INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
THYROXINE AND CATECHOLAMINE BINDING AND METABOLISM IN THE RAT

BY BARRIEUR

THESIS

SUBMITTED TO THE FACULTY OF MEDICINE IN
PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF BIOCHEMISTRY
UNIVERSITY OF OTTAWA

SEPTEMBER 1965
UMI Number: DC52509

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform DC52509
Copyright 2007 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346
To Professor Antoine D'Herig, who has directed this work with consideration and great understanding, I express my gratitude.

I wish to thank Dr. N. L. Benciton for his patient help, and Misses A. and C. Barrieux for their valuable assistance in the typing of this manuscript.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Review of Literature</td>
<td>4</td>
</tr>
<tr>
<td>Experimental Results:</td>
<td></td>
</tr>
<tr>
<td>Part I. The distribution of radioactive material in rats in various thyroid states following a single intravenous injection of 3H-adrenaline or 3H-noradrenaline:</td>
<td></td>
</tr>
<tr>
<td>1. Materials and Methods</td>
<td>47</td>
</tr>
<tr>
<td>11. Results:</td>
<td></td>
</tr>
<tr>
<td>A) The effect of thyroid hormones on the total body weight and oxygen consumption of the rat</td>
<td>57</td>
</tr>
<tr>
<td>B) The distribution of radioactive material in the rat, following a single intravenous injection of 3H-noradrenaline</td>
<td>59</td>
</tr>
<tr>
<td>C) The distribution of radioactive material in the rat, following a single intravenous injection of 3H-adrenaline</td>
<td>62</td>
</tr>
<tr>
<td>III. Discussion</td>
<td>64</td>
</tr>
<tr>
<td>Part II. The effect of thyroxine on the uptake, binding, and metabolism of 3H-adrenaline by intestinal strips, following a five minute incubation with 3H-DL-adrenaline:</td>
<td></td>
</tr>
<tr>
<td>1. Materials and Methods</td>
<td>71</td>
</tr>
<tr>
<td>11. Results:</td>
<td></td>
</tr>
<tr>
<td>A) The effect of thyroxine on the uptake of 3H-adrenaline by intestinal strips after a 5 minute incubation with 3H-DL-adrenaline</td>
<td>82</td>
</tr>
</tbody>
</table>
B) The effect of thyroxine on the binding of $^{3}{H}$-adrenaline by intestinal strips after a 5 minute incubation with $^{3}{H}$-DL-adrenaline 110

C) The effect of thyroxine on the formation of $^{3}{H}$-metanephrine by intestinal strips after a 5 minute incubation with $^{3}{H}$-adrenaline 127

III. Discussion 145

Summary and Conclusion 172

References.
INTRODUCTION

The potentiation of several physiological effects of catecholamines by thyroid hormones has been observed for many years. Numerous investigators have noticed an increase in the effect of adrenaline on oxygen consumption in hyperthyroidism. The tachycardia induced by administration of adrenaline has been found to be augmented in hyperthyroid subjects or thyroid-fed animals. A similar increment in the pressor effect of noradrenaline has been reported after thyroid feeding in various species. The thyroid state of the organism has also been shown to affect the glycemic and glycojenolytic responses to administered catecholamines. Furthermore, hyperglycemia provoked by adrenaline injection is increased in hyperthyroidism and decreased in hypothyroidism (1).

The augmentation of the physiological effects of exogenous catecholamines affects the magnitude rather than the time-course of the response. Thyroid hormones could act by increasing the concentration of "available" catecholamines in the tissue, at the effector site. This may be brought about either by a greater uptake of circulating catecholamines by tissue or by a slower rate of inactivation of the biogenic amines already present in the cell. Thyroid hormones could affect either process or both of them.

Although the biological effects of exogenous catecholamines are well established, the mechanism leading to the
disappearance of these effects is still unknown. The rapid disappearance of catecholamine actions have led some investigators to postulate that the enzymes responsible for catecholamine degradation: monoamine oxidase and catechol-O-methyl transferase, are not primarily involved in the biological disposal of sympathetic amines. Lately, great attention has been given to a second mode of inactivation of adrenaline and noradrenaline: binding to sites (2). It is postulated that thyroid hormones would act by occupying these sites and thus would prevent the binding of intracellular catecholamines. The amines would then be free to attach to the effector sites.

When this work was started, the "binding theory" was just being developed and an attempt was made to test it in vivo in the whole rat. It was found that too many uncontrollable variables were involved and that a simpler system was required for a better understanding of the mechanism. Therefore, in vitro experiments on isolated small intestine strips were undertaken. The effects of endogenous and exogenous thyroxine on the uptake and binding of adrenaline were tested.

It was during this period that C. Mavrides, from this laboratory, showed that various thyroxine analogues have an inhibitory effect on catechol-O-methyl transferase activity (3). Our work quite naturally was orientated towards a confirmation of Mavrides' results. The effects of thyroxine on intestine
Catechol-O-methyl transferase were also studied.

We hoped that whatever contribution this work will make in the future, it will not add to the current confusion in adrenal medullary-thyroid relationships... one of the most characteristic features of research in this field. (1).
REVIEW OF LITERATURE

PART I. MODIFICATION OF THE PHYSIOLOGICAL EFFECTS OF EXOGENOUS CATECHOLAMINES BY THYROID HORMONES

Great progress has been made since 1908 when Kraus and Friedenthal (4) observed that adrenalin injection could mimic the thyrotoxic storm. Numerous experimental results have shown that the potentiation of catecholamine effects by thyroid hormones occurs in the whole animal as well as in the isolated organ (7). In the following discussion, the physiological effects of administered catecholamines will first be examined in the case of animals in various thyroid states. The second section will be devoted to the action of catecholamines on isolated tissues as a function of endogenous or exogenous thyroid hormone concentration.

A) THE PHYSIOLOGICAL EFFECTS OF ADMINISTERED CATECHOLAMINES IN ANIMALS IN VARIOUS THYROID STATES: 1) EUTHYROID ANIMALS

It was in 1895 that Oliver and Schaper (5) observed for the first time that an injection of adrenal extract into dogs resulted in a rise of blood pressure. The effect was attributed to the presence in the extract of sympathin. After adrenaline and noradrenaline had been isolated and synthesized, their respective effects could be studied independently. The d-isomers of both amines were found to have the same physiological effects as those of the L-form, but higher doses of the former were required.
In all species which have been studied, it has been observed that the intravenous injection of adrenaline or noradrenaline is followed by an increase of the oxygen consumption. Subcutaneous injection has the same effect but a delay in the response is observed. The slow intravenous infusion of either amine increases oxygen consumption also (6, 7). If the dose of injected adrenaline or the rate of infusion is augmented, the oxygen consumption is decreased (8).

Intravenous or intraarterial injection of noradrenaline causes a rapid decrease in blood pressure due to peripheral vasocconstriction (9). Injection of small doses of adrenaline, either by intravenous or by intraarterial route does not affect blood pressure, but with large doses a decrease in blood pressure has been observed (10).

At small doses, adrenaline has a positive chronotropic and inotropic effect on the heart (11, 12). Noradrenaline does not appear to affect the heart at small doses (13). While noradrenaline has mainly a constrictor effect on peripheral blood vessels (14), adrenaline action varies with the organ studied. There is a marked constriction of the skin blood vessels following adrenaline injection (15). Blood vessels of skeletal muscle seem to be dilated (16). Portal vein appears constricted, the effect of adrenaline on hepatic vein is not elucidated (17, 18).

The various effects of catecholamines on peripheral organs
are not clear. Adrenaline injection contracts the splenic capsule (19) and increases liver volume (20). The effects on the uterus are different depending upon the state of the organ (21). The tone of the stomach is decreased by adrenaline (22) and that of the small intestine inhibited (23). Both adrenaline and noradrenaline have a dilator action on the bronchi, the former being more potent (24). There is still controversy concerning the effect of adrenaline on the thyroid gland. Results obtained using 131 iodine-release as a measure of thyroid gland activity are not conclusive (25). Some authors consider that adrenaline action on thyroid gland might be indirect. Blood vessels to and from the gland are known to be extremely sensitive to adrenaline dilator effect. An increase in blood flow rather than a direct effect on the gland itself, has been assumed to be responsible for the increase in the release of 131 iodine in the blood leaving the gland (26).

The hyperglycemic response to administered catecholamines has been a phenomenon observed from the earliest reports (27, 28). This hyperglycemia is accompanied by an increased glycogenolysis in the liver (29) and in striated muscle (30). In the case of adrenaline injection, a simultaneous increase in blood lactate is noticed (31). Some authors have attempted to relate this lactate increase to the calorigenic effect of adrenaline (32). The mechanism of action of adrenaline in glycogenolysis has been studied extensively (33). Adrenaline, by increasing the
CONCENTRATION OF CYCLIC 3', 5'-AMP, ACTIVATES THE INACTIVE PHOSPHORYLASE. THIS ENZYME IS THE FIRST STEP IN THE TRANSFORMATION OF GLYCOGEN INTO GLUCOSE, AND, MOREOVER, IS THE LIMITING STEP IN THE RATE OF THE REACTION. IN ALL THE TISSUES STUDIED, ADRENALINE INJECTION CAUSED AN INCREASE IN CYCLIC AMP CONCENTRATION. A CONCOMITANT INCREASE IN ACTIVE PHOSPHORYLASE ACTIVITY WAS FOUND IN HEART, SKELETAL MUSCLE AND LIVER. BECAUSE THE INCREASE IN CYCLIC AMP AND IN ACTIVE PHOSPHORYLASE WAS TAKING PLACE AT THE SAME TIME THAT TACHYCARDIA WAS OCCURRING, SEVERAL ATTEMPTS WERE MADE TO EXPLAIN THE CARDIAC ACTION OF ADRENALINE AS A FUNCTION OF THESE FACTORS (34, 35). AT THE PRESENT TIME, THERE IS NO AGREEMENT ON THIS THEORY (36).

2) HYPERTHYROID ANIMALS

LONG BEFORE ADRENALINE AND NORADRENALINE SPECIFIC EFFECTS HAD BEEN ELUCIDATED, THE RELATIONSHIP BETWEEN SYMPATHETIC SYSTEM AND THYROID GLAND HAD BEEN RECOGNIZED. THE OBSERVATIONS MADE ON HYPERTHYROID PATIENTS STIMULATED MANY INVESTIGATORS: NUMEROUS CONTRADICTORY REPORTS ON THE SYNERGISM BETWEEN CATECHOLAMINES AND THYROID HORMONES APPEARED. AS PREVIOUSLY STATED, THE DISCREPANCIES IN EXPERIMENTAL RESULTS HAVE NOT YET BEEN EXPLAINED.

THERE IS GENERAL AGREEMENT, HOWEVER, THAT IN HYPER-THYROIDISM, THE RISE IN OXYGEN CONSUMPTION INDUCED BY CATECHOLAMINE ADMINISTRATION IS LARGER THAN THAT OBSERVED IN EUTHYROIDISM. (1). SUB-CUTANEOUS INJECTION OF ADRENALINE INTO NORMAL OR THYROID-FED RATS HAS BEEN SHOWN TO ELEVATE OXYGEN CONSUMPTION. THIS
INCREASE, SIGNIFICANTLY HIGHER IN THYROID-FED RATS, COULD BE OBSERVED UP TILL 14 HOURS FOLLOWING ADRENALINE INJECTION (37). SIMILAR OBSERVATIONS WERE MADE ON THYROTOXIC PATIENTS OR ON TRIIODOTHYRONINE-TREATED SUBJECTS. DURING ADRENALINE INFUSION THE INCREASE IN OXYGEN CONSUMPTION WAS HIGHER IN THESE TWO GROUPS WHEN COMPARED TO EUTHYROID PATIENTS. HOWEVER, THE RISE IN OXYGEN CONSUMPTION IN THYROTOXIC PATIENTS, WAS BROUGHT ABOUT AT A RATE OF ADRENALINE INFUSION LOWER THAN THAT AT WHICH THE NORMAL SUBJECTS REACTED (38). RING (39) STUDIED THE RESPONSE OF NORMAL AND THYROXINE-TREATED RATS TO A SINGLE INJECTION OF ADRENALINE. AN INCREASED RESPONSE TO ADRENALINE, AS SHOWN BY A GREATER INCREASE IN OXYGEN CONSUMPTION, WAS OBSERVED IN THYROXINE-TREATED RATS. ANIMALS KEPT EIGHT WEEKS ON THYROXINE INJECTIONS EXHIBITED 94.9% INCREASE AFTER ADRENALINE INJECTION.

PRETREATMENT WITH THYROXINE FOR A PERIOD OF FOUR WEEKS RESULTED IN ONLY 54.3% INCREASE. WHEN THYROXINE WAS GIVEN ONLY FOR ONE WEEK, NO SENSITIZATION WAS SHOWN; THE SAME INCREASE WAS OBSERVED IN BOTH TREATED AND NORMAL ANIMALS. SWANSON CONFIRMED RING'S OBSERVATIONS THAT THE POTENTIATION OF ADRENALINE ACTION DEPENDED UPON THE THYROID STATE OF THE ANIMALS. IN ORDER TO CONTROL MORE ACCURATELY THE LEVEL OF CIRCULATING THYROID HORMONES, SHE ELIMINATED ENDOGENOUS THYROID HORMONES BY SURGICAL REMOVAL OF THE THYROID GLAND. THE RATS WERE THEN INJECTED WITH VARIOUS AMOUNTS OF THYROXINE, AFTER A CERTAIN PERIOD OF TIME HAD ELAPSED. THE RANGE OF THYROXINE CONCENTRATIONS INJECTED INTO THE RAT, SUBCUTANEOUSLY DAILY FOR A PERIOD OF FOUR
weeks was from 0 to 48 ug. (0, 3, 12 and 48 ug.). The response of
these rats to a single injection of adrenaline was then compared to
that of normal rats. In thyroxine-treated animals, the response to
adrenaline was increased. The increase in the response was proporc-
tional to the logarithm of the dose of thyroxine received (40).

In experiments where the effects of endogenous catechol-
amines were blocked by epidural cocaine injection (41), or by
dibenzyline (42), a potentiation of the calorigenic effect of
exogenous adrenaline or noradrenaline was found in both thyroid-
fed dogs (47), and thyroxine-treated rats (42).

The cardiovascular system has provided a convenient tool
for the investigations on adrenal-thyroid interrelations.
Clinicians have often observed the sensitization of the heart of
thyrotoxic patients to exogenous adrenaline. A more prominent
effect of adrenaline on tachycardia has been reported in hyper-
thyroid dogs (43). In this series of experiments, adrenaline
injection had a depressor effect which was still enhanced in
hyperthyroid animals. Furthermore, the threshold dose of
adrenaline was lower in the hyperthyroid than in the normal dogs.
In another series of experiments (44), thyroid function in the dog
was destroyed by treatment of the animal with large doses of
\[131 \text{iodine}. \] The dogs were then fed dessicated thyroid. Normal dogs
responded to adrenaline intravenous injection by a rise in blood
pressure; thyroid-fed 131 iodine-pretreated dogs exhibited a lower
INCREASE IN BLOOD PRESSURE THAN THAT OBSERVED WITH NORMAL ONES.

Intravenous injection of noradrenaline also resulted in a smaller rise in blood pressure among the thyroid-fed ¹³¹ IODINE-pretreated dogs when compared to the normals. The concentration of adrenaline or noradrenaline used in these studies was not given. Intact dogs pretreated with thyroxine for two weeks did not show any sensitization of the heart to either adrenaline or noradrenaline injections (45). Several authors, however, have reported a lowering of adrenaline lethal dose in hyperthyroid animals (48, 49, 46, 47). In man an increase in the pressor effects of noradrenaline has been reported in a thyrotoxic subject; but no change in heart rate was observed. There was also a marked difference in the tolerable dose of noradrenaline in the same thyrotoxic patient (50).

Extensive investigations have been conducted on the effect of thyroid hormones on adrenaline-induced hyperglycemia. In thyroid-fed rabbits, previously thyroidectomized, adrenaline caused a greater rise in blood glucose than it did in normal rabbits (51). These results have been confirmed in thyroid-fed rabbits with intact thyroid glands (52). Abbot and Vansurshkirk could not find any difference between thyroid-fed and normal cats or dogs in their blood sugar response to adrenaline (53). The liver glycogen was unchanged by thyroid-feeding and thus depletion of liver glycogen could not be involved in this lack of increased response. In thyroidectomized
GUINEA-PIGS GIVEN A SINGLE DOSE OF THYROXINE TWENTY-FOUR HOURS
BEFORE THE INJECTION OF ADRENALINE, THE THRESHOLD DOSE OF ADRENALINE
FOR HYPERGLYCEMIA WAS LOWER THAN THAT FOR THE NORMAL ANIMALS.
Moreover, the decrease in the threshold dose was proportional to the
amount of thyroxine injected (54). In hypophysectomized female rats,
pretreated with thyroxine, the glycogen level in striated muscle was
decreased by the injection of adrenaline. The glycogen level was
measured in rectus pectoris, before a single adrenaline injection.
After adrenaline injection, the percent decrease of the glycogen
concentration in rectus pectoris, abdominal muscle and diaphragm,
compared to the level in rectus pectoris before the injection, was
respectively: - 36%, - 62%, - 62% (55). In rabbits fed with des-
icated thyroid for fourteen days, the threshold doses of adrenalin-
ene and noradrenaline to hyperglycemia were measured by Trede-
lersburg (52). Doses of catecholamines ranging from 30 to 480 ug
per kilogram of body weight were injected subcutaneously into
normal rabbits. In thyroid-fed rabbits, a single dose of adrenaline
of 60 ug was assayed and gave a rise identical to that obtained
with a dose of 65 ug in the normal controls. Noradrenaline was
less efficient in both normal and thyroid-fed rabbits in the
induction of hyperglycemia. In the normal rabbits, 225 ug/kg
was necessary to elicit a response identical to that obtained with
adrenaline. Moreover, thyroid-feeding further increased the dose of
adrenaline necessary, since 250 ug/kg was now necessary to elicit
hyperglycemia.
3) Hypothyroid Animals

In hypothyroidism or in thyroidecetomized animals, the responses to catecholamine injection are either unchanged or decreased.

Oxygen consumption following "adrenaline" injection was found to be increased in thyroidecetomized rats (37). The increase in oxygen consumption, however, was less pronounced than that observed in normal controls. These results were confirmed by several workers in different laboratories (39, 56). The injection of adrenaline to thyroidecetomized animals resulted in a decrease in the response as measured by oxygen consumption.

Although the oxygen consumption was less elevated, there was still a response to adrenaline injection in the thyroidecetomized animals. Swanson did not find a rise in oxygen consumption after adrenaline had been injected into rats thyroidecetomized from fifteen to sixty days prior adrenaline injection. The oxygen consumption was measured intermittently for four hours after a single intramuscular injection of adrenaline (40). This worker claimed that the discrepancies between her results and those previously reported were probably due to the fact that the

(?) Adrenaline was a purified extract of ox adrenal medulla and contained the three amines found normally in this gland: dopamine, noradrenaline and adrenaline.
ANIMALS USED IN THE PREVIOUS EXPERIMENTS WERE NOT COMPLETELY
DEPLETED OF THYROID HORMONES. THE DIET OF THE ANIMALS USED IN THE
EARLIER EXPERIMENTS WAS NOT CONTROLLED AND THE POSSIBILITY OF AN
EXTERNAL SOURCE OF THYROID HORMONES IN THE DIET WAS NOT ELIMINATED.
THE LEVEL OF CIRCULATING THYROID HORMONES IN THESE ANIMALS MIGHT
THEMSELVES HAPPEN TO BE NORMAL; DUE TO INGESTION OF THYROID
HORMONES FROM THE DIET.

AFTER A SINGLE INJECTION OF ADRENALINE, THE RESPONSE OF
THE HEART OF THYROIDECTOMIZED RABBITS WAS IDENTICAL TO THAT
OBSERVED WITH THE HEART OF NORMAL RABBITS (46). IN MYXEDEMATOUS
PATIENTS, THE HEART RATE WAS UNAFFECTED BY ADRENALINE OF NORADRENAL-
INE INFUSION (50). TREATMENT OF HYPOTHYROID PATIENTS WITH EITHER
D- OR L-THYROIDINE DID NOT AFFECT THE CARDIOVASCULAR RESPONSE TO
ADRENALINE. IT WAS SUGGESTED BY THE AUTHORS THAT ONLY A HIGH LEVEL
OF CIRCULATING THYROID HORMONES AFFECTS THE RESPONSE OF THE
CARDIOVASCULAR SYSTEM TO GREATESTHOLAMINES (52). IN 13I-IODINE-TREATED
DOGS, A DECREASE IN THE BLOOD PRESSURE RESPONSE WAS FOUND WITH
EITHER ADRENALINE OR NORADRENALINE INJECTION (44). SURPRISINGLY,
FEEDING DEBATED THYROID TO THESE DOGS PROVOKED A FURTHER DECREASE
IN THE RESPONSE.

A GRADUAL FALL IN THE SENSITIVITY OF THE SMOOTH MUSCLE OF
THE HIND LEGS OF THE CAT OCCURRED AFTER THYROIDECTOMY. SENSITIVITY
TO ADRENALINE WAS INDUCED BY DERENATION OF THE HIND LEGS (58).

CONCERNING ADRENALINE-INDUCED HYPERGLYCEMIA, THYROIDECTOMY
WAS FOUND TO HAVE EITHER NO EFFECT OR A DECREASED EFFECT. IN RABBITS,
A: Decrease in the hyperglycemia provoked by adrenaline was observed after thyroidectomy (51). The decrease was proportional to the glucose blood level before adrenaline injection. A smaller decrease was observed among the animals which exhibited the lower glycermia before the injection. In guinea-pigs, the threshold for adrenaline was elevated, in the thyroidectomized animals compared to the normals. While 3 micrograms were the minimal dose of adrenaline required to produce hyperglycemia in normal animals, in the thyroidectomized animals, 15 micrograms per kilogram of body weight was the minimal dose required (52). In rats, thyroidectomy was found to increase the response to adrenaline, where glycermia was concerned. Skeletal muscle glycogen was slightly decreased, after adrenaline injection (59).

B: The action of catecholamines on isolated tissues in relation to endogenous or exogenous thyroid hormone levels.

Catecholamines have been shown to exert their action on all tissues innervated by sympathetic fibers. Both adrenaline and noradrenaline have been found to have either an inhibitory or an excitatory effect, depending upon the tissue under investigation. In order to explain such a difference of action caused by a single molecule, Alquist postulated the existence of receptor (or effector) sites (61). The structure of the receptor sites would be different and this would explain how a single substrate could elicit such opposite responses. The differentiation between two receptor sites
was based upon the observation that complete blockage of the sympatomimetic system was brought about by the use of various sympatholytic drugs. Depending upon the action blocked by one of two drugs, the receptor in the tissues was identified as alpha or beta. Furongott postulated the existence of a third receptor site, specific for the inhibitory action of catecholamines on the smooth muscle of the small intestine (60). However, in later work this author agreed on the existence of only two receptor sites, on the basis that sympatholytic drugs for both alpha and beta receptors were necessary to induce complete blockage of the catecholamine action in the small intestine.

Although no direct proof of the existence of receptor sites are available presently, and in spite of the fact that almost nothing is known about these sites, it was stimulating to search for an action of thyroid hormones at this level. Thyroid hormones could act at this site as activators, in a fashion similar to that exhibited by the activators of enzymes. Because this theory presently is not based on conclusive experimental facts, it will not be developed further. Experimental observations will be discussed, and it will be attempted to correlate the findings to a possible action of thyroid hormones at the receptor sites for catecholamines.

In the first section, the effect of endogenous thyroid hormone levels on the physiological actions of catecholamines on isolated tissues will be discussed.
The observations related to the effect of exogenous thyroid hormones on catecholamine actions on isolated tissues will be presented in the second section.

1) Effects of Added Catecholamines on Isolated Tissues from Animals in Various Thyroid States

Before entering the main subject matter, it is necessary to explain that only the observations obtained with pure hormones will be presented here. Numerous experiments have been made with catecholamines and thyroid hormones, using hormones which were not pure. It seemed that the confusion existing already, when studies were made with pure hormones, was great enough; it was thought that it should not be increased by considering those experiments were "adrenalin" (crude extract from the adrenal medulla) or "adrenalin" (purified extract of adrenal medulla) were used. The restriction made here, does not imply that these experiments are not valid, but that they would not contribute much to our discussion.

The effect of adrenaline on the whole heart was studied by Mc Donald (62). The whole heart was isolated from normal or thyroid-fed terrapins. The increase in oxygen consumption, following the addition of adrenaline to the perfusion medium, was measured. A significantly higher increase was found with hypertroid hearts compared to that observed with the normal ones. Hoffmann et al. studied, in the whole heart of cats and guinea-pigs, the response to
ADRENALINE AS A FUNCTION OF THE AMINE CONCENTRATION IN THE MEDIUM (63). THE ENDOGENOUS THYROXINE WAS ELIMINATED BY SURGICAL THYROIDECTOMY OF THE ANIMALS. AFTER EIGHT TO FIFTEEN DAYS HAD ELAPSED, THE ANIMALS WERE INJECTED WITH THYROXINE FOR A PERIOD OF TWO TO EIGHT WEEKS. IN HEARTS FROM ATHYROID CONTROLS, INCREASE IN AMPLITUDE AND IN RATE WAS BROUGHT ABOUT BY A MINIMAL DOSE OF 0.05 MICROGRAM OF ADRENALINE; IN HEARTS FROM THYROXINE-TREATED ANIMALS THE THRESHOLD DOSE AVERAGED 0.07 MICROGRAM. THE RESPONSE TO ADRENALINE BOTH IN RATE AND IN AMPLITUDE WAS LARGER WITH THE THYROXINE-TREATED HEARTS THAN THAT WITH THE ATHYROID CONTROLS. NO DATA WERE PRESENTED CONCERNING THE RESPONSES OF THE HEART AS A FUNCTION OF THE DURATION OF THYROXINE TREATMENT.

TIER ET AL. STUDIED THE RESPONSE OF ISOLATED ATRIA FROM HYPERTHYROID OR EUTHYROID RATS, TO BOTH ADRENALINE AND NORADRENALINE (64). THE DOSE-RESPONSE CURVE WAS HIGHER IN THE CASE OF THE HYPERTHYROID ANIMALS THAN IN THE CASE OF THE CONTROLS. AT EQUIVALENT DOSES OF EITHER CATECHOLAMINE IT SHOWED THAT A GREATER INCREASE IN ATRIAL RATE WAS OBTAINED IN THIS CASE. THE SHAPES OF THE CURVE WERE IDENTICAL, AND NO DISPLACEMENT TO THE LEFT OBSERVED WITH THE DOSE-RESPONSE CURVE FROM HYPERTHYROID ATRIA. THIS SHOWED THAT THE THRESHOLD DOSE OF EITHER ADRENALINE OR NORADRENALINE WAS NOT LOWERED IN ATRIA FROM HYPERTHYROID RATS. THE AUTHORS CONCLUDED THAT ATRIA FROM HYPERTHYROID ANIMALS, WERE NOT SENSITIZED TO THE ACTION OF BIOGENIC AMINES. THE CHANGE IN ATRIAL RATE FOLLOWING ADDITION OF EITHER
CATECHOLAMINE TO THE MEDIUM WAS, NEVERTHELESS, SIGNIFICANTLY HIGHER IN HYPERTHYROID HEARTS THAN IN NORMAL ONES.

The response of ventricular strips to noradrenaline was studied in the cat by Benfey and Varma (65). The tissue used for the strips was the right ventricle isolated from spinal cats untreated, or treated with triiodothyronine. Triiodothyronine was injected subcutaneously, daily, for five to six days at a dose of 0.200 mg–0.400 mg. For the two doses of noradrenaline assayed (2 micrograms & 8 micrograms per milliliter of incubation medium) the response of the hyperthyroid tissue was unchanged compared to that of the normal tissue.

In 1962, Mac Millan and Rand investigated the effect of triiodothyronine on the response of thoracic aorta and spleen capsule to exogenous noradrenaline, in the rabbit (66). In order to eliminate any endogenous thyroid hormone, the animals were thyroidectomized prior to treatment with triiodothyronine. For a period of eight to twenty days, 0.100 milligrams of triiodothyronine was injected subcutaneously into the rabbit. Thoracic aorta was then removed and the change in contraction following the addition of noradrenaline to the medium noted. The minimal dose necessary to elicit a response was higher in the hyperthyroid aorta than the minimal effective dose for the normal control. Moreover, the maximal response to noradrenaline was also lower in the aorta from hyperthyroid rabbit than that in the normal control. On the other hand,
WITH THE HYPERTHYROID SPLEEN, CONTRACTION OF THE CAPSULE WAS OBSERVED AT A DOSE OF NORADRENALINE LOWER THAN THAT USED FOR THE NORMAL SPLEEN; THE MAXIMAL RESPONSE ELICITED, HOWEVER, WAS LESS IN THE HYPERTHYROID SPLEEN THAN IN THE NORMAL. THE AUTHORS CONCLUDED THAT NOT ALL THE TISSUES FROM HYPERTHYROID ANIMALS WERE SENSITIZED TO CATECHOLAMINES.

AS EARLY AS 1926, REYNOLDS REPORTED THAT FEEDING THYROID EXTRACT TO RABBITS DID NOT AFFECT THE RESPONSE OF THE SMALL INTESTINE TO ADRENALINE (67). THESE RESULTS WERE CONFIRMED BY AUAMANN IN 1940 (68). NO CHANGE IN THE REACTIVITY OF SMALL INTESTINE TO ADRENALINE WAS OBSERVED IN THYROID-FED RABBITS (69). THIBAULT, HOWEVER, FOUND THAT IN THE SMALL INTESTINE FROM THYROXINE-TREATED RABBITS, PREVIOUSLY THYROID-ECTOMIZED, THE INHIBITION CAUSED BY ADRENALINE WAS PROLONGED. THE THRESHOLD DOSE WAS NOT LOWERED, BUT THE DURATION OF ACTION WAS INCREASED IN THE TISSUE FROM THYROXINE-TREATED ANIMALS. THIS AUTHOR CLAIMED THAT Athyroid animals should be used if a control of circulating thyroid hormones was to be expected (70).

TRENDELENBURG, ON THE OTHER HAND, OBSERVED THAT DUODENUM FROM THYROID-FED RABBITS RESPONDED TO NORADRENALINE OR ADRENALINE AT A DOSE WHICH WAS THE THIRD OF THE EFFECTIVE DOSE FOR THE NORMAL DUODENUM (50).

IT HAS BEEN FOUND THAT, IN HYPERTHYROID PATIENTS, THE BLOOD LEVEL OF FREE FATTY ACIDS IS ELEVATED (71). DEGONI HAD SHOWN THAT THE INJECTION OF ADRENALINE TO TRIIODOTHYRONINE-TREATED RATS HAD NO EFFECT ON FREE FATTY ACID RELEASE (72). HOWEVER, WHEN EPIDIDYMAL
Fat was removed and placed in a medium supplemented with adrenaline and increase in free fatty acid release was observed with hyperthyroid tissues compared to normal. The response to adrenaline in free fatty acid release was much higher in tissues from hyperthyroid animals than that in tissues from normal ones. Three hours after a single injection of triiodothyronine, the addition of adrenaline to the medium did not elicit a larger response in tissue from these animals. But twelve hours following three injections of triiodothyronine, a very marked increase in free fatty acid release by adrenaline was seen. In 1963, DeWeck and Vaughan confirmed Debono's findings (73). Epididymal fat from triiodothyronine-treated rats exhibited a larger response to adrenaline than that obtained with normal rats; the lipolytic effect of adrenaline was measured as that amount of glycerol liberated in the incubation medium. Similar results were reported by Felt et al. (75, 74). These authors, using mesenteric fat from normal or thyroid-fed female rats, observed a greater release of free fatty acids from the tissue of the latter group in response to the addition of adrenaline to the medium. In this series of experiments, adrenaline stores had been depleted by previous treatment of the animals with a sympatholytic drug, phentolamine. More recently, Rosenfeld and Rosenberg confirmed the results presented by the previous investigators (76). However, when the authors expressed the increase in free fatty acid release by adrenaline as a percent of the release without adrenaline in the
medium, the difference between the tissue from normal and that from thyroxine-treated rats was not significant anymore. Rosenfeld and Rosenberg concluded that thyroxine did not have a direct effect on the adrenaline-induced release of free fatty acid.

Similar contradictory results have been reported by various investigators for the experiments dealing with isolated tissues from hypothyroid animals. Mac Sawyer and Brown studied the effect of adrenin (*) on the whole heart of the cat. Each cat was its own control. After the heart of the cat had been completely denervated it was perfused through the coronary artery with adrenin. The cat was then thyroidectomized and the injection repeated after a certain time had elapsed. Following surgical removal of the thyroid gland, the response of the denervated heart to exogenous adrenin was decreased. There was still some response to adrenin and, moreover, the dose necessary to elicit that response was unchanged (77). Similar results were obtained with hearts from thyroidectomized cats or guinea-pigs. The dose of adrenaline necessary to elicit an increase in heart rate and stroke volume was identical for tissues from thyroidectomized and normal animals. The increase was less marked in the former than in the latter group (62).

In isolated atria, the dose-response curve to adrenaline had the same shape whether the tissues were isolated from 131-iodine-pretreated or normal rats. The curve was slightly lower in the case

(*) Adrenin was a crude extract of adrenal medulla.
OF ADRENALINE, SHOWING THAT THE RESPONSE OF THESE TISSUES TO ADRENALINE WAS DIMINISHED. THE THRESHOLD DOSE OF THE BIOGENIC AMINE WAS UNCHANGED WHEN ATRIA FROM IODINE-PRETREATED ANIMALS WERE USED, COMPARED TO THAT NECESSARY FOR ATRIA FROM THE NORMAL CONTROLS (63). A SLIGHT DECREASE IN THE SENSITIVITY OF ISOLATED MYOCARDIUM TO ADRENALINE WAS OBSERVED IN IODINE-PRETREATED RATS. THE DIFFERENCE OBSERVED WAS NOT SIGNIFICANT (78).

DEBCHS ET AL. REPORTED NO EFFECT OF ADRENALINE ON THE RELEASE OF FREE FATTY ACIDS FROM EPIDIDYMAL FAT OF PROPYTHIOURACIL-TREATED RATS. THE RESPONSE TO ADRENALINE WAS NOT PRESENT, SINCE A SIMILAR AMOUNT OF FREE FATTY ACIDS WAS RELEASED INTO THE MEDIUM REGARDLESS OF WHETHER OR NOT IT WAS SUPPLEMENTED WITH ADRENALINE (72). THE AUTHORS CONCLUDED THAT THYROID HORMONES WERE NECESSARY FOR THE RESPONSE OF FAT TISSUE TO ADRENALINE. FELT ET AL. CONFIRMED
THESE RESULTS IN THEIR STUDIES ON THYROIDECTOMIZED FEMALE RATS.
THE RELEASE OF FREE FATTY ACIDS FROM MESENTERIC FAT WAS SLIGHTLY
INCREASED BY ADDITION OF ADRENALINE TO THE MEDIUM, BUT THE HIGH
STANDARD DEVIATION OBTAINED DID NOT INDICATE A SIGNIFICANT EFFECT
OF ADRENALINE (75, 74). DEYKIN AND VAUGHAN REPEATED DEBON'S
EXPERIMENTS. THEIR RATS WERE MADE HYPOTHYROID BY TREATMENT WITH
PROPRYLTHIURACIL (73). WHEN THEY MEASURED THE RELEASE OF GLYCEROL
FROM EPIDIDYMAL FAT NO DIFFERENCE WAS OBSERVED IN THE PRESENCE OR
IN THE ABSENCE OF ADRENALINE. ROSENFELD AND ROSENBERG DID FIND A
RESPONSE OF EPIDIDYMAL FAT FROM THYROIDECTOMIZED RATS (76). THE
RESPONSE INDUCED BY ADRENALINE WAS IDENTICAL TO THAT ELICITED IN
TISSUES FROM NORMAL CONTROLS. TO EXPLAIN THE CONTRADICTIONS
BETWEEN THEIR RESULTS AND THE PREVIOUS ONES, THESE INVESTIGATORS
CLAIMED THAT PROPRYLTHIURACIL COULD HAVE A DIRECT EFFECT ON FAT
TISSUE. THEY BASED THEIR CLAIMS ON THE FACT THAT PROPRYLTHIURACIL
HAD BEEN SHOWN TO HAVE PERIPHERAL EFFECTS.

2) EFFECTS OF CATECHOLAMINES AS A FUNCTION OF EXOGENOUS
THYROID IN THE ISOLATED TISSUE.

NO STUDIES HAVE BEEN MADE ON THE EFFECT OF THYROID IN
VITRO ON THE HEART OR HEART SLICES. MOST OF THE RESULTS FOUND IN
THE LITERATURE HAVE BEEN DONE ON SMOOTH MUSCLE, OF EITHER THE
ARTERIES OR THE SMALL INTESTINE.

IN 1954, SMITH OBSERVED THAT THE RESPONSE TO ADRENALINE,
ABSENT IN THE CAROTID ARTERY FROM THYROIDECTOMIZED SWINE, WAS
RESTORED BY ADDITION OF THYROXINE TO THE PERFUSION MEDIUM (80).

That the high pH of the medium was not responsible for this return to normal was shown by the fact that when thyroxine was not present, high pH alone did not elicit a return to normal response. The concentration of thyroxine used was not well defined, since part of the hormone was not in solution. The response to adrenaline was increased in both amplitude and duration in the presence of thyroxine. In 1960, Shegman and Fallon investigated the effect of exogenous triiodothyronine on the adrenaline-induced contraction of aortic strips. A single concentration of adrenaline (1x10⁻⁷ M) was assayed for a single concentration of triiodothyronine (1x10⁻⁶ M). Triiodothyronine alone was without effect. On long duration contractions, triiodothyronine was also without effect, even in the presence of adrenaline. However, in short duration experiments, in the presence of triiodothyronine, the response to adrenaline was increased in amplitude and in duration (81). Barker found that the respective acetic acid analogues of triiodothyronine and thyroxine potentiated the response to adrenaline of thoracic aorta (83).

Sodium iodide and diiodothyrosine were without effect. These authors suggested that the effect of triiodothyronine was due to chelation of copper. Because the catalytic effect of copper during adrenaline oxidation is well established (82), they claimed that by preventing adrenaline oxidation, triiodothyronine was increasing the actual concentration of adrenaline in the medium. Therefore, more adrenaline
was available for the tissue. Shida et al. repeated the experiments with thoracic aorta strips from rabbits. No enhancement of either adrenaline or noradrenaline response of the aorta was observed in the presence of thyroxine, or in the presence of triiodothyronine, when the concentration of copper in the medium was as low as 1.5 μg per liter. However, when the medium was supplemented with copper, thyroxine was found to potentiate the response to adrenaline. An increase in amplitude and in duration was observed. These authors utilized a chelating agent for copper: ethylene diamine tetraacetic acid (EDTA) and found it mimicked the effect of thyroxine. These investigators concluded that, under the experimental conditions used, thyroxine and EDTA effects were identical. They pointed out that extrapolation to in vivo effects of thyroid hormones was somewhat impaired by the fact that the concentration of free copper in the tissue is very low if any.

The in vitro effect of thyroxine on the response of small intestine to adrenaline was investigated by Thibault in 1948. In a series of experiments with rabbit small intestine strips, the author was able to show that thyroxine potentiated the inhibitory effect of adrenaline on the small intestine. It was shown that several requirements were necessary to elicit this potentiation. The level of endogenous thyroxine was critical and the author suggested that only tissue from thyroidectomized animals should be used. A preincubation with thyroxine was necessary before the tissue exhibited any
POTENTIATION OF ADRENALINE ACTION. When these two requirements were fulfilled, an increase in both amplitude and duration of the response to adrenaline was obtained (84, 85). Several authors (88, 69) had tried previously to show any effect of thyroid hormones on the response of the small intestine to adrenaline. Thibault claimed that the failure of these investigators was primarily due to the fact that the animals used had not been thyroidectomized. Shida et al. attempted to reproduce the work of Thibault and associates but, in the preliminary assays, they found that small intestine was not a tissue suitable for the study of the effects of exogenous catecholamines. They were unable to obtain reproducible responses to adrenaline, even in the absence of thyroxine in the medium (83).

When Thibault examined the effect of thyroxine on the adrenaline-induced contraction of the spleen, she observed that the amount of adrenaline necessary to induce a response was diminished by half when thyroxine was also present in the medium. Rabbit uterus was even more sensitized by thyroxine, since the threshold dose of adrenaline was diminished ten times when thyroxine was added to the incubation medium. This series of experiments was performed with tissues from thyroidectomized rabbits (86, 87).

CONCLUSION OF PART I.

There is definite evidence that in hyperthyroid patients the physiological action of adrenaline and noradrenaline on the
cardiovascular system and on basal metabolism is augmented. On the other hand, in hypothyroidism, the effect of exogenous catecholamines is decreased. From the foregoing discussion, it can be seen that the experimental attempts to reproduce the symptoms observed by clinicians have been more or less successful. The increase in oxygen consumption following adrenaline injection has been found in all investigations to be larger in thyroid-fed or thyroxine-treated animals. Similarly, the increase in oxygen consumption of the isolated heart has been found larger in the case of thyroid-fed animals. In athyroid animals, the experimental results were less consistent, since some authors observed a decreased response to exogenous catecholamines, while others obtained no response whatsoever.

However, when other parameters were studied, such as adrenaline-induced tachycardia, pressor effects, hyperglycemia or free fatty acid release, the data reported by various groups of workers are not concordant. Among the groups who have observed a sensitization of these systems in hyperthyroid animals, there are contradictory results concerning the manner by which the sensitization occurred. Some authors found the adrenaline threshold dose to be decreased, while others did not find any change in the threshold dose but rather an increase in the duration and amplitude of the response among the hyperthyroid animals. Experiments in vitro reflect the same contradiction. In hypothyroidism, the actions of catecholamines as tested by measuring tachycardia, hyperglycemia, pressor effects or free...
FATTY ACID RELEASE HAVE BEEN FOUND UNCHANGED BY SOME INVESTIGATORS OR DIMINISHED BY A FEW OTHERS.

VERY FEW EXPERIMENTS HAVE BEEN DONE TO INVESTIGATE THE ACTIONS OF ADRENALINE OR NORADRENALINE ON SMOOTH MUSCLES, IN HYPER-
THYROIDIC AND HYPOTHYROIDIC ANIMALS. THE RESULTS OBTAINED DURING THESE STUDIES HAVE NOT BEEN IN AGREEMENT.

EXCEPT FOR THE STUDIES ON THE OXYGEN CONSUMPTION, THERE IS NO REPORT IN THE LITERATURE, CONCERNING SYSTEMATIC INVESTIGATIONS ON THE OTHER EFFECTS OF CATECHOLAMINES IN THE WHOLE ANIMAL, OR IN ISOLATED TISSUE, IN CASE OF THYROID GLAND IMPAIRMENT. THE EVIDENCE HAS BEEN COLLECTED FROM ISOLATED EXPERIMENTS, MADE IN VARIOUS CONDITIONS, WITH ANIMALS OF DIFFERENT SPECIES. THE IMPAIRMENT OF THE THYROID GLAND WAS BROUGHT ABOUT BY VERY DIFFERENT METHODS. IN SOME OF THE EXPERIMENTS, THE ANIMALS WERE MADE HYPERTHYROID BY THYROID-FEEDING, IN OTHERS THYROXINE OR TRIIODOTHYRONINE INJECTIONS OF DIFFERENT DOSES, BY DIFFERENT ROUTES, FOR DIFFERENT PERIODS OF TIME WERE USED AS A MODE OF INDUCING HYPERTHYROIDISM. THE SAME VARIABILITY IN INDUCING HYPOTHYROIDISM HAS BEEN OBSERVED.

ALTHOUGH THERE IS NO DOUBT THAT THYROID HORMONES AND EXOGENOUS CATECHOLAMINES ARE INTERRELATED IN THEIR ACTIONS IN THE INTACT ANIMALS, THE CONFLICTING RESULTS REPORTED IN THE LITERATURE DO NOT PERMIT A DEFINITE CONCLUSION AS TO THE WAY IN WHICH THESE HORMONES ARE INTERFERRING WITH EACH OTHER. IT WOULD APPEAR THAT MORE SYSTEMATIC STUDIES, IN A GIVEN SPECIES, ON A GIVEN PARAMETER WOULD
be necessary to throw some light on this interaction. The biochemical
evidences that thyroid hormones and catecholamines are related in
some way will now be presented in part I I of this review.
PART II. THE EFFECTS OF THYROID HORMONES ON THE BIOLOGICAL INACTIVATION OF EXOGENOUS CATECHOLAMINES

The introduction in biochemistry of radioactive molecules with high specific activity has permitted the study of mechanisms not unraveled until then. Because adrenaline or noradrenaline labeled with tritium were available, the inactivation pathways of these biogenic amines have been thoroughly investigated. It would appear that two main routes are taken in physiological conditions. The first which appears to be first in time rather than in importance is the rapid inactivation of exogenous catecholamines by binding to sites (G8). The sites have not been identified, but it is postulated that they are mainly proteins (G8). The second way of inactivation is through the enzymes specific for catecholamine degradation: catechol-O-methyl transferase and monoamine oxidase. Thyroid hormones may have a potentiating effect by interfering with either mechanisms.

It has been postulated that thyroid hormones occupied the binding sites preventing the rapid inactivation of catecholamines and thus prolonging their effects. The inhibition by thyroxine of enzymes responsible for catecholamine degradation would also potentiate the effect of catecholamines. In the latter case, however, since the enzymic action appears to be secondary in time, one would expect an increase in duration of action rather than a decrease in threshold as could be expected in the former case. Thyroxine, in large amounts,
has been found to prevent protein synthesis (91). It may thus
exert its potentiation by preventing the synthesis of either the
binding protein or the degradative enzymes.

The combined use of blocking drugs and radioactive
catecholamines has permitted the differentiation of the various
binding sites in the cell (90, 91-95). Numerous studies have been
performed during the last few years, especially using tritiated
noradrenaline. Beside the receptor binding sites it seems that,
in the cell other binding sites for noradrenaline are present.
The studies (96, 97, 99), with tyramine, have revealed that this
sympathomimetic drug acts by liberating noradrenaline or adrenaline
from storage binding sites. However, a certain amount of catechol-
amines can still be bound in the cell, while tyramine has no more
mimetic action. From these findings the authors concluded that in the
tissue there exists two kinds of storage sites. In one case, the
half-life of the amine is quite short. It is the storage site
which is depleted by tyramine. At the second site, the amine is
bound in a firmer linkage and is not released by tyramine. The
effect of thyroid hormones has been postulated to take place at either
stage. It has been very difficult to show exactly where thyroid
hormones are acting because there is relatively little systematic
work done on the dose-response curve for either thyroxine or
triiodothyronine. Time-course experiments are not available either.
The effect of tyramine on noradrenaline stores has been shown,
BECAUSE TIME-COURSE STUDIES ON THE RELEASE OF NORADRENALINE AS A FUNCTION OF TYRAMINE EFFECT HAVE BEEN DONE. SINCE NO SUCH STUDY IS AVAILABLE IN THE CASE OF THYROID HORMONES, DEFINITE CONCLUSIONS CANNOT BE DRAWN ON THEIR EFFECTS. IT WOULD SEEM THAT THE TWO SITES OF BINDING FOR STORAGE ARE REPLENISHED FROM CIRCULATING CATECHOL-AMINES, OR AT LEAST, THE EXOGENOUS NORADRENALINE CANNOT BE DIFFERENTIATED FROM ENDOGENOUS CATECHOLAMINE AT THIS POINT.

THE EFFECTS OF THYROID HORMONES ON THE UPTAKE AND BINDING OF EXOGENOUS CATECHOLAMINES WILL BE DISCUSSED IN THE FIRST SECTION. IN THE SECOND SECTION OF THIS DISCUSSION, THE EFFECT OF THYROID HORMONES ON CATECHOL-O-METHYL TRANSFERASE AND MONOAMINE OXIDASE WILL BE PRESENTED.

A. THE EFFECT OF THYROID HORMONES ON THE UPTAKE AND BINDING OF EXOGENOUS CATECHOLAMINES

WHEN STUDYING THE EFFECT OF THYROID HORMONES ON THE DEGRADATION OF EXOGENOUS CATECHOLAMINES, ONE ELIMINATES ONE OF THE FACTORS WHICH MAY BE RESPONSIBLE FOR POTENTIATION OF CATECHOLAMINES. THYROID HORMONES COULD POSSIBLY SENSITIZE A TISSUE TO CATECHOLAMINES BY INCREASING THE RATE OF FORMATION OF THESE AMINES, OR BY EXERTING A DIRECT EFFECT ON THE STORAGE GRANULES. BY STUDYING THE EFFECTS OF THYROID HORMONES ON THE RESPONSE OF TISSUES TO ADRENALINE, ONE TESTS THE DIRECT EFFECT OF THYROTROPIN AT THE RECEPTOR LEVEL. ONE HAZARD IN THE USE OF EXOGENOUS RADIOACTIVE MATERIAL, IS THAT EXOGENOUS AMINES MAY NOT REFLECT THE ACTUAL METABOLISM OF ENDOGENOUS AMINES.
If on the other hand, they do reflect the actual metabolism of endogenous catecholamines, the possibility of an exchange between hot and cold material is not eliminated. Very few authors, if any, have measured the specific activity of the material isolated from tissues after adrenaline injection. Secondly, and this is especially true when tritiated adrenaline is concerned, the possibility of isotope effects on the penetration of the amine has not been eliminated. If, as it seems, adrenaline penetrates into the cell by both a passive diffusion and an active transport (104), when small concentrations of adrenaline are used, only the active transport mechanism will act. The isotope effect may be very important in this case. Isotope effects may also enter the picture when the enzymic degradation or binding of the amines is studied. This again is especially true for the tritiated compound. Elimination of possible isotope effects would be possible, or at least, confirmation of isotope effects could be made if one was comparing 3H- and 14C-labeled compounds. It is difficult to use 14C-labeled catecholamine in in vivo experiments because the specific activity of the commercial compounds is too low to permit the use of sensitive methods. This problem appears insoluble at the present time. However, it is necessary to bear it in mind when considering the data which will now be presented.

The injection of labeled catecholamines is followed by a binding of radioactive material in the tissue. This radioactive material has been identified as mainly unchanged catecholamines.
It is found in the tissue long after the physiological effects of either amine have disappeared. It was on these findings that several authors based their hypothesis that binding is one mode of inactivation of catecholamines (88, 98). The uptake of exogenous catecholamines has been shown to be inversely proportional to the concentration of catecholamines outside the tissue (99). At low concentrations of adrenaline or noradrenaline, the active mechanism is more important, while at high concentrations the passive diffusion appears to be the primary mechanism. Tissues have been shown to concentrate catecholamines even at high external concentrations of the amines (98, 158).

Leduc et al. were the first to study the uptake and binding of catecholamines in hyperthyroid animals. These authors used iodinated-casein-fed rats and studied the distribution of adrenaline following an intramuscular injection of 125 micrograms of adrenaline. They investigated the distribution of adrenaline five and ten minutes after the injection, in the heart, liver, spleen, adrenals and blood of normal and hyperthyroid rats. In all these tissues except blood, they identified both adrenaline and noradrenaline fluorimetrically. In the heart, the concentration of adrenaline after injection was identical for both hyperthyroid and normal animals. However, as in the heart of hyperthyroid rats, the level of adrenaline before the injection was higher than that in the heart of normal rats, the increase after the injection was therefore

IN THE WHOLE MOUSE, AXELROD AND TONCHICK DID NOT FIND ANY DIFFERENCE IN THE RATE OF DISAPPEARANCE OF RADIOACTIVE ADRENALINE BETWEEN THYROXINE-PRETREATED AND NORMAL ANIMALS. THE MEASUREMENTS WERE PERFORMED TEN HOURS AFTER THE SUBCUTANEOUS INJECTION OF RADIOACTIVE ADRENALINE, AT A DOSE OF THREE MICROGRAMS PER MOUSE (103).
Dengler and Titus studied the uptake and binding of isotopic noradrenaline in rat hearts (104). Ten minutes after injection of physiological doses of the amine (6.5 μg/kg), the uptake of radioactive material in the heart from hyperthyroid rats was 57% of that found in the heart from normal controls. However, when the radioactive material was identified, it was found that in the heart from normal controls, only 37.3% was noradrenaline. Adrenaline was found to comprise 19.6%. In the heart from hyperthyroid animals, 92.1% of the radioactive material was accounted for as noradrenaline. The hyperthyroid heart appeared to have lost the capability to synthesize adrenaline from noradrenaline since none was found. During in vitro incubation of rat heart slices with radioactive DL-noradrenaline, slices from hyperthyroid heart took up only 70% as much radioactive material as the slices from normal controls. The authors concluded that thyroxine prevents the uptake of noradrenaline.

It appears that the concentration of catecholamines found in the tissues from hyperthyroid animals is dependent upon the time of investigation after the injection. As shown by Wurthmann et al. (102), the disappearance of exogenous catecholamines does not follow the same pattern in the hyperthyroid animal as that in the normal. Two minutes following injection of adrenaline the concentration of the unchanged amine is higher in the heart from hyperthyroid rats than in the heart of normal controls. Forty minutes after the injection, because the rate of disappearance is faster in the hyperthyroid...
ANIMALS, THE LEVEL OF UNCHANGED ADRENALINE IS LOWER IN THE HEART OF
THE HYPERTHYROID ANIMALS THAN IN THE HEART OF THE CONTROLS. BECAUSE
VERY FEW FIGURES ARE AVAILABLE ON THE UPTAKE AND BINDING OF EXOGENOUS
ADRENALINE OR NORADRENALINE IN THE HYPERTHYROID ANIMAL, CONCLUSIONS
ARE DIFFICULT TO DRAW. FURTHER WORK IS NECESSARY TO ASSESS THE ACTUAL
IMPORTANCE OF BINDING AND UPTAKE ON THE POTENTIATION OF CATECHOL-
AMINE ACTION BY THYROID HORMONES.

B. THE EFFECT OF THYROID HORMONES ON CATECHOL-O-METHYL
TRANSFERASE AND ON MONOAmine OXIDASE.

AS POINTED OUT EARLIER, THE USE OF RADIOISOTOPES HAS
ALLOWED THE ELUCIDATION OF THE METABOLIC PATHWAYS FOR THE INACTIV-
ATION OF CATECHOLAMINES. THERE IS NO DOUBT THAT TWO ENZYMES ARE
MAINLY RESPONSIBLE FOR THE DEGRADATION OF CATECHOLAMINES. MONOAmine
OXIDASE WAS THE FIRST ENZYME TO BE RECOGNIZED AS BEING INVOLVED IN
THE OXIDATIVE DEAMINATION OF EITHER ADRENALINE OR NORADRENALINE.
THIS ENZYME HAS NOT BEEN PURIFIED YET AND IT IS NOT COMPLETELY
CERTAIN WHETHER IT IS A SINGLE OR A MULTIPLE ENZYME SYSTEM (105-107).
MORE RECENTLY, A SECOND ENZYME (CATECHOL-O-METHYL TRANSFERASE)
HAS BEEN IDENTIFIED WHICH METHYLATES NORADRENALINE AND ADRENALINE
ON THE META HYDROXYL GROUP OF THE CATECHOL RING. THIS ENZYME HAS
BEEN PARTIALLY PURIFIED (127).

THE RELATIVE IMPORTANCE OF THESE ENZYMES APPEARS TO
DEPEND UPON THE SPECIES OF ANIMALS. IN MAN, METHYLATION OF ADRENAL-
INE AND NORADRENALINE APPEARS TO BE THE MOST IMPORTANT PATHWAY
for the degradation of catecholamines. In the rats, oxidative dem-
amination would appear to be more important. The importance of the
enzymes may also depend upon the organ studied in a given species
(108). Recently, it has been postulated that catechol-O-methyl
transferase is the enzyme degrading free catecholamines. Mono-
amine oxidase would metabolize the catecholamines which have been
bound to the binding sites (109,110).

The activity of both enzymes, in hyperthyroid or hypothyroid
animals, had been measured in various organs i heart, liver and
kidney. Moreover, some kinetics for catechol-O-methyl transferase
activity in the presence of thyroxine analogues have been published (129-131).

The importance of thyroid hormones on the inactivation of both
enzymes is still a subject of controversy.

There are two approaches to the investigation of the
effects of thyroid hormones on the enzymes inactivating catechol-
amines. The first one is to measure, in vitro the activity of these
enzymes prepared from animals in various thyroid states. The second
approach is to identify the metabolites in the whole animal after
catecholamine injection. This second process measures the relative
activity of both enzymes. The former measures the absolute activity
or rather the potential activity of the enzymes.

Catecholamines have been shown beyond doubt to follow
two main routes of degradation (111). Catechol-O-methyl transferase
(COMT) combines a methyl group to one of the hydroxyl group of
the catechol ring. It is the meta hydroxyl group which is preferen-
Tially methylated. Monoamine oxidase (MAO) oxidatively de-
aminates either adrenaline or noradrenaline to yield an aldehyde.
The aldehyde is spontaneously converted into either an alcohol
or an acid. Each metabolite may in turn be affected by the other
enzymes.

Fig. 1. Pathways for the metabolism of epinephrine

From J. Biol. Chem. 238: 2110, 1961

Thyroid hormone effect may either affect COMT activity
or MAO activity or both of them. Although the use of inhibitors
for MAO have shown a decrease in the formation of metabolites, this
decrease has not been concomitant with a prolongation or an
increase in the response of tissues to adrenaline or noradrenaline
(112, 113). On the other hand, there appears to be a relationship
between COMT inhibition and potentiation of adrenaline (111). In
vivo, it has been shown that one enzyme may compensate for the
other, and the lack of effect during inhibition of MAO may very

- 39 -
will be accounted for by this supplementary mechanism. One should also take into account the fact that the injection route of catecholamines is very important. Since in the liver, MAO and COMT activities have been shown to be large when the blood is going through the liver before reaching the target or tissue in which adrenaline action is going to be measured, part of the exogenous catecholamine will be destroyed before it had time to reach the tissue (114).

Spinks was the first to show in 1952, that there was a small decrease in the activity of aortic monoamine oxidase among thyroid-fed rabbits. However, the decrease was not statistically significant compared to the aortic monoamine oxidase activity of the normal controls (114). Spinks and Burn, in the same year reported the effect of thyroid feeding on the liver monoamine oxidase activity of rats and rabbits. Monoamine oxidase activity was decreased in rabbit liver by thyroid feeding. In thyroidectomized rats and rabbits, the monoamine oxidase activity of the liver was increased (115). Trendelenburg also found that the liver from thyroid-fed rabbits exhibited a lower monoamine oxidase activity than that of the normal rabbit. The decrease in the activity expressed per weight of wet liver was small but statistically significant (52). Leouc et al., measuring the concentration of adrenaline in various organs, following adrenaline injection, observed that hearts from iodinated-casein-fed
animals accumulated the unchanged amine. They concluded that the metabolism of this amine was impaired in hyperthyroid animals (101).

Using the same manometric technique and the same substrate as those used by Spinks and Burn, Westermann was unable to confirm their experimental findings. This author measured the monoamine oxidase activity in the liver of mice and rats pretreated for three to five days with L-triiodothyronine. No difference was found in the liver activity of the triiodothyronine-pretreated and normal animals (117). Holtz et al. confirmed Westermann's results. They measured the monoamine oxidase activity in the liver of rats, guinea-pigs and rabbits pretreated with triiodothyronine or thyroxine. In fact, these authors found a small but not significant increase in the enzymic activity of the liver from hyperthyroid animals (118). In rats which had been fed desiccated thyroid for one month, Zile and Lardy observed a significant decrease in liver monoamine oxidase activity. Thyroxine did not have a direct inhibitory effect on the enzyme. The level of circulating adrenaline and noradrenaline was also found to be increased. No difference in the liver monoamine oxidase activity was seen between thyroidectomized and normal rats (119).

Novick studied the effect of both D- and L-triiodothyronine and of thyroid-difludon on the heart monoamine oxidase of the rats at various ages. D-Triiodothyronine had no effect. In young rats, L-triiodothyronine was the most efficient. A 204% increase in the
ENZYMIC ACTIVITY OF THE HEART WAS OBSERVED WITH THIS COMPOUND. IN THE ADULT GROUP, L-TRIIODOTHYRONINE AND THYROID-FEEDING HAD THE SAME EFFECT IN INCREASING THE HEART MONOAMINE OXIDASE ACTIVITY. NEITHER TREATMENT WAS FOUND TO HAVE AN EFFECT ON LIVER MONOAMINE OXIDASE ACTIVITY (120).

ZILE HAD PREVIOUSLY REPORTED THE RESULTS OBTAINED WHEN STUDYING THE EFFECT OF THYROXINE AND THYROID HORMONE ANALOGUES ON THE ACTIVITY OF MONOAMINE OXIDASE IN THE LIVER, HEART AND BRAIN OF RATS. THE SPECIFIC ACTIVITY OF LIVER MONOAMINE OXIDASE WAS DECREASED IN ANIMALS WHICH HAD BEEN PRETREATED WITH THYROXINE, TRIIODOTHYRONINE, TRIIODOTHYRONACETIC ACID OR THYROXAMINE. IN THE HEART OR BRAIN, NO DIFFERENCE IN ENZYMIC ACTIVITY WAS SEEN BETWEEN TREATED AND NORMAL ANIMALS. THE AUTHOR POINTED OUT THAT THE METHOD USED WAS NOT VERY SENSITIVE, AND SMALL DIFFERENCES MAY NOT HAVE BEEN DETECTED (121).

Würtmann et al. tested the liver monoamine oxidase activity in male and female rats as a function of their thyroid state. These authors confirmed Skillern's results. However, they found that after massive doses of thyroxine (500 μg/day, for 5 days), the liver MAC activity was decreased in the female group (102).

More recently, Barrieux, Proulx and D'Iorio confirmed Spinks' findings on the decrease in liver monoamine oxidase of iodinated-casein-fed male rats (123).

Since the role of monoamine oxidase in the biological inactivation of catecholamines appears, at least in many target organs, to be quite secondary, it seems difficult to connect the influence of thyroid hormones on this enzyme with their potentiation of catecholamine effects.

Catechol-O-methyl transferase appears to be more important in the biological disposal of catecholamines. This enzyme has been discovered only recently (124, 127), but already some data are available on the effect of thyroid hormones on its activity. Catechol-O-methyl transferase has been shown recently to be the enzyme primarily responsible for the degradation of catecholamines.

Although metanephrine has been shown to possess some activity (125,126), its efficiency is by no means comparable to that of the non-methylated adrenaline. Catechol-O-methyl transferase has been found in all the tissues studied. Because its action is rapid, it seems that this enzyme may be responsible for the biological inactivation
Because of the conflicting results concerning the effects of thyroxine on MAO activity, Di Iorio et al., having found that adrenaline metabolism was decreased in hyperthyroid rats, decided to investigate the possible inhibition of COMT by thyroid hormones (128). Using protocatechuic acid as the substrate, the authors measured the formation of its methylated derivative (vanillic acid) in rat liver homogenate. In a series of experiments thyroxine was added directly to the incubation medium. It was found to have no effect on the activity of COMT. Following thyroxine injection, the liver COMT activity was found significantly decreased when compared to that of the normal liver. When radioactive adrenaline was injected to rats, a greater amount of excreted unchanged material was found in the thyroxine treated group. The amount of metanephrine was also significantly lower in that group. The authors pointed out that a long pretreatment with thyroid hormones was required to obtain a decrease in enzyme activity. The potentiation of catecholamine actions by thyroid hormones, on the contrary, seemed to be immediate. Wurtmann et al. repeated the experiments of Di Iorio but measured the activity of catechol-O-methyl transferase in a different manner. COMT is an enzymic system requiring the presence of S-adenosyl methionine as donor for the methyl group. Wurtmann et al. measured COMT activity in a medium supplemented with S-adenosyl methionine (162). They did not find any
CHANGE IN HEART COMT ACTIVITY IN THE HYPERTHYROID ANIMALS.

These findings were confirmed recently by Barnieux, Proulx and D'Iorio (123). The specific activity of liver COMT was decreased in the hyperthyroid rats. However, when the activity of the enzyme was expressed per whole heart, no change was seen. D'Iorio and Haurides working with partially purified enzymes from rat liver studied the effect, in vitro, of various thyroxine analogues on the activity of COMT (129–131). They investigated the kinetics of the enzyme and observed that some of the thyroxine analogues were inhibitors of the enzyme. Thyroxine, at the low concentration used in these experiments, was without effect. Triiodothyronine was found to be a very poor inhibitor of the enzyme. These authors concluded that the potentiation, in vivo, of the physiological actions of catecholamines by thyroid hormones could not be accounted for by the inhibition of catechol-O-methyl transferase.

CONCLUSION OF PART II.

There is general agreement that some of the physiological effects of catecholamines are increased in hyperthyroid animals. This potentiation of catecholamine action is not always reversed in hypothyroid animals. The biochemical attempts to show that this potentiation is mediated through the inhibition of the two enzymes mainly responsible for the biological degradation of catecholamines have failed to give conclusive results. Monoamine
Oxidase activity is decreased in the organs of hyperthyroid animals. This enzyme, however, has been shown not to be directly responsible for the rapid disappearance of the physiological effects of catecholamines. Catechol-O-methyl transferase, the enzyme apparently involved in the rapid inactivation of catecholamines in vivo, has been found unchanged or slightly decreased in the liver and heart of hyperthyroid animals. Thyroid hormones have no direct effect on this enzyme in vitro. It would appear that thyroid hormones potentiate some of the effects of catecholamines through a different route - the rapid binding of the biogenic amines to tissue, resulting in the disappearance of the physiological effects of exogenous catecholamines could be affected directly by thyroid hormones. Recent findings have shown that binding to tissue is primarily responsible for the rapid disappearance of the response to adrenaline.

For these reasons, in the work to be presented here, an attempt has been made to study, in the whole rat, the distribution of radioactive material in the organs following a single injection of tritiated adrenaline or noradrenaline. This study was made as a function of the thyroid state of the rat. The effect of thyroxine, both in vivo and in vitro, on the uptake, binding and O-methylation of tritiated adrenaline was investigated in strips of small intestine from rats.
EXPERIMENTAL RESULTS

PART 1. THE DISTRIBUTION OF RADIOACTIVE MATERIAL IN RATS
IN VARIOUS THYROID STATES FOLLOWING A SINGLE INTRAVENOUS INJECTION
OF 3H-ADRENALINE OR 3H-NORADRENALINE.

1. MATERIALS AND METHODS

A) MATERIALS

All the animals used in these experiments were adult, male, Sprague-Dawley rats.

L-thyroxine sodium salt, from Sigma Chemicals, was used for inducing hyperthyroidism. It was dissolved in 50% propylene glycol at a final concentration of 1.19 µg.

Ethyl ether, anhydrous, from Fisher, was the anesthetic utilized during thyroidectomy of the rats.

Nembutal was purchased from Abbott Lab., Montreal, in sterile solution of 50 mg per ml. It was used prior to the measurement of oxygen consumption, or prior to the intravenous injection of radioactive catecholamine.

DL-Noradrenaline-3H hydrochloride and DL-Adrenaline-3H hydrochloride were obtained from New England Nuclear Corp., Boston,
Mass. The compounds were in 0.1 N acetic acid, in ampoules sealed under nitrogen. The specific activity averaged 9.55 curies per m\(^4\) for the former amine, and 9.55 curies per m\(^4\) or 6.1 curies per m\(^4\) for the latter.

PPO (2,5-diphenyloxazole) and dimethyl-POPOP (1,4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene), scintillation grade, from Packard Instrument Company, Inc., were used to prepare the liquid for scintillation counting.

The metabolism apparatus, from Phipps & Bird, Inc. Richmond, Va., model #71-2241, was used for measurement of the oxygen consumption.

The counting of radioactivity was carried out in a liquid scintillation counter, Nuclear Chicago model 703, at 4°C.

b) Methods

In all the experiments the animals weighed between 190 and 250 grams.

1) Preparation of Animals:

Group A - This group was subdivided into subgroups. They consisted of rats weighing 120-130 grams at the beginning of the experiments. In the first subgroup, the rats were considered as normal control animals and kept for three weeks on a normal diet and water ad libitum. The rats from the second subgroup were made athyroid by surgical removal of the thyroid gland, while under ether anesthesia.
These animals were then kept for three weeks on normal diet and water ad libitum. At the end of three weeks, the weight and basal metabolism of the control and athyroid rats were determined and served as a measure of thyroid function impairment.

Group B. - In this group, the rats weighed around 200 grams at the beginning of the experiments. After their weight and oxygen consumption had been determined, the rats were injected subcutaneously, daily for five days, with L-thyroxine: 0.119 µM in 0.100 ml. of 50% propylene glycol. On the sixth day, the weight and oxygen consumption were recorded again.

2) Measurement of Oxygen Consumption:

All the rats were fasted overnight, before oxygen consumption was measured. The determination of basal metabolism was carried out on one rat at a time. The metabolic apparatus was partially filled with soda lime to absorb moisture and carbon dioxide. The rat was then weighed and injected intraperitoneally with nembutal at a dose of 20 mg per kg of body weight. Twenty minutes later, the rat was placed in the chamber and oxygen was bubbled into the apparatus for five minutes. Five minute equilibration was allowed. At the end of this period a calibrated tube containing one drop of soap solution was inserted in the air outlet of the metabolic apparatus. The rate at which the soap bubble was displaced in a 5 ml volume was measured. At least five successive measurements were made on each animal. The average of the five values was taken as the time.
necessary for the rat to burn 5 ml of oxygen. This was converted to the volume of oxygen consumed in one minute. Taking into account the weight of the animal, the oxygen consumption per minute per kilogram of body weight was calculated. Corrections were made to bring all the results to a temperature of 30°C in the chamber.

3) **Intravenous injection of 3H-DL-noradrenaline or 3H-DL-adrenaline**:

The rats were starved overnight, but received water ad libitum. After the weight of the animal had been recorded, an intraperitoneal injection of nembutal (20 mg per kg of body weight) was given. Thirty minutes later, 0.160 ml of tritiated noradrenaline or adrenaline was injected into the tail vein, using a 1.0 ml insulin syringe. This injection required about two minutes. After completion of the injection the spinal cord was cut. The time interval between injection and sacrifice of the rat was varied with each series of experiments.

4) **Preparation of tissue samples**:

Immediately after severing the spinal cord, blood was drawn from the abdominal aorta and the volume measured in a graduated cylinder. It was then poured into a cold Lusteroid centrifuge tube and placed in ice. The tissues were removed in the following order: kidneys, liver, spleen, heart and a sample of skeletal muscle from the right hind leg. Immediately after removal, each organ was placed in ice-cold isotonic sodium chloride. When all the organs had been
removed, each organ in turn was blotted on filter paper, cleaned and weighed on a torsion balance. The organ was then put into ice-cold 0.1N HCl, to give a final concentration of 1/4.

5) Homogenization and Centrifugation:

All the subsequent operations were performed at 4°C. The tissue, after soaking for about 30 minutes in cold HCl, was transferred into a conical all glass homogenizer, and homogenized. After the volume of the total homogenate had been recorded the sample was placed in a Lusteroid centrifugation tube in ice. When all the tissues had been homogenized and placed in the centrifuge tubes, they were centrifuged in a Servall refrigerated centrifuge (model SS-3, rotor SM-24) for forty minutes at 12,350 g. The volume of the supernatant was measured. The pellet was discarded. From then on, all the samples were run in duplicate.

6) Determination of the Radioactivity Content:

The scintillation liquid was prepared according to Kirschner et al. (127). It contained 30% absolute ethanol, 0.02% dimethyl-POPOP and 0.8% PPO in toluene. This solvent can hold 2% water in solution. Fifty μl of supernatant from each supernatant were placed in each of two liquid scintillation vials containing 10 ml of scintillation liquid. The vials were put into the counter refrigerator ten minutes before being counted in order to permit equilibration at 4°C. The radioactivity content was determined for a fixed period of time which was preset according to the activity of the
sample. The preset time never exceeded thirty minutes. The high voltage of the counter was set at 1275 volts for the gate and 1250 volts for the data. These values had been determined by a standard curve, using tritiated toluene as radioactivity source and PPC-POPOP in pure toluene as the solvent.

7) **Efficiency of the Counter**

The efficiency of the counter was measured using the internal standard method. After the vials containing the unknown had been counted, a known volume of standard 3H-toluene was added into each vial. The radioactivity of the vial was counted again. From this second reading, the reading obtained in the first determination was subtracted. The residual counts per minute corresponded to the amount of radioactivity detected due to standard 3H-toluene. The ratio of counts per minute detected by the counter over the actual disintegrations per minute of the standard sample gave the efficiency of the counter. Under these experimental conditions the efficiency of the apparatus was quite stable and average 7%.

8) **Calculation of Results**

Since the efficiency of the counter for both the adrenaline or noradrenaline stock solution and unknown was identical, no correction was made to calculate the results in absolute values. Each time a new batch of 3H-catecholamine was obtained, the specific activity was given in curies per Ml. In order to find the equivalent of the counts/min detected in the counter to the curie the stock solution was
tested. A 10 µl aliquot of this solution was diluted till 10 ml with 0.01N acetic acid, giving solution A. Ten µl of solution A were placed in each of four scintillation vials containing 10 ml of scintillation liquid. The radioactivity content was then measured under the conditions previously described. The following equation permitted to calculate the equivalent of nM of either amine:

\[
\frac{(c/\text{min} / 10\text{ml of solution A}) \times 10,000 \times 0.100}{10} = \frac{c/\text{min}}{10\text{nM}}
\]

\[
\frac{c/\text{min}}{10\text{nM}} = \frac{c/\text{min}}{\text{nM}} \text{ correcting factor to 10 nM}
\]

Transform the number of counts per minute obtained in our supernatant into nM (nanomoles) of either ^3H-adrenaline or ^3H-noradrenaline.

Although the catecholamine was not identify, the results were expressed in nM of uncharged injected amine. For each sample, the two readings of the two duplicate vials were averaged to yield the number of counts per minute per aliquot. This number was then divided by the volume of the aliquot and multiplied by the total volume of the supernatant. This final result was taken as the expression of the radioactivity content of the whole organ. The counts per minute per organ were divided by the weight of the organ to give the number of counts per minute per gram of wet tissue. The correcting factor for count per minute to nM was then applied.

Discussion

The apparatus used for the measurement of oxygen consumption
presented some disadvantages. Because of the diameter of the chamber, the size of the animal could not exceed 300 grams, otherwise the rat suffocated. If the rubber stopper was not well sealed, leakage of air caused error in the measurement of gas consumption. Occasionally the soda lime dried the tube were the soap bubble was traveling, and the bubble would break. Because of this, all rats were not in the chamber for the same period of time. The use of an anesthetic could not be avoided; when the rat was not under anesthesia, it moved and the readings were erratic. The sensitivity of the animals to nembutal differed. It was found that athyroid animals were more deeply anesthetized than either of the other ones. The lethal dose and efficient dose range appeared to be lowered among the thyroxinetreated group.

When, however, one was aware of the disadvantages, the metabolic apparatus was very convenient for routine measurements. The results obtained were reproducible and the manipulations were minimal.

The use of tritiated catecholamines was preferred to that of the corresponding 14 carbon-labeled material, because compounds with high specific activity were available. It was thus possible to work with physiological doses of catecholamines and still possible to detect considerable amount of radioactivity in small aliquots. The use of tritium presented some drawbacks. Firstly of all, the efficiency of the liquid scintillation counter is low for tritium.
Longer preset time is required to count any sample. Because the efficiency is lower, the sensitivity of the instrument is decreased; small differences are not apparent. Secondly, when high concentrations of radioactivity are present in the scintillation vials, it has been observed that the radioactivity determinations appear to decrease with time (133). Part of this artefact seems to be due to quenching of the scintillator by the oxygen of the air (134). Because tritium emits weak beta particles, internal quenching may also be partially responsible for this. Finally, it would appear that some of the radioactivity is absorbed on the sides of the vials (133). For all these reasons, the use of tritium leads to more variable results than that of 14C carbon. However, the advantage of using tritium-labeled catecholamines is the high specific activity.

As previously stated, it was found that nembutal as an anesthetic had disadvantages. It was found that the efficient anesthetic dose and the lethal dose were very close. This was a problem with larger rats but nembutal was found to be very efficient in rats under 200 grams. The degree of anesthesia was also affected by the thyroid state of the animals (135). It was found that ether anesthesia was not of a long enough duration for some experiments, therefore it was necessary to use nembutal in these cases. However, for short experiments, ether was used.

For the intravenous injection of catecholamines, a tight rubber band was placed on the tail of the animal to cause a swelling.
of the vein. Some of the animals, although they were under anesthesia
were found to react violently to such a treatment.

The use of alcohol in the liquid for scintillation counting,
according to Kirchner et al. (132), was found convenient for the type
of experiments described here. The presence of alcohol produces a
certain quenching of the sample (136). However, since the quenching
thus caused was high, adding water did not cause further quenching.
Thus under the experimental conditions, doubling the quantity of
water or adding acid to the liquid did not cause a difference in the
efficiency as measured by internal standard.

The channel ratio method to determine the quenching of the
samples was not applicable, where low radioactivity was measured.
The sensitivity of the counter varied with time and for some
unknown reason the ratio was found inverted. On the other hand, the
internal standard method yielded reproducible results under the expe-
imental conditions used.

As the work progressed it was found that the extraction with
0.1 N HCl was not as efficient as extraction with 0.4N perchloric
acid. The former was therefore discontinued and in the last series
of experiments 0.4 N perchloric acid was employed instead.
II. RESULTS

A) THE EFFECT OF THYROID HORMONES ON THE TOTAL BODY WEIGHT

AND OXYGEN CONSUMPTION OF THE RAT:

IN Table 1, ARE GIVEN THE TOTAL BODY WEIGHTS AND OXYGEN

CONSUMPTION IN VARIOUS THYROID STATES. THERE IS A SIGNIFICANT

DECREASE IN THE OXYGEN CONSUMPTION OF THYROIDECTOMIZED RATS

COMPARED TO UNTREATED CONTROLS. THE DECREASE IN OXYGEN CONSUMPTION

IS QUITE REPRODUCIBLE AS SHOWN BY THE VALUE OF THE STANDARD

DEVIATION. TREATMENT WITH L-THYROXINE INCREASED SIGNIFICANTLY THE

OXYGEN CONSUMPTION OF THE RATS, AS CAN BE SEEN BY COMPARING THE

VALUE BEFORE THYROXINE TREATMENT WITH THAT AFTER THYROXINE

TREATMENT. A PAIRED COMPARISON WAS MADE IN THIS CASE SINCE EACH

RAT WAS ITS OWN CONTROL.

THERE IS A SLIGHTLY LOWER BODY WEIGHT AMONG THE THYROID-

ECTOMIZED ANIMALS COMPARED TO THAT OF THE NORMAL ONES. THESE RATS

GAINED LESS WEIGHT THAN THE NORMAL CONTROLS. IN THE THYROXINE-

TREATED RATS, THERE IS AN ABSOLUTE DECREASE IN THE TOTAL BODY

WEIGHT. THE DECREASE IN TOTAL BODY WEIGHT IS HIGHER THAN IT

APPEARS HERE, SINCE NORMAL CONTROLS WOULD HAVE GAINED SOME WEIGHT

DURING THE FIVE DAY DELAY.
<table>
<thead>
<tr>
<th>Thyroid State</th>
<th>Number of Rats</th>
<th>Total Body Weight</th>
<th>Oxygen Consumption ml O2/hr/kg B.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euthyroid</td>
<td>9</td>
<td>247 ± 36.4</td>
<td>18.9 ± 3.19</td>
</tr>
<tr>
<td>Thyroidectomized</td>
<td>7</td>
<td>215 ± 24.6</td>
<td>8.9 ± 2.46</td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td>- 12.9 %</td>
<td>- 52.9 %</td>
</tr>
<tr>
<td>Thyroxine Treated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before Thyroxine</td>
<td>4</td>
<td>222 ± 20.0</td>
<td>15.9 ± 6.93</td>
</tr>
<tr>
<td>After Thyroxine</td>
<td>4</td>
<td>208 ± 13.0</td>
<td>24.9 ± 5.0</td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td>- 6.31 %</td>
<td>+ 55.6 %</td>
</tr>
</tbody>
</table>

The results are expressed as the mean ± S.D.
B) The Distribution of Radioactive Material in the Rat Following a Single Intravenous Injection of 3H-Noradrenaline

In Table II, are presented the results obtained with rats in various thyroid states given a single intravenous injection of 3H-noradrenaline. The amount of radioactive material found in the organs is expressed in counts/minute per gram of wet tissue. The amount of 3H-noradrenaline injected was 11 μM per rat; the time elapsed between completion of the injection and sacrifice of the animal was 10 minutes. Each figure represents the data obtained with a single animal. It can be seen that individual results are extremely scattered.

In Table III, the results shown in Table II are expressed in terms of μM of 3H-noradrenaline per gram of wet tissue. Although the radioactive material was not actually identified this seemed to be a convenient and representative way of expressing the results. In this Table III, the figures are mean ± standard error. Because of the high values in the standard error, no statistical analysis of the results is possible. It seems, however, that both thyroxine-treated and normal rats concentrate 3H-noradrenaline in about the same quantity. In the thyroidectomized rat, the amount of radioactive material found in all organs except skeletal muscle, is higher than that found in both the normal and thyroxine-treated animals. The weight of the organs in the thyroidectomized rat was lower than that in the normal or thyroxine-treated one. The amount of radioactive material in the blood of thyroidectomized rats is lower than that in the blood of thyroxine-treated rats higher, than that in the blood from the normal controls.
TABLE II

Distribution of Radioactive Material in Rat Organs following a Single Intravenous Injection of ^{3}H-dl-Noradrenaline Hydrochloride

<table>
<thead>
<tr>
<th>Thyroid State</th>
<th>Rat</th>
<th>Blood</th>
<th>Heart</th>
<th>Kidney</th>
<th>Liver</th>
<th>Sk. Muscle</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euthyroid</td>
<td>1</td>
<td>29,500</td>
<td>276,400</td>
<td>236,900</td>
<td>201,800</td>
<td>11,200</td>
<td>120,500</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>2</td>
<td>15,500</td>
<td>62,400</td>
<td>59,400</td>
<td>39,900</td>
<td>2,800</td>
<td>16,900</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>3</td>
<td>-</td>
<td>59,500</td>
<td>60,800</td>
<td>25,600</td>
<td>2,200</td>
<td>24,700</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>4</td>
<td>4,400</td>
<td>110,100</td>
<td>62,000</td>
<td>62,000</td>
<td>8,300</td>
<td>4,800</td>
</tr>
<tr>
<td>Thyroidectomized</td>
<td>1</td>
<td>3,500</td>
<td>38,800</td>
<td>39,900</td>
<td>26,300</td>
<td>1,200</td>
<td>19,400</td>
</tr>
<tr>
<td>Thyroidectomized</td>
<td>2</td>
<td>21,600</td>
<td>49,600</td>
<td>330,600</td>
<td>192,600</td>
<td>28,400</td>
<td>115,200</td>
</tr>
<tr>
<td>Thyroidectomized</td>
<td>3</td>
<td>10,600</td>
<td>376,700</td>
<td>289,700</td>
<td>224,100</td>
<td>19,600</td>
<td>93,600</td>
</tr>
<tr>
<td>Thyroxine Treated</td>
<td>1</td>
<td>36,600</td>
<td>272,300</td>
<td>169,700</td>
<td>182,200</td>
<td>22,700</td>
<td>85,300</td>
</tr>
<tr>
<td>Thyroxine Treated</td>
<td>2</td>
<td>15,700</td>
<td>258,300</td>
<td>211,200</td>
<td>198,800</td>
<td>25,500</td>
<td>117,700</td>
</tr>
<tr>
<td>Thyroxine Treated</td>
<td>3</td>
<td>7,700</td>
<td>24,000</td>
<td>36,100</td>
<td>33,000</td>
<td>0</td>
<td>16,800</td>
</tr>
</tbody>
</table>

^{3}H-Noradrenaline injected per rat: 6,850,000 counts per minute.
TABLE III

Distribution of Radioactive Material in Rat Organs Following a Single Intravenous Injection of \(^{3}\text{H}-\text{DL-Noradrenaline Hydrochloride}\)

<table>
<thead>
<tr>
<th>Thyroid State</th>
<th>Number of Rats</th>
<th>Blood</th>
<th>Heart</th>
<th>Kidney</th>
<th>Liver</th>
<th>Ske. Muscle</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euthyroid</td>
<td>4</td>
<td>0.026</td>
<td>0.200</td>
<td>0.161</td>
<td>0.131</td>
<td>0.0087</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0.012</td>
<td>± 0.085</td>
<td>± 0.071</td>
<td>± 0.066</td>
<td>± 0.0033</td>
<td>± 0.043</td>
</tr>
<tr>
<td>Thyroidectomized</td>
<td>3</td>
<td>0.019</td>
<td>0.459</td>
<td>0.352</td>
<td>0.236</td>
<td>0.026</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0.009</td>
<td>± 0.212</td>
<td>± 0.149</td>
<td>± 0.100</td>
<td>± 0.012</td>
<td>± 0.046</td>
</tr>
<tr>
<td>Thyroxine treated</td>
<td>3</td>
<td>0.032</td>
<td>0.296</td>
<td>0.222</td>
<td>0.226</td>
<td>0.116</td>
<td>± 0.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0.014</td>
<td>± 0.132</td>
<td>± 0.086</td>
<td>± 0.125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values are the mean ± the standard error of the mean.
C) **The distribution of radioactive material in the rat, following a single intravenous injection of \(^3H \)-adrenaline:**

In Table IV, the distribution of radioactive material in the normal and thyroidectomized rat is shown as a function of time. The results, as mentioned previously for \(^3H \)-noradrenaline, are expressed as \(\text{nmol} \) of \(^3H \)-adrenaline per gram of wet tissue, although no attempt was made to identify the radioactive material. The values shown are mean ± standard error, for the normal animal. For the thyroidectomized rats, as the number of experiments was very low, individual values are given.

In the normal rat, there is a decrease in the concentration of radioactive material in blood, heart, kidney and spleen as a function of time. There is an increase in the liver and skeletal muscle concentration as a function of time. As already mentioned for the experiments with \(^3H \)-noradrenaline, the high values of the standard error, did not permit any statistical analysis.

In thyroidectomized rats, there is a larger amount of radioactivity in all organs than there is at the same time in the normal control. After sixty minutes, the differences are too high for any interpretation of the results.

Ten minutes after the single intravenous injection of \(^3H \)-adrenaline, the amount of radioactivity in the organs of thyroidectomized or normal rats was similar to that amount found in the normal and thyroidectomized animal after a single injection of \(^3H \)-noradrenaline.
<table>
<thead>
<tr>
<th>Thyroid state</th>
<th>Number of rats</th>
<th>Blood</th>
<th>Heart</th>
<th>Kidney</th>
<th>Liver</th>
<th>Sk.muscle</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euthyroid *</td>
<td>5</td>
<td>0.012</td>
<td>0.222</td>
<td>0.125</td>
<td>0.125</td>
<td>0.012</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>± 0.0037</td>
<td>± 0.125</td>
<td>± 0.055</td>
<td>± 0.075</td>
<td>± 0.0070</td>
<td>± 0.042</td>
<td></td>
</tr>
<tr>
<td>Thyroidectomized *</td>
<td>2</td>
<td>0.059</td>
<td>0.487</td>
<td>0.519</td>
<td>0.316</td>
<td>0.018</td>
<td>0.173</td>
</tr>
<tr>
<td>Thyroidectomized **</td>
<td>2</td>
<td>0.032</td>
<td>0.967</td>
<td>0.555</td>
<td>0.413</td>
<td>0.022</td>
<td>0.518</td>
</tr>
<tr>
<td>Euthyroid **</td>
<td>3</td>
<td>0.0020</td>
<td>0.112</td>
<td>0.046</td>
<td>0.061</td>
<td>0.0053</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>± 0.0014</td>
<td>± 0.086</td>
<td>± 0.029</td>
<td>± 0.052</td>
<td>± 0.0014</td>
<td>± 0.030</td>
<td></td>
</tr>
<tr>
<td>Euthyroid ***</td>
<td>8</td>
<td>0.011</td>
<td>0.091</td>
<td>0.052</td>
<td>0.179</td>
<td>0.0076</td>
<td>0.017</td>
</tr>
<tr>
<td>Thyroidectomized ***</td>
<td>2</td>
<td>0.023</td>
<td>0.065</td>
<td>0.153</td>
<td>0.314</td>
<td>0.025</td>
<td>0.054</td>
</tr>
</tbody>
</table>

The results are the mean ± S.E., except for those experiments where only two rats were used, the individual values are given in the latter case.

* Rats killed 10 min after the injection ** 15 min after the injection *** 60 min after the injection.
III. Discussion

The increase in basal metabolism among hyperthyroid animals has been observed for a long time (1). The decrease in oxygen consumption in hypothyroidism has been found similarly in man as well as in other species. These variations of basal metabolism as a function of the thyroid state have been taken advantage of, and for this reason this has been chosen as the index of thyroid gland impairment, in this series of experiments. Whether this change is brought about by thyroid hormone direct action, or indirectly through the sympathetic system does not prevent this test to be of value. It can be seen in the thyroidectomized rats, that a significant decrease in oxygen consumption is observed three weeks after surgical removal of the thyroid gland. The decrease in basal metabolism cannot go beyond a certain limit, so that the test is not a measure of athyroidism, but rather a measure of lower thyroid activity. In this series of experiments, no attempt was made to ascertain that total athyroidism was reached. There is still, at the present time, some disagreement on whether thyroid gland is the only site of thyroid hormone synthesis (137). For this reason, a decrease in oxygen consumption was judged a satisfactory measurement of decreased thyroid function.

It has been claimed that thyroxine-treated animals exhibit rather a "thyrotoxic" picture than a chronic hyperthyroidism. This is especially shown when a decrease in body weight accompanies the
increase in oxygen consumption. Since the potentiation of
catecholamine effects is especially noticed during the "thyrotoxic
storm", it was thought that the experiments were not invalidated
by the fact that the rats were thyrotoxic, although no evidence of
that state was conclusively present.

Distribution of radioactive material in the rats after catecholamine injection

The large variations observed in this series of experi-
ments prevented the statistical treatment of the data and limit
somewhat the discussion and interpretation of the results. These varia-
tions may be due to several factors of technical or biological origins.

1. Factors of biological origin:

The rat is an animal which has been shown to be very sensi-
tive to catecholamines. The intravenous lethal dose of adrenaline is
very low in the rat compared to other species such as man or mouse
(138, 139). The animals used in these experiments were of external
origin. In the course of the work, it became obvious that al-
though the rats were of the Sprague-Dawley strain, they were not
always ordered from the same source. The rats were kept two days
in the university animal quarters before use, but this short period
would not standardize the animals, if the conditions under which
they were previously kept were not similar. It was not possible to
control the environmental conditions prior their arrival to the
University. Another drawback in these experiments was due to the fact
That the work was extended over a period of a year, at the time of
the experiments, the animals were kept in rooms not air-conditioned.
Rats are known to be very sensitive to heat. Furthermore temperature
regulation of the body is under the control of the adrenals (140).
The animals used may have been in different adrenal states,
depending upon the reason during which the experiments were
performed. These two biological factors appear to be partially
responsible for the high variations observed.

2. Factors of technical origin:

The main restriction in the use of tail vein as the mode of
intravenous injection into the rat is that the complete penetration
of the injected compound into the blood stream is not controlled.
Catecholamines have to be injected slowly to prevent undesired side-
actions such as the increase in heart rate and blood pressure. This
side actions may eventually lead to death. The needle may be displaced
by a small movement of the tail, leading to a partial subcutaneous
injection. The intravenous injection can be made through the abdominal
vena cava or through the femoral vein. Both these ways, however,
require deep anaesthesia and surgery. A loss of blood and a decrease
in the internal body temperature are difficult to avoid under these
conditions. The compensatory mechanisms entering into action, it was
thought that under these conditions, the animal was not in a
physiological state anymore. As physiological conditions, were
desirable the tail vein was chosen as the route of injection.
The second factor which may have been responsible for the large variations observed was thought to be the anesthetic. As pointed out earlier, the reaction of the rat to nembutal depends upon its thyroid state. The differences due to a change in the sensitivity of the rat to nembutal would be more obvious between various groups, rather than among the rats of the same group. Nembutal is known to be bound to plasma proteins. Since the day before the experiment the rat was injected with nembutal for measurement of oxygen consumption, the level of nembutal the next day would depend upon the amount stored the day before. A cumulative action would be expected (141). This may explained why so many normal or thyroxine-treated rats died under nembutal anesthesia.

A third factor which may have been responsible for the large variations, was the tight rubber band on the tail of the animal. Depending upon the depth of anesthesia and upon the length of time necessary to enter into the vein, the animal reacted differently to the pain stimulus. One or more of these factors must have been involved in causing large variations. At no time was it possible to relate the low or high radioactivity content of the organs to a single of these factors.

Bearing in mind the lack of statistical analysis, and the high values of the standard errors, a discussion of the in vivo results will be presented.

Following a single intravenous injection of 3H-noradrenaline
Into the rat, the concentration of radioactive material in the blood of thyroxine pretreated rats was similar to that in the blood of the normal controls; it was higher in any of the other organs studied, in the thyroxine-treated rats than that in the normal ones. This finding may reflect an altered rate of uptake of the circulating catecholamine, or an increased rate of binding of the exogenous catecholamine in the tissue, or a less rapid rate of inactivation of the amine. In the light of Wurtmann's findings that most of the 3H-noradrenaline injected is found unchanged in the heart, forty minutes after the injection (102), it seems that we can assume that a large part of the radioactive material is unchanged material. It appears necessary at this point of the proceedings to define the word "uptake", since no current agreement on its meaning seems to exist in the literature. In this thesis, uptake is defined as "that amount of radioactive material detected in a tissue, after that tissue has been placed in contact with the radioactive catecholamine for a given period of time". The uptake is expressed as the concentration of unchanged radioactive amine per gram of wet tissue, although no attempt has been made to identify it as such.

In thyroidectomized rats, the uptake of 3H-noradrenaline seems to be increased, since the concentration of radioactive material in the blood is lower, and that in the other organs higher than that in the blood and organs from normal controls. Because the weight of
THE ORGANS FROM THYROIDECTOMIZED ANIMALS WAS LOWER THAN THAT OF
THE NORMAL CONTROLS THE TOTAL AMOUNT OF RADIOACTIVE MATERIAL IN THE
WHOLE ORGAN WAS HIGHER THAN THAT IN THE WHOLE ORGANS OF THE NORMAL
CONTROLS. THE BINDING CAPACITY OF THYROIDECTOMIZED TISSUES APPEARS TO
BE INCREASED COMPARED TO THAT OF THE NORMAL RATS.

THE PERCENTAGE OF THE INJECTED DOSE OF NORADRENALINE IN THE
HEART OF BOTH NORMAL AND THYROXINE-TREATED OF THYROIDECTOMIZED
ANIMALS WAS IDENTICAL TO THAT FOUND BY WURTMANN ET AL. (102). SUCH
WAS ALSO THE CASE FOR THE AMOUNT OF RADIOACTIVE MATERIAL FOUND AFTER
INJECTION OF RADIOACTIVE ADRENALINE.

THE CONCENTRATION OF RADIOACTIVE MATERIAL IN THE BLOOD IS
IDENTICAL 10 MINUTES OR 60 MINUTES AFTER THE INTRAVENOUS INJECTION OF
ADRENALINE TO NORMAL RATS. IN ALL THE OTHER TISSUES BUT LIVER AND
SKELETAL MUSCLE, THERE IS A STEADY DECREASE IN THE CONCENTRATION OF
ADRENALINE WITH TIME. BUT AS POINTED OUT PREVIOUSLY BY WURTMANN, IT
IS INTERESTING TO NOTE THAT ONE HOUR AFTER A SINGLE INJECTION, THERE
IS STILL CONSIDERABLE RADIOACTIVE MATERIAL IN THE HEART OF THE
NORMAL RAT. ALTHOUGH THE AMOUNT OF RADIOACTIVE MATERIAL FOUND PER
GRAM OF SKELETAL MUSCLE IS LOW, THIS TISSUE REPRESENTS A LARGE
PERCENTAGE OF THE TOTAL BODY WEIGHT, SO THAT THE AMOUNT OF ADRENA-
aline in the whole tissue represents probably a great percentage of
the injected dose. In view of the findings that adrenaline injection
lowers skeletal muscle glycogen it would appear interesting to
investigate further the distribution of adrenaline in this tissue.
In the thyroidectomized rats, ten minutes after the injection of adrenaline the concentration of radioactive material in the tissues is much higher than that in the normal controls. The uptake and binding of adrenaline by tissues from thyroidectomized animals appear increased.

The level of circulating catecholamine is also elevated as shown by the higher level of radioactive material in the blood of thyroidectomized rats. Sixty minutes after the injection, however, the level of radioactive material has decreased and is inferior to that found in the normal rat except for that in the kidney and in the liver. Because the concentration of radioactive material is elevated compared to the normal in the organs metabolizing adrenaline, it may be assumed that in the thyroidectomized animal, the enzymic degradation of exogenous adrenaline is more important than in the normal rat.

However, the differences between the two animals is too high to permit the interpretation of the results.

For all the reasons stated above, it seemed necessary to use a simpler system. The work pursued on the isolated small intestine will presented in the next part II.
PART II. THE EFFECT OF THYROXINE ON THE UPTAKE, BINDING AND METABOLISM OF 3H-ADRENALINE BY INTESTINAL STRIPS, FOLLOWING A FIVE MINUTE INCUBATION WITH 3H-DL-ADRENALINE.

1. MATERIALS AND METHODS

A) MATERIALS

Besides the chemicals already mentioned in Part I the following ones have been used:

Bovine serum albumin (Fraction V, serological) purchased from Mann, N.Y.

Three different batches of 3H-adrenaline were used with a specific activity of 5.76 Curies per mM or 6.19 Curies per mM.

B) METHODS

1) PREPARATION OF ANIMALS

The animals were prepared as previously described in Part I.

2) PREPARATION OF INCUBATION MEDIUM

Krebs-Ringer bicarbonate glucose, supplemented with albumin was used as the incubation medium. It was prepared, prior to sacrifice of the animals, from stock solutions kept at 3°C as suggested by Umbreit (142). Fifteen milliliters of a 20% glucose solution were added to 150 ml of buffer. Albumin (530 mg) was then added to the Krebs-Ringer bicarbonate glucose and allowed to dissolve completely. A known volume of 3H-adrenaline solution, depending upon the final concentration of
ADENALINE desired, was then added to the medium. A gas mixture containing Oxygen—Carbon dioxide (95% : 5%) was bubbled at the surface of the medium for a period of 5 minutes. The incubation medium was then rapidly distributed into Erlenmeyers, 10 ml of medium into each of sixteen 50 ml—Erlenmeyers. Each Erlenmeyer was stoppered with a rubber stopper as soon as the medium has been delivered into it. The Erlenmeyers containing the medium were then preincubated at 37°C in a "Dubhoff metabolic shaker", in order to equilibrate the medium at 37°C.

3) Preparation of intestinal strips

After the weight of the rats to be killed had been recorded, the method proceeded in the following manner:

One thyroidectomized rat was decapitated, the stomach and part of the small intestine removed and placed on ice. One normal rat was then killed in the same way, its stomach and small intestine removed and placed on ice. The small intestine from the thyroidectomized animal was then cut into 2 cm pieces, at a distance of 4 cm from the pylorus. The strips were then cut open, cleaned of fat or feces and placed into a beaker containing ice-cold isotonic NaCl. The small intestine from the normal rat was treated in an identical manner. Eight pieces of intestinal tissue from the thyroidectomized rat were placed into 4 beakers containing ice-cold isotonic NaCl, 2 strips into each beaker. Eight pieces from the normal rat intestine were put into 4 other beakers containing ice-cold isotonic NaCl, 2 strips in each beaker. The time
ELAPSED BETWEEN DISTRIBUTION OF THE INCUBATION MEDIUM INTO THE
ERLENMEYERS AND INCUBATION ZERO TIME NEVER EXCEEDED 20 MINUTES.

4) INCUBATION

The process used for incubation will be described in detail for a single strip. Each strip was treated in an identical manner, at 0.25 minute interval. The strips from the thyroidectomized rat small intestine were first treated. The first strip was blotted on filter paper and at time zero put into the first Erlenmeyer. At time 5 min, the strip was removed from the Erlenmeyer and placed in a beaker containing isotonic sodium chloride, for rinsing. The strip was transferred to a second beaker containing ice-cold isotonic NaCl, 0.25 minutes later. Then a final rinsing was performed in a third beaker 0.25 minutes later for 0.25 minutes. The tissue was then placed on a filter paper and blotted. When all the strips from one rat had been collected on the filter paper and blotted, their weight was recorded. They were then placed into a homogenizer containing 0.4 N perchloric acid and put in the deep-freeze.

The next experiment was then started from step 2, but this time the normal rat was the first one to be killed.

The water-bath shaker was kept on during the period which elapsed between equilibration of the Erlenmeyers up till the removal of the last of the sixteen strips.

5) HOMOGENIZATION

The frozen samples from the previous experiments were
ALLOWED TO THAW AND HOMOGENIZATION WAS PERFORMED WITH AN ALL GLASS
MOTOR DRIVEN POTTER-EVANLouis. THE HOMOGENATE WAS THEN TRANSFERRED
INTO A GRADUATED CYLINDER AND THE HOMOGENIZER RINSED WITH ICE-COLD
0.4 N PERCHLORIC ACID. THE VOLUME OF HOMOGENATE PLUS RINING WAS
RECORDED. TWO ALIQUOTS OF 0.100 ML EACH WERE PLACED INTO EACH OF TWO
SCINTILLATION VIALS. THE GRADUATED CYLINDER WAS THEN EMPTIED OF ITS
CONTENT INTO A LUSTROUS CENTRIFUGE TUBE AND RINSED TWICE WITH ICE-
COLD 0.4 N PERCHLORIC ACID. THE WASHINGS WERE ADDED TO THE LUSTROUS
TUBE WHICH WAS THEN PUT INTO ICE. THE NEXT SAMPLE WAS THEN HOMOGENIZED.

6) EXTRACTION OF RADIOACTIVE MATERIAL

WHEN ALL THE SAMPLES HAD BEEN HOMOGENIZED AND ALIQUOTS FOR
RADIOACTIVITY DETERMINATION SET ASIDE, THE CENTRIFUGE TUBES WERE
CENTRIFUGED IN A REFRIGERATED SERVALL CENTRIFUGE AS DESCRIBED IN
PART 1. HOWEVER, AFTER THE FIRST SUPERNATANT HAD BEEN REMOVED, EACH
PELLET WAS WASHED TWICE WITH 0.4 N PERCHLORIC ACID. THE TWO WASHINGS
AND THE FIRST SUPERNATANT WERE COMBINED. THE RESULTING EXTRACT WAS
PLACED IN THE DEEP-FREEZE AND WAS USED AT A LATER TIME FOR IDENTIFIC-
ATION OF 3H-ADRENALINE AND 3H-METANEPHRINE.

7) DETERMINATION OF RADIOACTIVITY CONTENT

INTO EACH OF THE SCINTILLATION VIALS CONTAINING 0.100 ML OF
THE HOMOGENATE WERE ADDED 10 ML OF LIQUID FOR SCINTILLATION COUNTING.
THE VIALS WERE THEN PLACED IN THE REFRIGERATION UNIT OF THE COUNTER
AND ALLOWED TO EQUILIBRATE FOR 10 MINUTES. THE CONDITIONS OF COUNTING
WERE: CHANNEL 1: BASE-LEVEL 1; CHANNEL 2: LEVEL 1-LEVEL 2;
HIGH VOLTAGE: GATE 1275 V, DATA 1175 V; PRESET COUNTS: 1,000,000.

The time preset for counting depended upon the activity of the sample and was set according to the activity of the first vial. It varied from one experiment to another but usually, 600 seconds or 1,200 seconds were the duration of each counting. The background was measured by counting a vial containing 10 ml of scintillation liquid and 0.100 ml of 0.4 N perchloric acid. The background was determined for at least 1,600 seconds. The radioactivity of the incubation medium was measured on four 0.100 ml aliquots of what had remained after the distribution into the Erlenmeyers.

8) IDENTIFICATION OF \(^3\text{H}\)-METANEPHRINE AND \(^3\text{H}\)-ADRENALINE

The radioactivity of the perchloric extract was measured on 0.200 ml aliquots before identification of \(^3\text{H}\)-adrenaline or \(^3\text{H}\)-metanephrine were performed. The content of radioactivity in 1 ml or 2 ml of the perchloric extract was then calculated, depending on whether 1 ml or 2 ml aliquots were used for the identification. This radioactivity was considered as the amount of total radioactivity used for identification.

\(^3\text{H}\)-ADRENALINE was identified by the method of AXELROD (143), but as suggested by MISSALA (144), the batch process rather than the column for adsorption on alumina was used.

\(^3\text{H}\)-METANEPHRINE was isolated and identified according to the procedure of AXELROD (143).
9) **Calculations of Results**

Total Radioactivity Content of the Tissue

After the radioactive content of the aliquots from the homogenate had been recorded, the data from two aliquots were averaged, and the background subtracted. The total radioactivity in the homogenate was then calculated by taking the volume of the homogenate into account. This result was considered to correspond to the amount of radioactive material present in the tissue sample. It was expressed in counts per minute. By dividing this result by the weight of the sample one obtained the specific radioactivity in counts per minute per gram of tissue. Because both the amount of 3H-Adrenaline and the counts per minute of the incubation medium were known, it was possible to express the radioactive content of the unknown as the number of moles of 3H-Adrenaline per gram of tissue.

3H-Adrenaline and 3H-Metamethamine

After the total radioactivity of the sample had been calculated in counts per minute, the ratio of radioactivity in the sample to that in the perchloric extract was calculated. The percentage obtained was then calculated as a function of the moles of 3H-Adrenaline obtained in the homogenate and expressed per gram of tissue. The corrections for a recovery of 80% and 50% in the case of Adrenaline and Metamethamine respectively, were applied on the percentage values.

10) **Statistical Analysis**

Group comparison and analysis of variance with interaction
WERE THE TWO STATISTICAL METHODS USED IN COMPILING THE DATA. A
VALUE OF P 0.01 WAS CHOSEN AS STATISTICALLY SIGNIFICANT.

DISCUSSION

IN THE IN VIVO EXPERIMENTS, MEASUREMENTS OF BASAL METABOLISM
HAD SHOWN THAT THE METHODS USED TO INDUCE HYPERTHYROIDISM AND
ATHYROIDISM WERE ADEQUATE. NO ATTEMPT WAS MADE IN THIS SERIES OF
EXPERIMENTS TO DETERMINE OXYGEN CONSUMPTION. IT WAS THOUGHT THAT,
SINCE THIS MEASUREMENT REQUIRED THE USE OF NEMBUTAL AS AN ANESTHETIC,
THIS LATTER FACTOR MAY INTRODUCE A VARIABLE. SINCE THIS COULD BE AVOIDED,
THE BASAL METABOLISM WAS NOT MEASURED BUT THE BODY WEIGHT OF THE
ANIMALS WAS CHECKED.

INCUBATION MEDIUM

KREBS-RINGER BICARBONATE HAS BEEN RECOMMENDED AS A SUITABLE
BUFFER FOR IN VITRO STUDIES WITH ADRENALINE, SINCE PHOSPHATE CATALYSES
THE OXIDATION OF ADRENALINE (145). GLUCOSE AND ALBUMIN WERE ADDED IN
ORDER TO APPROACH AS MUCH AS POSSIBLE THE PHYSIOLOGICAL MEDIUM. MORE-
OVER, BECAUSE OF ITS COPPER CHELATING PROPERTIES ALBUMIN IN ALKALINE
MEDIUM PREVENTS ADRENALINE OXIDATION (146). IN A DIALYSIS ANALYSIS,
IT WAS FOUND THAT THE BINDING OF ADRENALINE TO ALBUMIN WAS NEGLIGIBLE.
FIVE ML OF THE INCUBATION MEDIUM CONTAINING 3H-ADRENALINE (8.3 x 108R)
WERE PLACED INTO A DIALYSIS BAG. THE RADIOACTIVITY CONTENT OF THE
SAMPLE HAD BEEN PREVIOUSLY DETERMINED ON 0.200 ML ALIQUOTS. THE
DIALYSIS BAG WAS THEN PLACED IN A BEAKER CONTAINING 100 ML OF DISTILLED
WATER, AND DIALYSIS ALLOWED TO TAKE PLACE AT COLD ROOM TEMPERATURE.
The content of the beaker was continuously stirred. Thirty minutes later, three aliquots of water (0.200 ml each) were removed and radioactivity content measured. This was repeated twice, every 30 minutes and the diffusate was then replaced by fresh distilled water. The dialysis was performed for 16 hours, at the end of which the radioactivity content of both the diffusate and the solution in the dialysis bag was measured.

- TABLE V -

<table>
<thead>
<tr>
<th>TIME</th>
<th>RADIOACTIVITY IN THE DIFFUSATE C/Min</th>
<th>DIFFUSION</th>
<th>RADIOACTIVITY IN THE DIALISATE C/Min</th>
<th>UNDIFFUSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 %</td>
<td>154,600</td>
<td>100 %</td>
</tr>
<tr>
<td>30 min</td>
<td>74,500</td>
<td>48 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 hr</td>
<td>138,750</td>
<td>89 %</td>
<td>22,200</td>
<td>14 %</td>
</tr>
</tbody>
</table>

On the other hand, the affinity of albumin for thyroxine is well established (147, 148). The actual concentration of free thyroxine in the incubation medium was inferior to the total concentration. However, since the experimental conditions were identical no correction was made for the binding of thyroxine to albumin.

\[^3 \text{H} \text{ADRENALINE} \]

As pointed out earlier, the use of tritium as a label permits the obtention commercially of molecules with high specific activity. It is thus possible to use physiological concentrations of adrenaline
WITH A MEASURABLE RADIOACTIVITY (149). IN THE EXPERIMENTAL CONDITIONS USED HERE SEVERAL FACTORS APPEARED TO HAMPER SOMewhat THE BENEFICIAL USE OF 3H-ADRENALINE. THE COMMERCIAL PREPARATION OF 3H-ADRENALINE WAS PERFORMED BY CATALYTIC TRITIATION OF ADRENALONE WHICH YIELDED ADRENALONE LABELED ON THE CARBON 7 AND ON THE HYDROXYL GROUP OF CARBON 7 WITH 3H. SLOW EXCHANGE CHROMATOGRAPHY PERMITTED TO REMOVE THE LABEL ON THE HYDROXYL GROUP. NEW ENGLAND NUCLEAR CORP. COULD NOT ASCERTAIN THAT THE ENOL FORM OF ADRENALONE WAS NOT PRESENT DURING TRITIATION. THIS WOULD RESULT IN THE LABELING WITH 3H OF BOTH CARBON 7 AND CARBON 8. PAPER CHROMATOGRAPHY OF THE COMPOUND PERMITTED TO IDENTIFY ADRENALONE BUT DID NOT GIVE ANY INFORMATION ABOUT THE SITE OF THE LABEL.

\[
\begin{align*}
\text{HO} & \quad \text{C-CH$_2$-NH-CH$_3$} \quad 7 \quad 8 \\
\uparrow & \quad \text{CH} \quad \text{OH} \\
\text{HO} & \quad \text{C=CH-NH-CH$_3$} \quad 7 \quad 6 \\
\end{align*}
\]

\[
\begin{align*}
\quad \text{HO} & \quad \text{C-CH$_2$-NH-CH$_3$} \quad \text{3H} \\
\quad \text{OH} & \quad \text{C=CH-NH-CH$_3$} \quad \text{3H} \\
\end{align*}
\]

S/NCHES WHERE THE SPECIFIC ACTIVITY AVERAGED 6.19 CURIES/HR. FOR
THIS REASON, CORRECTION FACTORS WERE APPLIED ACCORDING TO THE
COUNTS PER MINUTE DETECTED AND NOT ACCORDING TO THE MILLICURIES.

ANOTHER DRAWBACK IN THE USE OF TRITIUM AS A LABEL FOR
ADRENALINE, RESIDED IN THE PLACE WHERE THE LABEL WAS PUT. OXIDATION
OF ADRENALINE IN ALKALINE OR NEUTRAL MEDIUM GIVES THE FORMATION OF A
RING WITH THE EVENTUAL ELIMINATION OF THE HYDROGEN ON THE CARBON 7.
(146). THIS RESULTED IN THE LOSS OF THE LABEL ON THE MOLECULE AND
THE FORMATION OF TRITIATED WATER. THIS TRITIATED WATER WOULD NOT BE
DIFFERENTIATED WHEN MEASURING THE RADIOACTIVITY CONTENT OF THE
TISSUE, FROM ADRENALINE AND ITS METABOLITES. IN ONE SERIES OF
EXPERIMENTS, THE CONTENT OF 3H$_{2}$O FORMED WAS MEASURED BY THE
PROCEDURE OF LA BROSSE (150). A CONTROL FLASK WITHOUT TISSUE WAS
RUN IN THE SAME EXPERIMENTAL CONDITIONS THAT THE EXPERIMENTAL
FLASKS. AFTER THE 5 MINUTE INCUBATION, THE TRITIATED WATER CONTENT
OF THE SOLUTION WAS MEASURED IN THE FOLLOWING MANNER. THE RADIO-
ACTIVITY CONTENT OF THE SOLUTION WAS MEASURED ON AN ALIQUOT; THE
SOLUTION WAS THEN EVAPORATED TO DRYNESS, UNDER NITROGEN ATMOSPHERE
AT 40°C. THE RESIDUE WAS TAKEN UP WITH WATER AND RADIOACTIVITY
CONTENT DETERMINED ON THE RESIDUE AND ON THE DISTILLATE. THE CONCEN-
TRATION OF 3H-ADRENALINE IN THE STARTING SOLUTION WAS 0.3 x 10^{-8} M.
<table>
<thead>
<tr>
<th></th>
<th>Counts/min</th>
<th>Counts/min/Total Volume</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>2,667</td>
<td>266,700</td>
<td>38</td>
</tr>
<tr>
<td>Concentrate</td>
<td>2,363</td>
<td>236,300</td>
<td>89</td>
</tr>
<tr>
<td>Distillate</td>
<td>230</td>
<td>32,200</td>
<td>12</td>
</tr>
</tbody>
</table>

No correction was made for this error when calculating the uptake since the amount of water which had penetrated into the tissue was unknown. It was thought that the experimental conditions used were identical and that this error would be similar in all the cases. The statistical analysis would take that factor into account.
II. Results

A) The effect of thyroxine on the uptake of 3H-adrenaline by intestinal strips after a 5 minute incubation with 3H-dl-adrenaline

1) The in vivo effect of thyroxine

The effect of thyroxine on the uptake of 3H-adrenaline by intestinal strips has been tested in vivo, by injecting thyroxine into rats daily for six days, before removing the intestine for incubation with 3H-dl-adrenaline. In this series A, a single concentration of 3H-dl-adrenaline in the medium was assayed ($6.3 \times 10^{-8} \text{ M}$). The results of individual experiments are presented in Table VI. In this series of experiments, tissues from several experiments were pooled together and this explained the variations in the weights of the tissues. It was found however, that when tissues from a single animal were used, the results were similar (experiment 2). For this reason, in the next experiments to be described tissues from a single animal were used. In this series A, two different batches of 3H-dl-adrenaline were used. They had different specific activities, and this is evident when comparing the uptake expressed in counts per minute and expressed in moles per gram. The results obtained with tissues from normal or thyroxine-treated rats are similar. The statistical analysis of these results is presented on page 83.

2) The in vitro effect of thyroxine

The effect of thyroxine on the uptake of 3H-adrenaline by

TABLE VI

THE INFLUENCE OF THYROXINE-PRETREATMENT ON THE UPTAKE OF RADIOACTIVE MATERIAL BY INTESTINAL STRIPS

AFTER A 5 MINUTE INCUBATION WITH 3H-DL-ADRENALINE (0.5×10^{-8}) (SERIES A)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GRAM</td>
<td>ML.</td>
<td>IN 0.100 ML. OF HOMOGENATE</td>
</tr>
<tr>
<td>1 T**</td>
<td>1.065</td>
<td>4.5</td>
<td>132</td>
</tr>
<tr>
<td>T4**</td>
<td>0.966</td>
<td>4.0</td>
<td>160</td>
</tr>
<tr>
<td>2 T4</td>
<td>0.457</td>
<td>1.8</td>
<td>120</td>
</tr>
<tr>
<td>T4</td>
<td>1.377</td>
<td>6.0</td>
<td>311</td>
</tr>
<tr>
<td>3 T4</td>
<td>1.151</td>
<td>6.0</td>
<td>197</td>
</tr>
<tr>
<td>4 T**</td>
<td>1.397</td>
<td>6.0</td>
<td>331</td>
</tr>
<tr>
<td>T4</td>
<td>0.671</td>
<td>4.5</td>
<td>258</td>
</tr>
</tbody>
</table>

* N: TISSUE FROM NORMAL RATS
** T4: TISSUE FROM THYROXINE-PRETREATED RATS
INTESTINAL STRIPS WAS TESTED IN VITRO, BY SUPPLEMENTING THE INCUBATION MEDIUM WITH THYROXINE. THREE SERIES OF EXPERIMENTS WERE PERFORMED (B, C AND D), USING THREE DIFFERENT CONCENTRATIONS OF 3H-DL-ADRENALINE IN THE MEDIUM (1.61 x 10^{-8} M, 8.3 x 10^{-8} M AND 16.1 x 10^{-8} M). IN THE THREE SERIES OF EXPERIMENTS, TISSUES FROM NORMAL AND THYROIDECTOMIZED RATS WERE USED.

Each series of experiments comprised four sets of experiments where three different concentrations of thyroxine were used (0.02 x 10^{-10} M, 0.20 x 10^{-10} M AND 2.00 x 10^{-10} M). Each set of experiments comprised at least 3 individual experiments.

A) Series B 1 Concentration of 3H-DL-ADRENALINE,

1.61 x 10^{-8} M

The individual results for the four sets of experiments are presented in Table VII, VII A, VII B AND VII C. The statistical analysis of the results is presented in Table VII D.

UPTAKE IN THE ABSENCE OF THYROXINE IN THE MEDIUM

In Table VII, are presented the results obtained in individual experiments when no thyroxine was present in the medium. Five minutes after incubation with 1.61 x 10^{-8} M 3H-DL-ADRENALINE, A DETECTABLE AMOUNT OF RADIOACTIVE MATERIAL IS PRESENT IN THE TISSUES FROM NORMAL AND THYROIDECTOMIZED ANIMALS. THE TISSUES FROM NORMAL RATS CONCENTRATE RADIOACTIVE MATERIAL IN THE SAME AMOUNT AS THE TISSUES FROM THYROIDECTOMIZED RATS. IN BOTH CASES INDIVIDUAL VARIATIONS ARE HIGH.

UPTAKE IN THE PRESENCE OF THYROXINE IN THE MEDIUM

The addition of thyroxine (0.02 x 10^{-10} M) TO THE INCUBATION
MEDIUM RESULTED IN A SLIGHT INCREASE IN THE CONCENTRATION OF RADIOACTIVE MATERIAL IN THE TISSUES FROM THYROIDECTOMIZED RATS, BUT DID NOT HAVE ANY EFFECT ON THE CONCENTRATION OF RADIOACTIVE MATERIAL BY TISSUES FROM NORMAL ANIMALS. IN EXPERIMENT 73, THE DIFFERENCE IN THE WEIGHT OF TISSUE BETWEEN THYROIDECTOMIZED AND NORMAL ANIMALS WAS DUE TO THE FACT THAT ONE TISSUE WAS NOT PROPERLY INCUBATED. THE SUM IS THAT OF 7 TISSUES, WHILE FOR THE OTHERS IT IS 8.

INCREASING THE AMOUNT OF THYROXINE TEN TIMES ($0.20 \times 10^{-10} \text{ M}$) DID NOT CHANGE THE AMOUNT OF RADIOACTIVE MATERIAL CONCENTRATED BY THE TISSUES OF EITHER NORMAL OR THYROIDECTOMIZED ANIMALS (TABLE VII B) IN TABLE VII C, THE EFFECT OF A CONCENTRATION OF THYROXINE 100 TIMES HIGHER ARE SHOWN. THE UPTAKE OF ^3H-ADRENALINE BY TISSUES FROM NORMAL RATS IS DECREASED, WHILE THE UPTAKE BY TISSUES FROM THYROIDECTOMIZED RATS IS NOT AFFECTED.

STATISTICAL ANALYSIS OF THE RESULTS

THE STATISTICAL ANALYSIS OF THE RESULTS OF SERIES B ARE PRESENTED IN THE NEXT TABLE (TABLE VII D). A GROUP COMPARISON HAS BEEN PERFORMED FOR EACH CONCENTRATION OF THYROXINE TO SEE WHETHER THERE WAS A DIFFERENCE IN UPTAKE BETWEEN THYROIDECTOMIZED AND NORMAL RATS. THERE IS NO DIFFERENCE IN THE UPTAKE OF ^3H-ADRENALINE BETWEEN TISSUES FROM THYROIDECTOMIZED AND NORMAL RATS, IN THE ABSENCE OF THYROXINE IN THE MEDIUM. THERE IS A SIGNIFICANTLY HIGHER UPTAKE BY THE TISSUES FROM THYROIDECTOMIZED RATS AT THE LOWEST CONCENTRATION OF THYROXINE ASSAYED ($0.02 \times 10^{-10} \text{ M}$), INCREASING TEN TIMES THE
Table VII

The Influence of Thyroidectomy on the Uptake of Radioactive Material by Intestinal Strips

After a 5 minute incubation with 3H-dl-Adrenaline (1.6 x 10^{-8} M)

(Series B)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram</td>
<td>mL</td>
<td>Counts/min</td>
</tr>
<tr>
<td>1 N°</td>
<td>0.294</td>
<td>2.3</td>
<td>31</td>
</tr>
<tr>
<td>Td°</td>
<td>0.258</td>
<td>2.2</td>
<td>49</td>
</tr>
<tr>
<td>2 N</td>
<td>0.226</td>
<td>2.3</td>
<td>42</td>
</tr>
<tr>
<td>Td</td>
<td>0.229</td>
<td>2.4</td>
<td>35</td>
</tr>
<tr>
<td>3 N</td>
<td>0.255</td>
<td>2.4</td>
<td>28</td>
</tr>
<tr>
<td>Td</td>
<td>0.204</td>
<td>1.9</td>
<td>34</td>
</tr>
<tr>
<td>4 N</td>
<td>0.243</td>
<td>2.5</td>
<td>22</td>
</tr>
<tr>
<td>Td</td>
<td>0.188</td>
<td>2.1</td>
<td>40</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats

TD: Tissue from thyroidectomized rats.
TABLE VII A

The Influence of Added Thyroxine (0.02 x 10^{-10} M) on the Uptake of Radioactive Material by Intestinal Strips after a 5 minute incubation with ^3H-DL-Adrenaline (1.61 x 10^{-10} M)

(Series B a)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>Gram</td>
<td>ML</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>1 Td **</td>
<td></td>
<td>0.232</td>
<td>2.0</td>
</tr>
<tr>
<td>2 Td</td>
<td></td>
<td>0.210</td>
<td>2.3</td>
</tr>
<tr>
<td>3 N *</td>
<td></td>
<td>0.258</td>
<td>2.6</td>
</tr>
<tr>
<td>Td</td>
<td></td>
<td>0.188</td>
<td>2.0</td>
</tr>
<tr>
<td>4 N</td>
<td></td>
<td>0.261</td>
<td>2.5</td>
</tr>
<tr>
<td>Td</td>
<td></td>
<td>0.255</td>
<td>2.4</td>
</tr>
<tr>
<td>5 N</td>
<td></td>
<td>0.255</td>
<td>2.4</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats

** Td: Tissue from thyroidectomized rats.
Table VIII

The Influence of Added Thyroxine (0.20 x 10^{-10} M) on the Uptake of Radioactive Material by Intestinal Strips after a 5 Minute Incubation with ³H-dl-Adrenaline (1.61 x 10^{-8} M)

(Series 8 & 8)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram</td>
<td>ML</td>
<td>Counts/min</td>
</tr>
<tr>
<td>1 H</td>
<td>0.354</td>
<td>2.4</td>
<td>37</td>
</tr>
<tr>
<td>Td</td>
<td>0.252</td>
<td>2.1</td>
<td>41</td>
</tr>
<tr>
<td>2 N</td>
<td>0.253</td>
<td>2.0</td>
<td>30</td>
</tr>
<tr>
<td>Td</td>
<td>0.232</td>
<td>1.9</td>
<td>52</td>
</tr>
<tr>
<td>3 N</td>
<td>0.235</td>
<td>2.0</td>
<td>33</td>
</tr>
<tr>
<td>Td</td>
<td>0.218</td>
<td>1.7</td>
<td>35</td>
</tr>
<tr>
<td>4 N</td>
<td>0.308</td>
<td>2.6</td>
<td>30</td>
</tr>
<tr>
<td>Td</td>
<td>0.213</td>
<td>2.0</td>
<td>37</td>
</tr>
<tr>
<td>5 N</td>
<td>0.263</td>
<td>2.9</td>
<td>22</td>
</tr>
</tbody>
</table>

* N: Tissue from Normal rats

** Td: Tissue from Thyroidectomized rats
TABLE VII c

THE INFLUENCE OF ADDED THYROXINE (2.0 x 10⁻¹⁰ M) ON THE UPTAKE OF RADIOACTIVE MATERIAL
BY INTESTINAL STRIPS AFTER A 5 MINUTE INCUBATION WITH H-DL-ADRENALINE (1.61 x 10⁻⁸ M)

(SERIES B c)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram</td>
<td>ML</td>
<td>In 0.100 ml of Homogenate</td>
</tr>
<tr>
<td>1 N **</td>
<td>0.280</td>
<td>2.0</td>
<td>23</td>
</tr>
<tr>
<td>Td</td>
<td>0.310</td>
<td>2.2</td>
<td>34</td>
</tr>
<tr>
<td>2 N</td>
<td>0.357</td>
<td>2.9</td>
<td>31</td>
</tr>
<tr>
<td>Td</td>
<td>0.366</td>
<td>3.1</td>
<td>30</td>
</tr>
<tr>
<td>3 N</td>
<td>0.315</td>
<td>2.0</td>
<td>31</td>
</tr>
<tr>
<td>Td</td>
<td>0.221</td>
<td>2.2</td>
<td>39</td>
</tr>
<tr>
<td>4 N</td>
<td>0.348</td>
<td>3.0</td>
<td>20</td>
</tr>
<tr>
<td>Td</td>
<td>0.181</td>
<td>2.3</td>
<td>34</td>
</tr>
<tr>
<td>5 N</td>
<td>0.280</td>
<td>2.8</td>
<td>25</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats ** Td: Tissue from thyroidectomized rats
TABLE VII D

The Influence of Thyroxine on the Uptake of Radioactive Material by Intestinal Strips

After a 5 minute incubation with 3H-DL-Adrenaline (1.61×10^{-8} M)

Group Comparison

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Thyroxine Concentration in the Medium</th>
<th>Mean \pm S. D.</th>
<th>T</th>
<th>Degree of Freedom</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.00×10^{-10} M</td>
<td>Normal: 0.36 \pm 0.12</td>
<td>0.46 \pm 0.11</td>
<td>1.235</td>
<td>6</td>
</tr>
<tr>
<td>B A</td>
<td>0.02×10^{-10} M</td>
<td>Normal: 0.33 \pm 0.035</td>
<td>0.52 \pm 0.12</td>
<td>2.235</td>
<td>5</td>
</tr>
<tr>
<td>B B</td>
<td>0.20×10^{-10} M</td>
<td>Normal: 0.32 \pm 0.021</td>
<td>0.44 \pm 0.082</td>
<td>3.258</td>
<td>7</td>
</tr>
<tr>
<td>B C</td>
<td>2.00×10^{-10} M</td>
<td>Normal: 0.26 \pm 0.053</td>
<td>0.41 \pm 0.12</td>
<td>2.525</td>
<td>7</td>
</tr>
</tbody>
</table>
CONCENTRATION OF THYROXINE \((0.20 \times 10^{-10} \text{ M})\), OR A HUNDRED TIMES
\((2.0 \times 10^{-10} \text{ M})\) renders the difference non-significant.

In the normal group, the addition of thyroxine to the medium results in a decreased uptake. In the thyroidectomized group, the addition of thyroxine to the medium provokes first an increase then a decrease in the uptake.

b) Series C: Concentration of \(3\text{H-}d\text{L-adrenaline, } 8.3 \times 10^{-8} \text{ M}\)

The results obtained with individual experiments with a concentration of \(3\text{H-}d\text{L-adrenaline five times higher (8.3 } \times \text{10}^{-8} \text{ M)}\) are presented in Table VIII, VIII A, VIII B, VIII C.

Uptake in the Absence of Thyroxine in the Medium

In Table VIII, the effects of endogenous thyroxine of the uptake of adrenaline are given. The concentration of radioactive material in tissues from both normal and thyroidectomized rats is higher than that observed in Series B. There is a greater uptake by thyroidectomized than by normal tissues.

Uptake in the Presence of Thyroxine

Addition of thyroxine to the medium \((0.02 \times 10^{-10} \text{ M})\) appears to have a slight effect on the uptake by tissues from both groups (Table VIII A). Ten times higher a concentration of thyroxine does increase the uptake of adrenaline by tissues from normal and thyroidectomized rats. The uptake of adrenaline is still higher for the thyroidectomized tissues (Table VIII B). Increasing further the concentration of thyroxine, produced a further increase in the uptake by thyroidectomized and normal tissues (Table VIII C). But the uptake is still
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
<th>Expressed as $^{3}{H}$-Adrenaline 10^{11} Moles/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram</td>
<td>ml</td>
<td>Counts/min</td>
<td>Counts/min</td>
</tr>
<tr>
<td>1</td>
<td>1.656</td>
<td>7.0</td>
<td>140</td>
<td>9,670</td>
</tr>
<tr>
<td>N**</td>
<td>1.602</td>
<td>7.4</td>
<td>157</td>
<td>11,620</td>
</tr>
<tr>
<td>TD**</td>
<td>1.210</td>
<td>5.6</td>
<td>92</td>
<td>5,150</td>
</tr>
<tr>
<td>2 N</td>
<td>1.016</td>
<td>5.0</td>
<td>149</td>
<td>7,450</td>
</tr>
<tr>
<td>TD</td>
<td>1.204</td>
<td>5.4</td>
<td>125</td>
<td>6,750</td>
</tr>
<tr>
<td>3 N</td>
<td>0.804</td>
<td>5.0</td>
<td>137</td>
<td>6,850</td>
</tr>
<tr>
<td>TD</td>
<td>0.674</td>
<td>3.3</td>
<td>129</td>
<td>4,260</td>
</tr>
<tr>
<td>4 N</td>
<td>1.226</td>
<td>6.2</td>
<td>164</td>
<td>11,410</td>
</tr>
<tr>
<td>TD</td>
<td>1.071</td>
<td>4.5</td>
<td>142</td>
<td>6,390</td>
</tr>
<tr>
<td>5 N</td>
<td>0.890</td>
<td>3.5</td>
<td>181</td>
<td>6,340</td>
</tr>
<tr>
<td>TD</td>
<td>0.684</td>
<td>2.9</td>
<td>335</td>
<td>9,720</td>
</tr>
<tr>
<td>6 N</td>
<td>0.737</td>
<td>2.6</td>
<td>527</td>
<td>14,760</td>
</tr>
<tr>
<td>TD</td>
<td>0.786</td>
<td>3.5</td>
<td>365</td>
<td>10,880</td>
</tr>
<tr>
<td>7 N</td>
<td>0.852</td>
<td>4.2</td>
<td>367</td>
<td>15,414</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** TD: Tissue from thyroidectomized rats.
TABLE VIII A

The Influence of Added Thyroxine (0.02 x 10^{-10} M) on the Uptake of Radioactive Material
by intestinal strips after a 5 minute incubation with ^3H-DL-Adrenaline (8.3 x 10^{-8} M)

(Series C A)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radiactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grams</td>
<td>ML</td>
<td>In 0.106 ML of Homogenate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COUNTS/Min</td>
</tr>
<tr>
<td>1 M</td>
<td>0.266</td>
<td>1.9</td>
<td>186</td>
</tr>
<tr>
<td>Td</td>
<td>0.284</td>
<td>2.0</td>
<td>321</td>
</tr>
<tr>
<td>2 M</td>
<td>0.382</td>
<td>2.4</td>
<td>189</td>
</tr>
<tr>
<td>Td</td>
<td>0.426</td>
<td>3.0</td>
<td>293</td>
</tr>
<tr>
<td>3 M</td>
<td>0.346</td>
<td>2.2</td>
<td>170</td>
</tr>
<tr>
<td>Td</td>
<td>0.338</td>
<td>2.4</td>
<td>234</td>
</tr>
<tr>
<td>4 M</td>
<td>0.430</td>
<td>2.5</td>
<td>178</td>
</tr>
<tr>
<td>Td</td>
<td>0.554</td>
<td>2.5</td>
<td>208</td>
</tr>
<tr>
<td>5 M</td>
<td>0.394</td>
<td>2.5</td>
<td>230</td>
</tr>
<tr>
<td>Td</td>
<td>0.328</td>
<td>2.5</td>
<td>251</td>
</tr>
</tbody>
</table>

* M: Tissue from normal rats
* T: Tissue from thyroidecomized rats.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of tissue</th>
<th>Volume of homogenate</th>
<th>Radioactive material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gram</td>
<td>mL</td>
<td>in 0.100 mL of homogenate</td>
</tr>
<tr>
<td>1 N</td>
<td>0.326</td>
<td>2.5</td>
<td>244</td>
</tr>
<tr>
<td>Td</td>
<td>0.256</td>
<td>2.0</td>
<td>404</td>
</tr>
<tr>
<td>2 N</td>
<td>0.300</td>
<td>2.3</td>
<td>211</td>
</tr>
<tr>
<td>Tu</td>
<td>0.236</td>
<td>2.5</td>
<td>226</td>
</tr>
<tr>
<td>3 N</td>
<td>0.310</td>
<td>2.3</td>
<td>236</td>
</tr>
<tr>
<td>Td</td>
<td>0.214</td>
<td>2.1</td>
<td>310</td>
</tr>
<tr>
<td>4 N</td>
<td>0.374</td>
<td>2.8</td>
<td>198</td>
</tr>
<tr>
<td>Td</td>
<td>0.216</td>
<td>2.1</td>
<td>303</td>
</tr>
<tr>
<td>5 N</td>
<td>0.314</td>
<td>2.5</td>
<td>231</td>
</tr>
<tr>
<td>Td</td>
<td>0.196</td>
<td>1.9</td>
<td>264</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** Td: Tissue from thyroidectomized rats.
Table VIII C

The Influence of Added Thyroxine \((2.0 \times 10^{-10} \text{ M})\) on the Uptake of Radioactive Material

by Intestinal Strips after a 5 minute Incubation with \(^3\text{H}-\text{dl-Adrenaline}\) \((8.3 \times 10^{-6} \text{ M})\)

(Series C C)

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>WEIGHT OF TISSUE</th>
<th>VOLUME OF HOMOGENATE</th>
<th>RADIOACTIVE MATERIAL</th>
<th>EXPRESSED AS (^3\text{H}-\text{ADRENALINE})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GRAM</td>
<td>ML</td>
<td>IN 0.100 ML OF HOMOGENATE</td>
<td>CONTENT OF HOMOGENATE</td>
</tr>
<tr>
<td>1 Td</td>
<td>0.288</td>
<td>1.7</td>
<td>289</td>
<td>4,910</td>
</tr>
<tr>
<td>2 Td</td>
<td>0.342</td>
<td>2.0</td>
<td>282</td>
<td>5,540</td>
</tr>
<tr>
<td>3 Td</td>
<td>0.236</td>
<td>2.0</td>
<td>282</td>
<td>5,640</td>
</tr>
<tr>
<td>4 N</td>
<td>0.250</td>
<td>2.2</td>
<td>207</td>
<td>4,550</td>
</tr>
<tr>
<td>5 N</td>
<td>0.337</td>
<td>2.6</td>
<td>217</td>
<td>5,640</td>
</tr>
<tr>
<td>6 N</td>
<td>0.270</td>
<td>2.0</td>
<td>234</td>
<td>4,680</td>
</tr>
<tr>
<td>7 N</td>
<td>0.360</td>
<td>2.1</td>
<td>261</td>
<td>5,900</td>
</tr>
</tbody>
</table>

* Td = Tissue from thyroidectomized rats

** N = Tissue from normal rats.
HIGHER IN THYROIDECTOMIZED ANIMALS.

Statistical Analysis of the Results

In Table VIII d, the statistical analysis for the individual results of Series A and C are given.

A group comparison between normal and thyroidectomized groups and between thyroidectomized and thyroxine-treated groups is presented. There is no difference in the uptake between normal and thyroxine-treated rats. The difference in the uptake between thyroidectomized and normal groups is not significant. There is a larger difference between thyroidectomized and thyroxine-treated groups which is not significant either.

The addition of thyroxine results in a statistically significant difference in the uptake between normal and thyroidectomized rats. In the thyroidectomized rats, the uptake is higher for the two lowest concentrations of thyroxine (0.02 x 10^-10 M and 0.20 x 10^-10 M) at a concentration of thyroxine of 2.00 x 10^-10 M, the difference between the two groups is not significant anymore.

In the normal group, the addition of thyroxine to the incubation medium increases the concentration of radioactive material in the tissue. In the thyroidectomized group, there is an increase in the uptake for the first two concentrations of thyroxine assayed. Then there is a decrease in the uptake; however, it does not fall to the level observed in the absence of thyroxine.
TABLE VIII

THE INFLUENCE OF THYROXINE ON THE UPTAKE OF RADIOACTIVE MATERIAL BY INTESTINAL STRIPS

AFTER A 5 MINUTE INCUBATION WITH 3H-5-D-ADRENALINE (8.3×10^{-8} M)

GROUP COMPARISON

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Thyroxine concentration in the medium</th>
<th>Mean ± S.D.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal</td>
<td>Thyroidectomized</td>
<td>T4-treated</td>
<td>t</td>
<td>df</td>
</tr>
<tr>
<td>A, C</td>
<td>0.00×10^{-10} M</td>
<td>1.6 ± 0.30</td>
<td>2.1 ± 0.37 *</td>
<td>1.6 ± 0.32**</td>
<td>2.941*</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.381**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C A</td>
<td>0.02×10^{-10} M</td>
<td>1.5 ± 0.21</td>
<td>2.3 ± 0.35</td>
<td></td>
<td>4.444</td>
<td>8</td>
</tr>
<tr>
<td>C B</td>
<td>0.20×10^{-10} M</td>
<td>2.2 ± 0.21</td>
<td>3.5 ± 0.37</td>
<td></td>
<td>6.842</td>
<td>8</td>
</tr>
<tr>
<td>C C</td>
<td>2.00×10^{-10} M</td>
<td>2.4 ± 0.34</td>
<td>2.6 ± 0.62</td>
<td></td>
<td>1.111</td>
<td>9</td>
</tr>
</tbody>
</table>

* Group comparison between normal and thyroidectomized
** Group comparison between thyroidectomized and thyroxine-treated.
c) Series D: Concentration of \({^{3}H-{d, l}\text{-adrenaline}} \),
\[16.1 \times 10^{-8} \text{M} \]

The individual results for this series of experiments are shown in Table IX, IX A, IX B, IX C and the statistical analysis in IX D.

Uptake in the absence of thyroxine:

In Table IX, the effect of endogenous thyroxine, on the uptake of adrenaline by intestinal strips, at a concentration of \({^{3}H-{d, l}\text{-adrenaline}} \) 2 times that of series C are presented. In both thyroidectomized and normal groups, the concentration of radioactive material in the tissues is higher than that observed in the previous series of experiments. The increased uptake is more marked among the thyroidectomized than among the normal rats.

Uptake in the presence of thyroxine:

The addition of thyroxine to the medium (Table IX A) decreases the uptake for both groups. This decrease is more marked with the tissues from thyroidectomized animals. In Table IX B, the effect, on the uptake, of ten times the concentration of thyroxine shows an increase when comparing to the previous table, but no change or a decrease when comparing with no thyroxine in the medium. Further increase of thyroxine concentration (Table IX C) does not produce any change in the uptake.

Statistical analysis of the results:

The higher uptake by thyroidectomized tissues compared to normal tissues, observed in the previous series of experiments is still obtained here (Table IX D). There is a significant difference

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram</td>
<td>mL</td>
<td>In 0.100 mL of Homogenate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COUNTS/MIN</td>
</tr>
<tr>
<td>1 N</td>
<td>0.394</td>
<td>2.9</td>
<td>328</td>
</tr>
<tr>
<td>N</td>
<td>0.314</td>
<td>1.9</td>
<td>665</td>
</tr>
<tr>
<td>2 N</td>
<td>0.433</td>
<td>3.4</td>
<td>377</td>
</tr>
<tr>
<td>N</td>
<td>0.320</td>
<td>2.6</td>
<td>747</td>
</tr>
<tr>
<td>3 N</td>
<td>0.360</td>
<td>2.7</td>
<td>328</td>
</tr>
<tr>
<td>N</td>
<td>0.296</td>
<td>2.6</td>
<td>560</td>
</tr>
<tr>
<td>4 N</td>
<td>0.482</td>
<td>3.6</td>
<td>342</td>
</tr>
<tr>
<td>N</td>
<td>0.355</td>
<td>2.6</td>
<td>494</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats

** N: Tissue from thyroidectomized rats.
TABLE IX A

The Influence of Added Thyroxine (0.02 x 10^-10 M) on the Uptake of Radioactive Material by Intestinal Strips after a 5 minute Incubation with ^3H^0-DL-Adrenaline (16.1 x 10^-8 M)

Series B a

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram</td>
<td>ML</td>
<td>In 0.100 ml of Homogenate</td>
</tr>
<tr>
<td>1 N *</td>
<td>0.389</td>
<td>2.5</td>
<td>342</td>
</tr>
<tr>
<td>Tb **</td>
<td>0.352</td>
<td>2.6</td>
<td>304</td>
</tr>
<tr>
<td>2 N</td>
<td>0.522</td>
<td>3.4</td>
<td>241</td>
</tr>
<tr>
<td>Tb</td>
<td>0.440</td>
<td>3.3</td>
<td>395</td>
</tr>
<tr>
<td>3 N</td>
<td>0.502</td>
<td>2.5</td>
<td>348</td>
</tr>
<tr>
<td>Tb</td>
<td>0.370</td>
<td>2.2</td>
<td>313</td>
</tr>
<tr>
<td>4 N</td>
<td>0.380</td>
<td>2.3</td>
<td>479</td>
</tr>
<tr>
<td>Tb</td>
<td>0.480</td>
<td>2.3</td>
<td>420</td>
</tr>
<tr>
<td>5 N</td>
<td>0.460</td>
<td>2.2</td>
<td>355</td>
</tr>
<tr>
<td>Tb</td>
<td>0.446</td>
<td>2.5</td>
<td>714</td>
</tr>
<tr>
<td>7 Tb</td>
<td>0.512</td>
<td>2.2</td>
<td>555</td>
</tr>
</tbody>
</table>

* N : Tissue from normal rats

** Tb : Tissue from thyroidectomized rats
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gram</td>
<td>ML</td>
<td>In 0.100 mL of Homogenate</td>
</tr>
<tr>
<td>1 T: Tissue from normal rats</td>
<td>0.368</td>
<td>2.7</td>
<td>273</td>
</tr>
<tr>
<td>1 T: Tissue from thyroidecotomized rats</td>
<td>0.332</td>
<td>2.5</td>
<td>439</td>
</tr>
<tr>
<td>2 T</td>
<td>0.517</td>
<td>3.1</td>
<td>454</td>
</tr>
<tr>
<td>2 T: Tissue from thyroidecotomized rats</td>
<td>0.474</td>
<td>3.3</td>
<td>478</td>
</tr>
<tr>
<td>3 T</td>
<td>0.268</td>
<td>2.4</td>
<td>339</td>
</tr>
<tr>
<td>3 T: Tissue from thyroidecotomized rats</td>
<td>0.346</td>
<td>2.7</td>
<td>480</td>
</tr>
<tr>
<td>4 T</td>
<td>0.376</td>
<td>2.5</td>
<td>353</td>
</tr>
<tr>
<td>4 T: Tissue from thyroidecotomized rats</td>
<td>0.300</td>
<td>2.5</td>
<td>335</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats

** Td: Tissue from thyroidecotomized rats.

Table IX b

The Influence of added Thyroxine (0.20 x 10$^{-10}$ H) on the Uptake of Radioactive Material by Intestinal Strips after a 5 minute Incubation with 3H-DL-Adrenaline (16.1 x 10$^{-8}$ M)

(Series 1 & 2)
TABLE IX c

The Influence of Added Thyroxine (2.60 x 10^-10 M) on the Uptake of Radioactive Material
by Intestinal Strips after a 5 Minute Incubation with ^3H-dl-adrenaline (16.1 x 10^-8 M)

(Series D c)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Weight of Tissue</th>
<th>Volume of Homogenate</th>
<th>Radioactive Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grams</td>
<td>ML</td>
<td>In 0.100 ML of Homogenate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Counts/Min</td>
</tr>
<tr>
<td>1 N *</td>
<td>0.327</td>
<td>2.4</td>
<td>378</td>
</tr>
<tr>
<td>Td **</td>
<td>0.305</td>
<td>2.4</td>
<td>441</td>
</tr>
<tr>
<td>2 N</td>
<td>0.389</td>
<td>2.9</td>
<td>257</td>
</tr>
<tr>
<td>Td</td>
<td>0.349</td>
<td>2.7</td>
<td>357</td>
</tr>
<tr>
<td>3 N</td>
<td>0.311</td>
<td>2.8</td>
<td>265</td>
</tr>
<tr>
<td>Td</td>
<td>0.277</td>
<td>2.2</td>
<td>637</td>
</tr>
<tr>
<td>4 N</td>
<td>0.345</td>
<td>3.0</td>
<td>269</td>
</tr>
<tr>
<td>Td</td>
<td>0.310</td>
<td>2.5</td>
<td>399</td>
</tr>
<tr>
<td>5 Td</td>
<td>0.280</td>
<td>2.2</td>
<td>273</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** Td: Tissue from thyroidectomized rats.
TABLE IX

THE INFLUENCE OF THYROIDINE ON THE UPTAKE OF RADIOACTIVE MATERIAL BY INTESTINAL STRIPS

AFTER A 5 MINUTE INCUBATION WITH ^3^H-DL-ADRENALINE (16.1 x 10^-8 M)

GROUP COMPARISON

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>THYROIDINE CONCENTRATION IN THE MEDIUM</th>
<th>MEAN ± S. D.</th>
<th>T</th>
<th>DEGREE OF FREEDOM</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NORMAL</td>
<td>THYROIDECTOMIZED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.00 x 10^-10 M</td>
<td>3.2 ± 0.39</td>
<td>5.2 ± 0.47</td>
<td>6.667</td>
<td>6</td>
</tr>
<tr>
<td>D A</td>
<td>0.02 x 10^-10 M</td>
<td>2.5 ± 0.32</td>
<td>4.0 ± 0.84</td>
<td>4.054</td>
<td>9</td>
</tr>
<tr>
<td>D B</td>
<td>0.20 x 10^-10 M</td>
<td>3.2 ± 0.49</td>
<td>4.3 ± 0.53</td>
<td>3.056</td>
<td>6</td>
</tr>
<tr>
<td>D C</td>
<td>2.00 x 10^-10 M</td>
<td>3.2 ± 0.32</td>
<td>4.3 ± 1.4</td>
<td>1.499</td>
<td>7</td>
</tr>
</tbody>
</table>
BETWEEN THE TWO GROUPS, IN THE ABSENCE OF THYROXINE, OR AT THE TWO
LOWEST CONCENTRATIONS OF THYROXINE IN THE MEDIUM. HOWEVER, AT HIGH
CONCENTRATION OF THYROXINE IN THE MEDIUM THE DIFFERENCE IS NOT
SIGNIFICANT ANYMORE. THIS IS PROBABLY DUE TO THE FACT THAT AMONG
THE THYROIDECTOMIZED RATS, THERE IS LARGE VARIATION.

IN THE NORMAL GROUP, THERE IS A DECREASE IN THE UPTAKE
AFTER ADDITION OF THYROXINE, WHICH THEN INCREASES AGAIN TO THE
LEVEL IN THE ABSENCE OF THYROXINE. IN THE THYROIDECTOMIZED GROUP,
THE SAME PATTERN IS FOLLOWED, BUT THE LEVEL OF THE UPTAKE IN THE
ABSENCE OF THYROXINE IS NEVER REACHED.

ANALYSIS OF VARIANCE WITH INTERACTION

THE EFFECT OF THYROXINE, ENDOGENOUS OR EXOGENOUS, THE
EFFECT OF ADRENALINE AND THE CONJUGATED EFFECT OF THYROXINE AND
ADRENALINE ON THE UPTAKE OF RADIOACTIVE MATERIAL BY INTESTINAL
STRIPS, AFTER A 5 MINUTE INCUBATION WITH 3H-OL-ADRENALINE HAS BEEN
STUDIED BY A TREATMENT OF THE DATA OF THE THREE SERIES B, C, AND D.
THE VALUES OBTAINED ARE PRESENTED IN TABLE X.

- EFFECT OF ENDOGENOUS THYROXINE. IN THE STATISTICAL TREATMENT, THE
RESULTS OBTAINED WITH SERIES B, C, AND D, WHEN NO THYROXINE WAS
PRESENT IN THE INCUBATION MEDIUM WERE COMPILLED. THE VALUES OF P,
FOR THYROXINE, ADRENALINE AND THYROXINE-ADRENALINE INTERACTION
ARE SMALLER THAN 0.01. STATISTICALLY, THYROXINE IS SHOWN TO HAVE
AN EFFECT, ALONE, ON THE UPTAKE OF RADIOACTIVE MATERIAL. ADRENALINE
ALONE HAS ALSO AN EFFECT ON THE UPTAKE. THE EFFECT OF ADRENALINE,
IS HOWEVER, MUCH LARGER AS CAN BE SEEN WHEN LOOKING AT THE VALUE OF F WHICH IS MUCH HIGHER IN THE CASE OF ADRENALINE. ADRENALINE AND THYROXINE TOGETHER AFFECT THE UPTAKE OF RADIOACTIVE MATERIAL. HOWEVER, THE INTERACTION BETWEEN THE TWO GIVES A LOWER EFFECT THAN THAT OF THYROXINE ON ADRENALINE ALONE.

IN THE NORMAL RATS, THYROXINE ALONE DOES NOT HAVE AN EFFECT ON THE UPTAKE AS SHOWN BY THE VALUE OF P. ADRENALINE ALONE HAS A VERY LARGE EFFECT, NOT AS LARGE AS IN THE FIRST CASE. THYROXINE WHEN IN THE PRESENCE OF ADRENALINE HAS AN EFFECT.

IN THYROIDECTOMIZED RATS, THE UPTAKE IS SIMILARLY AFFECTED, BUT BOTH ADRENALINE AND THYROXINE-ADRENALINE EFFECTS ARE LESS MARKED. THE VALUES OF F ARE LOWER THAN THOSE OBTAINED WITH NORMAL RATS.

3) THE EFFECT OF THYROXINE AND 3H-DL-ADRENALINE ON THE CONCENTRATION OF RADIOACTIVE MATERIAL BY INTESTINAL STRIPS

THE UPTAKE OF RADIOACTIVE MATERIAL BY INTESTINAL STRIPS AS A FUNCTION OF THE CONCENTRATION OF ADRENALINE IN THE MEDIUM, AND AS A FUNCTION OF THYROXINE CONCENTRATION IN THE MEDIUM IS PRESENTED
TABLE X

THE EFFECT OF THYROIDINE ON THE UPTAKE OF RADIOACTIVE MATERIAL BY
INTESTINAL STRIPS AFTER A 5 MINUTE INCUBATION WITH 3H-DL-ADRENALINE

ANALYSIS OF VARIANCE WITH INTERACTION

Effect of endogenous thyroidine: Series B, C and D.

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>d^0 F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>1 + 19</td>
<td>57.303</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>2 + 19</td>
<td>339.325</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>2 + 19</td>
<td>21.910</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Effect of added thyroidine: Series A B C, B C D, B C D E.

- **Normal Rats** -

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>d^0 F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>3 + 45</td>
<td>2.379</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>2 + 45</td>
<td>437.214</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>5 + 45</td>
<td>12.060</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

- **Thyroidectomized Rats** -

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>d^0 F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>3 + 43</td>
<td>1.675</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>2 + 43</td>
<td>185.374</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>6 + 43</td>
<td>4.355</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
in Table XI. Each value has been calculated by dividing the mean value presented in Tables VII d, VIII d and IX d by the adequate value for the concentration of adrenaline in the medium. For the three concentrations of adrenaline assayed, and for all the concentrations of thyroxine, there is a higher concentration of radioactive material in the tissues of thyroidectomized rats.

In the normal group, when thyroxine is absent from the medium, increasing the concentration of adrenaline in the medium results in a decreased concentration mechanism. At the lowest concentration of adrenaline in the medium \((1.61 \times 10^{-8} \text{ M})\), addition of thyroxine results in a decrease in the concentrating mechanism. For the concentrations of adrenaline 5 and 10 times higher, \(0.02 \times 10^{-10} \text{ M thyroxine causes a decrease in the concentrating mechanism. Ten or 100 times that concentration of thyroxine results either in an increase, or unchanged concentration.}

In the thyroidectomized group, at the three concentrations of adrenaline assayed \((1.61, 8.3 \text{ and } 16.1 \times 10^{-8} \text{ M})\), in the absence of thyroxine in the medium, there is a decreased then an increased concentrating mechanism. The concentrating mechanism is more efficient at the highest concentration of adrenaline in the medium. For the two lower concentrations of adrenaline, the addition of thyroxine results in an increased
then decreased mechanism. The peak, however, is not at the same level of thyroxine: 0.02×10^{-10} M appears to be the optimum concentration of thyroxine when adrenaline concentration is the lowest (1.61×10^{-8} M). By increasing 5 times the concentration of adrenaline, the optimum concentration of thyroxine becomes ten times higher (0.20×10^{-10} M). Furthermore, while in the former case, increasing thyroxine concentration results in a decreased concentrating mechanism below the control level in the absence of thyroxine; in the latter case there is a decreased level compared to the optimum, but this level never reached the value obtained in the absence of thyroxine. At the highest concentration of adrenaline in the medium (16.1×10^{-8} M), the addition of thyroxine results in a decreased concentrating power of the tissue, then a small increase, which however, never attains the value observed in the absence of thyroxine in the medium. It is interesting to note that at the two extreme concentrations of adrenaline assayed (1.61×10^{-8} M and 16.1×10^{-8} M), the lower concentration of thyroxine assayed (0.02×10^{-10} M) seems critical. When the concentration of adrenaline is low, it has an increasing effect on the concentration mechanism. When the concentration of adrenaline is ten times higher it exhibits a decreasing effect.
<table>
<thead>
<tr>
<th>Thyroxine Concentration in the Medium x 10^-10 M</th>
<th>({^{3}H\text{-Adrenaline}}_T \times 100)</th>
<th>({^{3}H\text{-Adrenaline}}_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Thyroidectomized</td>
</tr>
<tr>
<td>0</td>
<td>22.4</td>
<td>28.6</td>
</tr>
<tr>
<td>0.62</td>
<td>20.5</td>
<td>32.3</td>
</tr>
<tr>
<td>0.26</td>
<td>19.9</td>
<td>27.3</td>
</tr>
<tr>
<td>2.00</td>
<td>16.1</td>
<td>25.5</td>
</tr>
</tbody>
</table>

\({^{3}H\text{-Adrenaline}}_T \): Radioactive material present in the tissue expressed as \({^{3}H\text{-Adrenaline}} \) moles per gram of tissue.

\({^{3}H\text{-Adrenaline}}_M \): \({^{3}H\text{-Adrenaline}} \) put in the incubation medium expressed in moles per ml of medium.
B) The effect of thyroxine on the binding of 3H-adrenaline by intestinal strips after a 5 minute incubation with 3H-DL-adrenaline

The adrenaline was identified in the extracts from series A, C and D. The low radioactivity content in series B, did not allow the identification of 3H-adrenaline.

1) The in vivo effect of thyroxine

In this series of experiments, the in vivo effect of 3H-adrenaline on the 3H-adrenaline binding by intestinal strips was tested. The results obtained during this study are presented in Table XII. Five minutes after the incubation, the percentage of adrenaline is high, in the three groups assayed. There is no apparent difference between normal, thyroidectomized and thyroxine-treated groups, where the concentration of bound 3H-adrenaline is concerned.

2) The in vitro effect of thyroxine

a) Series C: concentration of 3H-DL-adrenaline, 8.3×10^{-8} M

In the next three tables (XII A, XII B, and XII C) the individual results in the presence of various concentrations of thyroxine in the medium are shown. The addition of thyroxine (0.02×10^{-10} M) to the medium (Table XII A) resulted in a lowering of the percentage of 3H-adrenaline in the tissue. In both normal and thyroidectomized groups, the percentage of 3H-adrenaline is lowered compared to that in the absence of thyroxine. The variations in the percentage are higher in the normal than in the thyroidectomized group. The absolute values (moles per gram) are higher in the case of
Table XII

The Effect of Thyroxine on the Binding of 3H-adrenaline by Intestinal Strips

After a 5-minute incubation with 3H-dL-adrenaline (8.3×10^{-8} M)

(Series A & C)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>3H-adrenaline Extracted</th>
<th>Percent of Total</th>
<th>Correction for 80% Recovery</th>
<th>3H-adrenaline per Gram of Tissue 10^{-11} moles/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>Counts/min</td>
<td>Counts/min</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>5 N</td>
<td>2,385</td>
<td>1,188</td>
<td>49.8</td>
<td>62.3</td>
<td>0.93</td>
</tr>
<tr>
<td>6 N</td>
<td>2,223</td>
<td>893</td>
<td>40.2</td>
<td>50.3</td>
<td>0.75</td>
</tr>
<tr>
<td>9 N</td>
<td>7,000</td>
<td>3,433</td>
<td>49.4</td>
<td>61.8</td>
<td>1.2</td>
</tr>
<tr>
<td>10 N</td>
<td>3,810</td>
<td>1,845</td>
<td>52.6</td>
<td>65.8</td>
<td>1.3</td>
</tr>
<tr>
<td>11 N</td>
<td>4,900</td>
<td>1,800</td>
<td>43.0</td>
<td>53.8</td>
<td>1.0</td>
</tr>
<tr>
<td>5 T0</td>
<td>2,038</td>
<td>1,325</td>
<td>65.0</td>
<td>81.3</td>
<td>1.4</td>
</tr>
<tr>
<td>10 T0</td>
<td>4,375</td>
<td>2,243</td>
<td>51.3</td>
<td>64.1</td>
<td>1.1</td>
</tr>
<tr>
<td>11 T0</td>
<td>4,900</td>
<td>2,583</td>
<td>52.2</td>
<td>65.3</td>
<td>1.7</td>
</tr>
<tr>
<td>6 T4</td>
<td>2,325</td>
<td>1,160</td>
<td>49.9</td>
<td>62.4</td>
<td>1.0</td>
</tr>
<tr>
<td>7 T4</td>
<td>425</td>
<td>203</td>
<td>47.7</td>
<td>59.6</td>
<td>0.72</td>
</tr>
<tr>
<td>4 T4</td>
<td>6,175</td>
<td>3,445</td>
<td>42.1</td>
<td>52.6</td>
<td>1.0</td>
</tr>
<tr>
<td>8 T4</td>
<td>4,450</td>
<td>1,773</td>
<td>39.8</td>
<td>49.8</td>
<td>0.70</td>
</tr>
<tr>
<td>9 T4</td>
<td>4,650</td>
<td>2,010</td>
<td>43.2</td>
<td>54.0</td>
<td>0.97</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats ** T0: Tissue from thyroidectomized rats *** T4: Tissue from thyroxine-treated rats.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Total present in perchloric extract</th>
<th>3H-adrenaline extracted</th>
<th>Percent of total</th>
<th>Correction for 80% recovery</th>
<th>3H-adrenaline per gram of tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COUNTS/MIN</td>
<td>COUNTS/MIN</td>
<td>%</td>
<td>%</td>
<td>10[^11] MOLES/G</td>
</tr>
<tr>
<td>1 N *</td>
<td>860</td>
<td>220</td>
<td>25.6</td>
<td>32.0</td>
<td>0.54</td>
</tr>
<tr>
<td>2 N</td>
<td>930</td>
<td>170</td>
<td>18.3</td>
<td>22.9</td>
<td>0.34</td>
</tr>
<tr>
<td>3 N</td>
<td>860</td>
<td>247</td>
<td>28.7</td>
<td>35.9</td>
<td>0.50</td>
</tr>
<tr>
<td>4 N</td>
<td>720</td>
<td>279</td>
<td>38.8</td>
<td>48.5</td>
<td>0.63</td>
</tr>
<tr>
<td>5 N</td>
<td>1,265</td>
<td>334</td>
<td>26.4</td>
<td>34.6</td>
<td>0.59</td>
</tr>
<tr>
<td>1 Td **</td>
<td>1,640</td>
<td>388</td>
<td>26.7</td>
<td>29.6</td>
<td>0.83</td>
</tr>
<tr>
<td>2 Td</td>
<td>1,695</td>
<td>493</td>
<td>29.1</td>
<td>36.3</td>
<td>0.91</td>
</tr>
<tr>
<td>3 Td</td>
<td>1,210</td>
<td>379</td>
<td>31.3</td>
<td>39.2</td>
<td>0.82</td>
</tr>
<tr>
<td>4 Td</td>
<td>1,075</td>
<td>360</td>
<td>27.9</td>
<td>34.9</td>
<td>0.66</td>
</tr>
<tr>
<td>5 Td</td>
<td>1,270</td>
<td>467</td>
<td>32.0</td>
<td>40.1</td>
<td>0.98</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** Td: Tissue from thyroidectomized rats.
TABLE XII B

The Effect of Added Thyroxine \((0.20 \times 10^{-10} \text{ M})\) on the Binding of \(^3\text{H}\)-Adrenaline

By Intestinal Strips after a 5 Minute Incubation with \(^3\text{H}\)-dl-Adrenaline \((8.3 \times 10^{-8} \text{ M})\)

(Series C b)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>Correction for 60% Recovery</th>
<th>(^3\text{H})-Adrenaline per Gram of Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Present in perchloric extract</td>
<td>(^3\text{H})-adrenaline extracted</td>
<td>Percent of total</td>
</tr>
<tr>
<td>1 H **</td>
<td>1,160</td>
<td>528</td>
<td>45.5</td>
</tr>
<tr>
<td>2 H</td>
<td>1,620</td>
<td>458</td>
<td>44.9</td>
</tr>
<tr>
<td>3 H</td>
<td>1,056</td>
<td>422</td>
<td>38.7</td>
</tr>
<tr>
<td>4 H</td>
<td>950</td>
<td>374</td>
<td>39.4</td>
</tr>
<tr>
<td>5 H</td>
<td>1,040</td>
<td>498</td>
<td>47.6</td>
</tr>
<tr>
<td>1 To **</td>
<td>1,750</td>
<td>660</td>
<td>37.7</td>
</tr>
<tr>
<td>2 To</td>
<td>1,160</td>
<td>476</td>
<td>43.3</td>
</tr>
<tr>
<td>3 To</td>
<td>1,380</td>
<td>964</td>
<td>69.9</td>
</tr>
<tr>
<td>4 To</td>
<td>1,310</td>
<td>594</td>
<td>45.3</td>
</tr>
<tr>
<td>5 To</td>
<td>1,220</td>
<td>576</td>
<td>47.2</td>
</tr>
</tbody>
</table>

*H: Tissue from normal rats

**To: Tissue from thyroidectomized rats.*
TABLE XII c

THE EFFECT OF ADDED THYROXINE (2.00 x 10^-10 M) ON THE BINDING OF 3H-ADRENALINE

BY INTESTINAL STRIPS AFTER A 5 MINUTE INCUBATION WITH 3H-DL-ADRENALINE (8.3 x 10^-8 M)

(SERIES C c)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>3H-Adrenaline</th>
<th>PERCENT OF TOTAL</th>
<th>Correction for 80% Recovery</th>
<th>3H-Adrenaline per gram of Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL PRESENT IN PERCHLORIC EXTRACT</td>
<td>3H-ADRENALINE EXTRACTED</td>
<td>%</td>
<td>%</td>
<td>10^{11} MOLES/g</td>
</tr>
<tr>
<td></td>
<td>COUNTS/MIN</td>
<td>COUNTS/MIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 N</td>
<td>970</td>
<td>390</td>
<td>40.2</td>
<td>50.3</td>
<td>1.1</td>
</tr>
<tr>
<td>2 N</td>
<td>1,030</td>
<td>468</td>
<td>45.4</td>
<td>56.6</td>
<td>1.2</td>
</tr>
<tr>
<td>3 N</td>
<td>1,170</td>
<td>520</td>
<td>44.4</td>
<td>55.5</td>
<td>1.6</td>
</tr>
<tr>
<td>4 N</td>
<td>1,200</td>
<td>568</td>
<td>47.3</td>
<td>59.1</td>
<td>1.5</td>
</tr>
<tr>
<td>5 N</td>
<td>880</td>
<td>404</td>
<td>46.0</td>
<td>57.5</td>
<td>1.4</td>
</tr>
<tr>
<td>1 TD **</td>
<td>1,150</td>
<td>566</td>
<td>49.4</td>
<td>61.8</td>
<td>1.3</td>
</tr>
<tr>
<td>2 TD</td>
<td>980</td>
<td>488</td>
<td>49.8</td>
<td>62.3</td>
<td>1.3</td>
</tr>
<tr>
<td>3 TD</td>
<td>1,120</td>
<td>472</td>
<td>42.1</td>
<td>52.6</td>
<td>1.6</td>
</tr>
<tr>
<td>4 TD</td>
<td>950</td>
<td>384</td>
<td>40.4</td>
<td>50.5</td>
<td>1.2</td>
</tr>
<tr>
<td>5 TD</td>
<td>900</td>
<td>462</td>
<td>51.3</td>
<td>64.1</td>
<td>1.4</td>
</tr>
<tr>
<td>6 TD</td>
<td>1,230</td>
<td>674</td>
<td>54.8</td>
<td>68.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats

** Td: Tissue from thyroidectomized rats.
THE THYROIDECTOMIZED GROUP, ALTHOUGH THIS DIFFERENCE WAS NOT APPARENT
WHEN THE PERCENTAGE VALUES WERE CONSIDERED. THIS IS DUE TO THE FACT
THAT THE UPTAKE WAS HIGHER IN THE SECOND GROUP. INCREASING TEN TIMES
(TABLE XII b) THE CONCENTRATION OF THYROID PRODUCES AN INCREASE IN
THE PERCENTAGE OF ADRENALINE IN THE TISSUE. THE SAME ACTION IS
OBSERVED WHEN THE CONCENTRATION OF THYROID IS ELEVATED 100 TIMES
(TABLE XII c). THE FACT NOTICED PREVIOUSLY IS ALSO OBVIOUS IN THE
TWO CASES; THE PERCENTAGE OF ^{3}H-ADRENALINE IS IDENTICAL IN THE
CASE OF NORMAL AND THYROIDECTOMIZED GROUPS, BUT THE ABSOLUTE VALUES
ARE HIGHER IN THE LATTER GROUP. FOR THESE TWO CONCENTRATIONS OF
THYROID, THE VARIATIONS ARE HIGHER, BETWEEN INDIVIDUAL EXPERIMENTS,
FOR THE THYROIDECTOMIZED GROUP.

STATISTICAL ANALYSIS OF THE RESULTS:

IN TABLE XII d, STATISTICAL ANALYSIS FOR THE INDIVIDUAL
DATA PRESENTED, IS GIVEN. THE EFFECT OF THYROID, IN VIVO, ON THE
BINDING OF ^{3}H-ADRENALINE DOES NOT APPEAR SIGNIFICANT AS SHOWN BY
THE P VALUES OF 0.02 AND 0.05, WHEN COMPARING THYROID-TREATED VERSUS
THYROIDECTOMIZED AND NORMAL VERSUS THYROIDECTOMIZED GROUPS. THE
ADDITION OF THYROID TO THE MEDIUM, RESULTS IN A SIGNIFICANTLY
HIGHER BINDING IN THE THYROIDECTOMIZED GROUP, AS SHOWN BY THE VALUES
OF P INFERIOR AT 0.01 FOR THE TWO LOWER CONCENTRATIONS OF THYROID
(0.02 AND 0.20 x 10^{-10} M). FURTHER INCREASE IN THYROID CONCENTRATION
RESULTS IN THE DISAPPEARANCE OF THE SIGNIFICANT DIFFERENCE BETWEEN
THE TWO GROUPS. AS NOTED PREVIOUSLY, FOR THE TWO GROUPS, THYROIDECTO-
IZED AND NORMAL, ADDITION OF THYROID TO THE MEDIUM RESULTS IN A
<table>
<thead>
<tr>
<th>Experiments</th>
<th>Thyroxine Concentration in the Medium</th>
<th>Mean ± S. D.</th>
<th>T4-Treated</th>
<th>t</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>0.00 x 10^-10 M</td>
<td>1.0 ± 0.22</td>
<td>1.4 ± 0.30 *</td>
<td>0.68 ± 0.15**</td>
<td>3.596</td>
<td>6</td>
</tr>
<tr>
<td>CA</td>
<td>0.02 x 10^-10 M</td>
<td>0.52 ± 0.11</td>
<td>0.84 ± 0.11</td>
<td>4.571</td>
<td>8</td>
<td>< 0.01</td>
</tr>
<tr>
<td>CB</td>
<td>0.20 x 10^-10 M</td>
<td>1.2 ± 0.21</td>
<td>2.2 ± 0.57</td>
<td>3.704</td>
<td>8</td>
<td>< 0.01</td>
</tr>
<tr>
<td>CC</td>
<td>2.00 x 10^-10 M</td>
<td>1.4 ± 0.21</td>
<td>1.6 ± 0.49</td>
<td>0.870</td>
<td>9</td>
<td>< 0.50</td>
</tr>
</tbody>
</table>

* Group comparison between normal and thyroidectomized rats
** Group comparison between thyroidectomized and thyroxine-treated animals.
DECREASE IN \(^{3}\)H-ADRENALINE BINDING. WHILE IN THE NORMAL GROUP, FURTHER
ADDITION PROVOKES AN INCREASE IN BINDING COMPARED TO THAT OBSERVED IN
THE ABSENCE OF THYROXINE IN THE MEDIUM; IN THE THYROIDECTOMIZED GROUP
THERE IS AN OPTIMUM CONCENTRATION OF THYROXINE (0.20 \times 10^{-10} M).
FURTHER INCREASE IN THYROXINE CONCENTRATION CAUSES A FALL IN THE
BINDING; THIS FALL HOWEVER, DOES NOT REACH THE LEVEL OBTAINED IN
THE ABSENCE OF THYROXINE IN THE MEDIUM.

b) SERIES 0: CONCENTRATION OF \(^{3}\)H-DL-ADRENALINE,
16.9 \times 10^{-8} M

THE EFFECT OF DOUBLING THE CONCENTRATION OF ADRENALINE IN
THE INCUBATION MEDIUM IS SHOWN IN THE NEXT TABLES XIII, XIII A,
XIII B AND XIII C.

IN TABLE XIII, THE INDIVIDUAL RESULTS OBTAINED WITH NORMAL
AND THYROIDECTOMIZED TISSUES, WHEN NO THYROXINE HAS BEEN ADDED TO
THE MEDIUM ARE GIVEN. ALTHOUGH AT THAT CONCENTRATION OF ADRENALINE,
THE UPTAKE IS HIGHER, IN BOTH GROUPS, THE PERCENTAGE OF BOUND
\(^{3}\)H-ADRENALINE IS LOW. THE PERCENTAGE OF BOUND ADRENALINE SEEMS
SLIGHTLY HIGHER IN THE THYROIDECTOMIZED THAN IN THE NORMAL GROUP.
WHEN THE RESULTS ARE EXPRESSED AS ABSOLUTE VALUES, THE BOUND
\(^{3}\)H-ADRENALINE IS MORE IMPORTANT IN THE THYROIDECTOMIZED GROUP.

ADDITION OF THYROXINE (0.02 \times 10^{-10} M) TO THE INCUBATION
MEDIUM (TABLE XIII A) FURTHER INCREASES THE DIFFERENCE OBSERVED
BETWEEN THIS TWO GROUPS. THE PERCENTAGE OF BOUND \(^{3}\)H-ADRENALINE AND
THE ABSOLUTE CONTENT OF THE TISSUE ARE SUPERIOR IN THE THYROIDECTOMIZED
GROUP. ALTHOUGH THE VARIATIONS BETWEEN INDIVIDUAL RESULTS ARE HIGHER
IN THE NORMAL GROUP, WHEN THE PERCENTAGE VALUES ARE CONSIDERED,
EXPRESSING THE RESULTS IN MOLES OF 3H-ADRENALINE RESULTS IN THE
FINDING THAT THE VARIATIONS ARE HIGHER IN THE THYROIDECTOMIZED
GROUP. IN TABLE XIII b, INDIVIDUAL RESULTS IN THE PRESENCE OF TEN
TIMES THE CONCENTRATION OF THYROIDINE ARE GIVEN. THE PERCENTAGE OF
BOUND 3H-ADRENALINE IS MUCH DECREASED, WHEN THE CONCENTRATION OF
THYROIDINE IN THE MEDIUM IS TEN TIMES INCREASED, IN THE CASE OF
THYROIDECTOMIZED TISSUES. AN INVERSE EFFECT APPEARS TO BE FOUND IN
THE NORMAL GROUP; SO THAT THE RELATIVE AMOUNT OF 3H-ADRENALINE IS
ALMOST SIMILAR AMONG THE TWO GROUPS. THIS SIMILARITY IS NOT SO
EVIDENT IN THE ABSOLUTE VALUES, ESPECIALLY BECAUSE THERE IS A LARGE
VARIATION IN THE NORMAL GROUP. SIMILAR FINDINGS ARE OBSERVED WHEN
THYROIDINE IS INCREASED TEN TIMES MORE (TABLE XIII c, 2.00 x 10$^{-10}$ M).
ALTHOUGH, THE RELATIVE CONCENTRATIONS OF 3H-ADRENALINE ARE, IN
THE THYROIDECTOMIZED GROUP, OF VERY SIMILAR VALUES, EXPRESSING THESE
RESULTS IN ABSOLUTE AMOUNTS CAUSES A MARKED VARIATION IN INDIVIDUAL
EXPERIMENTS.

STATISTICAL ANALYSIS OF THE RESULTS:

These variations are reflected in the statistical analysis
of the results presented in Table XIII d. The standard deviations
show that the variations among individual results are higher than those
observed at half the concentration of adrenaline in the medium. In
spite of these large variations, there is a significant increase in
TABLE XIII

THE EFFECT OF THYROIDECTOMY ON THE BINDING OF 3H-ADRENALINE BY INTESTINAL STRIPS

AFTER A 5 MINUTE INCUBATION WITH 3H-DL-ADRENALINE (16.1 x 10^-6 M)

(SERIES 0)

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>RADIOACTIVE MATERIAL</th>
<th>CORRECTION FOR 60% RECOVERY</th>
<th>3H-ADRENALINE PER GRAM OF TISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL PRESENT IN PERCHLORIC EXTRACT</td>
<td>3H-ADRENALINE EXTRACTED</td>
<td>PERCENT OF TOTAL</td>
</tr>
<tr>
<td></td>
<td>COUNTS/MIN</td>
<td>COUNTS/MIN</td>
<td>%</td>
</tr>
<tr>
<td>1 N *</td>
<td>2,660</td>
<td>553</td>
<td>20.8</td>
</tr>
<tr>
<td>2 N</td>
<td>3,340</td>
<td>884</td>
<td>26.4</td>
</tr>
<tr>
<td>3 N</td>
<td>2,300</td>
<td>669</td>
<td>25.1</td>
</tr>
<tr>
<td>4 N</td>
<td>3,100</td>
<td>757</td>
<td>24.4</td>
</tr>
<tr>
<td>1 To **</td>
<td>4,420</td>
<td>1,280</td>
<td>29.0</td>
</tr>
<tr>
<td>2 To</td>
<td>5,100</td>
<td>1,374</td>
<td>26.9</td>
</tr>
<tr>
<td>3 To</td>
<td>3,480</td>
<td>1,065</td>
<td>36.6</td>
</tr>
<tr>
<td>4 To</td>
<td>3,800</td>
<td>983</td>
<td>25.9</td>
</tr>
</tbody>
</table>

* N : TISSUE FROM NORMAL RATS ** To : TISSUE FROM THYROIDECTOMIZED RATS.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>Correlation for 80% Recovery</th>
<th>^{3}H-Adrenaline per gram of tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>^{3}H-adrenaline extracted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>counts/min</td>
<td>counts/min</td>
<td>percent of total</td>
</tr>
<tr>
<td>1 N *</td>
<td>2,740</td>
<td>625</td>
<td>22.8</td>
</tr>
<tr>
<td>2 N</td>
<td>2,330</td>
<td>577</td>
<td>24.6</td>
</tr>
<tr>
<td>3 N</td>
<td>3,050</td>
<td>574</td>
<td>28.7</td>
</tr>
<tr>
<td>4 N</td>
<td>3,740</td>
<td>573</td>
<td>15.3</td>
</tr>
<tr>
<td>1 Td **</td>
<td>1,860</td>
<td>819</td>
<td>44.0</td>
</tr>
<tr>
<td>3 Td</td>
<td>3,930</td>
<td>951</td>
<td>24.2</td>
</tr>
<tr>
<td>4 Td</td>
<td>6,280</td>
<td>2,450</td>
<td>39.1</td>
</tr>
<tr>
<td>5 Td</td>
<td>4,260</td>
<td>1,221</td>
<td>28.7</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** Td: Tissue from thyroidectomized rats.
TABLE XIII

THE EFFECT OF ADDED THYROXINE (0.20 x 10^-10 M) ON THE BINDING OF 3H-ADRENALINE
BY INTESTINAL STRIPS AFTER A 5 MINUTE INCUBATION WITH 3H-DL-ADRENALINE (16.1 x 10^-8 M)
(SERIES D - D)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th></th>
<th></th>
<th>Correction for 80% Recovery</th>
<th>3H-ADRENALINE PER GRAM OF TISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in</td>
<td>3H-ADRENALINE</td>
<td>Percent of</td>
<td></td>
<td>10^{11} molecules/g</td>
</tr>
<tr>
<td></td>
<td>perchloric extract</td>
<td>extracted</td>
<td>percent of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Counts/min</td>
<td>Counts/min</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 N</td>
<td>2,320</td>
<td>490</td>
<td>21.1</td>
<td>26.4</td>
<td>0.69</td>
</tr>
<tr>
<td>2 N</td>
<td>4,610</td>
<td>848</td>
<td>18.4</td>
<td>23.0</td>
<td>0.81</td>
</tr>
<tr>
<td>3 N</td>
<td>1,800</td>
<td>679</td>
<td>37.7</td>
<td>47.2</td>
<td>1.8</td>
</tr>
<tr>
<td>4 N</td>
<td>2,790</td>
<td>650</td>
<td>23.3</td>
<td>29.1</td>
<td>0.90</td>
</tr>
<tr>
<td>1 To **</td>
<td>3,750</td>
<td>980</td>
<td>26.1</td>
<td>32.7</td>
<td>1.4</td>
</tr>
<tr>
<td>2 To **</td>
<td>4,520</td>
<td>1,205</td>
<td>26.7</td>
<td>33.3</td>
<td>1.4</td>
</tr>
<tr>
<td>3 To **</td>
<td>3,570</td>
<td>982</td>
<td>27.5</td>
<td>34.4</td>
<td>1.7</td>
</tr>
<tr>
<td>4 To **</td>
<td>2,900</td>
<td>701</td>
<td>28.2</td>
<td>30.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

* N : Tissue from normal rats
** To : Tissue from thyroidectomized rats.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>Correction for 50% Recovery</th>
<th>3H-Adrenaline per Gram of Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>3H-Adrenaline extracted</td>
<td>%</td>
</tr>
<tr>
<td>1 N</td>
<td>2,700</td>
<td>589</td>
<td>21.8</td>
</tr>
<tr>
<td>2 N</td>
<td>1,600</td>
<td>678</td>
<td>37.7</td>
</tr>
<tr>
<td>3 N</td>
<td>2,070</td>
<td>631</td>
<td>30.5</td>
</tr>
<tr>
<td>4 N</td>
<td>2,550</td>
<td>558</td>
<td>21.5</td>
</tr>
<tr>
<td>1 Td **</td>
<td>3,570</td>
<td>853</td>
<td>23.9</td>
</tr>
<tr>
<td>2 Td</td>
<td>1,695</td>
<td>523</td>
<td>27.6</td>
</tr>
<tr>
<td>3 Td</td>
<td>3,410</td>
<td>997</td>
<td>29.2</td>
</tr>
<tr>
<td>4 Td</td>
<td>2,940</td>
<td>748</td>
<td>25.4</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** Td: Tissue from thyroidectomized rats.
H-adrenaline binding in the thyroidectomized group when compared to the normal one, in the absence of exogenous thyroxine. The P value is inferior to 0.01.

The addition of thyroxine (0.02 x 10^{-10} M) does not prevent this increase, P value smaller than 0.01, but it decreases it, as can be seen by a lower value of t. Further addition of thyroxine to the medium results in the disappearance of a significant difference.

In the normal group, addition of thyroxine to the medium produces, first a decrease (Da) then an increase in the amount of 3H-adrenaline bound. The increase reaches and overcomes the level observed in the absence of thyroxine in the medium.

In the thyroidectomized group, there is also a decrease then increase in the amount of 3H-adrenaline bound as a function of thyroxine concentration in the medium. However, the increase is only relative, since in the presence of thyroxine highest concentration (2.0 x 10^{-10} M) the amount of 3H-adrenaline per gram of tissue does not reach that obtained in the absence of thyroxine in the medium.

Analysis of Variance with Interaction

The individual effect of thyroxine and adrenaline and the conjugated effect of both hormones on the binding of 3H-adrenaline by intestinal strips after a 5 minute incubation with 3H-DL-adrenaline has been studied statistically (Table XIV). The effect of endogenous
TABLE XIII d

THE EFFECT OF THYROXINE ON THE BINDING OF ^{3}H-ADRENALINE BY INTESTINAL STRIPS

After a 5 minute incubation with ^{3}H-DL-Adrenaline (15.1 x 10^{-6} M)

GROUP COMPARISON

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Thyroxine concentration in the medium</th>
<th>Mean ± S. D.</th>
<th>T</th>
<th>Degree of Freedom</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal</td>
<td>Thyroidectomized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.00×10^{-10} M</td>
<td>1.0 ± 0.16</td>
<td>1.9 ± 0.12</td>
<td>9.137</td>
<td>6</td>
</tr>
<tr>
<td>D A</td>
<td>0.02×10^{-10} M</td>
<td>0.70 ± 0.19</td>
<td>1.9 ± 0.60</td>
<td>3.797</td>
<td>6</td>
</tr>
<tr>
<td>D B</td>
<td>0.20×10^{-10} M</td>
<td>1.0 ± 0.48</td>
<td>1.4 ± 0.25</td>
<td>1.465</td>
<td>6</td>
</tr>
<tr>
<td>D C</td>
<td>2.00×10^{-10} M</td>
<td>1.1 ± 0.21</td>
<td>1.6 ± 0.54</td>
<td>1.695</td>
<td>6</td>
</tr>
</tbody>
</table>
thyroxine on the bindings of 3H-adrenaline is calculated using the
results obtained with thyroidectomized and normal rats, at the two
concentrations of adrenaline assayed. The value of P, for thyroxine,
inferior at 0.01 shows, that in vivo, thyroxine concentration, or
rather thyroxine absence has a marked effect on 3H-adrenaline binding.
The nature of the effect is not seen here, but by looking at the
higher values obtained in the thyroidectomized groups (Table XII d
and XIII d), it may be deduced: thyroidectomy increases the amount
of 3H-adrenaline bound by the tissues. The effect of adrenaline
alone or of adrenaline and thyroidectomy on the binding of 3H-
adrenaline is not significant. Whatever the concentration of
adrenaline assayed, the binding by intestinal strips will be always
higher in thyroidectomized animals.

The individual effect of added thyroxine or adrenaline and
the conjugated effect of exogenous adrenaline and thyroxine have
been studied in the normal and in the thyroidectomized groups.

In the normal group, thyroxine alone has an effect on the
binding of 3H-adrenaline, by intestinal strips. Depending upon the
concentration of thyroxine in the medium (Table XII d and XIII d),
the presence of thyroxine will result in an increase or a decrease
in binding. Adrenaline alone or adrenaline plus thyroxine do not
affect the binding as shown by the value of P superior to 0.01.
It is of interest to note that the effect of thyroxine and adrenaline
is identical to that observed in vivo. Thyroxine concentration alone
TABLE XIV

The effect of Thyroxine and Adrenaline on the binding of ³H-Adrenaline by Intestinal Strips after a 5 minute incubation with ³H-CL-Adrenaline

Analysis of variance with interaction

Effect of Endogenous Thyroxine: Series C and D

<table>
<thead>
<tr>
<th>Source</th>
<th>D⁰ F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>1 + 12</td>
<td>37.300</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>1 + 12</td>
<td>4.878</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>1 + 12</td>
<td>2.927</td>
<td>> 0.05</td>
</tr>
</tbody>
</table>

Effect of added Thyroxine: Series C abc and D abc

- Normal Rats -

<table>
<thead>
<tr>
<th>Source</th>
<th>D⁰ F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>3 + 33</td>
<td>44.080</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>1 + 33</td>
<td>3.678</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>3 + 33</td>
<td>0.612</td>
<td>> 0.05</td>
</tr>
</tbody>
</table>

- Thyroidectomized Rats -

<table>
<thead>
<tr>
<th>Source</th>
<th>D⁰ F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>3 + 27</td>
<td>2.261</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>1 + 27</td>
<td>1.500</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>3 + 27</td>
<td>7.056</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
HAS AN EFFECT. BUT WHILE IN THE ABSENCE OF THYROXINE THE EFFECT IS ALWAYS IN THE SAME DIRECTION, DECREASED BINDING IN THE PRESENCE OF THYROXINE, IN THE NORMAL RAT THE CONCENTRATION OF EXOGENOUS THYROXINE MAY HAVE EITHER A DECREASING OR AN INCREASING EFFECT ON THE BINDING. THE VALUES OF P ARE CONSISTENT WITH THE ASSUMPTION THAT THERE IS NO INTERACTION BETWEEN THYROXINE AND ADRENALINE IN THE BINDING. ADRENALINE CONCENTRATION DOES NOT AFFECT EITHER THE BINDING OF EXOGENOUS ADRENALINE.

IN THE THYROIDECTOMIZED RATS, THE BINDING OF 3H-ADRENALINE IS NOT AFFECTED BY EITHER THYROXINE ALONE OR ADRENALINE ALONE (P VALUES GREATER THAN 0.01). HOWEVER, BOTH HORMONES TOGETHER DO AFFECT THE BINDING OF 3H-ADRENALINE. DEPENDING UPON THE RELATIVE CONCENTRATIONS OF EACH HORMONE THE EFFECT WILL BE ADDITIVE OR OPPOSITE (TABLE XII D AND XIII D).

C) THE EFFECT OF THYROXINE ON THE FORMATION OF 3H-METANEPHRINE BY INTESTINAL STRIPS AFTER A 5 MINUTE INCUBATION WITH 3H-ADRENALINE

THE EFFECT OF THYROXINE ON METANEPHRINE FORMATION HAS BEEN STUDIED IN VIVO, WITH ONE CONCENTRATION OF 3H-ADRENALINE IN THE INCUBATION MEDIUM (8.3×10^{-8} M) (SERIES A) AND IN VITRO WITH TWO CONCENTRATIONS OF 3H-ADRENALINE IN THE INCUBATION MEDIUM (8.3 AND 15.1×10^{-8} M) (SERIES C AND D RESPECTIVELY).

1) THE IN VIVO EFFECT OF THYROXINE

IN TABLE XV, THE EFFECT, IN VIVO, OF THYROXINE ON THE
FORMATION OF 3H-METANEPHRINE IS SHOWN FOR INDIVIDUAL EXPERIMENTS. THE PERCENTAGE OF 3H-METANEPHRINE FORMED IS LOW IN ALL THE GROUPS. BUT THERE IS NO DIFFERENCE IN THE RELATIVE AMOUNT OF 3H-METANEPHRINE AMONG THE THREE GROUPS OF ANIMALS: NORMAL, THYROIDECTOMIZED OR THYROID-TREATED. THE ABSOLUTE AMOUNT OF 3H-METANEPHRINE IS A LITTLE HIGHER FOR THE THYROIDECTOMIZED GROUP.

2) THE IN VITRO EFFECT OF THYROIDINE

a) SERIES C: CONCENTRATION OF 3H-DL-ADRENALINE, $8.3 \times 10^{-8} \text{ M}$

THE ADDITION OF THYROXINE ($0.62 \times 10^{-10} \text{ M}$) TO THE INCUBATION MEDIUM (TABLE XV A) DOES NOT CHANGE THE PERCENTAGE OF METANEPHRINE FORMED, EITHER IN THE NORMAL OR IN THE THYROIDECTOMIZED GROUP. THE VARIATIONS ARE HIGH IN THE PERCENTAGE AMONG THE INDIVIDUAL RESULTS FOR BOTH GROUPS; HOWEVER, THE ABSOLUTE AMOUNT OF METANEPHRINE IN THE TISSUE DOES NOT REFLECT SO HIGH VARIATIONS.

WHEN THE CONCENTRATIONS OF THYROXINE IN THE MEDIUM IS TEN TIMES HIGHER ($0.20 \times 10^{-10} \text{ M}$) (TABLE XV B), THERE IS A GREATER AMOUNT OF 3H-METANEPHRINE IN THE THYROIDECTOMIZED THAN IN THE NORMAL ANIMALS. THIS GREATER AMOUNT IS RELATIVE AS WELL AS ABSOLUTE. AGAIN, THE VARIATIONS APPEAR LARGER IN THE RELATIVE AMOUNT OF 3H-METANEPHRINE FORMED THAN IN THE CONCENTRATION PER GRAM OF TISSUE.

IN TABLE XV C, WHERE THE CONCENTRATION OF THYROXINE IN THE MEDIUM IS 160 TIMES HIGHER, THERE IS A SLIGHT INCREASE IN THE RELATIVE AMOUNT OF 3H-METANEPHRINE COMPARED TO THAT IN THE PREVIOUS TWO TABLES; FOR BOTH GROUPS. IN THE NORMAL GROUP, THIS CORRESPONDS
TABLE XV

THE EFFECT OF THYROXINE ON THE FORMATION OF ^{3}H-METANEPHRINE BY INTESTINAL STRIPS

AFTER A 5 MINUTE INCUBATION WITH ^{3}H-OL-ADRENALINE (8.3 x 10^-5 M)

(SERIES A & C)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>Correction for 50% Recovery</th>
<th>^{3}H-METANEPHRINE PER GRAM OF TISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>^{3}H-metanephrine extracted</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>COUNTS/MIN</td>
<td>COUNTS/MIN</td>
<td>%</td>
</tr>
<tr>
<td>1 N</td>
<td>2,385</td>
<td>168</td>
<td>4.6</td>
</tr>
<tr>
<td>2 N</td>
<td>1,905</td>
<td>96</td>
<td>5.0</td>
</tr>
<tr>
<td>3 N</td>
<td>4,200</td>
<td>213</td>
<td>5.1</td>
</tr>
<tr>
<td>4 N</td>
<td>3,510</td>
<td>160</td>
<td>4.6</td>
</tr>
<tr>
<td>5 N</td>
<td>4,185</td>
<td>178</td>
<td>4.3</td>
</tr>
<tr>
<td>1 Tu</td>
<td>3,445</td>
<td>111</td>
<td>4.5</td>
</tr>
<tr>
<td>2 Tu</td>
<td>5,250</td>
<td>275</td>
<td>5.2</td>
</tr>
<tr>
<td>3 Tu</td>
<td>4,950</td>
<td>273</td>
<td>5.5</td>
</tr>
<tr>
<td>1 T4</td>
<td>1,000</td>
<td>46</td>
<td>4.6</td>
</tr>
<tr>
<td>2 T4</td>
<td>4,506</td>
<td>255</td>
<td>5.2</td>
</tr>
<tr>
<td>3 T4</td>
<td>2,670</td>
<td>154</td>
<td>5.3</td>
</tr>
<tr>
<td>4 T4</td>
<td>2,790</td>
<td>168</td>
<td>6.0</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats ** Td: Tissue from thyroidecтомized rats *** T4: Tissue from thyroxine-тreated rats.
TABLE XV A

The Effect of Added Thyroxine (0.02 x 10⁻¹⁰ M) on the Formation of ³H-Metanephrine

by Intestinal Strips after a 5 minute incubation with ³H-DL-Adrenaline (8.3 x 10⁻⁸ M)

(Series C A)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>³H-Metanephrine Per Gram of Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>³H-Metanephrine extracted</td>
</tr>
<tr>
<td></td>
<td>COUNTS/MIN</td>
<td>COUNTS/MIN</td>
</tr>
<tr>
<td>1 N</td>
<td>860</td>
<td>38</td>
</tr>
<tr>
<td>2 N</td>
<td>930</td>
<td>46</td>
</tr>
<tr>
<td>3 N</td>
<td>860</td>
<td>52</td>
</tr>
<tr>
<td>4 N</td>
<td>720</td>
<td>54</td>
</tr>
<tr>
<td>5 N</td>
<td>1,265</td>
<td>72</td>
</tr>
<tr>
<td>1 Td</td>
<td>1,640</td>
<td>36</td>
</tr>
<tr>
<td>2 Td</td>
<td>1,595</td>
<td>70</td>
</tr>
<tr>
<td>3 Td</td>
<td>1,210</td>
<td>76</td>
</tr>
<tr>
<td>4 Td</td>
<td>1,075</td>
<td>54</td>
</tr>
<tr>
<td>5 Td</td>
<td>1,270</td>
<td>56</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats ** Td: Tissue from thyroidecctomized rats.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>3H-Metanephrine</th>
<th>PERCENT OF TOTAL</th>
<th>CORRECTION FOR 50% RECOVERY</th>
<th>3H-Metanephrine PERGRAM OF TISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>TOTAL PRESENT IN PERCHLORIC EXTRACT</td>
<td>3H-METANEPRINE EXTRACTED</td>
<td>COUNTS/MIN</td>
<td>COUNTS/MIN</td>
<td>%</td>
</tr>
<tr>
<td>1 N</td>
<td>1,160</td>
<td>54</td>
<td>4.7</td>
<td>9.4</td>
<td>0.23</td>
</tr>
<tr>
<td>2 N</td>
<td>1,020</td>
<td>66</td>
<td>6.5</td>
<td>13.0</td>
<td>0.26</td>
</tr>
<tr>
<td>3 N</td>
<td>1,090</td>
<td>48</td>
<td>4.4</td>
<td>8.8</td>
<td>0.19</td>
</tr>
<tr>
<td>4 N</td>
<td>950</td>
<td>54</td>
<td>5.7</td>
<td>11.4</td>
<td>0.22</td>
</tr>
<tr>
<td>1 Td</td>
<td>1,750</td>
<td>114</td>
<td>6.5</td>
<td>13.0</td>
<td>0.52</td>
</tr>
<tr>
<td>2 Td</td>
<td>1,100</td>
<td>72</td>
<td>6.5</td>
<td>13.0</td>
<td>0.39</td>
</tr>
<tr>
<td>3 Td</td>
<td>1,380</td>
<td>86</td>
<td>6.2</td>
<td>12.4</td>
<td>0.43</td>
</tr>
<tr>
<td>4 Td</td>
<td>1,310</td>
<td>80</td>
<td>6.1</td>
<td>12.2</td>
<td>0.45</td>
</tr>
<tr>
<td>5 Td</td>
<td>1,220</td>
<td>62</td>
<td>5.1</td>
<td>10.2</td>
<td>0.36</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats ** Td: Tissue from thyroideectomized rats.
TABLE XV C

The Effect of Added Thyroxine (2.66 x 10^{-10} M) on the Formation of ³H-Ketanephrine
by Intestinal Strips after a 5 Minute Incubation with ³H-DL-Adrenaline (8.3 x 10^{-8} M)

(Series C C)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>³H-Metanephrine extracted</th>
<th>Percent of Total</th>
<th>Correction for 50% Recovery</th>
<th>³H-Metanephrine per Gram of Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>³H-Metanephrine extracted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUNTS/Min</td>
<td>COUNTS/Min</td>
<td>%</td>
<td>%</td>
<td>10¹¹ moles/g</td>
</tr>
<tr>
<td>1 N</td>
<td>970</td>
<td>56</td>
<td>5.8</td>
<td>11.6</td>
<td>0.24</td>
</tr>
<tr>
<td>2 N</td>
<td>1,030</td>
<td>74</td>
<td>7.2</td>
<td>14.4</td>
<td>0.30</td>
</tr>
<tr>
<td>3 N</td>
<td>1,170</td>
<td>64</td>
<td>5.5</td>
<td>11.0</td>
<td>0.32</td>
</tr>
<tr>
<td>4 N</td>
<td>1,250</td>
<td>56</td>
<td>4.7</td>
<td>9.4</td>
<td>0.24</td>
</tr>
<tr>
<td>5 N</td>
<td>880</td>
<td>64</td>
<td>7.3</td>
<td>14.6</td>
<td>0.35</td>
</tr>
<tr>
<td>1 To **</td>
<td>1,150</td>
<td>90</td>
<td>7.8</td>
<td>15.6</td>
<td>0.33</td>
</tr>
<tr>
<td>2 To **</td>
<td>980</td>
<td>70</td>
<td>7.2</td>
<td>14.4</td>
<td>0.30</td>
</tr>
<tr>
<td>4 To **</td>
<td>950</td>
<td>64</td>
<td>6.7</td>
<td>13.4</td>
<td>0.31</td>
</tr>
<tr>
<td>5 To **</td>
<td>900</td>
<td>62</td>
<td>6.9</td>
<td>13.8</td>
<td>0.30</td>
</tr>
<tr>
<td>6 To **</td>
<td>1,230</td>
<td>54</td>
<td>4.4</td>
<td>8.8</td>
<td>0.32</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** To: Tissue from thyroidectomized rats.
TO A GREATER CONCENTRATION OF METANEPHRINE IN THE TISSUE, WHILE IN THE
THYROIDECTOMIZED GROUP THE ABSOLUTE AMOUNT OF METANEPHRINE IS
DECREASED COMPARED TO THAT WITH A CONCENTRATION OF THYROXINE 10 TIMES
LOWER.

STATISTICAL ANALYSIS OF THE RESULTS I

The statistical analysis of these data are presented in Table

XV d. Thyroxine does not seem to affect metanephrine formation in
vivo. (P values higher than 0.01 for both thyroidectomized versus
thyroxine-treated and thyroidectomized versus normal group). The
concentration of thyroxine of 0.02×10^{-10} M is not sufficient to
give a significant increase in metanephrine formation in the
thyroidectomized compared to the normal group (P value higher than
0.01). Ten times that concentration results in a significantly higher
increase in the thyroidectomized group. Increasing further the
concentration of thyroxine results in the disappearance of this
difference. It seems that the concentration of thyroxine is critical
in the effect on metanephrine formation since the significant
difference is present at only one concentration of thyroxine.

Among the normal rats, the addition of thyroxine to the incubation
medium causes an increase in the formation of 3H-metanephrine. In
the thyroidectomized group, there is an optimum concentration of
thyroxine at which the amount of 3H-metanephrine formed is maximum
(0.20×10^{-10} M). In both groups, the amount of 3H-metanephrine
formed corresponds to the amount of uptake; when the radioactive
Table XVII

The Effect of Thyroxine on the Formation of 3H-Metanephrine by Intestinal Strips

a 5 minute incubation with 3H-OL-Adrenaline (8.3 x 10^{-8} M)

Group Comparison

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Thyroxine Concentration in the Medium</th>
<th>Mean ± S. D.</th>
<th>T4-Treated</th>
<th>T</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Thyroidectomized</td>
<td></td>
<td>0.17 ± 0.047**</td>
<td>1.818</td>
<td>6</td>
</tr>
<tr>
<td>C A</td>
<td>0.00 x 10^{-10}M</td>
<td>0.17 ± 0.025</td>
<td>0.23 ± 0.070*</td>
<td>1.373</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>C A</td>
<td>0.02 x 10^{-10}M</td>
<td>0.16 ± 0.009</td>
<td>0.23 ± 0.045</td>
<td>2.083</td>
<td>8</td>
<td>0.1</td>
</tr>
<tr>
<td>C B</td>
<td>0.20 x 10^{-10}M</td>
<td>0.23 ± 0.029</td>
<td>0.43 ± 0.061</td>
<td>6.061</td>
<td>7</td>
<td>0.01</td>
</tr>
<tr>
<td>C C</td>
<td>2.00 x 10^{-10}M</td>
<td>0.29 ± 0.049</td>
<td>0.31 ± 0.013</td>
<td>1.273</td>
<td>9</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* Group comparison between normal and thyroidectomized rats

** Group comparison between thyroidectomized and thyroxine-treated rats.
CONTENT OF THE TISSUE IS INCREASED, SIMILARLY THE CONCENTRATION OF
\(^{3}\text{H}-\text{METANEPRINE}\) IS INCREASED AND VICE VERSA.

b) SERIES D: CONCENTRATION OF \(^{3}\text{H}-\text{DL-ADRENALINE}\)

16.7 \times 10^{-8} \text{M}

Doubling the concentration of \(^{3}\text{H}-\text{ADRENALINE}\) in the incubation
medium does not seem to affect the formation of metanephrine, in
both normal and thyroidectomized groups. As a matter of fact, the
percentage of \(^{3}\text{H}-\text{METANEPRINE}\) formed (Table XVI) is lower than
that observed at half the concentrations of \(^{3}\text{H}-\text{ADRENALINE}\) (Table XV)
there is a slightly higher metanephrine per gram of tissue from
thyroidectomized rats.

The addition of thyroxine (0.02 \times 10^{-10} \text{M}) causes an
increase in the relative and absolute amount of \(^{3}\text{H}-\text{METANEPRINE}\) in
the thyroidectomized group (Table XVI a). The normal tissues do not
appear to be affected by that concentration of thyroxine. In both
groups, the variations between individual results are high, for
the percentage values, but low in the absolute values. When the
concentration of thyroxine is 10 times higher (0.20 \times 10^{-10} \text{M})
(Table XVI b) the variations observed are increased, and they do not
disappear in the absolute amounts. This is especially true for the
normals. The amount of \(^{3}\text{H}-\text{METANEPRINE}\) in the tissue does not appear
to be affected by this concentration of thyroxine or by a ten fold
increase in thyroxine concentration (Table XVI c).
Table XVI

The Effect of Thyroidectomy on the Formation of 3H-Metanephrine by Intestinal Strips

After a 5 Minute Incubation with 3H-DL-Adrenaline (16.1×10^{-8} M)

(Series 0)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>Correction for 50% Recovery</th>
<th>3H-Metanephrine Per Gram of Tissue 10^{11} Moles/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>3H-Metanephrine extracted</td>
<td>Percent of Total</td>
</tr>
<tr>
<td></td>
<td>counts/min</td>
<td>counts/min</td>
<td>%</td>
</tr>
<tr>
<td>1 N *</td>
<td>1,330</td>
<td>36</td>
<td>2.7</td>
</tr>
<tr>
<td>3 N</td>
<td>1,150</td>
<td>76</td>
<td>6.6</td>
</tr>
<tr>
<td>4 N</td>
<td>1,550</td>
<td>80</td>
<td>5.2</td>
</tr>
<tr>
<td>1 Td **</td>
<td>2,210</td>
<td>82</td>
<td>3.7</td>
</tr>
<tr>
<td>2 Td</td>
<td>2,550</td>
<td>102</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Td</td>
<td>1,740</td>
<td>58</td>
<td>3.3</td>
</tr>
<tr>
<td>4 Td</td>
<td>1,900</td>
<td>124</td>
<td>6.5</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** Td: Tissue from thyroidectomized rats.
TABLE XVI A

The Effect of Added Thyroxine (0.02 x 10^{-10} M) on the Formation of 3H-Metanephrine

by Intestinal Strips after a 5 minute incubation with 3H-DL-Adrenaline (16.1 x 10^{-6} M)

(Series OA)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>3H-Metanephrine extracted</td>
<td>Percent of total</td>
<td>Correction for 50% recovery</td>
<td>3H-Metanephrine per gram of tissue</td>
</tr>
<tr>
<td></td>
<td>Counts/min</td>
<td>Counts/min</td>
<td></td>
<td></td>
<td>$\times 10^{-6}$ Molecules/g</td>
</tr>
<tr>
<td>1 N</td>
<td>1,520</td>
<td>68</td>
<td>4.5</td>
<td>9.0</td>
<td>0.27</td>
</tr>
<tr>
<td>2 N</td>
<td>1,220</td>
<td>74</td>
<td>6.1</td>
<td>12.2</td>
<td>0.26</td>
</tr>
<tr>
<td>3 N</td>
<td>2,740</td>
<td>164</td>
<td>6.0</td>
<td>12.0</td>
<td>0.26</td>
</tr>
<tr>
<td>4 N</td>
<td>2,330</td>
<td>104</td>
<td>4.5</td>
<td>9.0</td>
<td>0.22</td>
</tr>
<tr>
<td>5 N</td>
<td>3,050</td>
<td>148</td>
<td>4.9</td>
<td>9.8</td>
<td>0.25</td>
</tr>
<tr>
<td>6 N</td>
<td>3,750</td>
<td>132</td>
<td>3.5</td>
<td>7.0</td>
<td>0.18</td>
</tr>
<tr>
<td>1 TD **</td>
<td>3,930</td>
<td>216</td>
<td>5.5</td>
<td>11.0</td>
<td>0.42</td>
</tr>
<tr>
<td>2 TD</td>
<td>6,280</td>
<td>355</td>
<td>5.7</td>
<td>11.4</td>
<td>0.57</td>
</tr>
<tr>
<td>3 TD</td>
<td>4,260</td>
<td>276</td>
<td>6.5</td>
<td>13.0</td>
<td>0.57</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats ** TD: Tissue from thyroidectomized rats.*
<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>RADIOACTIVE MATERIAL</th>
<th>CORRECTION FOR 50% RECOVERY</th>
<th>3H-METANEPHRINE PER GRAM OF TISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL PRESENT IN PERCHLORIC EXTRACT</td>
<td>3H-METANEPHRINE EXTRACTED</td>
<td>PERCENT OF TOTAL</td>
</tr>
<tr>
<td></td>
<td>COUNTS/MIN</td>
<td>COUNTS/MIN</td>
<td>%</td>
</tr>
<tr>
<td>1 N</td>
<td>2,320</td>
<td>108</td>
<td>4.7</td>
</tr>
<tr>
<td>2 N</td>
<td>4,610</td>
<td>216</td>
<td>4.7</td>
</tr>
<tr>
<td>3 N</td>
<td>1,800</td>
<td>132</td>
<td>7.3</td>
</tr>
<tr>
<td>4 N</td>
<td>2,750</td>
<td>144</td>
<td>5.2</td>
</tr>
<tr>
<td>1 Td</td>
<td>3,750</td>
<td>166</td>
<td>4.5</td>
</tr>
<tr>
<td>2 Td</td>
<td>4,520</td>
<td>200</td>
<td>4.4</td>
</tr>
<tr>
<td>3 Td</td>
<td>3,570</td>
<td>192</td>
<td>5.4</td>
</tr>
<tr>
<td>4 Td</td>
<td>2,900</td>
<td>146</td>
<td>5.1</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats

** Td: Tissue from thyroidecotomized rats.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Radioactive Material</th>
<th>3H-Metanephrine per Gram of Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total present in perchloric extract</td>
<td>3H-Metanephrine extracted</td>
</tr>
<tr>
<td>1 N *</td>
<td>2,760</td>
<td>192</td>
</tr>
<tr>
<td>2 N</td>
<td>1,800</td>
<td>142</td>
</tr>
<tr>
<td>3 N</td>
<td>2,070</td>
<td>118</td>
</tr>
<tr>
<td>4 N</td>
<td>2,550</td>
<td>142</td>
</tr>
<tr>
<td>1 Td **</td>
<td>3,570</td>
<td>194</td>
</tr>
<tr>
<td>2 Td</td>
<td>3,790</td>
<td>246</td>
</tr>
<tr>
<td>3 Td</td>
<td>3,410</td>
<td>158</td>
</tr>
<tr>
<td>4 Td</td>
<td>2,940</td>
<td>158</td>
</tr>
</tbody>
</table>

* N: Tissue from normal rats
** Td: Tissue from thyroidecotomized rats.
Statistical analysis of the results

In Table XVI D, the statistical analysis of the data is presented. In the absence of exogenous thyroxine, there is no significant difference between normal and thyroidectomized groups. The addition of thyroxine (0.02 x 10^{-10} M) however, causes a significant increase in metanephrine formation in the thyroidectomized compared to the normal group, (P values lower than 0.01). Further increase in thyroxine concentration abolishes the significant difference, P value greater than 0.01.

In the normal group, the addition of thyroxine to the medium, causes first a decrease then an increase in metanephrine concentration. In the thyroidectomized group, the addition of thyroxine increases or decreases the 3H-metanephrine in the tissue depending upon the concentration of thyroxine in the medium. There is no definite pattern as in the case of normal group.

Analysis of variance

This state of affairs is reflected in next Table XVII, where an analysis of variance with interaction has been given. The data obtained from thyroidectomized and normal tissues, when thyroxine was absent from the medium, and for two concentrations of 3H-adrenaline in the incubation medium has been used to calculate the effect of endogenous thyroxine. There is no effect, in vivo, of either thyroxine alone, or adrenaline alone or adrenaline and thyroxine together (P values greater than 0.01).
Table XVI D

The Effect of Thyroxine on the Formation of \(^{3}H\)-Metanephrine by Intestinal Strips

After a 5 minute incubation with \(^{3}H\)-dl-Adrenaline (16.1 x \(10^{-8}\) M)

Group Comparison

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Thyroxine Concentration in the Medium</th>
<th>Mean ± S.D.</th>
<th></th>
<th>Degree of Freedom</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal</td>
<td>Thyroidectomized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.00 x (10^{-10}) M</td>
<td>0.25 ± 0.11</td>
<td>0.46 ± 0.15</td>
<td>1.700</td>
<td>< 0.2</td>
</tr>
<tr>
<td>D A</td>
<td>0.02 x (10^{-10}) M</td>
<td>0.23 ± 0.038</td>
<td>0.52 ± 0.088</td>
<td>4.255</td>
<td>< 0.01</td>
</tr>
<tr>
<td>D B</td>
<td>0.20 x (10^{-10}) M</td>
<td>0.36 ± 0.13</td>
<td>0.41 ± 0.079</td>
<td>0.652</td>
<td>> 0.50</td>
</tr>
<tr>
<td>D C</td>
<td>2.00 x (10^{-10}) M</td>
<td>0.38 ± 0.059</td>
<td>0.51 ± 0.072</td>
<td>2.784</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>
The effect of exogenous thyroxine, adrenaline or thyroxine and adrenaline together has been tested on normal and thyroidectomized animals. In the normal group, thyroxine alone has an effect on the formation of metanephrine. Adrenaline concentration alone has an effect on metanephrine formation, furthermore the effect of adrenaline alone is much more marked than that of thyroxine alone (F values). The nature of the effect depends upon the concentration of the hormones. When the concentration of adrenaline is higher, the formation of metanephrine is increased. The effect of thyroxine appears more complex (Table XV d and XVI d). The two hormones do not interact at all in their effect on metanephrine formation (P value greater than 0.01). This means that the individual effect of thyroxine concentration and adrenaline concentration will be present for all the concentrations of hormones studied. Because of the greater value of F in the case of adrenaline, it would seem that this effect will be more and more important as adrenaline concentration is increased, for a given concentration of thyroxine.

In the thyroidectomized group, thyroxine concentration alone does not affect ^{3}H-metanephrine formation (P value greater than 0.01). Adrenaline concentration, however, does affect metanephrine formation and this effect is even higher than that obtained with normal rats (F value is greater). The effect of adrenaline concentration is to increase metanephrine formation as the concentration of adrenaline increases (Table XV and XVI d). Thyroxine and adrenaline concentrations affect
Together the formation of metanephrine. That is to say, at a given concentration of adrenaline the presence of thyroxine will modify the effect of adrenaline. Whether it will increase or decrease the effect of adrenaline appears to depend upon the concentration studied.

At a given concentration of thyroxine, the effect of adrenaline will be modified, this is shown by the fact that at a concentration of thyroxine of 0.20×10^{-10} M, doubling the concentration of exogenous 3H-metanephrine, decreases the amount of 3H-metanephrine formed (Table XV o and XVI d).
<table>
<thead>
<tr>
<th>Source</th>
<th>d^0 F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>1 + 8</td>
<td>3.983</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>1 + 6 3</td>
<td>8.399</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>1 + 8</td>
<td>1.355</td>
<td>> 0.05</td>
</tr>
</tbody>
</table>

Effect of Endogenous Thyroxine: Series C and D

Normal Rats

<table>
<thead>
<tr>
<th>Source</th>
<th>d^0 F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>3 + 26</td>
<td>8.205</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>1 + 26</td>
<td>20.513</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>3 + 28</td>
<td>0.846</td>
<td>> 0.05</td>
</tr>
</tbody>
</table>

Thyroidectomized Rats

<table>
<thead>
<tr>
<th>Source</th>
<th>d^0 F</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroxine</td>
<td>3 + 25</td>
<td>2.375</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>1 + 25</td>
<td>37.500</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Thyroxine x Adrenaline</td>
<td>3 + 25</td>
<td>7.143</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
III. Discussion

For many years, the potentiation of catecholamine effects in hyperthyroidism has been observed. The attempts to reproduce experimentally in the animals the physiological effects observed in the patients have been successful where increased oxygen consumption, tachycardia, hyperglycemia, increased free fatty acids release are concerned. However, the biochemical attempts to explain the mechanism by which this potentiation takes place are somewhat contradictory. The direct effect of exogenous catecholamines on tissue from hyperthyroid or thyroid hormone-treated animals have been reported increased for heart tissue (63, 65), increased or unchanged for the free fatty acid release (72, 76, 156). In the case of the smooth muscle from small intestine some authors have reported an increased effect of exogenous adrenaline or noradrenaline (52, 81), while others have reported unchanged effects (67, 68). The increase in effect has been reported to be seen in an augmented duration of the effect rather than in a sensitization of the tissue to a lower dose of catecholamine (70). No attempt has been made to study the mechanism by which the potentiation of catecholamine effect in hyperthyroid small intestine takes place. In the heart of hypothyroid animal, an increase in adrenaline uptake (102), has been observed, while a decrease in noradrenaline uptake has been observed in whole hearts (101, 102) or in heart slices (160),
FROM HYPERTHYROID ANIMALS, IT WAS THOUGHT THAT A SIMILAR MECHANISM MAY BE INVOLVED IN THE SMALL INTESTINE AND THIS STUDY WAS UNDERTAKEN IN ORDER TO ATTEMPT THE ELUCIDATION OF THIS POINT. ALTHOUGH ADDITION OF THYROXINE IN VITRO, HAS NOT BEEN ALWAYS FOUND TO MIMIC THE POTENTIATING EFFECT OF THYROID HORMONES IN VIVO, ON THE SMALL INTESTINE, SEVERAL REPORTS HAVE BEEN PRESENTED, WITH AN EFFECT OF ADDED THYROXINE ON THE POTENTIATION OF EXOGENOUS ADRENALINE (84, 87). THESE REPORTS SEEMED TO FURNISH ENOUGH GROUND FOR A FURTHER INVESTIGATION OF THE SUBJECT. FROM THE LITERATURE REVIEWED, THE CONCENTRATION OF THYROXINE APPEARED TO BE AN IMPORTANT FACTOR. FOR THIS REASON THE DIFFERENCE IN THE UPTAKE OF ADRENALINE BY INTESTINAL STRIPS FROM NORMAL AND THYROIDECTOMIZED RATS WAS STUDIED AS A FUNCTION OF VARIOUS CONCENTRATIONS OF ADDED THYROXINE.

A) EFFECT OF THYROXINE ON ³H-ADRENALINE UPTAKE

1) UPTAKE OF RADIOACTIVE MATERIAL BY INTESTINAL STRIPS OF NORMAL RATS AFTER A 5 MINUTE INCUBATION WITH ³H-DL-ADRENALINE

The uptake of radioactive material by intestinal strips of normal rats, increases when the concentration of ³H-adrenaline in the incubation medium is increased. However, the amount of radioactive material concentrated by the tissue decreased as the concentration of ³H-adrenaline in the medium is increased. The uptake of radioactive material, by isolated tissue has been measured by several authors at a time much longer than the one used in this studies. The noradrenaline uptake was found by Titus and Dengler (100), in slices
OF CORTEX TO APPROACH A CONCENTRATION IN THE TISSUE FOUR TIMES THAT
IN THE MEDIUM FOR A PERIOD OF INCUBATION OF 40 TO 60 MINUTES. THE
CONCENTRATION OF 3H-noradrenaline used by these authors was about
16 TIMES HIGHER THAN THE HIGHEST CONCENTRATION USED IN THIS WORK.
SINCE INCREASING THE CONCENTRATION OF 3H-adrenaline appears to cause
A DECREASE IN THE CONCENTRATION OF RADIOACTIVE MATERIAL IN THE
TISSUE, SMALL INTESTINE APPEARS TO BEHAVE IN A DIFFERENT MANNER
FROM THE CORTEX. IN THE ATRIA, NORADRENALINE UPTAKE WAS FOUND
to be 17 % after a 75 MINUTE INCUBATION (160). SINCE THE RATIO
IS GIVEN FOR THE TOTAL RADIOACTIVITY IN THE MEDIUM, AND THAT THE
VOLUME OF THE INCUBATION MEDIUM AVERAGED 75 ML, IT CAN BE SEEN
THAT THE CONCENTRATION OF RADIOACTIVE MATERIAL IN THE TISSUE WAS
MUCH HIGHER THAN THAT IN THE MEDIUM. DENGLER ET AL (154)
OBSERVED THAT INCREASING THE CONCENTRATION OF 3H-noradrenaline in
THE INCUBATION MEDIUM RESULTED IN A DECREASE IN THE CONCENTRATION
OF RADIOACTIVE MATERIAL IN CORTEX SLICES. AT HIGH CONCENTRATIONS
OF 3H-noradrenaline in the medium, the tissue concentration was equal
to that in the medium (25 µg/ml). THIS APPEARS TO REFLECT A
DIFFERENCE IN MEMBRANE SINCE IN SUBCELLULAR CORTEX PARTICLES,
HIRKIN ET AL (170) FOUND THE UPTAKE TO BE DIRECTLY PROPORTIONAL TO THE
MEDIUM CONCENTRATION. IN THE SAME WORK, DENGLER ET AL OBSERVED THAT
LIVER AND MUSCLE DID NOT CONCENTRATE 3H-noradrenaline at a concent-
RATION SUPERIOR TO THAT IN THE MEDIUM. IN BOTH TISSUES, THE
CONCENTRATION OF RADIOACTIVE MATERIAL NEVER EXCEEDED THAT OF THE
medium. Similar observations have been made, in vivo, on the ratio of tissue adrenaline or noradrenaline to plasma adrenaline or noradrenaline, after injection of the amine. At levels which are higher than physiological level, the concentration of radioactive material in the tissue exhibits a tendency to equal that in the plasma (100, 151, 154). Although the doses of ^{3}H-adrenaline used in these experiments are lower than those used by the authors, the same decrease in radioactive material concentration of the tissue is observed as ^{3}H-adrenaline concentration is increased. The lowest dose of ^{3}H-adrenaline used is subliminal for physiological action. The highest dose used is still in the physiological range, however. The difference observed in this case, may reflect the difference in function between heart or cortex and small intestine. It is interesting to note in this respect, that the liver which is an organ of detoxication does not concentrate either adrenaline or noradrenaline at a level superior to that of the incubation medium.

In any case as shown by previous experiments (154), the rate of uptake of CA by tissues does not reach its maximum up till 20 minute of incubation. Moreover, the rate of uptake for the first twenty minutes is directly proportional to time. This means that in the small intestine, a 20 minute incubation may have resulted in a concentration of radioactive material approaching that in the medium.
2) **Uptake of radioactive material by intestinal strips**

From thyroxine-treated or thyroidectomized rats after a 5 minute incubation with 3H-adrenaline

A) **Thyroxine-treated rats**

For the single concentration of 3H-adrenaline assayed in the incubation medium (8.3×10^{-8} M), the uptake of radioactive material by the small intestine from thyroxine-treated rats is identical to that from normal rats. A daily injection for six days of thyroxine (p. 97) does not appear to affect the uptake of radioactive material by the small intestine. However, in view of Wurthmann et al.'s findings (102), the absence of thyroxine effect on the uptake of radioactive material may be only apparent. These authors found that following a single injection of 3H-adrenaline into rats, 30 seconds after the injection the radioactivity content of the heart was higher among the thyroxine-treated than among the normal group. The release of 3H-adrenaline, however, was more rapid in the hyperthyroid animals so that 5 minutes later, the radioactivity content of the heart from hyperthyroid animals was below that of the heart from normal animals. In this experiment however, a single injection of 3H-adrenaline was given, while in the in vitro experiments, the tissue was in contact with 3H-adrenaline for the whole period of incubation. From the studies of Dzidzic et al. (154), with noradrenaline, it would appear that the slices of tissue pick up the amine during at least 20 minutes of incubation. The time course for
THE UPTAKE REACHES A PLATEAU AT 25 MINUTES. THE SIMILARITY BETWEEN SMALL INTESTINE FROM THYROXINE-TREATED AND NORMAL ANIMALS SEEMS TO REFLECT A REAL LACK OF DIFFERENCE.

8) THYROIDECTOMIZED ANIMALS

Tissue concentration of the radioactivity. A reverse effect is observed in the case of thyroidectomized rats. If only the difference in the thickness of the tissues was responsible for the higher uptake, one would not expect a reversal of the effect but rather a more marked effect. Lein and Osmun (157) have shown that the diaphragm from smaller rats picks up thyroxine in greater amount than that picked up by adult rats diaphragm. The difference in the uptake was higher but the effect of various concentrations of thyroxine was similar in both cases. It appears that the same reasoning could be applied to the uptake of 3H-adrenaline by the small intestine.

In the analysis of variance with interaction thyroxine alone, adrenaline alone and the association of thyroxine plus adrenaline have been shown to affect the uptake of radioactive material by small intestine (Table X, page 106). The complete absence of thyroxine results in a higher uptake of radioactive material by small intestine, at a given concentration of 3H-adrenaline in the medium. Increasing the amount of 3H-adrenaline in the medium will produce an increase in the amount of radioactive material taken up by the tissues in the absence of thyroxine. Since thyroxine and adrenaline together have an effect, the effect of increasing 3H-adrenaline in the medium may be different depending upon the concentration of 3H-adrenaline used. It is possible to postulate such an hypothesis, since in the complete absence of
THYROXINE (THYROIDECTOMIZED RATS) THE TISSUE CONCENTRATION OF RADIOACTIVE MATERIAL INCREASES AS 3H-ADRENALINE CONCENTRATION IN THE MEDIUM IS INCREASED. IN THE NORMAL ANIMAL INCREASING THE CONCENTRATION OF 3H-ADRENALINE IN THE MEDIUM CAUSES A DECREASE IN THE RADIOACTIVITY CONCENTRATION OF THE TISSUE. THE PRESENCE OF ENDOGENOUS THYROXINE SEEMS TO ANTAGONIZE THE EFFECT OF 3H-ADRENALINE. HOWEVER, THYROXINE CANNOT REVERSE THE EFFECT OF 3H-ADRENALINE CONCENTRATION ON THE UPTAKE. THERE WILL ALWAYS BE AN ABSOLUTE INCREASE IN THE UPTAKE OF RADIOACTIVE MATERIAL BY TISSUE FROM NORMAL ANIMALS, EVEN IF THE RELATIVE CONCENTRATION OF RADIOACTIVE MATERIAL DECREASES. THE CHANGE IN THE DIRECTION OF UPTAKE WILL BE BROUGHT ABOUT BY 3H-ADRENALINE CONCENTRATION BUT NOT BY THE PRESENCE OF ENDOGENOUS THYROXINE.

3) THE EFFECT OF ENDOGENOUS THYROXINE ON THE UPTAKE OF RADIOACTIVE MATERIAL BY INTESTINAL STRIPE FROM NORMAL AND THYROIDECTOMIZED AFTER A 5 MINUTE INCUBATION WITH 3H-ADRENALINE

NORMAL RATS

THE EFFECT OF ADDED THYROXINE ON THE UPTAKE OF RADIOACTIVE MATERIAL BY THE SMALL INTESTINE FROM NORMAL RATS DEPENDS UPON THE CONCENTRATION OF 3H-ADRENALINE IN THE MEDIUM. FOR A GIVEN CONCENTRATION OF 3H-ADRENALINE IN THE MEDIUM, THE EFFECT DEPENDS UPON THE CONCENTRATION OF THYROXINE ADDED TO THE MEDIUM.

AT THE LOWEST CONCENTRATION OF 3H-ADRENALINE ASSAYED (1.16×10^{-8} H) THE PRESENCE OF THYROXINE RESULTS IN A DECREASED
uptake, only for a concentration of 2.0×10^{-10} M. Smaller amount of thyroxine decreases somewhat the uptake but not so significantly. When the concentration of 3H-adrenaline in the medium is increased 5 times (8.3×10^{-8} M), that concentration of thyroxine which inhibited the uptake previously is now causing an increased uptake. There is also an increased uptake, but smaller, for the concentration of thyroxine 10 times lower (0.20×10^{-10} M). The lower concentration of thyroxine assayed still has no effect on the uptake (0.02×10^{-10} M). When the concentration of 3H-adrenaline is ten times higher, thyroxine has no effect on the uptake, except at a concentration of 0.02×10^{-10} M.

For the three concentrations of 3H-adrenaline assayed, the concentration of thyroxine of 0.02×10^{-10} M appears to be critical. It always causes a decrease in the uptake, although this is not so marked at the concentration of 3H-adrenaline of 8.3×10^{-8} M.

The importance of the relative concentrations of the two hormones in the medium is pointed out when the analysis of variance is performed. Although 3H-adrenaline alone has a very marked effect on the uptake, thyroxine in the presence of adrenaline exerts also an effect on the uptake. Since thyroxine alone has no effect at a given concentration of adrenaline in the medium, the conjugated effect of adrenaline and thyroxine will always be in the same direction. Because of the large effect of adrenaline alone, at a given concentration of thyroxine, the effect of adrenaline alone will
BE ALWAYS MORE MARKED THAN THAT OF ADRENALINE AND THYROXINE TOGETHER. THIS IS SHOWN IN TABLE VIIId (PAGE 90), TABLE VIIId (PAGE 97) AND TABLE IXd (PAGE 103). INCREASING THE CONCENTRATION OF 3H-ADRENALINE IN THE MEDIUM RESULTS ALWAYS IN AN INCREASE IN THE UPTAKE OF RADIOACTIVE MATERIAL BY THE TISSUE.

Thyroidectomized Animals

In the thyroidectomized animals, the uptake of 3H-adrenaline depends also on both the concentration of 3H-adrenaline in the medium and on that of thyroxine in the medium.

For the lowest concentration of 3H-adrenaline assayed (1.16×10^{-8} M), the addition of a small amount of thyroxine to the medium (0.02×10^{-10} M) causes a slight increase in the uptake by the tissue. Increasing further the concentration of thyroxine results in the decrease of the uptake. When the concentration of 3H-adrenaline is 5 times higher, a concentration of thyroxine ten times higher is also required to give a maximum uptake. Further increase in thyroxine concentration causes a slight decrease in the uptake, but thyroxine is still efficient. When 3H-adrenaline concentration is increased tenfold, thyroxine for all concentrations inhibits the uptake. Furthermore at high concentration of thyroxine (2.0×10^{-10} M) interference with the uptake is shown by the large variations observed. This last factor is shown in the analysis of variance (Table X). While thyroxine alone has no effect in the
UPTAKE OF RADIOACTIVE MATERIAL BY THE TISSUE, IT INTERFERES WITH ADRENALINE. ALTHOUGH THE EFFECT OF ADRENALINE ALONE IS MUCH HIGHER THAN THAT OF BOTH HORMONES TOGETHER, IT DOES NOT PREVENT IT. AT A GIVEN CONCENTRATION OF 3H-ADRENALINE IN THE MEDIUM, THYROXINE WILL NOT PREVENT THE EFFECT OF ADRENALINE FOR ANY CONCENTRATIONS OF THYROXINE ASSAYED. THE INCREASING CONCENTRATION OF THYROXINE DOES NOT PREVENT THE UPTAKE OF ADRENALINE. BUT IT MAY DECREASE IT.

HOWEVER, SINCE ADRENALINE ALONE HAS A MUCH LARGER EFFECT, THYROXINE AT ALL CONCENTRATIONS WILL NOT PREVENT THIS EFFECT. ADRENALINE CONCENTRATIONS, ON THE OTHER HAND INCREASES THE UPTAKE OF RADIOACTIVE MATERIAL BY SMALL INTESTINE. AT A GIVEN CONCENTRATION OF THYROXINE, INCREASING THE CONCENTRATION OF EXOGENOUS ADRENALINE WILL RESULT IN AN INCREASED UPTAKE. THIS INCREASE IN UPTAKE MAY EXPLAIN WHY VARIOUS AUTHORS OBSERVED, IN THE SMALL INTESTINE AN INCREASED DURATION RATHER THAN A LOWER THRESHOLD IN THE PRESENCE OF THYROXINE (70, 87).

FOR ALL THE CONCENTRATIONS OF 3H-ADRENALINE OR THYROXINE ASSAYED, THERE IS A GREATER UPTAKE IN TISSUE FROM THYROIDECTOMIZED ANIMALS THAN IN THOSE FROM NORMAL RATS. THE HIGHER UPTAKE IS ALWAYS SIGNIFICANT AT A CONCENTRATION OF THYROXINE IN THE MEDIUM EQUAL TO $0.02 \times 10^{-10} M$, FOR THE THREE CONCENTRATIONS OF THYROXINE ASSAYED. THIS SHOWS THAT THE SMALL INTESTINE OF THYROIDECTOMIZED RATS IS VERY SENSITIVE TO THYROXINE. A SMALL AMOUNT OF THYROXINE HAS A LARGE EFFECT
on the uptake of adrenaline by the tissue. This result is in
contradiction with Thisault's findings, that thyroxine does not
affect adrenaline action at a concentration of thyroxine in the
medium below 10^{-12} (70). The dose of adrenaline used by this
author was identical to the highest one used here. When the
concentrations of thyroxine in the medium are increased, although
there is still an increase in the uptake for the thyroidectomized
group compared to the normal one, this difference is significant
only in one case, at a concentration of adrenaline of 16.1×10^{-8} M
for the concentration of thyroxine of 0.02×10^{-10} M.

As shown in the analysis of variance, both tissues from
thyroidectomized or normal animals, are affected by the concent-
tration of adrenaline alone but not by that of thyroxine alone. Both
hormones together, however, affect the uptake. At high concentrations
of thyroxine, the interaction between both hormones may be more
important. While in the normal animal, the endogenous thyroxine is
already present, in thyroidectomized animal it is not the case. The
addition of a small dose of thyroxine results in a large change for
the thyroidectomized animal, it will only lead to small changes in the
normal animal. However, when the concentration of thyroxine is
increased, there is a tendency for both tissues to attain an identical
level and this would explain why at high thyroxine concentration in
the medium, the uptake in both groups is not significantly different.
At this stage of the proceedings, the difference observed may be due to the difference in the thickness of the tissues.

It has been claimed by several workers (81, 83, 162) that the effect in vitro of thyroxine on adrenaline potentiation was due to the chelating power of thyroxine (as all aminoacids thyroxine forms a complex with copper (159)). By binding the copper present in the medium (due to impurities in the water and in the reagents used to prepare the medium) thyroxine would prevent its catalytic action on adrenaline oxidation. A greater amount of adrenaline would then be available for the tissue. In the case here, the use of albumin has been chosen, so that the copper present in the solution would be chelated by this protein. It thus appear that this property of thyroxine has been eliminated. There is still however, an effect of thyroxine. Whether the effect of thyroxine on the radioactive content of the tissue is due to an actual increase in ^{3}H-adrenaline or to an increase in the metabolites can be elucidated by identifying the radioactive material.

B) Effect of thyroxine on ^{3}H-adrenaline binding

The fact that large quantities of adrenaline are found in the tissues, after the physiological effects of the injections had disappeared since a long time, induced many authors to assume that the adrenaline found was not free but bound to some "binding sites" (98, 105, 151). Further experiments on the identification of radioactive material in tissues of animals injected ^{3}H- or ^{14}C-adrenaline
HAS SHOWN THAT AN IMPORTANT PERCENTAGE OF THE RADIOACTIVE MATERIAL
REPRESENTED UNCHANGED ADRENALINE. (161, 163). THE FACT THAT NO EFFECT
WAS PRESENT LEAD THESE AUTHORS TO ASSUME THAT THE ADRENALINE WAS
BOUND. MOREOVER, IT APPEARED THAT THE BINDING OF ADRENALINE REPRESER-
TED A RAPID INACTIVATION OF THE AMINE (161). THIS EFFECT HAS BEEN
SHOWN IN THE HEART, ATRIA OF CATS, RATS AND ALSO IN THE WHOLE HOUSE
(101, 158, 160). IN VIEW OF THESE FINDINGS IT WAS THOUGHT THAT PART
OF THE 3H-ADRENALINE RECOVERED IN THE INTESTINAL TISSUE AFTER A 5
MINUTE INCUBATION WAS PROBABLY BOUND 3H-ADRENALINE. THE INHIBITORY
EFFECT OF ADRENALINE ON THE SMOOTH MUSCLE OF THE SMALL INTESTINE IS
RAPID AND SHORT IN DURATION (160). A RELAXATION PERIOD IS EXHIBITED
BY THIS TISSUE AS BY ALL THE TISSUES ON WHICH NERVOUS TRANSMITTERS
HAVE AN ACTION (165). IT SEEMS THEN, THAT ALTHOUGH THE TISSUE WAS
IN CONTACT WITH 3H-ADRENALINE FOR FIVE MINUTES, THE EFFECT OF
ADRENALINE COULD BE ONLY INTERMITTENT. FOR THESE TWO REASONS, THE
3H-ADRENALINE IDENTIFIED WAS CONSIDERED AS BOUND ADRENALINE. THE
RINGING OF THE TISSUES AFTER INCUBATION PERMITTED TO POSTULATE
THAT THE EXTRACELLULAR OR NOT FIRMLY BOUND ADRENALINE WOULD HAVE
BEEN REMOVED BY THIS PROCESS.

1) **Binding of 3H-Adrenaline by Intestinal Strips From
Normal Rats After a 5 Minute Incubation with 3H-Adrenaline**

The 3H-Adrenaline bound by the small intestine from normal
rat represents a large percentage of the total radioactive content
of the tissue, when the concentration of 3H-Adrenaline in the
medium is 8.3×10^{-8} M (Table XII, page 111). When the concentration
of 3H-adrenaline in the medium is doubled, the percentage of bound 3H-adrenaline is about half. The absolute amount of 3H-adrenaline in both cases, however, is similar, because the uptake was larger at a higher concentration of 3H-adrenaline. This finding appears to imply that the small intestine from normal rats does not have unlimited binding sites. The saturation of these sites seems to occur very rapidly, since by doubling the concentration of a small concentration of 3H-adrenaline, the concentration of 3H-adrenaline in the tissue is identical. In their in vivo experiments, Wurtmann et al. (102), found that in the heart of normal rats, 3H-adrenaline represented 87% of the total radioactivity content. Iversen and Whitby (100), in the whole mouse, found that after a single injection of 3H-adrenaline, 3H-adrenaline represented about 40–45% of the total radioactivity content. The percentage of unchanged 3H-adrenaline decreased when the injected dose was increased. The change in percentage was however, much smaller than that occurring in this experiment. It is however difficult to compare quantitatively the doses of injected 3H-adrenaline to those used in an incubation medium.

A qualitative comparison seems more appropriate. In cat cerebral cortex slices incubated for 60 min with 3H-noradrenaline, Dengler et al. found that about 75% of the radioactivity could be accounted for by unchanged noradrenaline (154). Similar results were obtained for the hearts. Brodie et al. (155) had previously reported that slices of brain liver and skeletal muscle incubated for 60 minutes with
3^H-adrenaline showed that 3^H-adrenaline was bound in the tissues. However, as these authors identified directly the amine, without measuring the radioactive content of the tissues, the percentage of 3^H-adrenaline is not given as a function of the total radioactivity in the tissue. Wilson et al. (155) more recently showed that after one hour incubation with 3^H-adrenaline, cat cortex slices concentrated 3^H-adrenaline from the incubation medium. However, these authors as the previously cited ones did not measure the total radioactivity content of the tissue prior to 3^H-adrenaline identification. The small intestine in this regards, appears to behave like the heart or cortex, since the percentage of 3^H-adrenaline bound is a large part of the total radioactivity content.

2) Binding of 3^H-adrenaline by intestinal strips from thyroidectomized or thyroxine-treated animals, after a 5 minute incubation with 3^H-adrenaline

The pretreatment of animals with thyroxine does not appear to have any effect on the binding of 3^H-adrenaline for the concentration of 3^H-adrenaline used in the medium. Thyroidectomy does not appear to have an effect either on 3^H-adrenaline binding when the concentration of 3^H-adrenaline in the medium was 8.3×10^{-8} M. When the concentration of 3^H-adrenaline in the medium was doubled, there is a significantly higher binding of 3^H-adrenaline by tissue from thyroidectomized animals.
In the analysis of variance, the effect of the absence of thyroxine on the binding of ^{3}H-adrenaline by the tissue is shown (Table XIV, page 136). The absence of thyroxine has an effect on the binding of ^{3}H-adrenaline by the small intestine. This effect is large and is shown by an increased binding in the absence of endogenous thyroxine. These results are in the same line than those of Dengler and Titus (104), where a decrease in the radioactivity content of hyperthyroid heart was observed.

3) The effect of endogenous thyroxine on the binding of ^{3}H-adrenaline by intestinal strips from normal and thyroidectomized animals after a 5 minute incubation with ^{3}H-adrenaline

In the tissue from normal rat, for all the concentrations of ^{3}H-adrenaline studied, the binding of ^{3}H-adrenaline is proportional to the uptake. Thyroxine affects ^{3}H-adrenaline binding in the same direction as the uptake. The concentration of $0.02 \times 10^{-10}M$ thyroxine, when the concentration of ^{3}H-adrenaline is $8.2 \times 10^{-8}M$ inhibits the binding of ^{3}H-adrenaline. The presence of thyroxine in the medium does not appear to affect the relative amount of ^{3}H-adrenaline bound. The concentration of thyroxine however is important in the binding of ^{3}H-adrenaline by small intestine (Table XIV, page 126). From the individual experiments, the nature of the effect appears to be an inhibitory effect. This is consistent with previous findings in vivo, when the amount of ^{3}H-adrenaline was found lower in hyperthyroid animals (102).
In the thyroidecтомized group, the addition of thyroxine to the medium decreases the relative amount of 3H-adrenaline bound for the two concentrations of 3H-adrenaline assayed. Higher concentration of thyroxine decreases relatively more the binding of 3H-adrenaline at a given concentration of 3H-adrenaline.

There is a significantly higher binding of 3H-adrenaline by tissues from thyroidecтомized animals compared to normal ones. This significant difference is concomittent with that observed in the uptake. This would be in agreement with the theory that the rapid inactivation of adrenaline takes place by binding of the exogenous amine to the tissues. Thyroxine by inhibiting the binding of 3H-adrenaline could increase the concentration of free amine in the tissue and thus prevents further entrance of the exogenous amine into the tissue. This would explain why there is in some cases a decreasing uptake as a function of thyroxine concentration in the medium. On the other hand, thyroxine by preventing the binding of 3H-adrenaline could increase the level of free amine in the tissue, which thus would be brought down by enzymic degradation of the free amine. Since catechol-O-methyl transferase appears to be the enzyme mainly involved in the metabolism of "free" adrenaline (2), it was thought that it was of some interest to measure the 3H-metanephrine content of the tissue. In the light of D'Lonig and Havrides results (129, 131), it was also interesting to study the possible effect of thyroxine on the formation of metanephrine.
C) EFFECT OF THYROIDINE ON ^{3}H-METHANE-PHRINE FORMATION

1) THE FORMATION OF ^{3}H-METHANE-PHRINE BY INTESTINAL STRIPS FROM NORMAL RATS AFTER A 5 MINUTE INCUBATION WITH ^{3}H-ADRENALINE

After a 5 minute incubation with ^{3}H-adrenaline, the amount of ^{3}H-methanephrine formed in the small intestine from normal rats accounts for about 10% of the total radioactivity content of the tissue (Table XV) whether the amount of ^{3}H-adrenaline in the medium is 8 or 16.1×10^{-8} μg. Because the uptake of radioactive material is higher in the latter concentration of ^{3}H-adrenaline in the medium, the absolute amount of ^{3}H-methanephrine is also higher. So for the two concentrations of ^{3}H-adrenaline used, catechol-O-methyl transferase is not saturated. Iversen and Whitby have found that in the whole mouse, the injection of ^{3}H-adrenaline resulted after 30 minutes in the presence of 16% O-methylated metabolites. When that dose of adrenaline was 13 times higher, the percentage of O-methylated compound was higher (20%) (99). However, the total radioactivity content of the mouse is not given, so that the actual amount present in the mouse is not known. What seems important is the fact that the enzyme is not saturated at doses of ^{3}H-adrenaline larger than physiological doses. Thirty minutes after the beginning of a slow infusion of ^{3}H-adrenaline into cats, Axelrod et al. (143) observed that equal amount of ^{3}H-adrenaline and ^{3}H-methanephine were present in the small intestine. Since the animal was sacrificed immediately at the end of the infusion, the
EXPERIMENTAL CONDITIONS APPEAR TO IMITATE THOSE OF THESE EXPERIMENTS.

2) THE FORMATION OF \(^{3}\text{H}\)-METANEPHRINE BY INTESTINAL STRIPS
FROM THYROIDECTOMIZED AND THYROXINE-TREATED RATS AFTER A 5 MINUTE
INCUBATION WITH \(^{3}\text{H}\)-DL-ADRENALINE

Thyroamine-pre-treatment of rats does not appear to have
any effect on the formation of \(^{3}\text{H}\)-metanephrine in the small
intestine. The percentage of \(^{3}\text{H}\)-metanephrine formed by small
intestine from thyroxine-treated rats is similar to that found
in the normal rats. Moreover, the absolute amount of \(^{3}\text{H}\)-metanephrine
formed is also identical. It was suggested by Di Iorio and LeDoux, that
in thyrotoxicosis, the level of COMT activity was markedly decreased
because, in this case a decrease in protein synthesis is observed
(123). The effect of thyroxine injections would be a reflection
of a general effect of thyroxine on protein synthesis. When smaller
doses of thyroxine are injected and no thyrotoxic state is attained,
the level of COMT has been found decreased or unchanged in heart
or liver (102, 123). On the other hand, Di Iorio and Mavrides did
not find any effect of thyroxine or thyroxine analogues in vitro
on the partially purified liver COMT (129, 131). These authors
suggested that thyroxine effect \textit{in vivo} could be due to a
depletion by thyroxine of vitamin B12 (166). An indirect effect
of thyroxine on the methionine source of methyl group for trans-
methylation could be responsible for the decrease of metanephrine or
nor-metanephrine \textit{in vivo}. Recently, Barrieux, Proulx and Di Iorio could
not find any effect of the vitamin B12 on the liver or heart COMT.
IN NORMAL OR IODINATED-CASEIN-FED RATS (123).

IN THE THYROIDECTOMIZED RATS, THE FORMATION OF 3H-METANEPHRINE IS NOT SIGNIFICANTLY HIGHER THAN THAT FROM THE NORMAL RATS, IN THE SMALL INTESTINE, FOR THE TWO CONCENTRATIONS OF 3H-ADRENALINE USED IN THE INCUBATION MEDIUM. THE ABSENCE OF THYROXINE DOES NOT HAVE ANY EFFECT ON THE FORMATION OF METANEPHRINE IN THE SMALL INTESTINE. IT SHOULD BE TAKEN INTO ACCOUNT THAT THE CONJUGATED 3H-METANEPHRINE WAS NOT IDENTIFIED. A DIFFERENCE BETWEEN THE TWO GROUPS COULD THUS BE UNAPPARENT. HOWEVER, IN THE LIGHT OF THYROXINE METABOLISM WHERE CONJUGATED THYROXINE IS SPLIT IN THE SMALL INTESTINE INTO FREE THYROXINE AND GLUCURONIC ACID (167), IT CAN BE ASSUMED THAT THE GLUCURONIDE CONJUGATE OF 3H-METANEPHRINE DOES NOT CONSTITUTE FOR A LARGE PART TO THE TOTAL METABOLITES OF 3H-ADRENALINE, IN THESE EXPERIMENTAL CONDITIONS.

THE OXIDATIVE DEAMINATED METABOLITES OF 3H-METANEPHRINE COULD CONTRIBUTE A LARGE PERCENTAGE IN ADRENALINE METABOLITES. THEY WOULD ALL NECESSITATE THE ACTIVE PARTICIPATION OF MAO. THEIR PERCENTAGE COULD BE DEDUCTED FROM THE DIFFERENCE BETWEEN TOTAL UPTAKE AND THE SUM OF BOUND 3H-ADRENALINE AND 3H-METANEPHRINE FORMED.

AT TWICE THE CONCENTRATION OF 3H-ADRENALINE IN THE INCUBATION MEDIUM, IT APPEARS THAT THERE IS A LARGE INCREASE IN MAO METABOLITES. THE ABSENCE OF THYROXINE DOES NOT APPEAR TO AFFECT THE MAO ACTIVITY OF SMALL INTESTINAL STRIPS AT A GIVEN CONCENTRATION OF 3H-ADRENALINE. THIS IS IN CONTRADICTION WITH WURTMANN'S RESULTS. IN THEIR IN VIVO
Experiments, these authors found a large increase in the MAO metabolites in heart of thyroidectomized animals compared to normal [102]. However, heart MAO activity is small in the normal animal, while it appears to be the main enzyme in the small intestine [168]. On the other hand, Utley found that liver MAO was increased in thyroidectomized female rats, while treatment of these animals with T3 reduced that increase [171]. It seems that if the intestinal MAO activity is large, at the dose of 3H-adrenaline used in the medium, the enzyme is not saturated (Higher activity when higher substrate) and thus a difference in the activity when thyroxine is present may very well not be apparent.

\textbf{3) The effect of exogenous thyroxine on the formation of 3H-metanephrine by intestinal strips from normal and thyroidectomized rats after a 5 minute incubation with 3H-adrenaline}

\textbf{Normal rat}

In the normal rat thyroxine addition to the incubation medium appears to affect the formation of 3H-metanephrine by the small intestine.

At the lowest concentration of 3H-adrenaline in the medium (8.3 x 10^{-8} M), the addition of thyroxine resulted in a slight increase in the percentage of metanephrine formed. This increase is also present when the results are expressed as the absolute amount of 3H-metanephrine per gram of tissue (Table XV d). By doubling the concentration of 3H-adrenaline in the medium (16.1 x 10^{-8} M) the effect of thyroxine on the formation of 3H-metanephrine is still present. However, when the results are expressed as absolute values there is a slight decrease
IN METANEPHRINE FORMATION AT A CONCENTRATION OF THYROXINE IN THE
MEDIUM OF 0.02 x 10^{-10} M. THIS SLIGHT DECREASE APPEARS TO REFLECT
A DECREASE IN UPTAKE RATHER THAN A DECREASE IN COMT ACTIVITY,
SINCE THE PERCENTAGE OF 3H-METANEPHRINE FORMED WAS EQUAL TO THAT
IN THE ABSENCE OF THYROXINE IN THE MEDIUM. THE INCREASE IN METANE-
PHRINE FORMATION AT THE HIGHEST CONCENTRATION OF 3H-ADRENALINE
IN THE MEDIUM, IN THE PRESENCE OF THYROXINE PARALLELS THE
INCREASE IN THE UPTAKE. THE STATISTICAL ANALYSIS (TABLE XVII,
PAGE 144) SHOWS THAT THYROXINE ALONE HAS AN EFFECT ON THE FORMATION
OF METANEPHRINE BY INTESTINAL STRIPS, IN THE NORMAL RATS.

AT A CONSTANT CONCENTRATION OF 3H-ADRENALINE IN THE MEDIUM,
INCREASING THE CONCENTRATION OF THYROXINE WILL RESULT IN AN
INCREASE IN 3H-METANEPHRINE FORMED. THIS EFFECT APPEARS NOT TO BE
DUE TO A DIRECT EFFECT OF THYROXINE ON COMT ACTIVITY, BUT RATHER TO
A HIGHER UPTAKE OF 3H-ADRENALINE BY THE TISSUE, RESULTING IN A LARGER
CONCENTRATION OF SUBSTRATE AVAILABLE FOR THE ENZYME. THIS FINDING
APPEARS TO CONFIRM D'ICROIO AND HAVRIDE'S HYPOTHESIS (165), THAT
THE LACK OF DIRECT EFFECT OF THYROXINE, IN VITRO, ON LIVER COMT
SHOWED THAT THIS ENZYME WAS NOT DIRECTLY AFFECTED BY THYROXINE, IN VIVO.

THIS ALSO SHOWS, THAT INTERPOLATION OF IN VITRO TO IN VIVO
EXPERIMENTS REQUIRES GREAT CAUTION, SINCE IN VITRO, THYROXINE
APPEARS TO INCREASE THE FORMATION OF METANEPHRINE, WHILE IN VIVO
THIS HORMONE DECREASED PROTEIN SYNTHESIS (AT LARGE DOSES) AND THUS
ACTUALLY DECREASES METANEPHRINE FORMATION.

ADRENALINE ALONE DOES HAVE AN EFFECT ON METANEPHRINE
FORMATION IN THE SMALL INTESTINE FROM NORMAL RATS. AND HERE AGAIN THIS EFFECT SEEMS TO BE RELATED TO A LARGER AMOUNT OF SUBSTRATE AVAILABLE RATHER THAN TO A SUBSTRATE-ACTIVATION OF THE ENZYME. THIS HYPOTHESIS IS BASED UPON OUR OWN FINDINGS THAT INCREASING ^{3}H-ADRENALINE IN THE MEDIUM RESULTS IN AN INCREASED UPTAKE. IT IS ALSO SUPPORTED BY DIORIO AND MAVRIDES' IN VITRO EXPERIMENTS ON LIVER SOFT (129, 131). SINCE HOWEVER, COMT FROM DIFFERENT ORGANS HAS BEEN SHOWN TO EXHIBIT A DIFFERENT REACTION TO THYROID (102), THE SUPPORT GIVEN BY DIORIO AND MAVRIDES' FINDINGS IS SOMEWHAT LIMITED.

THE DIFFERENCE BETWEEN UPTAKE AND (ADRENALINE PLUS METANEPHRIINE), REFLECTING MAO ACTIVITY, CHANGES IN THE PRESENCE OF THYROID. THYROID HAS SOME EFFECT ON OXIDATIVE DEAMINATION OF THE AMINE, THE PERCENTAGE OF UNIDENTIFIED METABOLITES INCREASES WITH THE FIRST ADDITION OF THYROID. INCREASING FURTHER THE CONCENTRATION OF THYROID DOES NOT RESULT IN FURTHER INCREASE IN THE DEAMINATION. SMALL INTESTINE FROM NORMAL RAT SEEMS TO BE VERY SENSITIVE TO THE ADDITION OF A SMALL DOSE OF THYROID, WHERE MAO ACTIVITY IS CONCERNED. INTERACTION BETWEEN THYROID AND ADRENALINE DOES NOT AFFECT THE FORMATION OF ^{3}H-METANEPHRINE BY THE SMALL INTESTINE.

THYROIDECTOMIZED ANIMALS

IN SMALL INTESTINE FROM THYROIDNECTOMIZED RATS, ^{3}H-METANEPHRINE FORMATION SEEMS UNCHANGED OR INCREASED BY THE
addition of thyroxine to the medium. The percentage of 3H-metanephrine formed at the lowest concentration of 3H-adrenaline in the medium is unchanged by addition of thyroxine to the medium. However, since 3H-adrenaline uptake increases with the addition of thyroxine, the concentration of 3H-metanephrine by gram of tissue is also increased.

When the concentration of 3H-adrenaline in the medium is twice increased, there is an increase in the metanephrine formed at the two extreme concentrations of thyroxine assayed (Table XVI D, page 141). There is a slight decrease in 3H-metanephrine formation in the intermediate concentration of thyroxine assayed. The formation of 3H-metanephrine does not reflect the increase in the uptake. In the small intestine from thyroidectomized rats, thyroxine appears to affect COMT activity in a manner different of that in the normal rats. This is shown (Table XVII, page 144) by the fact that in the thyroidectomized animals, thyroxine alone does not affect metanephrine formation while it does affect it in conjunction with adrenaline. Adrenaline concentration does affect the formation of 3H-metanephrine by the small intestine from thyroidectomized animals. It is interesting to note that both in the uptake and in the formation of 3H-metanephrine, in the thyroidectomized rats, thyroxine alone has no effect, but does have one in relation with adrenaline. It would appear that the effect of thyroxine takes place at two stages. At low concentrations of thyroxine, thyroxine alone does not have any effect (thyroidectomized rats).
At higher concentration thyroxine alone does have an effect while no interaction occurs (normal rats). In the thyroidectomized rats, addition of thyroxine to the medium, for the two concentrations of 3H-adrenaline assayed resulted in an increase in the MAO metabolites formed.

Normal and thyroidectomized rats

There is an increase in 3H-metanephrine formed by the small intestine from thyroidectomized when compared to normal rats. This increase is found to be significant for both concentrations of 3H-DL-adrenaline assayed, at a different concentration of thyroxine. The amount of thyroxine necessary to bring about a significant difference is decreased tenfold, when the concentration of 3H-DL-adrenaline is increased twice. For the uptake and binding, the critical concentration of thyroxine was 0.02×10^{-10} M, whatever the concentration of exogenous adrenaline were. In the case of metanephrine formation, this concentration is critical only at a high concentration of exogenous adrenaline. At a low concentration of adrenaline, a higher concentration of thyroxine is necessary for the formation of metanephrine to be affected. It appears, thus, that the uptake and the binding of exogenous adrenaline are affected by smaller doses of thyroxine than the enzyme. Thyroxine is known to penetrate very slowly into the cell (163), and this difference in sensitivity may reflect:

1) that the penetration of 3H-adrenaline is facilitated by thyroxine,
2) that if thyroxine acts as an activator of binding and an inhibitor
OF THE ENZYME, EITHER THE BINDING SITES ARE MORE READILY AVAILABLE
THAN THE ACTIVE SITES OF THE ENZYME TO THYROXINE OR, THAT THE
AFFINITY OF THE FORMER IS GREATER THAN THAT OF THE LATTER FOR
THYROXINE.

The fact that thyroxine does have an effect on metanephrine
formation shows that thyroxine does not act only by chelating copper
(81, 83). The increased formation of 3H-metanephrine in the presence
of thyroxine appears to be in contradiction with the in vivo
findings that in hyperthyroid animals, the level of COMT in both
heart and liver is decreased or unchanged compared to normal animals.
It appears also to be in contradiction with the in vitro assay of
thyroxine on COMT activity (166). However, the contradiction is
only apparent since the effect of thyroxine in the formation of
metanephrine seems mainly due to an indirect effect through
increased substrate availability for the enzyme.
SUMMARY AND CONCLUSION

The uptake of radioactive material by intestinal strips from normal, thyroxine-treated and thyroidectomized rats, after a 5 minute incubation with 3H-DL-adrenaline has been studied. Intestine from thyroxine-treated and normal rats exhibited identical uptake of radioactive material, while a larger uptake was observed in the small intestine from thyroidectomized rats. For the three concentrations of 3H-adrenaline assayed in the medium, intestine from thyroidectomized rats exhibited always a larger uptake when compared to normal rats. For both groups, a higher uptake was seen when the concentration of 3H-adrenaline in the medium was increased. The addition of exogenous thyroxine to the medium resulted in a change in the uptake at a constant concentration of 3H-adrenaline for both normal and thyroidectomized groups. The effect of thyroxine for both groups was found to depend upon the concentrations of thyroxine and of 3H-adrenaline assayed. Thyroxine alone was found without effect, while adrenaline alone was very efficient. Both hormones together affect the uptake by intestinal strips from normal or thyroidectomized rats.

The binding of 3H-adrenaline by intestine from normal and thyroxine-treated rats was found similar. Thyroidectomy resulted in a higher binding of 3H-adrenaline by intestinal strips when compared to the normal group. The addition of thyroxine to the
INCUBATION MEDIUM RESULTED IN A LOWER BINDING OF ^{3}H-ADRENALINE IN BOTH NORMAL AND THYROIDECTOMIZED GROUPS.

THE FORMATION OF ^{3}H-METANEPHRINE BY INTESTINAL STRIPS WAS NOT DIRECTLY AFFECTED BY THYROXINE, EITHER ENDOGENOUS OR EXOGENOUS. THE INCREASED AMOUNT OF ^{3}H-METANEPHRINE FORMED IN THE PRESENCE OF THYROXINE, APPEARS TO BE INDIRECTLY DUE TO A LARGER UPTAKE. ON THE OTHER HAND THE UNIDENTIFIED METABOLITES WERE AFFECTED BY THE ADDITION OF EXOGENOUS THYROXINE.

THE RESULTS WERE DISCUSSED IN THE LIGHT OF PREVIOUS WORK. THE SMALL INTESTINE FROM RATS APPEARS TO BEHAVE IN A MANNER SIMILAR TO THE OTHER SMOOTH MUSCLE STUDIED WHERE THE UPTAKE AND BINDING OF ^{3}H-ADRENALINE ARE CONCERNED. ON THE OTHER HAND, IT WOULD SEEM THAT THE ACTIVITY OF MAO IN THE SMALL INTESTINE IS INCREASED IN THE PRESENCE OF THYROXINE. SINCE THE EVIDENCE ON MAO IS INDIRECT, IT WOULD SEEM INTERESTING TO IDENTIFY THE "UNKNOWN MATERIAL" TO SEE WHETHER IT CORRESPONDS TO DEAMINATED METABOLITES OF ADRENALINE OR TO CONJUGATED METABOLITES. BECAUSE MAO HAS BEEN POSTULATED TO DEGRADE CATECHOLAMINES WHICH HAVE BEEN FOUND IN THE CELL, IT WOULD BE OF INTEREST TO STUDY A TIME-COURSE OF ADRENALINE UPTAKE, BINDING AND METABOLISM AS A FUNCTION OF ADRENALINE AND THYROXINE CONCENTRATIONS.

FROM THE WORK PRESENTED HERE, THE RELATIVE CONCENTRATIONS OF BOTH THYROXINE AND ADRENALINE SEEM TO PLAY AN IMPORTANT ROLE IN THE UPTAKE, BINDING AND METABOLISM OF ADRENALINE IN THE INTESTINE OF THE RAT.
REFERENCES

36) Mayer S. E., Cotten H. de V., Moran N. C., J. Pharmacol.,
115: 415, 1936.
41) Brewster W. R., Isaac P., Osgood P. F., King T. L., Circulation,
1963.
279, 1933.
49: 704, 1942.
50) SCHWROCKLOTZ R. E., KURLAND G. E., FREEDBERG A. S., METABOLISM,
2 : 546, 1953.
52) TRENDELFURG U., BRIT. J. PHARMACOL., 8 : 454, 1953.
59) COLLIP J. B., THOMSON D. L., TEBB G., J. PHYSIC. (LONDON),
88 : 191, 1936.
62) MC DONALD C. H., SHEPARD W. L., GREEN M. F., DEGROAT A.F.,
63) HOFFMAN F., HOFFMAN E. J., TALESINIK J., AM. J. PHYSIC.,
64) THIER M. D., GRAVENSTEIN J. S., HOFFMAN R. C., J. PHARMACOL.
66) MAC MILLAN W. R., RAND M. J., J. PHARMACY PHARMACOL., 14 : 257,
1958.
66) FelT J., SchoYEAR B., Benes P., Plzak F., VroBEnskY V.,
ExPERIENtIA, 18 : 379, 1962.
70) DenforADO J. M., WIGGINS L. L., J. PharmaCOL. Exptl. TherAP.,
1960.
75) Shida H., MEYERS R. A., Barker S. B., J. PharmaCOL. Exptl. TherAP.,
88) STRONGBRO D. C. R., NICKERSON M., J. PHARMACOL. EXPTL. THERAP.,
90) WEIL-MALHERBE H., WHITBY L. G., AXELROD J., J. NEUROCHEM.,
92) WEINER N., TRENDLEBURG U., J. PHARMACOL. EXPTL. THERAP.,
 137 : 56, 1962.
94) HERTLING G., AXELROD J., PATRICK R. W., BR. J. PHARMACOL.,
96) POTTER L., AXELROD J., J. PHARMACOL. EXPTL. THERAP., 140 : 199,
 1963.
97) POTTER L. T., AXELROD J., KOPIN I. J., FED. PROC., 21 : 117,
 1962.
98) KOPIN I. J., HERTLING G., GORECH E. K., J. PHARMACOL. EXPTL.
100) TITUS O., DENGLER H. J., 1ST INTERNL. PHARMACOL. MEETING,
 STOCKOLM 31, 9, 1961.

