INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
NOTE TO USERS

This reproduction is the best copy available.
SHORT TERM AXIAL LOAD - MOMENT
INTERACTION CHARACTERISTICS OF
REINFORCED CONCRETE BEAM - COLUMN
MEMBERS

by

RON ERNEST BROWN

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Applied Science in the Faculty
of Graduate Studies of the University of
Ottawa, Ottawa, Canada.

October, 1969.
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
SYNOPSIS

This thesis presents the test results from experimental work carried out on reinforced concrete beam-column members. The tests were designed to study the strength and deformational behaviour of these members under the combined effects of axial load and moment.

Fifty-five members were tested and these were subdivided into eleven series (S1-S11) of five specimens. The specimens in each series were identical in all respects.

Each member was 6' - 0" long and had cross-sectional dimensions of 6" x 8". The test span in each case was 5' - 6".

The percentage of longitudinal steel reinforcement was the only variable between the different series and it was varied between 1.04 and 6.58 percent. This range was chosen to lie within that allowed for column members by the Building Code Requirements for Reinforced Concrete (ACI 318-63).

Each member of a series was tested to failure under the action of axial load and bending moment. The members in each series were tested under different levels of axial load up to a maximum of 100 kips.

Continuous measurements of loads, strains and deflections were made throughout the tests. Concrete strains were measured over a gauge length of 10" at the central portion of the specimens using ten linear variable differential transformers. The transformers were mounted using 1" x 1" x ½" aluminum mountings which were cemented to the surface of the specimens. Deflections were measured at seven locations in the test span using deflection dial gauges. The results obtained were used to derive the axial load-moment, moment-curvature and load-deflection be-
haviour of the specimens.

Presented also are "plastic design" theory expressions for reinforced concrete sections. These expressions were derived from the equilibrium and compatibility equations for the section and they enable rapid calculation of the axial load-moment interaction diagram and the ultimate curvature capacity of beam-column sections.

Satisfactory agreement was obtained between the theoretical and experimental results.
TABLE OF CONTENTS

SYNOPSIS... 1
LIST OF FIGURES.. iii
LIST OF TABLES.. vi
LIST OF FLOW CHARTS.. vii
LIST OF PHOTOGRAPHS... viii
LIST OF DRAWINGS... ix

CHAPTER

1 INTRODUCTION... 1
 1.1 OBJECT.. 1
 1.2 LIMIT DESIGN AND PLASTIC DESIGN......................... 2
 1.3 COMPATIBILITY CONDITION.. 3
 1.4 ROTATION CAPACITY.. 6
 1.5 MOMENT-CURVATURE RELATIONSHIP.............................. 6
 1.6 ASSUMPTIONS... 7
 1.7 SCOPE... 7
 1.8 ACKNOWLEDGEMENTS.. 8
 1.9 NOTATION.. 8

2 ULTIMATE STRENGTH AND CURVATURE OF REINFORCED CONCRETE BEAM-COLUMNS................................. 11
 2.1 MEMBERS IN PURE FLEXURE....................................... 11
 2.2 HINGES UNDER COMBINED FLEXURAL AND DIRECT COMPRESSIONAL STRESSES..................................... 14
 2.3 INTERACTION DIAGRAM.. 15
 2.4 MATHEMATICAL EXPRESSIONS FOR BEAM-COLUMNS.............. 17

3 TEST OBJECTIVE AND OUTLINE, MATERIALS, APPARATUS, FABRICATION AND TEST PROCEDURES...................... 27
 3.1 TEST PROGRAM.. 27
 3.2 DESIGN OF TEST SPECIMENS....................................... 28
 3.3 FABRICATION AND MATERIALS.................................... 29
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DISTRIBUTION OF CURVATURE NEAR A SUPPORT</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>MOMENT-CURVATURE RELATION</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>ASSUMED STRESS-STRAIN RELATION FOR CONCRETE IN COMPRESSION (HOGNESTAD)</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>TYPICAL STEEL REINFORCEMENT CURVE</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>STRESS AND STRAIN DISTRIBUTION AT YIELD OF TENSION REINFORCEMENT AND AT ULTIMATE FOR PURELY FLEXURAL HINGES</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>STRESS AND STRAIN DISTRIBUTION AT ULTIMATE FOR BEAM-COLUMN SECTION (TENSILE AND COMPRESSION HINGES)</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>SECTION FAILURE PARAMETERS FOR BEAM-COLUMN SECTIONS</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>STRESS AND STRAIN DISTRIBUTION AT ULTIMATE FOR BEAM-COLUMN HINGES (COMPRESSIVE HINGE)</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>SCHEMATIC DRAWINGS - TRANSVERSE LOAD - TEST DIMENSIONS AND TRANSCLUDER LAYOUT</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>SCHEMATIC DRAWING - LOADING AND LOAD MEASURING ELECTRONIC CIRCUITRY</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>SCHEMATIC DRAWING - LAYOUT OF STRAIN MEASURING CIRCUITRY AND DEVICES</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>SCHEMATIC DRAWING - AXIAL LOADING AND SKETCH OF HORIZONTAL PINS</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>RELATIONSHIP BETWEEN STATIC MODULUS OF ELASTICITY AND THE RATIO OF STATIC TO RESONANCE MODULI. AFTER SHARMA AND GUPTA (22)</td>
<td>66</td>
</tr>
<tr>
<td>15</td>
<td>STRESS-STRAIN RELATION FOR NO. 6 REINFORCING STEEL BAR.</td>
<td>67</td>
</tr>
<tr>
<td>16</td>
<td>STRESS-STRAIN RELATION FOR NO. 7 REINFORCING STEEL BAR.</td>
<td>68</td>
</tr>
<tr>
<td>17</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S1</td>
<td>69</td>
</tr>
<tr>
<td>18</td>
<td>MOMENT-CURVATURE DIAGRAM - S1</td>
<td>70</td>
</tr>
<tr>
<td>19</td>
<td>LOAD-DEFLECTION DIAGRAM - S1</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>ECCENTRICITY-ULTIMATE CURVATURE DIAGRAM - S1</td>
<td>72</td>
</tr>
<tr>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>MOMENT-CURVATURE DIAGRAM - S2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>LOAD-DEFLECTION DIAGRAM - S2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>ECCENTRICITY-ULTIMATE CURVATURE DIAGRAM - S2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S3</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>MOMENT-CURVATURE DIAGRAM - S3</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>LOAD-DEFLECTION DIAGRAM - S3</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>ECCENTRICITY-ULTIMATE CURVATURE DIAGRAM - S3</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S4</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>MOMENT-CURVATURE DIAGRAM - S4</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>LOAD-DEFLECTION DIAGRAM - S4</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>ECCENTRICITY-ULTIMATE CURVATURE DIAGRAM - S4</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S5</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>MOMENT-CURVATURE DIAGRAM - S5</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>LOAD-DEFLECTION DIAGRAM - S5</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>ECCENTRICITY-ULTIMATE CURVATURE DIAGRAM - S5</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S6</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>MOMENT-CURVATURE DIAGRAM - S6</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>LOAD-DEFLECTION DIAGRAM - S6</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>ECCENTRICITY-ULTIMATE CURVATURE DIAGRAM - S6</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S7</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>MOMENT-CURVATURE DIAGRAM - S7</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>LOAD-DEFLECTION DIAGRAM - S7</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>ECCENTRICITY-ULTIMATE CURVATURE DIAGRAM - S7</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S8</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>MOMENT-CURVATURE DIAGRAM - S8</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>LOAD-DEFLECTION DIAGRAM - S8</td>
<td></td>
</tr>
<tr>
<td>TABLE</td>
<td>PPRTIES OF TEST SPECIMENS</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>DESIGN PROPERTIES OF TEST SPECIMENS</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>WORKABILITY AND AIR ENTRAINMENT OF CONCRETE</td>
<td>116</td>
</tr>
<tr>
<td>4</td>
<td>SIEVE ANALYSIS OF AGGREGATES</td>
<td>116</td>
</tr>
<tr>
<td>5</td>
<td>TEST RESULTS OF STEEL REINFORCEMENT BARS</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>CONCRETE TEST PROPERTIES</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>SUMMARY OF TEST RESULTS</td>
<td>120</td>
</tr>
<tr>
<td>DIAGRAM</td>
<td>PROGRAM</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td>123</td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td>125</td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td>129</td>
</tr>
</tbody>
</table>
List of Photographs

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compression Test on 6" x 12" Cylinder</td>
<td>133</td>
</tr>
<tr>
<td>2</td>
<td>Electro Dynamic Tester - Resonance Modulus of Elasticity 3" x 3" x 12" Prisms</td>
<td>133</td>
</tr>
<tr>
<td>3</td>
<td>Layout of Linear Variable Differential Transformers and Deflection Gauges</td>
<td>134</td>
</tr>
<tr>
<td>4</td>
<td>100 KIP Capacity Hydraulic Cylinder and Details of Vertical and Horizontal Pins</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>100 KIP Capacity Load Cell</td>
<td>135</td>
</tr>
<tr>
<td>6</td>
<td>Unsymmetrically Reinforced Beam-Column After Test - Series S6</td>
<td>136</td>
</tr>
<tr>
<td>7</td>
<td>Symmetrically Reinforced Beam-Column After Test - Series S10</td>
<td>136</td>
</tr>
<tr>
<td>Drawing No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>A-1216-30-S1</td>
<td>BEAM-COLUMN SERIES - S1</td>
<td>138</td>
</tr>
<tr>
<td>A-1216-30-S2</td>
<td>BEAM-COLUMN SERIES - S2</td>
<td>139</td>
</tr>
<tr>
<td>A-1216-30-S3</td>
<td>BEAM-COLUMN SERIES - S3</td>
<td>140</td>
</tr>
<tr>
<td>A-1216-30-S4</td>
<td>BEAM-COLUMN SERIES - S4</td>
<td>141</td>
</tr>
<tr>
<td>A-1216-30-S5</td>
<td>BEAM-COLUMN SERIES - S5</td>
<td>142</td>
</tr>
<tr>
<td>A-1216-30-S6</td>
<td>BEAM-COLUMN SERIES - S6</td>
<td>143</td>
</tr>
<tr>
<td>A-1216-30-S7</td>
<td>BEAM-COLUMN SERIES - S7</td>
<td>144</td>
</tr>
<tr>
<td>A-1216-30-S8</td>
<td>BEAM-COLUMN SERIES - S8</td>
<td>145</td>
</tr>
<tr>
<td>A-1216-30-S9</td>
<td>BEAM-COLUMN SERIES - S9</td>
<td>146</td>
</tr>
<tr>
<td>A-1216-30-S10</td>
<td>BEAM-COLUMN SERIES - S10</td>
<td>147</td>
</tr>
<tr>
<td>A-1216-30-S11</td>
<td>BEAM-COLUMN SERIES - S11</td>
<td>148</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

1.1 OBJECT

The object of this study was the determination of the interaction characteristics of reinforced concrete members subjected to axial load and bending. This was achieved by the determination of the axial load/moment and moment/curvature characteristics from short duration tests carried out on fifty-five reinforced concrete members. Theoretical design expressions have been developed which enable the rapid calculation of the ultimate curvature of beam-column members.

1.2 LIMIT DESIGN AND PLASTIC DESIGN

The limit design of structural concrete and the plastic design of structural steel are based on a recognition of the inelastic behaviour of structures at high loads and the resulting redistribution of internal moments and forces at various points within a structure. The two design methods differ in an important respect.

The plastic design theory for steel considers the structure at incipient collapse, i.e., the structure has become a mechanism by the formation of a sufficient number of plastic hinges. These hinges are assumed to be formed at discrete points in the members of the structure and they rotate at a moment of resistance equal to the ultimate moment capacity of the critical sections. Little attention has been paid to the magnitude of the post yield rotations as redistribution of moments proceed. It is known that the hinges can develop sufficient rotation to enable complete redistribution of moments without rupture.

Limit design of structural concrete, however, recognises that
concrete crushes at comparatively low strains and that the ductile capacity of a hinge could be exhausted before full redistribution of internal moments and forces is achieved. It is therefore of prime importance to consider the deformational capacity of hinging regions in any theory of limit design for structuctural concrete and that the capacity should be of a magnitude as to enable full plastic adaptability under load to become effective.

Due to the response of reinforced concrete to load; limit design requires a reasonable factor of safety against yielding of the critical sections at working loads. Thus, the magnitudes of the crack openings and deflections are kept within permissible limits.

Limit design of reinforced concrete involves a consideration of the following:

(a) Limit Equilibrium
(b) Rotational Compatibility
(c) Structure Serviceability

Methods of limit design have been proposed by Baker (1)*, Sawyer (2), Cohn (3), Berwanger (4). These methods have emphasized the above three considerations to varying degrees.

A study of the rotational capacity of reinforced concrete sections is essential to the determination of the rotational compatibility condition at hinging regions throughout a structure.

1.3 COMPATIBILITY CONDITION

A general statement of the compatibility condition at plastic hinges can be expressed mathematically. Consider a statically indeterminate structure subjected to a loading system which can be defined by a

*The numbers in parenthesis refer to the list of references at Appendix A.
loading parameter F^*.

Let:

\[F_i = \text{Load corresponding to the formation of the } i\text{th plastic hinge.} \]

\[F_u = \text{Structure collapse load corresponding to the } u\text{th plastic hinge.} \]

\[\theta_i = \text{Inelastic rotation at } i\text{th hinge for } F > F_i \]

\[\theta_{cs} = \text{Rotation capacity of } i\text{th hinge.} \]

Thus for $1 \leq i \leq u$, if $\theta_i \leq \theta_{cs}$, full redistribution of moments will occur at ultimate load F_u. If for at least one value of i, the effective rotation at plastic hinge i exceeds the rotation capacity of the section, i.e., $\theta_i > \theta_{cs}$, a local fracture occurs at i.

Thus, the inelastic rotation at any plastic hinge should be less than the available capacity for load levels up to the ultimate load.

1.4 ROTATION CAPACITY

The rotation capacity of a critical section in a reinforced concrete member may be expressed as the total rotation along a length L_p, of the member over which the moment varies from the yield moment M_y, to the ultimate moment, M_u. Cohn (3) has derived an expression for rotation capacity, θ_p, as follows: (See Fig. 1)**

\[\theta_p = \int_0^{L_p} (\phi_y - \phi_z) dz = A \phi = L_p \phi_p \quad \ldots \ldots \quad (1.4.1) \]

where $\phi_z = \text{Curvature at distance } z \text{ from support}$.

* A list of the symbol used is given in Section 1.9.

** All figures are given in Appendix B.
\[\phi_y = \text{Curvature at first yield of tension reinforcement.} \]

Equation (1.4.1) may be written as follows:

\[\theta_p = L_p' \phi_p \] \hspace{1cm} (1.4.2)

where \[L_p' = \beta L_p \] \hspace{1cm} (1.4.3)

Thus, the rotation capacity \(\theta_p \), can be evaluated by the area of plastic curvature \(A_\phi \). The curvature distribution factor \(\beta \), is less than unity and depends among other factors, on the loading, the variation of flexural rigidity along the member and the longitudinal and transverse reinforcement (3).

Chan (5) has proposed that the available rotation \(\theta_p \) may be given by the expression:

\[\theta_p = \beta L_p M_u \left(\frac{1}{(EI)_u} - \frac{1}{(EI)_e} \right) \] \hspace{1cm} (1.4.4)

where \((EI)_u = \text{flexural rigidity at ultimate moment}\)

\((EI)_e = \text{elastic flexural rigidity}\)

The curvature distribution factor \(\beta \), assumes the values of 0.305 for unbound sections and 0.2 for bound sections.

Mattock (6) has expressed the ratio of the total inelastic \(\theta_{tu} \) over a distance \(s \), to the inelastic rotation \(\theta_u \) in length \(d \) as follows:

\[\frac{\theta_{tu}}{\theta_u} = 1 + (1.14(s/d)^{\frac{1}{2}} - 1) \left(1 - (q-q') \right) \left(\frac{d}{16.2} \right)^{\frac{1}{2}}/q_b \] \hspace{1cm} (1.4.5)

and \(\theta_u \) is given by

\[\theta_u = (\phi_u - \phi_y \frac{M_u}{M_y}) \frac{d}{2} \]

where \(A_b \) = area of tension reinforcement required to produce balance failure of beam section.
\[A_s = \text{area of tension reinforcement} \]
\[A_s' = \text{area of compression reinforcement} \]
\[b = \text{breadth of section} \]
\[d = \text{distance from centroid of tension reinforcement to compression edge of beam} \]
\[f_c' = \text{ultimate compression strength of concrete as determined from 6" x 12" cylinders} \]
\[f_y = \text{yield stress of tension steel} \]
\[f_y' = \text{yield stress of compression steel} \]
\[q = \frac{A_s}{b d} \frac{f_y}{f_c'} \]
\[q' = \frac{A_s'}{b d} \frac{f_y'}{f_c'} \]
\[q_b = \frac{A_b}{b d} \frac{f_y}{f_c'} \]
\[s = \text{distance from section of maximum moment to adjacent section of zero moment} \]
\[\phi_u = \text{ultimate curvature} \]

Other researchers have proposed expressions for the rotation capacity of hinging regions. The structure of these expressions, however, is similar to those given above in that they contain an expression for the ultimate plastic curvature associated with some empirically determined length which defines the zone of flexural yielding in the vicinity of the hinge.

The determination of the curvature relationship is therefore
of fundamental importance in the determination of the rotational capacity of hinging regions in reinforced concrete members.

1.5 MOMENT-CURVATURE RELATIONSHIP

Curvature is a measure of rotation per unit length and is given by the following expression:

\[\phi = \text{concrete compressive strain at compression face of beam} \]
\[\text{neutral axis depth} \]

The moment-curvature relationship for a reinforced concrete section has three important stages as shown in Fig. 2. Stage 1 corresponds to narrow cracking of the member and this is accompanied by an abrupt change in its flexural rigidity. The second stage is evidenced by wide cracking and large deflection and the third stage is evidenced by crushing and spalling of the concrete at the critical sections.

Although considerable research has been carried out on the moment-curvature behaviour of critical sections undergoing pure flexure, there have been few experimental programs directed towards a quantitative description of sections which are subjected to combined stresses.

The strength and ductility of critical sections under the combined effects of flexural and direct compressive stresses is the subject of this study.

1.6 ASSUMPTIONS

(a) At the start of yield of the tension reinforcement, the concrete compressive stress varies linearly from zero at the neutral axis to a maximum at the compression face of the beam.

(b) The tensile strength of concrete may be neglected.

(c) The stress-strain relationship for concrete is that proposed by Hoggestad (7) and shown in Fig. 3.

(d) The concrete displaced by the steel reinforcement may be neglected.
(e) The stress-strain curve for the tension and compression reinforcing is assumed as a trapezoid similar to that shown in Fig. 4. The effects of strain hardening being neglected.

(f) There is no slip between the reinforcing steel and the concrete.

(g) There is a linear strain distribution across the section for all combinations of axial load and bending moments.

1.7 SCOPE

The principal aims of this work is a study of the interaction characteristics and the development of design expressions for the ultimate strength and curvature of reinforced concrete sections subjected to combined bending and axial load. A comparison of the theoretical with the experimental results obtained from tests is carried out for fifty-five reinforced beam-columns.

1.8 ACKNOWLEDGEMENTS

The author is grateful to Professor Carl Berwanger of the Civil Engineering Department of the University of Ottawa for having suggested this topic and for his continued guidance and assistance throughout this work.

The work was made possible through the research grants held by Professor Carl Berwanger as grantee of the National Research Council of Canada. The author is also indebted to the Civil Engineering Department, University of Ottawa for partially covering the cost of the specimens and the equipment used in these tests.
The author wishes also to thank the Canadian International Development Agency of the Government of Canada and the Ministry of Communications and Works of the Government of Jamaica whose joint efforts made it possible for the author to pursue his study in Canada.

Appreciation is expressed to my fellow graduate, Syed Imtiaz Rasul for his valuable contributions to this work.

To the undergraduate research assistants employed through the grant from the National Research Council, Dennis MacKinnon, John Poirier and Paul Moreau, I wish to express my appreciation and thanks.

1.9 NOTATION

The symbols used are listed below for convenience:

- A_s area of tension reinforcement
- A'_s area of compression reinforcement
- A_p area of plastic curvatures
- a depth of stress block
- b breadth of beam
- C_1 compressive force in concrete
- C_2 compressive force in the compression reinforcement
- d distance from centroid of tension reinforcement to compression edge of beam
- D overall depth of section
- e concrete strain
- e' eccentricity of ultimate
- e_{cy} concrete strain at first yield of tension reinforcement
- e_o compressive strain in concrete corresponding to maximum stress
- e_s steel strain
- e_{sh} steel strain at commencement of strain-hardening
\(e_u \) ultimate concrete strain
\(e_y \) yield strain of steel reinforcement
\(E_c \) static modulus of elasticity of concrete
\(E_d \) resonance modulus of elasticity of concrete
\((EI)_e \) elastic flexural rigidity
\(E_n \) modulus of elasticity of steel reinforcement in the elastic region
\(E_{sh} \) modulus of strain-hardening
\((EI)_u \) flexural rigidity at ultimate moment
\(f_c \) concrete compressive stress
\(f'_c \) compressive strength of concrete as determined from cylinder tests
\(f_s \) steel stress
\(f_u \) ultimate steel stress
\(f_y \) assumed yield stress in tension reinforcement
\(f'_y \) assumed yield stress in compression reinforcement
\(F \) load on statically indeterminate structure
\(F_i \) load on structure corresponding to formation of \(i \)th plastic hinge
\(F_u \) collapse load of structure corresponding to formation of \(u \)th plastic hinge
\(k_1, k_2, k_3 \) stress block parameters
\(k_d \) depth for transformed area for doubly reinforced sections
\(k_n, k_n', k_p \) section parameters
\(M_b \) moment at balanced failure
\(M_o \) ultimate moment at zero axial load
\(M_{oy} \) yield moment at zero axial load
\(M_u \) ultimate moment
\(M_y \) yield moment
\(n \) modular ratio
\(n' \) resonance frequency
P axial load
P_b axial load at balanced failure
P_o axial load capacity
P_u axial load at failure
p \(\Lambda_s/\beta d \)
p' \(\Lambda_{s'}/\beta d \)
p_c \((\Lambda_s + \Lambda_{s'})/\beta D \)
q \(pf_y/f'_c \)
q' \(p'f'_y/f'_c \)
q_b tension reinforcement factor for balanced ultimate strength conditions for beams
q'_u q - q'
S distance from section of maximum moment to adjacent section of zero moment
T force in tension reinforcement
W weight of prism
\(\phi_p \) plastic curvature
\(\phi_u \) ultimate curvature
\(\phi_y \) curvature at yield
\(\mu \) \(\phi_u/\phi_y \) = rotation factor
\(\theta_p \) rotation capacity
\(\theta_{tu} \) inelastic rotation occurring between the section of maximum moment and an adjacent section of zero moment
\(\theta_u \) inelastic rotation at ultimate moment, occurring within a length \(d/2 \) to one side of the section of maximum moment
CHAPTER 2
ULTIMATE STRENGTH AND CURVATURE OF REINFORCED CONCRETE BEAM-COLUMNS

2.1 MEMBERS IN PURE FLEXURE

The member in pure flexure is treated as one subjected to bending and zero axial load.

Theoretical expressions for M_y, M_u, ϕ_y and ϕ_u for double reinforced concrete sections have been presented by Cohn (3), but are repeated here for convenience.

When the tension reinforcement just reaches the yield point, the following relations based on a semi-elastic design can be written (Fig. 5a):

\[
k_y = \left(n^2 (p+p')^2 + 2n(p+k_np') \right)^{\frac{1}{2}} - n(p+p') \quad \ldots \quad (2.1.1)
\]

\[
e_{cy} = \frac{f_y k_y}{E_s} \frac{k_y}{1 - k_y} \quad \ldots \quad (2.1.2)
\]

\[
\phi_y = \frac{e_{cy}}{k_y d} \quad \ldots \quad (2.1.3)
\]

\[
M_y = A_s f_y d (1 - \frac{k_y}{3}) + A_s' f_s d \frac{k_y}{(3-k_n)} \quad \ldots \quad (2.1.4)
\]

Referring to Fig. 5b, the general expression for the neutral axis at the ultimate moment is:

\[
k_u = \frac{1}{k_{k_1 k_3}} (p \frac{f_y}{f_c} - p \frac{f_s'}{f_c'}) \quad \ldots \quad (2.1.5)
\]

If $q \leq k_1 k_3 k_n$ then $k_u < k_n$, the section behaves as if reinforced in tension only; hence,

\[
k_u = \frac{1}{k_1 k_3} \frac{p f_y}{f_c'}
\]
If \[\frac{k_1 k_3}{2} \left(1 + k_n \right) < q \leq k_1 k_3 \left[\frac{1}{1 - \frac{p}{p}} \right] \frac{e_u}{e_u + e_y} \] (2.1.6)

If \(k_1 > k_n \) and \(f_g = f_y = f'_s \), both tension and compression reinforcement are at the yield state; hence,

\[
k_u = \frac{1}{k_1 k_3} \left(\frac{p f_y}{f'_c} - \frac{p' f_y}{f'_c} \right) \quad (2.1.7)
\]

or

\[
k_u = \frac{1}{k_1 k_3} \left(q - q' \right) \quad (2.1.8)
\]

If \(q > \frac{1}{k_1 k_3} (1 - \frac{p}{p}) \frac{e_u}{e_u + e_y} \): This is the balanced condition and the concrete crushes simultaneously with yield of compression and tension steel; hence,

\[
k_u = \frac{e_u}{e_u + e_y} \quad (2.1.9)
\]

The ultimate curvature is given by:

\[
\phi_u = \frac{e_u}{k_u d} \quad (2.1.10)
\]

The ultimate moment is expressed by:

\[
M_u = k_1 k_3 f'_c k_u b d^2 \left(1 - k_2 k_u \right) + A'_s f'_s d (1-k_n) \quad (2.1.11)
\]

The condition in which the concrete crushes before yield of the tension reinforcement, i.e., an over-reinforced section, is not considered here. It has been reported by Baker and Amarakone (8), however, that if the bending resistance of brittle sections is kept within safe limits, the ductility which results from long term strain effects will be safe and favourable to the distribution of bending moments in the structure. Such sections are, however, not permitted by most building codes.
The values of k_u and hence the ultimate curvature and ductility factor of hinges subjected to pure flexure are seen therefore to depend essentially on a limitation of the steel percentages. Recent research by Mattock (6), Baker and Amarakone (8), Corley (9) and Roy and Sozen (10) has shown that if the concrete and other section properties remain constant, the curvature of the hinge will be increased in the presence of a shear force and also by the effects of helical or rectangular transverse reinforcement.

Although many researchers in their proposals for limit design have suggested that the strength of flexural hinges should be limited to the value of the yield moment, M_y, the current ACI building code (Building Code Requirements for Reinforced Concrete (ACI 318-63)), permits hinges to develop a design ultimate moment of $0.9 M_u$ where:

$$M_u = bd^2 f'c q'_u (1 - 0.59 q'_u) + q' f'c bd^2 (1 - k_n) \quad \ldots (2.1.12)$$

and

$$q'_u = (p - p') \frac{f_y}{f_c} \quad \ldots (2.1.13)$$

Sawyer (2) has recommended that the design bending resistance of purely flexural hinges, M_e, should be given by the relation $M_e = 0.85 M_u$, where M_e is the moment value at the intersection of the two lines of a bilinear approximation to the moment-curvature relationship and M_u is the experimental value of ultimate moment.

Berwanger (4) has suggested that the value of the yield moment given by the expression,

$$M_y = \frac{f_c}{2} k b d^2 (1 - k) + A_s f'_s d(1 - k_n) \quad \ldots (2.1.14)$$

is sufficiently conservative to be applied to all types of hinges and that the rotation factor, ϕ_{ul}, can be given by the relation;
\[
\mu = \frac{\phi_u}{\phi_y} = \frac{1}{5q_y q_u} \text{ ... (2.1.15)}
\]

2.2 HINGES UNDER COMBINED FLEXURAL AND DIRECT COMPRESSIVE STRESSES

While the ultimate strength of beam-columns and beam-column sections have been studied both experimentally and analytically, Hognestad, (7, 13), Broms and Viest, (11, 12), Pfrang, Seiss and Sozen, (14), it would appear that comparatively little work has been done to produce analytical or experimental verification of the rotation capacity of these members. Notable analytical work in this direction has been reported by Pfrang, Seiss and Sozen (14), Breen (15), Pfrang and Seiss (16).

The ultimate strength capacity and behavioural mode of beam-columns whose cross section failure is initiated by either yielding of the tension reinforcement or crushing of concrete can be predicted from their axial-load-moment interaction diagram Fig. 6. For axial loads greater than \(P_b \), failure will be initiated by crushing of the concrete. This is called a compression failure. For axial loads less than \(P_b \), yielding of the tension reinforcement precedes the crushing of the concrete and this is called a tension failure. Hinge failures in the compression mode can be subdivided into two groups. The first group is one for which the section has both tensile and compressive stresses at failure. The second is that group for which the section has compressive stresses only, and these typify hinges in the lower storeys of multi-storey frames where axial loads are high and moments are comparatively low.
From the above discussion it is seen that while for purely flexural hinges the failure mode and hence the rotational ductility can be controlled essentially by a limitation of the amount of reinforcement; ductility of hinges under the combined effects of bending moment and axial load can be controlled primarily by limiting the load on the hinge to a value less than the balanced load of the section.

Based on the above, it would seem that a number of interesting design techniques could be evolved, some of which have already received attention by a number of researchers. Some of these concepts are described briefly as follows:

(a) A design concept which limits the formation of plastic hinges to flexural members only. This could be achieved by a limitation of stiffness factors of beams and columns meeting a joint.

(b) A design concept which limits the amount of redistribution of moments by the definition of a redistribution factor which corresponds to the rotational capacity of the hinging regions. Such a method has been proposed by Cohn (5, 17) and has been limited to the solution of continuous beams and slabs.

(c) A design concept based upon the assumption that hinging regions can provide the rotation capacity required for the formation of a collapse mechanism and the subsequent design to ensure that rotational compatibility is satisfied at all hinges. Such a method has been proposed by Berwanger (4).

2.3 INTERACTION DIAGRAM

Although there has been considerable analytical and experimental study of the ultimate strength of beam-columns and beam-column sections, there has been comparatively little work done to produce
analytical or experimental verification of the rotation capacity of these members.

A qualitative description of the strength capacity of reinforced concrete hinge is given by an interaction diagram as shown in Fig. 6.

Points within the interaction envelope define combinations of axial load and moment which are possible without failure of the cross section. It is apparent, therefore, that points within the envelope represent a series of possible strain or curvature configurations under axial load and moment. The boundary of the envelope is the axial-load-moment relation at failure. The curve and its bounded region gives a qualitative description of the curvature. Thus for loads less than \(P_b \), the segment BA, Fig. 6 represents increasing curvature and ductility and segment BD representing increasing brittleness and reduced curvatures.

In addition to the failure diagram envelope, it is also possible to establish an interaction diagram corresponding to yield in the tension reinforcement. This envelope is shown in dotted lines in Fig. 6. The author believes that the derivation of such a curve is important in the determination of a safe design moment in any limit design method. Sawyer (2) has suggested tentatively that a design moment, \(M_e \), should be given by the relation \(M_e = 0.85 M_u \). Berwanger (4) has suggested that the design moment should be made equal to \(M_{by} \) (Fig. 6).

It is important to note that the choice of values of design moment and curvature depends on a reasonable assumption of the different load combinations which are possible within the interaction diagram permissible space. This is due to the fact that design moments and curvatures based upon a given ultimate load may be exceeded under partial loading conditions. Although this factor is not of essential
concern to this thesis, it was thought that a constant axial load and a variable moment application might be in reasonable agreement with the effect of dead and live load acting in normal structures.

Reinforced concrete is not a linear elastic material and it is not possible to write continuous mathematical expressions relating axial load, moment and curvature over the full range of their variation. Most analytical approaches to the establishment of the interaction diagram and moment-curvature relationship for a section have adopted the following procedure:

(a) Assume a strain configuration over the depth of the section.

(b) Assume a stress-strain relation for concrete and steel reinforcement and therefore determine the stress distribution across the section.

(c) Determine the resultant axial load and moment.

(d) From the assumed strain configuration determine the curvature.

This approach is amenable to computer solution and the results of such studies have been published elsewhere, Roy and Sozen (10), Pfrang, Seiss and Sozen (14), Pfrang and Seiss (16). While such results are pertinent to a descriptive behaviour of reinforced concrete sections, the models chosen have not represented fully the effects of member cracking, triaxial stress and time-dependent deformations on the ultimate strength and curvature of reinforced concrete members.

2.4 MATHEMATICAL EXPRESSIONS FOR BEAM-COLUMNS

Theoretical expressions for the ultimate strength of beam-column sections have been derived by Hognestad (7, 13). Similar expressions are derived here and these expressions are based on the assumptions presented in section 1.6. It is assumed that there is
negligible error in neglecting the concrete displaced by the compression reinforcement.

(a) **Tensile and Compression Hinges**

Referring to Fig. 7 in Appendix B

$$C_1 = k_{1}k_{3} f' c \, ab$$ \hspace{1cm} (2.4.1)

$$C_2 = A'_{s} f'_{s}$$ \hspace{1cm} (2.4.2)

$$T = A_{s} f_{s}$$ \hspace{1cm} (2.4.3)

Strain Compatibility:

$$\frac{a}{d} = \frac{e_{u}}{e_{s} + e_{u}}$$ \hspace{1cm} (2.4.4)

Curvature:

$$\phi_{u} = \frac{e_{s} + e_{u}}{d}$$ \hspace{1cm} (2.4.5)

Equilibrium of Forces:

$$P_{u} = k_{1}k_{3} f' c \, ab + A'_{s} f'_{s} - A_{s} f_{s}$$ \hspace{1cm} (2.4.6)

$$\frac{P_{u}}{bd} = k_{1}k_{3} f' c \left(\frac{a}{d}\right) + p' f'_{s} - pf_{s}$$ \hspace{1cm} (2.4.7)

Equilibrium of Moments about Plastic Centroid:

$$N_{u} = k_{1}k_{3} f' c \, ab (d - k_{p} d - k_{d} a) + A'_{s} f'_{s} (d - k_{p} d - k_{d} a)$$

$$+ A_{s} f_{s} k_{p} d.$$ \hspace{1cm} (2.4.8)

$$\frac{N_{u}}{bd} = k_{1}k_{3} f' c \left(\frac{a}{d}\right) (d - k_{p} d - k_{d} a) + p' f'_{s} (d - k_{p} d - k_{d} a)$$

$$+ p f_{s} k_{p} d.$$ \hspace{1cm} (2.4.9)

Let \hspace{1cm} $$S = k_{1}k_{3} f' c$$

$$e' = \frac{N_{u}}{bd} \times \frac{bd}{P_{u}}$$

Therefore:

$$e' \left(\frac{S(a}{d}) + p' f'_{s} - pf_{s}\right) = S \left(\frac{a}{d}\right) d (1 - k_{p}) - S \left(\frac{a}{d}\right) k_{d} d$$

$$+ p' f'_{s} d (1 - k_{p} - k_{d}) + pf_{s} k_{p} d$$ \hspace{1cm} (2.4.10)
\[S \frac{k_2 d (a)^2}{d} + S \left(e' - d \left(1 - k_p \right) \right) \frac{(a)}{d} - \left(e' + k_p d \right) \left(p f_s - p' f'_s \right) \]
\[- p' f' s d (1 - k_n) = 0 \quad \text{...... (2.4.11)} \]

Substituting Section Parameters in equation 2.4.11, (See Section Parameters in Fig. 8 in Appendix ii)

\[\frac{S k_2 d (a)^2}{d} + S \frac{m(a)}{d} - t \left(p f_s - p' f'_s \right) - p' f'_s v = 0 \quad \text{...... (2.4.12)} \]

Therefore:

\[\frac{S k_2 d (a)^2}{d} + S \frac{m(a)}{d} - p f_s t + p' f'_s \left(t - v \right) = 0 \quad \text{...... (2.4.13)} \]

Let

\[c = t - v \]
\[x = \frac{1}{k_1 k_2 k_3} \]

Therefore:

\[\frac{(a)^2}{d} + \frac{m}{k_2 d} \frac{(a)}{d} - x \left(\frac{p f_s t}{f'_c} - \frac{p' f'_s c}{f'_c} \right) = 0 \quad \text{...... (2.4.14)} \]

Solving and Neglecting the Negative Root of equation 2.4.14

\[\frac{(a)}{d} = \frac{m}{2 k_2 d} \left(-1 + \left(1 + \frac{4 x k_2 d^2}{m^2} \right) \left(\frac{p f_s t}{f'_c} - \frac{p' f'_s c}{f'_c} \right)^{\frac{1}{2}} \right) \quad \text{...... (2.4.15)} \]

Let

\[4 x k_2 d = 4 \frac{k_2 d}{k_1 k_3} = h \]

Therefore:

\[a = k_u d \]

Therefore:

\[k_u = \frac{m}{2 k_2 d} \left((1 + h \left(\frac{p f_s t}{f'_c} - \frac{p' f'_s c}{f'_c} \right)^{\frac{1}{2}} - 1 \right) \quad \text{...... (2.4.16)} \]

From equations 2.4.4 and 2.4.5

\[e_s = e_u \left(\frac{1 - k_u}{k_u} \right) \]
\[\phi_u = e_u \left(1 + e_s \right) \]
Therefore:

\[
\phi_u = \frac{c_u}{k_u d}
\]

\[
\phi_u = \frac{e_u}{d} \cdot \frac{1}{\frac{m}{2k_2 d} \left((1 + \frac{h}{m} \frac{(p f'_{s t} - p' f'_{s c})^{1/2}}{f' c})^2 - 1 \right)}
\]

\[
\phi_u = \frac{2k_2 e_u}{(m^2 + h(q t - q' c))^{1/2} - m}
\]

\[\text{Equation (2.4.17)}\]

\[\text{Equation (2.4.18)}\]

Case I: Balanced Failure

\[
e_s = e_y, \quad f_s = f_y
\]

\[
e'_s > e_y, \quad f'_s = f_y
\]

Therefore:

\[
\phi_u = \frac{2 k_2 e_u}{(m^2 + h(q t - q' c))^{1/2} - m}
\]

\[\text{Equation (2.4.19)}\]

Case II: Tensile Failure

\[
e_s > e_y, \quad f_s = f_y
\]

\[
e'_s > e_y, \quad f'_s = f_y
\]

Therefore:

\[
\phi_u = \frac{2k_2 e_u}{(m^2 + h(q t - q' c))^{1/2} - m}
\]

\[\text{Equation (2.4.20)}\]

Case III: Compression Failure

\[
e_s < e_y, \quad f_s = E_s e_s
\]

\[
e'_s > e_y, \quad f'_s = f_y
\]

Therefore:

\[
\phi_u = \frac{2k_2 e_u}{(m^2 + h(p f'_{s t} - p' f'_{s c})^{1/2} - m)}
\]

\[\text{Equation (2.4.21)}\]
(b) **Compressive Hinge**

Referring to Fig. 9 in Appendix B

\[C_1 = k \frac{k}{3} f'_c b d (1 + k'_n) \] \hspace{2cm} \[C_2 = A'_s f'_s \] \hspace{2cm} \[T = A_s f_s \] \hspace{2cm} \[\text{Equilibrium of Forces:} \]

\[P_u = k \frac{k}{3} f'_c b d (1 + k'_n) + A'_s f_s + A_s f_s \] \hspace{2cm} \[\text{Let} \]

\[k \frac{k}{3} f'_c = S \]

\[\frac{P_u}{bd} = S(l + k'_n) + p' f'_s + p f_s \] \hspace{2cm} \[\text{Equilibrium of Moments about Plastic Centroid:} \]

\[M_u = k \frac{k}{3} f'_c b d (1 + k'_n)(d - k_p d - k_2 a) + A'_s f'_s \]

\[(d - k_p d - k_n d) - A_s f_s k_p d \] \hspace{2cm} \[\text{Let} \]

\[e' = \frac{M_u}{bd} \times \frac{bd}{P_u} \]

\[e' (S(l + k'_n) + p' f'_s + p f_s) = S(l + k'_n) (d - k_p d) \]

\[- S(l + k'_n) k_2 a + p' f'_s d (1 - k_p - k_n) - p f_s k_p d \] \hspace{2cm} \[\text{Re-Arranging:} \]

\[S(l + k'_n) (e' - d(1 - k_p)) + (e' + k_p d) (p f_s + p' f'_s) - \]

\[p' f'_s d (1 - k_n) = -S(l + k'_n) k_2 a \] \hspace{2cm} \[\text{(2.4.30)} \]
Substituting Section Parameters from Fig. 8 in Appendix B

\[S(1 + k'_n) m + t(p f'_s + p' f'_s) - p' f'_s v = - S(1 + k'_n) k_2 a \quad \ldots \quad (2.4.31) \]

Therefore:

\[a = - \frac{1}{k'_n} \frac{k_2}{k} \left(\frac{p f'_s}{f'_c} \right) + \frac{p' f'_s c}{f'_c} + m \quad \ldots \quad (2.4.32) \]

But:

\[\phi_u = \frac{e_u}{a} \]

Let:

\[b = - \frac{1}{k'_n} \frac{k_2}{k} \]

Therefore:

\[\phi_u = \frac{k_2 e_u}{b \left(p f'_s + p' f'_s c \right) - m} \quad \ldots \quad (2.4.33) \]

Case IV:

\[e_s < e_y \quad f_s = E_s e_s \]
\[e'_s > e_y \quad f'_s = f_y \]

Therefore:

\[\phi_u = \frac{k_2 e_u}{b \left(p f'_s + q' c \right) - m} \quad \ldots \quad (2.4.34) \]

Case V:

\[e_s > e_y \quad f_s = f_y \]
\[e'_s > e_y \quad f'_s = f_y \]

Therefore:

\[\phi_u = \frac{k_2 e_u}{b (q t + q' c) - m} \quad \ldots \quad (2.4.35) \]
The mathematical expressions which have been presented above enable rapid calculation of the strength and deformational capacity of plastic hinges in reinforced concrete beam-columns subjected to short duration loads. The expressions have not been extended to include the strain-hardening effects of steel reinforcement. In general the expressions show that the ultimate curvature of a section will depend on the following:

\[\phi_u = R \text{ (ultimate concrete stress, ultimate concrete strain, stress block parameters at failure, yield stress of reinforcement, percentage of reinforcement, bending moment, axial load, section dimensions concrete cover to reinforcement).} \]

Curvature and ductility requirements may therefore be satisfied by judicious manipulations of these variables. The effects of some of these variables have already been studied analytically by Pfrang, Seiss and Sozen (14). Recent research on concrete ductility, Mattock (6), Corley (9), Roy and Sozen (10) have recorded that the presence of shear stress and the stressing effects of helical and rectangular ties have the effect of increasing the ultimate strain and hence the ultimate curvature. The stress block parameters at failure have been examined experimentally by Hognestad, Hanson and McHenry (18), and they have been found to be dependent on the ultimate concrete cylinder strength, \(f'_c \text{ (psi)}, \) as follows:

\[
k_{13} = \frac{3900 + 0.35 f'_c}{3200 + f'_c} \quad ... (2.4.36)\]
and
\[\frac{k_2}{k_1 k_3} = \frac{1600 + 0.46 f'_c - 0.125 f'_c^2 (10^{-4})}{c} \cdot \frac{3900 + 0.35 f'_c}{c} \] \hspace{1cm} (2.4.37)

Many researchers have documented work on so-called ultimate concrete strain, the most popular value used in research is that of
\[e_u = 0.0038 \] as suggested by Hognestad (13).

The most important factor in the determination of the ultimate curvature, however, is the level of axial load and eccentricity. For loads below \(P_b \) ductile behaviour is assured, but in practical structures, it may prove uneconomical to ensure that a ductile condition can exist at the hinge. This limitation may also prove to be a drawback to proposed limit design techniques where a built-in ductility is required to satisfy a presumed redistribution of stresses. In this case, the hinge has to be designed to satisfy two failure possibilities, one of strength and the other for rotation. This problem is simplified at the purely flexural hinge where ductility is enhanced by a simple limitation of steel reinforcement.

To date it would appear that there has been little interest in a yield interaction diagram. This diagram would describe the combinations of load and moment on a section which result in first yielding of the tension reinforcement. The effects of shrinkage and creep in concrete would affect the accurate determination of such a diagram. These factors render it difficult to determine a suitable concrete stress distribution at the yielding of beam-column hinges. A similar situation for purely flexural hinges is overcome by the use of a semielastic design method.
As a result of the above, there have not been many recommendations on the design strength of beam-column hinges. Sawyer (2) has proposed tentatively that the design moment, M_e, should be given by the relation $M_e = 0.85 M_u$. The value of M_e is not the elastic limit moment but the moment value at the intersection of the two lines of a bilinear approximation of the moment-curvature relationship. The value of M_u is the experimental value of the ultimate moment and not the somewhat lower theoretical value given by the ultimate strength theory.

Bewanger (4) has proposed a design moment equal to the yield moment of the section under zero axial load. This value would seem to be conservative (Fig. 6) and it may well offset the reduction in hinge strength due to time dependent effects and torsion. Kahn and Mattock (19) have reported that the presence of a plastic hinge has no effect on the ultimate shear strength of a reinforced concrete section.

The behaviour of beam sections which are subjected to combined torsion and bending moments depend on the relative amounts of web reinforcement, longitudinal reinforcement, and the arrangement of the longitudinal reinforcement. Cowan (20) has reported that for low steel stresses an unsymmetrically reinforced section with adequate transverse reinforcement will not be reduced in flexural strength in the presence of torsion.

The current ACI Building Code Requirements for Reinforced Concrete (ACI 318-63), limits the design moment and axial load for tied columns to 0.7 of their ultimate strength.
The above discussions are to be applied to ductile hinges only. These are hinges whose axial load is less than the balanced load of the section. While brittle hinges are to be avoided it might prove uneconomical in any method of analysis or design to ensure against this condition. However the present trend towards greater use of the moment-rotation relationship instead of the more fundamental moment-curvature relation may well show that brittle hinges can, with a safe assumption of strength provide the necessary rotation capacity to aid the stress redistribution process that may be required structurally.
CHAPTER 3

DESCRIPTION OF EXPERIMENTAL WORK

3.1 TEST PROGRAM

A total of fifty-five specimens were tested and these were subdivided into eleven series, (S1-S11), each having five identical specimens, (DGR. No. A-1216-30-S1 to DGR. No. A-1216-30-S11, Appendix F). The difference between the series was the ratio of the longitudinal steel reinforcement used in the specimens (Table 1). Series S1-S7 were reinforced unsymmetrically to simulate beams or unequally reinforced columns. Series S5 and S6 were similar in all respects except for the volume of transverse reinforcement that was used in the section. Series S8-S11 were symmetrically reinforced to typify the normal column section. The percentage of longitudinal steel reinforcement used in each member (Table 2) was chosen to lie within the range of maximum and minimum values specified for columns by the Building Code Requirements for Reinforced Concrete (ACI 318-63).

Each member of a series was axially loaded and brought to failure by the application of two-point loading system (Fig. 10a). The level of axial load chosen for each member was of a value which would result in tensile failure in some members and compression failure in others. The two-point transverse loading was chosen so as to eliminate shearing effects in the central portion of the member and thus provide a region of the member which was subjected to pure bending moment. Concrete strains in this region were measured using a layout of displacement transducers. The displacement transducers were linear variable differential transformers with a built-in 6 volt DC excited oscillator. The trans-
formers consisted of a coil assembly and core which when displaced linearly along the axis and within the bore of the coil assembly produced a voltage change in the output which is proportional to the displacement.

Deflections were measured at seven locations (Fig. 10a) throughout the test span using deflection dial gauges.

3.2 DESIGN OF TEST SPECIMEN

The typical dimensions of a test specimen are shown in Fig. 10. All specimens were rectangular and having a 6" x 8" cross section. The overall length of each was 6' - 0", the effective test span being 5' - 6". Although these dimensions were based on the loading capacity of the test equipment and the material strengths expected, they were also chosen to prevent buckling of the specimens under the test loads. These dimensions correspond to a span/depth ratio of 9 and a span/breadth ratio of 12. The load points were located at 21" from either end, this allowed a 30" long region of constant moment. Strains were measured over a centrally located 10" gauge length. This length was chosen to be slightly greater than the depth of the members and short enough to avoid the local effects of load distribution through the depth of the member.

A typical member of a series was designed to fail under load combinations which could be attained by the test equipment to be used. This was achieved by assuming approximate values of steel reinforcement yield stress, $f_y = 40,000$ psi, concrete compressive stress and strain, $f_c' = 3,000$ psi and $e_u = .003$ in./in. These values were used in a computer determination of axial load-moment interaction diagram for each series. This diagram gave a fair indication of the axial and transverse loads that would be required during the tests. The capacity of the horizontal and transverse hydraulic cylinders (Fig. 11) used in the test was 100 kips,
but it was not the intention of the test program to produce failures under axial loads only. It was decided to keep the axial load capacity of the sections at values which were not more than 300 percent of the maximum loading capacity of the test equipment. The amount of steel reinforcement used in the members is shown in Table 1 at Appendix C. Complete section details for each series are given in Table 2 in Appendix C.

3.3 FABRICATION AND MATERIALS

Due to the volume of concrete required and the need for uniform concrete in all beams, it was not possible to use the laboratory concrete mixing facilities at the University of Ottawa. The manufacture of the specimens were therefore done commercially.

The specimens were cast by a long line process, the total length of each line being approximately 300 feet. They were separated by square bulkheads which were built into the steel moulds. This produced the desired square ends to the specimens to enable a proper contact surface with the axial load device. (See Fig. 13).

The cement used was normal Portland cement and the concrete mix ingredients per cubic yard was as follows:

- 2" Maximum size aggregate: 1865 lbs.
- Sand: 1390 lbs.
- Water: 190 lbs.
- Cement: 450 lbs.
- "Protex" dispersing agent: 27 ozs.
- "Protex" air entraining agent to yield: 6%±1%
- Moisture content of coarse aggregate: 0%
- Moisture content of sand: 2%

Two batches of concrete mix were used in the manufacture of the specimens. The second batch was used in the manufacture of series S6, S8,
S9 and S11. The remaining series were cast from the first batch. The workability and air entrainment property of the batches are given in Table 3 in Appendix C.

The fine and coarse aggregates were subjected to the normal aggregate sieve analysis and the results are presented in Table 4 in Appendix C.

Eight different sizes, No. 3 - No. 9, of deformed steel bars were used as longitudinal and transverse reinforcement. The bars were of intermediate grade billet steel and tension tests were carried out on duplicate coupons of each bar. Strains over a 6" gauge length were recorded by the automatic recorder of the testing machine and were also measured using an extensometer. The results of these tests are presented in Table 5 in Appendix C.

Prior to the start of casting, all the steel moulds were inspected for the accurate layout of the cover to the steel reinforcement. All placed concrete was adequately vibrated and the top face of the specimens were trowelled to an even finish.

For each series of five concrete specimens, a total number of three 6" x 12" test cylinders were taken. These were taken at the beginning, middle and end of the concrete for each series. A similar sequence was applied to the 3" x 3" x 12" concrete prisms which were to be used in the determination of the resonance modulus of elasticity of the concrete.

All specimens, concrete cylinders and prisms inclusive, were allowed to stand for eight hours before steam curing was applied for twenty-four hours. They were then removed from the moulds, wire brushed and stored in curing pits for two days and then were finally transported to the laboratory for testing.
3.4 TEST APPARATUS

The basic description of both the axial and transverse loading used in this test is one which applies a load through a hydraulic jack and a subsequent weighing of the applied load using load cells.

Prior to this experimental program, the loading frame that was used had been designed for transverse load application only. The principal features of the frame were the reaction beams to which was bolted a 100 kip capacity hydraulic ram, a transverse loading beam and loading bed manufactured from I-beam sections. The hydraulic ram was operated by a hand-operated pump which was detachable from the ram. Transverse load was therefore transmitted by the loading beam to the test member by two knife edges (Fig. 11, Appendix 3) which were symmetrically arranged on the beam at 30 inches apart. The applied loads were weighed using two 50 kip capacity load cells as supports. The load cells were connected to a Gilmore Model 471-210 Load Indicator. This indicator had an indicator range of ± 100 kips and featured an accuracy of .02% of reading.

The loading frame was modified to accept the axial loading devices by extending the existing bed at either ends to accommodate two symmetrically placed abutments (Fig. 11). A 100 kip capacity hydraulic ram was bolted to one abutment and a load cell of similar capacity to the other abutment.

The hydraulic ram was connected to a hydraulic pump through a servovalve. The pump was controlled by a power and failsafe panel, and all these units, the load cell included, were connected through a Gilmore Model 431 Servo Amplifier. The function of the Servo Amplifier was to detect load losses from the load cell due to shortening of the specimen and subsequently to command the servovalve to effect a restoration of the preset load to the ram. The axial load once preset on the amplifier,
can be maintained at that level throughout the test. The load cell was also connected to the load indicator previously described. A schematic description of the load assembly is given at Fig. 12, Appendix B and Plates 3, 4, and 5 in Appendix E.

Concrete strains over a centrally located 10" gauge length were measured using ten direct current differential transducers. The transducers were activated by a six volt direct current power supply. The voltage output from the transducers were monitored through a switching unit to a voltage-to-frequency counter. A sketch of this electronic circuitry is shown at Fig. 12, Appendix B.

Deflections of the specimens were measured at seven locations in the test span (Fig. 10a, Appendix B). Deflection dial gauges were used for these measurements. A deflection dial gauge was also used to measure the lateral deflection of the central portion of the specimens.

3.5 TEST PROCEDURE

The test program entailed that each of the five specimens in a series would be tested at different levels of axial load. The first specimen, however, was tested without axial load. The transducers were attached to the specimens using specially designed mountings. These mountings consisted of two rectangular (1" x 1" x \(\frac{1}{2}\)"") aluminum blocks. The transducers and transducer cores were fitted into holes which were drilled into these mountings as shown at Plate 3, Appendix E. The mountings were cemented to the specimen using an epoxy adhesive and was allowed to stand for at least four hours before testing. The specimens were thereafter placed in their test position and carefully centered. For specimens tested under axial load it was necessary to use the specially designed endbearing devices (Fig. 13) to transmit load to the ends of the specimens.
The value of axial load was pre-set on the Servo Amplifier as described in section 3.4 and then gradually applied to the specimen. The transducers and deflection dial gauges were then set to their initial readings and the transverse load was applied slowly using the manual pump of the vertical hydraulic cylinder. For each increment of load, records were made of the outputs of the transducers, load cells and deflection dial gauges. The specimens were loaded to failure and the mode of failure was recorded for each specimen.

The concrete cylinders (6" x 12") were tested in a compression test machine (Plate 1), and the strains were measured and recorded for loads up to approximately half of the ultimate strength. The cylinders were brought to failure and the ultimate compressive loads were recorded. Deformation tests were carried out on two of the three cylinders tested for each series of specimen.

The concrete prisms, (3" x 3" x 12") were tested for the resonance modulus of elasticity using the SCT5 Electrodynamic Materials Tester (Plate 2). A total of four prisms were tested for each series of specimens. Both concrete cylinders and prisms were tested on the same day on which their respective beam specimens were tested.
CHAPTER 4

RESULTS AND CALCULATIONS

4.1 CONCRETE TEST PROPERTIES

The ultimate concrete stress, \(f'_{c} \), the initial tangent modulus, \(E_{c} \), and the resonance moduli of elasticity, \(E_{d} \), are presented in Table 6 in Appendix C.

The ultimate compression load for each cylinder was divided by the cross sectional area and the average value of the ultimate compressive stress for the three cylinders was calculated for each series of specimens.

The initial tangent moduli of concrete, \(E_{c} \), were the average values as obtained from two of the three cylinders mentioned above. The experimental results were fitted to a straight line using a curve fitting process and the slope or tangent modulus determined. The average values were compared with those calculated using Inge Lyse's empirical equation for the initial tangent modulus of elasticity.

\[
E_{c} = 1,800,000 + 460 f'_{c} \quad \ldots \ldots \ldots (4.1.1)
\]

This equation is reported (7) to give values which are \(\pm 10 \) percent of the actual values. These values of moduli of elasticity are presented in Table 6 at Appendix C.

The resonance modulus for each series of specimens was determined from the test on four 3" x 3" x 12" concrete prisms. The values of resonance modulus were calculated using the formula (21).

\[
E_{d} = KW (n')^{2} \quad \ldots \ldots \ldots (4.12)
\]

where \(K = 0.01035 \times \text{length of specimen} \)
\[
\times \text{cross sectional area of specimen} \quad \ldots \ldots (4.13)
\]

The value of \(W \) and \(n' \) are respectively, the weight of the prisms and the resonance frequency as obtained from the electrodynamic tester. The
average value of four tests is reported for each series of specimens in Table 6 in Appendix C.

4.2 TENSION TESTS OF STEEL REINFORCEMENT

The results of the twelve tests carried out on the steel reinforcing bars are reported in Table 5 in Appendix C. The object was the determination of the modulus of elasticity, the yield stress, the ultimate stress and the overall tensile behaviour of the specimens. The latter is presented graphically in Fig. 15 and 16 in Appendix B for the No. 6 and No. 7 steel bars. The yield stress and strain was obtained from these curves and was calculated as the coordinates at the intersection of the elastic and strain hardening segments of the curve. The ultimate stress was obtained by dividing the ultimate load by the cross sectional area of the specimen.

The moduli of the elasticity reported in Table 5 in Appendix C are the average values from the tests on two coupons and these were obtained by applying a curve-fitting computer program to the pre-yield stress/strain results.

4.3 TEST RESULTS OF BEAM-COLUMNS

The results of loads, strains and deflections from the various tests were processed using computer programs as described below. A flow chart for each program is given in Appendix D.

The observed cracking patterns at failure for specimen series S6 and S10 are shown in Plate: 6 and 7 in Appendix E.

Program I

This program was designed to check the data for possible mistakes in the recording of results and errors due to malfunctions of the recording instrument. The output of this program was the incremental increases in values of loads, strains and deflections. Details
of the significant errors are given and discussed in section 5.6.

Program II

The procedure of the test program did not permit the measurement of the strains produced by the axial load and such strains had to be obtained by calculation. Using the data presented in Table 6 in Appendix C, the Hognestad stress/strain relation for concrete and the properties of the member section this computer program was used to evaluate the strain distribution due to the prestressing axial load.

The second paragraph of the program was devoted to the determination of the load/deflection profile of the specimens for each increment of load. The profiles were evaluated from the seven dial gauge readings taken across the span. These readings included the central deflection of the test specimen.

The third paragraph was used to evaluate the strain at which cracking of the member was first visible. Further, the program evaluated from the transducer data set, the strain at the elevation of the various transducers (Fig. 10b). This was done by evaluating the strain measured by each transducer and presenting the strain at a particular elevation as the average value of complementary pairs of transducer readings. The average values of strains were then fitted to a straight line by a curve fitting process. All the transducer readings were used in the determination of the strain distribution for strains recorded before perceptible cracking, however, for other cases, only readings of transducers T1, T2, T3, T7, T8, T9 and T10 (Fig. 10b) were used in the fitting of the straight line.

The fourth paragraph of the program was devoted to the algebraic addition of the strains due to the prestressing axial load and the fitted straight line strain distribution mentioned above. The slope of the resultant strain profile and the depth of the neutral axis were then evaluated.
The fifth paragraph was employed in the evaluation of the total moment due to the dead weight of the member, deflection, eccentricity and the transverse load.

This process was repeated for each load increment and resulted in the load/moment, moment/curvature and load/deflection relations for the specimens tested. Graphical representations and a discussion of these relations will be presented in later articles of this thesis.

Program III

This program was used in the theoretical evaluation of the axial load/moment interaction diagram and the theoretical curvatures as expressed by Equations 2.4.18 and 2.4.33. The procedure involved the use of the values of concrete cylinder strength, yield stress of steel reinforcement, ultimate concrete strain and the elastic modulus of elasticity of the steel reinforcement. The ultimate concrete strain used was the average failure strain as obtained from the test results of the four axially loaded specimens of each series. An outline of the program is given below and a detailed flow diagram is given in Appendix D.

(a) Calculate the balanced condition and determine P_b and M_b as well as the depth of neutral axis.

(b) Calculate the section failure parameters as described in Fig. 8, Appendix B and calculate the ultimate curvature using the relevant theoretical expression. Calculate the ultimate curvature by dividing the ultimate concrete strain by the depth of neutral axis.

(c) Reduce the depth of neutral axis incrementally from the balanced condition and calculate the resultant axial load and moment.

(d) Repeat (b).
(e) Increase the depth of neutral axis incrementally from the balanced condition and calculate the resultant axial load and moment.

(f) Repeat (b).

The relations resulting from this program are represented graphically and are discussed in sections 5.4, 5.5, 5.6 and 5.7.
CHAPTER 5
DISCUSSION OF RESULTS AND CONCLUSIONS

5.1 RESULTS OF CONCRETE TESTS

The results of the concrete tests are presented in Table 6 in Appendix C.

Although it was desired to have concrete of equal strength in all test specimens, it was observed that there were variations in the values of the ultimate concrete compressive strengths. The lower values of the strengths of series S6, S8, S9 and S11 is due to the fact that these specimens were cast from a second batch of concrete. Variations in the strength of the other series were relatively small and were ascribed to the difference in the age of the specimens at the time of testing. In most cases the ultimate concrete compressive stress obtained from the tests exceeded their intended values.

The initial tangent moduli as determined from tests on the 6" x 12" cylinders were compared with the resonance moduli of elasticity. It was observed that in all instances the resonance modulus was higher than the corresponding initial tangent modulus. This observation is in general agreement with the results of previous research (Whitehurst (21), Sharma and Gupta (22), Stanton (23), Jones (24)) in this field. Whitehurst (21) has reported that the static modulus in compression was equivalent to 89 percent of the resonance modulus.

From Table 6 it was observed that the ratio of static modulus to resonance modulus varied between 0.74 and 0.93.

Sharma and Gupta (22) have established a relationship between static modulus of elasticity and the ratio of static to resonance moduli as follows:
\[
\frac{E_c}{E_d} = 0.368 + 0.0871 \times 10^{-6} \quad \ldots \quad (5.1.1)
\]

It was found (Fig. 14, Appendix B) that this expression could not find general application with all the results in Table 6. This may be due to the fact that the range of static moduli values over which the two tests were conducted were substantially different.

Jones (24) has reported that the following empirical relation was consistent with many results:

\[
E_d = E_c + 1 \quad \ldots \quad (5.1.2)
\]

This relation could not be applied to most of the results in Table 6.

A comparison of the initial tangent modulus as obtained from the compression test and those obtained from Inge Lyse's equation is given in Table 6. It was observed that the ratio \(\frac{E_d}{E_c} \) for all the tests were within the range of 0.82 - 1.01. This variation is in satisfactory agreement with the limitations of Inge Lyse's equation as stated in section 4.1.

5.2 RESULTS OF TENSION TESTS OF STEEL REINFORCEMENT

The results of the twelve tests carried out on the steel reinforcing bars are reported in Table 5 in Appendix C.

It was observed that the values of yield stress were in excess of the intended values and that a constant value of yield stress was not attained by all the steel specimens. Based on the minimum value of yield stress attained there was a maximum variation of approximately 18 percent in the values of yield stress.

The overall tensile behaviour of the No. 6 and No. 7 steel bars is shown in Figs. 16 and 17. In general it was found that the bars showed
sharp transition from the yield state into the strain hardening range.

5.3 **INTERACTION CHARACTERISTICS**

The graphical representation of the interaction characteristics for the eleven series of specimens are presented in Fig. 17 - Fig. 60 in Appendix B. The behaviour of each series is represented by four different curves as follows:

(a) Axial Load-Moment Diagram
(b) Moment-Curvature Diagram
(c) Load-Deflection Diagram
(d) Eccentricity-Ultimate Curvature Diagram

A summary of the results is also given in Table 7 in Appendix C.

5.4 **AXIAL LOAD-MOMENT DIAGRAMS**

The theoretical axial load-moment diagrams are presented as the first graph in each series of interaction characteristics in Figs. 17, 21, 25, 29, 33, 37, 41, 45, 49, 53 and 57. The curves were obtained from the computer output of Program III. The input data were the average values of concrete cylinder strengths and the average ultimate strains as obtained from the four axially loaded specimens of each series. The five experimental values of ultimate load and moment for each series are also presented on these graphs. These values showed satisfactory agreement with the theoretical values. In cases where there were variations between the theoretical curve and the experimental points it has been ascribed to the fact that the average values of concrete strengths were used as the input data for the theoretical curves. It is observed that experimental points on the graph which represented tensile failures showed greater deviations from the theoretical curve than points which represented compression failures. This has been ascribed to the assumptions at section 1.6 in which strain-hardening of the steel reinforcement was
neglected. The increase in stress in the tensile reinforcement due to strain hardening would increase the moment capacity of the section. The accuracy of the experimental values were also dependent on the accurate interpretation of the failure load. In many cases the test specimens were able to carry an increasing load after first crushing of concrete at the top of the specimens. Although care was taken in the determination of the load at first crushing, it is believed that this has contributed to the scatter in some of the results.

Each interaction diagram exhibited the usual branches which are characteristic of compression and tensile failures. This behaviour had good correspondence with the type of failure exhibited by the test specimens.

Although great care was taken to keep the percentage of longitudinal reinforcement as the only variable between the different series, it was found that there were variations between the yield stress of the steel reinforcement and the ultimate concrete compressive stress for each series of specimens. This factor has tended in some cases to invalidate the comparative behaviour of the different series of specimens.

Referring to Figs. 45, 49 and Figs. 54, 58, it is observed that although the magnitude of balance moment, M_b, is increased as the percentage of reinforcement is increased the magnitude of the balance load, P_b, is essentially constant for each pair of symmetrically reinforced sections. From Table 2, Figs. 37 and 45, it is observed that the value of the balance moment is increased as q_u' is increased but that the balance load is decreased as q_u' is increased for unsymmetrically reinforced sections.

A study of all the curves show that the strength capacity of a cross section is increased if q_u' is increased (Table 2, Appendix C) and
that the moment corresponding to balanced failure is markedly increased by increases in the percentage of steel reinforcement.

5.5 **MOMENT-CURVATURE DIAGRAMS**

The experimental moment-curvature-thrust diagrams are presented at Figs. 18, 22, 26, 30, 34, 38, 42, 46, 50, 54 and 58. The curves are the plotted values of the output data of Program II. Five moment-curvature diagrams, one for each member of a series are presented on each graph. The values of axial load at which the moment-curvature relations were measured are indicated on each graph.

A typical curve, Fig. 18, shows that as the axial load is increased that the slope of the moment-curvature diagram is increased up to and above the balance load. This indicates that the rotational stiffness has increased over this range of loading. For loads which are much higher than the balance load (Fig. 38), the rate of increase of stiffness with axial load is much lower than that of lower loads. For series S8, Figs. 45 and 46, it is observed that the section has a balance load of 67.4 kips and that while there is a rapid change of slope between curves A and B (axial load 0.0 kip and 20.2 kips respectively), there is a lower rate of change of slope between curves B and D, the axial load being 20.2 kips and 60.4 kips respectively. It is noted that at higher axial loads, curve E, axial load 90.2 kips, the rate of change of stiffness becomes negative.

Referring to Table 7 and Fig. 38, it is observed that curves A, B, C and D, (Series S6), indicate very high ductility but that the ductility is decreasing rapidly as the level of axial load increases. It is also observed at Fig. 18, curves D and E that as the axial load (99.8 kips) increases above the balanced load of the section (65.4 kips) the reduction in moment capacity is greater than the reduction in ultimate
curvature and this causes an apparent increase in the ductility of the section. A comparison of curves B of Figs. 26 and 34, (Series S3 and S5) shows that the ultimate curvature of the sections under an axial load of approximately 20 kips are .0012 in.\(^{-1}\) and .00086 in.\(^{-1}\) respectively. The difference between these sections was principally the percentage of steel reinforcement (Table 2). It is therefore concluded that ductility of members is decreased by an increase in the amount of longitudinal reinforcement.

It was not possible to study closely the effects of the transverse steel reinforcement on the ultimate curvature as it was observed that the concrete strength of series S5 and S6 were markedly different.

5.6 LOAD-DEFLECTION DIAGRAMS

The load-deflection diagrams are presented at Figs. 19, 23, 27, 31, 35, 39, 43, 47, 51, 55 and 59. The conclusions drawn from these curves were similar to those included at section 5.3.

5.7 ECCENTRICITY-ULTIMATE CURVATURE DIAGRAMS

The theoretical curves of eccentricity/ultimate curvature are presented at Figs. 20, 24, 28, 32, 36, 40, 44, 48, 52, 56 and 60. The curves were obtained in the manner described in section 4.3. The values of eccentricity and ultimate curvature which were obtained from the tests are also presented on these curves. Although only four experimental values were available, the trend was in satisfactory agreement with the theoretical values. The scatter in some of the results has been ascribed to the sensitivity of the theoretical expressions to the value of limiting strain. The average values of ultimate strains as calculated from the test values of the four axially loaded specimens of each series were used in the evaluation of the theoretical expressions.

A study of the theoretical curves shows that the theoretical
expressions satisfy the descriptive behaviour at ultimate, of reinforced concrete beam-column sections.

Referring to Figs. 24 and 28 (Series S2 and S3), it was found that for approximately the same value of ultimate strain (.0033 in./in.) the former section showed higher values of ultimate curvature. Figs. 48, 52, 56 and 60 when compared with similar curves for unsymmetrically reinforced sections showed that the symmetrically reinforced concrete beam-columns possessed better ductile characteristics than unsymmetrically reinforced sections.

5.8 DISCUSSION OF EXPERIMENTAL ERRORS

The horizontal pins shown at Fig. 13 performed satisfactorily but it was noted that on application of the axial load the test specimen tended to move vertically due to rotation at the ball bearings. In some cases corrective measures were successful but in others, attempts were made to measure the new elevation of the test beam.

Although careful attention was paid to the determination of the load at first fracture of the concrete, it was not possible in all cases to achieve this goal. This may have resulted in slightly incorrect values of the failure loads.

In order to avoid damage to the linear variable differential transducers it was necessary to remove them before the initiation of concrete failure. This was necessary for cases in which compression failures were expected and this could introduce slight errors in the values of the recorded ultimate curvatures. The measurement of deflections were continuous throughout and gave a fair indication of the relative deformation of the specimens at failure.

The output from computer Program I showed in some instances that there was malfunctioning of some transducers during the tests. This
may have been due to slipping of the mountings or more likely due to sticking of the transducer core. Where this was observed it was necessary to modify computer Program II to omit the use of these readings and this may have resulted in a loss of accuracy in the final results.

5.9 CONCLUSIONS

From an examination of the results, the following conclusions may be made:

1. The magnitude of the balance point load is unaffected by the amount of longitudinal reinforcement if the section is equally reinforced in tension and compression.

2. The magnitude of the balance load is increased if the factor q'_u is decreased and is essentially constant for $q'_u = 0$.

3. The strength capacity of a given section is increased if q'_u is increasing.

4. The moment corresponding to the balance condition is markedly increased by increases in the longitudinal steel reinforcement.

5. The rotational stiffness of reinforced concrete beam-columns is markedly increased in the presence of axial load.

6. The rate of increase of stiffness with axial load is greater for loads less than P_d; for higher magnitudes this rate is decreased and becomes negative for loads above certain load levels.

7. There are large amounts of ductility at low values of axial load, and the ductility is decreased as the
axial load increases.

8. For axial loads greater than the balance load, the reduction in moment capacity with increasing load is greater than the reduction in ultimate curvature and this causes an apparent increase in ductility.

9. Ductility of beam-column sections is decreased by increasing the amount of longitudinal reinforcement.

10. The theoretical expressions presented satisfy the descriptive behaviour at ultimate, of reinforced concrete beam-columns.

11. Symmetrically reinforced concrete beam-columns possess better ductile characteristics than unsymmetrically reinforced sections.

5.10 SUGGESTIONS FOR FURTHER RESEARCH

The study carried out in this thesis has verified a number of the important factors which influence the interaction characteristics of hinges formed at beam-column sections. However, a number of derived suggestions for further research seems to be apparent:

1. The theoretical expressions presented in this thesis require further experimental examination. Using the limited test population of this program the expressions seem to overestimate values of ultimate curvature at high values of eccentricity.

2. Studies leading to the development of yield interaction envelopes, would undoubtedly provide valuable information on the acceptable design moment of beam-column sections.

3. Experimental studies on full scale structures leading to a better knowledge of the behaviour of beam-column hinges.
4. The extension of this thesis to account for the strain-hardening effects of the steel reinforcement.
APPENDIX A: REFERENCES
1. BAKER, A.I.L.
 "The Ultimate Load Theory Applied to the Design of Reinforced and
 Prestressed Concrete Frames".

2. SAWYER, H.A.
 "Design of Concrete Frames for Two Failure Stages".
 Proceedings of the International Symposium, Miami, Fla.,
 Nov. 10-12, 1964, pp. 405-431.

3. COHN, M.Z.
 "Rotation Compatibility in the Limit Design of Reinforced
 Concrete Continuous Slabs".
 Flexural Mechanics of Reinforced Concrete Proceedings
 Proceedings of the International Symposium, Miami, Fla.,
 Nov. 10-12, 1964, pp. 359-382.

4. BERMANGER, C.
 "Limit Design by Successive Moment Distribution".
 Journal of the Structural Division – Proceedings of the
 American Society of Civil Engineers, pp. 405, ST1, Feb. 1966,
 pp. 405-430.

5. CHAN, W.W.L.
 "The Ultimate Strength and Deformation of Plastic Hinges in
 Reinforced Concrete Framework".
 Magazine of Concrete Research (London), No. 21, Nov. 1955, pp. 121-131.
6. MATTOCK, ALLAN H.

"Rotational Capacity of Hinging Regions in Reinforced Concrete Beams".

Flexural Mechanics of Reinforced Concrete.
Proceedings of the International Symposium, Miami, Fla.,
Nov. 10-12, 1964, pp. 143-181.

7. HOGNESTAD, EIVIND

"A Study of Combined Bending and Axial Load in Reinforced Concrete Members".

8. BAXER, A.L.E. and AMARAKONE, A.M.N.

"Inelastic Hyperstatic Frames Analysis"

Flexural Mechanics of Reinforced Concrete.

Proceedings of the International Symposium, Miami, Fla.,
Nov. 10-12, 1964, pp. 85-142.

9. GORLEY, W. GENE

"Rotational Capacity of Reinforced Concrete Beams".

Journal of the Structural Division - Proceedings of the American Society of Civil Engineers, pp. 121, Vol. 92,
10. ROY, H.E.H., and SOZEN, NEFE A.

"Ductility of Concrete"

Flexural Mechanics of Reinforced Concrete.

11. BROMS, BENGT, VIEST, T.M.

"Ultimate Strength Analysis of Long Hinged Reinforced Concrete Columns".

12. BROMS, BENGT, VIEST, T.M.

"Design of Long Reinforced Concrete Columns".

13. HOOGSTAD, EIVIND.

"Inelastic Behaviour in Tests of Eccentrically Loaded Short Reinforced Concrete Columns".

Bulletin No. 2, The Reinforced Concrete Research Council of the Engineering Foundation (Authorised reprint from copyrighted Journal of the American Concrete Institute, Oct. 1962.)
14. PFRANG, E.O., SEISS, C.P., SOZEN, M.A.

"Load - Moment - Curvature Characteristics of Reinforced Concrete Cross Section".

Journal of the American Concrete Institute, July 1964, pp. 763-776.

15. BROWN, JOHN E.

"Computer Use in Studies of Frames with Long Columns".

Flexural Mechanics of Reinforced Concrete.

16. PFRANG, E.O., and SEISS, C.P.

"Analytical Study of the Behaviour of Long Restrained Reinforced Concrete Columns Subjected to Eccentric Loads".

17. CONN, M.Z.

"Nonlinear Analysis and Design".

Flexural Mechanics of Reinforced Concrete.

18. HOGHESTAD, E., HANSON, N.M., McHENRY, D.

"Concrete Stress Distribution in Ultimate Strength Design".
Journal of the American Concrete Institute, Dec. 1955, Vol. 52, pp. 455.

19. KHAN, M.M., WATTOCK, A.H.

"An Experimental Investigation of the Influence of Formation of a Plastic Hinge on the Shear Strength of Singly Reinforced Concrete Beam".

20. COGAN, HENRY J.

"The Strength of Plain, Reinforced and Prestressed Concrete Under the Action of Combined Stresses, with Particular Reference to the Combined Bending and Torsion of Rectangular Sections".

21. WHITEHURST, E.A.

"Evaluation of Concrete Properties from Sonic Tests".
American Concrete Institute and Iowa State University Press, pp. 25.

22. SHARMA, N.R., GUTH, J.L.

"Sonic Modulus as Related to Strength and Static Modulus of High Strength Concrete".
Indian Concrete Journal, Vol. 34, No. 4, April 1960, pp. 139-141.
23. SUTTON, T.E.

"Tests Comparing the Modulus of Elasticity of Portland Cement Concrete as Determined by the Dynamic (Sonic) and Compression (Seism at 1000 p.s.i.) Methods", A.S.T.M. Bulletin No. 131, Dec. 1944, pp. 17-20;

24. JONES, R.

"Non-Destructive Testing of Concrete"
Cambridge University Press, 1962, pp. 30
APPENDIX B: FIGURES
FIG. 1: DISTRIBUTION OF CURVATURE NEAR A SUPPORT

FIG. 2: MOMENT-CURVATURE RELATION
FIG. 3: ASSUMED STRESS-STRAIN RELATIONSHIP
FOR CONCRETE IN COMPRESSION.
(ROCKSTAD)
FIG. 5: STRESS AND STRAIN DISTRIBUTION AT YIELD OF TENSION REINFORCEMENT AND AT ULTIMATE
FIG. 6: AXIAL LOAD - MOMENT INTERACTION DIAGRAM

FIG. 7: STRESS AND STRAIN DISTRIBUTION FOR BEAM-COLUMN SECTION (TENSILE AND COMPRESSION HINGES)
FIG. 8: SECTION FAILURE PARAMETERS FOR BEAM-COLUMN SECTIONS

FIG. 9: STRESS AND STRAIN DISTRIBUTION AT ULTIMATE FOR BEAM-COLUMN SECTION (COMPRESSIVE HINGE)
Steel Loading Beam

Concrete Test Specimen

7 Deflection Dial Gages

10"gage length

3" 18" 30" 18" 3"

5'-6"

(a)

6"

T10

8"

T1 + T9 + T2 + T8 + T3 + T7 + T4 + T6 + T5

T1 + T9 + T2 + T8 + T3 + T7 + T4 + T6 + T5

T1 + T9 + T2 + T8 + T3 + T7 + T4 + T6 + T5

(b)

FIG. 10: SCHEMATIC DRAWING - TRANSVERSE LOAD - TEST DIMENSIONS AND TRANSDUCER LAYOUT
FIG. 11: SCHEMATIC LOADING AND LOAD MEASURING ELECTRONIC CIRCUITRY
FIG. 12: SCHEMATIC LAYOUT OF STRAIN MEASURING CIRCUITRY AND DEVICES
\[\frac{E_c}{E_d} = 0.368 + 0.087 \times 10^{-6} E_c \]

Fig. 14 Relationship between static modulus of elasticity and the ratio of static to resonance moduli. *After Sharma and Gupta (22)*
FIG. 15: STRESS-STRAIN RELATION FOR NO. 6 MILD STEEL BAR
FIG. 16: STRESS-STRAIN RELATION FOR No. 7 MILD STEEL BAR

\[f_y = 44.3 \text{ kip/sq. in.} \]

\[e_y = 0.604 \text{ in./in.} \]

\[E_{ah} = 6.9 \times 10^6 \text{ psi} \]

\[f_{u} = 31.00 \times 10^6 \text{ psi} \]
FIG. 17: AXIAL LOAD - MOMENT INTERACTION DIAGRAM - S1
FIG. 10: Moments - Curvature Diagram - 51
Fig. 19: Load - Deflection Diagram - Sl
FIG. 20: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - S1
FIG. 21: AXIAL LOAD - MOMENT INTERACTION DIAGRAM - S2

Axial Load (P) kip

250

200

150

100

50

0

Moment (M) kip in.

500

400

300

200

100

0

x Analytical results
○ Experimental results
balance point
FIG. 22: MOMENT-CURVATURE DIAGRAM - S2
FIG. 23: LOAD-DEFLECTION DIAGRAM - S2
FIG. 24: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - S2
FIG. 25: AXIAL LOAD - MOMENT INTERACTION DIAGRAM - S3
Load (W) kips

<table>
<thead>
<tr>
<th>Curve</th>
<th>Axial Load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>20.1</td>
</tr>
<tr>
<td>C</td>
<td>40.1</td>
</tr>
<tr>
<td>D</td>
<td>60.1</td>
</tr>
<tr>
<td>E</td>
<td>90.3</td>
</tr>
</tbody>
</table>

Deflection (\(\Delta\)) in

FIG. 27: LOAD - DEFLECTION DIAGRAM -83
FIG. 28: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - S3
FIG. 31: LOAD - DEFLECTION DIAGRAM - S4
FIG. 32: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - 54
FIG. 33: AXIAL LOAD-MOMENT INTERACTION DIAGRAM - S5
FIG. 35: LOAD - DEFLECTION DIAGRAM - S5
FIG. 36: Eccentricity - ULTIMATE CURVATURE DIAGRAM - S5
Axial Load (P) kips

Moment (M) kip in

FIG. 37: AXIAL LOAD - MOMENT INTERACTION DIAGRAM - 56
Load (k) kips

<table>
<thead>
<tr>
<th>Curve</th>
<th>Axial Load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>30.2</td>
</tr>
<tr>
<td>C</td>
<td>40.0</td>
</tr>
<tr>
<td>D</td>
<td>50.4</td>
</tr>
<tr>
<td>E</td>
<td>90.2</td>
</tr>
</tbody>
</table>

Deflection (Δ) in.

FIG. 39: LOAD - DEFLECTION DIAGRAM - 56
Eccentricity (e') in

FIG. 40: Eccentricity - Ultimate Curvature Diagram - 56
FIG. 41: AXIAL LOAD - MOMENT INTERACTION DIAGRAM - S7
Moment (M) kip in.

Curvature (ϕ) in $^{-1}$

<table>
<thead>
<tr>
<th>Curve</th>
<th>Axial Load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>10.4</td>
</tr>
<tr>
<td>C</td>
<td>30.0</td>
</tr>
<tr>
<td>D</td>
<td>60.2</td>
</tr>
<tr>
<td>E</td>
<td>90.3</td>
</tr>
</tbody>
</table>

FIG. 42: MOMENT - CURVATURE DIAGRAM - S7
FIG. 43: LOAD - DEFLECTION DIAGRAM - S7
FIG. 44: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - S^2
FIG. 45: AXIAL LOAD - MOMENT INTERACTION DIAGRAM - S8
Fig. 14: Example - Curvature Diagram - S3
FIG. 47: LOAD - DEFLECTION DIAGRAM - S8
FIG. 48: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - S8
FIG. 49: AXIAL LOAD - MOMENT INTERACTION DIAGRAM - S9
Load (W) kips

<table>
<thead>
<tr>
<th>Curve</th>
<th>Axial Load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>25.2</td>
</tr>
<tr>
<td>C</td>
<td>50.2</td>
</tr>
<tr>
<td>D</td>
<td>75.3</td>
</tr>
<tr>
<td>E</td>
<td>95.0</td>
</tr>
</tbody>
</table>

Deflection (δ) in.

FIG. 51: LOAD - DEFLECTION DIAGRAM - 89
Eccentricity (e') in.

ϕ_u in$^{-1}$

- x Analytical results using theoretical expressions
- o Experimental results

FIG. 52: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - S9
FIG. 55: LOAD - DEFLECTION DIAGRAM - S10
FIG. 56: ECCENTRICITY - ULTIMATE CURVATURE - S10
FIG. 57: AXIAL LOAD – MOMENT INTERACTION DIAGRAM - S11

Axial Load (P) kips

- Analytical results
- Experimental results

(balance point)
FIG. 59: LOAD - DEFLECTION DIAGRAM - 89
Eccentricity (e') in.

Analytical results using theoretical expressions

Experimental results

balance failure

Ultimate Curvature (ϕ_U) in$^{-1}$

FIG. 60: ECCENTRICITY - ULTIMATE CURVATURE DIAGRAM - S11
APPENDIX C: TABLES OF EXPERIMENTAL RESULTS
<table>
<thead>
<tr>
<th>Specimen</th>
<th>w'nd</th>
<th>k'nd</th>
<th>d</th>
<th>A_s</th>
<th>A'_s</th>
<th>f_y</th>
<th>f'_y</th>
<th>f'_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.0</td>
<td>1.50</td>
<td>6.50</td>
<td>0.40</td>
<td>0.10</td>
<td>44.2</td>
<td>43.0</td>
<td>4.86</td>
</tr>
<tr>
<td>S2</td>
<td>1.0</td>
<td>1.50</td>
<td>6.50</td>
<td>0.68</td>
<td>0.10</td>
<td>46.5</td>
<td>43.0</td>
<td>4.28</td>
</tr>
<tr>
<td>S3</td>
<td>1.0</td>
<td>1.50</td>
<td>6.50</td>
<td>1.20</td>
<td>0.10</td>
<td>43.9</td>
<td>43.0</td>
<td>4.39</td>
</tr>
<tr>
<td>S4</td>
<td>1.0</td>
<td>1.50</td>
<td>6.50</td>
<td>1.60</td>
<td>0.10</td>
<td>43.9</td>
<td>43.0</td>
<td>4.12</td>
</tr>
<tr>
<td>S5</td>
<td>1.5</td>
<td>2.25</td>
<td>5.75</td>
<td>1.58</td>
<td>0.62</td>
<td>42.0</td>
<td>46.2</td>
<td>4.42</td>
</tr>
<tr>
<td>S6</td>
<td>1.5</td>
<td>2.25</td>
<td>5.75</td>
<td>1.58</td>
<td>0.62</td>
<td>42.0</td>
<td>46.2</td>
<td>3.23</td>
</tr>
<tr>
<td>S7</td>
<td>1.5</td>
<td>2.25</td>
<td>5.75</td>
<td>2.00</td>
<td>0.88</td>
<td>49.6</td>
<td>46.5</td>
<td>4.22</td>
</tr>
<tr>
<td>S8</td>
<td>2.0</td>
<td>2.00</td>
<td>6.00</td>
<td>0.62</td>
<td>0.62</td>
<td>46.2</td>
<td>46.2</td>
<td>3.67</td>
</tr>
<tr>
<td>S9</td>
<td>2.0</td>
<td>2.00</td>
<td>6.00</td>
<td>0.88</td>
<td>0.62</td>
<td>46.5</td>
<td>46.5</td>
<td>3.68</td>
</tr>
<tr>
<td>S10</td>
<td>2.0</td>
<td>2.00</td>
<td>6.00</td>
<td>1.20</td>
<td>1.20</td>
<td>42.9</td>
<td>43.9</td>
<td>4.56</td>
</tr>
<tr>
<td>S11</td>
<td>2.0</td>
<td>2.00</td>
<td>6.00</td>
<td>1.58</td>
<td>1.58</td>
<td>42.0</td>
<td>42.0</td>
<td>4.21</td>
</tr>
</tbody>
</table>

Table 1: Properties of Test Specimens
<table>
<thead>
<tr>
<th>Specimen</th>
<th>k_{nd}</th>
<th>k'_{nd}</th>
<th>d (in)</th>
<th>A_s</th>
<th>A'_s</th>
<th>p</th>
<th>p'</th>
<th>$p-p'$</th>
<th>q</th>
<th>q'</th>
<th>$q'_{u=q-q'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.0</td>
<td>1.5</td>
<td>6.5</td>
<td>0.40</td>
<td>0.10</td>
<td>0.0103</td>
<td>0.0026</td>
<td>0.0077</td>
<td>0.0104</td>
<td>0.1173</td>
<td>0.0285</td>
</tr>
<tr>
<td>S2</td>
<td>1.0</td>
<td>1.5</td>
<td>6.5</td>
<td>0.88</td>
<td>0.10</td>
<td>0.0226</td>
<td>0.0026</td>
<td>0.0200</td>
<td>0.0204</td>
<td>0.2451</td>
<td>0.0257</td>
</tr>
<tr>
<td>S3</td>
<td>1.0</td>
<td>1.5</td>
<td>6.5</td>
<td>1.20</td>
<td>0.10</td>
<td>0.0308</td>
<td>0.0026</td>
<td>0.0282</td>
<td>0.0271</td>
<td>0.3076</td>
<td>0.0251</td>
</tr>
<tr>
<td>S4</td>
<td>1.0</td>
<td>1.5</td>
<td>6.5</td>
<td>1.80</td>
<td>0.10</td>
<td>0.0462</td>
<td>0.0026</td>
<td>0.0436</td>
<td>0.0396</td>
<td>0.4910</td>
<td>0.0267</td>
</tr>
<tr>
<td>S5</td>
<td>1.5</td>
<td>2.25</td>
<td>5.75</td>
<td>1.58</td>
<td>0.62</td>
<td>0.0458</td>
<td>0.0180</td>
<td>0.0278</td>
<td>0.0458</td>
<td>0.4344</td>
<td>0.1875</td>
</tr>
<tr>
<td>S6</td>
<td>1.5</td>
<td>2.25</td>
<td>5.75</td>
<td>1.58</td>
<td>0.62</td>
<td>0.0458</td>
<td>0.0180</td>
<td>0.0278</td>
<td>0.0458</td>
<td>0.5858</td>
<td>0.2529</td>
</tr>
<tr>
<td>S7</td>
<td>1.5</td>
<td>2.25</td>
<td>5.75</td>
<td>2.0</td>
<td>0.88</td>
<td>0.0580</td>
<td>0.0255</td>
<td>0.0325</td>
<td>0.0600</td>
<td>0.7445</td>
<td>0.2813</td>
</tr>
<tr>
<td>S8</td>
<td>2.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.62</td>
<td>0.62</td>
<td>0.0172</td>
<td>0.0172</td>
<td>0</td>
<td>0.0258</td>
<td>0.2163</td>
<td>0.2166</td>
</tr>
<tr>
<td>S9</td>
<td>2.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.88</td>
<td>0.88</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0</td>
<td>0.0367</td>
<td>0.3088</td>
<td>0.3088</td>
</tr>
<tr>
<td>S10</td>
<td>2.0</td>
<td>2.0</td>
<td>6.0</td>
<td>1.20</td>
<td>1.20</td>
<td>0.0333</td>
<td>0.0333</td>
<td>0</td>
<td>0.0500</td>
<td>0.3203</td>
<td>0.3203</td>
</tr>
<tr>
<td>S11</td>
<td>2.0</td>
<td>2.0</td>
<td>6.0</td>
<td>1.58</td>
<td>1.58</td>
<td>0.0439</td>
<td>0.0439</td>
<td>0</td>
<td>0.0658</td>
<td>0.4373</td>
<td>0.4373</td>
</tr>
</tbody>
</table>

TABLE 2: DESIGN PROPERTIES OF TEST SPECIMENS
<table>
<thead>
<tr>
<th>Batch</th>
<th>Specimen Series Name</th>
<th>Slump (in.)</th>
<th>Air Entrainment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1, S2, S3, S4, S5, S7, S10</td>
<td>3.25</td>
<td>5.75</td>
</tr>
<tr>
<td>2</td>
<td>S6, S8, S9, S11</td>
<td>2.5</td>
<td>6.0</td>
</tr>
</tbody>
</table>

TABLE 3: WORKABILITY AND AIR ENTRAINMENT OF CONCRETE

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Percentage Retained on Sieve No.</th>
<th>Fineness Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" 2 1/2 3/8 3/8"</td>
<td>4 8 16 30 50 100 200</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>3.2 16.7 30 44 69.5 90.0 97.7 2.53</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>4 18 74 97</td>
<td>97.7</td>
</tr>
</tbody>
</table>

TABLE 4: SIEVE ANALYSIS OF AGGREGATES
<table>
<thead>
<tr>
<th>No.</th>
<th>Elasticity, E_E (ksi)</th>
<th>Modulus of Elasticity, E_g (ksi $\times 10^6$)</th>
<th>f_y (ksi)</th>
<th>\bar{f}_y (ksi)</th>
<th>e_y (6 in. $\times 6$ in.)</th>
<th>\overline{e}_y (sq. in.)</th>
<th>Area (\overline{f}_y) (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>31.93</td>
<td>31.93</td>
<td>43.0</td>
<td>43.0</td>
<td>.00135</td>
<td>.00135</td>
<td>.05</td>
</tr>
<tr>
<td>3</td>
<td>28.26</td>
<td>28.37</td>
<td>48.0</td>
<td>48.1</td>
<td>.00148</td>
<td>.00156</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>28.48</td>
<td></td>
<td></td>
<td>48.2</td>
<td></td>
<td>.00165</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>31.13</td>
<td>31.13</td>
<td>44.2</td>
<td>44.2</td>
<td>.00136</td>
<td>.00136</td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>30.89</td>
<td>30.75</td>
<td>46.0</td>
<td>46.2</td>
<td>.00143</td>
<td>.00142</td>
<td>.31</td>
</tr>
<tr>
<td></td>
<td>30.61</td>
<td></td>
<td></td>
<td>46.4</td>
<td></td>
<td>.00141</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>29.64</td>
<td>30.17</td>
<td>46.5</td>
<td>46.5</td>
<td>.00155</td>
<td>.00149</td>
<td>.44</td>
</tr>
<tr>
<td></td>
<td>30.91</td>
<td></td>
<td></td>
<td>46.6</td>
<td></td>
<td>.00144</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>30.09</td>
<td>30.54</td>
<td>43.5</td>
<td>43.9</td>
<td>.00140</td>
<td>.00141</td>
<td>.60</td>
</tr>
<tr>
<td></td>
<td>31.00</td>
<td></td>
<td></td>
<td>43.3</td>
<td></td>
<td>.00142</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30.82</td>
<td>30.82</td>
<td>42.0</td>
<td>42.0</td>
<td>.00135</td>
<td>.00135</td>
<td>.79</td>
</tr>
<tr>
<td>9</td>
<td>29.90</td>
<td>29.90</td>
<td>49.8</td>
<td>49.8</td>
<td>.00175</td>
<td>.00175</td>
<td>1.0</td>
</tr>
</tbody>
</table>

TABLE 5: TEST RESULTS OF STEEL REINFORCING BARS
Table 6: Concrete Test Properties

<table>
<thead>
<tr>
<th>Beam Series</th>
<th>Ultra Compressive Stress Test Day of Test</th>
<th>Initial Modulus of Elasticity, E_c</th>
<th>6" x 12" cylinders psi</th>
<th>Resonance Modulus of Elasticity, E_d</th>
<th>E_c (Avg) psi (x10^6) psi (x10^6) psi (x10^6) psi (x10^6) psi (x10^6)</th>
<th>E_d (Avg) psi (x10^6) psi (x10^6) psi (x10^6) psi (x10^6) psi (x10^6)</th>
<th>$E_c = \frac{E_c}{E_d}$ E Ratio Beam Age on Day of Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>3713 3925 3961</td>
<td>3.84 3.82</td>
<td>4.59 4.68 4.74 4.58</td>
<td>3.84 4.65 3.58</td>
<td>.83 .93 .12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>4138 4314 4403</td>
<td>4.53</td>
<td>4.96 5.13 4.99 5.08</td>
<td>4.53 5.04 3.77</td>
<td>.90 .83 .16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>4403 4421 4350</td>
<td>4.58 4.18</td>
<td>5.07 5.03 5.16 5.05</td>
<td>4.39 5.08 3.82</td>
<td>.86 .87 .18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>4173 4138 4067</td>
<td>3.96 4.10</td>
<td>5.05 5.02 4.84 4.86</td>
<td>4.03 4.94 3.69</td>
<td>.82 .92 .19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>4597 4297 4385</td>
<td>4.09 4.40</td>
<td>5.05 5.03 4.85 4.86</td>
<td>4.25 4.95 3.83</td>
<td>.86 .90 .21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>S6</td>
<td>3112</td>
<td>3283</td>
<td>3.26</td>
<td>4.42</td>
<td>3.28</td>
<td>4.45</td>
<td>3.31</td>
</tr>
<tr>
<td></td>
<td>3324</td>
<td>4.42</td>
<td>4.49</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4208</td>
<td>4.92</td>
<td>5.05</td>
<td>4.16</td>
<td>4.94</td>
<td>3.74</td>
<td>.85</td>
</tr>
<tr>
<td>S7</td>
<td>4208</td>
<td>4220</td>
<td>3.39</td>
<td>4.84</td>
<td>4.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>3625</td>
<td>3678</td>
<td>3.55</td>
<td>4.52</td>
<td>4.34</td>
<td>4.42</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>3855</td>
<td>4.41</td>
<td>4.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3554</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>3607</td>
<td>3684</td>
<td>3.43</td>
<td>4.52</td>
<td>3.55</td>
<td>4.42</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>3731</td>
<td>3.76</td>
<td>4.34</td>
<td>4.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>4562</td>
<td>4.81</td>
<td>5.12</td>
<td>4.66</td>
<td>5.06</td>
<td>3.90</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>4438</td>
<td>4.12</td>
<td>5.07</td>
<td>4.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>4261</td>
<td>4.00</td>
<td>4.31</td>
<td>4.05</td>
<td>4.34</td>
<td>3.73</td>
<td>.93</td>
</tr>
<tr>
<td></td>
<td>4067</td>
<td>4.10</td>
<td>4.27</td>
<td>4.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6: CONCRETE TEST PROPERTIES (CONT'D)
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Name</th>
<th>M_u (Test)</th>
<th>P_u (Test)</th>
<th>ϕ_u (Test)</th>
<th>ϵ_u (Test)</th>
<th>$\bar{\epsilon}_u$ (Avg.)</th>
<th>M_b (calc.)</th>
<th>P_b (calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>127.6 kip</td>
<td>0.0 kip</td>
<td>0.00293 in$^{-1}$</td>
<td>0.0036 in/in</td>
<td>0.0038 in/in</td>
<td>223.6 kip</td>
<td>65.4 kip</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>229.2 kip</td>
<td>25.0 kip</td>
<td>0.00158 in$^{-1}$</td>
<td>0.0039 in/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>243.6 kip</td>
<td>50.1 kip</td>
<td>0.00124 in$^{-1}$</td>
<td>0.0045 in/in</td>
<td></td>
<td>0.0038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>261.6 kip</td>
<td>75.2 kip</td>
<td>0.00105 in$^{-1}$</td>
<td>0.0038 in/in</td>
<td></td>
<td>223.6 kip</td>
<td>65.4 kip</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>182.4 kip</td>
<td>99.8 kip</td>
<td>0.00082 in$^{-1}$</td>
<td>0.0031 in/in</td>
<td></td>
<td>0.0038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>230.0 kip</td>
<td>0.0 kip</td>
<td>0.00102 in$^{-1}$</td>
<td>0.0033 in/in</td>
<td></td>
<td>301.5 kip</td>
<td>48.1 kip</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>309.4 kip</td>
<td>20.1 kip</td>
<td>0.00082 in$^{-1}$</td>
<td>0.0032 in/in</td>
<td></td>
<td>0.0034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>340.0 kip</td>
<td>40.0 kip</td>
<td>0.00080 in$^{-1}$</td>
<td>0.0034 in/in</td>
<td></td>
<td>0.0034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>321.2 kip</td>
<td>60.3 kip</td>
<td>0.00078 in$^{-1}$</td>
<td>0.0034 in/in</td>
<td></td>
<td>301.5 kip</td>
<td>48.1 kip</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>313.2 kip</td>
<td>90.1 kip</td>
<td>0.00090 in$^{-1}$</td>
<td>0.0036 in/in</td>
<td></td>
<td>0.0034</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>350.0 kip</td>
<td>0.0 kip</td>
<td>0.00100 in$^{-1}$</td>
<td>0.0033 in/in</td>
<td></td>
<td>0.0033</td>
<td>338.6 kip</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>350.0 kip</td>
<td>20.1 kip</td>
<td>0.00120 in$^{-1}$</td>
<td>0.0036 in/in</td>
<td></td>
<td>0.0033</td>
<td>338.6 kip</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>375.2 kip</td>
<td>40.1 kip</td>
<td>0.00095 in$^{-1}$</td>
<td>0.0029 in/in</td>
<td></td>
<td>0.0033</td>
<td>338.6 kip</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>338.0 kip</td>
<td>60.0 kip</td>
<td>0.00073 in$^{-1}$</td>
<td>0.0031 in/in</td>
<td></td>
<td>0.0033</td>
<td>38.0 kip</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>308.1 kip</td>
<td>90.3 kip</td>
<td>0.00068 in$^{-1}$</td>
<td>0.0034 in/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td>404.0 kip</td>
<td>0.0 kip</td>
<td>0.00052 in$^{-1}$</td>
<td>0.0032 in/in</td>
<td></td>
<td>0.0033</td>
<td>379.7 kip</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>404.0 kip</td>
<td>10.1 kip</td>
<td>0.00098 in$^{-1}$</td>
<td>0.0036 in/in</td>
<td></td>
<td>0.0033</td>
<td>379.7 kip</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>406.3 kip</td>
<td>20.1 kip</td>
<td>0.00120 in$^{-1}$</td>
<td>0.0036 in/in</td>
<td></td>
<td>0.0033</td>
<td>379.7 kip</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>397.9 kip</td>
<td>30.1 kip</td>
<td>0.00068 in$^{-1}$</td>
<td>0.0030 in/in</td>
<td></td>
<td>0.0033</td>
<td>379.7 kip</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>340.5 kip</td>
<td>60.1 kip</td>
<td>0.00052 in$^{-1}$</td>
<td>0.0034 in/in</td>
<td></td>
<td>0.0033</td>
<td>379.7 kip</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>325.0 kip</td>
<td>90.1 kip</td>
<td>0.00059 in$^{-1}$</td>
<td>0.0032 in/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>296.4 kip</td>
<td>0.0 kip</td>
<td>0.00088 in$^{-1}$</td>
<td>0.0030 in/in</td>
<td></td>
<td>0.0032</td>
<td>365.7 kip</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>417.6 kip</td>
<td>20.3 kip</td>
<td>0.00086 in$^{-1}$</td>
<td>0.0033 in/in</td>
<td></td>
<td>0.0032</td>
<td>365.7 kip</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>405.7 kip</td>
<td>40.0 kip</td>
<td>0.00077 in$^{-1}$</td>
<td>0.0032 in/in</td>
<td></td>
<td>0.0032</td>
<td>365.7 kip</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>401.7 kip</td>
<td>60.0 kip</td>
<td>0.00070 in$^{-1}$</td>
<td>0.0033 in/in</td>
<td></td>
<td>0.0032</td>
<td>365.7 kip</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>382.2 kip</td>
<td>90.3 kip</td>
<td>0.00068 in$^{-1}$</td>
<td>0.0029 in/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td></td>
<td>281.3 kip</td>
<td>0.0 kip</td>
<td>0.00087 in$^{-1}$</td>
<td>0.0029 in/in</td>
<td></td>
<td>0.0034</td>
<td>319.8 kip</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>377.8 kip</td>
<td>20.2 kip</td>
<td>0.00117 in$^{-1}$</td>
<td>0.0047 in/in</td>
<td></td>
<td>0.0034</td>
<td>319.8 kip</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>324.2 kip</td>
<td>40.0 kip</td>
<td>0.00080 in$^{-1}$</td>
<td>0.0032 in/in</td>
<td></td>
<td>0.0034</td>
<td>319.8 kip</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>289.2 kip</td>
<td>60.4 kip</td>
<td>0.00058 in$^{-1}$</td>
<td>0.0026 in/in</td>
<td></td>
<td>0.0034</td>
<td>319.8 kip</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>287.0 kip</td>
<td>90.2 kip</td>
<td>0.00071 in$^{-1}$</td>
<td>0.0035 in/in</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7: SUMMARY OF TEST RESULTS
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>343.8</td>
<td>0.0</td>
<td>.00094</td>
<td>.0032</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>468.0</td>
<td>10.4</td>
<td>.00095</td>
<td>.0034</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>482.9</td>
<td>30.0</td>
<td>.00101</td>
<td>.0038</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>478.4</td>
<td>60.2</td>
<td>.00087</td>
<td>.0035</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>337.8</td>
<td>90.2</td>
<td>.00057</td>
<td>.0025</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
<td></td>
<td>.0033</td>
<td>444.7</td>
<td>11.1</td>
</tr>
<tr>
<td>A</td>
<td>145.8</td>
<td>0.0</td>
<td>.00093</td>
<td>.0022</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>301.9</td>
<td>25.2</td>
<td>.00123</td>
<td>.0035</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>315.1</td>
<td>50.5</td>
<td>.00115</td>
<td>.0043</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>281.3</td>
<td>75.5</td>
<td>.00102</td>
<td>.0042</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>274.7</td>
<td>89.6</td>
<td>.00072</td>
<td>.0033</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td></td>
<td></td>
<td>.0035</td>
<td>260.2</td>
<td>67.4</td>
</tr>
<tr>
<td>A</td>
<td>217.8</td>
<td>0.0</td>
<td>.00097</td>
<td>.0023</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>324.0</td>
<td>25.2</td>
<td>.00098</td>
<td>.0031</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>375.0</td>
<td>50.2</td>
<td>.00091</td>
<td>.0037</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>348.9</td>
<td>75.3</td>
<td>.00089</td>
<td>.0036</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>309.1</td>
<td>95.0</td>
<td>.00058</td>
<td>.0033</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td></td>
<td></td>
<td>.0032</td>
<td>305.5</td>
<td>61.8</td>
</tr>
<tr>
<td>A</td>
<td>273.2</td>
<td>0.0</td>
<td>.00124</td>
<td>.0030</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>408.3</td>
<td>25.6</td>
<td>.00122</td>
<td>.0034</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>443.4</td>
<td>50.2</td>
<td>.00091</td>
<td>.0033</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>496.8</td>
<td>75.2</td>
<td>.00117</td>
<td>.0032</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>425.0</td>
<td>95.4</td>
<td>.00074</td>
<td>.0031</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td></td>
<td></td>
<td>.0032</td>
<td>388.5</td>
<td>86.7</td>
</tr>
<tr>
<td>A</td>
<td>283.3</td>
<td>0.0</td>
<td>.00148</td>
<td>.0036</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>442.5</td>
<td>25.8</td>
<td>.00119</td>
<td>.0038</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>470.0</td>
<td>50.0</td>
<td>.00117</td>
<td>.0044</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>488.1</td>
<td>80.1</td>
<td>.00092</td>
<td>.0039</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>440.4</td>
<td>95.0</td>
<td>.00077</td>
<td>.0035</td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td></td>
<td></td>
<td>.0038</td>
<td>425.1</td>
<td>74.5</td>
</tr>
</tbody>
</table>

TABLE 7: SUMMARY OF TEST RESULTS (CONT'D)
APPENDIX D: COMPUTER FLOW DIAGRAMS
Applied load for $J = 1, N$

Total deformation from transducer data set for $J = 1, N$

Total deflection from deflection data set for $J = 1, N$

Difference between consecutive load cell data

Difference between consecutive transducer data

Difference between consecutive deflection data

Incremental load and deformation

Incremental load and deflection

Return
FLOW DIAGRAM - PROGRAM II

J
1

Name of specimen

N = number of readings

N

<0

0

M = N + 1

= 0

breadth of specimen
depth of specimen
modulus of elasticity of steel
modulus of elasticity of concrete
ultimate concrete compressive stress
area of compression reinforcement
area of tension reinforcement
axial load
cover to compression reinforcement
cover to tension reinforcement

CR1 initial transducer reading at extreme compression fibre
CR2 transducer reading at first perceptible cracking

E

F
CRSR maximum compressive strain at cracking

$AXL = 0$

Centroid, eccentricity, second moment of area. Strain distribution due to direct load using Hognestad's stress/strain relation

950

Load cell data

Transducer data

Deflection data

51

$I = 1, M$

Transverse load, moment. Load-deflection profile

51
45
I \leftarrow 1, M

STR1(I) \rightarrow \text{ STR6(I) = strain at elevation of transducers }

X(I) = \text{ elevation of transducers }

800
I \leftarrow 2, M

\begin{align*}
Y(1) &= \text{ STR1(I)} \\
Y(2) &= \text{ STR2(I)} \\
Y(3) &= \text{ STR3(I)} \\
Y(4) &= \text{ STR4(I)} \\
\end{align*}

\text{ CRSR} \leq Y(1) \\
\text{ F} \\
Y(5) = \text{ STR5(I)} \\
Y(6) = \text{ STR6(I)}

\text{ Fit strain data to straight line using } Y(1), Y(2), Y(3), Y(4), Y(5), Y(6)

\text{ Fit strain data to straight line using } Y(1), Y(2), Y(3), Y(4), Y(5), Y(6)
Add initial strain distribution to fitted strain distribution. Calculate final strains across section. Calculate curvature and depth of neutral axis.
FLOW DIAGRAM - PROGRAM III

N = number of series

J = 1

B = breadth of specimen
D = effective depth of specimen
PC = concrete compressive stress
FY = steel yield stress
CC = cover to compression reinforcement
CT = cover to tension reinforcement
AC = area of compression reinforcement
AT = area of tension reinforcement
EU = limiting concrete strain
EMS = modulus of elasticity for steel reinforcement

PO = axial load
EY = steel yield strain

X = distance of plastic centroid from geometrical centre

CB = neutral axis at balance condition
MB = moment about plastic centroid at balance condition
PB = balance load
BT, BN, BM, C, QC = section failure parameters
PHIC = ultimate curvature
CBT = CB - 0.15

<0

CBT - CC

>0

ESC = strain in compression reinforcement

ESC > FY

T

F

UMT = ultimate moment
PBT = axial load
BT, BN, BM, C, QC = section failure parameters
PHIC = ultimate curvature

50

52

53

54

55

56

CBC = CBT - 0.15

<0

CBC - D

>0

=0

EST = strain in tension steel (tensile)

UMC = ultimate moment
PBC = axial load
BT, BN, C, QC = section failure parameters
PHIC = ultimate curvature

FY = steel yields stress

L

M
UMC = ultimate moment
PBC = axial load
BT, BN, C, QC = section failure parameters
PHIC = ultimate curvature

CBC = CBC 0.19

CBC < D CT

J = J 1

J ≤ N

RETURN
APPENDIX E : PHOTOGRAPHS
PLATE 1 - COMPRESSION TEST ON 6" x 12" CONCRETE CYLINDER.

PLATE 2 - ELECTRO DYNAMIC MATERIAL TESTER - RESONANCE MODULUS OF ELASTICITY 3" x 3" x 12" PRISMS.
PLATE 3 – LAYOUT OF LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS AND DEFLECTION GAUGES.
PLATE 4 – 100 KIP CAPACITY HYDRAULIC CYLINDER AND DETAILS OF VERTICAL AND HORIZONTAL PINS.

PLATE 5 – 100 KIP CAPACITY LOAD CELL.
PLATE 6 – UNSYMMETRICALLY REINFORCED BEAM-COLUMN AFTER TEST - SERIES S6.

PLATE 7 – SYMMETRICALLY REINFORCED BEAM-COLUMN AFTER TEST - SERIES S10.
APPENDIX F: FABRICATION DRAWINGS
ELEVATION

SECTION

NOTES:

1. SPACE 12" AT ALL JOINTS.
2. MILLISTONE TO STIRUP ADD
3. SHEET METAL COVERS BARS.
4. ALL BARS TO BE FERRULED AT JOINTS.
5. INSIDE DIMENSIONS.
6. 8" FINISH TYPE B.
7. 10" FINISH TYPE A.

WILSON CONCRETE PROD LTD.
BELLEVILLE
ONTARIO

UNIVERSITY OF OTTAWA

DATE: 15, 16, 17, 18
 ISSUE: 1, 2

128
5' 11 1/2" = OVER LENGTH
4 SHAPES @ 6°
4 CIRCLES @ 4°
2 IN. 7/8" BAR @ 7200
2 IN. 7/8" BAR @ 6300

SECTION:

SHAPES X 300.

SHAPES X 330.

2 1/2" BARS X 7200

x 5' 11 1/2" LG.

SHAPES X 830.

NOTES:

ELEVATION:

8" FINISH TYPE A

2" FINISH TYPE A'

DETAILS OF STRENGTH:

MIX 200 X 3 1/2 CUB.

2 IN. THRU MIX.

WILSON CONCRETE PROD. LTD.
BELLEVILLE ONTARIO

UNIVERSITY OF OTTAWA

DESCRIPTION:

PRESTRESSED CONCRETE BEAM

TOLERANCES:

LENGTH ± 1/8" WIDTH ± 1/16" DEPTH ± 1/16"

DATE ISSUE

10" WIRE 1/8"

10" WIRE 3/16"

S 3 A-1216-30-53
ELEVATION

Section

NOTES:

1. 2. 3.

WILSON CONCRETE PROD LTD.
BELLEVILLE ONTARIO

DETAILS OF EXPANSION.
10' x 2' 1/2" X 2.5' 1/2".

DATE 1-1-84 1-1-84 1-2-84

A-1216-30-04
ELEVATION

SECTION

NOTES:

1. 5'-0" length
2. Finish Type A

DETAIL OF 3/4" SPACER
MATERIAL 111.11, LG.
20,000 psf. THICKNESS.

WILSON CONCRETE PROD. LTD.
BELLEVILLE
ONTARIO

JOE

UNIVERSITY OF OTTAWA
DISC: REINFORCED CONCRETE BEAM

TOLERANCES
LENGTH: ± 1/8" WIDTH: ± 1/16" DEPTH: ± 1/16"

DATE: ISSUE: REV.
1971-01-01 #1 (REV)

S5 A-1216-30-35
ELEVATION

SECTION

NOTES:

WILSON CONCRETE PROD LTD.
BELLEVILLE ONTARIO

JOB
UNIVERSITY OF GUELPH

DESCRIPTION (CONCRETE DAM)

TOLERANCES:
LENGTH ±1/8" ±1/8" ±1/8" ±1/8"

DATE

ISSUE

REV

CHG

10-12-03
S6

A-1216-30-86
APPENDIX G : BIBLIOGRAPHY
1. AOYAMA, HIROYUKI.

"Moment-Curvature Characteristics of Reinforced Concrete Members Subjected to Axial Load and Reversal of Bending."

Flexural Mechanics of Reinforced Concrete.

2. AUGUSTI, GIULIANO.

"Experimental Rotation Capacity of Steel Beam-Columns"

3. ANDERSON, PAUL.

"The Resistance of Combined Flexure and Compression of Square Concrete Sections".

Technical Paper No. 29, Engineering Experiment Station.

University of Minnesota, Institute of Technology, Minneapolis.

4. BURNS, H.H., SEISS, CHESTER P.

"Plastic Hinging in Reinforced Concrete".

5. BAKER, A. L. L.

"The Ultimate Load Theory Applied to the Design of Reinforced and Prestressed Concrete Frames."

6. BROEK, J. A. Van Den.
 "Theory of Limit Design."
 Proceedings of the American Society of Civil Engineers, pp. 193 - 216,
 Vol. 65, Feb. 1939.

7. BAKER, A. L. L.
 "A Plastic Theory of Design for Ordinary Reinforced and Prestressed
 Concrete, Including Moment Redistribution in Concrete Members."

8. BAKER, A. L. L.
 "Recent Research in Reinforced Concrete and its Application to
 Design."
 Journal of the Institution of Civil Engineers (London), Vol. 35,
 No. 4, Feb. 1959, pp. 262 - 298.

9. "Ultimate Load Design"
 Bulletin of the Central Building Research Institute - Roorkee - India
 Council of Scientific and Industrial Research, New Delhi.

10. BRONS, BENGT; VIEST, I.M.
 "Ultimate Strength Analysis of Long Hinged Reinforced Concrete
 Columns".
 Journal of Structural Division. Proceedings of the American Society
 of Civil Engineers. Vol. 84, No. ST1, Jan. 1950.
11. BROWNS, BENGT, VIEST, I.M.

"Design of Long Reinforced Concrete Columns".

Advanced Engineering Bulletin (10)
Portland Cement Association.

13. BAKER, A.L.L.

"Ultimate - Load Theory for Concrete Frame Analysis."
Paper No. 3386, Transactions, American Society of Civil Engineers.

14. BERMANGER, C.

"Limit Design by Successive Moment Distribution."

15. Building Code Requirements for Reinforced Concrete. (ACI 318 - 63)

16. BURNETT, E.F.P. and YU, C.W.

"Reinforced Concrete Framed Structures."
Flexural Mechanics of Reinforced Concrete.

17. BURNETT, E.F.

Flexural Rigidity, Curvature and Rotation and their significance.
"Reinforced Concrete Design".
18. BAKER, A.L.

"A Plastic Theory of Design for Ordinary Reinforced and Prestressed Concrete, including Moment Redistribution in Continuous Members"

19. BAKER, A.L.L. and AMARAKONE, A.H.N.

"Inelastic Hyperstatic Frames Analysis"

Flexural Mechanics of Reinforced Concrete.

20. BARNARD, PETER R.

"The Collapse of Reinforced Concrete Beams"

Flexural Mechanics of Reinforced Concrete.

21. BRENN, JOHN E.

"Computer Use in Studies of Frames with Long Columns."

Flexural Mechanics of Reinforced Concrete.

22. BERTH, R.L., and INGE, LYSE.

"Reinforced Concrete Column Investigation. (Committee 145-

23. BRUNN, BENGT, VIEST, I.N.

"Design of Long Reinforced Concrete Columns".

24. CORLEY, W. GENE.

"Rotational Capacity of Reinforced Concrete Beams."

25. CONN, N.A.

"Rotation Compatibility in the Limit Design of Reinforced Concrete Continuous Beams."

26. CONN, N.A.

"Why Nonlinear Analysis and Design".
Flexural Mechanics of Reinforced Concrete.

27. CLYDE, D.H.

"Conservatism in Reinforced Concrete Frame Theory."
Flexural Mechanics of Reinforced Concrete.

28. CHANG, WEN F.

"Critical Length of Long Hinged and Restrained Concrete Columns."
Flexural Mechanics of Reinforced Concrete.
29. CHAN, W.W.L.
"The Ultimate Strength and Deformation of Plastic Hinges in Reinforced
Concrete Framework."
Magazine of Concrete Research (London), Vol. 7, No. 21, Nov. 1955,
pp 121 - 132.

30. COMAN, HENRY J.
"The Strength of Plain, Reinforced and Prestressed Concrete Under the
Action of Combined Stresses, with Particular Reference to the Combined
Bending and Torsion of Rectangular Sections."
Magazine of Concrete Research, No. 14, Dec. 1953, pp. 75 - 86.

31. COHN, M.A.
"Optimum Limit Design for Reinforced Concrete Continuous Beams."
Proceedings of the Institution of Civil Engineers.

32. ERNST, G.C.
"Plastic Hinging at the intersection of Beams and Columns."
Proceedings of the American Concrete Institute.

33. ERNST, G.C.
"Ultimate Slopes and Deflection - A brief for Limit Design."
Proceedings of the American Society of Civil Engineers, Vol. 81.

34. GVOZDEV, A.A.
"Statically Determinate or indeterminate Reinforced or Prestressed
Concrete Beams."
Flexural Mechanics of Reinforced Concrete.
35. GREENBERG, H. J. and PRAGER, W.

"Limit Design of Beams and Frames".
Transactions of the American Society of Civil Engineers.

36. GLANVILLE, W. H.

Studies in Reinforced Concrete. V: "Moment Redistribution in Reinforced Concrete."
Technical Paper No. 22, Dept. of Scientific and Industrial Research,
Building Research Station, Great Britain, 1939.

37. HANSON, NORMAN W., CONNER, HAROLD W.

"Seismic Resistance of Reinforced Concrete Beam-column Joints".
Journal of the Structural Division - Proceedings of the American Society of Civil Engineers, Proceedings Paper No. 5537, Vol. 93, ST5,

38. HOGNESTAD, EIVIND

"A Study of Combined Bending and Axial Load in Reinforced Concrete Members".
Bulletin No. 1, The Reinforced Concrete Research Council of the Engineering Foundation (Authorised reprint of the University of Illinois Bulletin)

39. HOGNESTAD, EIVIND.

"Inelastic Behaviour in Tests of Eccentrically Loaded Short Reinforced Concrete Columns."
40. HOGNESTAD, E., HANSON, N.W., MCHENRY, D.

"Concrete Stress Distribution in Ultimate Strength Design".
Journal of the American Concrete Institute, Dec. 1955, Vol. 52, pp. 455.

41. JOHNSON, LAWRENCE P., and SAUER, HUBERT A.

"Elasto-Plastic Analysis of Continuous Frames and Beams".

42. JONES, R.

"Non-Destructive Testing of Concrete"

43. KIAN, N.M., MAYTOCK, A.H.

"An Experimental investigation of the influence of Formation of a Plastic Hinge on the Shear Strength of Singly Reinforced Concrete Beam"

44. LEE, LAWRENCE H. N.

"Inelastic Behaviour of Reinforced Concrete Members".
Transactions of the American Society of Civil Engineers. Paper No. 2732
Vol. 120, 1955, pp. 181 - 207.

45. LYSÉ, INGE, and KREIDLER, C.L.

"Fourth Progress Report on Column Tests at Lehigh University"

46. LYSÉ, INGE

"Fifth Report on Column Tests At Lehigh University".
47. MATTOCK, ALLAN H.

"Rotational Capacity of Hinging Regions in Reinforced Concrete Beams"
Flexural Mechanics of Reinforced Concrete.

48. McHENRY, DOUGLAS; KARNI, JOSEPH.

"Strength of Concrete Under Combined Tensile and Compressive Stress".
Proceedings of the American Concrete Institute, Vol. 54, 1957-58, pp. 829 - 837.

49. MACCHI, GIORGIO.

"Elastic Distribution of Moments on Continuous Beams."
Flexural Mechanics of Reinforced Concrete.

50. MALHOYRA, V.N.

"Non-Destructive Methods for Testing Concrete".

51. NEWMARK, N.M.

"Numerical Procedure for Computing Deflections, Moments, and Buckling Loads".
Transactions of the American Society of Civil Engineers.
52. PRENTIS, J.H.
"The Distribution of Concrete Stress in Reinforced and Prestressed
Concrete Beams When Tested to Destruction by a Pure Bending Moment".
Magazine of Concrete Research, No. 5, Jan. 1951, pp. 73 - 76.

53. PFANG, E.O., and SEISS, C.P.
"Analytical Study of the Behaviour of Long Restrained Reinforced
Concrete Columns Subjected to Eccentric Loads".
Civil Engineering Studies, Structural Research Series, No. 214,

54. PFANG, E.O., SEISS, C.P., SOZEN, M.A.
"Load - Moment - Curvature Characteristics of Reinforced Concrete
Cross Section"
Journal of the American Concrete institute, July 1964, pp. 763 - 776.

55. ROSENBLUETH, EMILIO, and ROGER DÍAZ DE COSSIÓ
"Instability Considerations in Limit Design of Concrete Frames"
Flexural Mechanics of Reinforced Concrete.
Proceedings of the international Symposium, Miami, Fla., Nov. 10-12,
1964, p. 439.

56. RICHARD', F.E.
"Reinforced Concrete Column Investigations"

57. Report of the Research Committee
"Ultimate Load Design of Concrete Structures"
Vol. 21, Proceedings of the institution of Civil Engineers,
Jan-April 1962, pp. 399 - 442.
58. ROY, H.E.H., SOZEN, METE A.
 "Ductility of Concrete"
 Flexural Mechanics of Reinforced Concrete.
 Proceedings of the international Symposium, Miami, Fla., Nov. 10-12, 1964, p. 213.

59. SLATER, W.A., and LYSE, INGE
 "Second Progress Report on Column Tests Made at Lehigh University"

60. SHANLEY, F.R.
 "Applied Column Theory"

61. SAWYER, H.A.
 "Design of Concrete Frames for Two Failure Stages".
 Proceedings of the international Symposium, Miami, Fla., Nov. 10-12, 1964, pp. 405 - 431.

62. SHARMA, M.R., GUPTA, B.L.
 "Sonic Modulus as Related to Strength and Static Modulus of High Strength Concrete"
 Indian Concrete Journal, Vol. 34, No. 4, April 1960, pp. 139 - 141.

63. STANTON, T.E.
64. THOMAS, F.G.

Studies in Reinforced Concrete. VI:
"The Strength and Deformation of Reinforced Concrete Columns Under Combined Direct Stress and Bending"
Technical Paper No. 23, Department of Scientific and Industrial Research (Building Research), 1938.

65. THOMAS, F.G.

Studies in Reinforced Concrete.VII:
"The Strength of Long Reinforced Concrete Columns in Short Period Tests to Destruction".
Technical Paper No. 24, Department of Scientific and industrial Research (Building Research) 1939.

66. WHITNEY, C.S.

"Design of Reinforced Concrete Members Under Flexure or Combined Flexure and Direct Compression"

67. WHITENURST, E.A.

"Evaluation of concrete properties from Sonic Tests"
American concrete Institute and Iowa State University Press, p. 25.

68. WRIGHT, D.T.; BERMANGER, C.

"Limit Design of Reinforced Concrete Beams"