Characterization of cAMP-Specific Phosphodiesterase-4 (R)-[\(^{11}\)C]Rolipram Small Animal Positron Emission Tomography and Application in a Streptozotocin-Induced Model of Hyperglycemia

Adam John Thomas

This thesis is submitted as a partial fulfillment of the Master of Science program in Cellular and Molecular Medicine

Submitted to the University of Ottawa, September 22, 2010

© Adam John Thomas, Ottawa, Canada, 2011
Characterization of cAMP-Specific Phosphodiesterase-4
(R)-[11C]Rolipram Small Animal Positron Emission Tomography and Application in a Streptozotocin-Induced Rat Model of Hyperglycemia

\textit{MSc Thesis 2011, Adam John Thomas,}
\textit{Department of Cellular and Molecular Medicine, University of Ottawa}
\textit{Ottawa, Ontario, Canada}

Elevated sympathetic nervous system (SNS) tone contributes to excess cardiac mortality associated with type 2 diabetes mellitus (T2DM). Chronic SNS stimulation has detrimental effects to the heart, in particular, with its cell signaling abilities. (R)-[11C]Rolipram small animal positron emission tomography (PET), an noninvasive nuclear imaging modality, was used to assess phosphodiesterase-4 (PDE4) alterations in a high fat diet (HFD), streptozotocin (STZ) induced model of hyperglycemia in rats. Prior to investigation in the animal model, characterization of (R)-[11C]rolipram small animal PET was completed. (R)-[11C]Rolipram binds specifically to PDE4 in the rat heart demonstrated by competitive blockade with (R)-rolipram with the PDE4 enzyme susceptible to saturation with increasing injected masses of unlabeled rolipram. (R)-[11C]Rolipram cardiac retention was elevated by acute norepinephrine stimulation via desipramine pharmacologic challenge. Quantitative (R)-[11C]rolipram PET was highly reproducible in the heart and presents an ideal avenue to investigate PDE4 alterations. (R)-[11C]rolipram small animal PET did not reveal changes in PDE4 expression and activity in STZ-treated hyperglycemic animals compared to STZ-treated euglycemic and control groups. \textit{In vitro} measures of PDE4 enzyme expression and activity, with or without desipramine, were also not altered between treatment groups. Although (R)-[11C]rolipram small animal PET does not reveal PDE4 alterations in this animal model of diabetes, its utility to assess PDE4 alterations in other over active SNS pathologies, such as heart failure and obesity, remains.
1. Introduction .. 1
 1.1 Cardiac Cell Signaling .. 1
 1.1.1 Sympathetic Nervous System .. 1
 1.1.2 Adrenergic Receptors .. 1
 1.1.2.1 β1 and β2 Adrenergic Receptors ... 3
 1.1.3 cAMP/PKA-Dependent Intracellular Signaling 3
 1.1.3.1 G\textsubscript{q}\alpha\gamma Coupling of β1-AR and β2-AR 4
 1.1.3.2 G\textsubscript{i}\alpha\gamma Coupling of the β2-AR 6
 1.1.4 cAMP/PKA-Dependent Activation of Cardiac Machinery 6
 1.1.4.1 Role of PKA in Cardiac Ca2+ Cycling 6
 1.1.4.2 Role of PKA Phosphorylation of Cardiac Contractile Proteins 8
 1.1.5 Regulation of cAMP levels via Beta-Adrenergic Receptor Control 9
 1.1.5.1 Beta-Adrenergic Internalization .. 9
 1.1.5.2 Beta-Adrenergic Downregulation of Protein Expression 9
 1.1.6 Regulation of cAMP levels via Phosphodiesterases 11
 1.1.6.1 PDE Superfamily .. 11
 1.1.6.2 PDE Dependent cAMP Intracellular Gradients 12
 1.1.6.3 Cardiac PDE3 and PDE4 .. 14
 1.1.7 PDE4 .. 15
 1.1.7.1 PDE4 Regulation .. 15
 1.1.7.2 PDE4 Regulation by Apoenzyme vs Holenzyme Complex 15
 1.1.7.2.1 Ionic Regulation of PDE4 Holoenzyme 17
 1.1.7.3 Acute PDE4 Regulation ... 18
 1.1.7.3.1 PDE4 Regulation by Site-Specific Phosphorylation 18
 1.1.7.4 Chronic PDE Regulation .. 20
 1.2 Imaging PDE4 with (R)-[^11]C)Rolipram Positron Emission Tomography 21
 1.2.1 Positron Emission Tomography ... 21
 1.2.1.1 Small Animal PET Imaging .. 21
 1.2.2 Principle of PET Imaging ... 23
 1.2.3 Quantification in PET .. 24
 1.2.3.1 Arterial Input Function ... 24
 1.2.3.2 Specific Activity and Injected Mass ... 25
 1.2.3.3 Receptor Occupancy and Tracer Doses 26
 1.2.4 (R)-Rolipram .. 28
 1.2.4.1 (R)-[^11]C)Rolipram Characterization of Selectivity and Specificity ... 28
 1.2.4.2 (R)-[^11]C)Rolipram Metabolism .. 30
 1.2.5 (R)-[^11]C)Rolipram PET: General Imaging 30
1.2.6 (R)-[11C]Rolipram: Application in Disease States... 34
1.3 Application of (R)-[11C]Rolipram Cardiac Small Animal PET in a Rat Model of Hyperglycemia... 36
 1.3.1 Type 2 Diabetes ... 36
 1.3.2 T2DM and Cardiovascular Disease ... 37
 1.3.2.1 Role of T2DM Altered Cell Signaling in CVD .. 37
 1.3.3 SNS Pressor Effect and Increased NE in T2DM .. 38
 1.3.3.1 Expected Changes in PDE4 due to SNS Pressor Effect in T2DM 39
 1.3.3.2 Role of Other Intracellular Signalling Pathways 39
 1.3.4 Streptozotocin-Induced Model of Hyperglycemia... 40
1.4 Project Aim ... 43

2. Hypotheses & Objectives ... 44
 2.1 Hypotheses ... 44
 2.2 Objectives .. 45
 2.2.1 In Vivo Tracer Characterization ... 45
 2.3 Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia 45

3. Methods ... 46
 3.1 Materials ... 46
 3.1.1 Radioligand Production ... 46
 3.1.1.1 Quality Control ... 48
 3.2 In Vivo Tracer Characterization ... 48
 3.2.1 Arterial Input Function .. 48
 3.2.1.1 Proportion of Activity in Whole Blood and Plasma 48
 3.2.1.2 Carbon-11 Labeled Metabolites in Plasma 49
 3.2.2 PET Imaging Protocol .. 50
 3.2.3 Image Analysis ... 53
 3.2.3.1 Logan Slope ... 54
 3.2.4 PDE4 Enzyme Saturation Studies ... 56
 3.2.5 (R)-[11C]Rolipram Reproducibility Studies ... 57
 3.2.6 Response to Acute NE Elevation ... 57
 3.3 Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia 59
 3.3.1 Animals ... 59
 3.3.2 PET Imaging ... 60
 3.3.3 Image Analysis ... 60
 3.3.4 Ex Vivo Biodistribution .. 60
 3.3.5 In Vitro Measurements ... 61
 3.3.5.1 Tissue Collection ... 61
 3.3.5.2 Immunoblotting .. 62
 3.3.5.3 Enzyme Activity Assay ... 63
 3.4 Statistical Analysis ... 64

4. Results ... 65
 4.1 In Vivo Tracer Characterization ... 65
 4.1.1 Arterial Input Function ... 65
 4.1.1.1 Proportion of Activity in Whole Blood and Plasma 65
 4.1.1.2 Carbon-11 Labeled Metabolites in Plasma 65
 4.1.2 (R)-[11C]Rolipram Imaging - General .. 68
4.1.3 PDE4 Enzyme Saturation Studies ... 68
4.1.4 (R)-[^11]C Rolipram Reproducibility Studies ... 71
4.1.5 Response to Acute NE Elevation ... 71
4.2 Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia 77
 4.2.1 Animals ... 77
 4.2.2 (R)-[^11]C Rolipram Imaging ... 77
 4.2.3[^13]N Ammonia Imaging ... 83
 4.2.4 Ex vivo Biodistribution .. 83
 4.2.5 In Vitro Studies .. 87
 4.2.5.1 PDE4 Expression ... 87
 4.2.5.2 PDE4 Enzyme Activity .. 87
5. Discussion .. 90
 5.1 In Vivo Tracer Characterization ... 90
 5.1.1 Arterial Input Function ... 90
 5.1.2 (R)-[^11]C Rolipram Imaging - General ... 91
 5.1.3 PDE4 Enzyme Saturation Studies ... 92
 5.1.4 (R)-[^11]C Rolipram Reproducibility Studies .. 93
 5.1.5 Response to Acute NE Elevation .. 94
 5.2 Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia 95
 5.2.1 Animal Model ... 96
 5.2.1.1 Critique of the STZ/HFD Animal Model .. 96
 5.2.1.1.1 Blood Glucose Levels .. 96
 5.2.1.1.2 Lack of Increased Weight Gain in STZ-treated Hyperglycemics .. 97
 5.2.1.1.3 TGs and FFAs .. 97
 5.2.1.1.4 Hypoinsulemia in the model ... 98
 5.2.1.2 Duration of Study .. 99
 5.2.2 PET Imaging ... 100
 5.2.3 Ex vivo Biodistribution .. 101
 5.2.4 In Vitro Assays ... 101
 5.2.5 Implication of Unaltered PDE4 in STZ/HFD Induced Hyperglycemia 103
 5.2.5.1 Increased NE, Reduced β1-AR, Unaltered PDE4 Levels? 104
 5.2.5.2 Compensatory Role of β2-AR ... 105
 5.2.5.3 Increased Role of G_{q_i}... 105
6. Conclusion ... 107
 6.1 Summary of Scientific Findings ... 107
 6.2 Future Directions .. 108
7. References ... 109
LIST OF FIGURES

Figure 1.1: Functional divisions of the autonomic nervous system, effector organs and major physiologic outcomes.

Figure 1.2: β-AR/Gas subunit coupling and the effect on intracellular cAMP accumulation.

Figure 1.3: Representative schematic illustrating key intracellular target proteins activated by cAMP-dependent PKA phosphorylation in the heart.

Figure 1.4: Schematic diagram of GPCR internalization highlighting the roles of GRK, β-arrestin and clathrin molecules.

Figure 1.5: Identification of PDE isoforms by family.

Figure 1.6: 3-Dimensional representation of the PDE4 molecule.

Figure 1.7: A) Schematic overview of the principle behind PET imaging. B) Reconstructed cardiac PET 18-fluorodeoxyglucose images at stress and at rest. C) Siemens’ human PET camera. D) Siemens’ small animal PET camera.

Figure 1.8: (R)-[11C]Rolipram chemical structure.

Figure 1.9: Reconstructed (R)-[11C]rolipram PET image of the human brain.

Figure 1.10: Reconstructed PET images of rat brain with high SA (R)-[11C]rolipram, low SA (R)-[11C]rolipram and high SA (S)-[11C]rolipram.

Figure 1.11: Phasic blood glucose response to a diabetogenic dose of alloxan or streptozotocin.

Figure 3.1: Synthesis of (R)-[11C]rolipram from (R)-desmethylrolipram.

Figure 3.2: A) Representative chromatogram from semi-preparative HPLC purification of (R)-[11C]rolipram. B) Representative chromatograms from analytical HPLC displaying pure (R)-[11C]rolipram using UV and radiation detection.

Figure 3.3: Schematic outlining the HPLC column-switch protocol.

Figure 3.4: HPLC chromatogram of ultraviolet and radioactivity analysis revealing authentic (R)-[11C]rolipram in rat plasma eluting at 11.67 minutes.

Figure 3.5: A, B) Reconstructed (R)-[11C]rolipram images showing high tracer uptake in the rat heart. C) Representative Logan slope plot.
Figure 4.1: Ratio of plasma : whole blood activity of (R)-$^{[11]}$Crolipram in rat plasma.

Figure 4.2: Proportion of plasma activity associated with metabolites and unchanged parent tracer at various time points.

Figure 4.3: Reconstructed (R)-$^{[11]}$Crolipram PET image showing high tracer uptake and contrast in the heart, brain and liver.

Figure 4.4: Dose-response curve in the rat left ventricle for the injected mass of (R)-$^{[11]}$Crolipram vs. Logan slope.

Figure 4.5: Representative time activity curves and reconstructed images for (R)-$^{[11]}$Crolipram in the rat left ventricle in baseline, blocking and desipramine challenge studies.

Figure 4.6: A) Bland-Altman plot comparing test-retest Logan slope values for (R)-$^{[11]}$Crolipram in rat left ventricle. B) Results of a sample size estimation for a given percent change in PDE4 binding.

Figure 4.7: Baseline vs. desipramine challenge (20 mg/kg, 3hr pre-tracer, i.p.) studies in rat left ventricle.

Figure 4.8: Weight gain in vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic rats.

Figure 4.9: Fed-state blood glucose levels for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic rats.

Figure 4.10: Food consumption for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic rats.

Figure 4.11: Representative reconstructed (R)-$^{[11]}$Crolipram images showing left ventricle tracer uptake for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups at 8 weeks post-STZ treatment.

Figure 4.12: Quantitative cardiac (R)-$^{[11]}$Crolipram PET for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups.

Figure 4.13: Quantitative evaluation of $^{[13]}$Nammonia MBF for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups.

Figure 4.14: Biodistribution results for (R)-$^{[11]}$Crolipram at 45 minutes in the rat atrium ventricles for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups at 8 weeks post-STZ treatment.
Figure 4.15: A, B) Expression of PDE4A, PDE4B and PDE4D protein expression in rat hearts of vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups. B) Calibration of GAPDH loading control.

Figure 4.16: PDE and PDE4 enzyme activity of rat heart at 8 and 10 weeks in vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups.
LIST OF TABLES

Table 3.1: Quantitative \((R)\)\-[11C]\)rolipram Logan slope and \([13N]\)ammonia MBF values for baseline, blocked and desipramine challenge groups.

Table 3.2: Effect of STZ/HFD induced hyperglycemia on body weight and blood markers in rats at 8 weeks post-treatment.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>11C</td>
<td>carbon-11</td>
</tr>
<tr>
<td>12C</td>
<td>carbon-12</td>
</tr>
<tr>
<td>[Ca$^{2+}$]</td>
<td>calcium concentration</td>
</tr>
<tr>
<td>AC</td>
<td>adenylate cyclase</td>
</tr>
<tr>
<td>AKAP</td>
<td>A kinase anchoring protein</td>
</tr>
<tr>
<td>ANS</td>
<td>autonomic nervous system</td>
</tr>
<tr>
<td>AR</td>
<td>adrenergic receptor</td>
</tr>
<tr>
<td>B_{max}</td>
<td>maximal binding density</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>cAMP</td>
<td>3’, 5’ cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>cGMP</td>
<td>3’, 5’ cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element binding</td>
</tr>
<tr>
<td>CBP</td>
<td>CREB binding protein</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>db-cAMP</td>
<td>dibutyryl 3’, 5’ cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>DV</td>
<td>volume of distribution</td>
</tr>
<tr>
<td>FFA</td>
<td>free fatty acid</td>
</tr>
<tr>
<td>E</td>
<td>epinephrine</td>
</tr>
<tr>
<td>ED_{50}</td>
<td>50% effective dose</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>Erk-2</td>
<td>extracellular related kinase 2</td>
</tr>
<tr>
<td>G_{α}</td>
<td>stimulatory G-alpha subunit</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>G<sub>ai</sub></td>
<td>inhibitory G-alpha subunit</td>
</tr>
<tr>
<td>GPCR</td>
<td>G protein-coupled receptor</td>
</tr>
<tr>
<td>Glut-1/2/4</td>
<td>glucose transporter 1/2/4</td>
</tr>
<tr>
<td>GRK</td>
<td>G protein-coupled receptor kinase</td>
</tr>
<tr>
<td>HARBS</td>
<td>high affinity rolipram binding site</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HFD</td>
<td>high fat diet</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IBMX</td>
<td>3-isobutyl-1-methylxanthine</td>
</tr>
<tr>
<td>I<sub>Ca</sub></td>
<td>calcium current</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>50% inhibitory concentration</td>
</tr>
<tr>
<td>%ID/g</td>
<td>percent of injected dose per gram of tissue</td>
</tr>
<tr>
<td>ISO</td>
<td>isoproterenol</td>
</tr>
<tr>
<td>K<sub>1</sub></td>
<td>uptake constant (blood to tissue)</td>
</tr>
<tr>
<td>LV</td>
<td>left ventricle</td>
</tr>
<tr>
<td>M<sub>1/2</sub></td>
<td>metal binding site 1/2</td>
</tr>
<tr>
<td>MBF</td>
<td>myocardial blood flow</td>
</tr>
<tr>
<td>MBPC</td>
<td>myosin binding protein C</td>
</tr>
<tr>
<td>MBR</td>
<td>myocardium-to-blood ratio</td>
</tr>
<tr>
<td>NE</td>
<td>norepinephrine</td>
</tr>
<tr>
<td>NIMH</td>
<td>national institute of mental health</td>
</tr>
<tr>
<td>PDE</td>
<td>phosphodiesterase</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PKA</td>
<td>protein kinase A</td>
</tr>
<tr>
<td>PLB</td>
<td>phospholamban</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>pSNS</td>
<td>parasympathetic nervous system</td>
</tr>
<tr>
<td>PTX</td>
<td>pertussis toxin</td>
</tr>
<tr>
<td>Rp-cAMP</td>
<td>Rp-adenosine-30,50-cyclic monophosphorothioate</td>
</tr>
<tr>
<td>RV</td>
<td>right ventricle</td>
</tr>
<tr>
<td>RyR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>SA</td>
<td>specific activity</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SNS</td>
<td>sympathetic nervous system</td>
</tr>
<tr>
<td>SR</td>
<td>sarcoplasmic reticulum</td>
</tr>
<tr>
<td>STZ</td>
<td>streptozotocin</td>
</tr>
<tr>
<td>T2DM</td>
<td>type-2 diabetes mellitus</td>
</tr>
<tr>
<td>TAC</td>
<td>time activity curve</td>
</tr>
<tr>
<td>TG</td>
<td>triglyceride</td>
</tr>
<tr>
<td>%SUV</td>
<td>percent of standardized uptake value</td>
</tr>
<tr>
<td>UCR</td>
<td>upstream conserved region</td>
</tr>
<tr>
<td>V_{max}</td>
<td>maximal velocity</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The completion of this thesis represents two years of scientific research in the field of nuclear imaging, pharmacology and pathology. This body of literature could not have been made possible with the cooperative efforts of a wide team of individuals at the University of Ottawa Heart Institute, National Cardiac PET Centre.

To begin, I owe a debt of gratitude to my supervising project investigator, Dr. Jean N. DaSilva. His guidance and expertise has been invaluable, while demanding the most out of me academically and spurring my personal growth. In addition to his encouragement in the laboratory environment, he is also the source of my attendance at multiple conferences – events that provided outstanding learning opportunities and a truly complete Masters experience.

Secondly, to my co-supervisor, Dr. Robert S. Beanlands, whose rigorous approach to research, medicine and science imparted the traits of persistence and dedication throughout this body of work.

Thirdly, I’d like to acknowledge Dr. Robert A deKemp. Working very closely with me in preparation of my first manuscript submission, I owe a wealth of thanks for the guidance provided in this regard. Further, I thank Dr. deKemp for inviting me to enjoy the ‘lighter’ side of research world.

To my immediate colleagues – Miran Kenk, James Thackeray, Stephanie Thorn, Rawad Antoun, Kumiko Mackasey and Natasha Arksey – I wish you all the best in your continuing pursuits and thank each of you for helping to make me a better student, scientist and person.

Not to be forgotten are a wide group of individuals who assisted in various ways along the course of my studies – Myra Kordos, Samantha Mason, Jeffrey Collins, Julian Walcott, Elena Dobrota, Ana Valdivia, Jeniffer Renaud, Mireille Lortie, Ran Klein, and Tyler Dumochel.

An individual is not without the heavy influence of their family. Mom – thanks for your truly unconditional love. Dad – giving me my analytic mind and dedicated personality that got me here… and let me finish. Amanda – the best sister I could ask for; you’ve grown into a lovely young woman and I am so proud to have you as my sister.

Finally, I’d like to dedicate this thesis to Arden, whose love, emotional support and cooking (!!) gave me the strength to make it to the end of this journey. You make me a better person, inspire me to reach new heights and I love you more with each day we’re together. Looking forward to the future!
1. Introduction

1.1 Cardiac Cell Signaling

1.1.1 Sympathetic Nervous System

The autonomic nervous system (ANS) maintains homeostasis through a balance of its parasympathetic (pSNS) and sympathetic nervous system (SNS) branches (figure 1.1). SNS function is mediated through release of the neurotransmitters epinephrine (E) and norepinephrine (NE) which exert their effects at the molecular level through signaling cascades that evoke specific responses dependent on the target tissue. In the heart, the SNS regulates the rate and intensity of cardiac contractions to modulate cardiac output in normal and stressed conditions.1,2 Alterations in the SNS signaling pathway have been implicated in several pathologies, such as diabetes,3 obesity4 and heart failure.5

1.1.2 Adrenergic Receptors

The adrenergic receptors (ARs) are the target effectors of the SNS and are activated by NE and E. Several subtypes of the ARs have been characterized in the cardiovascular system – α_1, α_2, β_1, β_2, β_3.6-10 α_1 and α_2 subtypes are responsible for vasoconstriction7,10 assisting in blood pressure regulation. β_3-AR function remains controversial – there is evidence in favour11 and against12,13 a cardiopressant effect, though it may arise as a secondary outcome mediated by the β_1/β_2-AR.8 β_1- and β_2-ARs play highly prominent roles in control of cardiac pacing and contractility6,9 and will be focused on herein.
1.1.2.1 β₁ and β₂ Adrenergic Receptors

β₁- and β₂-ARs comprise a well studied subclass of G protein-coupled receptors (GPCRs). As members of the GPCR superfamily, they are plasma membrane proteins characterized by their unique seven transmembrane-spanning motif and are coupled to intracellular G proteins.¹ β₁-AR and β₂-AR have a 48.9% conserved sequence identity between one another,¹⁴ indicating a considerable amount of variation between the two, leading to their individual functional outcomes (section 1.1.3.1 and 1.1.3.2). The right atrium has a β₁:β₂ receptor density ratio ranging from 2:1¹⁵,¹⁶ to as high as 4:1¹⁷,¹⁸ in humans. The left ventricle has a ratio of ~3:1 in canine¹⁹ and human left ventricle;¹⁸,²⁰,²¹ this ratio may be closer to 1:1 in the rat ventricle.²²,²³

1.1.3 cAMP/PKA-Dependent Intracellular Signaling

Activation of β-ARs to increase cardiac output via agonist binding results in a conformational change within the GPCR itself.²⁴,²⁵ This change allows the stimulatory G protein (Gαs) subunit of the heterotrimeric G protein to exchange a GDP molecule for a GTP molecule resulting in the separation of the Gαs subunit from the β/γ subunits. The GTP-bound Gαs subunit is then free to stimulate adenylyl cyclase (AC).²⁰,²⁴,²⁵ Activation of AC results in the production of second messenger 3’, 5’ cyclic adenosine monophosphate (cAMP) and can occur as quickly as 5 seconds after β–AR stimulation in adult rat ventricular myocytes.²⁶ Rapid oscillations in intracellular cAMP concentration occurs with a faster peak (35%) and decay rate (55%) at the plasma membrane compared to the cytosol,²⁶ consistent with membrane-bound AC creating the diffusible secondary messenger. Importantly, cAMP transient oscillations are known to precede and
coordinate cardiac function27 by binding to the regulatory subunits of protein kinase A (PKA), alleviating the inhibition of the catalytic site of this kinase. This event allows PKA phosphorylation of a variety of downstream target proteins related to calcium handling and contraction in the heart which allows alteration of cardiac contractile force and rate.2 Accordingly, genetic deletion of AC-6, one of two predominant AC isoforms in the heart, caused a 50% reduction in β-AR stimulated cAMP production, reduced PKA activity and phosphorylation of downstream targets.28

1.1.3.1 \textit{G}ass Coupling of β1-AR and β2-AR

Both β1-AR and β2-AR couple \textit{G}ass (figure 1.2),2 consistent with PKA activation in the presence of cAMP. Activation of this pathway allows ventricular β1- and β2-ARs to increase the inotropic and chronotropic responses of the left ventricle13,19,20,29 with similar results obtained in the atrium.30 Genetic mutation which overexpressed human β1-AR 5-15-fold in mice led to enhanced cardiac function in the short-term, but eventually yielded to detrimental outcomes including hypertrophy, reduced contractility and ejection fraction at 30-35 weeks.31 With functioning β1-AR present, β2-AR knockout mice responded normally to β-AR agonist isoproterenol (ISO) stimulation suggesting that the role of β2-AR cardiac output regulation is limited in the healthy heart.32 Similar effects are noted with whole-cell patch clamp techniques, where rat ventricle cells increase calcium current (\textit{I}_C_{a}) 98% by β1-AR-dependent stimulation.33 The limited role of β2-AR in cardiac function is likely due to β2-AR coupling to the inhibitory G protein (\textit{G}_{ai})29 in addition to its coupling to \textit{G}ass. Due to this, β2-AR may only take on a more prominent role regulating cardiac function in disease states, such as diabetes.34,35
1.1.3.2 $G_{\alpha i}$ Coupling of the β_2-AR

As noted above (section 1.1.3.1), β_2-AR couples to the inhibitory G protein, $G_{\alpha i}$, in a PKA mediated event. β_1-AR, however, does not couple to $G_{\alpha i}$ as its functional outcomes are unaffected by inhibition of the G protein with pertussis toxin (PTX). Activation of $G_{\alpha i}$ by β_2-AR has the effect of inhibiting AC and reducing cAMP production. In fact, inhibition of $G_{\alpha i}$ in transgenic mice overexpressing β_2-AR by PTX increased I_{Ca} and $[Ca^{2+}]$ in a cAMP-dependent fashion.

1.1.4 cAMP/PKA-Dependent Activation of Cardiac Machinery

As discussed (section 1.1.3.1), cAMP allows for the activation of PKA, enabling PKA to phosphorylate a variety of downstream effector proteins involved in calcium handling and cardiac contraction. Indeed, β_1-AR stimulation results in PKA activation leading to marked contractile increases demonstrated in a series of experiments using β_1-, β_2- and β_1/β_2-AR knockout mice. β_2-AR stimulation has been reported to result in PKA activation, with PKA independent pathways also implicated.

1.1.4.1 Role of PKA in Cardiac Ca^{2+} Cycling

The calcium current in- and efflux triggered following $G_{\alpha s}$ activation fundamentally regulates cardiac contraction and heart rate. Following PKA activation by cAMP, PKA has been shown to phosphorylate target proteins known to be related to cardiac contraction (figure 1.3). At the initial stages of contraction, calcium-induced calcium release is triggered by the I_{Ca} generated from PKA-mediated phosphorylation of
FIGURE 1.3. Representative schematic illustrating key intracellular target proteins activated by cAMP-dependent PKA phosphorylation in the heart. NE = norepinephrine, AC = adenylate cyclase, $\alpha_\beta\gamma = G$ protein subunits, ATP = adenosine triphosphate, cAMP = cyclic adenosine monophosphate, PKA = protein kinase A, RyR = ryanodine receptor and MBP-C = myosin binding protein C.
Ca,1.2a membrane channels.33 Importantly, activation of PKA by ISO stimulation in rat ventricular myocytes preceeds the increase in I_{Ca}.26 This inward I_{Ca} begins depolarizing the myocyte triggering Ca2+ release from the sarcoplasmic reticulum (SR) ryanodine receptor (RyR) – and phosphorylation of RyR enhances this Ca2+ release.41,42 These events ultimately cause complete depolarization of the myocyte, allowing for contraction to occur. Phospholamban (PLB) – an inhibitor of the SR Ca2+-ATPase, which is responsible for Ca2+ removal from the intracellular environment leading to relaxation – is also phosphorylated by PKA which enhances contractile relaxation43,44 and occurs in response to G\textsubscript{as} pathways.45,46 Hastened relaxation by this mechanism allows for increases in heart rate as the ventricle is prepared for subsequent contractions in a shorter time frame.

\textbf{1.1.4.2 Role of PKA Phosphorylation of Cardiac Contractile Proteins}

PKA-mediated phosphorylation of myofibrallar proteins, including myosin binding protein C (MBPC) of myosin filaments47,48 and troponin I of actin filaments,44,49 assist in cross-bridging of the contractile fibers and increase contraction force and rate. Contraction of ventricular rat myocytes was depressed by PKA delocalization resulting in reduced myocyte shortening with \textit{in vitro} preparations and decreased heart rate and left ventricle (LV) pressure in perfused hearts.44
1.1.5 Regulation of cAMP levels via Beta-Adrenergic Receptor Control

β-AR cell surface expression can be modified by the processes of internalization or down-regulation\(^5^0\) impacting cAMP levels by providing greater or fewer receptors to activate in the presence of agonists. The combination of these two mechanisms dampen cell signalling through reduced cAMP production. Internalization occurs rapidly following acute receptor stimulation,\(^5^1\) whereas downregulation occurs in response to chronic NE stimulation.\(^5^2,5^3\)

1.1.5.1 Beta-Adrenergic Internalization

Internalization (figure 1.4) is mediated through phosphorylation of sites on the β-AR believed to be exposed during agonist-induced conformational change.\(^5^4\) Phosphorylation of these sites is mediated by G protein-coupled receptor kinases (GRKs)\(^5^1\) that act on agonist-activated ARs.\(^5^5\) This activity facilitates interaction between intracellular β-arrestin proteins\(^5^5\) and the receptor at multiple sites.\(^5^6\) β-Arrestins interact with clathrin molecules allowing internalization of the receptor via clathrin coated vesicles.\(^5^7,5^8\) These vesicles are either directed to early endosomes for degradation by lysosomes,\(^5^9\) or recycled back to the cell surface.\(^6^0\)

1.1.5.2 Beta-Adrenergic Downregulation of Protein Expression

Downregulation, through reduced protein expression or increased degradation, of cardiac β-ARs occurs in response to chronic overstimulation by catecholamines.\(^6^1\) Kudej et al.\(^5^3\) show that chronic ISO treatment (13 days) results in a 54% reduction in total
β-AR density in the murine left ventricle. Further, following chronic exposure, acute stimulation with ISO resulted in a 60% reduction in AC activity and the inability of the heart to augment its heart rate, fractional shortening and ejection fraction compared to controls. These observations are echoed in rats where chronic ISO treatment (14 days) ameliorated the positive inotropic responses to acute ISO stimulation in left ventricle and shifted the response to db-cAMP rightward 3.2-fold.62 This outcome is also seen with 5-day chronic NE treatment (12-fold increase in NE vs. controls) in the left ventricle reducing β-AR density by 31% and leading to a 33% drop in basal AC activity.63

This principle extends beyond in vitro studies to pathological states that suffer from enhanced SNS signalling where β–AR densities are known to change. In heart failure (HF) for example, the β1:β2 ratio of 72:28 (healthy state) altered to 45:55 (disease state) in canine isolated cardiomyocytes.19 In human HF, where cardiac NE spill over can be elevated 4-fold over healthy controls,65 a greater downregulation of β1-AR over β2-AR occurs; the ratio between the receptors alters from 3:1 in the baseline state to approximately 1:1.66,67 In congestive heart failure (CHF), a rabbit model of cardiac pacing showed a 50% reduction in total β–AR of the left ventricle at 8 weeks when NE plasma content was 10-fold greater than controls.64

1.1.6 Regulation of cAMP levels via Phosphodiesterases

1.1.6.1 PDE Superfamily

The phosphodiesterase (PDE) superfamily provides a second mechanism to decrease cAMP intracellular accumulation based on enzymatic degradation; PDEs
hydrolyze the secondary messengers cAMP and cyclic guanine monophosphate (cGMP) to their inactive, 5’-linear forms.68 Derived from 21 genes, the PDE superfamily consists of 11 primary families (figure 1.5) that share large, conserved catalytic sequences towards the C-terminal.68 These main PDE families are subdivided further on the basis of their numerous isoforms and splice variants.69 In addition to classification by differential protein structure, PDE isoforms are grouped together for their sensitivities and preferences for cAMP or cGMP substrate; PDE1, 2, 3, 10 and 11 families hydrolyze both cAMP and cGMP, while PDE4, 7 and 8 are cAMP-specific and PDE5, 6 and 9 are cGMP-specific.68

\textbf{1.1.6.2 PDE Dependent cAMP Intracellular Gradients}

Tight and appropriate control over cAMP-dependent outcomes is reliant on compartmentation of the secondary messenger by PDEs leading to transient gradients and isolated pockets of accumulation.70,71 This was demonstrated using 3-isobutyl-1-methylxanthine (IBMX), a pan-PDE inhibitor, to decrease I_{Ca} compartmentation in frog ventricular myocytes by 9-fold.72 However, in addition to containment of cAMP in an absolute sense, the relative spatial organization of the messenger is also critical to proper cell function and is dependent on specific PDE localization. For example, immunocytochemistry and confocal microscopy of rat ventricular myocytes identified PDE3A localizing to the interior plasma membrane and PDE4B and PDE4D showing strong signals in the cytosol, with additional pockets localized to sarcomeric m-line and z-lines, respectively.73 Importantly, adult rat myocytes have enhanced PKA activity at the sarcomeric z-line in IBMX treated cells.74 These findings support the hypothesis of PDEs
congregating in locations of cAMP production and/or locations of PKA phosphorylation – two areas that would allow for optimal regulation of cAMP-dependent activities. This spatial relationship is known to also occur in other cells, such as sertoli cells, where PDE4D3 was shown to co-localize with PKA in the centromere by staining and maintained a functional scaffold as the two proteins coimmunoprecipitated together.75 In further support, muscle-selective A-kinase anchoring protein (AKAP), with isoforms known to localize at the z-line and t-tubule SR,76 were found to provide a molecular framework between PKA and PDE binding, as it coimmunoprecipitated with PDE4 in the rat heart.77 The functional role was confirmed by the precipitate’s reduced ability to stimulate PDE4 activity in the presence of rolipram (a PDE4 selective inhibitor) and, moreover, it caused PDE4D3 relocation following increased expression.77

1.1.6.3 Cardiac PDE3 and PDE4

The PDE3 and 4 enzymes predominate cardiac cAMP hydrolysis in several species. In the ovine heart the primary isoforms are PDE3 and PDE4,69 representing 44% and 56% of cAMP hydrolyzing activity.78 In frog ventricles, large disruptions of I_{Ca} compartmentation were seen following treatment with pan-PDE inhibitor IBMX – an effect that was replicated with the combination treatment of PDE3 and PDE4 inhibitors.72 The importance of PDE4 in rodent cardiac cAMP breakdown was confirmed using isolated mice cardiomyocytes where ~70% of β_1-derived cAMP is hydrolyzed by PDE479 and in isolated rat myocytes where β_1-related cAMP is handled by PDE4 hydrolysis alone, but β_2 stimulated cAMP requires hydrolysis by PDE3 and PDE4 together.80 Further, nearly 90% of rat cardiac cAMP degradation is provided by PDE3 and PDE4,
with PDE4 being approximately double that of PDE3.73 In addition, rats pre-treated with PDE4 selective inhibitor rolipram resulted in a 56\% increase in contractile force in the presence of β_1-AR stimulation in rats.81 Given the above findings, PDE4 is highly relevant to rat cAMP regulation and will be focused on for the remainder of this thesis.

1.1.7 PDE4

The PDE4 family has 4 genes (PDE4A, B, C, D) transcribed to produce more than 20 splice variants68,69 and has had its three dimensional structure characterized (figure 1.6).82 In addition to its abundance in the heart, PDE4 is expressed throughout the body in varying degrees, with particularly high levels in the brain, skeletal muscle, and pancreas.83-86 In the heart, functional emphasis is placed on isoforms PDE4A/B/D as immunoprecipitation revealed the largest quantities of these 3 variants in rats.80 Similarly, PDE4B and PDE4D were found to contribute approximately 90\% of PDE4 activity in rat neonatal myocytes, with PDE4A and PDE4C providing the remainder.72

1.1.7.1 PDE4 Regulation

1.1.7.2 PDE4 Regulation by Apoenzyme vs Holoenzyme Complex

Catalytic PDE4 enzyme activity is dependent on the apoenzyme and holoenzyme conformations, where high and low affinity states of the PDE enzyme for cAMP are regulated by physiologic metal ions.82 PDE4 enzymes bind two metal ions (M_1 and M_2) to form the enzyme-cofactor holoenzyme which increases affinity and hydrolytic activity for cAMP as well as the affinity for rolipram inhibition \textit{in vitro}.87 The association of PDE with M_1 and M_2 ions is believed to stabilize the high affinity PDE4 conformation, and
FIGURE 1.6. 3-Dimensional representation of the PDE4 molecule (red = completely conserved residues, white = partially conserved residues, blue = highly variable residues, yellow = metal binding sites). Reproduced from Xu et al., 2000.
may also enhance catalysis by positioning a water molecule in the catalytic site that could act as a nucleophile in the cAMP hydrolysis reaction.

1.1.7.2.1 Ionic Regulation of PDE4 Holoenzyme

Several metal ions are known to bind PDE4 – copper, manganese and zinc activate PDE4A at low concentrations (1-5 µM), while zinc, nickel and copper have biphasic effects with increasing concentrations that ultimately reduce PDE4A activity at higher concentrations (> 5 µM, > 100 µM and > 100 µM, respectively). Magnesium and manganese do not demonstrate biphasic responses over the same concentration range (0.5-10000 µM) and may provide the optimal ion sources for PDE4 activation.

Deciphering the exact roles of ion contribution to PDE4 activity becomes increasingly difficult with the consideration of enzyme phosphorylation by PKA. PDE4A activity was stimulated in a dose-dependent linear fashion by increasing concentrations of Mg$^{2+}$ (0.1-10 µM), while this was enhanced to an exponential relationship in the presence of PKA treatment.

The di-metal-PDE4 holoenzyme union is known as the high affinity rolipram binding site (HARBS) conformation due to its enhanced affinity for the selective and specific inhibitor (R)-rolipram in the presence of co-factor metals magnesium, manganese, and copper. This enhanced affinity for (R)-rolipram is quite dramatic, as treatment with metal cofactors resulted in a K_d of 3-8 nM vs. 150 nM – a difference of nearly 20-fold – in the low-affinity state lacking metal co-factors magnesium, manganese, and copper. These collective observations highlight the difficulty in replicating the true \textit{in vivo} processes occurring in living animals in an \textit{in vitro} setting, where the precise nature of M$_1$ and M$_2$ binding is not fully elucidated.
1.1.7.3 Acute PDE4 Regulation

Acute cAMP elevations increase phosphorylation of PDE4 by PKA and extracellular related kinase 2 (Erk-2; section 1.1.7.3.1). Addition of the PKA catalytic subunit and $[^{32}P]ATP$ in the presence of human PDE4A4 expressed in baculovirus/Sf9 expression system increased cAMP hydrolysis 4-fold compared to untreated controls (0.2 vs. 0.8 μmol/mg/min) within 2 hours.89 Thyroid cells stimulated with thyroid releasing hormone caused activation of PDE4D3, increasing to peak activity by 5 minutes and remaining elevated for 30 minutes; this enhanced activity was susceptible to blockade by PKA inhibitors and could be recovered with incubation of cells in PKA-activating 8-(4-chlorophenylthio)adenosine-cAMP.91 In aortic vascular smooth muscle cells, forskolin activation of AC resulted in increased PDE4 activity and phosphorylation of the PDE4D isoforms which again could be abolished by blockade with a PKA inhibitor, H89.92 Similar observations are made in U937 undifferentiated macrophage cells,93 hepatocytes,94 and adipocytes.95

1.1.7.3.1 PDE4 Regulation by Site-Specific Phosphorylation

In their 1998 report Hoffman et al.96 demonstrate that PKA-mediated phosphorylation of PDE4D3 occurred at Ser-54 of the RRES motif increasing catalytic ability 2.3 fold compared to control values which is in agreement with Sette and Conti, 1996.97 Further, the IC$_{50}$ for rolipram inhibition shifted leftwards in the phosphorylated state (0.11 μM vs. 0.68 μM) suggesting enhanced affinity for the inhibitor to the phosphorylated state of the enzyme. This was confirmed using a mutant model of the enzyme where the Ser54 residue was substituted with a negatively charged aspartate or
glutamate residue mimicking the phosphorylated PDE4D3 state causing 2.9 and 2.0 fold increases in activity compared to controls and decreasing rolipram IC$_{50}$ to levels similar to the PKA phosphorylated state. Following this study, Hoffman et al.98 reported that Erk-2 mediated phosphorylation also occurs on PDE4D3 isoform, but at the Ser579 residue, which can be ablated by Ser579\rightarrowAla mutation. Additionally, catalytic maximal velocity (V_{max}) of the enzyme reduced to 25\% of control values after maximal phosphorylation by Erk-2 at 30 minutes, which can be recovered to control levels by treatment with phosphatase 1 or by incubation of cells in the absence of Erk-2.98 Evidently, phosphorylation by Erk-2 provides an inhibitory effect on PDE4D3 activity.

The interplay of PKA and Erk-2 phosphorylation of PDE4D3 causing increasing and decreasing catalytic activity, respectively, provides an interesting mechanism by which cAMP levels are regulated. Hoffman et al.98 pursued this dual-phosphorylation mechanism by demonstrating that Ser13\rightarrowAsp and Ser54\rightarrowAsp mutations, mimicking constitutively phosphorylated PKA residues, were still available for Erk-2 dependent phosphorylation at Ser579. Similarly, the Ser579\rightarrowAsp mutation, mimicking Erk-2 mediated phosphorylation, remained accessible to PKA-mediated phosphorylation at Ser13 and Ser54. Functionally, phosphorylation by PKA was shown to override Erk-2 phosphorylation by returning PDE4D3 to control levels in wild-type cells.98 This dual-phosphorylation of PDE4D3 may provide a possible mechanism to allow cAMP to build up following Erk-2 phosphorylation and then decrease due to PKA phosphorylation. Some controversy does surround this idea as Baillie et al. showed that PDE4B1 and C2 isoforms were available for Erk-2 phosphorylation at analogous residues to PDE4D3’s Ser579 (residues Ser659 and Ser535, respectively) causing suppressed activity, while
PDE4A isoforms were not phosphorylated at all.99 To complicate matters further, transfected and endogenous PDE4B2, a ‘short’ PDE4 isoform, responded with increased activity in a series of studies consistent with Erk-2 mediated phosphorylation at analogous Ser579 residue Ser487. The importance of ‘short’ and ‘long’ isoform length to differential regulation by phosphorylation may owe to the interaction of available upstream conserved regions (UCRs),100 unique to the PDE4 isoform,68 as the PKA-mediated phosphorylation of Ser54 of the UCR1 domain in PDE4D3 caused a reduced interaction with the UCR2 domains.101

\begin{section}{1.1.7.4 Chronic PDE Regulation}

Sustained cAMP elevations increase PDE4 content through increased \textit{de novo} protein synthesis that is mediated by PKA. In response to cAMP binding PKA, the PKA catalytic subunit is able to passively diffuse into the cell nucleus, gaining access to cellular DNA.102 While in the cell nucleus, catalytic PKA subunits are capable of phosphorylating the cAMP response element binding (CREB) protein at Ser133.103 Phosphorylation of CREB recruits CREB binding protein (CBP)104 allowing transcription through its association with RNA polymerase II.102 This is supported by increased cAMP concentrations leading to elevated reporter gene expression of PDE4D5 in hamster ovary, with mutation at site -201 of CREB disrupting the effect.105 Cultured vascular smooth muscle cells treated with forskolin increased PDE3A, PDE3B and PDE4D mRNA levels in aortic and femoral preparations, while a similar effect was noted with db-cAMP increasing protein levels of the same PDE isoforms.106 PDE4D1 and D2 isoforms are also known to be regulated in a similar fashion.107
1.2 Imaging PDE4 with (R)-[\(^{11}\)C]Rolipram Positron Emission Tomography

1.2.1 Positron Emission Tomography

Positron emission tomography (PET) is a non-invasive, \textit{in vivo} nuclear imaging modality used to assess a variety of physiological processes in living organisms108,109. Compounds of known biologic function can be labeled with a positron emitting isotope, such as carbon-11, oxygen-15, fluorine-18 or ammonia-13108,109 that can be detected by the camera apparatus (figure 1.7, panel C) and used to quantify the tissue distribution of the labeled compound after image reconstruction (figure 1.7, panel B) and analysis. Quantifying the radiotracer distribution in the body gives a measure of the physiologic process being evaluated in the tissue of interest.

1.2.1.1 Small Animal PET Imaging

Small Animal PET technology (figure 1.7, panel D) has been developed for application of PET imaging in smaller animals, such as mice and rats, for the purpose of preclinical and research-related imaging. Given the difference in size of small animals compared to humans, dedicated small animal PET scanners are designed for optimal resolution and sensitivity with smaller subjects110. Imaging of small animals allows \textit{in vivo} experimentation on a number of genetic, pharmacological and surgical models of disease108, facilitating the transition from basic research to clinical phases. Further, PET imaging offers the added benefit of using fewer animals to complete studies as tissue tracer distribution and retention can be assessed in a non-invasive and non-terminal
FIGURE 1.7. A) Schematic overview of the principle behind PET imaging. B) Reconstructed cardiac PET 18-fluorodeoxyglucose images at stress (row 1 and 3) and at rest (row 2 and 4) demonstrating a defect of the left ventricle wall that is only visualized during increased cardiac output. C) Siemen’s human PET camera. D) Siemen’s small animal PET camera at the University of Ottawa Heart Institute.
approach, leaving the animal intact and to be used again in retest studies as its own control.111

1.2.2 Principle of PET Imaging

The principle of PET imaging relies on the ability to label compounds with a positron emitting isotope whose predictable nature of decay is exploited to delineate the localization of the injected compound in the body.

Positron emitting isotopes are defined by the property of radioactive decay by positron emission.112 Following a decay event, the emitted positron is capable of travelling a short distance (figure 1.7, panel A) dependent on its kinetic energy which is related to the isotope from which it was emitted.109,112 While the positron travels, its kinetic energy diminishes and its momentum slows to a point at which it can interact with an electron particle. This interaction is known as an ‘annihilation event’ and results in the destruction of both particles, converting their energies into a pair of gamma photons that travel in nearly opposite directions to one another with precisely 511 KeV of energy.112 The camera (detector) component to the system is a scintillation crystal which is capable of registering the arrival of the photon and converting it into an electrical signal that can be interpreted by the reconstruction software. Importantly, the arrival of each photon at two detectors, directly opposite of one another, allows for a line of response to be determined – that is, an imaginary line connecting two detectors oppositely positioned on which the annihilation event must have occurred.112 The reconstruction software estimates where the positron originated from based on its terminal location (site of the annihilation event along the line of response) and kinetic energy (ability of the positron to
travel). From this deduction, the signal can be localized to a specific region in the camera’s field of view.

1.2.3 Quantification in PET

1.2.3.1 Arterial Input Function

The arterial input function is critical to accurate quantitative analysis of PET imaging.113 The input function represents the time-course of radioactivity present in the blood plasma and available for targeted tissue uptake. While PET measurements and blood sampling techniques can measure radioactivity present in the blood, not all activity circulating in whole blood can be extracted for tissue-specific uptake.113,114 Thus, the input function represents the proportion of total circulating radioactivity available for specific binding.

Radioactivity in circulating blood is comprised of four components: 1) activity associated with unchanged parent tracer in plasma, 2) activity associated with carbon-11 labeled metabolites in plasma, 3) activity associated with labeled tracer and metabolites in blood cells and, 4) activity bound to plasma proteins.113,114 Optimally, only the first component – radioactivity of unchanged parent tracer in plasma – is quantified for the arterial input function as it is the only component available for extraction to tissue and specific binding. Conversely, activity associated with the hematocrit is considered unavailable for extraction as red blood cells and other pellet constituents sequester the activity and prevent specific uptake.113,114 The same applies to the fraction of activity that is plasma protein bound.113,114 Further still, circulating carbon-11 labeled metabolites of
the parent tracer need to be accounted for, even if they are not expected to bind in the same fashion as authentic parent compound.113,114

In sum, three components – activity sequestered in blood cells, plasma protein bound tracer and carbon-11 labeled plasma metabolites – act to dilute the activity available for targeted uptake. Ideally, to achieve meaningful quantification, these pools of activity should be differentiated from the unchanged parent radiotracer in plasma to avoid underestimating the true tissue uptake and retention of the radiotracer.

\textbf{1.2.3.2 Specific Activity and Injected Mass}

Prior to addressing the implications of receptor occupancy – a critical consideration for quantification in small animal PET (section 1.2.3.3) – it is important to discuss the concepts of specific activity (SA) and injected mass. SA refers to the amount of radiolabeled compound relative to the total amount of compound (expressed as activity/concentration – MBq/\(\mu\)mol, for example) in a formulation. Thus, radiotracer formulations with ‘high SA’ have a greater proportion of labeled compound to total compound compared to lower SA formulations as a consequence of radiosynthesis production.112 Alternately, the term injected mass refers to the quantity of unlabeled compound coadministered to the subject within the radiotracer formulation and describes the relationship between the injected activity, SA and body mass (i.e. a dose – mg/kg, for example). Indeed, these related concepts arise from the inability to label a compound with a 100\% success rate. In the case of carbon-11 labeled radiotracers, this is owed to the fact that carbon-12 is exponentially more prevalent in nature than is carbon-11 and even the ‘tightest, cleanest’ systems are subject to carbon-12 contamination.
Ultimately, SA is an indication of radioactivity concentration, while injected mass is a measure of the quantity of unlabeled compound injected per subject weight.

1.2.3.3 Receptor Occupancy and Tracer Doses

Quantitative PET assessment requires that the target site not be significantly occupied by the injected mass coadministered with the radiotracer formulation. In human studies, this concept is relatively negligible due to the large size of humans diminishing the relative amount of injected mass.\(^ {115}\) However, with small animals, such as mice and rats, this consideration becomes decidedly influential,\(^ {116,117}\) as the ratio between rat and human body weight is ~1:280.\(^ {117}\)

Receptor\(^ a\) occupancy issues with small animals arise because of the difficulty in producing an image with similar quality to that of human cameras. To maintain image quality, small animal cameras require the same number of total detection events as in human scans; this implies that greater camera sensitivity is needed with small animals, or else the amount of tracer administered needs to be similar to that which is given to humans.\(^ {117}\) Thus, administering a similar amount of injected activity to a rat compared to a human would result in an injected mass of ~280 times greater, possibly (and very likely) saturating vulnerable receptor systems. Dedicated small animal cameras are better suited in terms of sensitivity and resolution, however, not sufficiently so as to reduce the amount of injected activity to the proportionate level (injected activity : body weight) seen in humans.\(^ {109}\) This excess of injected mass can only be limited by marked increases

\(^a\)In section 1.2.3.3, the term ‘receptor’ does not refer the classical concept of a plasma membrane receptor, rather, it describes the saturable target protein of the radiolabeled compound, which may include enzymes, plasma membrane receptors, or biological substrates, for example.
in SA of the radiotracer formulation, or else the injected activity must be reduced at the sacrifice of image quality.117

Receptor occupancy, then, refers to the percentage of total receptors occupied by the injected mass.116 Accurate quantification of the binding potential of the radioligand requires that the occupied receptor sites scale in a linear, 1:1 ratio with the injected activity, representing a set of first order kinetics. To ensure that this condition is met, radioligand studies are restricted to ‘tracer doses’ of the injected compound. A tracer dose is defined as the amount of injected mass which occupies 1-5\% of the total receptor population, indicating that 1) its effect on the native biological system is negligible, and 2) that the receptor population available for specific binding is proportionate to the injected radiotracer. Indeed, a tracer dose is contrasted by the larger ‘clinical dose’, which would describe the dose to achieve a clinically significant outcome for a given compound.

The above theory is put into practice quite regularly in tracer characterization studies, but is highlighted methodically in the following reports.117-119 Alexoff et al. report a distribution volume ratio (relationship between specifically bound to non-specifically bound ligand) of 2.43 in high SA studies (< 1.5 nmol/kg injected mass) of $[^{11}\text{C}]$-raclopride in rat brain, with the finding that lower SA, correlating to injected masses > 1.6 nmol/kg had a statistically significant reduction in distribution volume ratio.118 Jagoda et al. report a similar finding with the saturable serotonin receptor and $[^{18}\text{F}]$-FCWAY, demonstrating that addition of 50 nmol injected mass reduces the differential uptake ratio by \textasciitilde75\% compared to baseline, while addition of 200 nmol injected mass reduced the differential uptake ratio even further to 10\% of baseline.117
Finally, Fujita et al. describe \((R)\)\-[\(^{11}\)C]\rolipram produced with high SA (71 GBq/µmol) demonstrating specific binding in the rat brain, while low SA (0.19-0.38 GBq/µmol) formulations mimicked characteristics of non-specific binding,\(^{119}\) such as diffuse and uniform distribution.

1.2.4 \((R)\)-Rolipram

\((R)\)-Rolipram ((\(R\))-4-(3-cyclopentyloxy-4-methoxyphenyl-2-pyrrolidone), a PDE4 selective inhibitor,\(^{120}\) has previously been labeled with carbon-11\(^{121}\) with the aim of using it as an \textit{in vivo} PET imaging agent. As a therapeutic agent, it was shown efficacious as an anti-depressant with comparable outcomes to imipramine at 14-28 days,\(^{122}\) but has since being discontinued from clinical practice due to associated side-effects (emesis and nausea)\(^{123,124}\) at high, clinically effective doses (0.75 mg, 3 times daily).\(^{122}\) \((R)\)-Rolipram has a 10- to 30-fold higher affinity to PDE4 than does the S-enantiomer and\(^{125}\) binds stereospecifically to the active Mg\(^{2+}\)-PDE4 HARBS complex.\(^{90,126}\) This binding inhibits its hydrolytic ability without being a substrate for the catalytic domain.\(^{125,127}\)

1.2.4.1 \((R)\)-[\(^{11}\)C]Rolipram Characterization of Selectivity and Specificity

Previous work performed in our lab supports the use of \((R)\)-[\(^{11}\)C]rolipram (figure 1.8) for \textit{in vivo} small animal PET imaging of rats. \textit{Ex vivo} biodistribution characterization studies of the radioligand in male Sprague Dawley rats demonstrated \((R)\)-[\(^{11}\)C]rolipram to be selective for PDE4 by pharmacologic delineation using PDE1-5 inhibitors.\(^{128}\) \((R)\)-[\(^{11}\)C]Rolipram was also shown to bind specifically in a variety of organs including the heart, brain, skeletal muscle, lung and pancreas by method of competitive blockade using 1 mg/kg \((R)\)-rolipram. This approach reduced \((R)\)-[\(^{11}\)C]rolipram tissue retention by 80%
FIGURE 1.8. (R)-[11C]Rolipram chemical structure; [11C] label is highlighted in red.
in the brain and ~30% in the left ventricle, with an ED$_{50}$ of 0.03 reported in both tissues.128 Finally, (R)-[11C]rolipram was shown sensitive to desipramine (a NE reuptake transport inhibitor) challenged rats (20 mg/kg, 3 hours prior to tracer injection), revealing a 21.6% increase in PDE4-specific binding of (R)-[11C]rolipram in the left ventricle.129

1.2.4.2 (R)-[11C]Rolipram Metabolism

High performance liquid chromatography (HPLC) was used to evaluate the radioligand metabolism in blood plasma and the heart.130 Unchanged tracer in plasma at 30 and 45 minutes represents 28% and 25% of the radioactivity signal respectively. In the heart at 45 minutes post-injection, 44% of radioactivity signal detected is accounted for by labeled metabolites that do not specifically bind to PDE4, 15% by nonspecific binding and the remaining 41% by PDE4-specific binding. Lastly, no labeled metabolites were detected in brain tissue, indicating that (R)-[11C]rolipram metabolites do not cross the blood-brain barrier. These findings indicate that (R)-[11C]rolipram undergoes significant metabolism within a relatively short time period and needs to be accounted for in PET image quantification (section 1.2.3.1).

1.2.5 (R)-[11C]Rolipram PET: General Imaging

In addition to the ex vivo and in vitro characterization studies performed by our laboratory, a collection of studies explores the potential of in vivo (R)-[11C]rolipram PET imaging.

The first of these in vivo studies documenting (R)-[11C]rolipram PET occurred in the rhesus monkey with promising results.131 (R)-[11C]Rolipram was specifically bound in the cortical regions, striatum, hippocampus and thalamus of the monkey brain. This
tissue retention was reduced by SCH23390 (a dopamine receptor antagonist) pre-
treatment and potentiated by methamphetamines, indicating \((R)-[^{11}\text{C}]\text{rolipram}\) sensitivity
to dopaminergic stimulation.\(^\text{131}\)

A year later, DaSilva et al.\(^\text{132}\) applied \((R)-[^{11}\text{C}]\text{rolipram}\) PET to humans, finding the
human brain displayed high radioactivity accumulation in the cerebellum, striatum,
thalamus and prefrontal cortex (figure 1.9) that peaked after 10 minutes and was subject
to a prolonged, slow washout over the remaining 80 minutes of the scan,\(^\text{132}\) which was in
good agreement with Tsukada et al.\(^\text{131}\) Since tracer retention was visualized throughout
the entire brain, a reference region could not be defined, resulting in the need for
compartmental modelling. To this end, the time activity curves (TACs) in this study were
well-fit to a two compartment model. Finally, metabolism of parent tracer in plasma was
relatively stable from 15-60 minutes, as \(~60\%\) of unchanged parent compound persisted
over this period with significant plasma protein binding (96\%) determined.\(^\text{132}\)

Three years following this study in humans, a series of studies at the National
Institute of Mental Health (NIMH) were published between 2005 and 2010, investigating
\((R)-[^{11}\text{C}]\text{rolipram}\) small animal PET in rat.\(^\text{119,133-135}\) Fujita et al. 2005,\(^\text{119}\) was the first of
these, using \((R)-[^{11}\text{C}]\text{rolipram}\) to quantify PDE4 in the brain. They report that \((R)-[^{11}\text{C}]\text{rolipram}\) produced with high SA (71 GBq/\(\mu\text{mol}\)) displayed tissue uptake consistent
with specific binding, while low SA (0.19-0.38 GBq/\(\mu\text{mol}\)) \((R)-[^{11}\text{C}]\text{rolipram}\) and high
SA (55-71 GBq) \((S)-[^{11}\text{C}]\text{rolipram}\) images had diffuse, non-specific binding profiles
(figure 1.10), with percent of standardized uptake value (%SUV) in high SA \((R)-[^{11}\text{C}]\text{rolipram}\) images greater at all time points.\(^\text{119}\) The high SA \((R)-[^{11}\text{C}]\text{rolipram}\) experiments showed peak uptake times of 5-10 minutes in the caudate putamen,
FIGURE 1.9. (R)-[^11]C]Rolipram reconstructed PET image of the human brain from a 90 minute scan; transverse (left) and sagittal (right) orientations are shown. Reproduced from DaSilva et al., 2002.

thalamus, hypothalamus, hippocampus, parietal cortex and midbrain, with activity at the end of the scan still at 38-52% the peak radioactivity in these regions. These findings highlight the importance of SA and enantiomer choice, as the higher specific studies were representative of specific binding in the rat brain, while the S-enantiomer was consistent with non-specific binding, even at high SA.

The above study was expanded on in 2007 with the effect of antidepressant imipramine studied on (R)-[11C]rolipram rat brain uptake. They found that chronic imipramine treatment via osmotic mini-pump did not alter (R)-[11C]rolipram brain uptake, nor did treatment alter PDE4A/B/D isoform expression by in vitro measure using immunoblotting. This result was unexpected given that antidepressant treatment is believed to be effective on the basis of stimulating cAMP production, which in turn elevates PDE4 presence.

The series of studies from NIMH concludes at present with a pair of studies by Itoh et al. where the influence of conscious vs. unconscious state is explored in rats using (R)-[11C]rolipram small animal PET imaging. They determined that B_max in conscious rats is ~30% greater than anaesthetized controls, accompanied by a ~60% increase in disassociation constant (K_d) value. This anaesthetic-dependent effect is well noted in PET animal studies, as anaesthesia is known to have a significant impact on the respiratory and cardiovascular systems. Continuing with their work in conscious rat brain, they found unilateral administration of PKA activator or inhibitor (db-cAMP or Rp-cAMP, respectively) caused increased and reduced (R)-[11C]rolipram brain radioactivity, elegantly demonstrating the tight relationship between PKA and PDE4 using an in vivo approach.
In addition to the NIMH rat brain studies, experimentation was also completed in pigs137 and canines.138 Parker et al. demonstrate the higher affinity for the \((R)\)-enantiomer using \textit{in vivo} PET and \textit{in vitro} autoradiography in pig brain, with a finding that the affinity ratio between the two was \(\sim 8\) \textit{in vitro} and 12.5 \textit{in vivo}, allowing for reasonable extension of \textit{in vitro} findings to the \textit{in vivo} setting.137 Alternately, Lortie et al. studied the kinetic modelling of \((R/S)\)-\([^{11}\text{C}]\)rolipram in canine hearts, with a finding that a two-compartment model, with or without a parallel compartment to account for labeled metabolites, provided a very good fit to the data and describe the tracer kinetics well.138

\subsection*{1.2.6 \((R)\)-\([^{11}\text{C}]\)Rolipram: Application in Disease States}

\((R)\)-\([^{11}\text{C}]\)Rolipram has been used by our laboratory group to investigate PDE4 in disease states where over active SNS stimulation is suspected to cause altered cell signalling.139,140 Greene at al. evaluated PDE4 tissue biodistribution in diet-induced obese rats with the finding that basal levels of \((R)\)-\([^{11}\text{C}]\)rolipram are unchanged compared to diet-resistant controls, however, the normal response to desipramine challenge was absent in diet-induced obese animals in the heart and brain.139 This study was followed by a 2010 report investigating adriamycin-induced cardiotoxicity in rat, with a similar finding that \((R)\)-\([^{11}\text{C}]\)rolipram basal levels in the heart were unaltered compared to controls, but the response to acute NE stimulation by desipramine challenge was ablated in the adriamycin treatment group.140 These findings suggest that chronic SNS signalling as a result of obesity or cardiotoxicity affect the heart’s capacity to respond to increased SNS output. This lack of response would be particularly detrimental in stress response situations where enhanced cardiac output is required and may be involved in poor cardiac outcomes in these conditions.
Indeed, the above reports (sections 1.2.5 and 1.2.6) support quantification of PDE4 with \((R)-[^{11}\text{C}]\text{rolipram}\) in a variety of species and disease states, with applicability in the brain and heart showing particular promise. Thus, we sought to apply this imaging technology to study the effect of type-2 diabetes mellitus on cardiac PDE4.
1.3 Application of (R)-[11C]Rolipram Cardiac Small Animal PET in a Rat Model of Hyperglycemia

1.3.1 Type 2 Diabetes

Type-2 diabetes mellitus (T2DM), defined by fasting plasma glucose levels greater than 7 mM, is caused by insulin resistance – the reduced ability of cells to respond to insulin signaling – and hypoinsulinemia. Under normal conditions, insulin acts to increase the glucose uptake rate into muscle and adipose tissue through the insulin receptor.141,142 Stimulation of the insulin receptor recruits glucose 4 transporters (Glut-4) to the plasma membrane mediating the removal of glucose from the blood,141-143 and dysregulation of this signaling pathway leads to altered glucose handling and the development of T2DM.

\(\beta\)-cells of the pancreas are responsible for endocrine release of insulin in response to elevated blood-glucose levels in the fasting and post-prandial state.144 In the case of developing T2DM where hyperglycemia prevails, \(\beta\)-cells overproduce insulin to overcome the elevated glucose levels in the blood. This excess of circulating insulin leads to a hyperinsulinemic state and causes overactivation of the insulin receptor.145,146 Over time, chronic receptor activation results in desensitization and downregulation of the insulin receptor,145,146 negatively impacting the already hyperglycemic environment. Further, as the \(\beta\)-cells continue to overproduce insulin they begin to exhaust and endocrine function deteriorates; T2DM in obese and lean humans is associated with 40-60\% decreased \(\beta\)-cell mass, and 3-10-fold increases in \(\beta\)-cell apoptosis.147 Ultimately, these events lead to the transition from a hyperinsulinemic to a hypoinsulinemic state. In
this final stage of disease progression, hypoinsulinemia and receptor insensitivity combine to hinder glucose clearance further leading to full onset of the pathologic state.

1.3.2 T2DM and Cardiovascular Disease

A distinct and negative relationship exists between the heart and diabetes, whereby diabetes confers a 2-4 fold increase in coronary heart disease (CHD)148 and diabetes increases heart failure mortality by 1.5-2 times that of non-diabetics.149 Approximately 70\% of T2DM volunteers showed LV hypertrophy as measured by echocardiography,150 suggesting strong ties between pathology and cardiac function. To this end, a wealth of knowledge implicates vasculature151 and metabolic152 changes as part of the source of excess cardiovascular disease (CVD) in T2DM, while altered cardiac signaling,3 such as seen in diabetic cardiomyopathy – a form of cardiac hypertrophy independent of atherosclerosis or hypertension – implicates the heart directly and will be focused on herein.

1.3.2.1 Role of T2DM Altered Cell Signaling in CVD

Downregulation of the β-AR population in the diabetic heart is consistently observed and is at the root of altered cell signaling in the myocyte. In the case of moderate-dose (45-50 mg/kg) streptozotocin (STZ)-dependent diabetic animal models, it appears that a total β-AR reduction may be observed,153 with the β_1-ARs subtype reduced in number, 154 while β_2-AR expression is increased.155 Similar observations are made with high dose (≥ 65 mg/kg) STZ22,23,156-158 and Alloxan159 animal models.
The reduction in β-AR population has a detrimental effect on downstream targets of the SNS signaling cascade demonstrated by reduced β-AR-dependent cAMP activity in the diabetic state. This is best evidenced on the basis of impaired calcium handling by reduced output at the sarcoplasmic reticulum, ryanodine receptor, SERCA2a Ca\(^{2+}\) ATPase and L-type Ca\(^{2+}\) channels. The importance of these proteins was discussed above (sections 1.1.4.1 and 1.1.4.2), with each of these targets playing important roles in normal cardiac contraction. Thus, it is not surprising to find that functional cardiac deficiencies follow these biochemical changes, such as impaired fractional shortening (45% reduction compared to controls) pairing with a reduction in Ca\(^{2+}\) current by 38% shown in diabetic mouse cardiomyocytes.

1.3.3 SNS Pressor Effect and Increased NE in T2DM

The basis for SNS-dependent alteration in cardiac myocyte signaling may arise from several factors that are typically present in T2DM. For example, obesity was found to be an independent predictor of increased myocardial oxygen consumption and the development of T2DM. High body mass index (BMI) and caloric intake, often present in a T2DM population, were independently associated with increased 24-hour urinary NE excretion, an indicator of SNS activity. Similarly, in T2DM patients plasma NE was elevated 6-fold over controls, while E was elevated 10-fold. In STZ diabetic rats at 11-13 weeks, a 3-fold increase in cardiac-specific NE and 1.5-fold increase in E is reported, which is echoed by Paulson and Light at 12 days, though they did not observe a significant difference in E. Further, though no significant differences were noted at 2 and 4 weeks post-STZ treatment, significant elevations in NE were observed at 8 weeks. This may in part be owed to the fact that the presence of insulin stimulates
sympathetic activity and that this occurs in the normal physiologic range. Indeed, insulin resistance independently predicted increased myocardial fatty acid uptake, utilization and oxidation, indicating reduced cardiac efficiency. Added to this is the evidence indicating that glucose is a promoter of NE release further implicating the unhealthy diet and insulin resistance in enhanced SNS activity.

1.3.3.1 Expected Changes in PDE4 due to SNS Pressor Effect in T2DM

Given the above findings of increased NE exposure to the heart, decreased β₁-AR presence and reduced cAMP signaling, it can be postulated that PDE4 may be reduced in reciprocal given the intimate regulation of PDE4 expression and activity by cAMP. Though this field of research is quite limited, a pair of studies lend support to the idea of hyperglycemia-induced PDE4 cardiac deficiencies. A 25-35% reduction in cAMP breakdown was seen in a STZ rat model of diabetes in Langendorff perfused hearts. In agreement, hydrolysis of cAMP in rat hearts of Alloxan-induced diabetics was reduced by 33%. Unfortunately, neither study investigated the role of PDE4 expression, leaving their findings to hydrolytic activity alone. Beyond this, studies of T2DM-dependent alterations in cAMP hydrolysis are limited to non-cardiac tissues, including reductions in adipose tissue, liver, and lung.

1.3.3.2 Role of Other Intracellular Signalling Pathways

It is possible that a variety of intracellular signaling pathways or players may be altered in parallel to the hypothesized changes in the cAMP-PKA-PDE4 signaling axis. cGMP, protein kinase C and/or Erk-2, for example, may also accompany the changes in
the cAMP-PKA-PDE4 axis given their often overlapping roles. Activation of Erk-2 by β-arrestin (figure 1.2) following β-AR overactivation demonstrates the type of feedback interactions that can take place to recruit additional signaling pathways upon β-AR stimulation. Possible changes in these parallel pathways could act to either blunt or enhance the changes at the PDE4 level, but the exact affect is unknown and is beyond the scope of this thesis discussion.

1.3.4 Streptozotocin-Induced Model of Hyperglycemia

The high fat diet-fed (HFD), moderate-dose STZ induced rat model provides a platform for studying the chronic response of PDE4 to increased NE, reduced β-AR population, overt hyperglycemia and insulin resistance154 – all defining characteristics of late stage progression of untreated T2DM.

STZ (2-deoxy-2-(((methylnitrosoamino)carbonyl)amino)-D-glucopyranose) is a pancreatic β-cell glucose analog that acts as a DNA alkylating agent used for the selective necrosis of β-pancreatic cells and is used as a pharmacologic diabetogenic agent.183 Upon STZ treatment, selective uptake of STZ by the β-cell occurs via glucose transporter 2 (Glut-2) leading to a triphasic response to plasma glucose (figure 1.11).183 In phase one (1-5h following injection), blood glucose rises in response to the inability of pancreatic β-cell to secrete insulin. Phase two (5-10h) is characterized by a marked reduction in plasma glucose due to β-cell lysis which releases large stores of insulin into the bloodstream.183 In the final phase (48-72h), chronic hyperglycaemia is induced as the high insulin levels experienced in phase two diminish and the lack of functional β-cells becomes truly apparent.183
FIGURE 1.11. Phasic blood glucose response to a diabetogenic dose of alloxan (tetraphasic, I–IV) or streptozotocin (triphasic, II–IV; the first phase does not develop in the case of streptozotocin;). Reproduced from Lenzen, 2008.
Although STZ is sufficient for causing overt hyperglycaemia, a second, and critical, aspect to T2DM is insulin resistance which is not conferred by STZ administration alone. To achieve the combined effect of hyperglycemia and insulin resistance, STZ treated rats are maintained on a HFD as elevated circulating fats lead to insulin resistance,184-186 through interactions involving the Randle-cycle.187,188 Indeed, rats receiving 45 mg/kg STZ and fed a HFD are a model for late-stage T2DM189-191 and the model is well characterized by our own group.154
1.4 Project Aim

The above observations collectively point to the role of hyperglycemia and insulin resistance in T2DM impacting cardiac cell signalling at the molecular level, providing the basis for the current scientific investigation. It is hypothesized that there will be a reduction in the cAMP-specific hydrolyzing PDE4 population paralleling the decrease in β-AR expression and cAMP activity seen in T2DM. Further, consistent with the ablation of desipramine response in diet-induced obesity and adriamycin cardiotoxicity, it is anticipated that the heart will be non-responsive to acute NE challenge, demonstrating the SNS’s inability to modulate cardiac output in this disease state. This hypothesis will be tested in the moderate-dose STZ/HFD rat model of hyperglycemia and insulin resistance using the PDE4-specific radioligand (R)-[{11}C]rolipram and PET imaging.

Thus, it is the overall aim of this thesis to 1) characterize the radioligand (R)-[{11}C]rolipram cardiac binding profile in vivo using small animal PET and 2) to apply (R)-[{11}C]rolipram small animal PET to study intracellular signalling at the PDE4 level in the moderate-dose STZ/HFD rat model of hyperglycemia and insulin resistance.
2. Hypotheses & Objectives

2.1 Hypotheses

(i) The \textit{in vivo} characterization of the radioligand (R)-[^11]C\textsubscript{rolipram} will display positive imaging characteristics in the heart as measured by small animal PET including clear cardiac-to-background signal, specific binding to the PDE4 enzyme, susceptibility to enzyme occupancy by unlabeled (R)-rolipram and responsiveness to increases of the PDE4 enzyme by NE.

(ii) The T2DM state, as tested using the moderate-dose STZ/HFD rat model of hyperglycemia and insulin resistance, will result in decreased (R)-[^11]C\textsubscript{rolipram} cardiac binding due to elevated sympathetic tone causing a downregulation in the \(\beta\)-AR population, dampening cAMP-dependent accumulation and reducing the PDE4 presence and, further, resulting in (R)-[^11]C\textsubscript{rolipram} being unresponsive to increases in NE.

\textit{NB: The scientific reports found under the heading ‘In Vivo Tracer Characterization’ (sections 3.2, 4.1 and 5.1) have been accepted for peer-reviewed publication to the} \textit{Journal of Nuclear Medicine (2011), with myself as first author.}
2.2 **Objectives**

2.2.1 *In Vivo* Tracer Characterization

(i) To correct the arterial input function for \((R)-[^{11}\text{C}]\text{rolipram small animal PET by quantifying the proportion of radioactivity accounted for by the carbon-11 labeled metabolites in blood plasma and determining the ratio of total radioactivity in plasma : whole blood.}

(ii) To demonstrate reproducible \((R)-[^{11}\text{C}]\text{rolipram binding in the rat myocardium using small animal PET imaging.}

(iii) To demonstrate that \((R)-[^{11}\text{C}]\text{rolipram myocardial retention is PDE4-specific and saturable with increasing doses of unlabeled \((R)\)-rolipram using small animal PET.}

(iv) To demonstrate that \((R)-[^{11}\text{C}]\text{rolipram retention increases in the myocardium of rats pre-treated with desipramine compared to controls using small animal PET.}

2.3 **Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia**

(v) To demonstrate in hyperglycaemic, insulin resistant rats of the moderate-dose STZ/HFD protocol that there is reduced *in vivo* \((R)-[^{11}\text{C}]\text{rolipram PDE4 binding in the myocardium compared to controls that is not sensitive to elevations in NE.}

(vi) To correlate *in vivo* \((R)-[^{11}\text{C}]\text{rolipram cardiac retention in moderate-dose STZ/HFD rats with *in vivo* measures of PDE4 expression and activity using immunoblotting (Western assay) and PDE4 enzymatic activity assay.
3. Methods

3.1 Materials

Unlabeled (R)-rolipram was purchased from Ascent Scientific (New Jersey, USA) and was dissolved in ethanol : propylene glycol : 0.9\% saline (5:20:75, v/v/v). Desipramine hydrochloride was purchased from Sigma-Aldrich (Toronto, ON) and dissolved in 0.9\% saline. Streptozotocin was purchased from Sigma-Aldrich (Toronto, ON) and dissolved in 0.1 M citrate buffer (pH 4.5).

3.1.1 Radioligand Production

(R)-[$^\text{11}$C]rolipram was synthesized with the precursor (R)-desmethyl-rolipram (either produced in-house or purchased from ABX, Radeberg Germany) and O-methylated with [$^\text{11}$C]methyliodide produced from either lithium aluminum hydride and HI as described previously (figure 3.1),121 or with [$^\text{11}$C]methane and iodine192 to produce (R)-[$^\text{11}$C]rolipram in high radiochemical purity (> 95\%), with low-to-high SA (7.4 to 315 GBq/\text{\micro}mol). The radiosynthesis procedure using lithium aluminum hydride results in lower SA (~11-55 GBq/\text{\micro}mol) of carbon-11 labeled radiotracer, as the production of $^\text{11}$CO$_\text{2}$ is prone to greater contamination by ‘normal’ $^\text{12}$CO$_\text{2}$ than is the alternate method using [$^\text{11}$C]methane and iodine (SA production of ~55-300 GBq/\text{\micro}mol). Semi-preparative HPLC (figure 3.2, panel A; Luna C-18 SCX column with flow of rate of 8 mL/min using 40/60 v/v acetonitrile/0.1M ammonium formate, retention time of ~6 mins) and analytical HPLC (figure 3.2, panel B; Luna C-18 SCX column with flow of 2 mL/min using 50/50 v/v acetonitrile/0.1M ammonium formate, retention time of ~3.5 mins) are used to purify
FIGURE 3.1. Synthesis of (R)-11C-rolipram from (R)-desmethyrolipram via O-11C-methylation.

![Chemical Structure]

FIGURE 3.2. A) Representative chromatogram from semi-preparative HPLC purification of (R)-11C-rolipram. B) Representative chromatograms from analytical HPLC displaying pure (R)-11C-rolipram using UV detector (\(\lambda=280\) nm; bottom panel) and inline radiation detector (top panel).
(R)-[11C]-rolipram from unreacted methyl iodide, the precursor compound and associated by-products. SA is calculated by comparing the area under the curve of the analytical HPLC in a sample aliquot with that of a standard:

$$SA = \frac{(\text{Act}_{\text{sample}} \times \text{AUC}_{\text{standard}})}{\text{AUC}_{\text{sample}} \times \text{V}_{\text{sample}} \times \text{C}_{\text{standard}}}$$

Where AUC = area under the curve, V = volume and C = concentration.

13N]Ammonia is routinely produced in our radiochemistry facility for clinical and research applications using published protocols193,194

3.1.1.1 Quality Control

Various quality control tests are in place to assure the purity and safety of the radioligand formulation. The physical quality of the produced solution is verified by testing the following: chemical and radiochemical purity (> 90%), pH (4.5 – 8.5), osmolality (290 ±30 mOs/kg), negative pyrogenicity, and solution sterility. These tests ensure the highest quality formulations are administered in the experimental protocols, enhancing animal safety and the reproducibility of the studies.

3.2 In Vivo Tracer Characterization

3.2.1 Arterial Input Function

3.2.1.1 Proportion of Activity in Whole Blood and Plasma

Activity in whole-blood and plasma was measured in n=9 rats at serial time points (30 seconds, 1, 5, 20, 30, 45 and 60 minutes) to determine the proportion of radioactivity in plasma to whole-blood for the arterial input function correction. In preparation for blood collection, rats were treated with buprenorphine analgesic (0.04 mg/kg, i.p, 1 hour
prior to surgery) and anesthetised with 1-2% isofluorane. A cannula was inserted into the carotid artery and tied in place to allow for serial blood collection. \((R)-[^{11}\text{C}]\text{rolipram}\) (1.1 – 66.6 MBq) was injected via the tail vein and arterial blood (150-300 µL) was collected in pre-weighed ethylenediaminetetraacetic acid (EDTA) Microvette tubes via a 4 way stop-cock connected to the cannulation line. Blood sample tubes were weighed and counted for activity in a gamma counter (Packard Cobra II Gamma Counter, MA, USA), back-corrected to the time of injection. Sample tubes were then centrifuged for 5 minutes at 4,000 x g, the supernatant collected, weighed and counted to determine the activity associated with blood plasma. Activity counts for both whole-blood and blood plasma were standardized by weight.

3.2.1.2 Carbon-11 Labeled Metabolites in Plasma

HPLC studies were performed to determine the proportion of radioactivity in plasma represented by unchanged \((R)-[^{11}\text{C}]\text{rolipram}\) using methods previously described.\(^{130}\) Previously published data from our lab by Kenk et al. 2008\(^{130}\) was used to complete the plasma metabolite time course analysis by providing metabolite information at 30 and 45 minutes post-injection.

Rats received a high dose of \((R)-[^{11}\text{C}]\text{rolipram}\) (300-370 MBq) and were sacrificed by decapitation at 5, 15, and 60 minutes (n=3 at each time point) for collection of trunk blood to assess carbon-11 labeled metabolites in blood plasma. Blood samples were centrifuged for 5 minutes at 4,000 x g, plasma fraction collected and double filtered through 0.22 um syringe filters to remove excess plasma components to ensure free-flow through the columns. Plasma was then loaded on the HPLC apparatus. Briefly, step 1 (0-
4 mins) (figure 3.3): solvent 1 (1/99 acetonitrile/water (v/v)) delivers the sample to the capture column packed with hydrophilic-lipophilic balanced (Waters Oasis) solid phase sorbent. The eluent is analyzed serially by UV absorbence detection (Waters 486 Absorbance Detector, Waters Corporation, MA, USA) at 280 nm and dual bismuth germanium oxide (BGO) coincidence radiation detector (Bioscan, D.C., USA). After complete elution of non-retained sample, as indicated by UV recession to baseline, step 2 (4-6 mins) is initiated by switching both the six- and four- port valves to redirect the flow of solvent 1 to the waste and solvent 2 (45/55 acetonitrile/0.1M aqueous ammonium formate (v/v)) to the capture column to elute the trapped contents from the capture column onto the analytical column (Reversed Phase C18, Aqua 5 µm Phenomenex) and analyzed by the serial detectors. In step 3 (6-20 mins), after passage of the solvent front, the capture column is re-equilibrated under solvent 1 to prepare for the next injection. The retention time of authentic (R)-[11C]rolipram is ~11.6 minutes (figure 3.4).

3.2.2 PET Imaging Protocol

Rats were imaged using a Siemens Inveon DPET small animal PET camera (Knoxville, TN). This system has < 1.4 mm isotropic spatial resolution and > 10% absolute sensitivity). Animals were anaesthetized with 1-2% isofluorane, positioned supine and centered on the PET scanner bed with the heart in the center of the field of view. Heart rate, respiratory rate and body temperature were monitored throughout the experiment. [13N]ammonia imaging was performed to quantify myocardial blood flow (MBF) and to assist with region-of-interest placement in co-registered (R)-[11C]rolipram images. [13N]ammonia is a PET tracer routinely used for the quantification of MBF in humans and animals and has been validated at our facility.
FIGURE 3.3. Schematic outlining the HPLC column-switch protocol. C1 = capture column, C2 = analytical column, P1 = pump 1 and P2 = pump 2. Adapted from Hilton et al, 2000.
FIGURE 3.4. HPLC chromatogram of UV and radioactivity analysis revealing authentic
(R)-[11C]rolipram in rat plasma eluting at 11.67 minutes. Adapted from Kenk et al., 2008.
Dynamic $[^{13}\text{N}]$ammonia imaging was conducted over 30 minutes with 51.8 to 125.8 MBq (92.5 ± 24.8 MBq) injected activity, followed by a 30-minute washout period prior to (R)-$[^{11}\text{C}]$rolipram imaging. (R)-$[^{11}\text{C}]$rolipram (7.4 – 92.5 MBq) was administered as a single, slow bolus (~5 seconds) via tail vein. A 60 minute dynamic scan (9x10s, 3x30s, 2x60s, 5x300s) was started prior (1-5 seconds) to tracer injection to capture the rapid uptake kinetics of the tracer. To derive an attenuation correction, a ^{57}Co transmission scan of 10 minutes was also conducted, either before or after rolipram imaging. Images of isotope concentration (Bq/cc) were reconstructed on a 128x128 matrix within a 10 cm transverse and 12.7 cm axial field-of-view using the vendor OSEM3D/MAP ($\beta=1$) algorithm with all corrections enabled.

3.2.3 Image Analysis

Image analysis was performed using FlowQuant© (University of Ottawa Heart Institute, Cardiac PET Center, ON, Canada) to generate time-activity curves of tracer concentration in arterial blood and polar maps representing left ventricle myocardial tracer uptake and clearance kinetics. (R)-$[^{11}\text{C}]$rolipram images were quantified with Logan slopes (mL/cm3), derived graphically over the interval of 20-60 minutes post-injection using a constant partial-volume recovery coefficient of 0.6. The Logan slope is a function of free receptor or enzyme concentration, and provides an index of in vivo binding potential used in the study of reversibly bound tracers.197,198

Quantitative MBF values derived from $[^{13}\text{N}]$-ammonia scans were generated using a 1-tissue-compartment model and expressed as mL/min/g.199
Miran Kenk, PhD, is experienced in image analysis and contributed by confirming quantitative accuracy throughout this study by acting as a second image analysis operator.

3.2.3.1 Logan Slope

There are several PET quantification approaches currently practiced, each with their own applications, including: compartmental/kinetic modeling, reference tissue or graphical analysis methods. Compartmental/kinetic modeling is based on mathematical estimates of rate constants (movement of radioactivity between hypothesized compartments) dependent on corrected input functions. Reference tissue approaches avoid the complication of correcting the arterial input function, but require a reference region where a background reading (non-specific binding) can be taken from. Finally, graphical analysis approaches, such as Patlak and Logan, compare the radioactivity of the input function against the radioactivity in the ROI until an equilibrium point is reached and then use the slope of the curve to estimate the receptor density.

The Logan slope approach was used for quantitative analysis in these studies. Briefly, the Logan slope estimates the volume of distribution (DV) of reversibly bound radioligands. In the analysis process, the input function and data acquired from the ROI are transformed to express a linear relationship between arterial signal (input) and tissue (eventual output). This linear slope is dependent on the time point at which the intercept approaches a constant (t^*), which occurs when equilibrium is reached between the exchange of activity between blood and the target tissue (figure 3.5, panel C).
FIGURE 3.5. Reconstructed (R)-[¹¹C]rolipram images showing high tracer uptake in the rat heart (frame 15, 4-5 minutes post-tracer; 17 MBq injected activity, 0.04 ug injected mass, 0.00016 mg/kg injected mass). Myocardial (red) regions of interest (ROI) placed using A) horizontal long-axis and B) vertical long-axis orientations with whole-blood regions taken at locations A, B and C, representing the left atrium, base and cavity of the heart respectively. C) Representative Logan slope plot showing the linear relationship from 20-60 minutes (frames 19-26). In axis, Cₚ(t) = concentration of parent (R)-[¹¹C]rolipram in plasma and Cₚₑᵗ(t) = concentration of (R)-[¹¹C]rolipram in tissue after correction for blood volume and partial volume loss.
Importantly, at all times > t* complete saturation of non-specific binding is assumed and the tracer kinetics can be described by a one compartment tissue model, reflective of the available receptor population (B$_{\text{max}}$).198,200

The DV estimated by the Logan slope approach does not purely reflect the DV of (R)-[11C]rolipram; previous studies have revealed that labeled metabolites are present in rat cardiac tissue. However, these intracardial metabolites of (R)-[11C]rolipram do not bind specifically to PDE4.130 Therefore, a component of the Logan slope can be attributed to the labeled metabolites present in the tissue, but despite this bias, the method still provides a useful index of the tracer binding potential in lieu of full compartmental modeling.

3.2.4 PDE4 Enzyme Saturation Studies

Studies (n=30) investigating the \textit{in vivo} relationship between injected mass of unlabeled cold compound compared to the quantitative Logan slope, were conducted with the goal of estimating an ED$_{50}$115,116 for (R)-rolipram in the rat heart. This relationship was evaluated over the range of 0.0001-1.09 mg/kg of injected mass.

Full blockade studies were conducted in a subset of n=3 rats pre-injected (2-5 minutes prior to injection of (R)-[11C]rolipram) with a saturating dose of (R)-rolipram (1 mg/kg, i.v.)128,201 to establish the proportion of activity contributed in the heart by the non-displaceable signal. Complete saturation of the PDE4 enzyme allows assessment of the \textit{in vivo} specific binding of (R)-[11C]rolipram to PDE4 by comparing Logan slopes against unsaturated, low-occupancy images.

To investigate the dose range of 0.003-0.35 mg/kg, a subset of n=5 rats received (R)-[11C]rolipram co-administered with added unlabeled (R)-rolipram to add additional
injected mass to the tracer formulation. To image the effect of doses < 0.03 mg/kg in the remaining rats (n=22), the unlabeled component of the tracer formulation was exploited to contribute to the injected mass dose by tailoring the injected activity. Radiochemistry limitations of tracer specific activity permitted 0.00016 mg/kg as the lowest injected mass dose. PET camera sensitivity also limited exploration of lower injected masses, as the camera requires a minimum injected activity above 7.4 MBq to produce an acceptable image with rats.

Upon conclusion of these studies and determination of an ED$_{50}$ for (R)-rolipram in the rat heart, we established a baseline target of low receptor occupancy (< 10%) using the following equation proposed by Hume116:

$$\text{Occ} = \frac{\text{Act}}{\text{Wt} \cdot \text{ED}_{50} \cdot \text{SpAct} + \text{Act}},$$

where Occ = receptor occupancy, Act = injected activity, Wt = animal weight and SpAct = specific activity of the tracer. The injected mass correlating to < 10% occupancy was then used as a cut-off to guide the following studies.

3.2.5 (R)-[C]Rolipram Reproducibility Studies

Inter-rat variability was assessed at baseline, low-occupancy conditions (< 10%; 0.00018 ± 0.00002 mg/kg) in n=13 animals. The intra-rat variability was assessed using test-retest imaging (n=5 animals) separated by at least 9 days (mean 16.4 ± 6.7 days) to yield repeated measures.

3.2.6 Response to Acute NE Elevation

To evaluate binding of (R)-[C]rolipram in response to acutely elevated cardiac NE levels, n=5 rats were imaged first at baseline and then at a second time, 2-7 days later
(4.8 ± 1.8 days) following acute desipramine challenge (20 mg/kg, i.p., 3 hours pre-tracer). [\(^{13}\)N]-ammonia was used to assess whether MBF was modified by desipramine administration, potentially influencing tracer delivery of \((R)-[^{11}\text{C}]\text{rolipram}\), as desipramine can cause depressed hemodynamics at high doses.\(^{202}\)
3.3 Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia

3.3.1 Animals

All experiments were conducted in accordance with the recommendations of the Canadian Council on Animal Care and with approval from the Animal Care Committee at the University of Ottawa.

Male Sprague Dawley rats (n=65) were obtained from Charles River (Montreal, QC) and were maintained in a temperature controlled environment with water and food ad libitum. Body weight and diet consumption were monitored throughout. Rats were fed HFD (Research Diets D12266B; 32/51/17 % fat/carbohydrates/protein, NJ, USA).

This experimental design is similar to that used previously in our lab. Briefly, after 14 days of high fat feeding, rats were administered STZ (45 mg/kg, ip; n=43) or vehicle alone (n=22). Two weeks after STZ injection, animals were stratified by blood glucose to STZ-treated hyperglycemics (blood glucose ≥ 11 mM, n=26) or STZ-treated euglycemics (blood glucose < 11 mM, n=17). Fed-state blood glucose levels were measured weekly by glucose meter (Roche, QC, Canada) from the saphenous vein via a 25g needle pinprick to pierce the vein and allow beads of blood to be sampled. Plasma insulin (Alpco Diagnostics, New Hampshire, USA), triglyceride (BioVision #K622-100, California, USA) and free fatty acid (BioVision #K612-100) were assessed using commercially available kits at the 8 week time point.
3.3.2 PET Imaging

PET scans were conducted as described above (section 3.2.2) at 8 (n=7 vehicle-treated control, n=5 STZ-treated euglycemics, n=7 STZ-treated hyperglycemics) and at 10 weeks with desipramine (20 mg/kg, ip) pre-treatment (n=7 vehicle-treated control, n=6 STZ-treated euglycemics, n=6 STZ-treated hyperglycemics). Anaesthetized rats (1-2% isofluorane) underwent a 30 minute 13N-ammonia scan (100 ± 17 MBq) prior to (R)-11C]rolipram imaging with a 30-minute washout period. Following this, (R)-11C]rolipram was administered (mean 55.5 ± 25.5 MBq). A transmission scan of 10 minutes was also performed (57-cobalt source, 122 keV emission), either before or after (R)-11C]rolipram imaging to provide a correction for signal attenuation.

3.3.3 Image Analysis

Image analysis was conducted as described above (section 3.2.3).

3.3.4 Ex Vivo Biodistribution

To validate the dynamic PET measurements with (R)-11C]rolipram, ex vivo biodistribution was conducted on a separate group of animals (n=11 vehicle-treated controls, n=8 STZ-treated euglycemics, n=8 STZ-treated hyperglycemics) at 8 weeks following STZ or vehicle administration as described previously. Briefly, (R)-11C]rolipram (33.3-70.3 MBq) was administered to conscious, restrained rats via a lateral tail vein. After 45 minutes, rats were sacrificed by decapitation with trunk blood collected. Atria, and ventricles were rapidly dissected, blotted, and counted (decay-corrected) in a gamma counter (Packard Cobra II) with 1 mL blood samples and 1% standard dilutions of the (R)-11C]rolipram injection volume. Radioactivity
biodistribution is expressed as percentage of injected dose per gram of tissue (%ID/g) normalized as a ratio to blood activity. The PDE4 response to acute elevation of norepinephrine (n=5 vehicle-treated controls, n=6 STZ-treated euglycemics, n=6 STZ-treated hyperglycemics) was assessed by 3 hour pretreatment with the NE reuptake inhibitor desipramine (20 mg/kg, ip). Specific binding with (n=4 vehicle-treated controls, n=4 STZ-treated euglycemics, n=3 STZ-treated hyperglycemics) and without desipramine pre-treatment (n=10 vehicle-treated controls, n=4 STZ-treated euglycemics, n=4 STZ-treated hyperglycemics) was assessed by coinjection of a saturating dose of (R)-rolipram (1 mg/kg iv) with the radiotracer. Specific binding was defined as the portion of total binding susceptible to displacement by coinjection of (R)-rolipram (total binding minus non-specific binding).

3.3.5 In Vitro Measurements

3.3.5.1 Tissue Collection

Tissue was collected from a subset of animals (n=3 vehicle-treated controls, n=3 STZ-treated euglycemics, n=4 hyperglycemics) for in vitro assessment of PDE4 expression and activity. Rats were sacrificed at 8 or 10 weeks by decapitation and the heart dissected out, rapidly sectioned into the LV, right ventricle (RV), atria and septum, flash frozen in liquid nitrogen and stored in -80°C until use. Upon use, tissues were hand powdered using a pestle and mortar under liquid nitrogen. Aliquots were prepared for excess tissue and stored in -80 C for future use.
3.3.5.2 Immunoblotting

Western blotting was used to correlate the *in vivo* imaging results with expression of PDE4. PDE4 protein levels were quantified in rats of the STZ/HFD protocol at 8 weeks post-treatment and 10 weeks post-treatment with desipramine challenge in each of the treatment groups. Antibodies used for Western blotting were anti-PDE4A polyclonal rabbit antibody (FabGennix Inc., Texas, USA; PDE4-112AP); anti-PDE4B polyclonal rabbit antibody (Santa Cruz Biotechnology, Inc., California, USA; sc-25812); anti-PDE4D polyclonal rabbit antibody (Santa Cruz Biotechnology, Inc.; sc-25814); mouse monoclonal antibody against GAPDH (Santa Cruz Biotechnology, Inc.; sc-32233). The protocol used has been previously described by our laboratory group.140

In brief, the prepared LV tissue powder was homogenized in 25 mM Tris-Cl and 20% triton, pH 7.6 with Complete Protease inhibitor cocktail (Roche) using a Polytron homogenizer (PT 1200, Kinematica AG, Lutzen). Membrane lysis followed for 15 minutes on ice. Homogenate was centrifuged for 3 minutes at 12,000 × g and the supernatant collected. Protein concentration was determined by a quantification kit (BCA protein assay). Western blot analysis was completed using the manufacture’s guidelines (BioRad, ON, Canada). 8-10% agarose resolving gel was used for PDE4 protein separation based on protein size using gel electrophoresis (Mini-Protean Tetra Cell, BioRad). The proteins were transferred from the gel to a PVDF membrane over 2 hours (Mini Trans-Blot Transfer Cell, BioRad). 10% skim milk was used to block the membrane overnight. Incubation in primary antibody (PD4-112AP- anti-PDE4A, FabGennix Inc., TX, USA) and 5% milk followed for 3 hours. Secondary antibody incubation (goat anti-rabbit horse radish peroxidase) occurred for 1 hour. A
chemiluminescence kit (Perkin Elmer, MA, USA) was used to stain the membrane. The image was obtained by using a CCD camera (FluorChem HD, Alpha Innotech, CA, USA) connected to AlphaEase FC IS-9900 image analysis software (Apha Innotech).

3.3.5.3 Enzyme Activity Assay

Enzyme activity assays were used to correlate changes in vivo \((R)-[^{11}C]rolipram\) distribution with changes in PDE4 activity levels. Enzyme activity was measured with a commercial kit (FabGennix Inc.) at 8 weeks post-treatment and 10 weeks post-treatment with desipramine challenge in each of the treatment groups. The underlying principle of the kit is a two-step conversion of \([^{3}\text{H}]\text{cAMP}\) to \([^{3}\text{H}]\text{AMP}\), followed by dephosphorylation to \([^{3}\text{H}]\text{adenosine}\) and has been described previously by our lab.\(^{140}\)

Briefly, LV tissue powder was homogenized with manufacturer-provided buffer used for tissue lysis and homogenization (SolO buffer, Fabgennix). Membrane lysis followed for 15 minutes on ice. Homogenate was centrifuged for 3 minutes at 12,000 \(\times \) g and supernatant collected. For the first enzymatic step, tissue samples were added to incubation mixtures containing manufacturer-provided buffers, cAMP, and \((R)\)-rolipram (500 \(\mu\)M in blocked samples). Following addition of the \([^{3}\text{H}]\text{cAMP}\) substrate, tubes were incubated for 10 minutes with shaking and the reaction terminated by boiling the samples for 3 minutes. For the second enzymatic step, Crotalus Atrox venom-derived secondary enzyme was added to the reaction and incubated for 15 minutes. To separate the resulting \([^{3}\text{H}]\text{adenosine}\) from \([^{3}\text{H}]\text{AMP}\) and \([^{3}\text{H}]\text{cAMP}\), pre-activated ion exchange resin was added to each tube. Tubes were centrifuged at 13,000 \(\times \) g for 2 minutes, the supernatant mixed with scintillation fluid (BCS-NA scintillation cocktail, Amersham) and counted.
using a β-scintillation counter (1219 RackBeta liquid scintillation counter, LKB Wallac, Perkin-Elmer). PDE4 activity (fmol/min·mg protein) was quantified by comparing the 3H signal with the blocked samples, and using a sample of $[^3]$HcAMP to correlate radioactivity measurements (cpm to Ci).

3.4 Statistical Analysis

Statistical analysis with the Student’s t-test, paired t-test and ANOVA was completed using SPSS (version 18, SPSS Inc., IL, USA), with comparisons of $p < 0.05$ considered statistically significant. In cases of ANOVA analysis, the Tukey’s post-hoc test was used to determine significance between individual groups.
4. Results

4.1 In Vivo Tracer Characterization

4.1.1 Arterial Input Function

4.1.1.1 Proportion of Activity in Whole Blood and Plasma

Plasma to whole blood ratios varied between 0.8-1.2 from 0-60 minutes (figure 4.1), with more activity present in whole-blood at early time-points (0-20 mins), while at later time-points (35-60 mins) greater activity was present in plasma.

The following equation was fit to the ratio of the data:

\[F(t) = 1.15 - 0.24 e^{-0.02t}, \]

providing a whole-blood correction for radioactivity associated with plasma over time.

4.1.1.2 Carbon-11 Labeled Metabolites in Plasma

\((R)\)-[\(^{11}\)C]rolipram was rapidly metabolized, whereby only 27% of radioactivity in plasma at 15 minutes was associated with the unaltered parent compound, while the remaining > 70% of activity derived from labeled metabolites (figure 4.2).

The following equation was fit to the metabolite data:

\[F(t) = 0.7 e^{-0.23t} + 0.3 e^{-0.007t}, \]

providing a metabolite correction for unchanged parent tracer in plasma over time.
FIGURE 4.1. Ratio of plasma : whole blood activity over time (minutes) in rat for (R)-[^11C]rolipram as measured by carotid artery blood sampling (150-300 mL). Data are presented as mean ± std. dev. (n=3 at each data point). The fitted whole-blood to plasma correction function is $F(t) = 1.15 - 0.24e^{-0.02t}$.
FIGURE 4.2. Proportion of plasma activity associated with hydrophilic metabolites eluted from the capture column (■), hydrophilic metabolites eluted with the solvent front (■) and unchanged parent tracer (□) at various time points (minutes). The derived plasma metabolite correction function is $F(t) = 0.7 \ e^{-0.23t} + 0.3 \ e^{-0.007t}$.
4.1.2 \((R)\text{-}[^{11}\text{C}]\text{rolipram Imaging - General}\)

The images generated by \((R)\text{-}[^{11}\text{C}]\text{rolipram small animal PET (n=30) consistently show the highest areas of uptake to be the heart, brain, and liver (figure 4.3). The myocardial signal-to-noise ratio (SNR) at 4-5 min post-tracer injection was 11 ± 3.2, and the myocardial-to-blood ratio (MBR) was 1.4 ± 0.23 across all imaging conditions.}

4.1.3 PDE4 Enzyme Saturation Studies

An estimate of the \(ED_{50}\) for myocardial \((R)\text{-rolipram binding was obtained by fitting a sigmoid curve, as is typical of competition binding assays, to the Logan slope (LS) values versus the corresponding injected masses (IM) for n=30 \((R)\text{-}[^{11}\text{C}]\text{rolipram images:}

\[
LS = \frac{V_S}{1 + \frac{IM}{ED_{50}}} + V_{ND}
\]

where \(V_S\) represents the specific binding distribution volume, and \(V_{ND}\) is the non-displaceable distribution volume of the tracer. From this relationship (figure 4.4), the \(ED_{50}\) was estimated to be 0.0019 mg/kg (95% confidence interval 0.0014 to 0.0052; \(r^2 = 0.63\)), and the specific binding \(V_s\) was estimated at 2 mL/cm\(^3\).

Assuming this \(ED_{50}\) value and using the equation presented by Hume (section 3.2.4),\(^{116}\) 10% receptor occupancy of the PDE4 enzyme in the rat heart corresponds to an injected mass of 0.0002 mg/kg. In the subset of images at this baseline, low-occupancy condition \((n=13; 0.00018 ± 0.00002\text{ mg/kg}),\) the Logan slope value was 5.5± 0.85 mL/cm\(^3\) (table 1).

Images with complete PDE4 saturation (> 1 mg/kg, \((R)\text{-rolipram) were characterized by a lack of contrast between myocardium and blood signals (MBR of 1.1
FIGURE 4.3. Reconstructed (R)-[11C]rolipram PET image showing high tracer uptake and tissue contrast in the heart, brain and liver (74 MBq, SA = 157 GBq/\textmu mol).
FIGURE 4.4. Dose-response curve in rat LV for the injected mass of \((R)\text{-}[^{11}\text{C}]\text{rolipram}\) vs. Logan slope over the range of 0.00016-1.09 mg/kg. An \(\text{ED}_{50}\) of 0.0019 mg/kg (95% confidence interval of 0.0013 to 0.0052, dashed vertical line) was estimated by fitting the following equation to the data: \(\text{LS} = \left[\frac{\text{V}_S}{1 + \frac{\text{IM}}{\text{ED}_{50}}}\right] + \text{V}_{\text{ND}}\); \(\text{LS} = \) Logan slope, \(\text{V}_S = \) specific binding distribution volume, \(\text{IM} = \) injected mass, and \(\text{V}_{\text{ND}} = \) non-displaceable distribution volume.
± 0.06) as compared to baseline (MBR of 1.6 ± 0.22, p < 0.05; figure 4.5). Quantitative assessment reveals a mean Logan slope of 3.3 ± 0.1 mL/cm3 (table 1) in these animals representing a significant 40% reduction compared to baseline (p < 0.01).

4.1.4 (R)-[11C]Rolipram Reproducibility Studies

Logan slope values for (R)-[11C]rolipram scans at baseline (< 10% occupancy) ranged from 4.0 to 7.2, with a mean of 5.5 ± 0.85 mL/cm3 in 13 studies (table 1), representing 15% coefficient of variation between independent animal studies. Test-retest studies revealed small variability within rats; the difference between repeated measures ranged from 1.9-8.6% with a mean difference of 4.6 ± 2.8%. Bland-Altman analysis showed a small 5% bias towards higher values in the second study relative to the first (p < 0.05, figure 4.6, panel A).

From the variability observed in the inter-rat evaluation, a sample size calculation was performed to determine the number of rats needed to observe a specified change for future studies. A sample size of 26, 8 and 6 would be needed to observe a change in cardiac PDE4 binding of 10, 20 and 30%, respectively (figure 4.6, panel B).

4.1.5 Response to Acute NE Elevation

Three-hour pre-treatment with desipramine resulted in Logan slopes with a mean of 6.8± 0.70 mL/cm3. These same rats had baseline Logan slopes of 5.2 ± 0.77 mL/cm3 representing a significant 30% increase in these rats (p < 0.01, figure 4.7) and a significant 24% increase compared to the baseline, low-occupancy group (p < 0.01).
FIGURE 4.5. Representative time activity curves (panel A, C and E) for (R)-[\(^{11}\)C]rolipram in the rat LV (black trace) in baseline, blocking and desipramine challenge studies compared to blood (red trace; blood input function). Representative reconstructed (R)-[\(^{11}\)C]rolipram transaxial images (panel B, D, and F) in baseline, blocking and desipramine challenge studies.
TABLE 1. Quantitative (R)-[^11]Crolipram Logan slope and[^13]Nammonia MBF values for baseline, blocked and desipramine challenge groups.

<table>
<thead>
<tr>
<th>Group ((R)-Rolipram injected mass/body weight)</th>
<th>Logan Slope (± SD)</th>
<th>MBF (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline, low occupancy (0.00018 mg/kg)</td>
<td>5.5 (± 0.85)</td>
<td>3.5 (± 0.60)</td>
</tr>
<tr>
<td>Blocked, total PDE4 saturation (> 1.0 mg/kg)</td>
<td>3.3* (± 0.10)</td>
<td>3.9 (± 0.61)</td>
</tr>
<tr>
<td>Desipramine challenge (0.00018 mg/kg)</td>
<td>6.8** (± 0.70)</td>
<td>3.0 (± 0.55)</td>
</tr>
</tbody>
</table>

* p < 0.01 Blocked vs Baseline
† p < 0.001 Desipramine vs Baseline
‡ p < 0.001 Desipramine vs. Blocked
FIGURE 4.6. A) Bland-Altman plot comparing test-retest Logan slope values for (R)-[11C]rolipram in rat LV. Mean difference between Logan slope repeated measures (n=5, image 2 – image 1) was 0.26, representing a small but significant bias of 5% (p < 0.05). The repeatability coefficient was 0.33 mL/cm3, or 6% of the mean. B) Results of a sample size estimation for a given percent change in PDE4 binding.
FIGURE 4.7. Baseline vs. desipramine challenge (20 mg/kg, 3hr pre-tracer, i.p.) studies in rat LV. A) Increased Logan slope values following desipramine challenge (p < 0.01) and B) decreased MBF following desipramine challenge (p < 0.001).
The dual tracer investigation of the effect of desipramine on MBF in these rats revealed a significant, 23% reduction in MBF with desipramine challenge in treated vs. untreated rats (p < 0.001, figure 4.7). In absolute terms, this resulted in mean MBF values of 3.9 mL/min/g in untreated rats, dropping to 3.0 mL/min/g 3 hours following desipramine administration.
4.2 Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia

4.2.1 Animals

The experimental animal population was composed of: 22 vehicle-treated controls, 26 STZ-treated hyperglycemic and 17 STZ-treated euglycemic rats. STZ-hyperglycemic animals at 8-weeks post-treatment had depressed weight gain (figure 4.8), overt hyperglycemia (figure 4.9) and increased food consumption (figure 4.10) compared to vehicle-treated controls and STZ-treated euglycemics. Fed-state plasma TGs were significantly elevated in STZ-treated hyperglycemics compared to controls at 8 weeks post-treatment (p < 0.05), while FFA and circulating insulin levels were reduced (p < 0.05; table 2).

4.2.2 (R)-[11C]Rolipram Imaging

Cardiac images of (R)-[11C]rolipram display uniform uptake and good contrast to background (figure 4.11) in all treatment groups. Quantitative analysis revealed no significant difference in Logan slope value for cardiac (R)-[11C]rolipram uptake and retention between treatment groups at 8 weeks post-treatment (p > 0.05; figure 4.12).
FIGURE 4.8. Weight gain in vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic rats. Depressed weight gain in STZ-treated hyperglycemic rats is observed following STZ treatment (t = 0).
FIGURE 4.9. Fed-state blood glucose levels in vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic rats. Elevated blood glucose is observed in STZ-treated hyperglycemic rats following STZ treatment (t = 0).
FIGURE 4.10. Food consumption for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic rats. Increased food consumption was observed in STZ-treated hyperglycemic rats following STZ treatment (t = 0).
TABLE 2. Effect of STZ/HFD induced hyperglycemia on body weight and blood markers in rats at 8 weeks post-treatment.

<table>
<thead>
<tr>
<th>Units</th>
<th>Control (n=22)</th>
<th>Euglycemic (n=17)</th>
<th>Hyperglycemic (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight</td>
<td>609</td>
<td>603</td>
<td>420**†</td>
</tr>
<tr>
<td>Plasma Glucose</td>
<td>6.3</td>
<td>9.1</td>
<td>25.4**‡</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Control (n=3)</th>
<th>Euglycemic (n=3)</th>
<th>Hyperglycemic (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin ng/mL</td>
<td>2.57</td>
<td>1.17</td>
<td>0.093**‡</td>
</tr>
<tr>
<td>TG mM</td>
<td>136.4</td>
<td>157.5*</td>
<td>182.5*</td>
</tr>
<tr>
<td>FFA mM</td>
<td>10.1</td>
<td>11.5</td>
<td>4.35**†</td>
</tr>
</tbody>
</table>

* p < 0.05 vs. Vehicle-treated controls

† p < 0.05 vs. STZ-treated euglycemics
FIGURE 4.11. Representative reconstructed transaxial \((R)\)-\([^{11}\text{C}]\)rolipram images showing tracer uptake in the rat LV for A) vehicle-treated control (44.4 MBq, 0.00018 mg/kg injected dose), B) STZ-treated euglycemic (30.7 MBq, 0.00017 mg/kg) and C) STZ-treated hyperglycemic (37 MBq, 0.00017 mg/kg injected dose) groups at 8 weeks post-STZ treatment.
Similarly, desipramine challenge at 10 weeks post-treatment treatment did not reveal a significant difference in \((R)-[^{11}\text{C}]\)rolipram uptake \((p > 0.05; \text{figure } 4.12)\) in the left ventricle for any group. However, comparison of Logan slope values at 8 weeks and at 10 weeks with desipramine challenge revealed significant increases of 20% 24% 20% in vehicle-treated controls, STZ-treated euglycemics, and STZ-treated hyperglycemics, respectively.

4.2.3 \[^{13}\text{N}]\text{Ammonia Imaging}

There was no difference between groups in quantitative MBF at either 8 weeks or 10 weeks of diabetes with desipramine challenge (figure 4.13). However, there was a significant decrease in MBF following desipramine challenge at 10 weeks compared to 8 weeks in STZ-treated euglycemics \((p < 0.05)\), while a similar trend was observed with the vehicle-treated controls and STZ-treated hyperglycemics in the absence of statistical significance (figure 4.13).

4.2.4 *Ex vivo* Biodistribution

Cardiac retention of \((R)-[^{11}\text{C}]\)rolipram at 45 minutes was consistent between vehicle-treated controls, STZ-treated euglycemic, and STZ-treated hyperglycemic groups (figure 4.14). Cardiac binding was effectively blocked by coadministration of cold roflumilast by 28-42% in vehicle-treated controls, 32-45% in STZ-treated euglycemics and 29-37% in STZ-treated hyperglycemics. These reductions were not significant between groups \((p > 0.05)\). Pre-treatment with desipramine resulted in a marked increase in cardiac binding by 37-38% in vehicle-treated controls, 19-21% in STZ-treated
FIGURE 4.12. Quantitative cardiac (R)-$[^{11}\text{C}]$rolipram PET for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups expressed as Logan slope (mL/cm3); closed circles represent 8 week data (n=7 control; n=5 euglycemic; n=7 hyperglycemic), open circles represent 10 week with desipramine data (20 mg/kg, ip; n=7 control; n=6 euglycemic; n=5 hyperglycemic). Horizontal bars represent mean Logan slopes, within group. No significant differences between groups ($p > 0.05$). * = significant difference ($p < 0.05$) from 8 week mean without desipramine, within group.
FIGURE 4.13. Quantitative evaluation of $[^{13}N]$ammonia MBF (mL/min/g) for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups; closed circles represent 8 week data (n=7 control; n=5 euglycemic; n=7 hyperglycemic), open circles represent 10 week with desipramine data (20 mg/kg, ip; n=7 control; n=7 euglycemic; n=7 hyperglycemic). Horizontal bars represent mean MBF, within group. * = significant difference (p < 0.05) from 8 week mean without desipramine, within group.
FIGURE 4.14. (R)-$[^{11}C]$Rolipram biodistribution results at 45 minutes post-tracer injection in the rat atrium, right and left ventricle for vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups at 8 weeks post-STZ treatment. Data are presented as percent injected dose per gram of tissue standardized to body weight, compared as a ratio of tissue-to-blood.
euglycemics and 29-37% in STZ-treated hyperglycemics, with significance seen only with STZ-treated euglycemics compared to vehicle-treated controls (p < 0.05).

4.2.5 In Vitro Studies

4.2.5.1 PDE4 Expression

PDE4A, PDE4B and PDE4D LV expression was unchanged between groups at both 8 weeks and 10 weeks post-treatment with desipramine (p > 0.05, figure 4.15). No difference in expression was observed within groups between 8 week and desipramine-treated, 10 week states (p > 0.05).

4.2.5.2 PDE4 Enzyme Activity

Total LV PDE and PDE4-specific catalytic activity for the cAMP substrate was unchanged between groups at either 8 weeks post-treatment or 10 weeks post-treatment with desipramine (p > 0.05, figure 4.16). No significant changes in total or PDE4-specific activity were seen within groups between 8 week and desipramine-treated, 10 week states (p > 0.05).
FIGURE 4.15. Expression of PDE4A, PDE4B and PDE4D protein expression in rat hearts of vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups. A) Protein expression of PDE4 isoforms normalized to vehicle-treated control value for 8 and 10 weeks with desipramine (20 mg/kg, ip). Black bars = vehicle-treated. C control, white bars = STZ-treated euglycemic, grey bars STZ-treated hyperglycemic. B) Representative image of 8 week post-treatment PDE4 isoform bands on PVDF membrane as visualized with chemiluminescence. C) Image of GAPDH bands on PVDF membrane as visualized with chemiluminescence used for loading control calibration; graph demonstrating acceptable linearity from 10-70 µg of loaded protein ($r^2 = 0.9839$).
FIGURE 4.16. A) PDE and PDE4 enzyme activity of rat heart at 8 and 10 weeks in vehicle-treated control, STZ-treated euglycemic and STZ-treated hyperglycemic groups. Black bars = vehicle-treated control, white bars = STZ-treated euglycemic, grey bars STZ-treated hyperglycemic. B) Summary table indicates calculated values and standard deviations. No significant differences between groups at 8 weeks and 10 weeks post-treatment with desipramine pretreatment (p > 0.05).
5. Discussion

Cardiac function is mediated through SNS dependent cell signalling by the agonist NE and the β-ARs. Activation of this receptor population stimulates production of the intracellular secondary messenger cAMP, leading to activation of PKA and the subsequent phosphorylation of target proteins involved in cardiac contraction and pacing. PDE enzymes, through their ability to hydrolyze cyclic nucleotides, play a critical role in limiting and attenuating cell signalling. In the heart, cAMP-specific PDE4 is of particular functional importance as it hydrolyzes the majority of cAMP produced in response to SNS stimulation. Further, cAMP levels act to regulate PDE4 expression and activity through negative feedback mechanisms. Given this relationship between PDE4 and cAMP, PDE4-specific (R)-[11C]rolipram distribution volume is reflective of the cardiac β-AR signalling environment and using this radioligand with small animal PET can provide an in vivo window to this intracellular signalling cascade.

5.1 In Vivo Tracer Characterization

5.1.1 Arterial Input Function

The work relating to the arterial input function corrections revealed rapid tracer metabolism in rat plasma. As quickly as 5 minutes after tracer administration, the parent compound was reduced to ~50%, while at 15 minutes unchanged compound was reduced to < 30% of the radioactive signal. Rapid (R)-[11C]rolipram plasma metabolism was also noted by Fujita et al., where similar metabolism rates were seen. In metabolism/clearance studies of rolipram, Krause and Kuhne reported rolipram plasma
clearance occurring with a rapid half-life ($t_{1/2} < 15$ mins) following i.v. administration, along with a significant metabolic first-pass effect noted in rats. Rapid metabolism of the parent tracer results in a reduced quantity available for tissue and specific binding to PDE4, but can be accounted for in the quantitative evaluation by using the fitted correction function (section 4.1.1.2) applied over the duration of the scan.

Accurate determination of the arterial input is further complicated by the changes in the ratio between radioactivity in whole blood and plasma over time. Our own previous observations support this effect, as red blood cells in the whole-blood fraction have high retention of (R)-[11C]rolipram. However, as time proceeds, the fraction of radioactivity in plasma increases as the ratio of activity in plasma to whole-blood nears and surpasses unity at approximately 35 minutes. The shift in radioactivity from whole blood to plasma could be due to the appearance of labeled metabolites at later time points. A secondary contributor may be the release of parent (R)-[11C]rolipram over time by competitive displacement by unlabeled compound.

5.1.2 (R)-[11C]Rolipram Imaging - General

PET imaging with (R)-[11C]rolipram consistently shows the highest retention in the heart, brain and liver. High liver activity is typical of radiotracers that undergo hepatic metabolism, and further, it has been demonstrated that liver activity associated with (R)-[11C]rolipram does not represent specific binding. Conversely, the tracer accumulation in cardiac and brain tissues confirms previous in vivo biodistribution studies and imaging experiments, reflecting the high PDE4 levels reported in these tissues.
5.1.3 PDE4 Enzyme Saturations Studies

Enzyme saturation studies over a range of injected masses (0.00016-1.09 mg/kg) revealed an inverse relationship between increasing injected mass and decreasing Logan slope, consistent with greater PDE4 enzyme saturation by unlabeled compound. Graphically, this effect follows the shape of a sigmoid curve, indicating > 90% saturation of the available enzyme with injected masses > 0.02 mg/kg. Based on these studies, the in vivo cardiac ED$_{50}$ for (R)-rolipram is ~ 0.002 mg/kg. Two values of interest have been reported previously: an ED$_{50}$ of 0.03 mg/kg in rat hearts presented by Kenk et al. 2007128 and a second estimate of 0.002 mg/kg is given by Parker et al.,137 after evaluating (R)-[11C]rolipram in pig brains. Our estimated in vivo ED$_{50}$ is approximately an order of magnitude smaller than the value reported by Kenk et al., but is virtually identical to the more conservative value reported by Parker et al.

Based on the ED$_{50}$ established here, we estimate the in vivo receptor occupancy of PDE4 by unlabeled rolipram using the equation presented by Hume116 (section 3.2.4) to be less than 5% at injected mass doses of < 0.0001 mg/kg, and less than 10% at injected doses < 0.0002 mg/kg in the rat heart. Unfortunately radiochemistry limitations in achievable specific-activities prevented the investigation of < 5% occupancy. Thus, due to practical limitations, a value of < 0.0002 mg/kg, corresponding to < 10% occupancy, was targeted for imaging in the low-occupancy condition. Despite our baseline studies being in the range of 10% occupancy, contrary to receptor ligand studies typically occurring below 5% occupancy,116,117 the final results and conclusions appear to be only modestly affected as the observed results are in good agreement with prior characterization studies.$^{128-130}$
In the complete PDE4 enzyme saturation studies, pre-administration of \((R)\)-rolipram (> 1 mg/kg) was sufficient to decrease \((R)\)-[\(^{11}\)C]rolipram accumulation to non-specific levels, with a mean Logan slope of \(~3.3\) mL/cm\(^3\) and substantial blocking occurring with doses as low as 0.02 mg/kg. Qualitatively this results in a dramatically reduced MBR of the PET image, while quantitatively the reduction in Logan slope compared to baseline suggests \(~40\)% specific binding of \((R)\)-[\(^{11}\)C]rolipram assuming that the bias from labeled metabolites is relatively small and constant across all images. The reduction seen here closely parallels the \textit{ex vivo} findings in Kenk et al.,\(^{130}\) where PDE4 cardiac-specific binding at 45 minutes post-tracer was determined to be 41\% in rats.

5.1.4 \((R)\)-[\(^{11}\)C]Rolipram Reproducibility Studies

With a partial enzyme saturation effect observed with increasing injected masses, we sought to determine quantitative reproducibility at the baseline condition (< 10\% occupancy). The low-occupancy, baseline condition of \((R)\)-[\(^{11}\)C]rolipram imaging revealed a mean Logan slope value of \(~5.5\) mL/cm\(^3\), which is confirmed through test-retest studies within the same animal and in measurements of independent animals. Indeed, the reproducibility of tracer DV was highly robust, as test-retest studies within the same animal resulted in differences of < 5\%. As expected, variability between inter-animal studies is higher than that seen in intra-animal studies.

The greater variability seen with inter-rat studies may be owed to the use of a population-wide metabolite and plasma-to-whole blood activity corrections. Variability in the arterial input corrections was evident, which could lead to greater variability among independent animals,\(^{200}\) whereas the impact of the correction variability would be limited in a test-retest protocol. Indeed this observation of low intra-animal variability
speaks to the power of small animal PET imaging, which affords the opportunity for repeated measures on the same animal allowing the detection of in vivo differences more readily with smaller samples.110

Based on the variability determined from these reproducibility studies, a power study was conducted to determine the size of animal populations for future studies (figure 4.7, panel B); to quantify a 20-30\% change in myocardial PDE4 binding, a sample size of 6-8 animals is needed.

\section*{5.1.5 Response to Acute NE Elevation}

Desipramine challenge studies at low-occupancy, baseline conditions resulted in a significant 24-30\% increase in Logan slope compared to baseline. This mirrors the increase reported using ex vivo biodistribution where a 21\% increase in (R)-[11C]rolipram specific binding in the heart was attributed to desipramine treatment129 and similarly a 17-24\% increase in (R)-[11C]rolipram left ventricle accumulation of 2-week, diet resistant rats after desipramine challenge.139 Interestingly, a 23\% reduction in MBF was observed in these studies using [13N]-ammonia imaging, theoretically reducing the delivery of (R)-[11C]rolipram to the heart. Our baseline and enzyme saturation studies reveal normal MBF,196 suggesting this reduction is a direct response to desipramine challenge. This reduced hemodynamic effect is noted at high dosages of imipramine,202 the active metabolite of desipramine. Thus the reduction of myocardial flow opposite to the increase in (R)-[11C]rolipram uptake provides additional evidence of the tracer’s specific and directed uptake related to PDE4 levels.
5.2 Investigation of PDE4 Alterations in STZ/HFD-Induced Hyperglycemia

T2DM has a marked and troublesome association with increased cardiovascular disease mortality.151,206 A distinct and negative relationship exists between the heart and diabetes, whereby diabetes confers a 2-4 fold increase in coronary heart disease (CHD)148 and mortality in heart failure is increased 1.5-2 times that of nondiabetics.149 This phenomenon may stem in part from chronic activation of the SNS. T2DM typically presents with a collection of factors, such as hyperglycemia,176 hyperinsulinemia,173,207,208 and metabolic inflexibility209,210 that each lead to an SNS pressor response. Over active SNS signalling is known to alter intracellular signalling in the heart and is best exemplified by changes seen in HF and diabetic cardiomyopathy. Specifically, it is believed that the persistently over active SNS in T2DM will result in the downregulation of left ventricle total β-ARs,22,23,156-158,211 namely β1-AR,154 leading to reduced cAMP cell signalling. Taken further, as cAMP levels are regulated through negative feedback by PDE4 via PKA,68,69 it is predicted that the reduction in cAMP accumulation will correspond to a reduction in PDE4 activity and expression.

In this study, the aim was to measure PDE4 binding in a STZ/HFD rat model of hyperglycemia and insulin resistance with \textit{in vivo} PDE4-specific (R)-11C]rolipram small animal PET to better understand the role of T2DM-dependent cardiac intracellular signalling changes. This was extended further to examine if the heart was still responsive to NE elevations by desipramine challenge. Lastly, \textit{in vivo} measures were validated against \textit{in vitro} protein expression and activity of PDE4.
5.2.1 Animal Model

The STZ/HFD induced rat model of T2DM used herein offers a platform to investigate the late stages of T2DM where hyperglycemia prevails, progressive hypoinsulemia is observed,154 HbA1c is significantly elevated and cardiovascular deficiencies are magnified.191 Insulin resistance, conversely, is induced through the HFD component of the treatment.184-186

The STZ-induced hyperglycemic success rate reported here of ~60% following a single, moderate-dose STZ injection is comparable to success rates in our lab (unpublished data) and indicates the pharmacologic treatment was well performed. The total population size utilized in each experimental group was based off the sample size calculation derived from characterization studies (section 5.1.4); groups of 6-8 animals were expected to discriminate changes of 20-30% in PDE4 presence.

Our STZ-treated hyperglycaemic animals displayed depressed weight gain and overt hyperglycemia consistent with successful induction of the animal model.189-191 Further, the STZ-treated hyperglycemics, but not the STZ-treated euglycemics or vehicle-treated controls, suffered from diuresis and polydipsia consistent with uncontrolled diabetes,212 indicating the STZ/HFD rat model was well represented in our studies compared to other reports.

5.2.1.1 Critique of the STZ/HFD Animal Model

5.2.1.1.1 Blood Glucose Levels

The STZ-treated hyperglycemic animals used in this study exhibit overt hyperglycemia (25.4 mM) which is in good agreement with previous description of the
model, both in our lab154 and elsewhere.189,213 Although lower dose STZ (30-35 mg/kg) models result in a more clinically relevant blood glucose level of 7-8.5 mM,213 the success rate of hyperglycemia induction is dramatically reduced (10-35\% absolute success213), requiring a much larger animal population to achieve the necessary numbers in each group. In addition, it is likely that any changes in cardiac PDE4 due to hyperglycemia would take far longer to develop; considering we saw no change at the 8 week time point with frank hyperglycemia, the prospect of observing differences with modest hyperglycemia of 7-8 mM in this same timeframe seems unlikely.

\subsection*{5.2.1.1.2 Lack of Increased Weight Gain in STZ-treated Hyperglycemics}

It is well documented that the STZ-treated hyperglycaemic animals do not display increased weight relative to controls189,191,212 as might be typical of the Type-2 diabetic, thus limiting the pressor effect on the SNS by excess mass.168,175 Despite this, marked changes in cardiac β_1-AR154 expression and calcium handling are apparent in numerous studies (section 1.3.2.1), thus confirming the occurrence of the SNS pressor effect we sought to study.

\subsection*{5.2.1.1.3 TGs and FFAs}

The reduced FFAs measured here is a cause for concern, as multiple groups report elevated levels of this circulating marker.189,190 In contrast, no significant differences were seen in the fed state of either circulating TG/FFAs or myocardial TG/FFA in chow-fed 55 mg/kg STZ rats.214

Curiously, however, we did observe an increase in circulating TGs, which would be expected to lead to an increase in FFAs, but was not the case in our animal population.
This is consistent with Menard et al., who report decreased fasting FFAs, despite increased fasting TGs. Though they observe a reduction in FFA levels, they report significantly reduced stroke volume and ejection fraction, while demonstrating myocardial preference for FFA substrate oxidation over glucose, suggesting that cardiac deficiencies are still present and not dependent on FFA levels in the STZ model. The mismatch of increased TGs/decreased FFAs is somewhat supported by a HFD (45% fat), without diabetes, resulting in a 100% increase in cardiac FFA levels compared to controls as early 1 week and maintained until 24 weeks, while no increases in cardiac TG levels was observed. Though this is the opposite situation as seen in these studies, it does demonstrate that the relationship between TG and FFA is not necessarily linear or direct.

5.2.1.1.4 Hypoinsulemia in the model

Reduced circulating insulin levels were seen in the STZ-treated hyperglycemics and is consistent with our previous reports on STZ/HFD animals. This is in agreement with the 75% reduction in fasting circulating insulin in a 45 mg/kg STZ model with HFD (22% fat) at 8 weeks. This had a functional impact in glucose clearance rate during an intraperitoneal glucose tolerance test, where blood glucose levels were 70% higher than the basal value at 2 hours, while the control animals had returned to basal values. Indeed, this model described by Zhang et al. is highly similar to the one used here indicating that hypoinsulemia may be common with this animal model design. In a 35 mg/kg model, STZ and HFD (58% fat) reduced insulin by over 50%, supporting the findings here between the STZ-treated hyperglycemics and vehicle-treated controls. Though Reed et al. show an increase in plasma insulin with the combination of STZ and
HFD compared to chow-fed STZ animals, the elevation is blunted compared to the effect of chow vs. HFD in the absence of STZ treatment. This suggests that addition of STZ to HFD causes a decrease in plasma insulin, again lending support to our finding. This notion is endorsed by a 55 mg/kg, chow-fed STZ rat model that resulted in a 70% reduction circulating insulin levels in the fed-state, implicating STZ as the cause of hypoinsulemia, consistent with its mechanism of action. The hypoinsulinemic state observed in these animals indicates that the model used here is most representative of late-stage T2DM where β-cell mass is reduced and apoptosis is widespread.

5.2.1.2 Duration of Study

It is possible that the 8 week study duration may have been too brief to allow for detectable hyperglycemia-induced changes in PDE4 presence to occur, however several reports suggest otherwise. Alloxan diabetes altered PDE4 activity within 24-48 hours in the heart, liver, adipose tissue and uterus. Reduced calcium handling was observed at 4-6 weeks of 45 mg/kg and 50 mg/kg STZ rats. Altered inotropic responses to AR stimulation were reduced at 6 weeks in 55 mg/kg animals. Six week STZ diabetes led to reduced activities at the SERCA2a and RyR, contributing to an increased intracellular end-diastolic [Ca^{2+}], leading to deficiencies in LV developed pressure.

Further, significant elevations in NE of STZ (65 mg/kg) rats were observed at 8 weeks indicating that the chronic SNS effect we sought should have been present. Dampened responses to ISO and NE were also seen at this 8 week timepoint, and are supported by reduced β-AR expression at 8 weeks in 45, 50, and 65 mg/kg
animals. Indeed, the cumulative evidence supports the notion that cell signalling alterations had substantially long enough to develop using an 8-week protocol.

Finally, the research design was limited to an 8-week time course as this was arguably the furthest we could have ethically taken these animals while respecting Animal Care guidelines in preventing undue and excessive pain/discomfort in animal studies. At the time of animal sacrifice at 8 weeks (or 10 weeks in a subset of animals), the rampant, uncontrolled elevation of blood glucose in the STZ-treated hyperglycemics had visibly worn on the health of the animals.

5.2.2 PET Imaging

In vivo PET imaging with \(\text{(R)}-[^{11}\text{C}]\)rolipram did not demonstrate significant differences in tracer uptake and retention at 8 weeks post-treatment or 10 weeks post-treatment with desipramine challenge between either of the STZ-treatment groups compared to vehicle-treated controls. Desipramine challenge significantly increased \(\text{(R)}-[^{11}\text{C}]\)rolipram accumulation within each group relative to their 8-week measures. This mean increase of 21% for all groups indicates that the cardiomyocytes maintain PDE4 responsiveness to acute NE elevations in a hyperglycemic state, consistent with the increased response to desipramine in healthy rats, observed with small animal PET, and with ex vivo biodistribution. The maintenance of increased PDE4 binding after desipramine treatment in diabetes is in stark contrast to other disease models that exhibit a reduced/impaired PDE4 response to acute norepinephrine stimulation, including adriamycin-induced cardiotoxicity, and diet-induced obesity. This finding with the PDE4-specific \(\text{(R)}-[^{11}\text{C}]\)rolipram radioligand would support the notion that PDE4 is not
altered in the presence chronic hyperglycemia, despite a reduction in postsynaptic β_1-ARs.154

5.2.3 Ex Vivo Biodistribution

In agreement with the (R)-$\left[^{11}\mathrm{C}\right]$rolipram small animal PET finding, ex vivo biodistribution results reveal no significant difference between (R)-$\left[^{11}\mathrm{C}\right]$rolipram accumulation in heart regions of the three groups. In further support, these same ex vivo biodistribution results showed that cardiac (R)-$\left[^{11}\mathrm{C}\right]$rolipram retention increased in response to desipramine challenge at 8 weeks, similar to the PET findings at 10 weeks with desipramine.

5.2.4 In Vitro Assays

The in vitro assay findings confirm the above radioligand measures, as there were no significant differences in PDE4A, PDE4B and PDE4D expression or PDE4 activity in STZ-treated hyperglycemics compared to the STZ-treated euglycemic and vehicle-treated control groups. Interestingly, however, significant increases in PDE4 expression or activity were not observed between the 8 and 10 week desipramine challenge studies to parallel the findings with (R)-$\left[^{11}\mathrm{C}\right]$rolipram seen in the in vivo PET imaging.

From a methodological perspective, one explanation for the mismatch reported here between the (R)-$\left[^{11}\mathrm{C}\right]$rolipram measures and in vitro results in response to desipramine stimulation at 10 weeks would be that (R)-$\left[^{11}\mathrm{C}\right]$rolipram is a pan-PDE4 measure for both enzyme expression and activity, while the Western blotting techniques made use of isoform specific antibodies (PDE4A, B and D) and enzyme activity is assessed as its own independent measure. It is conceivable that small, nonsignificant changes observed with
isoform specific detection using Western blotting and/or enzyme activity could combine to create a significant change at the overall PDE4 level, which would be reflected by (R)-\[^{11}\text{C}]\text{rolipram imaging.}\)

From a physiological perspective, evidence for increased PDE4 activity/expression due to desipramine treatment can be seen in the rat brain. Two hour electroconvulsive seizure therapy elevated PDE4A and PDE4B mRNA levels in brain, but did not increase PDE activity.\(^{221}\) Chronic 14-day propanol treatment, reducing NE stimulation, altered PDE4A variants by 15-50% decreases, despite a 33% increase in \(\beta\)-AR \(B_{\text{max}}\).\(^{222}\) Alternately, enhanced NE stimulation by 14-day chronic desipramine treatment increased PDE4A by ~80%, despite an ~50% reduction in \(\beta\)-AR population.\(^{223}\) These findings were confirmed again using desipramine as well as other antidepressants, including monoamine oxidase inhibitor (phenelzine) and serotonin reuptake inhibitor (fluoxetine).\(^{120}\) Fourteen day chronic desipramine treatment elevated PDE4A and PDE4B, but not PDE4D, mRNA expression in rat frontal cortex.\(^{224}\) Consistent with this, PDE4A and PDE4B protein expression also elevated significantly (140 and 133%, respectively) in the frontal cortex, but not with PDE4D. These studies indicate that measurable changes in PDE4 activity and expression are evidenced following 14-day chronic desipramine treatment in the brain, and may be seen as soon as 2 hours following treatment. The latter timeline is quite analogous to the 3 hour pre-treatment utilized in the present studies, however no change in activity was observed and protein expression changes were not measured with the 2 hour acute treatment.\(^{221}\)

This observation of no change in PDE4 activity, despite increased mRNA expression highlights the challenge of accurately quantifying cAMP hydrolysis. Indeed, cAMP
levels are extremely transient in nature,26 demanding finely tuned PDE responses for cAMP regulation. Thus, small perturbations in homeostasis could potentially have dramatic effects at the cAMP/PDE level. To this end, manipulation of animals in the collection of tissue may be substantial enough to evoke stress responses in the animals, leading to enhanced SNS activity and directly altering cAMP/PDE response. As any experienced animal handler will recognize, not all animals react equally to such stresses219 and a differing, non-quantifiable effect may be confounding the results of such measures. A solution to this issue would require use of living animals for such assays, however, these are not presently available.

\textbf{5.2.5 Implication of Unaltered PDE4 in STZ/HFD Induced Hyperglycemia}

According to literature searches, this is one of the first investigations of cardiac PDE4 in a diabetic animal model. Das and Chain178 report a 25-35\% reduction of cAMP dependent phosphodiesterase in the perfused rat heart in response to STZ-induced diabetes. Similarly, Perez de Gracia et al.179 described a 33\% reduction cardiac cAMP hydrolysis in rat hearts in an Alloxan model of diabetes, as well as activity reductions in liver, adipose tissue and uterus activity.

Mixed results regarding PDE4 changes are observed in various other tissues. No change in PDE4 activity was seen in the T2DM rat kidney.225 Several studies investigate PDE4 T2DM-dependent alterations in metabolic tissues such as the liver,181 white and brown adipose tissue180,226 revealing decreases in response to T2DM. Regarding the PDE3 isoform, overexpression in pancreatic \(\beta \)-cells resulted in the rapid development of glucose intolerance and insulin resistance,227 while Cilostazol, a PDE3 inhibitor, showed
positive results in the reduction of carotid atherosclerosis in T2DM in humans,228 inferring an upregulated or over active PDE3 contribution.

5.2.5.1 Increased NE, Reduced \(\beta_1\)-AR, Unaltered PDE4 Levels?

A potential explanation for the lack of change in cardiac PDE4 in our study may arise from the interplay between increased cardiac NE and the reduction in \(\beta_1\)-AR receptor. Duman et al. highlight this possible interaction quite elegantly,229 Describing the mechanism of antidepressant treatment, which is based on increasing cAMP levels, they postulate that untreated depression results in a certain basal level of cAMP. Following depression treatment, with a reuptake inhibitor such as imipramine, synaptic levels of NE would be markedly raised and cause a temporary elevation in cAMP production until the reflex in \(\beta\)-ARs downregulation occurs,229 Despite this downregulation, they propose that the NE increases caused by the antidepressant would still enhance cAMP levels to near or above those seen in the basal, untreated state. A mechanism of this nature would account for the maintained level of cAMP, and subsequently PDE4. This situation is analogous to the chronic NE activation of \(\beta\)-ARs seen in diabetes. The end result of this hypothesized scenario is that there is essentially no change in the cAMP production; the reduction in \(\beta\)-ARs is cancelled out by the excess synaptic NE. Indeed, the fundamental purpose of this mechanism would be to protect against chronic overstimulation while maintaining normal cell function, as we have evidenced in our findings with maintained response to elevated NE levels following desipramine challenge.
5.2.5.2 Compensatory Role of β_2-AR

A second possible explanation may be attributed to the compensatory activity of the β_2-AR population for the deficiencies experienced by cardiac β_1-AR reduction. β_1-AR dominates the healthy myocardium with an approximate 3:1 ratio relative to β_2-AR in human left ventricle21 and isolated cardiomyocyte homogenates from canines.19 Though the majority of the functional outcome of SNS cardiac regulation in the healthy state occurs through β_1-AR due to its enhanced affinity for NE relative to β_2-ARs,230,231 β_2-ARs are also capable of producing maximum contraction in response to catecholamines in human ventricle preparations.232,233 Increased functional capacity of β_2-ARs is also demonstrated in patients receiving β_1-AR blockade.234 The ability of β_2-ARs to achieve this may owe to the fact that the β_2-AR/Gα_s efficiency for cAMP production is greater than that of the β_1-AR/Gα_s efficiency. If the receptor ratio is altered as expected, the β_2-AR’s ability to generate maximal contraction with fewer receptors present would imply that sufficient cAMP is generated by the remaining total β-AR population and that functional heart deficiencies stem from complications outside of cAMP synthesis.

5.2.5.3 Increased Role of Gα_i

A final explanation may be that the β_2-ARs, who couple to the inhibitory Gα_i would suppress cAMP levels by reducing AC activity at the level of cAMP formation. This hypothesis is supported by Gøtzsche,34 who reports a 50% reduction in ventricular cAMP production in response to acute ISO, with no differences at basal production levels, indicating lack of cardiomyocytes response to acute β-AR stimulation in STZ-
induced diabetes. Surprisingly, this was the case without a reduction in β-AR population. Given that the β-AR population was unaffected in this study, it may suggest the receptors are uncoupled from $G_{\alpha S}$, or sensitized to inhibitory $G_{\alpha i}$ by preference for β2-AR signalling in response to ISO. Additional evidence is inferred from calcium measures, where basal and peak calcium levels were unchanged compared to controls in STZ rat myocytes, but β-AR stimulation resulted in a depressed calcium transient current.\(^{35}\) Also, caffeine stimulated sodium-calcium exchange current was reduced compared to controls.\(^{235}\)

Against this hypothesis, Gando et al.\(^{161}\) report reduced cardiac inotropic activities, alongside a 50% drop in β-AR protein and a 65% reduction in $G_{\alpha i}$ protein expression, with a differential effect on $G_{\alpha S}$ isoforms. The concomitant reduction in cardiac function and $G_{\alpha i}$ protein expression would suggest a mechanism independent of $G_{\alpha i}$, potentially occurring beyond the level of AC action.
6. Conclusion

6.1 Summary of Scientific Findings

(R)-[^{11}C]Rolipram small animal PET imaging demonstrates PDE4-specific binding in rat heart that is sensitive to increases in NE levels and is saturable by unlabeled (R)-rolipram. Quantification of the tracer distribution volume by Logan graphical analysis is reproducible. PDE4 cardiac expression and enzyme activity are not altered by hyperglycemia in the moderate dose STZ/HFD rat model as measured by PDE4-specific (R)-[^{11}C]rolipram small animal PET, ex vivo biodistribution or in vitro measures. Increased (R)-[^{11}C]rolipram uptake was observed in 8 weeks compared to 10 weeks post-treatment with desipramine using small animal PET, indicating that the cardiomyocytes of the left ventricle exhibit normal cell signalling that remains responsive to elevated NE stimulation despite reductions in \(\beta_1\)-AR.
6.2 Future Directions

The in vivo small animal PET characterization studies provide encouraging evidence that this radioligand is measuring PDE4 presence accurately, with the reproducibility results being quite optimistic. The lack of significant differences in (R)-[\(^{11}\)C]rolipram retention in hyperglycemics compared to euglycemics and controls was a surprising result, however, it was encouraging to learn that this finding was supported by in vitro techniques of protein expression and activity. Thus, the role of (R)-[\(^{11}\)C]rolipram may have limited applicability in diabetes, but certainly maintains its investigative potential for other pathologies, such as heart failure or obesity, that present challenges related to altered cardiac cell signalling.
7. References

40. Bers DM. Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Front Biosci. 2002;7:d1697-1711.

130. Kenk M, Greene M, Lortie M, Dekemp RA, Beanlands RS, DaSilva JN. Use of a column-switching high-performance liquid chromatography method to assess the

178. Das I, Chain EB. An effect of insulin on the adenosine 3':5'-cyclic monophosphate phosphodiesterase and guanosine 3':5'-cyclic monophosphate phosphodiesterase activities in the perfused Langendorff and working hearts of normal and diabetic rats. *Biochem J.* 1972;128(3):95P-96P.

196. Lamoureux M, Thorn SL, Dumouchel T, Klein R, Renaud JM, Mason S, Lortie M, DaSilva JN, Beanlands RS, de Kemp RA. Uniformity and reproducibility of normal

222. Ye Y, Conti M, Houslay MD, Farooqui SM, Chen M, O'Donnell JM. Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-

