Mbps which is 70% of the original speed as shown in the figure. In figure 29, theoretical results were plot for both cases again but this time with fixing the data speed rate to 480 Mbps and changing the packet size to all supported packet sizes for Wimedia. It shows from the plot that as the packet size used is increased, the higher the packet delivery ratio and the higher actual
throughput received. This shows the effect of the packet header size ratio to the actual data payload. Therefore, it’s recommended to send data at the maximum packet size rate to achieve the highest throughput assuming a channel without errors in this case.
Figure 28: Theoretical Wimedia Packet Delivery Ratio with All Supported Bit Rates

Figure 29: Theoretical Wimedia Packet Delivery Ratio with All Supported Packet Sizes at 480Mbps

4.5.2 WUSB Theoretical Analysis

To achieve the optimal saturated performance in WUSB MAC layer without taking into consideration any channel impairments, the throughput was calculated between two nodes at close distance between each other. For example, 1 meter apart. We assumed that a connection is already established between the two devices and beacons were exchanged. First, the analysis will be done on the case where there is an acknowledgement for each data packet sent. The source node or host will start
sending data at different rate to the device with having only an immediate acknowledgment sent back to the source node for each received packet. In addition, figure 30 shows the channel components and delays between two nodes in a super frame packet.

![Diagram](image)

Figure 30: (a)WUSB Immediate ACK Outgoing Data Transfer. (b)WUSB Immediate ACK Incoming Data Transfer.

Based on the components described for one transaction, the time it takes for a transmission is different in both directions based on figure 30. The reason is that the acknowledgement for a data packet received from a device is done through the next MMC packet. The MMC packet is calculated based on the smallest data rate of 53.3 Mbps.
\[MMC_{\text{Pkt}} = Strd_{\text{Prem}} + Pkt_{\text{Hdr}} + MMC_{\text{Payload}} \]
\[= 9.375\mu s + 3.75\mu s + 3\mu s \]
\[= 16.125\mu s \] (14)

The transaction period can be calculated from table 9 and depending on the data packet size, ACK packet size and channel speed as following:

\[Transaction_{\text{Period Outgoing}} = MMC_{\text{Pkt}} + SIFS + Strd_{\text{Prem}} + Pkt_{\text{Hdr}} + Data_{\text{Transmit}} \]
\[+ SIFS + WUSB_{\text{GT}} + Strd_{\text{Prem}} + Pkt_{\text{Hdr}} + ACK_{\text{Transmit}} + SIFS + WUSB_{\text{GT}} \] (15)

\[Transaction_{\text{Period Incoming}} = MMC_{\text{Pkt}} + SIFS + WUSB_{\text{GT}} + Strd_{\text{Prem}} + Pkt_{\text{Hdr}} + Data_{\text{Transmit}} + SIFS + WUSB_{\text{GT}} \] (16)

Finally, the transaction period can be plugged in equation (11) to find the total number of transaction period and then calculating the actual throughput in a similar way to the Wimedia part in equation (12).

Second analysis will be done on the case where there is a burst acknowledgement for a data burst size of 16 data packets which represent the maximum case. The source node or host will start sending data at different rate to the device with having only one burst acknowledgement sent back to the source node after the last received packet in one transaction. In addition, figure 31 shows the channel components and delays between two nodes in a super frame packet.

Based on the components described for one transaction, the time it takes for a transmission is different in both directions based on figure 31. The reason is that the burst acknowledgement for a data packet sent from a device is done through the next MMC packet sent. The MMC packet is calculated as in equation (14) based on the
smallest data rate of 53.3 Mbps. The transaction period can be calculated from table 9 and depending on the data packet size, ACK packet size and channel speed as following:

\[
\text{TransactionPeriodOutgoing} = \text{MMC_Pkt} + \text{MIFS} + \text{Strd_Prem} + \text{Pkt_Hdr} + \text{Data_Transmit} + 15 \ast (\text{MIFS} + \text{Burst_Prem} + \text{Pkt_Hdr} + \text{Data_Transmit}) + \text{SIFS} + \text{WUSB_GT} + \text{Strd_Prem} + \text{Pkt_Hdr} + \text{BurstACK_Transmit} + \text{SIFS} + \text{WUSB_GT}
\]
(17)
TransactionPeriodIncoming = MMC_Pkt + SIFS + WUSB_GT
 + Strd_Prem + Pkt_Hdr + Data_Transmit
 + 15 * (MIFS + Burst_Prem + Pkt_Hdr + Data_Transmit)
 + SIFS + WUSB_GT

Finally, the transaction period can be plugged in equation (11) to find the total number of transaction periods and then calculating the actual throughput in a similar way to the Wimedia part in equation (12).

The theoretical values for both immediate ACK and burst ACK cases for WUSB were plot in figure 32 for all supported bit speeds and fixing the packet size to the maximum value of 3584 bytes. The burst size used is 16 to simulate the optimal performance cases theoretically. It can be noticed from the plot that the packet delivery ratio is a lot higher for the burst ACK case which improves throughput of the network considerably. The reason is that when using the burst case, the delay between data packet sent is smaller and set to MIFS instead of SIFS for the immediate ACK case. In addition, we are sending one ACK packet back for each 16 successfully received. Outgoing data packets can have slightly more delays since it requires an actual acknowledgement sent back from the destination device. On the other hand, incoming data packets as shown in figure 32 require less delays since the acknowledgement can be put in the next MMC sent. Moreover, it can be from noticed that as the data rate used is increased, the actual throughput received is lower. For example, when the speed rate is set to 480 Mbps, the actual throughput received is around 384 Mbps which is 80% of the original speed as shown in the figure. In figure 33, theoretical results were plot for both cases again but this time with fixing the data speed rate to 480 Mbps and changing the packet size to all the support packet sizes for WUSB. It shows from the plot that as the packet size used is increased, the higher the packet delivery ratio and the higher actual throughput received. This shows the effect of the packet header size ratio to the actual data payload. Therefore, its recommended to send data at the maximum packet size rate to achieve the highest
throughput assuming a free error channel parameters in this case. In addition, there is small difference in the packet delivery ratio achieved between incoming and outgoing data received in WUSB due to the use of MMC packets.

Figure 32: Theoretical WUSB Packet Delivery Ratio with All Supported Bit Rates

Figure 33: Theoretical WUSB Packet Delivery Ratio with All Supported Packet Sizes at 480Mbps
4.5.3 Simulation Analysis under Perfect Conditions

The simulated MAC layer for both Wimedia and WUSB was programmed in NS-2 and verified by comparing the output results from the simulation to the optimal theoretical results as shown in figure 34. The curves in blue color represent the theoretical results and the curves in red represent the simulated results. The figure shows the packet delivery ratio as the bit rate increases for both Wimedia and WUSB. It shows that there is a small difference between the theoretical and simulated values which is reasonable. These simulated results represent an average of the running output of five simulations to find an accurate representation. The simulation scenario used is the same as the ones used in the theoretical calculation where only one source node is sending to a one meter far destination at full capacity without having DNTS slots to simulate the saturated case. The second figure shows the packet delivery ratio again but by fixing the bit rate to 480 Mbps and varying the packet size. Figure 35 shows that simulated and theoretical curves are very close to each other which helps in verifying the protocol side of the programmed MAC layer for both standards.

Figure 34: Simulation Comparing Wimedia and WUSB Packet Delivery Ratio with All Supported Bit Rates
We can also use both figures to compare both standards. From figure 34, it can be noticed that when the burst mode is used, WUSB achieves higher actual throughput than Wimedia. The main reason behind that WUSB uses shorter time guides which is 1 us in this case comparing to 12 us for Wimedia. The only addition in WUSB is that it adds MMC packet for each transaction to insure data transfer synchronization. Since the time needed to transmit the preamble and header does not vary with payload data rate it constitutes a proportionally larger portion of the packet for both WUSB and Wimedia sent at higher data rates. This explains why the efficiency decreases with the nominal data rate, and why burst preambles are important at high data rates. On the other hand, when burst mode is disabled and immediate ACK is used, the Wimedia MAC layer achieves slightly higher throughput than WUSB. The reason behind that WUSB also adds an extra MMC packet for each data packet sent which adds up the header for WUSB. Therefore, WUSB efficiency is achieved in burst mode and using large packet sizes.

Figure 35: Simulation Comparison Wimedia and WUSB Packet Delivery Ratio with All Supported Packet Sizes at 480Mbps
4.5.4 Simulation Analysis under Connection Failures

The simulated MAC layers were also verified against packet loss parameters. In order to achieve that without using experimental channel impairment, an average random packet loss routine was added in the physical layer side in NS-2. The simulation scenario used was again between two nodes one meter apart. The source node was sending to the destination at different bit rates. The DNTS slot was disabled in this scenario to verify simulations under saturated case. The theatrical results with average packet loss of 10% were plotted in figure 36 where wireless medium can achieve such a high average packet loss rate. The simulated results were plotted and it can be shown in figure 36 that its close to the theoretical value which verifies again the functionality of both MAC layer simulations. It can be noted that WUSB still achieve higher actual throughput in burst mode than Wimedia. It achieves lower throughput when its set to use immediate ACK.

![Figure 36: Simulation Comparing Wimedia and WUSB Packet Delivery Ratio with All Supported Bit Rates under 10% Packet Loss](image-url)
Chapter 5

Protocol Improvements to Certified WUSB

5.1 Enabling Priority Option for Delay Sensitive Applications

5.1.1 Background and Motivation

Wireless video streaming over UWB radio is one of the great advantages that Certified WUSB can offer. One of the demonstrations that were done was using a Nokia 7710 phone as a UWB transmitter and a projector as a UWB receiver. The throughput measured near 200Mbps is a proof that UWB can offer great opportunity for short range wireless video streaming [30]. Certified WUSB has been adopted by several major players in the field of wireless home networks such as Intel, D-Link, Samsung, DELL, and Belkin. Two devices have been developed for WUSB. One is HWA which enables a USB 2.0 device to act like a host device and send MMC control packets. The other device is called DWA which enables other peripherals to participate in the WUSB network [9]. Therefore, any USB 2.0 webcam or camera can be connected wirelessly to a UWB WUSB network through the use of wireless DWA adaptor which is available in the market. Those WUSB cameras and webcams can be connected to a PC having an HWA adaptor installed. The webcam or camera can be remotely
controlled via a smart phone like IPHONE through the wireless WAN (see Figure 37). Currently, there are some IPHONE applications designed to remotely control those security systems like ICAM, IVID and ISPY [31].

Figure 37: Security and Medical Monitoring Systems in a Wireless Home Network

Those security and medical monitoring systems are triggered when certain limits are reached or when sensors change status to signal an urgent situation such as home intrusion or fire accident. The security system will automatically transmit an alarm or video message to selected individuals by telephone, text message, or email. In order for those video monitoring system to deliver its data over the wireless network, it might need to use considerable amount of the bandwidth during urgent times to guarantee service delivery within small time. However, this bandwidth will be wasted if those systems reserve this amount of bandwidth for continuous time and there is no serious event happening and requires attention. Currently, WUSB is commonly
used to provide high bit rate within the home environment. Its standard specifies that each node has the ability to reserve half of the current bandwidth for use in private DRP which could become a bottleneck to deploy practical multimedia streaming service [32]. Moreover, some of those video services have more urgency like security and medical system monitoring which has no support in WUSB standard.

5.1.2 Proposed Model

In WUSB, the reservation node which sends those MMC control message allow interrupts from other node via allocation slot called DNTS. This DNTS window allows other devices to send connect requests to the host node asynchronously via Slot-ted ALOHA mechanism. The host which reserves the WUSB channel will randomly move the locations of the DNTS window over different MAS slots over time to allow connection opportunities. The new node that has urgent data will try to join the wireless network by waiting for acknowledgement from the host node to establish a connection. If the new node fails to receive acknowledgements to join the channel, it performs retransmissions. The WUSB standard defines a maximum of three retransmission requests for each 100 milliseconds interval. The new node then negotiates to reserve MAS slots by checking the MAS available information sent via the beacons. Then the new node will ask to reserve MAS slots by replying back to the host reservation node that established the wireless channel initially. This process can take considerable time preventing data from being transmitted; obviously a serious limitation. The second weakness is when all MAS slots are already taken and used when a security webcam detects an emergency situation. In WUSB private DRP, all slots are hard reserved and only available to the reserved node as in hard DRP and set in the standard as SAFE MAS slots. Therefore, there is no process to free MAS slots for higher priority application. This way, if a security monitor wants to send video data to the controller PC and the bandwidth is already allocated to the maximum for existing system, the security monitor will be blocked and it needs to wait until MAS slots are available.
In order to provide priority option for WUSB to support security and medical systems that use private DRP, we propose to change the DRP type to soft DRP instead. The current WUSB standard can be tweaked to support that. We propose two changes. First change is to enable PCA in WUSB MAC which is currently an option available in the standard and is disabled by default [9]. The command used to set the PCA availability option is called Set IE which is set in the beacon configuration. Second change is having the unsafe bit in the DRP Control field of a DRP Information Element configuration of the Wimedia MAC standard set to zero [6]. A device that has the unsafe bit set may be preemption by other devices to give up the extra MASs it has reserved. The MAC allows unsafe reservations in soft DRP so that devices can take advantage of the full capacity of the super frame whenever possible. The two changes will have PCA and soft DRP enabled in WUSB. Therefore, the node that provides security or medical monitoring will make the soft DRP reservation while the rest of the nodes will continue competing for bandwidth according to PCA rules. This way the reserved node which is the host in this case has no delay if soft DRP is used and can access the channel before other regular video applications.

5.1.3 Simulation Results

The simulation was done using the extended 802.11e EDCA model implemented NS-2 to model WUSB MAC PCA option by enabling four priority levels instead of seven [28]. The used simulation parameters taken from the WUSB standard are listed in Table 10

The traffic model for video and voice applications are usually bursty in nature. However, due to the fact that NS-2 only has CBR supported and our simulation purpose is around channel access characteristic only, CBR traffic mode is used to simulate both video and voice stream traffic at a constant rate. The first scenario was done in a WUSB private DRP network by setting the maximum bandwidth to 100 Mbps and has three transmission connections between nodes is set at a distance of 3 meters. The fist transmission will simulate webcam video traffic with a speed of 30 Mbps.
The second transmission will simulate HDTV video traffic with a speed of 50 Mbps. The first two transmissions will start together at time 0 seconds of the simulation as shown in Figure 38. In the figure, throughput of each transmission is normalized to the maximum bandwidth of 100 Mbps. The third transmission represents traffic coming from a security monitor node with a speed of 50 Mbps which starts to send at the 5th second of the simulation time line. Since there is no priority handling in WUSB private DRP, the first two transmissions are allocated bandwidth according to its initial requirement. Also, both transmissions are using less than half of the maximum bandwidth which means that the allocated slots are set to SAFE mode in WUSB and they can’t be requested by another node until the end of their transmission. Therefore, the third transmission has only third of the bandwidth available and that’s why the curve representing third transmission is allowed a bit speed rate of 25-28 Mbps as shown in Figure 38. The issue with this scenario is when a security alarm is triggered within a home, it can only reserve portion of the bandwidth available and the video will be sent at lower quality. In addition, it’s noticed that there is about 300 to 400 ms delay to establish the third transmission and allocation of the rest of the MAS slots are done.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Connections</td>
<td>3</td>
</tr>
<tr>
<td>Transmission Range</td>
<td>2 meters</td>
</tr>
<tr>
<td>Transport Type</td>
<td>UDP</td>
</tr>
<tr>
<td>Traffic Type</td>
<td>CBR</td>
</tr>
<tr>
<td>Packet Size(with headers)</td>
<td>3584 Bytes</td>
</tr>
<tr>
<td>MAS</td>
<td>256 µs</td>
</tr>
<tr>
<td>SIFS Time</td>
<td>10 µs</td>
</tr>
<tr>
<td>Guard time</td>
<td>3 µs</td>
</tr>
</tbody>
</table>

Table 10: NS-2 Simulation Parameters

The second scenario would be similar to the first scenario except that first two transmissions will use all the 100 Mbps bandwidth equally. Then when a third transmission starts later, it will find no available MAS slot which explains why the third transmission won’t start and will be blocked from transmission even though it has a
The third scenario would be to change the private DRP to have both soft DRP and PCA enabled. The initial configuration would have the security monitor node set to be the soft DRP reservation owner without sending any data. Then the bandwidth will be available for contention based node part of the PCA type. This way similar to the first scenario, the first two transmissions will start at time 0 in the simulation with voice transmission set to 30 Mbps and video transmissions will be set to 50 Mbps. Both video transmissions will use the second PCA priority parameters set in table 1. Then after five seconds, the security monitor node will be triggered and starts to send data at a speed of 50 Mbps. In soft DRP reservation, the AIFS time is set to zero and no back-off timer is initialized before the third transmissions. This way it will minimize any delays. This way third transmission will use all the 50 Mbps speed right away since it will start transmission without delays and before any

Figure 38: Throughput Simulation based on WUSB Private DRP MAC
of the other priorities set for PCA. It can be noticed from Figure 39 that the first two transmissions will share the rest of the available bandwidth based on PCA rules. The results confirm that the security monitor node has better possibility of traffic to access the channel more compared with the ones with larger contention windows.

![Figure 39: Throughput Simulation Comparison based on PCA and Soft DRP MAC](image)

5.2 Adaptive Packet Size Host Extension to Reduce Packet Loss

5.2.1 Background and Motivation

Wireless networks are more prone to packet loss than wired networks. According to the WUSB standard, the wireless average bit error rates can be as high as 10% for
1000 bytes packets [9]. This significant average of packet loss can have big affect on the QoS that voice and video multimedia applications wants to offer through the wireless medium. One of the common ways to decrease the packet loss rate is through retransmissions. The UWSB standard specifies that retransmissions can occur no more than three times for every 100 ms of data transfer. In addition, the rate of retransmission can be controlled through the host device. However, retransmission in the wireless medium can cause more delays and can reduce the overall throughput of the network. An acceptable one way voice signal delay is less than 150ms according to ITU-T G.114 [33] and packet loss should be kept below 10% according to ITU-T P.862 [34]. In addition, acceptable one way video delay according to ITU-T H.261 is less than 400ms and acceptable packet loss is less than 10% [35].

One important aspect found when analyzing WUSB MAC layer performance while varying packet size that the packet loss rate decrease when using small packet sizes. Figure 40 shows the packet loss rate at all supported packet sizes. The simulation was done with two nodes at speed rate of 100 Mbps. In addition, simulations were run five times to get accurate approximate of the total packet loss in this scenario. It can be noticed that using smaller packet sizes achieves the lowest total packet loss, the reason is that when smaller packets is lost, the retransmission is done on less data than when using larger packet sizes. This way more data is received at the destination node and the lost packet is percentage is lower.

Another paper found in literature suggest the need for an intelligent streaming application to analyze the delay pattern for packet with different length which can be useful in adjusting application level framing under different network condition to optimize the wireless network utilization [36]. Therefore, a mechanism is needed to adjust the packet rate used to reduce overall network packet loss percentage.
5.2.2 Proposed Model

Our proposed model is to have the bit speed rate set at the required data rate for an application without reducing that speed and adaptively changing the packet size sent into the channel. There are two reasons behind fixing the data rate at the requested speed rate. One is that when sending at the highest requested data rate, multimedia application can achieve the highest possible throughput for its service to be sent without delays effecting QoS and help in achieving the highest utilization of the network bandwidth. Another reason found through research on wireless LANs that transmitting at the highest possible data rate can minimize the energy per bit consumed which means can help increase the life time of the device or host in the cluster [37].
Therefore, our proposed model is based on having the host change the supported packet size during the data transfer. The host has advantage of changing bit rate and packet size support during the channel life through beacons. This advantage can be used to adopt an adaptive method to change the used packet size depending on the measured packet loss. The host functionality can be extended either at the MAC layer or at the application layer to program adaptive packet size change routine. In our simulation, we added this routine at the WUSB MAC layer in NS-2 as an extra module. An example of the functionality can be simplified in diagram 41. A host can start sending data at the requested bit rate speed and starting at maximum packet size for example at 3584 bytes supported in order to achieve the highest throughput. Then during the data transfer, the host will keep track of the number of packets were lost over the last period of 10 superframes to calculate the average packet loss percentage. The interval of 10 super frames was chosen by trial and error. Once the percentage of the average packet loss becomes at 10%, the host will reduce the current packet by a 512 byte interval to a new packet size of 3072 bytes. The host will then send back notification in the next beacon period in its IE part that the new packet size is 3072 bytes and using the same reservation MAS slots periods. The host will recalculate the average packet loss achieved for that particular data transfer and if the packet loss doesn't go below the 10% value before the next beacon period, another packet size reduction will be done. This process will continue until the lowest possible packet size of 512 bytes. As shown in diagram 41, if the host notices that average packet loss rate is lower than 10%, then it will start increasing the packet size until it reaches the original one. This way if packet loss is reduced, it can still try and achieve the highest network throughput by increase the packet size back to its original setting.

5.2.3 Simulation Results

The WUSB MAC layer was extended to add a routine to calculate the packet loss rate at the host side only. This addition required to keep track of static variable of the current packet loss rate value which is calculated by dividing the number of bytes
was lost in the last 10 super frames with the total number of bytes received in the last 10 super frames. The scenario used in the simulation is between two nodes with one transfer between a host and device with speed rate of 100 Mbps and using the maximum packet size of 3584 bytes. The limitation of the packet loss was set to 10%. The channel impairment assumed to be negligible in this case. The simulation was run for 100 seconds five times to find the average packet size. This figure 42 shows two curves, one without the adaptive packet size method and one with. It shows that maximum packet size achieved during the simulation for the host adaptive packet size mechanism try to always stay at 10% packet loss mark which helps in meeting the QoS criteria set for both video and voice in the ITU standards without reducing the actual bit rate speed.
CHAPTER 5. PROTOCOL IMPROVEMENTS TO CERTIFIED WUSB

5.3 Dynamic Host Backup Selection (DHBS) Protocol in Certified WUSB

5.3.1 Background and Motivation

The WUSB MAC layer architecture is all around having a host to control its devices in its cluster to regulate the allocation of network resources and manages all the neighboring devices. Therefore, presence and proper functioning of the host is very essential. User mobility and the channel conditions of the wireless environment could prevent the host from being always available to service the established wireless channel. When implementing the WUSB service in the wireless home environment, some unforeseeable problems such as the failure of the host, the loss of connectivity...
between the host and other devices because of the network topology change or mobility will bring the WUSB cluster network to a complete halt [38],[39]. A backup plan is needed to prevent that from happening.

5.3.2 Proposed Model

One possible procedure to introduce redundancy in a WUSB cluster is to have a backup host to maintain the process of the cluster communication in case of the original host failure. Since the existing WUSB standard doesn't provide the criteria of selecting such a backup host and the procedure of how to reorganize the network [9], we propose a method called Dynamic Host Backup Selection (DHBS). This method relies on the availability of self beaconing devices around the host which have the full implementation of the WUSB MAC layer and can perform beaconing.

The original host can create a list of neighbors of only self beaconing devices. This host can find if the device is a self beacon device from the connection notification message attributes if its set to 10 bit value as per the UWSB standard. The backup host selection will depend on a new algorithm we suggest. After research in the WUSB standard, we came up with the following parameters that are important to select the best candidate to be the backup host. Those criteria are listed in table 5.3.2 and are part of a backup weighting function. The first parameter is that the backup host should have enough energy to support the existing channel. The second parameter is that the self beacon device with the highest number of matching neighbors as the original host neighbors should have an advantage. The third parameter is CPU indicator which indicates the processing capability of the device.

The backup weighting function can be calculated as following:

\[
Backup_Weight = Power_Level + Number_Neighbors + CPU_Indicator \tag{19}
\]

The original host will choose the self beacon device with the highest weighting
CHAPTER 5. PROTOCOL IMPROVEMENTS TO CERTIFIED WUSB

backup function value as its backup host. If more than one device has equal values, then the self beacon device with the longest channel lifetime will be chosen as the host backup. Once the backup host is selected, it will keep track of all the neighboring devices. In fact, self beaconing device keep track of all neighbors anyways to help prevent from the hidden terminal problem from occurring. If no beacons are received from the original within 4 super frames, then the backup host will come into play and support the existing cluster.

<table>
<thead>
<tr>
<th>WeightParameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Level</td>
<td>0 = Low</td>
</tr>
<tr>
<td></td>
<td>1 = Medium</td>
</tr>
<tr>
<td></td>
<td>2 = High</td>
</tr>
<tr>
<td>Number of Matching Host Neighbors</td>
<td>1-127 device</td>
</tr>
<tr>
<td>CPU Capability Indicator</td>
<td>0 = Low</td>
</tr>
<tr>
<td></td>
<td>1 = Medium</td>
</tr>
<tr>
<td></td>
<td>2 = High</td>
</tr>
</tbody>
</table>

Table 11: Parameters in Backup Weighting Function of the DHBS Protocol

5.3.3 Simulation Results

The verification for the DHBS protocol has been done in a mobility scenario. An existing random mobility model was used in NS-2 to have each node choose a random destination and moves towards it with a random velocity. After reaching the destination, the node stops for a duration defined as a pause time parameter. After this pause, it chooses again a random destination and repeats the whole process again until the end of the simulation. We choose a scenario of 11 nodes. However, their initial location was done as in figure 43 where most of the neighboring devices are about 9 to 10 meters away from the host device. This initial location helps in speeding the simulation to verify when the DHBS protocol will execute. The host node speed was set to 10 meters/second in opposite direction from the location of all its cluster devices. The rest of the ten nodes were set to be static to simplify the simulation. Again, we assumed no channel impairment and burst mode was enabled for all nodes. Two of the nodes are set to be sending data at speed of 100Mbps and packet size of
3584 bytes. One data transfer is from node 7 to node 9. The other data transfer is from node 4 to 5. Looking at figure 43 and assuming all nodes have medium level power, the obvious choice for the backup host node is node number 1 which has the same number of neighbors as the host representing the maximum. Node 1 achieves the highest value in the weighting function.

![Figure 43: Mobility Scenario used to verify DHBS protocol](image)

The simulation was run for 100 seconds. One plot in figure 44 shows the average delivery ratio for the both nodes sending at 100Mbps each. The curve doesn’t show a sign of handover between the original mobile host and the backup host node 1. The reason is that both transmissions are happening between other devices. Only the beaconing is lost for a period of 4 super frames. This means that during that time, no other node can join the cluster. Also synchronization won’t be an issue since the four nodes that are implementing the data transfer use their MMC packets to
synchronize their clocks which show how MMC packets are an advantage again in WUSB. Figure 45 shows the average delay occurred during 100 seconds simulation time, again it doesn’t show any significant impact of delay change during the handover change which happens around 10 seconds mark.

Figure 44: Packet Delivery Ratio Results with Mobility Scenario for DHBS Verification

Figure 45: Average Delay Packet Results with Mobility Scenario for DHBS Verification
Chapter 6

Conclusion and Recommendation for Future Work

This thesis concentrates on the issues associated with WUSB technology to provide QoS in the wireless home networking environment. Performance of the WUSB MAC standard has been analyzed in detail and compared to Wimedia standard. Our comparison shows that WUSB MAC gives a higher throughput to support multimedia service than Wimedia. In addition, using the MMC packets, WUSB can provide a better synchronization mechanism than Wimedia.

Three main extensions and improvements of the WUSB standards have been proposed. Enabling priority in WUSB was proposed by using Soft DRP and enabling the optional PCA functionality in the standards can help to support delay sensitive application like security and medical monitoring systems in the WPAN. In addition, an adaptive packet size change method has been proposed to be added at the host side to help reduce the packet loss percentage in the network. Simulation results showed that the suggested method reduce the packet loss to the desired level with minimal effect on average network throughput and delay. A backup host selection mechanism called DHBS has been proposed to add redundancy in the cluster. Simulation results prove that DHBS helps devices in the cluster maintain the same performance during host mobility or topology changes.
Further extensions and future work leading our in-depth research can be carried out in the following directions. One directing around the bursty nature of video and voice real time applications, we suggest to extend the NS-2 WUSB MAC model to add a VBR source traffic such as the MPEG-4 video traffic generator contributed by [40]. This source traffic needs a traffic shaper as well to regulate traffic by inputting a maximum and average bit rate supported.

Another extension to the work presented in this thesis is to add channel impairment. One addition would be to analyze the WUSB private DRP performance with a shadowing channel. The main reason to consider a shadowing channel is that in an indoor environment. Large scale fading due to shadowing has more impact to the packet delay than that of fast fading due to multi path fading [21]. Moreover, more experimentation work should be done to measure the actual performance of UWB OFDM signals in indoor environments to get a better understanding of the UWB OFDM channel characteristics. There has been experimental channel measurement work done using UWB Impulse response physical layers but not using UWB OFDM physical layers [41], [42].

Finally, we recommend comparing all the work that has been done on resource allocations in DRP to find which one is more suitable for private DRP in WUSB and extend it to handle mobility changes [14], [15], [16].
Bibliography

[37] B. Greenstein, A. Sheth and D. Wetherall, “Demystifying 802.11n power consumption”, USENIX HotPower 2010

Media UWB MAC Protocol”, Proceedings of IEEE international Conference,
September, 2005

[40] A. Matrawy, I. Lambadaris, and C. Huang, “Mpeg4 Traffic Modeling Using the
Transform Expand Sample Methodology”, IEEE International Workshop on Net-

[41] S.S. Ghassemzadeh, V. Tarokh, “UWB path loss characterization in residential
environments”, Radio Frequency Integrated Circuits (RFIC) Symposium, 2003,
pp 365-368, 2003

[42] L. Greenstein, S. Ghassemzadeh, S. Hong, and V. Tarokh, ”Comparison study
of UWB indoor channel models,” IEEE Trans. Wireless Commun., vol. 6, no. 1,
January 2007