INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
IN THE NAME OF GOD

FREE VIBRATION
OF
PARTIALLY SUPPORTED
PLATES AND SHELLS

by
ALIZADEH, Y.

A thesis submitted to
the School of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Ph.D. in Mechanical Engineering

DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF OTTAWA
OTTAWA, ONTARIO

FALL 1992

© Yoones Alizadeh-Vaghshloo, Ottawa, Canada, 1993
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform DC52505
Copyright 2007 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346
FREE VIBRATION OF PARTIALLY SUPPORTED PLATES AND SHELLS

Alizadeh, Y.
Department of Mechanical Engineering
University of Ottawa

ABSTRACT
First-order transverse shear-deformation Mindlin theory has been used to predict the free vibration frequencies and modal shapes for isotropic, laminated and composite plates or shells. A finite element model based on the small deflection linear theory has been developed to obtain numerical solutions for this class of problems. The results for some of the degenerate cases are compared with other results available in the literature. These analyses involve a wide number of variables, namely; material properties, aspect ratios, support conditions and also radius to base ratio. The cracked base plates, shells and blades are idealized as partially supported models with varying support lengths. The effects of the detached base length on natural frequencies, modal shapes and nodal lines of these types of structures are investigated.

Although the expected decrease in frequency with increase in the detached base length is observed allmost for all modes it is seen that this behavior is very pronounced for higher modes in both plates and shells. Analysis also showed that the variation of the detached base length has a small effect on the natural frequencies of plates and shells with large aspect ratios \((b/a > 2, r/a > 2)\).
ACKNOWLEDGMENTS

I am grateful to ALLAH for the opportunity to complete the Ph.D program.

I would like to express my sincere gratitude to Professor S. Mirza under whose supervision this work was carried out. I thank him for his valuable suggestions, guidance, continuous encouragement, and generous help during the course of this study.

I must also express my gratitude to other members of the advisory committee, Dr. Haddad, Dr. Redekop, Dr. Kirkhope, Dr. Reddy and Dr. Tan, for their numerous suggestions which undoubtedly improved the quality of this text. Thanks also to Dr. Munro, and Dr. Gorman for their help.

I wish to thank the staff of the University of Ottawa, the Faculty of Mechanical Engineering Dept., Vanier Library and Computer Center for their help.

I am indebted to the Amirkabir University of Technology (Tehran Polytechnic) for its granting study leave to pursue this work.

Finally, I must acknowledge all my family members especially my parents H. Alizadeh/ B. Karami, my wife's parents M. A. Afshari/ R. Yazdani, my wife A. Afshari and my children for their help, encouragement and patience. It was through their understanding and consideration that I was able to complete work for the doctorate and still maintain my sanity!
Contents

Table of Contents viii

List of Tables xiii

List of Figures xxi

1 INTRODUCTION 1

1.1 Finite Element Concepts 1

1.2 Composite Lamina Concepts 2

1.3 Plate Analysis by the Finite Element Method 4

1.4 Shell Analysis by the Finite Element Method 7

1.5 Anisotropic Plates and Shells 7

1.6 Sandwich Plates and Shells 9

1.7 Laminate Plates and Shells 11

1.8 Significance of the Present Study 11
2 LITERATURE REVIEW

2.1 Finite Element Modeling .. 14
2.2 Plate Vibrations .. 15
2.3 Eigenvalue Solution ... 16
2.4 Composite and Sandwich Plates 16
2.5 Layered Shell Vibration ... 17
2.6 Nonlinear Plate Vibration 17
2.7 Turbine Blade Vibration ... 18
2.8 Closely Related Research Works 19

3 FINITE ELEMENT THEORY FOR PLATES AND SHELLS 21

3.1 Finite Element Formulation of the General Elastic Body 21
 3.1.1 Introduction .. 21
 3.1.2 The Principle of Displacement-Based Finite Element Method 22
 3.1.3 Relations of Strain-Stress and Strain-Displacement 23
 3.1.4 The Principle of Virtual Work 25
 3.1.5 Derivation of the Finite Element Equation by Virtual Work. 26

3.2 Free Vibration .. 30
 3.2.1 Solution of Eigenvalue Problems 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Constitutive Behavior in Composites</td>
<td>35</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Constitutive Relations for Orthotropic Plates and Shells</td>
<td>35</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Constitutive Representation for Laminates</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Laminated Anisotropic Plate Theory</td>
<td>46</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Introduction</td>
<td>46</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Formulation of Mindlin Plate Theory</td>
<td>46</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Strain-Displacement Relations</td>
<td>48</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Constitutive Relations for Plates</td>
<td>49</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Equation of Motion for Plates</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Finite Element Model for Plates</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>Laminated Anisotropic Shell Theory</td>
<td>56</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Formulation of Shell Element</td>
<td>56</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Geometric Definition of the Shell Element</td>
<td>61</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Displacement Field for Shell Element</td>
<td>62</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Definition of Strains</td>
<td>63</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Definition of Stresses</td>
<td>64</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Equations of Motion For Shells</td>
<td>65</td>
</tr>
<tr>
<td>3.7</td>
<td>Element Interpolation Functions</td>
<td>68</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Introduction</td>
<td>68</td>
</tr>
</tbody>
</table>
3.7.2 Isoparametric Rectangular Family 69

3.8 Locking Phenomenon in Plates and Shells 74

I PLATES ... 79

4 NUMERICAL RESULTS FOR PLATES 80

4.1 Computation Procedure 80

4.2 Isotropic Plate 84

4.2.1 Triangular Isotropic Plates 84

4.2.2 Fully Supported Triangular Isotropic Plates 85

4.2.3 Partially Supported Cantilever Triangular Plates 86

4.3 Orthotropic Plates 93

4.3.1 Triangular Orthotropic Plates 93

4.3.2 Fully Supported Triangular Orthotropic Plates 94

4.3.3 Partially Supported Triangular Orthotropic Plates .. 95

4.4 Composite Plate 102

4.4.1 Triangular Sandwich Plates 102

4.4.2 Fully Supported Triangular Sandwich Plates 103

4.4.3 Partially Supported Triangular Sandwich Plates 105

4.5 Discussion of Results and Conclusions for Plates 112
II SHELLS

5 NUMERICAL RESULTS FOR SHELLS

5.1 Computation Procedure 117
5.2 Cylindrical Isotropic Shells 121
 5.2.1 Fully Supported Cylindrical Isotropic Shells 122
 5.2.2 Partially Detached Cantilever Cylindrical Shells 123
5.3 Cylindrical Orthotropic Shells 142
 5.3.1 Partially Supported Orthotropic Shells 142
5.4 Composite Shells 162
 5.4.1 Comparison of Results for Sandwich Shell/Plate 162
 5.4.2 Convergence of Results for Sandwich Shell/Plate 162
 5.4.3 Cylindrical Sandwich Shells 166
 5.4.4 Partially Detached Sandwich Shells 166
5.5 Discussion and Conclusions on Shells Results 186
5.6 General Conclusions for Plates and Shells 190
5.7 Recommendation for Further Study 193

REFERENCES 195

A AA 202
A.1 ISOTROPIC PLATES .. 202

B.1 ISOTROPIC SHELLS .. 221
List of Tables

3.1 Nodal Coordinate for ξ, η ... 70

3.2 Interpolation Functions of 4 to 9 Variable-Number-Nodes
 in Two-Dimensional Element 73

4.1 Material Properties for Isotropic Plate 84

4.2 Comparison of Frequency Parameters $\Omega = \omega a^2 \phi^2 (\frac{\xi}{a})^{0.5}$ for
 C-F-F Triangular Plate ($\nu = 0.3$) 85

4.3 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{\xi}{D})^{2.5}$ for P-F-F
 Triangular Isotropic Plate ($ipl\phi1$) 87

4.4 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{\xi}{D})^{2.5}$ for P-F-F
 Triangular Isotropic Plate ($ipl\phi1.5$) 88

4.5 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{\xi}{D})^{2.5}$ for P-F-F
 Triangular Isotropic Plate ($ipl\phi2$) 89

4.6 Material Properties for Orthotropic Plates (Carbon-Epoxy). ... 94

4.7 Comparison of Frequency Parameters $\Omega = \omega a^2 \phi^2 (\frac{\xi a}{D})^{0.5}$ for
 C-F-F Orthotropic Triangular Plate (Carbon-Epoxy). 94

4.8 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{\xi a}{D})^{0.5}$ for P-F-F
 Triangular Orthotropic Plate (Carbon-Epoxy)($opl\phi1$). 96
4.9 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{a}{D_c})^{0.5}$ for P-F-F
Triangular Orthotropic Plate (Carbon-Epoxy)(opl$\phi1.5$). 97

4.10 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{a}{D_c})^{0.5}$ for P-F-F
Triangular Orthotropic Plate (Carbon-Epoxy)(opl$\phi2$). 98

4.11 Material Properties for Sandwich Plates. 102

4.12 Comparison of Frequency Parameters $\Omega = \omega a^2 \phi^2 (\frac{a}{D_c})^{0.5}$ for
C-F-F Triangular Sandwich Plate (Carbon-Epoxy Faces). 104

4.13 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{a}{D_c})^{0.5}$ for P-F-F
Triangular Sandwich Plate (Carbon-Epoxy Faces)(spl$\phi1$). 106

4.14 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{a}{D_c})^{0.5}$ for P-F-F
Triangular Sandwich Plate (Carbon-Epoxy Faces)(spl$\phi1.5$). 107

4.15 Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{a}{D_c})^{0.5}$ for P-F-F
Triangular Sandwich Plate (Carbon-Epoxy Faces)(spl$\phi2$). 108

5.1 Material Properties for Isotropic Shell 121

5.2 Comparison of Frequency Parameters $\Omega = 2\pi \omega a^2 \phi^2 (\frac{a}{E_0^2})^{0.5}$ for
C-F-F-F Cylindrical Shell. 122

5.3 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{a}{E_0^2})^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell(ish$\phi1$). 124

5.4 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{a}{E_0^2})^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell(ish$\phi2$). 125

5.5 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{a}{E_0^2})^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell(ish$\phi3$). 126

5.6 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{a}{E_0^2})^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell(ish$\phi2$). 127
5.7 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell ($ish\psi2\phi$) 128

5.8 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell ($ish\psi2\phi$) 129

5.9 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell ($ish\psi3\phi$) 130

5.10 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Isotropic Cylindrical Isotropic Shell ($ish\psi3\phi$) 131

5.11 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Isotropic Cylindrical Isotropic Shell ($ish\psi3\phi$) 132

5.12 Material Properties for Orthotropic Shell 143

5.13 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Orthotropic Shell ($osh\psi1\phi$) 144

5.14 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Orthotropic Shell ($osh\psi1\phi$) 145

5.15 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Orthotropic Shell ($osh\psi1\phi$) 146

5.16 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Orthotropic Shell ($osh\psi2\phi$) 147

5.17 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Orthotropic Shell ($osh\psi2\phi$) 148

5.18 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Orthotropic Shell ($osh\psi2\phi$) 149

5.19 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12\delta}{E_t} \right)^{0.5}$ for P-F-F-F
Cylindrical Orthotropic Shell ($osh\psi3\phi$) 150

xi
5.20 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{D_k}{D_1} \right)^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($osh\psi 3\phi 2$) 151

5.21 Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{D_k}{D_1} \right)^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($osh\psi 3\phi 3$) 152

5.22 Comparison of Natural Frequency for S-S-S-S Degenerate Sandwich Shell with Sandwich Plate ($r/a \to \infty$) 163

5.23 Natural Frequency for Clamped (C-C-C-C) Sandwich Shell/ Rectangular Plate ($r/a \to \infty$) 164

5.24 Material Properties for Sandwich Shells ... 166

5.25 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 1\phi 1$) ... 168

5.26 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 1\phi 2$) ... 169

5.27 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 1\phi 3$) ... 170

5.28 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 2\phi 1$) ... 171

5.29 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 2\phi 2$) ... 172

5.30 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 2\phi 3$) ... 173

5.31 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 3\phi 1$) ... 174

5.32 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 3\phi 2$) ... 175
5.33 Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell

$(ssh\psi3\phi3)$

176
List of Figures

1.1 Laminar plate .. 3
1.2 Model for Kirchhoff theory. 5
1.3 Model for Mindlin theory. 6
1.4 Sandwich plate ... 10
1.5 Laminate plate ... 12
3.1 General elastic body 23
3.2 Material and geometrical axes 37
3.3 Laminated element 40
3.4 Mindlin plate model 47
3.5 Equilibrium of plate 51
3.6 Coordinate systems for shell element 60
3.7 8-node isoparametric element: (a) parent element (b) actual element 70
3.8 9-node isoparametric element: (a) parent element (b) actual element 72
3.9 4-node to 9-node element transition region 73
3.10 Interpolation points(i,j) 77

4.1 Right triangular C-F-F plate. 82

4.2 Right triangular plate with detached support:
(r) detached length from right angle end
(l) detached length from acute angle end
(r-l) detached length from both ends. 83

4.3 Variation of the non-dimensional frequency with c/a, for P-F-F isotropic plate. a = 10.in, b/a = 1.0, a/t = 158.73. ... 90

4.4 Variation of the non-dimensional frequency with c/a, for P-F-F isotropic plate. a = 10.in, b/a = 1.5, a/t = 158.73. ... 91

4.5 Variation of the non-dimensional frequency with c/a, for P-F-F isotropic plate. a = 10.in, b/a = 2.0, a/t = 158.73. ... 92

4.6 Variation of the non-dimensional frequency with c/a, for P-F-F triangular orthotropic plate (carbon-epoxy).
 a = 10.in, b/a = 1.0, a/t = 158.73. 99

4.7 Variation of the non-dimensional frequency with c/a, for P-F-F triangular orthotropic plate (carbon-epoxy).
 a = 10.in, b/a = 1.5, a/t = 158.73. 100

4.8 Variation of the non-dimensional frequency with c/a, for P-F-F triangular orthotropic plate (carbon-epoxy).
 a = 10.in, b/a = 2.0, a/t = 158.73. 101

4.9 Typical triangular sandwich plate. 103

4.10 Variation of the non-dimensional frequency with c/a, for P-F-F triangular sandwich plate (carbon-epoxy faces).
 a = 10.0in, φ = b/a = 1.0, a/t = 31.9489. 109
4.11 Variation of the non-dimensional frequency with c/a, for P-F-F triangular sandwich plate (carbon-epoxy faces).

$$a = 10.0\text{in}, \phi = b/a = 1.5, a/t = 31.9489.$$

4.12 Variation of the non-dimensional frequency with c/a, for P-F-F triangular sandwich plate (carbon-epoxy faces).

$$a = 10.0\text{in}, \phi = b/a = 2.0, a/t = 31.9489.$$

5.1 Typical C-F-F-F cylindrical shell.

5.2 Partially supported cylindrical shell,

(i) support detachment from one side (c/a),

(ii) support detachment from both sides $(2c'/a)$,

5.3 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 1.0, \phi = b/a = 1.0, a/t = 100.00$$

5.4 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 1.0, \phi = b/a = 2.0, a/t = 100.00$$

5.5 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 1.0, \phi = b/a = 3.0, a/t = 100.00$$

5.6 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 2.0, \phi = b/a = 1.0, a/t = 100.00$$

5.7 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 2.0, \phi = b/a = 2.0, a/t = 100.00$$

5.8 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 2.0, \phi = b/a = 3.0, a/t = 100.00$$

5.9 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 3.0, \phi = b/a = 1.0, a/t = 100.00$$

5.10 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$$r/a = 3.0, \phi = b/a = 2.0, a/t = 100.00$$
5.11 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.
\[r/a = 3.0, \phi = b/a = 3.0, a/t = 100.00 \] 141

5.12 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 1.0, \phi = b/a = 1.0, a/t = 100.00 \] 153

5.13 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 1.0, \phi = b/a = 2.0, a/t = 100.00 \] 154

5.14 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 1.0, \phi = b/a = 3.0, a/t = 100.00 \] 155

5.15 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 2.0, \phi = b/a = 1.0, a/t = 100.00 \] 156

5.16 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 2.0, \phi = b/a = 2.0, a/t = 100.00 \] 157

5.17 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 2.0, \phi = b/a = 3.0, a/t = 100.00 \] 158

5.18 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 3.0, \phi = b/a = 1.0, a/t = 100.00 \] 159

5.19 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 3.0, \phi = b/a = 2.0, a/t = 100.00 \] 160

5.20 Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
\[r/a = 3.0, \phi = b/a = 3.0, a/t = 100.00 \] 161

5.21 Convergence of finite element results for C-C-C-C sandwich shell/plate ($a = 40.0in$, $r/a \to \infty$). 165

5.22 Typical Cylindrical Sandwich Shell. 167

5.23 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 1.0, \phi = b/a = 1.0, a/t_{\epsilon} = 32.432 \] 177
5.24 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 1.0, \phi = b/a = 2.0, a/t_e = 32.432 \]

5.25 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 1.0, \phi = b/a = 3.0, a/t_e = 32.432 \]

5.26 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 2.0, \phi = b/a = 1.0, a/t_e = 32.432 \]

5.27 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 2.0, \phi = b/a = 2.0, a/t_e = 32.432 \]

5.28 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 2.0, \phi = b/a = 3.0, a/t_e = 32.432 \]

5.29 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 3.0, \phi = b/a = 1.0, a/t_e = 32.432 \]

5.30 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 3.0, \phi = b/a = 2.0, a/t_e = 32.432 \]

5.31 Variation of ω vs c/a, for P-F-F-F sandwich shell.
\[r/a = 3.0, \phi = b/a = 3.0, a/t_e = 32.432 \]

A.1 Modal shapes for triangular isotropic plate with
\[b/a = 1.0, c/a = 0.0, c - r. \]

A.2 Modal shapes for triangular isotropic plate with
\[b/a = 1.0, c/a = 0.2, c - r. \]

A.3 Modal shapes for triangular isotropic plate with
\[b/a = 1.0, c/a = 0.4, c - r. \]

A.4 Modal shapes for triangular isotropic plate with
\[b/a = 1.0, c/a = 0.6, c - r. \]
A.5 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.8, \ c - r. \] 207

A.6 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 1.0, \ c - r. \] 208

A.7 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.0, \ c - l. \] 209

A.8 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.2, \ c - l. \] 210

A.9 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.4, \ c - l. \] 211

A.10 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.6, \ c - l. \] 212

A.11 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.8, \ c - l. \] 213

A.12 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 1.0, \ c - l. \] 214

A.13 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.0, \ c - r - l. \] 215

A.14 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.2, \ c - r - l. \] 216

A.15 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.4, \ c - r - l. \] 217

A.16 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.6, \ c - r - l. \] 218

A.17 Modal shapes for triangular isotropic plate with
 \[b/a = 1.0, \ c/a = 0.8, \ c - r - l. \] 219
A.18 Modal shapes for triangular isotropic plate with
\[\frac{b}{a} = 1.0, \frac{c}{a} = 1.0, c - r - l. \] 220

B.1 Modal shapes for cylindrical isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.0. \] 222

B.2 Displacement pattern with nodal lines for isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.0. \] 223

B.3 Modal shapes for cylindrical isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.2. \] 224

B.4 Displacement pattern with nodal lines for isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.2. \] 225

B.5 Modal shapes for cylindrical isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.4. \] 226

B.6 Displacement pattern with nodal lines for isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.4. \] 227

B.7 Modal shapes for cylindrical isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.6. \] 228

B.8 Displacement pattern with nodal lines for isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.6. \] 229

B.9 Modal shapes for cylindrical isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.8. \] 230

B.10 Displacement pattern with nodal lines for isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.8. \] 231

B.11 Modal shapes for cylindrical isotropic shell.
\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, \frac{a}{t} = 100.00, \frac{c}{a} = 0.9. \] 232
B.12 Displacement pattern with nodal lines for isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ c/a = 0.9 \] 233

B.13 Modal shapes for cylindrical isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.0 \] 234

B.14 Displacement pattern with nodal lines for isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.0 \] 235

B.15 Modal shapes for cylindrical isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.2 \] 236

B.16 Displacement pattern with nodal lines for isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.2 \] 237

B.17 Modal shapes for cylindrical isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.4 \] 238

B.18 Displacement pattern with nodal lines for isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.4 \] 239

B.19 Modal shapes for cylindrical isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.6 \] 240

B.20 Displacement pattern with nodal lines for isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.6 \] 241

B.21 Modal shapes for cylindrical isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.8 \] 242

B.22 Displacement pattern with nodal lines for isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.8 \] 243

B.23 Modal shapes for cylindrical isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 1.0 \] 244

B.24 Displacement pattern with nodal lines for isotropic shell.
\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 1.0 \] 245

xxi
Notation

A list of principal symbols, superscripts and subscripts used frequently in this work are summarized below. Locally used notation and modifications are defined where used. The symbols are listed roughly in the order of occurrence in chapter sequence.

Symbols

Mathematical symbols

\{top\} coordinates of top point of node i
\{bottom\} coordinates of bottom point of node i
\{\}^T \text{ transpose of matrix, vector}
\frac{\partial}{\partial x} \text{ differential with respect to } x
|| \text{ absolute value}
\{\} \text{ unit vector}
\int \text{ integration over area}
\int \text{ integration over volume}
C^0 \text{ symbol for displacement continuity}
C^1 \text{ symbol for displacement and first differential of displacement continuity}
E, E_{ij} \text{ Young's modulus, Young's modulus in plane ij}
G, G_{ij} \text{ shear modulus, shear modulus in plane ij}
\(\nu, \nu_{ij} \)

Poisson’s ratio, Poisson’s ratio in plane \(ij \)

\(c/a \)

ratio of detached length to the base length of plate or shell

\(\{ F^b \}, \{ f^b \} \)

body forces vector

\(\{ F^s \}, \{ f^s \} \)

surface forces vector

\(\{ F^i \}, \{ f^i \} \)

concentrated forces vector

\(\{ U^s \}, \{ u^s \} \)

surface displacement vector

\(\{ U \}, \{ u \} \)

general displacement vector

\(\{ \bar{F} \}, \{ \bar{f} \} \)

virtual displacement vector

\(\{ U^i \}, \{ u^i \} \)

displacement vector for point \(i \)

\(\{ \bar{U}^i \}, \{ \bar{u}^i \} \)

virtual displacement vector for point \(i \)

\(\{ R \} \)

general load vector

\(\{ R_b \} \)

body forces vector

\(\{ R_s \} \)

surface forces vector

\(\{ R_{is} \} \)

initial stress forces vector

\(\{ R_c \} \)

concentrated forces vector

\(\{ R_{it} \} \)

initial strain forces vector

\(\{ R_t \} \)

thermal loads vector

\(\{ N_p \} \)

in-plane forces vector

\(\{ M_b \} \)

bending moments vector

\(\{ V_s \} \)

shear forces vector

\(\{ \epsilon^o \} \)

in-plane middle surface strain

\(\{ \kappa \} \)

element curvature vector

\(\{ \sigma \}^{(k)} \)

stress vector in \(k^{th} \) layer

\(\{ \sigma \}_{x,y,z} \)

stress vector in load direction

\(\{ \sigma \}_{1,2,3} \)

stress vector in principal direction

\(\{ \epsilon \}, \{ \epsilon' \} \)

strain vector
\{\epsilon_m\}, \{\epsilon'_m\} \text{ strain vector for membrane}
\{\epsilon_b\}, \{\epsilon'_b\} \text{ strain vector for bending}
\{\epsilon_s\}, \{\epsilon'_s\} \text{ strain vector for shear}
\{\sigma\}, \{\sigma'\} \text{ stress vector}
\{\epsilon_o\}, \{\epsilon'_o\} \text{ initial strain vector}
\{\sigma_o\}, \{\sigma'_o\} \text{ initial stress vector}
\{\epsilon_t\}, \{\epsilon'_t\} \text{ thermal strain vector}
\{\Delta\} \text{ generalized displacement vector}
\{\Delta_i\} \text{ generalized displacement vector at node } i
\{\dot{\Delta}\} \text{ generalized acceleration vector}
\{\dot{\epsilon}\} \text{ generalized velocity vector}
[C] \text{ constitutive matrix}
[L] \text{ differential operation matrix}
[A] \text{ extensional stiffness matrix}
[D] \text{ flexural stiffness matrix}
[B] \text{ strain-displacement matrix, bending stretching coupling matrix}
[A_s] \text{ shear stiffness matrix}
[B_{pi}] \text{ in-plane displacement matrix}
[B_{bi}] \text{ bending displacement matrix}
[B_{si}] \text{ shear strain displacement matrix}
[J] \text{ Jacobian matrix}
[K] \text{ global stiffness matrix}
[K]^{(m)} \text{ element stiffness matrix}
[M] \text{ general mass matrix}
[M]^{(m)} \text{ element mass matrix}
[C_d] \text{ damping matrix of structure}
\[H \] displacement interpolation matrix
\[N \] isoparametric interpolation matrix
\[Q \] material stiffness matrix
\[\bar{Q} \] reduced material stiffness matrix
\[T_e \] transformation matrix for stress
\[T_e \] transformation matrix for strain
\[\Theta \] transformation matrix from global to local coordinates
\[C_{ijkl} \] fourth-order elasticity tensor
\[H_i, H_j, H_k \] weight coefficients of the Gaussian quadrature
\[n_g \] number of Gauss point
\[n_n \] number of nodes per element
\[D \] isotropic plate and shell rigidity
\((x, y, z) \) Global Cartesian Coordinates
\((x', y', z') \) Local Cartesian Coordinates
\((V_1, V_2, V_3) \) Nodal Cartesian Coordinates
\[N_i, N_i(\xi, \eta) \] shape function for node i
\((\xi, \eta, \zeta) \) 3-D isoparametric coordinates
\((\xi, \eta) \) 2-D isoparametric coordinates
\((\xi_i, \eta_i) \) nodal value at node i
\(\zeta \) linear coordinate in the thickness direction of shell element
\(\sigma_{ii}, \sigma_i \) normal stress parallel to \(i^{th} \) axis
\(\sigma, \sigma_{ij} \) stress, second-order stress tensor
\(\varepsilon, \varepsilon_{kl} \) strain, second-order strain tensor
\(\mu_d \) damping property parameter
\(\rho, \rho^m \) mass density
\(\alpha_{1i}, \alpha_{2i} \) rotations at node i for a shell element
\(\tau_{ij}, \tau_{xy} \) shear stress in \(ij, xy \) plane

\(\omega, \Omega \) frequency of vibration, non-dimensional frequency

\(\lambda = \omega^2 \) eigenvalue

\(\Phi \) eigenvector

\(\gamma_{xy}, \gamma_{ij} \) shear strain in \(xy, ij \) plane

\(\Pi \) potential energy

\(a \) length of plate or arch length of shell at base

\(b \) length of plate or shell

\(c \) detached length of plate or shell

\(D_e \) effective plate rigidity

\(t \) time, thickness of isotropic plate or shell

\(h, t_e \) thickness of plate or shell

\(t_c, t_f \) thickness of core, face in sandwich plates or shells

\(r \) radius of shell

\(\frac{h}{a}, \frac{c}{a}, \frac{a}{t_e} \) nondimensional parameters in plates or shells

\(\frac{a}{t_e} \) ratio of base length to total thickness in sandwich plate or shell

\(DOF \) degree of freedom

P-F-F-F partially supported, free, free, free, boundary of plate or shell

C-F-F-F clamped, free, free, free, boundary of plate or shell

\(ipl \phi_1 \) isotropic plate with \(b/a = 1 \)

\(opl \phi_{1.5} \) orthotropic plate with \(b/a = 1.5 \)

\(spl \phi_2 \) sandwich plate with \(b/a = 2 \)

\(ish \psi_{1\phi_1} \) isotropic shell with \(r/a = 1 \) and \(b/a = 1 \)

\(osh \psi_{2\phi_2} \) orthotropic shell with \(r/a = 2 \) and \(b/a = 2 \)

\(ssh \psi_{3\phi_3} \) sandwich shell with \(r/a = 3 \) and \(b/a = 3 \)

\(\phi = \frac{b}{a} \) aspect ratio for plate or shell

xxvi
\[\psi = \frac{r}{a} \]
radius to base length ratio for shell

\[\frac{\Omega}{\omega} \]
frequency parameter

Superscripts

\((') \)
indices of local coordinate system

\((m) \)
indices of element \(m \)

\((e) \)
indices of in plane strain

\((\cdot) \)
indices of acceleration

\((\cdot') \)
indices of velocity

Subscripts

\((\circ) \)
indices of initial strain
Chapter 1

INTRODUCTION

1.1 Finite Element Concepts

A considerable amount of research on the vibration analysis of plates and shells has been carried out using various numerical methods, such as the finite difference method, finite strip method and finite element method. It has been found that the finite element method is a powerful method for the solution of a wide scope of problems in engineering.

Finite element method enables us to convert a problem with an infinite number of degrees of freedom to one with a finite number in order to simplify the solution process. It yields an approximate analysis based upon an assumed displacement field, a stress field, or a mixture of these within each element. Finite element method is a convenient method for the plate and shell type structures having irregular geometries, or complex boundary conditions. Assumed displacement field or function is widely used in finite element analysis. The prescribed displacement
functions are constructed in the following manner:

1- Select a set of reference or node points on the plate.

2- Associate with each node point a given number of degrees of freedom (displacement, slope, etc.)

3- Construct a set of functions each giving a unit value for one degree of freedom and zero values for all the others.

These functions are referred to as element displacement functions; or shape functions. In order to satisfy the convergence criteria the shape functions should satisfy the following conditions:

- linearly independent.
- continuous and have continuous derivatives up to order \((p - 1)\) both within the element and across element boundaries (an element which satisfies these conditions is referred to as a conforming element).
- satisfy the geometric boundary conditions.

1.2 Composite Lamina Concepts

Composite materials are finding increasing applications in various fields of advanced structures such as space craft, high-speed aircraft, naval vessels and petrochemical industries. These numerous applications are because of several of its advantages, some of these are: high strength to weight ratio, high stiffness to weight ratio, efficient structural design, good thermal and acoustical insulation, etc.
Figure 1.1: Laminar plate

A multiphase or two-material composite lamina consists of a stiff filament material embedded in a compatible matrix material. The filament material is used in composite laminae such as glass, boron, silicon carbide, carbon, graphite, beryllium, and steel. The matrix materials have included such modern materials as phenolic, polyesters, aluminum, epoxies, epoxy phenolic, and epoxy novolacs. Figure 1.1 shows two typical laminars along with their principal material axes which are parallel and perpendicular to the fiber direction. The fibers, or filaments, are the principal reinforcing or load-carrying agents. Determination of vibration characteristics of structural components made of composite materials is an important prerequisite for the design of such components. The vibration characteristics of composite plates and shells have been studied by a number of researchers. Some
of these papers [76],[77],[78],[85], [86],[87], [94],[95],[100],[101], [104],[106],[109],[110] deal with review literature on dynamic analysis of composite plates and shells.

In the structural analysis of plates and shells of composite materials, the equilibrium equation and the strain-displacement relations do not change from those for plates and shells of isotropic materials, but the stress-strain relations as well as stiffness matrix components will be different. References. [25],[26],[27],[28] give details of composite material concepts, classical and transverse shear deformation theory of plates and shells. Reference [23] gives physical and mechanical properties of composite materials and also contains some valuable information for design and analysis of advanced composite structures.

1.3 Plate Analysis by the Finite Element Method

Flat panels are used in many structures from buildings to ground and ocean vehicles, air craft, and space craft. These uses have generated considerable interest in vibration problems. The words "panel" and "plate" are used in this study to describe a structural element that is relatively thin in one dimension and flat in the mid-plane of the other two dimensions. Such structures may be analyzed by finite element method by dividing up the plate into an assemblage of two-dimensional finite elements called plate bending elements. These elements may be either triangular, rectangular or quadrilateral in shape.

Linear elastic analysis of plates using the finite element displacement method may be formulated either by the Kirchhoff or the Mindlin plate theory.
- Kirchhoff theory;

In the Kirchhoff theory or classical thin plate theory, it is assumed that the normal to the mid surface before deformation remain straight and normal to the mid surface after deformation as shown in Fig. 1.2. This assumption implies that transverse shear deformation effects are negligible in plates, consequently free vibration frequencies calculated using C^1 classical thin plate theory are always higher than those obtained by more precise means, the deviation becoming larger with increasing mode number. Furthermore in a finite element context, shape functions have to ensure C^1 continuity or otherwise a non-conforming formulation must be adopted.

![Figure 1.2: Model for Kirchhoff theory.](image)
- Mindlin theory;

In the Mindlin plate theory, which allows for shear deformation, the normal remains straight, but not necessarily normal to the mid surface after deformation. Figure 1.3 shows deflection model for Mindlin theory. More significantly, shape functions only require C^0 continuity. This latter requirement makes Mindlin plate elements particularly easy to formulate with the result that they have been successfully applied to many linear problems. Such formulations readily accommodate thick or thin plates, variable thickness, curved boundaries and laminated materials. The plate assumptions adopted for the finite element model described in this study are essentially those introduced by Mindlin:

(a)- The deflection of the mid surface of the plate is small in comparison with the plate thickness.

(b)- The transverse normal stresses are negligible.

(c)- Normals to the mid-surface of the plates before deformation remain straight but not necessarily normal to the mid-surface after deformation.
1.4 Shell Analysis by the Finite Element Method

Several different finite element techniques have been used by various researchers to study shells with arbitrary geometry. The selection of a particular approach depends on the shell theory used.

1- Element formulation based upon the thin shell theories of classical mechanics, [4], [31], [114], [122], and [123].

2- Flat-faced triangular or quadrilateral elements, the earlier shell studies involved facetting the shell by plane triangular plate elements. Some aspects of flat-faced shell elements are discussed in references [4], [9], and [124].

3- The degenerate shell elements method, the third approach employed the formulation of shell elements from the three-dimensional element. This type of shell element and some numerical techniques have been discussed in several references [4], [8], [10], [14], [15], [16], [17], [46], and [48].

1.5 Anisotropic Plates and Shells

In anisotropic plates and shells, material properties are different in all directions so that these type of plates and shells contain no planes of material property symmetry.

In the structural analysis of plates and shells of anisotropic or composite materials, the equilibrium equations and the strain-displacement relations do not change
from those for plates and shells of isotropic materials. However, it is necessary to drastically alter the stress-strain relations to account for the anisotropy of the materials system.

The difference in material property symmetry in isotropic and anisotropic plates/shells is reflected in the mechanics and design of these types of structures. Two examples are given below.

1. The classical theory of plates and shells, based on neglecting transverse shear deformation, is not justifiable for most composite structures, including the geometrically thin members. It could be argued that for isotropic materials

\[2 \leq \frac{E}{G} = 2(1 + \nu) \leq 3 \]

while, for most practical filamentary composite materials

\[20 \leq \frac{E_{11}}{G_{13}} \leq 50 \]

Therefore, for a given in-plane modulus, the plate or shell is very weak in transverse shear resistance, and the effects of shear deformation in the transverse direction are significant, and hence cannot be neglected. Therefore, in order to generate a realistic model it is necessary to include transverse shear deformation in the analysis of most plate and shell structures fabricated with composite materials. Unfortunately, most of the literature on the subject of plate or shell dynamics available today is based on the classical theory.
2- For plates/ shells with isotropic material the sign convention for shear stresses and shear strains is of little practical significance, since its mechanical behavior is independent of the direction of shear stress. For plates/ shells with anisotropic material the direction of shear stress is critically important in determining their strength and modulus [74].

The rapid development of composite materials requires the discussion of better analytical models and solution techniques. A comprehensive literature survey on this topic covering a period until 1973 can be found in reference [27].

1.6 Sandwich Plates and Shells

Structural sandwich construction is one of the first forms of composite structures which acquired broad acceptance and usage. Mostly all aircrafts and space vehicles make extensive usage of sandwich construction. In addition to air and space vehicles, sandwich construction is commonly used in the manufacture of cargo containers, movable shelters and airfield surfacing, navy ship interiors, small boats, in the automobile industry, snow skis, residential construction materials, etc...

A sandwich plate consists of two or more layers, as shown in Figure 1.4:

1- A pair of thin, strong facings.
2- A thick, lightweight core to separate the facings and carry loads from one facing to the other.
3- An attachment which is capable of transmitting shear and axial loads to and from the core.
- **Facing material:**

The primary function of the face sheets is to provide the required bending and in-plane shear stiffness and to carry the axial, bending, and in-plane shear loading. In the aerospace field, the most commonly chosen facings are resin impregnated fiberglass cloth, graphite prepreg, 2024 or 7075 aluminum alloy, titanium, or stainless steel.

- **Core materials:**
The primary function of a core in sandwich structures is that of stabilizing the facings and carrying most of the shear loads through the thickness. Several different materials have been used as sandwich cores, these include wood, foam, paper honeycomb, aluminum honeycomb, etc.

Reference [23] gives the mechanical properties, cell shape, cell size, thickness specimen geometry and test method of all kinds of cores in sandwich structures.

1.7 Laminate Plates and Shells

A laminate is a stack of laminae with various orientations of principal material direction in the laminae as shown in Figure 1.5.

The laminates are usually bound together by the same matrix material that is used in the laminae. References [21],[22],[23],[24], [26],[27],[28],etc. give detailed information of macromechanical behavior of laminates, classical theory and analytical procedure for composite plates and shells structures.

1.8 Significance of the Present Study

In recent years several failures in the aircraft industry have been attributed to the lack of information on the interaction between fracture and vibration of wings due to aerodynamic forces. Another area where such information is lacking is turbine and fan blades. This necessitates further research investigating the effect of cracked
length on dynamic behavior of these types of structures.

The scope includes modeling of partially supported plates and shells. The finite element method has been used to analyze the behavior of the plates/shells and to find the effect of the supports on mode shapes and frequencies of the plates and shells. By idealizing the cracked edge as a partially supported model, one may be able to find some primary information for dynamic analysis and design usage.

1.9 Objective and Scope of this Investigation

The objective of this study is to investigate the free vibration of partially clamped cantilever plates and shells. The displacement type finite element method has been
used for analyzing natural frequencies and modal shapes of plates with different aspect ratio and different material type. The main scope of this study is to find the effect of partial support \((c/a)\) on the variation of natural frequencies and modal shapes for plate and shell vibration.

The results in this study are divided in two parts:

- **Part I**

 Part one deals with free vibration of partially supported triangular plates. For all geometry of plates the 8-node isoparametric element has been used.

 A computer program was written and several examples of free vibration of triangular plates have been studied.

- **Part II**

 The next part of this study deals with the free vibration analysis of partially supported curved panels, such as blades and shells. Several factors namely, frequency parameter, modal shapes and displacement patterns for shells with detached support length for isotropic, orthotropic, and sandwich materials have been investigated.

 A computer code was prepared for finite element dynamic analysis of general shells and several examples of free vibration of cylindrical fan blades or shells have been studied. The degenerate cases have been compared with those available in the literature.

 Another purpose of this investigation is to add important information to the data base on the topic of plate and shell dynamics of various material types.
Chapter 2

LITERATURE REVIEW

In this literature review, first the comments on the papers published on the general topic have been made and then the discussion on specific papers related to this thesis has been presented.

2.1 Finite Element Modeling

In 1977 Krishna Murty [79] reviewed several publications on F.E.M. covering a period from 1944 to 1977. These papers included lumped parameter, finite element displacement, finite element force, transfer matrix, hybrid and quadratic eigenvalue methods. In this review some finite element models have been compared and Rayleigh-Ritz finite element method was found to be the most convenient and efficient.

An extensive survey of the finite element modeling of structural vibrations has been given by Reddy [84]. This survey concentrates on the basic structural elements,
such as plates, shells and beams from 1967 to 1979.

2.2 Plate Vibrations

Leissa [82],[83],[91],[92], [102],[103] gives a comprehensive survey of plate vibration review of literature published from 1973 to 1985. Reference [82] reviews the literature published during the period 1973-1976 which mostly deals with free, undamped vibration of plates, governed by the classical theory of plates. Reference [83] is a review of literature dealing with the complicating effects of free, undamped vibrations of plates, such as: anisotropy, in-plane forces, variable thickness, surrounding media, large deflections, shear deformation, rotary inertia and non-homogeneity. In references [91] and [92] the works published during 1976-1980 are summarized. The first one deals with problems governed by classical theory of plates, and the second one considers complicating effects of anisotropy, in-plane forces, variable thickness, large transverse displacements, shear deformation, surrounding media , rotary inertia and non-homogeneity. References [102] and [103], also summarize research studies that have been carried out on the subject of free vibrations of plates during the years 1981-1985. The first article briefly summarizes 76 publications on plates which are governed by classical plate theory, dealing with thin, isotropic, homogeneous, linearly elastic, with small displacement. Publications on circular, rectangular, other quadrilateral, triangular, polygonal, sectorial plates, and other shapes are also included in these references. The second one briefly summarizes 213 papers for plates with complicating effects. These studies give valuable information about the effects of anisotropy, laminated composite material, in-plane stresses, variable
thickness, non-homogeneity, surrounding media, large deflection, large thickness, nonhomogeneous elastic foundation, initial imperfection and transverse magnetic field.

2.3 Eigenvalue Solution

Jennings [88] and [99] reviewed the methods for solving dynamic equations to determine characteristic response. In the first reference the numerical methods for eigenvalue solution, for undamped and damped systems are considered. In the second, the article updates a previous review of methods for solving dynamic equations to determine characteristic response.

2.4 Composite and Sandwich Plates

An extensive literature survey on composite and sandwich plate dynamics has been given by Bert [76],[77],[87], [94],[101]. The fundamentals of the mechanics of composite and laminate plates have been discussed in [76] and [77] which was updated in 1979 by Ref. [87]. References [94] and [101] present surveys of the literature concerning dynamics of plate-type structural elements of either composite material or sandwich construction. In the first, particular attention is given to experimental research, linear and nonlinear analysis. The reviewed material deals with rectangularly orthotropic, cylindrically orthotropic, an-isotropic, laminated and sandwich plates. Free and forced vibration, flutter and impact are also considered. In the second article emphasis is given to transverse impact and subsequent damage, en-
vironmental aspects, linear and nonlinear analysis and design.

Reddy [93],[100],[105] presented a significant survey of composite and sandwich plates. The first paper reviews finite element papers published on the static bending and free vibration of layered, anisotropic and composite plates and shells. This publication also included large-deflection bending and large-amplitude free oscillation of layered composite plates and shells. The second review deals with modeling of natural vibrations of plates during the period from 1980 to 1985. An historical background of the development of shear deformation theories is also presented. Reddy in his third survey [105] presented an extensive review on the classical and shear deformation theories of laminated composite plates.

2.5 Layered Shell Vibration

Due to the wide industrial application of layered shells in various industries, the interest in their static and dynamic response has been increased. Most of the studies reported in this area which deal with cylindrical, spherical and conical layered shells were reviewed by Habip [107], Kapania [109] and more recent researches by Mirza [110].

2.6 Nonlinear Plate Vibration

Nonlinear problems concerning plates of various geometries have received considerable attention in the literature in recent years. An excellent monograph by
Sathyamoorthy [98] deals with nonlinear vibrations. This review is limited to papers published from 1979 to 1982. The research described in these publications included; geometric, material and a combination of these nonlinearities, complicating effects of anisotropy, attached masses, cutouts, elastic foundation, nonclassical boundary conditions, stiffeners, thermal stresses, variable thickness, transverse shear deformation, and rotatory inertia. The review article [108] is concerned with the recent developments in the nonlinear vibrational analysis of plates of various geometries. In addition of material and geometric type nonlinearities, particular attention is given to the recent developments in the analytical and numerical methods. Complicating effects such as the effects of transverse shear deformation, rotatory inertia, anisotropy, initial imperfections and variable rigidity on the vibration behavior of plates are also included.

2.7 Turbine Blade Vibration

Rao [80],[89],[97] reviewed the literature on blade excitation forces, vibration of blades with large aspect ratios, disk blade interaction, vibration of blades with small aspect ratios, blade group vibration, blade damping and response, free vibrations and experimental methods.

An extensive literature survey on vibrations of turbine engine blades by shell analysis has given by Leissa [90].
2.8 Closely Related Research Works

The literature survey shows that very little work has been done so far on the partially clamped plates and shells. But within the frame work of free vibration of partially clamped plates and shells, some investigations have been carried out to study the triangular, rectangular and other type of plates and shells with fully supported or complex supported conditions.

- Triangular plates:

For triangular plates, most of the analyses presented in the literature so far have been reviewed by Leissa [91], [102]. In these review papers the analytical and computational complexity of the various methods of solution have been discussed. Gorman [38] used the analytical superposition technique for the free vibration analysis of simply supported right triangular plates. More classical methods have been used by Kim and Dickinson [43] and Bhat [41], and the Ritz method by Anderson et al. [116].

Some experimental results have been provided by a number of researchers [71],[60].

Finite element method has been employed by Mirza and Bijlani [63], Cowper et al.[61] and Utjes et al.[40], and the grid-work approximation by Christensen [59].

- Rectangular plates:

Fan and Cheung [39] used the spline finite strip method to study the flexural free vibration response of thin rectangular plates with complex supported conditions.
Kurata and Okamura [64] used the theoretical method for analysis of natural vibrations of partially clamped rectangular plates.

- Cylindrical Fan Blades:
The finite element method is a suitable method for dynamic structural analysis of turbo-machinery blades. The earlier works in this area have been reviewed in [36] and [46]. More recent works on vibrations of fan blades can be found in References [27], [33] and [113].
Chapter 3

FINITE ELEMENT THEORY
FOR PLATES AND SHELLS

3.1 Finite Element Formulation of the General Elastic Body

3.1.1 Introduction

Several types of formulations of finite element method have been used by researchers. The most important formulation, which is widely used for the solution of practical problems is the displacement-based finite element method. This is because of its simplicity, generality and special adaptability to computer techniques. Practically all major general-purpose analysis programs have been written using this type formulation. In this chapter we shall first concentrate on the general formulation of three-dimensional elastic body. In this formulation the differential equation of equilibrium and boundary conditions could be established by using the principle of virtual displacements. After establishing the general equations of equilibrium
governing the linear dynamic response of a system i.e.,

$$[\mathcal{M}][\dddot{\Delta}] + [C_d][\dot{\Delta}] + [K][\Delta] = \{R\}$$

we will consider the solution of the eigenvalue problem i.e.,

$$([K] - \lambda_i[M])\{\Phi\} = \{0\}$$

Then, we will derive the finite element properties for special cases such as plates and shells. Finally, bending rigidity, element shape functions and numerical integration for plates and shells are discussed.

3.1.2 The Principle of Displacement-Based Finite Element Method

The basic steps in the analysis of a structure using the displacement-based finite element method are:

1- Idealize an actual physical problem into an assemblage of discrete elements which are interconnected at the structural joints (nodal points).

2- Identify the unknown joint displacements that completely define the displacement response of the structural idealization.

3- Establish force balance equations corresponding to the unknown joint displacements and solve these equations.

4- With the element nodal-displacements known, calculate the internal element stress distributions.

5- Interpret the displacements and stresses predicted by the solution of the structural idealization when considering the assumptions used and correct interpretation of the results.
The establishment of an appropriate finite element model of an actual physical problem depends on a large number of factors. References [10], [14] and [29] contain a good discussion of these factors and of modeling considerations.

3.1.3 Relations of Strain-Stress and Strain-Displacement

In this general formulation we review the finite element principle and the solution method. This method is a fairly standard method discussed by several authors, for example in references [4],[5],[6],[10],[14],[18], [30], etc.

![Figure 3.1: General elastic body](image)

Let us consider the equilibrium of a general body. The external forces acting on the body corresponding to the three coordinate axis (Fig. 3.1) can be written in
the form

\[\{F^b\} = \{F^b_x, F^b_y, F^b_z\}^T \]

\[\{F^s\} = \{F^s_x, F^s_y, F^s_z\}^T \]

\[\{F^i\} = \{F^i_x, F^i_y, F^i_z\}^T \]

where,

\[\{F^b\} = \text{body forces} \]

\[\{F^s\} = \text{surface forces} \]

\[\{F^i\} = \text{concentrated forces} \]

The displacement of the system are denoted by,

\[\{U\} \equiv \{\bar{U}\} \]

where,

\[\{U\} = \{U_x(x, y, z), U_y(x, y, z), U_z(x, y, z)\}^T \]

The strains corresponding to the displacement field \(\{U\}\) are

\[\{\varepsilon\} = \{\varepsilon_{xx}, \varepsilon_{yy}, \gamma_{xy}, \gamma_{xz}, \gamma_{yz}\}^T \]

The strain-displacement relations can be represented as

\[\{\varepsilon\} = [L]\{U\} \quad (3.1) \]

where \([L]\) is the differential operator matrix:

\[
[L] = \begin{bmatrix}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z}
\end{bmatrix}
\quad (3.2)
\]

The components of the stress tensor corresponding to \(\{\varepsilon\}\) are denoted by \(\{\sigma\}\) i.e,
\{ \sigma \} = \{ \sigma_{zz}, \sigma_{yy}, \sigma_{zz}, \tau_{yz}, \tau_{xz}, \tau_{yz} \}^T \\
and the stress-strain relation is in the form,

\{ \sigma \} = [C](\{ \varepsilon \} - \{ \varepsilon_0 \}) + \{ \sigma_0 \}

(3.3)

where,

\{ \sigma_0 \} = \text{initial stresses}

\{ \varepsilon_0 \} = \text{initial strains}

and,

[C] = \text{is the constitutive matrix}

In the case of three-dimensional isotropic elastic materials [29],

\[
[C] = \frac{E(1 - \nu)}{(1 + \nu)(1 - 2\nu)} \begin{bmatrix}
1 & \frac{\nu}{1-\nu} & 0 & 0 & 0 \\
\frac{\nu}{1-\nu} & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1-2\nu}{2(1-\nu)} & 0 & 0 \\
0 & 0 & 0 & \frac{1-2\nu}{2(1-\nu)} & 1 \\
\text{Sym.} & & & &
\end{bmatrix}
\]

(3.4)

where \(E \) and \(\nu \) are Young's modulus and Poisson's ratio respectively. The constitutive matrices for orthotropic materials are given in [29].

3.1.4 The Principle of Virtual Work

According to the Principle of Virtual Work,

the total internal virtual work = total external virtual work;

\[
\int_V \{ \varepsilon \}^T \{ \sigma \} dV = \int_V \{ \bar{U} \} \{ F^b \} dV + \int_S \{ \bar{U}^s \}^T \{ F^s \} dS + \sum_i \{ \bar{U}^i \}^T \{ F^i \}
\]

(3.5)

where,

\{ \varepsilon \} = \text{virtual strain}
\{\bar{U}\} = \text{virtual displacement}

The superscripts s and i denote respectively the surface displacement and point displacements. It should be emphasized that the Eq.(3.5) embodies all requirements that need be fulfilled in the analysis of problems in solid mechanics such as:

1- Compatibility, which requires displacements should be continuous and compatible and also satisfy the displacement boundary conditions.

2- Constitutive requirements, which require appropriate constitutive relations between stress and strain.

3- The equations of equilibrium.

4- Although the virtual work equation has been written in the global coordinate system x,y,z of the body, it is equally valid in any other system of coordinates.

5- The principle of virtual displacements can be directly related to the principle that the total potential \(II \) of the system must be stationary.

3.1.5 Derivation of the Finite Element Equation by Virtual Work.

In finite element analysis, we idealize the elastic body in Fig.(3.1) as an assemblage of discrete finite elements which are interconnected at nodal points. At this point, we rewrite Eq.(3.5) as a sum of integrations over the volume and areas of all elements. i.e.,

\[
\sum_m \int_{v(m)} \{\bar{e}\}^T \{\sigma\} dv = \sum_m \int_{u(m)} \{\bar{u}\}^T \{f^b\} dv \\
+ \sum_m \int_{s(m)} \{\bar{u}'\}^T \{f^s\} ds \\
+ \sum_i \{\bar{u}^i\}^T \{F^i\} \tag{3.6}
\]
where \(m = 1, 2, \ldots, ne \) and \(ne = \text{number of elements} \). Assuming the displacement of each element to be a function of the displacements at the \(n \) nodal points, for element \(m \) we have,

\[
\{u\} = [H]\{\Delta\} \tag{3.7}
\]

where

\([H]\) is the displacement interpolation matrix.

\(\{u\}\) is the displacement within each element in local coordinate system.

\(\{\Delta\}\) is a displacement vector at all nodal points in global coordinate system.

\[
\{\Delta\} = \{\{\Delta_1\}, \{\Delta_2\}, \ldots, \{\Delta_i\}, \ldots, \{\Delta_n\}\}^T
\]

We may note that, \(\{\Delta_i\}\) is the generalized displacement at node \(i \), representing displacement or rotation in the directions of assumed degrees of freedom. Using the definition of strain and displacement relation (Eq.3.1), we can now evaluate the corresponding element strains as follows:

\[
\{\varepsilon\} = [B]\{\Delta\} \tag{3.8}
\]

where

\[
[B] = [L][H]
\]

If we substitute Eqs. (3.3), (3.7) and (3.8) into Eq. (3.6) we obtain,

\[
\{\Delta\}^T(\sum_m \int_{\Omega(m)} [B]^T[C][B]dv)\{\Delta\} = \{\Delta\}^T(\sum_m \int_{\Omega(m)} [H]^T\{f^i\}dv
\]

\[
+ \sum_m \int_{\Omega(m)} [H]^T\{f^s\}ds
\]

\[
- \sum_m \int_{\Omega(m)} [B]^T\{\sigma_e\}dv
\]

27
\[+ \sum_{m} \int_{(m)} [B]^T [C] \{\epsilon \} dv \]
\[+ \sum_{m} \int_{(m)} [B]^T [C] \{\epsilon_i \} dv \]
\[+ \{F\} \]

The superscript \((m)\) denotes the element \(m\) and the integrals \(\int_{(m)}\) and \(\int_{(m)}\) integrations over the element volumes and surfaces. It is important to note that all the parameters under the integrals such as \([H], \{f^b\}, \{f^s\}\) and etc. are defined in local element coordinate system.

Finally, the equilibrium equations of the finite element assemblage can be written in the following form:

\[[K] \{\Delta\} = \{R\} \] \hspace{1cm} (3.10)

where

\[\{R\} = \{R_b\} + \{R_s\} - \{R_{\omega}\} + \{R_c\} + \{R_{it}\} + \{R_t\} \] \hspace{1cm} (3.11)

The matrix \([K]\) is the stiffness matrix given by

\[[K] = \sum_{m} \int_{(m)} [B]^T [C] [B] dv \] \hspace{1cm} (3.12)

The vector \([R]\) is the load vector which includes the effects of the body forces \([R_b]\), the surface forces \([R_s]\), the initial stress forces \([R_{\omega}\]), the concentrated loads \([R_c]\), the initial strain forces \([R_{it}\]) and the thermal loads \([R_t]\). These are defined by Eqs. (3.13) to (3.18).

\[\{R_b\} = \sum_{m} \int_{(m)} [H]^T \{f^b\} dv \] \hspace{1cm} (3.13)
\[
\{R_e\} = \sum_m \int_{\nu(m)} [H^s]^T \{f^s\} ds
\]

(3.14)

\[
\{R_{es}\} = \sum_m \int_{\nu(m)} [B]^T \{\sigma_o\} dv
\]

(3.15)

\[
\{R_{el}\} = \sum_m \int_{\nu(m)} [B]^T [C]\{\varepsilon_o\} dv
\]

(3.16)

\[
\{R_{e}\} = \sum_m \int_{\nu(m)} [B]^T [C]\{\varepsilon_t\} dv
\]

(3.17)

\[
\{R_e\} = \{F\}
\]

(3.18)

Equation (3.10) is a statement of the general form of equilibrium equation, valid for static as well as dynamic problems.

We apply d'Alembert's Principle to convert the general Eq. (3.10) to the standard form of the dynamic equilibrium equation. For this purpose we can simply include the element inertia forces as part of the body forces and also, introducing the damping forces as additional contributions to the body forces, Equation (3.13) can be written as

\[
\{R_b\} = \sum_m \int_{\nu(m)} [H]^T \{f^b\} - \rho[H]\{\ddot{x}\} - \mu[H]\{\dot{x}\} dv
\]

(3.19)

where the vector \{f^b\} no longer includes inertia and velocity dependent damping forces. Therefore, we will obtain the standard form of dynamic equilibrium equations as follows:

\[
[M]\{\dddot{x}\} + [C_d]\{\dot{x}\} + [K]\{x\} = \{R\}
\]

(3.20)
where the vector \(\{ R \} \) and \(\{ \Delta \} \) are time dependent. The matrix \([M]\) is the mass matrix of the structure and the matrix \([C_d]\) is the damping matrix of the structures. i.e.,

\[
[M] = \sum_m \int_{u(m)} \rho [H]^T[H] \, dv \\
[C_d] = \sum_m \int_{u(m)} \mu_d [H]^T[H] \, dv
\] \(3.21 \)

\[3.22\]

3.2 Free Vibration

In the case of free vibration of an undamped system Eq.\((3.20)\) becomes,

\[
[M] \{ \ddot{\Delta} \} + [K] \{ \Delta \} = \{ 0 \} \\
(3.23)
\]

or for the eigenvalue problem the convenient form is

\[
([K] - \lambda [M]) \{ \Phi \} = \{ 0 \} \\
(3.24)
\]

where \(\lambda \) is the eigenvalue (\(\lambda = \omega^2 \)) and \(\{ \Phi \} \) is the eigenvector.

The condition that the Eq.\((3.24)\) should have non-zero solution is

\[
det([K] - \lambda [M]) = \{ 0 \} \\
(3.25)
\]

3.2.1 Solution of Eigenvalue Problems

The eigenvalue problem given by Eq.\((3.24)\) can be rewritten as

\[
[K] \{ \Phi \} = \lambda [M] \{ \Phi \} \\
(3.26)
\]
Two general methods, namely, transformation methods and iterative methods, are available for solving these type of problems.

Transformation Methods

The transformation methods such as Jacobi, Givens and Householder Schemes are preferable when all the eigenvalues and eigenvectors are required. A detailed solution algorithm has been discussed in references [5],[7],[11] and [14].

Iterative Methods

The iterative methods such as the power method, are preferable when only a few eigenvalues and eigenvectors are required. Another technique available is the subspace iteration method. This method is very effective for finding the first few eigenvalues and eigenvectors of large eigenvalue problems arising in structural and solid mechanics. The subspace iteration method allows the simultaneous approximate calculation of several eigenvalues and eigenvectors of Eq.(3.26), using inverse iteration.

The space is reduced from the original n dimensions of $[K]$ and $[M]$ matrices to a subspace of dimension q, where q is the number of iteration vectors. These and some of the other iteration techniques have been discussed in references [5], [7], [11], [14],[54],[57],[65],etc.

The subspace iteration method developed by Bathe [14] consists of the following
three steps:

1- Establish \(q \) starting iteration vectors, \(q > p \), where \(p \) is the number of eigenvalues and vectors to be calculated.

2- Use simultaneous inverse iteration on the \(q \) vectors and Ritz analysis to extract the best eigenvalue and eigenvector approximations from the \(q \) iteration vectors.

3- After iteration convergence, use the Sturm sequence check to verify that the required eigenvalues and corresponding eigenvectors have been calculated.

The theoretical basis of the algorithm is well documented in the literature [13],[52],[65] and therefore only a brief overview will be presented. The flow chart of the subspace iteration scheme, for calculating \(p \) eigenvalues and eigenvectors, is set out below.

Step 1- Establish a set of starting vectors \(\{X\}_1, \{X\}_2, \ldots, \{X\}_q \), where \(q > p \)

Bathe and Wilson suggested a value of \(q = \min(2p, p + 8) \) for good convergence. A computer algorithm for calculating efficient initial vectors for subspace iteration method was given in [57]. Define the initial modal matrix \([X]_o \) as

\[
[X]_o = \{\{X\}_1, \{X\}_2, \ldots, \{X\}_q\} \tag{3.27}
\]

and set the iteration number as \(k = 0 \)

Step 2- Improve modal matrix \([X]_{k+1} \), by using the following subspace iteration procedure

(a)-Find \(\tilde{X}_{k+1} \) from the relation

\[
[K][\tilde{X}]_{k+1} = [M][X]_k \tag{3.28}
\]
(b) compute

\[\widehat{K}_{k+1} = [\widehat{X}]_k^{T}[K][\widehat{X}]_{k+1} \quad (3.29) \]

and

\[\widehat{M}_{k+1} = [\widehat{X}]_k^{T}[M][\widehat{X}]_{k+1} \quad (3.30) \]

(c) Solve the reduced eigenproblem

\[\widehat{K}_{k+1}[Q]_{k+1} = [\widehat{M}]_{k+1}[Q]_{k+1}[\Lambda]_{k+1} \quad (3.31) \]

where \([Q]_{k+1}\) contains the matrix of eigenvectors and \([\Lambda]_{k+1}\) is a diagonal matrix of eigenvalues. This equation can be converted to the standard eigenvalue problem and solved using the Jacobian iteration method.

(d) Calculate an improved approximation to the eigenvectors of the original system as

\[[X]_{k+1} = [\widehat{X}]_k^{T}[Q]_{k+1} \quad (3.32) \]

Note:

1- It is assumed that the vectors in \([X]_0\) are not orthogonal to one of the required eigenvectors.

2- It is assumed that the iteration vectors converging to the exact eigenvectors \(\{X\}_1^{(exact)}, \{X\}_2^{(exact)}, \ldots\), are stored as the first, second, \ldots, columns of the matrix \(\{X\}_{k+1}\).

Step 3 - If the column vectors in \([X]_0\) are not orthogonal to one of the required eigenvectors, then the \(ith\) diagonal entry in \([\Lambda]_{k+1}\) converges to \(\lambda_i\) and \(ith\) vector in
matrix $[X]_{k+1}$ converges to Φ_i. The iteration is terminated whenever the following criteria are satisfied:

$$\left| \frac{\lambda_i^{(k+1)} - \lambda_i^{(k)}}{\lambda_i^{(k+1)}} \right| \leq \varepsilon, \quad i = 1, 2, \ldots, p$$ (3.33)

where ε is a predefined tolerance. In the numerical examples presented in this work, a tolerance of $\varepsilon = 10^{-6}$ is assumed.

However, once the convergence limit in Eq.(3.33) is satisfied, the final stage of the solution of Eq.(3.26) involves using the Sturm sequence to verify that the required eigenvalues and corresponding eigenvectors have been obtained.

In the present study, for solving the eigenvalue problem defined by Eq.(3.26), we have used the subspace iteration method to generate the frequencies and modal shapes of plates, where stiffness matrix $[K]$ and mass matrix $[M]$ have been arranged in symmetric banded matrices. For shell problems we used the eigenvalue solver, described by Bathe and Wilson [13], that employs a subspace iteration method with Sturm sequence checks. This code presents solution of the smaller eigenvalues and corresponding eigenvectors of the generalized eigenproblem. In this code the stiffness matrix $[K]$ and mass matrix $[M]$ are arranged in compacted form and both are positive definite.
3.3 Constitutive Behavior in Composites

The generalized Hooke’s relation can be written as

\[\sigma_{ij} = C_{ijkl} \epsilon_{kl} \quad (i,j,k,l = 1, 2, 3) \] (3.34)

where

- \(\sigma_{ij} \) is the second-order stress tensor.
- \(\epsilon_{kl} \) is the second-order strain tensor.
- \(C_{ijkl} \) is the fourth-order elasticity tensor.

The 1,2 and 3 directions form a right-handed orthogonal co-ordinate system. It has been shown that the stress, strain, and elasticity tensors must be symmetrical [118]. i.e.,

\[\sigma_{ij} = \sigma_{ji}, \quad \epsilon_{ij} = \epsilon_{ji} \quad \text{and} \quad C_{ijkl} = C_{klij} \]

Hence, for materials having one plane of symmetry the strain-stress relations can be written as,

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_{23} \\
\sigma_{31} \\
\sigma_{12}
\end{bmatrix}
= \begin{bmatrix}
c_{11} & c_{12} & c_{13} & 0 & 0 & c_{16} \\
c_{21} & c_{22} & c_{23} & 0 & 0 & c_{26} \\
c_{31} & c_{32} & c_{33} & 0 & 0 & c_{36} \\
0 & 0 & 0 & c_{44} & c_{45} & 0 \\
0 & 0 & 0 & c_{54} & c_{55} & 0 \\
c_{61} & c_{62} & c_{63} & 0 & 0 & c_{66}
\end{bmatrix}
\begin{bmatrix}
\epsilon_1 \\
\epsilon_2 \\
\epsilon_3 \\
\gamma_{23} \\
\gamma_{31} \\
\gamma_{12}
\end{bmatrix}
\] (3.35)

3.3.1 Constitutive Relations for Orthotropic Plates and Shells

Materials which have three mutually orthogonal planes of elastic symmetry are called orthotropic. It can be noted that for orthotropic materials addressed in this investigation, the following simplification can be made. \(c_{16} = c_{61} = 0, \ c_{26} = c_{62} = 0, \)
\[c_{36} = c_{63} = 0 \text{ and } c_{45} = c_{54} = 0 \]

Hence, the Eqs. (3.35) are further simplified for orthotropic plates and shells, where, the stress \(\sigma_3 = 0 \) leading to Eqs. (3.36):

\[
\begin{pmatrix}
\sigma_1 \\ \sigma_2 \\ \tau_{12} \\ \tau_{13} \\ \tau_{23}
\end{pmatrix} =
\begin{bmatrix}
Q_{11} & Q_{12} & 0 & 0 & 0 \\
Q_{21} & Q_{22} & 0 & 0 & 0 \\
0 & 0 & Q_{66} & 0 & 0 \\
0 & 0 & 0 & Q_{44} & 0 \\
0 & 0 & 0 & 0 & Q_{55}
\end{bmatrix}
\begin{pmatrix}
\epsilon_1 \\ \epsilon_2 \\ \gamma_{12} \\ \gamma_{13} \\ \gamma_{23}
\end{pmatrix}
\] (3.36)

or

\[
\{ \sigma \}_{(1,2,3)} = [Q] \{ \epsilon \}_{(1,2,3)}
\] (3.37)

where

\[
Q_{11} = \frac{E_{11}}{(1 - \nu_{12}\nu_{21})} \\
Q_{22} = \frac{E_{22}}{(1 - \nu_{12}\nu_{21})} \\
Q_{12} = \frac{\nu_{12}E_{22}}{(1 - \nu_{12}\nu_{21})} \\
Q_{21} = Q_{12} \\
Q_{66} = G_{12} \\
\nu_{21}E_{11} = \nu_{12}E_{22} \\
Q_{44} = k_1G_{13} \\
Q_{55} = k_2G_{23}
\] (3.38)

The terms \(k_1 \) and \(k_2 \) are shear correction factors. This equation refers to a specially orthotropic lamina in which the material and geometry axes are aligned.
In general, if the principal material axes \((1,2,3)\) are not aligned with the geometric axes \((x,y,z)\) as shown in Fig. 3.2 certain transformations are necessary before an equation of the type \((3.37)\) can be reached. Using the transformation relations for stress and strain,

\[
\{\sigma\}_{(1,2,3)} = [T]_\sigma \{\sigma\}_{(x,y,z)}
\]

(3.39)

and

\[
\{\epsilon\}_{(1,2,3)} = [T]_\epsilon \{\epsilon\}_{(x,y,z)}
\]

(3.40)
where

\[
\begin{align*}
\{\sigma\}_{(x,y,z)} &= \{\sigma_x, \sigma_y, \tau_{xy}, \tau_{xz}, \tau_{yz}\}^T \\
\{\epsilon\}_{(x,y,z)} &= \{\epsilon_x, \epsilon_y, \gamma_{xy}, \gamma_{xz}, \gamma_{yz}\}^T
\end{align*}
\] (3.41)

In the above expressions the stress and strain transformation matrices \([T]_\sigma\) and \([T]_\epsilon\) are defined as follows:

\[
[T]_\sigma = \begin{bmatrix}
 c^2 & s^2 & 2cs & 0 & 0 \\
 s^2 & c^2 & -2cs & 0 & 0 \\
 -cs & cs & c^2 - s^2 & 0 & 0 \\
 0 & 0 & 0 & c & s \\
 0 & 0 & 0 & -s & c
\end{bmatrix}
\] (3.43)

\[
[T]_\epsilon = \begin{bmatrix}
 c^2 & s^2 & cs & 0 & 0 \\
 s^2 & c^2 & -cs & 0 & 0 \\
 -2cs & 2cs & c^2 - s^2 & 0 & 0 \\
 0 & 0 & 0 & c & s \\
 0 & 0 & 0 & -s & c
\end{bmatrix}
\] (3.44)

where

\[
c = \cos \theta, \quad s = \sin \theta
\]

Substituting Eq. (3.37) then Eq. (3.40) into Eq. (3.39) results in the following,

\[
\{\sigma\}_{(x,y,z)} = [T]^{-1}_\sigma [Q] \{\epsilon\}_{(1,2,2)}
\] (3.45)

\[
\{\sigma\}_{(x,y,z)} = [T]^{-1}_\sigma [Q][T]_\epsilon \{\epsilon\}_{(x,y,z)}
\] (3.46)

this can be written as

\[
\{\sigma\}_{(x,y,z)} = [\bar{Q}] \{\epsilon\}_{(x,y,z)}
\] (3.47)

The reduced stiffness matrix, \([\bar{Q}]\) for generally orthotropic laminae ([22],[26],[27]),

38
can be represented as:

\[
[\bar{Q}] = \begin{bmatrix}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} & 0 & 0 \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} & 0 & 0 \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} & 0 & 0 \\
0 & 0 & 0 & \bar{Q}_{44} & \bar{Q}_{45} \\
0 & 0 & 0 & \bar{Q}_{45} & \bar{Q}_{55}
\end{bmatrix}
\]

(3.48)

where

\[
\bar{Q}_{11} = Q_{11}c^4 + 2(Q_{12} + 2Q_{66})c^2s^2 + Q_{22}s^4
\]

\[
\bar{Q}_{22} = Q_{11}s^4 + 2(Q_{12} + 2Q_{66})c^2s^2 + Q_{22}c^4
\]

\[
\bar{Q}_{12} = (Q_{11} + Q_{22} - 4Q_{66})c^2s^2 + Q_{12}(c^4 + s^4)
\]

\[
\bar{Q}_{66} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})c^2s^2 + Q_{66}(c^4 + s^4)
\]

\[
\bar{Q}_{16} = (Q_{11} - Q_{12} - 2Q_{66})sc^3 + (Q_{12} - Q_{22} + 2Q_{66})s^3c
\]

\[
\bar{Q}_{26} = (Q_{11} - Q_{12} - 2Q_{66})s^3c + (Q_{12} - Q_{22} + 2Q_{66})sc^3
\]

\[
\bar{Q}_{44} = Q_{44}c^2 + Q_{55}s^2
\]

\[
\bar{Q}_{55} = Q_{44}s^2 + Q_{55}c^2
\]

\[
\bar{Q}_{45} = (Q_{55} - Q_{44})cs
\]

(3.49)
3.3.2 Constitutive Representation for Laminates

Having formulated the constitutive relations for an orthotropic laminae we now address the question of the constitutive relations for a laminated plate formed by bonding several laminae together (Fig. 3.3). We write Eq. (3.47) again for the k^{th} laminae

$$\{\sigma\}^{(k)} = [Q]^{(k)} \{\epsilon\}$$ \hspace{1cm} (3.50)

Figure 3.3: Laminated element
Strain at the point z can be written as

$$
\{\varepsilon\} = \{\varepsilon^o\} + z\{\kappa\}
$$

(3.51)

The in-plane mid surface strain $\{\varepsilon^o\}$ and the curvature $\{\kappa\}$ are defined as follows:

$$
\{\varepsilon^o\} = \begin{bmatrix}
\varepsilon^o_x \\
\varepsilon^o_y \\
\gamma^o_{xy}
\end{bmatrix}
$$

(3.52)

$$
\{\kappa\} = \begin{bmatrix}
\kappa_z \\
\kappa_y \\
\kappa_{xy}
\end{bmatrix}
$$

(3.53)

Substituting Eq. (3.51) into Eq. (3.50) gives

$$
\{\sigma\}^{(k)} = [\bar{Q}]^{(k)}\{\varepsilon^o\} + z[\bar{Q}]^{(k)}\{\kappa\}
$$

(3.54)

For a laminated plate or shell the in-plane stress resultants are obtained by integrating the stresses along the thickness, i.e.,

$$
\begin{bmatrix}
N_x \\
N_y \\
N_{xy}
\end{bmatrix} = \sum_{k=1}^{nl} \int_{h_{k-1}}^{h_k} \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_{xy}
\end{bmatrix}^{(k)} dz
$$

$$
= \sum_{k=1}^{nl} \left(\int_{h_{k-1}}^{h_k} [\bar{Q}]^{(k)} \begin{bmatrix}
\varepsilon^o_x \\
\varepsilon^o_y \\
\gamma^o_{xy}
\end{bmatrix} dz + \int_{h_{k-1}}^{h_k} [\bar{Q}]^{(k)} \begin{bmatrix}
\kappa_x \\
\kappa_y \\
\kappa_{xy}
\end{bmatrix} z dz \right)
$$

(3.55)

where nl is the number of layers in the laminated plate, h_k and h_{k-1} are the z-coordinates of the upper and lower surfaces of the k^{th} laminae. It should be noted that h_k is negative below the mid-plane and positive above the mid-plane.

Alternatively we write,

$$
\{N_p\} = [A]\{\varepsilon^o\} + [B]\{\kappa\}
$$

(3.56)
where

\[A_{ij} = \sum_{k=1}^{n_l} \tilde{Q}^{(k)}_{ij} (h_k - h_{k-1}) \] \hspace{2cm} (3.57)

\[B_{ij} = \frac{1}{2} \sum_{k=1}^{n_l} \tilde{Q}^{(k)}_{ij} (h_k^2 - h_{k-1}^2) \] \hspace{2cm} (3.58)

Similarly, for bending moment \(M_b \) we write.

\[
\begin{bmatrix}
M_{bx} \\
M_{by} \\
M_{bxy}
\end{bmatrix} = \sum_{k=1}^{n_l} \int_{h_{k-1}}^{h_k} \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_{xy}
\end{bmatrix}^{(k)} dz \\
= \sum_{k=1}^{n_l} \left(\int_{h_{k-1}}^{h_k} [\tilde{Q}]^{(k)} \begin{bmatrix}
e_x^2 \\
e_y^2 \\
\tau_{xy}^2
\end{bmatrix} \right) dz + \int_{h_{k-1}}^{h_k} [\tilde{Q}]^{(k)} \begin{bmatrix}
\kappa_x \\
\kappa_y \\
\kappa_{xy}
\end{bmatrix} z^2 dz
\]

or

\[
\{M_b\} = [B]\{e^s\} + [D]\{\kappa\}
\] \hspace{2cm} (3.60)

where the elements in \([B]\) are defined by Eq. (3.58) and elements in \([D]\) are given by

\[D_{ij} = \frac{1}{3} \sum_{k=1}^{n_l} \tilde{Q}^{(k)}_{ij} (h_k^3 - h_{k-1}^3) \] \hspace{2cm} (3.61)

The shear force results can be obtained in a similar manner by integrating along the thickness. i.e.,

\[
\begin{bmatrix}
V_{sx} \\
V_{sy}
\end{bmatrix} = \sum_{k=1}^{n_l} \int_{h_{k-1}}^{h_k} \begin{bmatrix}
\tau_{sx} \\
\tau_{sy}
\end{bmatrix}^{(k)} dz
\]

or

\[
\{V_s\} = [C]\{\theta\}
\] \hspace{2cm} (3.62)

In finding the transverse shear forces \(V_{sx}, V_{sy} \), it is assumed that the transverse shear stresses are distributed parabolically across the laminate thickness. However, in
spite of the discontinuities at the interfaces between laminae, a continuous function is assumed [121] as follows.

\[f(z) = \frac{5}{4} \left[1 - \left(\frac{z}{h/2} \right)^2 \right] \]

(3.63)

Using the stress strain relations (Eq.(3.50)), Eq.(3.62) can be rewritten as

\[\begin{bmatrix} V_{xz} \\ V_{sy} \end{bmatrix} = \sum_{k=1}^{n_l} \left(\int_{h_{k-1}}^{h_k} [\bar{Q}]^{(k)} \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}^{(k)} dz \right) \]

(3.64)

After integrating we obtain,

\[\begin{bmatrix} V_x \\ V_y \end{bmatrix} = \begin{bmatrix} A_{s44} & A_{s45} \\ A_{s45} & A_{s55} \end{bmatrix} \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix} \]

(3.65)

or, simply

\[\{V_s\} = [A_s] \{\epsilon_s\} \]

(3.66)

where

\[A_{sij} = \frac{5}{4} \sum_{k=1}^{n_l} \bar{Q}_{ij}^{(k)} [h_k - h_{k-1} - \frac{4}{3} \left(\frac{h_k^3 - h_{k-1}^3}{h^2} \right)] \]

(3.67)

Alternatively, the laminate stiffness coefficients may be written as

\[(A_{ij}, B_{ij}, D_{ij}) = \sum_{k=1}^{n_l} \left(\int_{h_{k-1}}^{h_k} \bar{Q}_{ij}^{(k)} (1, z, z^2) dz \right) \]

\[A_{sij} = k_s^2 A_{ij} \]

(3.68)

Here \(k_s \) is the shear correction factor (taken to be 5/6 for a homogeneous cross-section).

Combining Eqs. (3.56), (3.60) and (3.66) and assembling in matrix form gives

\[\begin{bmatrix} \{N_p\} \\ \{M_t\} \\ \{V_s\} \end{bmatrix} = \begin{bmatrix} [A] & [B] & [0] \\ - & - & - \\ [0] & [0] & [A_s] \end{bmatrix} \begin{bmatrix} \{\epsilon_o\} \\ \{\kappa\} \\ \{\epsilon_s\} \end{bmatrix} \]

(3.69)
where:

$[A]$ is the extensional stiffness matrix,

$[D]$ is the flexural stiffness matrix,

$[B]$ is the bending stretching coupling matrix,

$[A_4]$ is the shear stiffness matrix.

Equations (3.69) represents the full system of constitutive equations necessary to study orthotropic laminated plates.

As the above equations show, a laminated plate or shell exhibits a variety of couplings, namely between in-plane loading and out-of-plane deflection, and also between applied bending load and twisting response. Such couplings complicate the analysis of laminated plates and shells and also reduce the overall stiffness of the laminate. Elimination of coupling effects not only overcomes the above difficulties in laminated structures but also eliminates the temperature effect on warping of the laminate. It is shown that a selection of a suitable ply stacking, by balancing the laminate about it mid-plane, by a suitable choice of thickness ratio and laminate stacking sequence, and finally, by controlling the angle of fibre-directions, the coupling in laminated structures can be completely eliminated. Therefore, several simplifications of Eqs.(3.69) are possible:

1- Balanced laminate, consider the balanced laminate which contains an equal number of laminae of $+\theta^\circ$ and $-\theta^\circ$ fiber orientation. for such a laminate the shear coupling stiffness terms, A_{16}, and A_{26}, vanish. i.e, $A_{16} = A_{26} = 0$.

2- Symmetric laminate, if the laminae within the laminate are positioned symmetrically with respect to the laminate mid-plane, then the coupling terms, B_{ij}, vanish. i.e, $B_{ij} = 0$ (i, j = 1, 2, 6).
It is important to note that while the inplane shear and normal terms are uncoupled for the symmetric and balanced laminate the twisting-bending terms (D_{16}, D_{26}) do not vanish.

References [27],[34],[73] and [72] discuss some aspects of the elimination of the coupling in the laminated plates and shells.
3.4 Laminated Anisotropic Plate Theory

3.4.1 Introduction

The classical plate theory or Kirchhoff theory ignores the transverse shear deformation effect. As we discussed earlier in chapter 1 the effect of transverse shear deformation on laminated plates is very important. Thick plate theory or Mindlin plate theory [115] which takes into account shear deformation effect, provides a more realistic alternative to Kirchhoff theory.

Recent developments in the analysis of multilayered composite plate indicate the pronounced effect of transverse shears. For this type of construction Mindlin theory is best suited.

A number of shear deformation theories for composite plates have been proposed to date. The first generalized theory for laminated anisotropic plate is called "YNS" theory which has been given in reference [66]. The plate assumptions used in the formulations of plate theory in this study are essentially those introduced by Mindlin [115].

3.4.2 Formulation of Mindlin Plate Theory

Some of the important assumptions used in the development of the Mindlin plate theory are:

(1) The deflection of the midurface of the plate is small.
(2) Transverse normal stresses are negligible.
(3) Normals to the midsurface of the plate remains straight after deformation but not necessarily normal.

Based on the above assumption, the displacement field for a first-order shear deformation theory ([45],([75],etc.) can be expressed as

\[
\begin{align*}
u(x, y, z, t) &= u^o(x, y, t) + z\beta_x(x, y, t) \\
v(x, y, z, t) &= v^o(x, y, t) + z\beta_y(x, y, t) \\
w(x, y, z, t) &= w^o(x, y, t)
\end{align*}
\]

(3.70)

where \(u, v\) and \(w\) are displacement components in the \(x, y\) and \(z\) directions, respectively, \(u^o, v^o\) and \(w^o\) are the displacements of the midsurface, \(\beta_x\) and \(\beta_y\) are the normal rotations in \(xz\) and \(zy\) planes respectively as shown in Fig. 3.4.

Figure 3.4: Mindlin plate model
3.4.3 Strain-Displacement Relations

Using the infinitesimal strain definition

\[
\{ \varepsilon \} = \begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy} \\
\gamma_{xz} \\
\gamma_{yz}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \\
\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \\
\frac{\partial v}{\partial y} - \frac{\partial w}{\partial z}
\end{bmatrix}
\] (3.71)

then strain at point \(z \) can be expressed in the form

\[
\{ \varepsilon \} = \begin{bmatrix}
\frac{\partial u^o}{\partial x} + z\frac{\partial \beta_x}{\partial x} \\
\frac{\partial u^o}{\partial y} + z\frac{\partial \beta_y}{\partial y} \\
(\frac{\partial u^o}{\partial y} + \frac{\partial u^o}{\partial y}) + z(\frac{\partial \beta_x}{\partial x} + \frac{\partial \beta_y}{\partial y}) \\
\beta_x + \frac{\partial \beta_x}{\partial x} \\
\beta_y + \frac{\partial \beta_y}{\partial y}
\end{bmatrix}
\] (3.72)

The in-plane strain components may be written

\[
\{ \varepsilon \} = \{ \varepsilon_p \} + \{ \varepsilon_f \}
\] (3.73)

where \(\{ \varepsilon_p \} \) and \(\{ \varepsilon_f \} \) are the extensional and flexural parts of the in-plane strains which can be represented as

\[
\{ \varepsilon_p \} = \{ \frac{\partial u^o}{\partial x}, \frac{\partial v^o}{\partial y}, (\frac{\partial u^o}{\partial y} + \frac{\partial v^o}{\partial x}) \}^T
\]

\[
\{ \varepsilon_f \} = z\{ \kappa \} = z\{ \frac{\partial \beta_x}{\partial x}, \frac{\partial \beta_y}{\partial y}, (\frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_y}{\partial x}) \}^T
\]

where \(\{ \kappa \} \) is the vector of curvatures. Finally, the transverse shear strains are given as

\[
\{ \varepsilon_s \} = \{ \gamma_{xz}, \gamma_{yz} \}^T
\]

\[
= \{ \frac{\partial w^o}{\partial x} + \beta_x, (\frac{\partial w^o}{\partial y} + \beta_y) \}^T
\] (3.74)
3.4.4 Constitutive Relations for Plates

A detailed derivation of the constitutive relations has been given in section 3.3. In this section we discuss, briefly, the constitutive relations for layered plates. Constitutive relations for any layer in the \((x,y)\) system are given by,

\[
\{\sigma\}^{(k)}_{(x,y,z)} = [\bar{Q}]^{(k)} \{\varepsilon\}_{(x,y,z)}
\]

(3.75)

where \([\bar{Q}]^{(k)}\) is the reduced stiffness matrix of the \(k^{th}\) layer of a layered material. Introducing the stress and moment resultants per unit length, we can write,

\[
(N_z, N_y, N_{xy}) = \int_{-\frac{h}{2}}^{\frac{h}{2}} (\sigma_x, \sigma_y, \tau_{xy})^{(k)} dz
\]

(3.76)

\[
(V_{xz}, V_{yz}) = \int_{-\frac{h}{2}}^{\frac{h}{2}} (\tau_{xx}, \tau_{yx})^{(k)} dz
\]

(3.77)

\[
(M_{x}, M_{y}, M_{xy}) = \int_{-\frac{h}{2}}^{\frac{h}{2}} (\sigma_x, \sigma_y, \tau_{xy})^{(k)} z dz
\]

(3.78)

Finally, the constitutive relations in terms of the resultants and displacements can be written as,

\[
\begin{pmatrix}
\{N_p\}
\{M_b\}
\{V_s\}
\end{pmatrix}
=
\begin{pmatrix}
[A] & [B] & [0] \\
- & - & - \\
[0] & [0] & [A_4]
\end{pmatrix}
\begin{pmatrix}
\{\varepsilon_p\}
\{\varepsilon_f\}
\{\varepsilon_s\}
\end{pmatrix}
\]

(3.79)

The laminate stiffnesses \(A_{ij}, B_{ij}\) and \(D_{ij}\) are given by

\[
(A_{ij}, B_{ij}, D_{ij}) = \int_{-\frac{h}{2}}^{\frac{h}{2}} \bar{Q}^{(k)}_{ij} (1, z, z^2) dz \quad (i, j = 1, 2, 6)
\]

(3.80)

\[
(A_{sij}) = -k_s \int_{-\frac{h}{2}}^{\frac{h}{2}} \bar{Q}^{(k)}_{ij} dz \quad (i, j = 4, 5)
\]

(3.81)
The stiffness coefficient $\tilde{Q}^{(k)}_{ij}$ depends on the material properties and orientation of the k^{th} layer and was given in section 3.3. The parameter k_s is the shear correction coefficient.

It should be noted that variable thicknesses can be accounted for by considering variable limits of integration. Thus,

$$A_{ij} = A_{ij}(x, y), \quad B_{ij} = B_{ij}(x, y), \quad D_{ij} = D_{ij}(x, y), \quad A_{sij} = A_{sij}(x, y)$$

3.4.5 Equation of Motion for Plates

The equations of motion according to the "YNS" Theory [66] are,

$$N_{x,x} + N_{x,y} + R^b_x = P\ddot{u}$$
$$N_{x,y} + N_{y,y} + R^b_y = P\ddot{v}$$
$$V_{x,x} + V_{x,y} + R^b_z = P\ddot{w}$$
$$M_{x,x} + M_{x,y} - V_{x} = I\ddot{\theta}_x - R^b_x$$
$$M_{x,y} + M_{y,y} - V_{y} = I\ddot{\theta}_y - R^b_y$$

(3.82)

where P and I are the normal and rotary inertia coefficients,

$$(P, I) = \int_{-\frac{h}{2}}^{\frac{h}{2}} (1, z^2)\rho^{(m)}dz$$

(3.83)

$\rho^{(m)}$ being the material density of layer m and the body forces are given by

$$(R^b_x, R^b_y, R^b_z) = \int_{-\frac{h}{2}}^{\frac{h}{2}} (F^b_x, F^b_y, F^b_z)dz$$

(3.84)
Figure 3.5: Equilibrium of plate
3.5 Finite Element Model for Plates

For the plate element in the general case, five nodal displacements \((u^o, v^o, w^o, \beta_x, \beta_y)\) may be considered. The displacement and normal rotations at any point in a typical element can be expressed as

\[
\begin{bmatrix}
 u^o \\
 v^o \\
 w^o \\
 \beta_y \\
 \beta_x
\end{bmatrix} = \sum_{i=1}^{nn} \begin{bmatrix}
 N_i & 0 & 0 & 0 & 0 \\
 0 & N_i & 0 & 0 & 0 \\
 0 & 0 & N_i & 0 & 0 \\
 0 & 0 & 0 & N_i & 0 \\
 0 & 0 & 0 & 0 & N_i
\end{bmatrix} \begin{bmatrix}
 u_i^o \\
 v_i^o \\
 w_i^o \\
 \theta_{xi} \\
 \theta_{yi}
\end{bmatrix}
\]

or

\[
\{u\} = \sum_{i=1}^{nn} [N_i]\{\Delta_i\}
\]

where, \(\Delta_i\) are the nodal values \(u^o, v^o, w^o, \beta_y, \beta_x\) respectively, at the \(i^{th}\) node of the element, and \(nn\) is the number of nodes in each element. The \(N_i\) are shape functions associated with node \(i\) and expressed in terms of the natural local coordinate system \((\xi, \eta)\) i.e, \(N_i \equiv N_i(\xi, \eta)\).

In an isoparametric formulation, the coordinates of any point \(x\) and \(y\) in the element can be described by the same interpolation function \(N_i(\xi, \eta)\), thus

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix} = \sum_{i=1}^{nn} \begin{bmatrix}
 N_i & 0 \\
 0 & N_i
\end{bmatrix} \begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
\]

where \(x_i\) and \(y_i\) are the coordinates of the \(i^{th}\) node of the element.

The strain displacement relation can be expressed as

\[
\{\epsilon\} = [L]\{u\}
\]

substituting Eq. (3.86) in Eq. (3.88) we obtain,

\[
\{\epsilon\} = [L][N]\{\Delta_i\}
\]
this can be written as

\[\{ \epsilon \} = \sum_{i=1}^{nn} [B_i] \{ \Delta_i \} \]
(3.89)

where,

\[
[B_i] = \begin{bmatrix}
N_{i,x} & 0 & 0 & 0 & 0 \\
0 & N_{i,y} & 0 & 0 & 0 \\
N_{i,y} & N_{i,x} & 0 & 0 & 0 \\
0 & 0 & 0 & N_{i,x} & 0 \\
0 & 0 & 0 & N_{i,y} & N_{i,x} \\
0 & 0 & N_{i,x} & N_{i,y} & 0 \\
0 & 0 & N_{i,y} & 0 & N_{i} \\
\end{bmatrix}
\]
(3.90)

The strain tensor can be split in three parts as follows:

- the in-plane strain

\[\{ \epsilon_p \} = \sum_{i=1}^{nn} [B_{pi}] \{ \Delta_i \} \]
(3.91)

where \([B_{pi}]\) is the in-plane displacement matrix, given by

\[
[B_{pi}] = \begin{bmatrix}
N_{i,x} & 0 \\
0 & N_{i,y} \\
N_{i,y} & N_{i,x} \\
\end{bmatrix}
\]
(3.92)

- the flexural strain

\[\{ \kappa \} = \sum_{i=1}^{nn} [B_{ki}] \{ \Delta_i \} \]
(3.93)

where \([B_{ki}]\) is the bending-displacement matrix, written in the form

\[
[B_{ki}] = \begin{bmatrix}
0 & N_{i,x} & 0 \\
0 & 0 & N_{i,y} \\
0 & N_{i,y} & N_{i,x} \\
\end{bmatrix}
\]
(3.94)

- the shear strain

\[\{ \epsilon_s \} = \sum_{i=1}^{nn} [B_{si}] \{ \Delta_i \} \]
(3.95)
where \([B_{s_i}]\) is the shear-displacement matrix, expressed as

\[
[B_{s_i}] = \begin{bmatrix} N_{i,x} & N_i & 0 \\ N_{i,y} & 0 & N_i \end{bmatrix}
\]
\hspace{1cm} (3.96)

The shape functions \(N_i\) are given in natural coordinate system. Their derivatives \(N_{i,x}\) and \(N_{i,y}\) in cartesian coordinates, can be obtained by the chain rule as follows:

\[
\begin{bmatrix} N_{i,x} \\ N_{i,y} \end{bmatrix} = [J]^{-1} \begin{bmatrix} N_{i,\xi} \\ N_{i,\eta} \end{bmatrix}
\]
\hspace{1cm} (3.97)

where, \([J]^{-1}\) is the inverse of the Jacobian matrix \([J]\), the Jacobian matrix of the element is given by

\[
[J] = \begin{bmatrix} x,\xi & y,\xi \\ x,\eta & y,\eta \end{bmatrix}
\]
\hspace{1cm} (3.98)

or

\[
[J] = \sum_{i=1}^{nn} \begin{bmatrix} N_{i,\xi} & N_{i,\eta} \\ N_{i,\xi} & N_{i,\eta} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix}
\]
\hspace{1cm} (3.99)

Hence, the inverse of Jacobian matrix \([J]\) may be obtained as,

\[
[J]^{-1} = \begin{bmatrix} \xi_x & \eta_x \\ \xi_y & \eta_y \end{bmatrix}
\]
\hspace{1cm} (3.100)

and the element stiffness matrix and mass matrix of the element are given as,

\[
[K]^{(m)} = \int_{-1}^{1} \int_{-1}^{1} [B]^T [C] [B] \text{det}[J] d\xi d\eta
\]
\hspace{1cm} (3.101)

\[
[M]^{(m)} = \int_{-1}^{1} \int_{-1}^{1} [N]^T \rho[N] \text{det}[J] d\xi d\eta
\]
\hspace{1cm} (3.102)

where \([B]\), \([C]\) and \([N]\) are the strain-displacement, stress-strain and element shape matrices for the plate element. Finally, the total stiffness matrix and the total mass
matrix are given by

\[[K] = \sum_{m=1}^{ne} [K]^{(m)} \]
\[[M] = \sum_{m=1}^{ne} [M]^{(m)} \]

(3.103)

where ne is the number of elements in the plate.
3.6 Laminated Anisotropic Shell Theory

3.6.1 Introduction

As mentioned in the chapter 1 there are three different approaches to formulating shell elements. As discussed elsewhere in this thesis the effect of shear deformation on thick and composite shells is significant in comparison to thin homogenous shells. Therefore, for the above reasons a degenerate, Mindlin-type, curved element has been adopted in this study for finite element formulation of shell structures.

3.6.2 Formulation of Shell Element

Coordinate System

In the analysis of shell structures, by the degenerate curved shell elements, we need to define four coordinate systems as shown in Fig.3.6.

1- Global Coordinate System (x,y,z)
A global cartesian coordinate system is used to define the geometry of the structure (Fig.3.6). Nodal coordinates, displacements, global stiffness matrix, and applied forces are all defined in this coordinate system.

2- Nodal Coordinate System (V_{1i}, V_{2i}, V_{3i})
The nodal cartesian coordinate system is attached at each nodal point of the shell element and its origin is located at the shell midsurface. This local coordinate system is used to define the direction of the normal at node i. The vector \(\vec{V}_{3i} \) is
constructed from the nodal coordinates of the top and bottom surfaces at node i, thus
\[
\vec{V}_{3i} = \left\{ \begin{array}{l} x_i \\ y_i \\ z_i \end{array} \right\}_{\text{top}} - \left\{ \begin{array}{l} x_i \\ y_i \\ z_i \end{array} \right\}_{\text{bottom}} = \left\{ \begin{array}{l} \Delta x_i \\ \Delta y_i \\ \Delta z_i \end{array} \right\} \quad (3.104)
\]
The vector \(\vec{V}_{1i} \) is perpendicular to \(\vec{V}_{3i} \) and parallel to the xz-plane,
\[
\vec{V}_{1i} = \hat{i} \times \vec{V}_{3i} \quad (3.105)
\]
\(\vec{V}_{2i} \) is a vector orthogonal to both \(\vec{V}_{3i} \) and \(\vec{V}_{1i} \), therefore,
\[
\vec{V}_{2i} = \vec{V}_{3i} \times \vec{V}_{1i} \quad (3.106)
\]
The unit vectors in the nodal coordinate system are,
\[
\vec{\hat{v}}_{1i} = \frac{\vec{V}_{1i}}{|\vec{V}_{1i}|}, \quad \vec{\hat{v}}_{2i} = \frac{\vec{V}_{2i}}{|\vec{V}_{2i}|}, \quad \vec{\hat{v}}_{3i} = \frac{\vec{V}_{3i}}{|\vec{V}_{3i}|} \quad (3.107)
\]
The nodal coordinate system is used not only to define the direction of the normal at each node but also the two rotations \(\alpha_1, \alpha_2 \) are defined about directions \(\vec{V}_{2i}, \vec{V}_{1i} \) respectively in this coordinate system.

3-Natural Coordinate System \((\xi, \eta, \zeta)\)
The natural coordinate system is used to define shape function \(N_i \). In the natural coordinate system \(\xi, \eta \) are curvilinear coordinates in the mid-surface of the shell element and \(\zeta \) a linear coordinate in the thickness direction. It is to be noted that \(\zeta \) is only approximately perpendicular to the shell mid-surface. In this system the coordinates \(\xi, \eta \) and \(\zeta \) vary between -1 and +1.

4-Local Coordinate System \((x', y', z')\)
This cartesian coordinate system is defined at the sampling points to define local
stresses and strains within the shell element. The direction z' is taken to be perpendicular to the surfaces $\zeta = \text{constant}$. However, it is to be noted that orthogonal axes x', y', z' do not coincide with natural coordinates ξ, η, ζ although x', y', z' are in the ξ, η plane. The vector \vec{V}_3' defines the z' direction and it can be obtained from the cross product of the vectors which are tangential to the ξ and η direction. Thus,

$$\vec{V}_3' = \begin{pmatrix} \frac{\partial x}{\partial \xi} \\ \frac{\partial y}{\partial \xi} \\ \frac{\partial z}{\partial \xi} \end{pmatrix} \times \begin{pmatrix} \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \eta} \\ \frac{\partial z}{\partial \eta} \end{pmatrix}$$

(3.108)

The vector \vec{V}_1' which defines the x' direction can be taken tangent to the ξ-direction at the sampling point,

$$\vec{V}_1' = \begin{pmatrix} \frac{\partial x}{\partial \xi} \\ \frac{\partial y}{\partial \xi} \\ \frac{\partial z}{\partial \xi} \end{pmatrix}$$

(3.109)

Finally the vector \vec{V}_2' which defines the y' direction can be simply obtained by the cross product of \vec{V}_3' and \vec{V}_1'

$$\vec{V}_2' = \vec{V}_3' \times \vec{V}_1'$$

(3.110)

To evaluate stresses and strains in the local cartesian coordinates (x', y', z') we need a further transformation matrix between global and local coordinates. This is obtained by constructing a matrix of unit vectors in the local coordinate system, i.e.

$$[\Theta] = [\hat{V}_{x'}, \hat{V}_{y'}, \hat{V}_{z'}]$$

(3.111)

where $\hat{V}_{x'}, \hat{V}_{y'}, \hat{V}_{z'}$ are unit vectors in the direction of the x', y' and z' axes respectively.
The alternative formula for the direction cosine matrix \([\Theta] \) which relates the transformation between the local and the global coordinate systems can be written as,

\[
[\Theta] =
\begin{bmatrix}
\frac{\partial x}{\partial x'} & \frac{\partial x}{\partial y'} & \frac{\partial x}{\partial z'} \\
\frac{\partial y}{\partial x'} & \frac{\partial y}{\partial y'} & \frac{\partial y}{\partial z'} \\
\frac{\partial z}{\partial x'} & \frac{\partial z}{\partial y'} & \frac{\partial z}{\partial z'}
\end{bmatrix}
\]

(3.112)
Figure 3.6: Coordinate systems for shell element
3.6.3 Geometric Definition of the Shell Element

The geometry of the element is described by a set of pairs of points i_{top}, i_{bottom}, each with given global coordinates. The global coordinates of any point of the shell can be written as,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \sum_{i=1}^{nn} N_i(\xi, \eta) \frac{1 + \zeta}{2} \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{top}} + \sum_{i=1}^{nn} N_i(\xi, \eta) \frac{1 - \zeta}{2} \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{bottom}}$$ (3.113)

Here, the shape function $N_i(\xi, \eta)$ takes a value of unity at the node i and zero at all other nodes and $nn =$ the number of nodes in midsurface of each element. Equation (3.113) can be further simplified as follows:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \sum_{i=1}^{nn} N_i(\xi, \eta) \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{mid}} + \sum_{i=1}^{nn} N_i(\xi, \eta) \frac{\zeta}{2} \vec{V}_{3i}$$ (3.114)

where

$$\begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{mid}} = \frac{1}{2} \left(\begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{top}} + \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{bottom}} \right)$$ (3.115)

and

$$\vec{V}_{3i} = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{top}} - \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}_{\text{bottom}} = \begin{bmatrix} \Delta x_i \\ \Delta y_i \\ \Delta z_i \end{bmatrix}$$ (3.116)

In the case of relatively thin shells, the vector \vec{V}_{3i} may be replaced by a unit vector \hat{v}_{3i}, in the direction perpendicular to the midsurface. Now the last term can be written simply as

$$\sum_{i=1}^{nn} N_i(\xi, \eta) \frac{t_i}{2} \hat{v}_{3i}$$

where t_i is the shell thickness at the node i.

61
3.6.4 Displacement Field for Shell Element

Using the shape functions the displacement field can be obtained as follows ([1], [4], [14], [55] etc.):

\[
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix}
= \sum_{i=1}^{nn} N_i(\xi, \eta) \begin{bmatrix}
 u_i \\
 v_i \\
 w_i
\end{bmatrix}_{\text{mid}} + \sum_{i=1}^{nn} N_i(\xi, \eta) \frac{\xi}{2} \begin{bmatrix}
 \dot{\vartheta}_{2i} \\
 -\dot{\vartheta}_{2i}
\end{bmatrix} \begin{bmatrix}
 \alpha_{2i}
\end{bmatrix}
\]

(3.117)

where \(\dot{\vartheta}_{1i} \) and \(\dot{\vartheta}_{2i} \) are the unit vectors in the directions of \(\vec{V}_{1i}, \vec{V}_{2i} \) respectively, and \(u_i, v_i \) and \(w_i \) are the displacements at the \(i \)th node. Furthermore, \(\alpha_{1i}, \alpha_{2i} \) are the two rotations about direction \(\vec{V}_{2i}, \vec{V}_{1i} \) respectively. Equation (3.117) may be expressed in matrix form, i.e.,

\[
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix}
= \sum_{i=1}^{nn} \begin{bmatrix}
 N_i & 0 & 0 & N_i \xi \frac{\xi}{2} v_{1i}^\xi & -N_i \xi \frac{\xi}{2} v_{2i}^\xi \\
 0 & N_i & 0 & N_i \xi \frac{\xi}{2} v_{1i}^\eta & -N_i \xi \frac{\xi}{2} v_{2i}^\eta \\
 0 & 0 & N_i & N_i \xi \frac{\xi}{2} v_{1i}^z & -N_i \xi \frac{\xi}{2} v_{2i}^z
\end{bmatrix}
\begin{bmatrix}
 u_i \\
 v_i \\
 w_i \\
 \alpha_{1i} \\
 \alpha_{2i}
\end{bmatrix}
\]

(3.118)

where \(v_{1i}^\xi, v_{2i}^\xi \) are \(x \) components of unit vectors \(\dot{\vartheta}_{1i} \) and \(\dot{\vartheta}_{2i} \) respectively.

In a more general form the above equation can be written as

\[
\{u\} = [N]\{\Delta\}
\]

(3.119)

where

\[
[N] = [[N_1], \ldots, [N_k], \ldots, [N_n]]
\]

and

\[
\{\Delta\} = \{\{\Delta_1\}^T, \ldots, \{\{\Delta_i\}^T, \ldots, \{\{\Delta_n\}^T, \ldots, \}
\]

is the vector of the element nodal variables, where

\[
\{\Delta_i\}^T = \{u_i, v_i, w_i, \alpha_{1i}, \alpha_{2i}\}
\]
3.6.5 Definition of Strains

Once the displacement field for the element is known, the local coordinate system is the most convenient system for expressing the stress and strain components in shell structures. Thus, the strain components are given by

\[
\{\varepsilon'\} = \begin{bmatrix}
\varepsilon_{x'x'} \\
\varepsilon_{y'y'} \\
\gamma_{x'y'} \\
\gamma_{y'x'}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial u'_{x'}}{\partial x'} + \frac{\partial u'_{y'}}{\partial y'} \\
\frac{\partial v'_{y'}}{\partial y'} + \frac{\partial v'_{x'}}{\partial x'} \\
\frac{\partial w'_{x'}}{\partial x'} + \frac{\partial w'_{y'}}{\partial y'}
\end{bmatrix}
\]

or

\[
\{\varepsilon'\} = [L']\{u'\}
\]

where \([L']\) is linear operator matrix given by

\[
[L'] = \begin{bmatrix}
\frac{\partial}{\partial x'} & 0 & 0 \\
0 & \frac{\partial}{\partial y'} & 0 \\
\frac{\partial}{\partial y'} & 0 & \frac{\partial}{\partial z'}
\end{bmatrix}
\]

Using the same procedure as followed earlier in obtaining Eq. (3.119) we write,

\[
\{u'\} = \begin{bmatrix}
u' \\
v' \\
w'
\end{bmatrix}
\]

Substitution of Eq.(3.124) in Eq.(3.121) yields,

\[
\{\varepsilon'\} = [B]\{\Delta'\}
\]
where

\[
[B] = [L'][N] \tag{3.126}
\]

The local derivatives can be obtained from the global derivatives by the following operation,

\[
\begin{bmatrix}
\frac{\partial u'}{\partial x'} & \frac{\partial u'}{\partial y'} & \frac{\partial u'}{\partial z'} \\
\frac{\partial v'}{\partial x'} & \frac{\partial v'}{\partial y'} & \frac{\partial v'}{\partial z'} \\
\frac{\partial w'}{\partial x'} & \frac{\partial w'}{\partial y'} & \frac{\partial w'}{\partial z'}
\end{bmatrix}
= [\Theta]^T
\begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{bmatrix}
[\Theta] \tag{3.127}
\]

where \([\Theta]\) is given by Eq.(3.111) or Eq.(3.112).

The global derivatives of the displacements \(u, v,\) and \(w\) are given by,

\[
\begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{bmatrix}
= [\mathcal{J}]^{-1}
\begin{bmatrix}
\frac{\partial u'}{\partial x'} & \frac{\partial u'}{\partial y'} & \frac{\partial u'}{\partial z'} \\
\frac{\partial v'}{\partial x'} & \frac{\partial v'}{\partial y'} & \frac{\partial v'}{\partial z'} \\
\frac{\partial w'}{\partial x'} & \frac{\partial w'}{\partial y'} & \frac{\partial w'}{\partial z'}
\end{bmatrix}
\tag{3.128}
\]

where \([\mathcal{J}]\) is the Jacobian matrix, i.e.,

\[
[\mathcal{J}] =
\begin{bmatrix}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \zeta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} & \frac{\partial y}{\partial \zeta} \\
\frac{\partial z}{\partial \xi} & \frac{\partial z}{\partial \eta} & \frac{\partial z}{\partial \zeta}
\end{bmatrix}
\tag{3.129}
\]

3.6.6 Definition of Stresses

Using the assumption of zero stress in the direction normal to the shell midsurface, \((\sigma_z = 0)\) the stress components in the local system are:

\[
\{\sigma_r\} = \begin{bmatrix}
\sigma_x' \\
\sigma_y' \\
\tau_x'y' \\
\tau_x'z' \\
\tau_y'z'
\end{bmatrix} = [C]\left(\{\epsilon'\} - \{\epsilon'_o\}\right) + \{\sigma'_o\} \tag{3.130}
\]

where \(\{\epsilon'\}\) is defined in Eq.(3.125) , \(\{\epsilon'_o\}\) and \(\{\sigma'_o\}\) are the initial strain vector and initial stress vector, respectively. The elasticity matrix \([C]\) in case of shell element is a \(5 \times 5\) matrix, which is given in section 3.3.
3.6.7 Equations of Motion For Shells

The principle of virtual displacements may be used to formulate general equations of motion for shell structures. According to the principle of virtual work, the total internal virtual work is equal to the total external virtual work; i.e.,

$$\sum_m \int_{\Omega(m)} \{\mathbf{e}\}^T \{\mathbf{f}\} d\mathbf{v} = \sum_m \int_{\Omega(m)} \{\mathbf{\bar{u}}\}^T \{\mathbf{f}^b\} d\mathbf{v} - \sum_m \int_{\Omega(m)} \mu_d \{\mathbf{\bar{u}}\}^T \{\mathbf{\dot{u}}\} d\mathbf{v} - \sum_m \int_{\Omega(m)} \{\mathbf{\bar{u}}\}^T \rho \{\mathbf{\bar{u}}\} d\mathbf{v} \quad (3.131)$$

Substituting for strains and displacements relations

$$\{\mathbf{\sigma}\} = [C]\{\mathbf{e}\}$$

$$\{\mathbf{e}\} = [B]\{\mathbf{\Delta}\}$$

$$\{\mathbf{u}\} = [N]\{\mathbf{\Delta}\}$$

in Eq. (3.131), we obtain

$$\{\mathbf{\Delta}\}^T (\sum_m \int_{\Omega(m)} [B]^T [C][B] d\mathbf{v}) \{\mathbf{\Delta}\} = \{\mathbf{\Delta}\}^T (\sum_m \int_{\Omega(m)} [N]^T \{f^b\} d\mathbf{v} - \sum_m \int_{\Omega(m)} [N]^T \mu_d [N] \{\dot{\mathbf{\Delta}}\} d\mathbf{v} - \sum_m \int_{\Omega(m)} [N]^T \rho [N] \{\mathbf{\Delta}\} d\mathbf{v}) \quad (3.132)$$

This could be written in a convenient form as follows:

$$[M]\{\mathbf{\Delta}\} + [C_d]\{\dot{\mathbf{\Delta}}\} + [K]\{\mathbf{\Delta}\} = \{R_E\} \quad (3.133)$$

65
where the mass matrix \([M]\), the damping matrix \([C_d]\), the stiffness matrix \([K]\) and the force vector \(\{R_B\}\) are defined as

\[
[M] = \sum_m \int_{\Omega(m)} [N]^T \rho[N] \, dv \tag{3.134}
\]

\[
[C_d] = \sum_m \int_{\Omega(m)} [N]^T \mu_d[N] \, dv \tag{3.135}
\]

\[
[K] = \sum_m \int_{\Omega(m)} [B]^T [C][B] \, dv \tag{3.136}
\]

\[
\{R_B\} = \sum_m \int_{\Omega(m)} [N]^T \{f^k\} \, dv \tag{3.137}
\]

Using an isoparametric mapping for element stiffness and mass matrices we can write,

\[
[K]^m = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} [B]^T [C][B] \det[J] d\xi d\eta d\zeta \tag{3.138}
\]

\[
[M]^m = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} [N]^T \rho[N] \det[J] d\xi d\eta d\zeta \tag{3.139}
\]

The individual stiffness and mass matrices for all the finite elements are evaluated numerically using Gaussian quadrature weighted coefficients. i.e,

\[
[K]^m = \sum_{i=1}^{ng} \sum_{j=1}^{ng} \sum_{k=1}^{ng} H_i H_j H_k [B]^T [C][B] \det[J] \tag{3.140}
\]

\[
[M]^m = \sum_{i=1}^{ng} \sum_{j=1}^{ng} \sum_{k=1}^{ng} H_i H_j H_k [N]^T \rho[N] \det[J] \tag{3.141}
\]

in which \(H\) is the weight coefficient of the Gaussian quadrature, \(ng\) is the order of integration; i.e, the number of the Gauss point in the three directions of integration.
It may be noted that the order of integration in the thickness direction is less than the order of integration in the plane ξ, η. If we use the same order of integration in all the three directions it results in an overstiff element [47]. Therefore, a selectively reduced integration scheme has been recommended in the thickness direction [44], [47], [18] and etc. However, the reduced or selective integration techniques are not always successful in overcoming the overstiff or so-called locking phenomenon specially in thin membrane or shells with highly constrained boundaries. In recent years much attention has been focussed on the membrane and shear locking phenomenon [18] and [55].

The total stiffness and mass matrices are

$$[K] = \sum_m [K]^{(m)}$$ \hspace{1cm} (3.142)

$$[M] = \sum_m [M]^{(m)}$$ \hspace{1cm} (3.143)

Similarly, other matrices for the element properties can be evaluated using the procedure outlined above.
3.7 Element Interpolation Functions

3.7.1 Introduction

Depending upon the geometry of a given physical body we have to use engineering judgment in selecting appropriate interpolation functions in finite element analysis. The choice of the type of element is dictated by the geometry of the body and the number of independent special coordinates necessary to describe the system.

The essential procedure in the displacement-based isoparametric finite element formulation is to express the element coordinates and element displacements in the form of interpolations or shape functions using the natural coordinate system of the element. For example in a general three-dimensional element,

\[
\begin{align*}
x &= \sum_{i=1}^{nn} N_i x_i & u &= \sum_{i=1}^{nn} N_i u_i \\
y &= \sum_{i=1}^{nn} N_i y_i & v &= \sum_{i=1}^{nn} N_i v_i \\
z &= \sum_{i=1}^{nn} N_i z_i & w &= \sum_{i=1}^{nn} N_i w_i
\end{align*}
\]

where, \(x, y,\) and \(z\) are the coordinates at any point of the element, and \(x_i, y_i\) and \(z_i\) (\(i = 1, \ldots, nn\)) are the coordinates of the \(nn\) element nodes, the \(u, v, w\) are the displacement at any point of the element and \(u_i, v_i\) and \(w_i\) are the displacements at nodal points. The shape functions \(N_i\) are defined in the natural coordinate system of the element \((\xi, \eta, \zeta)\), which variables \(\xi, \eta\) and \(\zeta\) vary from -1 to +1. The element interpolation functions \(N_i\) is unity at node \(i\) and is zero at all other nodes.

The literature survey on shells and plates analysis shows that much emphasis
has been placed in the development of a versatile, reliable and cost effective bending element for shells and plates. Some of these are given in References [2], [4], [12], [14], [15], [55], [58], etc.

In this research work rectangular type elements have been used for plates and shells analysis. In addition to their efficiency, generality and simplicity, the rectangular element families for plates and shells analysis could also be used as degenerate triangular elements.

3.7.2 Isoparametric Rectangular Family

8-Node Serendipity Elements

To derive the shape functions, for 8-node serendipity elements (i.e., boundary nodes only) as shown in Fig. 3.7, the second degree displacement interpolation functions are assumed

\[N_i(\xi, \eta) = c_1 + c_2 \xi + c_3 \eta + c_4 \xi \eta + c_5 \xi^2 + c_6 \eta^2 + c_7 \xi^2 \eta + c_8 \xi \eta^2 \quad (3.144) \]

Based on the assumed displacement interpolation functions, the quadratic shape functions are ([1], [4],[5], [12], etc.):

For nodes 1 to 4

\[N_i(\xi, \eta) = \frac{1}{4}(1 + \xi \xi)(1 + \eta \eta)(\xi \xi + \eta \eta - 1) \quad (3.145) \]

For nodes 5, and 7

\[N_i(\xi, \eta) = \frac{1}{2}(1 - \xi^2)(1 + \eta \eta) \quad (3.146) \]

69
For nodes 6 and 8

\[N_i(\xi, \eta) = \frac{1}{2}(1 + \xi_i \xi)(1 - \eta^2) \]

(3.147)

where \((\xi_i, \eta_i)\) are the coordinates of node \(i\). and the values of \(\xi_i\) and \(\eta_i\) are listed in Table 3.1.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_i)</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(\eta_i)</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3.7: 8-node isoparametric element: (a) parent element (b) actual element
9-Node Quadratic Elements

The foregoing element, and any other isoparametric elements having boundary nodes only, are called "Serendipity" elements. Addition of an internal node, as shown in Fig. 3.8 makes the element a "Lagrange" quadratic element. The formulations of 9-node Lagrange quadratic element shape functions are given in references [1], [2], [3], [4], [5], [14]. The quadratic 9-node Lagrange element has been used for shell analysis in this study. The shape functions are written as

\[N_i = \{ \xi \xi_i (1 + \xi_i) / 2 + (1 - \xi^2)(1 - \xi_i^2) \} \{ \eta \eta_i (1 + \eta \eta_i) / 2 + (1 - \eta^2)(1 - \eta_i^2) \} \]

(3.148)

or in the expanded form,

\[
N_1 = \frac{1}{4} \xi \eta (1 - \xi)(1 - \eta) \\
N_2 = -\frac{1}{2} \eta (1 - \xi^2)(1 - \eta) \\
N_3 = -\frac{1}{4} \xi \eta (1 + \xi)(1 - \eta) \\
N_4 = \frac{1}{2} \xi (1 + \xi)(1 - \eta^2) \\
N_5 = \frac{1}{4} \xi \eta (1 + \xi)(1 + \eta) \\
N_6 = \frac{1}{2} \eta (1 - \xi^2)(1 + \eta) \\
N_7 = -\frac{1}{4} \xi \eta (1 - \xi)(1 + \eta) \\
N_8 = -\frac{1}{2} \xi (1 - \xi)(1 - \eta^2) \\
N_9 = (1 - \xi^2)(1 - \eta^2) \\
\]

(3.149)
Figure 3.8: 9-node isoparametric element: (a) parent element (b) actual element

Variable-number-nodes from 4 to 9

The establishment of an appropriate finite element model for an actual practical problem may require some mesh grading. i.e., a finer or different finite element mesh in certain areas than in others. The variable-number-nodes element enables us the mesh grading in such transition zones as shown in Fig. 3.9. More details may be found in several references [1],[2],[10],[12],[14], etc.
Figure 3.9: 4-node to 9-node element transition region

Table 3.2: Interpolation Functions of 4 to 9 Variable-Number-Nodes in Two-Dimensional Element

<table>
<thead>
<tr>
<th>N_i</th>
<th>$\frac{1}{4}(1 - \xi)(1 - \eta)$</th>
<th>$-\frac{1}{2}N_5$</th>
<th>$-\frac{1}{2}N_8$</th>
<th>$-\frac{1}{4}N_9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td>$\frac{1}{4}(1 + \xi)(1 - \eta)$</td>
<td>$-\frac{1}{2}N_5$</td>
<td>$-\frac{1}{2}N_6$</td>
<td>$-\frac{1}{4}N_9$</td>
</tr>
<tr>
<td>N_2</td>
<td>$\frac{1}{4}(1 + \xi)(1 + \eta)$</td>
<td>$-\frac{1}{2}N_6$</td>
<td>$-\frac{1}{2}N_7$</td>
<td>$-\frac{1}{4}N_9$</td>
</tr>
<tr>
<td>N_3</td>
<td>$\frac{1}{4}(1 - \xi)(1 + \eta)$</td>
<td>$-\frac{1}{2}N_7$</td>
<td>$-\frac{1}{2}N_8$</td>
<td>$-\frac{1}{4}N_9$</td>
</tr>
<tr>
<td>N_4</td>
<td>$\frac{1}{4}(1 - \xi^2)(1 - \eta)$</td>
<td>[\text{include only if node i is defined}]</td>
<td>[i = 5]</td>
<td>[i = 6]</td>
</tr>
<tr>
<td>N_5</td>
<td>$\frac{1}{4}(1 - \xi^2)(1 - \eta)$</td>
<td>[\text{include only if node i is defined}]</td>
<td>[i = 5]</td>
<td>[i = 6]</td>
</tr>
<tr>
<td>N_6</td>
<td>$\frac{1}{4}(1 + \xi)(1 - \eta^2)$</td>
<td>[\text{include only if node i is defined}]</td>
<td>[i = 5]</td>
<td>[i = 6]</td>
</tr>
<tr>
<td>N_7</td>
<td>$\frac{1}{4}(1 - \xi^2)(1 + \eta)$</td>
<td>[\text{include only if node i is defined}]</td>
<td>[i = 5]</td>
<td>[i = 6]</td>
</tr>
<tr>
<td>N_8</td>
<td>$\frac{1}{4}(1 - \xi^2)(1 - \eta^2)$</td>
<td>[\text{include only if node i is defined}]</td>
<td>[i = 5]</td>
<td>[i = 6]</td>
</tr>
<tr>
<td>N_9</td>
<td>$\frac{1}{4}(1 - \xi^2)(1 - \eta^2)$</td>
<td>[\text{include only if node i is defined}]</td>
<td>[i = 5]</td>
<td>[i = 6]</td>
</tr>
</tbody>
</table>

73
3.8 Locking Phenomenon in Plates and Shells

For thin shells, when exact numerical integration is used with Mindlin based finite elements, very disappointing results are obtained, especially if the boundaries are highly constrained. This problem is referred to in the literature as the locking phenomenon and has been investigated extensively by a number of researchers [35], [42], [55] and [62]. There are usually two types of locking behavior, namely; (i) shear locking and (ii) membrane locking. Both shear and membrane locking occur when extremely thin shells are considered. The membrane stiffness and the shear stiffness both are usually of the same order of magnitude. However, membrane locking is a somewhat different phenomenon than shear locking. To avoid locking behavior several alternative techniques have been suggested such as: reduced integration method, selective integration method, and the assumed displacement method.

- Reduced integration method

This method, although successful in some cases, [47] [50], produces other problems of rank deficiency of the stiffness matrix [51],[126].

- Selective Integration Method

Selective integration procedure [127], in which a reduced integration scheme is followed, is used to obtain stiffness matrix associated with the shear strain energy. Although, a lot of research has been done to correct the overstiffness created by the selective integration techniques [47], [51] and [44], these techniques are not always successful in overcoming locking behavior for the cases where highly constrained boundaries and coarse meshes exist. On the other hand, in case of lightly
constrained boundaries, element mechanisms may form. These element mechanisms may spread from element to element and cause either rank deficiency in the stiffness matrix or the solution obtained may be polluted by a nearmechanism. In addition, the type of selective-reduced integration suggested in Reference [44] can only be used, when the material properties of the shell do not vary through the plate/shell thickness or vary symmetrically about the plate/shell mid-surface. Otherwise, the coupling terms between the membrane and the bending stiffness will not disappear and results in a stiffness matrix which cannot be split into two parts in order to use selective integration.

- Assumed Strains Method.

The assumed strains method has been preferred by many authors [53],[117],[125].

In this study an enhanced interpolation of the membrane strains is employed in the local coordinate system \((x', y', z')\) to avoid membrane locking, and an enhanced interpolation of the transverse shear strains in the natural coordinate \((\xi, \eta, \zeta)\) is used to overcome the shear locking behavior in shell elements. These two techniques [55],[125] have been reviewed in the following:

1-Elimination of shear locking

To avoid shear locking in the 9-node degenerated shell element, Huang and Hinton [117] for the shear strains fields suggested the polynomial terms of the following form in the natural coordinate system:

\[
\bar{\gamma}_{\xi\xi} = b_1 + b_2 \xi + b_3 \eta + b_4 \xi \eta + b_5 \eta^2 + b_6 \xi \eta^2. \tag{3.150}
\]

\[
\bar{\gamma}_{\eta\zeta} = c_1 + c_2 \xi + c_3 \eta + c_4 \xi \eta + c_5 \xi^2 + c_6 \eta \xi^2 \tag{3.151}
\]
The above strain fields are chosen as

\[\tilde{\gamma}_{\xi \xi} = \sum_{i=1}^{3} \sum_{j=1}^{2} L_i(\xi) H_i(\eta) \tilde{\gamma}_{ij}^{ij} \]

(3.152)

\[\tilde{\gamma}_{\eta \xi} = \sum_{i=1}^{3} \sum_{j=1}^{2} H_i(\xi) L_j(\eta) \tilde{\gamma}_{ij}^{ij} \]

(3.153)

where

\[H_1(z) = z(z/b + 1)/2b \quad H_2(z) = 1 - (z/b)^2 \quad H_3(z) = z(b - 1)/2b \]

\[L_1(z) = (z/a + 1)/2 \quad L_2(z) = (1 - z/a)/2 \]

In the above equations, \(a = 3^{-0.5} \), \(b = 1 \) and the locations of \(i \) and \(j \) are shown in Fig. 3.10. and the terms \(\tilde{\gamma}_{ij}^{ij} \) and \(\tilde{\gamma}_{ij}^{ij} \) are the transverse shear strain evaluated from the displacement field. The six unknown parameters for \(\tilde{\gamma}_{\xi \xi} \) are the values \(\tilde{\gamma}_{ij}^{ij}(i = 1 - 3, j = 1, 2) \) at the two Gauss point locations (\(\xi = a \)) on the three lines \(\eta = b, \eta = 0 \) and \(\eta = -b \). Thus \(\tilde{\gamma}_{\xi \xi} \) is linear in \(\xi \) and quadratic in \(\eta \). Similarly the six unknown parameters defining \(\tilde{\gamma}_{\eta \xi} \) are the values \(\tilde{\gamma}_{ij}^{ij}(i = 1 - 3, j = 1, 2) \) on the two Gauss point locations (\(\eta = a, \eta = -a \)) on the three lines \(\xi = b, \xi = 0 \) and \(\xi = -b \). Thus \(\tilde{\gamma}_{\eta \xi} \) is linear in \(\eta \) and quadratic in \(\xi \).

2. Enhanced interpolation of the membrane strains

In shells, although the stiffness associated with the membrane strain energy is important, especially when the shell thickness becomes very small, it should not dominate the total stiffness. The membrane strains can only be separated from the bending strains in the local cartesian coordinate system. Therefore, using the membrane strain in this coordinate system can help to eliminate locking behavior.
Figure 3.10: Interpolation points \((i,j)\)

In the local coordinate system the following interpolation is used

\[
\varepsilon_{mz'z'} = \sum_{i=1}^{3} \sum_{j=1}^{2} L_j(\xi) H_i(\eta) \varepsilon_{mz'z'}^{ij} \tag{3.154}
\]

\[
\frac{1}{2} \varepsilon_{mz'z'} = \sum_{i=1}^{3} \sum_{j=1}^{2} L_j(\xi) H_i(\eta) \varepsilon_{mz'z'}^{ij} / 2 \tag{3.155}
\]

\[
\varepsilon_{my'y'} = \sum_{i=1}^{3} \sum_{j=1}^{2} H_i(\xi) L_j(\eta) \varepsilon_{my'y'}^{ij} \tag{3.156}
\]

\[
\frac{1}{2} \varepsilon_{mz'z'} = \sum_{i=1}^{3} \sum_{j=1}^{2} H_i(\xi) L_j(\eta) \varepsilon_{mz'z'}^{ij} / 2 \tag{3.157}
\]

Finally, the in-plane shear strain is quadratic in both directions, that is

\[
\varepsilon_{mz'y'} = \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{2} L_j(\xi) H_i(\eta) \varepsilon_{mz'y'}^{ij} + \frac{1}{2} \sum_{i=1}^{3} \sum_{k=1}^{2} H_i(\xi) L_k(\eta) \varepsilon_{mz'y'}^{ik} \tag{3.158}
\]
where $H_i(z)$ and $L_j(z)$ have the same meaning as in shear locking formula and $a = 3^{-0.5}$ and $b = 1.$
Part I

PLATES
Chapter 4

NUMERICAL RESULTS FOR PLATES

4.1 Computation Procedure

In this chapter, vibration of plates with partial supports along a boundary are discussed. The present formulation as discussed earlier in detail, is based on the Q-8(eight nodes quadrilateral) plate bending element with three DOF(degree of freedom) at each node.

Unless otherwise indicated, the symbols F, S, C and P generally denote free, simply, clamped and partially supported wedges, respectively. These symbols for a triangular plate has been shown in Figure 4.1. The figure also shows a typical finite element grid for a sample problem.

The computations in this investigation are carried out by varying two essential parameters. These are the aspect ratio b/a and the unsupported length c/a as
shown in Figure 4.2. In order to demonstrate the accuracy of the analysis, the results for several degenerate case of triangular plates with full support (c/a = 0), are presented and compared with previously published results. Results are then given for partially supported right triangular cantilever plates.

For generating a data base, the non-dimensional frequency parameter used in tables is defined as:

$$\Omega = \omega^2 \phi^2 \left(\frac{\rho c}{D_e} \right)^{0.5}$$

where

$\phi = \text{aspect ratio (b/a)}$

$\Omega = \text{non-dimensional frequency parameter}$

$\omega = \text{frequency (rad./sec.)}$

$t_e = \text{plate thickness}$

$\rho_e = \text{effective mass density}$

$D_e = \text{effective plate rigidity}$

Trial computations for several alternative grid forms and number of elements are conducted and it is concluded that good convergence is achieved with 55 Q-8 elements. The data presented in the tables is given for the first four frequencies. Computations for each plate geometry of plate are carried out in three parts. The first part deals with isotropic plates, the second with orthotropic plates, and the third with composite plates such as, sandwich, laminate or other anisotropic plates.
Figure 4.1: Right triangular C-F-F plate.
Figure 4.2: Right triangular plate with detached support:
(r) detached length from right angle end
(l) detached length from acute angle end
(r-l) detached length from both ends.
4.2 Isotropic Plate

4.2.1 Triangular Isotropic Plates

In computations for triangular isotropic plates the length a, which is along the support, is taken as 10.0 in. (25.4 cm) and the thickness $t=0.063$ in. (0.16 cm).

The material is assumed to be aluminium and for all these calculations Poisson's ratio is taken $\nu = 0.3$. The material properties are given in a tabular form below (Table 4.1). Computations have been carried out for the non-dimensionalized frequency with applicability for any kind of isotropic plate.

For the isotropic case the plate rigidity D is defined as:

$$D = \frac{Et^3}{12(1 - \nu^2)}$$

<table>
<thead>
<tr>
<th>Material property</th>
<th>Assumed value</th>
<th>System of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>1.0 (arbitrary)</td>
<td>$lb.sec^2/in^4$</td>
</tr>
<tr>
<td>E_{11}/E_{22}</td>
<td>1.0 (arbitrary)</td>
<td>psi/psi</td>
</tr>
<tr>
<td>E_{22}/G_{12}</td>
<td>2.6</td>
<td>psi/psi</td>
</tr>
</tbody>
</table>

Table 4.1: Material Properties for Isotropic Plate
4.2.2 Fully Supported Triangular Isotropic Plates

Table 4.2 shows the comparison of the lowest four frequency parameters for cantilever plates with two aspect ratios, b/a = 1 and 2. For both aspect ratios, it can be seen that the present results are in close agreement with other published results. This particular case has been essentially generated to provide a check on the computer program, convergence etc.

Table 4.2: Comparison of Frequency Parameters $\Omega = \omega a^2 \phi^2 (\frac{a}{h})^{.5}$ for C-F-F Triangular Plate ($\nu = 0.3$)

<table>
<thead>
<tr>
<th>b/a = 1</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>6.162</td>
<td>23.445</td>
<td>32.625</td>
<td>56.203</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>6.164</td>
<td>23.457</td>
<td>32.664</td>
<td>56.149</td>
</tr>
<tr>
<td>Mirza (25 elements)[63]</td>
<td>6.159</td>
<td>23.061</td>
<td>33.289</td>
<td>55.915</td>
</tr>
<tr>
<td>Christensen [59]</td>
<td>6.160</td>
<td>23.700</td>
<td>32.540</td>
<td>55.010</td>
</tr>
<tr>
<td>Bhat [41]</td>
<td>6.173</td>
<td>23.477</td>
<td>32.716</td>
<td>56.405</td>
</tr>
<tr>
<td>Experiment [71]</td>
<td>5.930</td>
<td>23.400</td>
<td>32.700</td>
<td>55.900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b/a = 2</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>6.641</td>
<td>28.552</td>
<td>49.667</td>
<td>70.036</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>6.622</td>
<td>28.435</td>
<td>49.398</td>
<td>69.651</td>
</tr>
<tr>
<td>F.E.M.(25 elements)[43]</td>
<td>7.054</td>
<td>29.033</td>
<td>50.534</td>
<td>70.417</td>
</tr>
<tr>
<td>F.E.M.(100 elements)[43]</td>
<td>6.608</td>
<td>28.185</td>
<td>49.500</td>
<td>69.070</td>
</tr>
<tr>
<td>Mirza (25 elements)[63]</td>
<td>6.696</td>
<td>29.499</td>
<td>51.011</td>
<td>77.759</td>
</tr>
</tbody>
</table>
4.2.3 Partially Supported Cantilever Triangular Plates

The frequency parameters for P-F-F, right triangular plates with aspect ratios \((b/a)\) 1.0, 1.5 and 2.0 are presented in Tables 4.3 to 4.5 for several values of the ratio \(c/a\) which indicates the extent of detached support. In each tables, table \(t\) contains frequency parameters for detached length from the right angle end, the table \(l\) for detached length from acute angle end and \((t-l)\) for detached length from both ends. Furthermore, the symbols \(c-r\), \(c-l\) and \(c-r-l\) denote the unsupported boundary from right angle end, the acute angle end and both ends.

Figures 4.3 to 4.5 show variation of the frequency parameter with \(c/a\) for the lowest four modes for a triangular P-F-F plate with aspect ratios 1. , 1.5 and 2.0. Modal shapes corresponding to these frequencies have been given in Fig. A.1 to A.18.
Table 4.3: Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{c}{D})^{0.8}$ for P-F-F Triangular Isotropic Plate ($i_{pl}\phi1$)

$a = 10.0\text{in}, \phi = b/a = 1.0, a/t = 158.73.$	Detached length from right angle end			
c/a	Ω_1	Ω_2	Ω_3	Ω_4
0.00	6.1628	23.4524	32.6357	56.2332
0.20	5.7118	23.2154	27.2022	55.3499
0.40	4.5470	16.3487	22.5726	43.9650
0.60	3.2212	10.0867	20.7558	36.9024
0.80	2.0280	6.8295	17.3768	31.0417
1.00	0.7964	3.3326	11.6859	25.3488

l	Detached length from acute angle end			
c/a	Ω_1	Ω_2	Ω_3	Ω_4
0.00	6.1628	23.4524	32.6357	56.2332
0.20	6.1570	23.2970	32.5590	55.4390
0.40	6.0590	21.2530	29.2990	33.2260
0.60	5.6280	12.0340	21.1320	32.3380
0.80	4.5680	06.6020	19.5690	32.1770
1.00	2.0380	03.2980	18.7700	26.9160

$r-l$	Detached length from both ends			
c/a	Ω_1	Ω_2	Ω_3	Ω_4
0.00	6.1628	23.4524	32.6357	56.2332
0.20	6.0570	23.3837	31.2409	55.9632
0.40	5.7062	23.0503	27.1612	54.6209
0.60	5.1539	20.7998	22.8810	48.1147
0.80	4.4312	15.4641	20.9957	30.1222
1.00	3.0609	8.6740	17.5473	21.7838
Table 4.4: Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{b}{a})^{0.5}$ for P-F-F Triangular Isotropic Plate ($ipl\phi 1.5$)

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from right angle end</th>
<th>Detached length from acute angle end</th>
<th>Detached length from both ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>Ω_1</td>
<td>Ω_2</td>
<td>Ω_3</td>
</tr>
<tr>
<td>0.00</td>
<td>6.4697</td>
<td>27.2588</td>
<td>40.1730</td>
</tr>
<tr>
<td>0.20</td>
<td>6.2252</td>
<td>26.8185</td>
<td>36.8189</td>
</tr>
<tr>
<td>0.40</td>
<td>5.4601</td>
<td>23.6994</td>
<td>29.5514</td>
</tr>
<tr>
<td>0.80</td>
<td>3.1652</td>
<td>10.7873</td>
<td>24.3870</td>
</tr>
<tr>
<td>1.00</td>
<td>1.4074</td>
<td>4.8806</td>
<td>19.5185</td>
</tr>
</tbody>
</table>

$a = 10.0in, \phi = b/a = 1.5, a/t = 158.73.$
Table 4.5: Non-dimensional Frequency $\Omega = \frac{\omega^2}{\pi^2} \left(\frac{t}{h} \right)^{0.5}$ for P-F-F Triangular Isotropic Plate ($ipl\phi2$)

$a = 10.0\text{in}, \phi = b/a = 2.0, a/t = 158.73.\$

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from right angle end</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>6.6418</td>
<td>28.5620</td>
<td>49.7287</td>
<td>70.0671</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>6.4879</td>
<td>28.0971</td>
<td>47.3072</td>
<td>68.5476</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>5.9446</td>
<td>26.1350</td>
<td>39.8763</td>
<td>64.3432</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>5.1111</td>
<td>21.3438</td>
<td>32.2500</td>
<td>58.6410</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>3.9643</td>
<td>15.0798</td>
<td>28.4440</td>
<td>52.0667</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.9309</td>
<td>6.6809</td>
<td>23.3974</td>
<td>41.5462</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from acute angle end</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>6.6418</td>
<td>28.5620</td>
<td>49.7287</td>
<td>70.0671</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>6.6130</td>
<td>28.3680</td>
<td>48.9730</td>
<td>69.7180</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>6.4540</td>
<td>27.3860</td>
<td>45.1130</td>
<td>68.2370</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>6.0420</td>
<td>24.2530</td>
<td>35.9530</td>
<td>59.7100</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>5.2180</td>
<td>17.0680</td>
<td>29.5460</td>
<td>54.4920</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>3.2280</td>
<td>8.9380</td>
<td>25.9940</td>
<td>50.2350</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from both ends</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>6.6418</td>
<td>28.5620</td>
<td>49.7287</td>
<td>70.0671</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>6.5957</td>
<td>28.3763</td>
<td>48.8642</td>
<td>69.5502</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>6.4577</td>
<td>27.9303</td>
<td>46.6369</td>
<td>68.1738</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>6.1689</td>
<td>26.9803</td>
<td>42.0038</td>
<td>65.6086</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>5.6852</td>
<td>25.5975</td>
<td>34.7646</td>
<td>62.0520</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>4.5578</td>
<td>21.6774</td>
<td>23.7242</td>
<td>56.2654</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.3: Variation of the non-dimensional frequency with c/a, for P-F-F isotropic plate. $a = 10\text{ in}$, $b/a = 1.0$, $a/t = 158.73$.
Figure 4.4: Variation of the non-dimensional frequency with c/a, for P-F-F isotropic plate. $a = 10.\text{in}$, $b/a = 1.5$, $a/t = 158.73$.

LEGEND

- Δ = Mode 1
- $+$ = Mode 2
- \times = Mode 3
- \Diamond = Mode 4
Figure 4.5: Variation of the non-dimensional frequency with c/a, for P-F-F isotropic plate. $a = 10.0$, $b/a = 2.0$, $a/t = 158.73$.

LEGEND
- Δ = Mode 1
- $+$ = Mode 2
- \times = Mode 3
- \circ = Mode 4
4.3 Orthotropic Plates

4.3.1 Triangular Orthotropic Plates

It should be noted that the geometry of the plate has been kept the same as in the case of isotropic triangular plate. This will provide us with an additional parameter for comparison of results. Carbon-Epoxy has been selected as a sample material for the plate whose material properties are summarized in Table 4.6. The selection of this material was also guided by the fact that some of the results available for fully clamped plates use these material properties.

The non-dimensional frequency is given by

\[
\Omega = \omega a^2 \phi^2 \left(\frac{E_\tau^2 e}{D_e} \right)^{0.5}
\]

(4.1)

in which

\[
D_e = \nu_{12} D_{22} + 2D_{66}
\]

(4.2)

where

\[
D_{22} = \frac{E_{22} e^3}{12(1 - \nu_{12} \nu_{21})}
\]

\[
D_{66} = G_{12} \frac{t^3}{12}
\]

and other parameters are defined as before.
Table 4.6: Material Properties for Orthotropic Plates (Carbon-Epoxy).

<table>
<thead>
<tr>
<th>Material property</th>
<th>Assumed value</th>
<th>System of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_{12}</td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>259.2E-6</td>
<td>lb.sec2/in4</td>
</tr>
<tr>
<td>E_{11}/E_{22}</td>
<td>16.5</td>
<td>psi/psi</td>
</tr>
<tr>
<td>E_{22}/G_{12}</td>
<td>2.628</td>
<td>psi/psi</td>
</tr>
</tbody>
</table>

4.3.2 Fully Supported Triangular Orthotropic Plates

Table 4.7 gives the first four frequency parameters Ω for cantilever orthotropic plates with aspect ratios $b/a = 1, 1.5, 2$. It may be seen that the present results are in close agreement with results from the other sources. The available results in the literature are only for fully supported plates.

Table 4.7: Comparison of Frequency Parameters $\Omega = \omega a^2 \phi^2 (\frac{t}{D_1})^{0.5}$ for C-F-F Orthotropic Triangular Plate (Carbon-Epoxy).

<table>
<thead>
<tr>
<th>Source of results</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi = b/a = 1.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>19.42</td>
<td>46.75</td>
<td>96.58</td>
<td>112.06</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>19.57</td>
<td>47.00</td>
<td>97.12</td>
<td>113.10</td>
</tr>
<tr>
<td>$\phi = b/a = 1.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>20.81</td>
<td>60.35</td>
<td>109.37</td>
<td>155.61</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>20.97</td>
<td>60.67</td>
<td>110.30</td>
<td>156.20</td>
</tr>
<tr>
<td>$\phi = b/a = 2.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>21.91</td>
<td>71.97</td>
<td>116.30</td>
<td>190.66</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>22.06</td>
<td>72.34</td>
<td>117.10</td>
<td>191.70</td>
</tr>
</tbody>
</table>
4.3.3 Partially Supported Triangular Orthotropic Plates

Frequency parameters for several cases of partially supported orthotropic plate with the three aspect ratios \(b/a = 1, 1.5, 2.0 \) have been studied and the results are given in Tables 4.8 to 4.10.

Figures 4.6 to 4.8 show variation of frequency parameter with \(c/a \). As it has been mentioned earlier the symbols (r), (l) and (r-l) in all figures and tables denote the detached length measured from the right angle end, the acute angle end and both ends respectively.
Table 4.8: Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{E_t t}{D_x})^{0.5}$ for P-F-F Triangular Orthotropic Plate (Carbon-Epoxy)(opl1).

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from right angle end</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.00</td>
<td>19.4168</td>
</tr>
<tr>
<td>0.20</td>
<td>13.2409</td>
</tr>
<tr>
<td>0.40</td>
<td>7.3137</td>
</tr>
<tr>
<td>0.60</td>
<td>4.0629</td>
</tr>
<tr>
<td>0.80</td>
<td>2.2285</td>
</tr>
<tr>
<td>1.00</td>
<td>0.8087</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>l</th>
<th>Detached length from acute angle end</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.00</td>
<td>19.4166</td>
</tr>
<tr>
<td>0.20</td>
<td>19.4166</td>
</tr>
<tr>
<td>0.40</td>
<td>19.3938</td>
</tr>
<tr>
<td>0.60</td>
<td>14.0900</td>
</tr>
<tr>
<td>0.80</td>
<td>7.2529</td>
</tr>
<tr>
<td>1.00</td>
<td>2.3492</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r-1$</th>
<th>Detached length from both ends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.00</td>
<td>19.4168</td>
</tr>
<tr>
<td>0.20</td>
<td>17.2119</td>
</tr>
<tr>
<td>0.40</td>
<td>13.2408</td>
</tr>
<tr>
<td>0.60</td>
<td>9.8443</td>
</tr>
<tr>
<td>0.80</td>
<td>7.1713</td>
</tr>
<tr>
<td>1.00</td>
<td>4.2575</td>
</tr>
</tbody>
</table>
Table 4.9: Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (a t)^{0.5}$ for P-F-F Triangular Orthotropic Plate (Carbon-Epoxy)($opl\phi 1.5$).

\[
\begin{array}{|c|c|c|c|c|}
\hline
r & \text{Detached length from right angle end} & & & \\
& c/a & \Omega_1 & \Omega_2 & \Omega_3 & \Omega_4 \\
\hline
0.00 & 20.8147 & 60.3502 & 109.3689 & 155.6143 \\
0.20 & 16.5139 & 60.0879 & 84.1952 & 151.3186 \\
0.40 & 10.6971 & 41.8955 & 57.6633 & 119.2280 \\
0.60 & 6.6962 & 23.8176 & 49.4013 & 104.1998 \\
0.80 & 3.9335 & 15.5281 & 37.6875 & 75.6553 \\
1.00 & 1.4847 & 7.4059 & 22.9287 & 52.8331 \\
\hline
l & \text{Detached length from acute angle end} & & & \\
& c/a & \Omega_1 & \Omega_2 & \Omega_3 & \Omega_4 \\
\hline
0.00 & 20.8147 & 60.3502 & 109.3689 & 155.6143 \\
0.20 & 20.8114 & 60.2844 & 109.2487 & 154.7216 \\
0.40 & 20.7928 & 53.1234 & 67.9579 & 104.8013 \\
0.60 & 20.3348 & 26.4066 & 43.6142 & 107.2887 \\
0.80 & 12.7722 & 17.8044 & 35.7407 & 89.9323 \\
1.00 & 4.1082 & 9.5290 & 34.9774 & 53.6966 \\
\hline
r-l & \text{Detached length from both ends} & & & \\
& c/a & \Omega_1 & \Omega_2 & \Omega_3 & \Omega_4 \\
\hline
0.00 & 20.8147 & 60.3502 & 109.3689 & 155.6143 \\
0.20 & 19.5075 & 60.1797 & 101.1728 & 154.4506 \\
0.40 & 16.5068 & 60.0190 & 84.1620 & 150.4070 \\
0.60 & 13.3200 & 58.1219 & 60.3948 & 115.6511 \\
0.80 & 10.4820 & 40.7413 & 51.4836 & 67.6608 \\
1.00 & 6.8818 & 20.7422 & 37.5563 & 46.8818 \\
\hline
\end{array}
\]
Table 4.10: Non-dimensional Frequency $\Omega = \omega a^2 \varphi^2 (\frac{\rho a^4}{E I})^{0.5}$ for P-F-F Triangular Orthotropic Plate (Carbon-Epoxy)($\rho\nu\varphi^2$).

\[a = 10.0, \phi = b/a = 2.0, a/t = 158.7301. \]

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from right angle end</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>21.9065 71.9703 116.3016 190.6557</td>
</tr>
<tr>
<td>0.20</td>
<td>18.7176 71.8814 97.8486 187.5495</td>
</tr>
<tr>
<td>0.40</td>
<td>13.3036 60.3282 71.3930 136.4095</td>
</tr>
<tr>
<td>0.60</td>
<td>8.9837 35.2803 64.4647 120.8816</td>
</tr>
<tr>
<td>0.80</td>
<td>5.6203 22.6344 53.4503 103.1486</td>
</tr>
<tr>
<td>1.00</td>
<td>2.2265 10.5616 34.3657 74.2442</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c/a</th>
<th>Detached length from acute angle end</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>21.9065 71.9703 116.3016 190.6557</td>
</tr>
<tr>
<td>0.20</td>
<td>21.9031 71.4891 115.8162 189.3602</td>
</tr>
<tr>
<td>0.40</td>
<td>21.8660 61.5035 103.5855 120.0224</td>
</tr>
<tr>
<td>0.60</td>
<td>21.0694 37.5656 61.5263 110.6902</td>
</tr>
<tr>
<td>0.80</td>
<td>15.9148 22.8410 49.1980 109.5945</td>
</tr>
<tr>
<td>1.00</td>
<td>5.7332 12.5510 47.0872 78.8593</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r^{-1}</th>
<th>Detached length from both ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>Ω_1 Ω_2 Ω_3 Ω_4</td>
</tr>
<tr>
<td>0.00</td>
<td>21.9065 71.9703 116.3016 190.6557</td>
</tr>
<tr>
<td>0.20</td>
<td>21.0464 71.9201 110.2763 190.0183</td>
</tr>
<tr>
<td>0.40</td>
<td>18.7056 71.4067 97.4629 186.2224</td>
</tr>
<tr>
<td>0.60</td>
<td>15.8665 68.2701 79.3683 157.9042</td>
</tr>
<tr>
<td>0.80</td>
<td>13.1066 56.8915 61.5892 110.0057</td>
</tr>
<tr>
<td>1.00</td>
<td>9.1143 29.1851 48.6905 76.9514</td>
</tr>
</tbody>
</table>
Figure 4.6: Variation of the non-dimensional frequency with c/a, for P-F-F triangular orthotropic plate (carbon-epoxy).

$a = 10\text{ in}$, $b/a = 1.0$, $a/t = 158.73$.

LEGEND

- \triangle = Mode 1
- $+$ = Mode 2
- \times = Mode 3
- \Diamond = Mode 4
Figure 4.7: Variation of the non-dimensional frequency with c/a, for P-F-F triangular orthotropic plate (carbon-epoxy).

$a = 10\, \text{in}, \, b/a = 1.5, \, a/t = 158.73$.
Figure 4.8: Variation of the non-dimensional frequency with c/a, for P-F-F triangular orthotropic plate (carbon-epoxy).

$a = 10.\text{in}, \frac{b}{a} = 2.0, \frac{a}{t} = 158.73.$
4.4 Composite Plate

4.4.1 Triangular Sandwich Plates

The numerical data in this section has been generated for three layered triangular sandwich plates. In order to compare the results for sandwich plate with other published results in literature, an orthotropic sandwich triangular plate has been taken as a special case where the thickness of the core has been assumed to be zero. This produces the results for a degenerate case of two layers of the same material for which the results are available. Computations have been carried out for the fully supported and then for the partially supported plate. The length \(a \), is taken the same as in case one (10.0 in). The core and face materials properties are given in Table 4.11.

Table 4.11: Material Properties for Sandwich Plates.

| face | Carbon-Epoxy | | |
|------|--------------|--------------|
| Material property | Assumed value | System of units |
| \(\nu_{12} \) | 0.315 | |
| \(\theta \) | 259.2E-6 | lb.sec\(^2\)/in\(^4\) |
| \(E_{11} \) | 3.3E7 | psi |
| \(E_{11}/E_{22} \) | 16.5 | psi/psi |
| \(E_{22}/G_{12} \) | 2.628 | psi/psi |

<table>
<thead>
<tr>
<th>core</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material property</td>
<td>Assumed value</td>
<td>System of units</td>
</tr>
<tr>
<td>(\theta)</td>
<td>8.9861E-6</td>
<td>lb.sec(^2)/in(^4)</td>
</tr>
<tr>
<td>(E_{11})</td>
<td>60E3</td>
<td>psi</td>
</tr>
<tr>
<td>(E_{11}/E_{22})</td>
<td>1</td>
<td>psi/psi</td>
</tr>
<tr>
<td>(E_{22}/G_{23})</td>
<td>10.0000</td>
<td>psi/psi</td>
</tr>
<tr>
<td>(E_{22}/G_{13})</td>
<td>4.6154</td>
<td>psi/psi</td>
</tr>
</tbody>
</table>
4.4.2 Fully Supported Triangular Sandwich Plates

For this case also as for the two other cases i.e., isotropic and orthotropic plates, the values of various parameters have been conendred. The obvious change is the addition of the parameter defining the geometry of the core. Figure 4.9 shows a typical sandwich triangular plate with a honeycomb core.

For comparison of results a degenerate case of two layered plate \((t_c = 0)\) has been conendred. Table 4.12 gives the first four frequency parameters for this case (core thickness=0) of a triangular sandwich plate with aspect ratios \(b/a = 1, 1.5, 2\). It was observed that the results were exactly the same as given in Table 4.7 which are for one layer orthotropic plate. This enables the checking of the computer outputs. This adds confidence not only to the computer program developed here but also in the computation procedure.

Figure 4.9: Typical triangular sandwich plate.
Table 4.12: Comparison of Frequency Parameters $\Omega = \omega a^2 \phi^2 (\frac{t_e}{D_e})^{0.5}$ for C-F-F Triangular Sandwich Plate (Carbon-Epoxy Faces).

<table>
<thead>
<tr>
<th>Source of results</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi = b/a = 1.0$</td>
<td>core thickness=0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>19.42</td>
<td>46.75</td>
<td>96.58</td>
<td>112.06</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>19.57</td>
<td>47.00</td>
<td>97.12</td>
<td>113.10</td>
</tr>
<tr>
<td>$\phi = b/a = 1.5$</td>
<td>core thickness=0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>20.81</td>
<td>60.35</td>
<td>109.37</td>
<td>155.61</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>20.97</td>
<td>60.67</td>
<td>110.30</td>
<td>156.20</td>
</tr>
<tr>
<td>$\phi = b/a = 2.0$</td>
<td>core thickness=0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present (55 elements)</td>
<td>21.91</td>
<td>71.97</td>
<td>116.30</td>
<td>190.66</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>22.06</td>
<td>72.34</td>
<td>117.10</td>
<td>191.70</td>
</tr>
</tbody>
</table>

The non-dimensional frequency is defined as

$$\Omega = \omega a^2 \phi^2 (\frac{t_e}{D_e})^{0.5}$$

where

$$t_e = t_c + 2t_f$$

$$\phi = \frac{\rho c t_c + 2 \rho f t_f}{t_e}$$

$$D_e = (\nu_{12}D_{22} + 2D_{66})_{face} + (\nu_{12}D_{22} + 2D_{66})_{core}$$

For the face material:

$$D_{22} = \frac{2E_{22}}{3(1 - \nu_{12}\nu_{21})}((t_e/2)^3 - (t_c/2)^3)$$

$$D_{66} = \frac{2G_{12}}{3}((t_e/2)^3 - (t_c/2)^3)$$

104
For the core material:

\[D_{22} = \frac{2E_{22}}{3(1 - \nu_{12}\nu_{21})} \left(t_c / 2 \right)^3 \]

\[D_{66} = \frac{2G_{12}}{3} \left(t_c / 2 \right)^3 \]

4.4.3 Partially Supported Triangular Sandwich Plates

Several cases dealing with the partially detached support conditions for triangular sandwich plates have been generated. Frequency parameters for some sample problems of partially supported Sandwich plates with aspect ratios \(b/a = 1, 1.5, 2.0 \) are given in Tables 4.13 to 4.15 for various values of the \(c/a \). Figures 4.10 to 4.12 show variation of the frequency parameter with \(c/a \) ranging from 0 to 1.0 at intervals of 0.2. In each set of tables the top table (r) contains data of the detached support length from the right angle, the next set marked (l) for the detached length from acute angle, and the last set marked (r-l) is for the support with detached lengths from both ends.
Table 4.13: Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 \left(\frac{a}{D_2} \right)^{0.5}$ for P-F-F Triangular Sandwich Plate (Carbon-Epoxy Faces)($spl\phi_1$).

<table>
<thead>
<tr>
<th>$a = 10.0$, $\phi = b/a = 1.0$, $a/t = 31.9489$</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>l</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>$r-l$</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>1.00</td>
</tr>
</tbody>
</table>

106
Table 4.14: Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{a b}{D^2})^{0.5}$ for P-F-F Triangular Sandwich Plate (Carbon-Epoxy Faces) ($s = I.5$).

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from right angle end</th>
<th>Detached length from acute angle end</th>
<th>Detached length from both ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>Ω_1</td>
<td>Ω_2</td>
<td>Ω_3</td>
</tr>
<tr>
<td>0.00</td>
<td>20.2330</td>
<td>57.0989</td>
<td>100.8404</td>
</tr>
<tr>
<td>0.20</td>
<td>15.3475</td>
<td>56.8194</td>
<td>75.4758</td>
</tr>
<tr>
<td>0.40</td>
<td>9.9122</td>
<td>38.0946</td>
<td>54.0294</td>
</tr>
<tr>
<td>0.60</td>
<td>6.1845</td>
<td>22.1146</td>
<td>45.7980</td>
</tr>
<tr>
<td>0.80</td>
<td>3.6419</td>
<td>14.2808</td>
<td>34.5730</td>
</tr>
</tbody>
</table>

$a = 10.0$, $\phi = b/a = 1.5$, $a/t = 31.9489$
Table 4.15: Non-dimensional Frequency $\Omega = \omega a^2 \phi^2 (\frac{E_t}{D_{zz}})^{0.5}$ for P-F-F Triangular Sandwich Plate (Carbon-Epoxy Faces) ($\text{spI} \phi 2$).

\[a = 10.0, \phi = b/a = 2.0, a/t = 31.9489 \]

<table>
<thead>
<tr>
<th>r</th>
<th>Detached length from right angle end</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>21.3986 68.4983 109.7143 173.9334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>17.5460 68.3424 90.0297 170.7245</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>12.3517 55.1821 67.2653 128.6021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>8.2881 32.7437 60.1583 114.7827</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>5.1782 20.9736 48.9209 97.1534</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2.1222 6.5061 30.9719 71.5136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c/a</th>
<th>Detached length from acute angle end</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>21.3986 68.4983 109.7143 173.9334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>21.3949 67.9218 109.1079 172.0917</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>21.3369 56.4825 93.5590 111.2295</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>20.2722 33.9010 58.0461 104.9873</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>14.2804 21.2474 47.6899 103.0624</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>5.2750 8.7355 45.8265 72.2195</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r-l$</th>
<th>Detached length from both ends</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>21.3986 68.4983 109.7143 173.9334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>20.0483 68.4690 101.7443 173.2244</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>17.5292 67.7836 89.5540 168.8866</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>14.7519 63.9984 71.9633 141.3415</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>12.0593 49.6174 57.1995 98.4669</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>7.3473 22.7762 42.9591 73.1543</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

108
Figure 4.10: Variation of the non-dimensional frequency with c/a, for P-F-F triangular sandwich plate (carbon-epoxy faces).

$a = 10.0\text{in}$, $\phi = b/a = 1.0$, $a/t = 31.9489$.
Figure 4.11: Variation of the non-dimensional frequency with c/a, for P-F-F triangular sandwich plate (carbon-epoxy faces).

$a = 10.0$ in, $\phi = b/a = 1.5$, $a/t = 31.9489$.
Figure 4.12: Variation of the non-dimensional frequency with c/a, for P-F-F triangular sandwich plate (carbon-epoxy faces).

$a = 10.0\text{in}, \phi = b/a = 2.0, a/t = 31.9489$.
4.5 Discussion of Results and Conclusions for Plates

From the results presented in the graphical and tabular form the following conclusions are made:

1- On the basis of this study the isoparametric quadrilateral 8-node element with reduced and selective integration emerges as the best suited for use with Mindlin plate theory. For this technique, integration in the transverse direction could be done numerically and individual sampling points could be allowed to behave elastically as governed by the constitutive law. This approach would also facilitate the inclusion of in-plane stresses to which plates are generally subjected. Furthermore, the transverse shear effects in thin plates can be effectively eliminated by employing a reduced (2x2) Gaussian integration rule. However, for thick plates the optimum numerical integration order is also a two point rule. Therefore, for all thick and thin plates a two point quadrature is recommended.

Although there are several different schemes for deriving element mass matrices, in this study the consistent mass matrix has been evaluated using a 3x3 Gaussian quadrature rule.

The numerical problems presented in degenerate cases give results which compare well with solutions from other sources.

2- In order to establish a general data base, for the case of triangular plates the dimensionless frequencies are presented in all the tables and graphs. Therefore, these graphs and tables can be used to estimate the natural frequencies of plates.
with similar geometries but with different materials. For a numerical example, let us generate the first four modes of vibration of a steel plate assuming the elastic and geometric properties as:

\[a = 10\text{ in}, \quad \phi = \frac{b}{a} = 1, \quad t = 0.063\text{ in} \]

\[E = 29 \times 10^6\text{ psi}, \quad \nu = 0.3, \quad \text{density} = 0.282\text{ lb/in}^3 \]

Thus,

\[\rho = \frac{0.282}{386} = 7.31 \times 10^{-4}\text{ lb.sec}^2\text{ in}^{-4} \]

\[D = \frac{E t^3}{12(1- \nu^2)} = \frac{29 \times 10^6 \times 0.063^3}{12(1-0.3^2)} = 686.94 \]

and

\[\Omega = \omega a^2 \phi^2 \left(\frac{Et}{D} \right)^{0.5} = 0.0259\omega \]

The dimensionless frequencies \(\Omega \) for the first to fourth modes of this plate can be obtained from Table 4.3. These values are,

6.162, 23.445, 32.625 and 56.203.

Therefore,

\[\omega_1 = 37.896 \text{ rad/sec} \quad \omega_2 = 144.187 \text{ rad/sec} \]

\[\omega_3 = 200.644 \text{ rad/sec} \quad \omega_4 = 345.634 \text{ rad/sec} \]

3- (a) Isotropic Triangular Plates

For the case of isotropic triangular plates the natural frequencies and corresponding modal shapes have been considered. Computations have been carried out for the following three cases by varying the aspect ratio

- detached length from right angle end or case \(r \),
- detached length from acute angle end or case \(l \),
- detached length from both ends or case \(r - l \).

For the case \(r \), the variation of frequency with \(\frac{a}{a} \) is higher than those for the other
two cases. This is true because most of the mass distribution is along the right angle side of the plate. Therefore, the detached length from right angle end has a significant effect on the natural frequencies and modal shapes. Another general observation for all cases \((r, l, r - l)\) is that as the aspect ratio increases the variation of frequency with \(\frac{r}{a}\) severely decreases. As can be seen from Table 4.5 and Figure 4.5, for an aspect ratio 2 even for the 80 percent detached length there is little change in modal frequencies of plates. It is obvious that when the aspect ratio increases the plate behavior becomes similar to the beam response. It is to be noted that the beam frequency is independent of the beam width [32].

The third general observation that is common among all three types of detached lengths and various aspect ratios is that, the greatest effect of detached length on natural frequencies takes place in the higher modes. Therefore, regardless of plate aspect ratio, all the examples illustrate the sensitivity of natural frequency in higher modes to the detached length. In other words we may get a clearer understanding from comparing fundamental modes with higher modes. For example, the fundamental frequency of plates with any \(\frac{r}{a}\) ratio is very slightly affected by detached length. An interesting relationship occurs in the fundamental frequency of plates with aspect ratio 2, where the frequencies of the fully supported and the point supported plate are almost the same.

3- (b) Orthotropic Triangular Plates.
Comparing results from orthotropic plates with isotropic triangular plates which have the same geometry we find almost the same general trend as the isotropic plate. The only difference that can be noted is that the natural frequency is more
sensitive to detached length for orthotropic plates than for isotropic plates. The observation may be explained by the fact that in the isotropic case the rigidity is equal in all directions in the x-y plane. But in orthotropic plates the stiffnesses are greatly different in the longitudinal and lateral directions. Hence, when the detached length increases the contribution of stiffness should be different in these two cases. Therefore, when the plate goes into higher modes the vibration behavior for orthotropic material shows different patterns from those for isotropic material.

3- (c) Sandwich Triangular Plates.
The vibrational behavior of sandwich plates is similar to that of orthotropic plates with similar geometry. The reason for this similarity is that the face sheets considered in the sandwich plates were exactly the same as those for orthotropic plates. Therefore, it could be concluded that for sandwich plates the vibration behaviors are most similar to the vibration behavior of face sheets.
Part II

SHELLS
Chapter 5

NUMERICAL RESULTS FOR SHELLS

5.1 Computation Procedure

In this chapter, we consider the vibration of cylindrical shell structures, which are partially supported along a boundary and free along other three boundaries. The present study is based on the assumed strain 9-node finite element formulation [55], [125]. As mentioned in chapter 3, this element is one of the degenerate shell elements, which has five degrees of freedom per node (5-DOF), i.e. three translational displacements in the direction of the global axes and two rotations with respect to the axes in the planes of the middle surfaces.

All through the discussion the symbols F, S, C and P denote free, simple, clamped and partially supported edges, respectively, as shown in Figure 5.1. The figure also shows a typical finite element grid. The symbols c/a, denote unsupported length ratio as shown in Figure 5.2. This may be from one or both sides.
All the computations in this investigation have been carried out by varying three essential parameters under study. These are the r/a, the aspect ratio b/a and unsupported length c/a as shown in Figure 5.2. In order to demonstrate the accuracy of the analysis, the results for several degenerate case of cylindrical shell with full support ($c/a = 0$), are presented and compared with previously published results. Results are then given for partially supported cylindrical cantilever shells.

For generating a data base, the non-dimensional frequency parameter used in the tables is defined as:
\[\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{r e}{D_e} \right)^{0.5} \] (5.1)

where

\(\phi = \) aspect ratio \((b/a)\)

\(\Omega = \) nondimensional frequency

\(\omega = \) frequency\((\text{Hz.})\)

\(t_e = \) shell thickness

\(\rho_e = \) effective mass density

\(D_e = \) effective shell rigidity

Trial computations were conducted for several alternative grid forms, CPU time, and the number of elements, it was concluded that good convergence is achieved with 25 nine-node elements. This computation has not been shown here. The tables in this section contain frequencies for the first six modes. Computations for each geometry of shell are carried out for the following three cases:

1) Isotropic shells

2) Orthotropic shells

3) Layered shells such as, sandwich laminated or other anisotropic shells.

In each case, the data has been generated by varying the three parameters \(r/a, b/a \) and \(c/a \).
Figure 5.2: Partially supported cylindrical shell,
(i) support detachment from one side \(c/a\),
(ii) support detachment from both sides \(2c'/a\),
5.2 Cylindrical Isotropic Shells

For computation of data for cylindrical isotropic shells, the curved length \('a' \) along the support is taken as 12.0 in. (304.8 cm) and the thickness \(t=0.12 \) in. (0.3048 cm) is the same for all cases, Figure 5.1. For this type of shell the dimensionless frequency \(\Omega \) is defined as:

\[
\Omega = 2\pi a^2 \phi^2 \left(\frac{12 \rho}{E t^2} \right)^{0.5}
\]

(5.2)

The material properties for isotropic shells material have been summarized in Table 5.1.

<table>
<thead>
<tr>
<th>Material property</th>
<th>Assumed value</th>
<th>System of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>1.0 (arbitrary)</td>
<td>lb. sec²/in⁴</td>
</tr>
<tr>
<td>(E_{11}/E_{22})</td>
<td>1.0 (arbitrary)</td>
<td>psi/psi</td>
</tr>
<tr>
<td>(E_{22}/G_{12})</td>
<td>2.6</td>
<td>psi/psi</td>
</tr>
</tbody>
</table>
5.2.1 Fully Supported Cylindrical Isotropic Shells

Almost all the results available in literature are in this category. These cases have been generated to test the accuracy of the element and computations. This is why only one case is presented here for comparative study.

Table 5.2 shows the comparison of the lowest six frequency parameters for uniform cylindrical blades with those obtained by several other researchers. It may be seen that the present results are in close agreement with other published results with the largest discrepancy of 1.4% occurring at the higher modes.

Table 5.2: Comparison of Frequency Parameters $\Omega = 2\pi \omega a^2 \phi^2 (\frac{12G}{b^2})^{0.5}$ for C-F-F-F Cylindrical Shell.

<table>
<thead>
<tr>
<th>Source of results</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present(5 x 5)</td>
<td>11.153</td>
<td>17.958</td>
<td>31.973</td>
<td>44.671</td>
<td>50.400</td>
<td>69.090</td>
</tr>
<tr>
<td>Ref.[33]</td>
<td>11.080</td>
<td>17.909</td>
<td>31.824</td>
<td>44.064</td>
<td>49.604</td>
<td>67.642</td>
</tr>
<tr>
<td>Exp.[33]</td>
<td>11.080</td>
<td>17.264</td>
<td>33.370</td>
<td>45.223</td>
<td>50.892</td>
<td>68.414</td>
</tr>
<tr>
<td>Ref.[36]</td>
<td>11.158</td>
<td>17.934</td>
<td>32.377</td>
<td>44.914</td>
<td>50.686</td>
<td>68.723</td>
</tr>
<tr>
<td>Exp.[36]</td>
<td>11.029</td>
<td>17.329</td>
<td>33.370</td>
<td>45.223</td>
<td>50.891</td>
<td>68.414</td>
</tr>
<tr>
<td>Ref.[37]</td>
<td>11.158</td>
<td>17.986</td>
<td>32.082</td>
<td>45.223</td>
<td>51.343</td>
<td>68.865</td>
</tr>
<tr>
<td>Ref.[113]</td>
<td>11.003</td>
<td>17.702</td>
<td>31.670</td>
<td>45.340</td>
<td>52.078</td>
<td>67.976</td>
</tr>
<tr>
<td>Ref.[120]</td>
<td>12.043</td>
<td>19.017</td>
<td>32.867</td>
<td>50.647</td>
<td>54.563</td>
<td>68.840</td>
</tr>
<tr>
<td>Exp.[120]</td>
<td>11.158</td>
<td>17.458</td>
<td>33.356</td>
<td>45.172</td>
<td>50.917</td>
<td>68.427</td>
</tr>
</tbody>
</table>
5.2.2 Partially Detached Cantilever Cylindrical Shells.

The frequency parameters for P-F-F-F, cylindrical shells with \(r/a \) (1.0, 2.0 and 3.0) and for different aspect ratios \(b/a \) (1.0, 2.0 and 3.0) are presented in Tables 5.3 to 5.11 for several values of the partial support ratios \(c/a \) and \(2c'/a \). The latter ratio is used for the case when the shell has detached boundaries from the two sides as shown in Figure 5.2. Each of these group of tables contains two tables i.e., (i) and (ii), where the first one contains frequency parameters for support detachment from one side, and the second for detachment from both sides. Figures 5.3 to 5.11 show variation of frequency parameter with \(c/a \) and \(2c'/a \) for the lowest six modes for a P-F-F-F shell with aspect ratios 1, 2 and 3.

Modal shapes and displacement patterns with nodal lines are shown in Figures B.1 to B.24.
Table 5.3: Frequency Parameter $\Omega = 2\pi w a^2 \phi^2 (\frac{12E}{E_i+1})^{0.5}$ for P-F-F-F
Cylindrical Isotropic Shell(ishψ1ψ1).

<table>
<thead>
<tr>
<th>i</th>
<th>Support detachment from one side</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>15.671</td>
</tr>
<tr>
<td>0.2</td>
<td>11.101</td>
</tr>
<tr>
<td>0.4</td>
<td>6.633</td>
</tr>
<tr>
<td>0.6</td>
<td>4.019</td>
</tr>
<tr>
<td>0.8</td>
<td>2.254</td>
</tr>
<tr>
<td>0.9</td>
<td>1.777</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>Support detachment from both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2c'/a$</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>15.671</td>
</tr>
<tr>
<td>0.2</td>
<td>13.676</td>
</tr>
<tr>
<td>0.4</td>
<td>9.461</td>
</tr>
<tr>
<td>0.6</td>
<td>7.727</td>
</tr>
<tr>
<td>0.8</td>
<td>4.786</td>
</tr>
</tbody>
</table>

124
Table 5.4: Frequency Parameter $\Omega = 2\pi\omega a^2 \delta^2 / (\frac{12\mu}{E})^{0.5}$ for P-F-F-F Cylindrical Isotropic Shell ($ish\psi 1\phi 2$).

\[a = 12.\text{in}, \ r/a = 1.0, \ \phi = b/a = 2.0, \ a/t = 100. \]

<table>
<thead>
<tr>
<th>i</th>
<th>(c/a)</th>
<th>(\Omega_1)</th>
<th>(\Omega_2)</th>
<th>(\Omega_3)</th>
<th>(\Omega_4)</th>
<th>(\Omega_5)</th>
<th>(\Omega_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>21.878</td>
<td>41.795</td>
<td>91.433</td>
<td>98.040</td>
<td>116.295</td>
<td>187.387</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>18.652</td>
<td>33.430</td>
<td>84.024</td>
<td>97.152</td>
<td>111.407</td>
<td>171.906</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>12.543</td>
<td>24.031</td>
<td>65.650</td>
<td>93.743</td>
<td>103.105</td>
<td>126.164</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>7.490</td>
<td>17.548</td>
<td>38.397</td>
<td>88.219</td>
<td>93.205</td>
<td>119.253</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>3.996</td>
<td>11.937</td>
<td>26.128</td>
<td>55.503</td>
<td>91.891</td>
<td>94.717</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>3.128</td>
<td>10.442</td>
<td>23.860</td>
<td>36.105</td>
<td>79.445</td>
<td>93.651</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>(2c'/a)</th>
<th>(\Omega_1)</th>
<th>(\Omega_2)</th>
<th>(\Omega_3)</th>
<th>(\Omega_4)</th>
<th>(\Omega_5)</th>
<th>(\Omega_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>21.878</td>
<td>41.795</td>
<td>91.433</td>
<td>98.040</td>
<td>116.295</td>
<td>187.387</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>20.686</td>
<td>38.969</td>
<td>86.385</td>
<td>97.939</td>
<td>112.347</td>
<td>183.023</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>17.111</td>
<td>25.628</td>
<td>76.169</td>
<td>96.344</td>
<td>105.579</td>
<td>170.632</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>15.217</td>
<td>15.967</td>
<td>70.777</td>
<td>93.754</td>
<td>101.882</td>
<td>155.318</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>7.338</td>
<td>13.310</td>
<td>55.144</td>
<td>75.006</td>
<td>87.658</td>
<td>96.346</td>
<td></td>
</tr>
</tbody>
</table>

125
Table 5.5: Frequency Parameter $\Omega = 2\pi a^2 \phi^2 \left(\frac{12}{E_t} \right)^{0.5}$ for P-F-F-F Cylindrical Isotropic Shell($ish\psi3\phi3$).

<table>
<thead>
<tr>
<th>$\frac{c}{a}$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>28.512</td>
<td>43.930</td>
<td>109.341</td>
<td>186.882</td>
<td>213.310</td>
<td>245.843</td>
</tr>
<tr>
<td>0.2</td>
<td>25.697</td>
<td>37.219</td>
<td>102.641</td>
<td>174.608</td>
<td>210.438</td>
<td>232.576</td>
</tr>
<tr>
<td>0.4</td>
<td>17.234</td>
<td>29.339</td>
<td>95.305</td>
<td>148.914</td>
<td>190.135</td>
<td>204.451</td>
</tr>
<tr>
<td>0.6</td>
<td>9.948</td>
<td>24.374</td>
<td>68.336</td>
<td>107.942</td>
<td>138.155</td>
<td>197.386</td>
</tr>
<tr>
<td>0.8</td>
<td>5.308</td>
<td>18.874</td>
<td>44.086</td>
<td>66.839</td>
<td>114.422</td>
<td>188.652</td>
</tr>
<tr>
<td>0.9</td>
<td>4.154</td>
<td>17.082</td>
<td>39.026</td>
<td>46.761</td>
<td>105.166</td>
<td>178.578</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{2c'}{a}$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>28.512</td>
<td>43.930</td>
<td>109.341</td>
<td>186.882</td>
<td>213.310</td>
<td>245.843</td>
</tr>
<tr>
<td>0.2</td>
<td>27.597</td>
<td>42.068</td>
<td>105.154</td>
<td>181.687</td>
<td>212.518</td>
<td>236.479</td>
</tr>
<tr>
<td>0.4</td>
<td>24.489</td>
<td>30.407</td>
<td>94.296</td>
<td>167.843</td>
<td>210.187</td>
<td>210.353</td>
</tr>
<tr>
<td>0.6</td>
<td>19.923</td>
<td>22.482</td>
<td>87.907</td>
<td>161.498</td>
<td>185.715</td>
<td>209.283</td>
</tr>
<tr>
<td>0.8</td>
<td>9.725</td>
<td>20.401</td>
<td>75.632</td>
<td>114.117</td>
<td>142.046</td>
<td>171.364</td>
</tr>
</tbody>
</table>

$a = 12 \text{ in}, \ r/a = 1.0, \ \phi = b/a = 3.0, \ a/t = 100.$
Table 5.6: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{12t}{E} \right)^{0.5}$ for P-F-F-F Cylindrical Isotropic Shell($ish\psi 2\phi 1$).

<table>
<thead>
<tr>
<th></th>
<th>$a = 12.\text{in}$, $r/a = 2.0$, $\phi = b/a = 1.0$, $a/t = 100$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Support detachment from one side</td>
</tr>
<tr>
<td>c/a</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>11.153</td>
</tr>
<tr>
<td>0.2</td>
<td>9.092</td>
</tr>
<tr>
<td>0.4</td>
<td>5.874</td>
</tr>
<tr>
<td>0.6</td>
<td>3.531</td>
</tr>
<tr>
<td>0.8</td>
<td>2.094</td>
</tr>
<tr>
<td>0.9</td>
<td>1.696</td>
</tr>
<tr>
<td>ii</td>
<td>Support detachment from both sides</td>
</tr>
<tr>
<td>$2c'/a$</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>11.153</td>
</tr>
<tr>
<td>0.2</td>
<td>10.406</td>
</tr>
<tr>
<td>0.4</td>
<td>8.510</td>
</tr>
<tr>
<td>0.6</td>
<td>6.911</td>
</tr>
<tr>
<td>0.8</td>
<td>5.368</td>
</tr>
</tbody>
</table>

127
Table 5.7: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{12\phi}{E\delta})^{0.5}$ for P-F-F-F Cylindrical Isotropic Shell($\theta h \psi /2\phi^2$).

<table>
<thead>
<tr>
<th>$a = 12\text{ in, } r/a = 2.0, \phi = b/a = 2.0, a/t = 100.$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2c'/a$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>17.835</td>
<td>22.064</td>
<td>64.276</td>
<td>91.023</td>
<td>102.507</td>
<td>137.380</td>
</tr>
<tr>
<td>0.2</td>
<td>17.322</td>
<td>20.792</td>
<td>62.409</td>
<td>88.801</td>
<td>101.146</td>
<td>133.955</td>
</tr>
<tr>
<td>0.4</td>
<td>14.559</td>
<td>15.707</td>
<td>57.520</td>
<td>82.686</td>
<td>98.858</td>
<td>124.392</td>
</tr>
<tr>
<td>0.6</td>
<td>9.962</td>
<td>14.610</td>
<td>54.273</td>
<td>79.005</td>
<td>98.060</td>
<td>116.494</td>
</tr>
<tr>
<td>0.8</td>
<td>5.744</td>
<td>12.804</td>
<td>46.398</td>
<td>66.766</td>
<td>87.477</td>
<td>93.118</td>
</tr>
</tbody>
</table>
Table 5.8: Frequency Parameter $\Omega = \frac{2\pi \omega a^2 \phi^2 (\frac{12\varepsilon}{E_2})^{0.8}}{a}$ for P-F-F-F Cylindrical Isotropic Shell($ish\psi2\phi3$).

<table>
<thead>
<tr>
<th>$\frac{a}{b}$</th>
<th>Support detachment from one side</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>22.614</td>
</tr>
<tr>
<td>0.2</td>
<td>19.079</td>
</tr>
<tr>
<td>0.4</td>
<td>12.172</td>
</tr>
<tr>
<td>0.6</td>
<td>7.262</td>
</tr>
<tr>
<td>0.8</td>
<td>4.417</td>
</tr>
<tr>
<td>0.9</td>
<td>3.659</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{2c}{a}$</th>
<th>Support detachment from both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a}{b}$</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>22.614</td>
</tr>
<tr>
<td>0.2</td>
<td>21.805</td>
</tr>
<tr>
<td>0.4</td>
<td>16.757</td>
</tr>
<tr>
<td>0.6</td>
<td>12.155</td>
</tr>
<tr>
<td>0.8</td>
<td>7.397</td>
</tr>
</tbody>
</table>
Table 5.9: Frequency Parameter \(\Omega = 2\pi wa^2 \phi^2 (\frac{12\phi}{El_h^2})^{0.5} \) for P-F-F-F Cylindrical Isotropic Shell(ish\psi3\phi1).

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{c/a} & \Omega_1 & \Omega_2 & \Omega_3 & \Omega_4 & \Omega_5 & \Omega_6 \\
\hline
0.0 & 10.013 & 13.300 & 29.373 & 38.728 & 45.585 & 68.705 \\
0.2 & 8.391 & 11.092 & 28.217 & 35.119 & 43.314 & 66.974 \\
0.4 & 5.324 & 9.256 & 20.819 & 29.063 & 41.248 & 50.812 \\
0.6 & 3.253 & 7.020 & 14.240 & 27.492 & 39.630 & 48.930 \\
0.8 & 2.037 & 4.878 & 11.582 & 25.442 & 33.966 & 38.119 \\
0.9 & 1.670 & 4.310 & 10.970 & 20.993 & 24.344 & 32.368 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{c/a} & \Omega_1 & \Omega_2 & \Omega_3 & \Omega_4 & \Omega_5 & \Omega_6 \\
\hline
0.0 & 10.013 & 13.300 & 29.373 & 38.728 & 45.585 & 68.705 \\
0.2 & 9.592 & 12.017 & 29.127 & 37.576 & 44.017 & 68.571 \\
0.4 & 7.956 & 8.269 & 27.353 & 33.238 & 39.409 & 66.614 \\
0.6 & 5.634 & 7.398 & 25.483 & 29.432 & 35.544 & 57.660 \\
0.8 & 3.534 & 5.824 & 20.072 & 21.325 & 30.404 & 47.283 \\
\hline
\end{array}
\]

\(a = 12 \text{in}, \ r/a = 3.0, \ \phi = b/a = 1.0, \ a/t = 100. \)
Table 5.10: Frequency Parameter $\Omega = 2\pi \alpha^2 \phi^2 \left(\frac{E\alpha}{E_t} \right)^{0.5}$ for P-F-F-F Isotropic Cylindrical Isotropic Shell ($ish\psi 3\phi 2$).

\[a = 12. \text{in}, \ r/a = 3.0, \ \phi = b/a = 2.0, \ a/t = 100. \]

<table>
<thead>
<tr>
<th>i</th>
<th>Support detachment from one side</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>15.081</td>
</tr>
<tr>
<td>0.2</td>
<td>12.364</td>
</tr>
<tr>
<td>0.4</td>
<td>7.932</td>
</tr>
<tr>
<td>0.6</td>
<td>4.945</td>
</tr>
<tr>
<td>0.8</td>
<td>3.218</td>
</tr>
<tr>
<td>0.9</td>
<td>2.712</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>Support detachment from both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2c'/a$</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>15.081</td>
</tr>
<tr>
<td>0.2</td>
<td>14.307</td>
</tr>
<tr>
<td>0.4</td>
<td>10.553</td>
</tr>
<tr>
<td>0.6</td>
<td>7.814</td>
</tr>
<tr>
<td>0.8</td>
<td>5.080</td>
</tr>
</tbody>
</table>

131
Table 5.11: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{12\phi}{EI})^{0.5}$ for P-F-F-F Isotropic Cylindrical Isotropic Shell ($ish\psi 3\phi 3$).

<table>
<thead>
<tr>
<th>$a = 12\text{ in}$, $r/a = 3.0$, $\phi = b/a = 3.0$, $a/t = 100$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
<tr>
<td>c/a</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>ii</td>
</tr>
<tr>
<td>$2c'/a$</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>
Figure 5.3: Variation of the Ω/ϕ^2 vs c/a, for P-F-F isotropic shell.
$r/a = 1.0, \phi = b/a = 1.0, c/a = 100.00$

Legend:
$\Delta = \text{Mode 1}$
$+ = \text{Mode 2}$
$\times = \text{Mode 3}$
$\diamond = \text{Mode 4}$
$\Phi = \text{Mode 5}$
$\triangledown = \text{Mode 6}$
Figure 5.4: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.
$r/a = 1.0, \phi = b/a = 2.0, a/t = 100.00$
Figure 5.5: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$r/a = 1.0$, $\phi = b/a = 3.0$, $a/t = 100.00$
Figure 5.6: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.
$r/a = 2.0, \phi = b/a = 1.0, a/t = 100.00$
Figure 5.7: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$r/a = 2.0$, $\phi = b/a = 2.0$, $a/t = 100.00$
Figure 5.8: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$r/a = 2.0$, $\phi = b/a = 3.0$, $a/t = 100.00$
Figure 5.9: Variation of the \(R/\phi^2 \) vs \(c/\alpha \) for P-F-F isotropic shell.

\(\tau/a = 3.0, \phi = h/\alpha = 1.0, a/t = 100.00 \)
Figure 5.10: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$r/a = 3.0$, $\phi = b/a = 2.0$, $a/t = 100.00$
Figure 5.11: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F isotropic shell.

$r/a = 3.0$, $\phi = b/a = 3.0$, $a/t = 100.00$
5.3 Cylindrical Orthotropic Shells

For computation of data for cylindrical orthotropic shells, similar to the isotropic shells, the curved length along the support $a = 12.0\text{in.} (304.8\text{ cm})$, and the thickness $t_c = 0.12\text{in.} (0.3048\text{ cm})$ are assumed constant for all cases, as shown in Figure 5.1. For these type of shells the dimensionless frequency Ω is defined as:

$$\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{E \nu \alpha}{D_c} \right)^{0.5}$$ \hspace{1cm} (5.3)

In this equation

$$D_c = \nu_{12} D_{22} + 2D_{66}$$

where

$$D_{22} = \frac{E_{22} t_c^3}{12(1 - \nu_{12} \nu_{21})}$$

$$D_{66} = G_{12} \frac{t_c^3}{12}$$

and other parameters are defined as before. The material properties for orthotropic shells have been summarized in Table 5.12.

5.3.1 Partially Supported Orthotropic Shells.

The frequency parameters for P-F-F-F, cylindrical orthotropic shells with r/a (1.0, 2.0 and 3.0) and for different aspect ratios b/a (1.0, 2.0 and 3.0) are presented in Tables 5.13 to 5.21 for several values of the partial support ratios c/a and
Table 5.12: Material Properties for Orthotropic Shell

<table>
<thead>
<tr>
<th>Material property</th>
<th>Assumed value</th>
<th>System of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_{12}</td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td>θ_c</td>
<td>0.260×10^{-3}</td>
<td>$\text{lb} \cdot \text{sec}^2/\text{in}^4$</td>
</tr>
<tr>
<td>E_{11}/E_{22}</td>
<td>16.5</td>
<td>psi/psi</td>
</tr>
<tr>
<td>E_{22}/G_{12}</td>
<td>2.632</td>
<td>psi/psi</td>
</tr>
</tbody>
</table>

2c'/a. The latter ratio is used for the case when the shell has detached boundaries from the two sides as shown in Figure 5.2. Similar to the isotropic shells, each of these group tables contains two tables (i) and (ii), of which the first one contains frequency parameters for detached base length from one side and the second one denotes to equal detached base lengths from both sides. Figures 5.12 to 5.20 show variation of frequency parameter with c/a and $2c'/a$ for the lowest six modes for a P-F-F-F orthotropic shell with aspect ratios 1, 2 and 3.
Table 5.13: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{b}{D^*})^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($\alpha \psi \beta_1 \phi_1$).

For $a = 12$ in, $r/a = 1.0$, $\phi = b/a = 1.0$, $a/t = 100$.

<table>
<thead>
<tr>
<th>c/a</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>32.227</td>
<td>33.442</td>
<td>73.252</td>
<td>85.886</td>
<td>114.403</td>
<td>116.045</td>
</tr>
<tr>
<td>0.2</td>
<td>17.267</td>
<td>32.382</td>
<td>59.483</td>
<td>66.773</td>
<td>76.020</td>
<td>115.069</td>
</tr>
<tr>
<td>0.4</td>
<td>8.912</td>
<td>23.604</td>
<td>31.664</td>
<td>40.912</td>
<td>70.981</td>
<td>109.503</td>
</tr>
<tr>
<td>0.6</td>
<td>4.964</td>
<td>13.550</td>
<td>23.907</td>
<td>30.340</td>
<td>54.670</td>
<td>66.787</td>
</tr>
<tr>
<td>0.8</td>
<td>2.856</td>
<td>8.740</td>
<td>14.020</td>
<td>26.016</td>
<td>34.958</td>
<td>62.679</td>
</tr>
<tr>
<td>0.9</td>
<td>2.207</td>
<td>7.456</td>
<td>12.033</td>
<td>23.643</td>
<td>31.902</td>
<td>51.821</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2c'/a$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>32.227</td>
<td>33.442</td>
<td>73.252</td>
<td>85.886</td>
<td>114.403</td>
<td>116.045</td>
</tr>
<tr>
<td>0.2</td>
<td>25.949</td>
<td>27.041</td>
<td>71.317</td>
<td>75.459</td>
<td>105.575</td>
<td>107.235</td>
</tr>
<tr>
<td>0.4</td>
<td>14.934</td>
<td>19.552</td>
<td>52.180</td>
<td>61.268</td>
<td>64.975</td>
<td>70.224</td>
</tr>
<tr>
<td>0.6</td>
<td>10.228</td>
<td>15.772</td>
<td>36.632</td>
<td>42.934</td>
<td>45.074</td>
<td>64.981</td>
</tr>
<tr>
<td>0.8</td>
<td>6.594</td>
<td>9.755</td>
<td>21.633</td>
<td>24.071</td>
<td>31.033</td>
<td>61.749</td>
</tr>
<tr>
<td>1.0</td>
<td>0.000</td>
<td>4.487</td>
<td>6.540</td>
<td>16.753</td>
<td>18.166</td>
<td>28.525</td>
</tr>
</tbody>
</table>

144
Table 5.14: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{a}{D_0})^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($\omega a^2 \psi_1 \phi_2$).

When $a = 12 \text{ in}$, $r/a = 1.0$, $\phi = b/a = 2.0$, $a/t = 100$:

<table>
<thead>
<tr>
<th>i</th>
<th>Support detachment from one side</th>
<th>c/a</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>47.643</td>
<td>77.041</td>
<td>145.343</td>
<td>169.155</td>
<td>178.299</td>
<td>244.986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>30.802</td>
<td>69.384</td>
<td>118.963</td>
<td>145.079</td>
<td>174.035</td>
<td>243.835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>17.088</td>
<td>57.235</td>
<td>71.085</td>
<td>93.797</td>
<td>170.969</td>
<td>199.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>10.384</td>
<td>34.585</td>
<td>38.669</td>
<td>88.473</td>
<td>162.714</td>
<td>191.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>6.151</td>
<td>18.821</td>
<td>26.253</td>
<td>87.037</td>
<td>109.066</td>
<td>141.822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>4.819</td>
<td>15.826</td>
<td>23.953</td>
<td>78.863</td>
<td>86.238</td>
<td>96.538</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>Support detachment from both sides</th>
<th>2c'/a</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>47.643</td>
<td>77.041</td>
<td>145.343</td>
<td>169.155</td>
<td>178.299</td>
<td>244.986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>38.904</td>
<td>69.862</td>
<td>133.605</td>
<td>160.658</td>
<td>170.345</td>
<td>244.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>23.701</td>
<td>49.006</td>
<td>105.423</td>
<td>141.719</td>
<td>149.781</td>
<td>240.601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>17.867</td>
<td>32.456</td>
<td>94.165</td>
<td>122.178</td>
<td>125.497</td>
<td>218.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>13.959</td>
<td>15.577</td>
<td>67.768</td>
<td>73.041</td>
<td>91.338</td>
<td>166.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>9.639</td>
<td>11.337</td>
<td>45.117</td>
<td>59.167</td>
<td>89.741</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.15: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi (\frac{a}{D})^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($osh\psi 1\phi 3$).

$a = 12 \text{ in}, \; r/a = 1.0, \; \phi = b/a = 3.0, \; a/t = 100.$

<table>
<thead>
<tr>
<th>c/a</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>54.938</td>
<td>126.149</td>
<td>220.281</td>
<td>230.896</td>
<td>245.937</td>
<td>436.174</td>
</tr>
<tr>
<td>0.2</td>
<td>39.259</td>
<td>98.284</td>
<td>205.567</td>
<td>214.322</td>
<td>240.702</td>
<td>393.949</td>
</tr>
<tr>
<td>0.4</td>
<td>23.673</td>
<td>67.860</td>
<td>137.464</td>
<td>194.670</td>
<td>239.252</td>
<td>273.836</td>
</tr>
<tr>
<td>0.6</td>
<td>15.082</td>
<td>41.849</td>
<td>72.584</td>
<td>189.993</td>
<td>235.203</td>
<td>263.877</td>
</tr>
<tr>
<td>0.8</td>
<td>8.854</td>
<td>26.172</td>
<td>44.855</td>
<td>162.999</td>
<td>196.199</td>
<td>217.717</td>
</tr>
<tr>
<td>0.9</td>
<td>6.935</td>
<td>22.992</td>
<td>40.449</td>
<td>97.668</td>
<td>180.541</td>
<td>194.086</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2c'/a$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>54.938</td>
<td>126.149</td>
<td>220.281</td>
<td>230.896</td>
<td>245.937</td>
<td>436.174</td>
</tr>
<tr>
<td>0.2</td>
<td>47.241</td>
<td>111.702</td>
<td>216.378</td>
<td>218.404</td>
<td>236.596</td>
<td>424.536</td>
</tr>
<tr>
<td>0.4</td>
<td>31.552</td>
<td>67.792</td>
<td>201.660</td>
<td>202.529</td>
<td>224.251</td>
<td>384.509</td>
</tr>
<tr>
<td>0.6</td>
<td>25.311</td>
<td>41.937</td>
<td>188.191</td>
<td>196.095</td>
<td>212.890</td>
<td>343.640</td>
</tr>
<tr>
<td>0.8</td>
<td>19.710</td>
<td>21.203</td>
<td>121.745</td>
<td>152.495</td>
<td>194.182</td>
<td>212.185</td>
</tr>
<tr>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5.16: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{ed}{D_t} \right)^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($osh\psi 2\phi$).

<table>
<thead>
<tr>
<th>i</th>
<th>Support detachment from one side</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>22.887</td>
</tr>
<tr>
<td>0.2</td>
<td>14.622</td>
</tr>
<tr>
<td>0.4</td>
<td>8.147</td>
</tr>
<tr>
<td>0.6</td>
<td>4.762</td>
</tr>
<tr>
<td>0.8</td>
<td>2.791</td>
</tr>
<tr>
<td>0.9</td>
<td>2.158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>Support detachment from both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2c/a$</td>
<td>Ω_1</td>
</tr>
<tr>
<td>0.0</td>
<td>22.887</td>
</tr>
<tr>
<td>0.2</td>
<td>19.489</td>
</tr>
<tr>
<td>0.4</td>
<td>12.714</td>
</tr>
<tr>
<td>0.6</td>
<td>9.708</td>
</tr>
<tr>
<td>0.8</td>
<td>6.532</td>
</tr>
<tr>
<td>1.0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

$a = 12.\text{in}$, $r/a = 2.0$, $\phi = b/a = 1.0$, $a/t = 100$.

147
Table 5.17: Frequency Parameter $\Omega = \frac{2\pi \omega a^2 \phi^2 (\frac{D_t}{D_s})^{0.5}}{}$ for P-F-F-F Cylindrical Orthotropic Shell ($\text{osh}\psi2\phi2$).

\[a = 12\text{ in}, \ r/a = 2.0, \ \phi = b/a = 2.0, \ a/t = 100.\]

<table>
<thead>
<tr>
<th>(c/a)</th>
<th>(\Omega_1)</th>
<th>(\Omega_2)</th>
<th>(\Omega_3)</th>
<th>(\Omega_4)</th>
<th>(\Omega_5)</th>
<th>(\Omega_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>30.541</td>
<td>56.927</td>
<td>103.258</td>
<td>129.207</td>
<td>143.619</td>
<td>244.865</td>
</tr>
<tr>
<td>0.2</td>
<td>23.207</td>
<td>45.581</td>
<td>97.852</td>
<td>115.210</td>
<td>138.323</td>
<td>233.323</td>
</tr>
<tr>
<td>0.4</td>
<td>14.983</td>
<td>34.371</td>
<td>66.660</td>
<td>93.309</td>
<td>135.389</td>
<td>157.766</td>
</tr>
<tr>
<td>0.6</td>
<td>9.502</td>
<td>24.580</td>
<td>37.361</td>
<td>91.004</td>
<td>134.622</td>
<td>150.461</td>
</tr>
<tr>
<td>0.8</td>
<td>5.755</td>
<td>17.342</td>
<td>25.974</td>
<td>89.029</td>
<td>109.476</td>
<td>129.739</td>
</tr>
<tr>
<td>0.9</td>
<td>4.565</td>
<td>15.582</td>
<td>23.973</td>
<td>75.062</td>
<td>87.562</td>
<td>98.296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2c'/a)</th>
<th>(\Omega_1)</th>
<th>(\Omega_2)</th>
<th>(\Omega_3)</th>
<th>(\Omega_4)</th>
<th>(\Omega_5)</th>
<th>(\Omega_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>30.541</td>
<td>56.927</td>
<td>103.258</td>
<td>129.207</td>
<td>143.619</td>
<td>244.865</td>
</tr>
<tr>
<td>0.2</td>
<td>27.244</td>
<td>50.024</td>
<td>101.228</td>
<td>125.024</td>
<td>138.731</td>
<td>244.543</td>
</tr>
<tr>
<td>0.4</td>
<td>20.195</td>
<td>31.982</td>
<td>95.077</td>
<td>110.784</td>
<td>123.462</td>
<td>231.919</td>
</tr>
<tr>
<td>0.6</td>
<td>17.044</td>
<td>22.031</td>
<td>91.564</td>
<td>98.093</td>
<td>110.618</td>
<td>192.439</td>
</tr>
<tr>
<td>0.8</td>
<td>12.826</td>
<td>13.735</td>
<td>61.922</td>
<td>71.128</td>
<td>92.932</td>
<td>153.045</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>8.781</td>
<td>10.944</td>
<td>43.123</td>
<td>57.719</td>
<td>91.800</td>
</tr>
</tbody>
</table>

148
Table 5.18: Frequency Parameter \(\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{a^4}{D_0} \right)^{0.5} \) for P-F-F-F Cylindrical Orthotropic Shell (oshy2\phi3).

<table>
<thead>
<tr>
<th>i</th>
<th>Support detachment from one side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c/a)</td>
</tr>
<tr>
<td>0.0</td>
<td>36.757</td>
</tr>
<tr>
<td>0.2</td>
<td>30.187</td>
</tr>
<tr>
<td>0.4</td>
<td>20.716</td>
</tr>
<tr>
<td>0.6</td>
<td>13.166</td>
</tr>
<tr>
<td>0.8</td>
<td>7.973</td>
</tr>
<tr>
<td>0.9</td>
<td>6.391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>Support detachment from both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2c/a)</td>
</tr>
<tr>
<td>0.0</td>
<td>36.757</td>
</tr>
<tr>
<td>0.2</td>
<td>33.951</td>
</tr>
<tr>
<td>0.4</td>
<td>27.378</td>
</tr>
<tr>
<td>0.6</td>
<td>24.195</td>
</tr>
<tr>
<td>0.8</td>
<td>15.921</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Table 5.19: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 (\frac{\delta_k \delta}{D})^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($\text{osh} \psi \phi$).

For $a = 12.\text{in}$, $r/a = 3.0$, $\phi = b/a = 1.0$, $a/t = 100$.

<table>
<thead>
<tr>
<th>c/a</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>19.602</td>
<td>25.125</td>
<td>38.210</td>
<td>66.972</td>
<td>94.870</td>
<td>97.090</td>
</tr>
<tr>
<td>0.2</td>
<td>13.583</td>
<td>22.654</td>
<td>34.008</td>
<td>58.016</td>
<td>67.906</td>
<td>95.826</td>
</tr>
<tr>
<td>0.4</td>
<td>7.890</td>
<td>20.287</td>
<td>22.470</td>
<td>31.441</td>
<td>65.717</td>
<td>94.568</td>
</tr>
<tr>
<td>0.6</td>
<td>4.695</td>
<td>12.654</td>
<td>17.426</td>
<td>28.271</td>
<td>55.713</td>
<td>67.145</td>
</tr>
<tr>
<td>0.8</td>
<td>2.777</td>
<td>8.506</td>
<td>13.973</td>
<td>25.870</td>
<td>37.831</td>
<td>63.949</td>
</tr>
<tr>
<td>0.9</td>
<td>2.148</td>
<td>7.599</td>
<td>12.746</td>
<td>24.581</td>
<td>34.540</td>
<td>44.750</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2e^*/a$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>19.602</td>
<td>25.125</td>
<td>38.210</td>
<td>66.972</td>
<td>94.870</td>
<td>97.090</td>
</tr>
<tr>
<td>0.2</td>
<td>17.490</td>
<td>22.259</td>
<td>36.299</td>
<td>66.096</td>
<td>90.091</td>
<td>90.752</td>
</tr>
<tr>
<td>0.4</td>
<td>12.135</td>
<td>15.699</td>
<td>31.408</td>
<td>56.340</td>
<td>59.678</td>
<td>68.500</td>
</tr>
<tr>
<td>0.6</td>
<td>9.583</td>
<td>12.264</td>
<td>28.110</td>
<td>40.498</td>
<td>42.721</td>
<td>66.063</td>
</tr>
<tr>
<td>0.8</td>
<td>6.517</td>
<td>8.239</td>
<td>20.671</td>
<td>23.267</td>
<td>31.032</td>
<td>63.886</td>
</tr>
<tr>
<td>1.0</td>
<td>0.000</td>
<td>4.354</td>
<td>6.078</td>
<td>16.467</td>
<td>17.822</td>
<td>29.135</td>
</tr>
</tbody>
</table>
Table 5.20: Frequency Parameter $\Omega = 2\pi \omega a^2 \phi^2 \left(\frac{a}{D} \right)^{0.5}$ for P-F-F-F Cylindrical Orthotropic Shell ($osh\psi 3\phi 2$).

\[a = 12 \text{in, } r/a = 3.0, \phi = b/a = 2.0, c/t = 100. \]

<table>
<thead>
<tr>
<th>c/a</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>26.014</td>
<td>42.169</td>
<td>96.914</td>
<td>113.522</td>
<td>133.150</td>
<td>198.031</td>
</tr>
<tr>
<td>0.2</td>
<td>21.116</td>
<td>33.981</td>
<td>94.255</td>
<td>102.854</td>
<td>127.266</td>
<td>196.212</td>
</tr>
<tr>
<td>0.4</td>
<td>14.150</td>
<td>27.005</td>
<td>63.945</td>
<td>93.166</td>
<td>121.009</td>
<td>146.069</td>
</tr>
<tr>
<td>0.6</td>
<td>9.036</td>
<td>21.611</td>
<td>36.838</td>
<td>91.575</td>
<td>118.277</td>
<td>140.792</td>
</tr>
<tr>
<td>0.8</td>
<td>5.624</td>
<td>16.659</td>
<td>25.890</td>
<td>89.165</td>
<td>103.362</td>
<td>125.556</td>
</tr>
<tr>
<td>0.9</td>
<td>4.491</td>
<td>15.216</td>
<td>23.976</td>
<td>74.588</td>
<td>86.431</td>
<td>96.186</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2c'/a$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>26.014</td>
<td>42.169</td>
<td>96.914</td>
<td>113.522</td>
<td>133.150</td>
<td>198.031</td>
</tr>
<tr>
<td>0.2</td>
<td>24.173</td>
<td>37.442</td>
<td>96.143</td>
<td>110.390</td>
<td>129.247</td>
<td>196.626</td>
</tr>
<tr>
<td>0.4</td>
<td>19.331</td>
<td>24.819</td>
<td>92.944</td>
<td>97.498</td>
<td>115.618</td>
<td>194.796</td>
</tr>
<tr>
<td>0.6</td>
<td>16.836</td>
<td>18.265</td>
<td>87.173</td>
<td>90.225</td>
<td>105.007</td>
<td>181.412</td>
</tr>
<tr>
<td>0.8</td>
<td>11.781</td>
<td>13.652</td>
<td>58.888</td>
<td>69.236</td>
<td>93.182</td>
<td>136.333</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>8.415</td>
<td>10.797</td>
<td>42.174</td>
<td>56.578</td>
<td>92.183</td>
</tr>
</tbody>
</table>

151
Table 5.21: Frequency Parameter $\Omega = 2\pi w a^2 \phi^2 (\varepsilon_k \varepsilon_ph)_{0.5}$ for P-F-P-F Cylindrical Orthotropic Shell ($osh\psi^3$).

\[a = 12.\text{in}, \, r/a = 3.0, \, \phi = b/a = 3.0, \, a/t = 100. \]

<table>
<thead>
<tr>
<th>i</th>
<th>c/a</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>32.182</td>
<td>50.025</td>
<td>131.763</td>
<td>181.505</td>
<td>202.528</td>
<td>293.783</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>27.708</td>
<td>40.175</td>
<td>124.433</td>
<td>175.118</td>
<td>201.139</td>
<td>283.212</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>19.068</td>
<td>32.354</td>
<td>105.071</td>
<td>158.815</td>
<td>199.510</td>
<td>206.603</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>12.095</td>
<td>27.678</td>
<td>66.801</td>
<td>140.790</td>
<td>193.891</td>
<td>198.218</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>7.642</td>
<td>23.593</td>
<td>43.230</td>
<td>127.939</td>
<td>174.983</td>
<td>194.495</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>6.201</td>
<td>22.327</td>
<td>39.145</td>
<td>94.095</td>
<td>127.877</td>
<td>186.643</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>$2c'/a$</th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
<th>Ω_4</th>
<th>Ω_5</th>
<th>Ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>32.182</td>
<td>50.025</td>
<td>131.763</td>
<td>181.505</td>
<td>202.528</td>
<td>293.783</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>30.641</td>
<td>45.245</td>
<td>128.509</td>
<td>177.198</td>
<td>201.915</td>
<td>291.597</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>26.327</td>
<td>30.070</td>
<td>117.958</td>
<td>165.140</td>
<td>200.423</td>
<td>276.399</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>22.097</td>
<td>23.867</td>
<td>110.682</td>
<td>160.882</td>
<td>199.769</td>
<td>254.547</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>14.381</td>
<td>20.587</td>
<td>90.776</td>
<td>132.989</td>
<td>186.355</td>
<td>199.231</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.001</td>
<td>10.344</td>
<td>17.519</td>
<td>69.460</td>
<td>111.651</td>
<td>164.103</td>
</tr>
</tbody>
</table>
Figure 5.12: Variation of the Ω/ϕ^2 vs c/a, for P-F-F orthotropic shell.

$r/a = 1.0, \phi = b/a = 1.0, a/t = 100.00$
Figure 5.13: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.

$r/a = 1.0$, $\phi = b/a = 2.0$, $a/t = 100.00$
Figure 5.14: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.

$r/a = 1.0$, $\phi = b/a = 3.0$, $a/t = 100.00$
Figure 5.15: Variation of the ϕ/ϕ^2 vs. c/a, for P-F-F orthotropic shell.

$r/a = 2.0, \phi = 6/a = 1.0, a/t = 100.00$
Figure 5.16: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.

$r/a = 2.0$, $\phi = b/a = 2.0$, $a/t = 100.00$
Figure 5.17: Variation of the Ω/ϕ^2 vs c/a, for P-P-P orthotropic shell.

$\rho/a = 2.0, \phi = h/a = 3.0, a/t = 100.00$

Legend:
- Δ = Mode 1
- \times = Mode 2
- \circ = Mode 4
- \ast = Mode 6

$2c/a$ vs ϕ/Ω

158
Figure 5.18: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.

$r/a = 3.0$, $\phi = b/a = 1.0$, $a/t = 100.00$
Figure 5.19: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.

$\frac{r}{a} = 3.0, \phi = \phi/a = 2.0, a/t = 100.00$

LEGEND

Δ = Mode 1
$+$ = Mode 2
x = Mode 3
ϕ = Mode 4
v = Mode 5
Figure 5.20: Variation of the Ω/ϕ^2 vs c/a, for P-F-F-F orthotropic shell.
$r/a = 3.0$, $\phi = b/a = 3.0$, $a/t = 100.00$
5.4 Composite Shells

5.4.1 Comparison of Results for Sandwich Shell/Plate

Direct comparison of these results as well as those for the cracked sandwich shells was not possible since no such results are available. Most of the results available in literature are for sandwich plates simply supported on all four sides or for plates with other classical boundary conditions. In order to test the accuracy of the element and computations degenerate cases for sandwich plates, which were obtained from cylindrical shells by letting \(r/a \to \infty \), have been considered. Table 5.22 shows the comparison of the lowest six frequencies for sandwich plate with those obtained by several other researchers. It may be seen that the present results are in close agreement with other published results and the largest discrepancy is about 4.5%. It should also be noted that the present results are lower than the others and because of the method used here, they should be more accurate.

5.4.2 Convergence of Results for Sandwich Shell/Plate

To find the best and effective mesh a sandwich shell with very large radius \((r/a \to \infty) \) has been analyzed with different number of elements. Table 5.23 and figure 5.21 show these results for a clamped three layered composite shell/plate with \(n \) by \(n \) elements \((n \times n) \) mesh. According to the CPU time and accuracy requirement a \(5 \times 5 \) mesh has been found to be the most suitable configuration.
Table 5.22: Comparison of Natural Frequency for S-S-S-S Degenerate Sandwich Shell with Sandwich Plate (r/a → ∞).

\(\nu_f = 0.34, \quad E_f = 10 \times 10^6 \text{ psi}, \quad \rho_f = 248.0 \times 10^{-6} \text{ lb.sec}^2\text{in}^{-4} \)

\(G_{23c} = 7500 \text{ psi}, \quad G_{13c} = 19500 \text{ psi}, \quad \rho_c = 4.02 \times 10^{-6} \text{ lb.sec}^2\text{in}^{-4} \)

<table>
<thead>
<tr>
<th>Source of results</th>
<th>(\omega_1)</th>
<th>(\omega_2)</th>
<th>(\omega_3)</th>
<th>(\omega_4)</th>
<th>(\omega_5)</th>
<th>(\omega_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present(5 × 5)</td>
<td>23</td>
<td>43</td>
<td>68</td>
<td>78</td>
<td>89</td>
<td>124</td>
</tr>
<tr>
<td>Ref.[49]</td>
<td>23</td>
<td>45</td>
<td>71</td>
<td>82</td>
<td>92</td>
<td>128</td>
</tr>
<tr>
<td>Ref.[128]</td>
<td>23</td>
<td>45</td>
<td>71</td>
<td>80</td>
<td>92</td>
<td>126</td>
</tr>
<tr>
<td>Ref.[129]</td>
<td>23</td>
<td>44</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>125</td>
</tr>
<tr>
<td>Ref.130</td>
<td>-</td>
<td>45</td>
<td>69</td>
<td>78</td>
<td>92</td>
<td>129</td>
</tr>
<tr>
<td>Ref.130</td>
<td>23</td>
<td>45</td>
<td>71</td>
<td>80</td>
<td>91</td>
<td>126</td>
</tr>
</tbody>
</table>

\(a = 48.0\text{in.}, \quad r/a = 90.0, \quad b/a = 1.5, \quad a/t_c = 170.21, \quad t_f = 0.016 \text{ in.}, \quad t_c = 0.25 \text{ in.} \)
Table 5.23: Natural Frequency for Clamped (C-C-C-C) Sandwich Shell/Rectangular Plate ($r/a \to \infty$).

\[\nu_f = 0.34, \quad E_f = 10 \times 10^6 \text{ psi} \quad \rho_f = 500.2 \times 10^{-6} \text{ lb.sec}^2\text{.in}^{-4} \]

\[G_s = G_{23c} = G_{13c} = 1000 \text{ psi}, \]

\[a = 40.0\text{ in.}, \quad r/a = 999, \quad a/t_c = 141.84, \quad t_f = 0.016 \text{ in.}, \quad t_c = 0.25 \text{ in.} \]

<table>
<thead>
<tr>
<th>$n \times n$</th>
<th>$b/a = 1.0$</th>
<th>$b/a = 1.5$</th>
<th>$b/a = 2.0$</th>
<th>CPU(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×2</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} CPU(s) \ \hline \end{tabular}</td>
</tr>
<tr>
<td>62.332 & 157.385 & 157.386 & 225.413 & 2127.023 & 2127.023 & 5.5237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.905 & 122.399 & 122.400 & 180.725 & 237.830 & 238.972 & 24.3596</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.800 & 120.773 & 120.774 & 178.051 & 222.845 & 223.904 & 41.5742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.763 & 120.204 & 120.204 & 177.135 & 218.385 & 219.434 & 64.1589</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.747 & 119.960 & 119.961 & 176.751 & 216.511 & 217.553 & 90.2666</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2×2</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} CPU(s) \ \hline \end{tabular}</td>
</tr>
<tr>
<td>46.920 & 82.789 & 148.141 & 170.004 & 1630.849 & 1969.499 & 5.8267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.558 & 72.047 & 118.057 & 129.918 & 142.252 & 191.341 & 12.7161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.230 & 69.154 & 110.719 & 118.527 & 133.505 & 178.872 & 24.3623</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.144 & 68.493 & 109.014 & 112.106 & 131.467 & 172.021 & 43.4661</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.114 & 68.265 & 108.411 & 110.217 & 130.760 & 169.919 & 62.1809</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.101 & 68.169 & 108.152 & 109.429 & 130.461 & 168.634 & 90.0059</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.095 & 68.122 & 108.025 & 109.048 & 130.317 & 166.862 & 143.1709</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2×2</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} \hline ω_1 & ω_2 & ω_3 & ω_4 & ω_5 & ω_6 \ \hline \end{tabular}</td>
<td>\begin{tabular}{ccccc} CPU(s) \ \hline \end{tabular}</td>
</tr>
<tr>
<td>42.842 & 59.466 & 145.533 & 155.494 & 1416.829 & 1621.153 & 5.4275</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.590 & 54.044 & 83.733 & 114.694 & 127.074 & 151.458 & 12.8914</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.270 & 52.531 & 78.291 & 107.282 & 119.069 & 119.322 & 23.8818</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.185 & 52.180 & 74.925 & 105.553 & 113.550 & 117.187 & 40.5056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.155 & 52.059 & 73.940 & 104.938 & 107.638 & 116.524 & 62.1387</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.142 & 52.008 & 73.522 & 104.673 & 105.617 & 116.241 & 107.8787</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.136 & 51.984 & 73.336 & 104.544 & 104.665 & 116.104 & 134.1040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.21: Convergence of finite element results for C-C-C-C sandwich shell/plate ($a = 40.0\text{in}$, $r/a \to \infty$).
5.4.3 Cylindrical Sandwich Shells

For computation of data, the cylindrical sandwich shells have been considered as cantilever. In all computations the curved length a is taken as 12 in. (30.48 cm) along the support. The thickness of each face $t_f = 0.016\text{in.}(0.041 \text{cm})$ and the core thickness $t_c = 0.25\text{in.}(0.6350 \text{cm})$ for all cases. The total thickness t_c is defined as,

$$t_c = t_c + 2t_f$$

The material properties for sandwich shells have been summarized below in Table 5.24.

Table 5.24: Material Properties for Sandwich Shells.

<table>
<thead>
<tr>
<th>face</th>
<th>Material property</th>
<th>Assumed value</th>
<th>System of units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ν_{12}</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{\varrho}$</td>
<td>248.0E-6</td>
<td>lb. sec2/in4</td>
</tr>
<tr>
<td></td>
<td>E_{11}</td>
<td>1.0E7</td>
<td>psi</td>
</tr>
<tr>
<td></td>
<td>E_{11}/E_{22}</td>
<td>1</td>
<td>psi/psi</td>
</tr>
<tr>
<td></td>
<td>E_{22}/G_{12}</td>
<td>2.68</td>
<td>psi/psi</td>
</tr>
<tr>
<td>core</td>
<td>Material property</td>
<td>Assumed value</td>
<td>System of units</td>
</tr>
<tr>
<td></td>
<td>$\bar{\varrho}$</td>
<td>4.02E-6</td>
<td>lb. sec2/in4</td>
</tr>
<tr>
<td></td>
<td>G_{23}</td>
<td>7500</td>
<td>psi</td>
</tr>
<tr>
<td></td>
<td>G_{13}</td>
<td>19500</td>
<td>psi</td>
</tr>
</tbody>
</table>

5.4.4 Partially Detached Sandwich Shells.

The frequency parameters for P-F-F-F, cylindrical shells with r/a equal 1.0, 2.0 and 3.0 and for different aspect ratios b/a 1.0, 2.0 and 3.0 are presented in Tables
Figure 5.22: Typical Cylindrical Sandwich Shell.

5.25 to 5.33 for several values of the partial support ratio \(c/a \) and \(2c'/a \). The ratio \(2c'/a \) has been used for the case when the shell has detached boundaries from the two sides as shown in Figure 5.2. The tables contain data for two cases: (i) natural frequency for detached base lengths from one side and (ii) frequency for shells with equal detached base length from both sides. Figures 5.23 to 5.31 show variation of frequency parameter with \(c/a \) and \(2c'/a \) for the lowest six modes for a P-F-F-F shell with aspect ratios 1, 2 and 3.
Table 5.25: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell
($s s h \psi 1 \phi 1$).

\[a = 12 \text{ in}, \ r/a = 1.0, \ \phi = b/a = 1.0, \ a/t_z = 32.432 \]

| i | Detached length from one side |\hline
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c/a</td>
<td>ω_1</td>
<td>ω_2</td>
<td>ω_3</td>
<td>ω_4</td>
<td>ω_5</td>
<td>ω_6</td>
</tr>
<tr>
<td>0.0</td>
<td>232.256</td>
<td>298.867</td>
<td>664.790</td>
<td>892.264</td>
<td>1050.126</td>
<td>1581.694</td>
</tr>
<tr>
<td>0.2</td>
<td>194.095</td>
<td>250.472</td>
<td>639.879</td>
<td>806.365</td>
<td>994.740</td>
<td>1411.577</td>
</tr>
<tr>
<td>0.4</td>
<td>122.682</td>
<td>209.265</td>
<td>480.748</td>
<td>657.851</td>
<td>936.590</td>
<td>1053.175</td>
</tr>
<tr>
<td>0.6</td>
<td>75.059</td>
<td>156.678</td>
<td>332.460</td>
<td>587.910</td>
<td>697.764</td>
<td>927.670</td>
</tr>
<tr>
<td>0.8</td>
<td>47.080</td>
<td>105.891</td>
<td>259.777</td>
<td>329.250</td>
<td>574.983</td>
<td>754.165</td>
</tr>
<tr>
<td>0.9</td>
<td>38.499</td>
<td>84.839</td>
<td>174.445</td>
<td>257.753</td>
<td>526.643</td>
<td>701.337</td>
</tr>
</tbody>
</table>

| ii | Detached length from both sides |\hline
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$2c'/a$</td>
<td>ω_1</td>
<td>ω_2</td>
<td>ω_3</td>
<td>ω_4</td>
<td>ω_5</td>
<td>ω_6</td>
</tr>
<tr>
<td>0.0</td>
<td>232.256</td>
<td>298.867</td>
<td>664.790</td>
<td>892.264</td>
<td>1050.126</td>
<td>1581.694</td>
</tr>
<tr>
<td>0.2</td>
<td>222.887</td>
<td>270.086</td>
<td>659.698</td>
<td>865.577</td>
<td>1013.621</td>
<td>1555.949</td>
</tr>
<tr>
<td>0.4</td>
<td>179.382</td>
<td>192.896</td>
<td>621.285</td>
<td>759.211</td>
<td>905.865</td>
<td>1182.645</td>
</tr>
<tr>
<td>0.6</td>
<td>127.502</td>
<td>172.891</td>
<td>571.399</td>
<td>656.586</td>
<td>802.406</td>
<td>897.611</td>
</tr>
<tr>
<td>0.8</td>
<td>80.308</td>
<td>136.563</td>
<td>421.760</td>
<td>461.848</td>
<td>499.715</td>
<td>695.919</td>
</tr>
<tr>
<td>1.0</td>
<td>0.002</td>
<td>57.094</td>
<td>97.990</td>
<td>397.268</td>
<td>405.469</td>
<td>659.226</td>
</tr>
</tbody>
</table>
Table 5.26: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi\phi2$).

\[
\begin{array}{|c|cccccc|}
\hline
 & \omega_1 & \omega_2 & \omega_3 & \omega_4 & \omega_5 & \omega_6 \\
\hline
\text{i} & \text{Detached length from one side} \\
\hline
c/a & \omega_1 & \omega_2 & \omega_3 & \omega_4 & \omega_5 & \omega_6 \\
\hline
0.0 & 83.907 & 97.234 & 332.028 & 417.893 & 566.803 & 567.748 \\
0.2 & 69.348 & 94.782 & 314.771 & 384.117 & 506.049 & 566.528 \\
0.4 & 45.013 & 89.670 & 271.246 & 327.791 & 419.541 & 526.474 \\
0.6 & 28.329 & 78.855 & 196.233 & 234.206 & 362.253 & 462.641 \\
0.8 & 18.569 & 61.498 & 117.313 & 156.193 & 329.096 & 444.770 \\
0.9 & 15.636 & 50.842 & 74.593 & 137.121 & 310.701 & 439.187 \\
\hline
\text{ii} & \text{Detached length from both sides} \\
\hline
2c'/a & \omega_1 & \omega_2 & \omega_3 & \omega_4 & \omega_5 & \omega_6 \\
\hline
0.0 & 83.907 & 97.234 & 332.028 & 417.893 & 566.803 & 567.748 \\
0.2 & 79.666 & 95.581 & 325.746 & 402.715 & 545.478 & 565.436 \\
0.4 & 59.108 & 89.442 & 300.261 & 366.545 & 431.790 & 560.916 \\
0.6 & 43.969 & 84.555 & 272.952 & 349.079 & 350.920 & 557.415 \\
0.8 & 28.826 & 74.413 & 161.591 & 259.313 & 316.815 & 493.843 \\
1.0 & 0.001 & 20.941 & 61.566 & 216.931 & 287.123 & 428.314 \\
\hline
\end{array}
\]
Table 5.27: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell $(ssh\psi 1\phi 3)$.

<table>
<thead>
<tr>
<th>i</th>
<th>Detached length from one side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/a</td>
</tr>
<tr>
<td>0.0</td>
<td>37.989</td>
</tr>
<tr>
<td>0.2</td>
<td>33.539</td>
</tr>
<tr>
<td>0.4</td>
<td>23.708</td>
</tr>
<tr>
<td>0.6</td>
<td>15.554</td>
</tr>
<tr>
<td>0.8</td>
<td>10.415</td>
</tr>
<tr>
<td>0.9</td>
<td>8.818</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii</th>
<th>Detached length from both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2c'/a$</td>
</tr>
<tr>
<td>0.0</td>
<td>37.989</td>
</tr>
<tr>
<td>0.2</td>
<td>36.795</td>
</tr>
<tr>
<td>0.4</td>
<td>29.615</td>
</tr>
<tr>
<td>0.6</td>
<td>23.239</td>
</tr>
<tr>
<td>0.8</td>
<td>16.055</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Table 5.28: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell
($ssh\psi2\phi1$).

$$a = 12\text{in.}, \ r/a = 2.0, \ \phi = b/a = 1.0, \ a/t_e = 32.432$$

<table>
<thead>
<tr>
<th>i</th>
<th>Detached length from one side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/a</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
</tr>
</tbody>
</table>

ii	Detached length from both sides						
	$2c'/a$	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6
	0.0	173.652	216.226	647.496	784.939	798.544	1386.646
	0.2	161.553	211.830	641.668	769.540	783.917	1367.230
	0.4	121.707	189.377	596.032	697.119	736.793	1182.538
	0.6	98.709	171.112	538.303	613.823	717.735	896.165
	0.8	72.069	134.236	422.238	428.521	479.040	685.311
	1.0	0.002	54.287	95.772	371.753	395.612	665.835
Table 5.29: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi 2\phi 2$).

$a = 12$ in, $r/a = 2.0, \phi = b/a = 2.0, a/t_e = 32.432$

<table>
<thead>
<tr>
<th>c/a</th>
<th>ω_1</th>
<th>ω_2</th>
<th>ω_3</th>
<th>ω_4</th>
<th>ω_5</th>
<th>ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>46.522</td>
<td>93.181</td>
<td>252.971</td>
<td>307.424</td>
<td>565.716</td>
<td>567.095</td>
</tr>
<tr>
<td>0.2</td>
<td>41.181</td>
<td>90.697</td>
<td>236.884</td>
<td>299.562</td>
<td>496.360</td>
<td>562.263</td>
</tr>
<tr>
<td>0.4</td>
<td>31.404</td>
<td>85.113</td>
<td>210.035</td>
<td>280.824</td>
<td>384.551</td>
<td>456.311</td>
</tr>
<tr>
<td>0.6</td>
<td>23.262</td>
<td>75.896</td>
<td>170.626</td>
<td>232.738</td>
<td>288.561</td>
<td>370.686</td>
</tr>
<tr>
<td>0.8</td>
<td>17.115</td>
<td>60.825</td>
<td>116.095</td>
<td>147.385</td>
<td>258.401</td>
<td>340.895</td>
</tr>
<tr>
<td>0.9</td>
<td>14.792</td>
<td>52.167</td>
<td>71.178</td>
<td>130.009</td>
<td>251.144</td>
<td>332.808</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2c'/a$</th>
<th>ω_1</th>
<th>ω_2</th>
<th>ω_3</th>
<th>ω_4</th>
<th>ω_5</th>
<th>ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>46.522</td>
<td>93.181</td>
<td>252.971</td>
<td>307.424</td>
<td>565.716</td>
<td>567.095</td>
</tr>
<tr>
<td>0.2</td>
<td>44.816</td>
<td>92.390</td>
<td>246.424</td>
<td>304.628</td>
<td>544.694</td>
<td>562.765</td>
</tr>
<tr>
<td>0.4</td>
<td>36.944</td>
<td>87.825</td>
<td>228.611</td>
<td>288.126</td>
<td>429.289</td>
<td>549.924</td>
</tr>
<tr>
<td>0.6</td>
<td>31.254</td>
<td>83.482</td>
<td>219.346</td>
<td>270.722</td>
<td>338.539</td>
<td>525.726</td>
</tr>
<tr>
<td>0.8</td>
<td>24.005</td>
<td>73.275</td>
<td>163.737</td>
<td>205.118</td>
<td>243.684</td>
<td>450.648</td>
</tr>
<tr>
<td>1.0</td>
<td>0.002</td>
<td>18.799</td>
<td>60.075</td>
<td>195.043</td>
<td>209.446</td>
<td>412.289</td>
</tr>
</tbody>
</table>
Table 5.30: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi2\varphi3$).

$a = 12.\text{in}$, $r/a = 2.0$, $\phi = b/a = 3.0$, $a/t_e = 32.432$

<table>
<thead>
<tr>
<th>i</th>
<th>c/a</th>
<th>ω_1</th>
<th>ω_2</th>
<th>ω_3</th>
<th>ω_4</th>
<th>ω_5</th>
<th>ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>20.928</td>
<td>58.792</td>
<td>122.656</td>
<td>186.663</td>
<td>273.187</td>
<td>311.410</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>19.270</td>
<td>57.829</td>
<td>115.725</td>
<td>183.253</td>
<td>246.789</td>
<td>304.236</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>15.690</td>
<td>55.414</td>
<td>103.781</td>
<td>174.925</td>
<td>196.660</td>
<td>286.319</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>12.178</td>
<td>51.385</td>
<td>89.732</td>
<td>142.486</td>
<td>160.689</td>
<td>239.994</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>9.257</td>
<td>44.024</td>
<td>63.666</td>
<td>95.009</td>
<td>142.265</td>
<td>210.573</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>8.103</td>
<td>38.700</td>
<td>42.211</td>
<td>83.365</td>
<td>135.968</td>
<td>203.611</td>
</tr>
</tbody>
</table>

Detached length from both sides

<table>
<thead>
<tr>
<th>ii</th>
<th>$2c'/a$</th>
<th>ω_1</th>
<th>ω_2</th>
<th>ω_3</th>
<th>ω_4</th>
<th>ω_5</th>
<th>ω_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>20.928</td>
<td>58.792</td>
<td>122.656</td>
<td>186.663</td>
<td>273.187</td>
<td>311.410</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>20.446</td>
<td>58.500</td>
<td>120.080</td>
<td>185.546</td>
<td>266.310</td>
<td>306.371</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>17.829</td>
<td>56.778</td>
<td>111.309</td>
<td>178.469</td>
<td>222.194</td>
<td>293.345</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>15.671</td>
<td>54.987</td>
<td>106.242</td>
<td>165.803</td>
<td>186.211</td>
<td>285.786</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>12.642</td>
<td>50.480</td>
<td>91.991</td>
<td>100.319</td>
<td>160.882</td>
<td>271.812</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.001</td>
<td>10.301</td>
<td>44.193</td>
<td>96.961</td>
<td>143.344</td>
<td>260.138</td>
</tr>
</tbody>
</table>
Table 5.31: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell (sshψ3ϕ1).

\[a = 12 \text{ in, } r/a = 3.0, \phi = b/a = 1.0, a/t = 32.432 \]

<table>
<thead>
<tr>
<th></th>
<th>Detached length from one side</th>
<th></th>
<th>Detached length from both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c/a</td>
<td>ω_1</td>
<td>ω_2</td>
</tr>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>133.406</td>
<td>212.969</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>115.204</td>
<td>201.658</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>87.646</td>
<td>176.962</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>64.682</td>
<td>141.606</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>45.348</td>
<td>103.893</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>37.677</td>
<td>87.660</td>
</tr>
</tbody>
</table>

174
Table 5.32: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell ($ssh\psi3\phi2$).

\[
\begin{array}{|c|cccccc|}
\hline
& \multicolumn{6}{|c|}{a = 12\text{ in}, r/a = 3.0, \phi = b/a = 2.0, a/t_e = 32.432} \\
\hline
i & \text{Detached length from one side} & \\
\hline
c/a & \omega_1 & \omega_2 & \omega_3 & \omega_4 & \omega_5 & \omega_6 \\
0.0 & 34.962 & 92.317 & 197.521 & 302.456 & 489.401 & 567.025 \\
0.2 & 32.014 & 89.985 & 188.528 & 294.455 & 468.957 & 510.330 \\
0.4 & 26.488 & 84.040 & 173.377 & 271.560 & 379.332 & 426.805 \\
0.6 & 21.233 & 74.419 & 151.695 & 229.622 & 262.544 & 356.609 \\
0.8 & 16.409 & 59.507 & 115.851 & 140.815 & 218.042 & 328.287 \\
0.9 & 14.358 & 51.375 & 71.138 & 124.140 & 211.323 & 319.288 \\
\hline
\text{ii} & \text{Detached length from both sides} & \\
\hline
2c'/a & \omega_1 & \omega_2 & \omega_3 & \omega_4 & \omega_5 & \omega_6 \\
0.0 & 34.962 & 92.317 & 197.521 & 302.456 & 489.401 & 567.025 \\
0.2 & 34.020 & 91.717 & 193.933 & 300.364 & 484.446 & 544.640 \\
0.4 & 29.743 & 87.480 & 182.753 & 285.530 & 429.360 & 466.298 \\
0.6 & 26.599 & 83.256 & 176.105 & 270.083 & 336.458 & 448.596 \\
0.8 & 21.786 & 73.042 & 164.359 & 164.763 & 240.281 & 400.277 \\
1.0 & 21.786 & 73.042 & 164.359 & 164.763 & 240.281 & 400.277 \\
\hline
\end{array}
\]

175
Table 5.33: Natural Frequency ω for P-F-F-F Cylindrical Sandwich Shell

$(ssh\psi3\phi3)$.

| $a = 12. in$, $r/a = 3.0$, $\phi = b/a = 3.0$, $a/t_e = 32.432$ |
|---|---|---|---|---|---|---|
| i | Detached length from one side |
| c/a | ω_1 | ω_2 | ω_3 | ω_4 | ω_5 | ω_6 |
| 0.0 | 15.659 | 58.444 | 93.312 | 184.569 | 244.893 | 273.087 |
| 0.2 | 14.753 | 57.552 | 89.537 | 181.425 | 233.549 | 255.304 |
| 0.4 | 12.830 | 54.986 | 83.218 | 171.493 | 193.105 | 237.898 |
| 0.6 | 10.743 | 50.581 | 76.251 | 137.463 | 153.426 | 217.871 |
| 0.8 | 8.641 | 42.969 | 62.806 | 83.317 | 129.012 | 200.926 |
| 0.9 | 7.695 | 38.340 | 41.997 | 72.545 | 120.868 | 195.569 |
| ii | Detached length from both sides |
| $2c'/a$ | ω_1 | ω_2 | ω_3 | ω_4 | ω_5 | ω_6 |
| 0.0 | 15.659 | 58.444 | 93.312 | 184.569 | 244.893 | 273.087 |
| 0.2 | 15.392 | 58.225 | 91.931 | 183.778 | 242.128 | 266.179 |
| 0.4 | 14.013 | 56.619 | 86.968 | 177.886 | 221.888 | 233.857 |
| 0.6 | 12.897 | 54.874 | 83.803 | 168.355 | 182.884 | 228.473 |
| 0.8 | 11.052 | 50.369 | 79.160 | 92.401 | 159.238 | 218.320 |
| 1.0 | 0.001 | 9.367 | 44.009 | 76.055 | 142.373 | 210.935 |
Figure 5.23: Variation of ω vs c/a, for P-F-F-F sandwich shell.

$r/a = 1.0$, $\phi = b/a = 1.0$, $a/t_e = 32.432$
Figure 5.24: Variation of ω vs c/a, for P-F-F-F sandwich shell.

$r/a = 1.0$, $\phi = b/a = 2.0$, $a/t_e = 32.432$
Figure 5.25: Variation of ω vs c/a, for P-F-F-F sandwich shell.

$r/a = 1.0, \phi = b/a = 3.0, a/t_x = 32.432$
Figure 5.26: Variation of ω vs c/a, for P-F-F-F sandwich shell.
$r/a = 2.0$, $\phi = b/a = 1.0$, $a/t_e = 32.432$
Figure 5.28: Variation of ω vs c/a, for P-F-F-F sandwich shell.

$r/a = 2.0, \phi = b/a = 3.0, a/t_e = 32.432$
Figure 5.29: Variation of ω vs c/a, for P-F-F-F sandwich shell.

$r/a = 3.0$, $\phi = b/a = 1.0$, $a/t_e = 32.432$
Figure 5.30: Variation of ω vs c/a, for P-F-F sandwich shell.
$r/a = 3.0, \phi = h/a = 2.0, \gamma = 32.432$

Legend:
- Δ = Mode 1
- + = Mode 2
- \times = Mode 3
- \circ = Mode 4
- \ast = Mode 5
- \triangledown = Mode 6

3
184
Figure 5.31: Variation of ω vs c/a for P-F-F sandwich shell.

LEGEND

Δ = Mode 1
$+$ = Mode 2
x = Mode 3
\circ = Mode 4
\blacklozenge = Mode 5
v = Mode 6

$r/a = 3.0, \phi = h/a = 3.0, a/t_c = 32.432$
5.5 Discussion and Conclusions on Shells Results

The displacement based finite element method for analysis of shell structures is presented here. Based on the numerical results obtained in this study, the following conclusions can be drawn.

1 - A nine-node degenerate shell element has been used in finite element analysis of vibration of isotropic, orthotropic and composite shells. To overcome the shear locking problem, an enhanced interpolation of the transverse shear strains in the natural coordinate system is used. Also, to avoid membrane locking behavior, an enhanced interpolation of the membrane strains in the local cartesian coordinate system is applied. A number of cases of isotropic, orthotropic and sandwich degenerate shells ($\xi = 0$) have been analyzed and compared with other published results.

2 - In order to make the results general and to be able to draw general conclusions on the class of problems rather than specific shells, a non-dimensional form of frequency was used. For example, to calculate the first six natural frequencies of a curved fan blade with the following data,

$a = 12in, \phi = \frac{b}{a} = 1, t = 0.12in, \xi = 2, \frac{E}{t} = 100, \xi = 0,$

$\nu = 0.3, E = 30 \times 10^6 \text{psi}, density = 0.284 \frac{lb}{in^3}$

the following procedure may be followed.

$\rho = \frac{0.284}{386} = 7.35 \times 10^{-4} \text{ lb.sec}^2 \text{.in}^{-4}$

$\Omega = 2\pi \omega^2 \phi^2 (\frac{12\xi}{E\nu})^{1/2}$

$\Omega = 2\pi \omega (12)^2 (1)^2 (\frac{12 \times 7.35 \times 10^{-4}}{36 \times 10^6 \times 0.12^2})^{1/2} = 0.129\omega$

186
The non-dimensional frequencies Ω for this shell are obtained from Table (5.6) and are given below:

$11.153, 17.959, 31.974, 44.671, 50.401, 69.090$

Therefore, the first six frequencies of the curved fan blade with the above geometry are,

\[
\begin{align*}
\omega_1 &= 86.268 \, Hz, \quad \omega_2 = 138.912 \, Hz \\
\omega_3 &= 247.319 \, Hz, \quad \omega_4 = 345.530 \, Hz \\
\omega_5 &= 389.852 \, Hz, \quad \omega_6 = 534.411 \, Hz
\end{align*}
\]

These values are very close to the results given in reference [33].

3 - (a) Isotropic Cylindrical Shells

A fan blade with a crack along its base can be idealized as a cylindrical partially supported shell. The first six natural frequencies and corresponding modal shapes, and nodal lines for variable detached base length have been generated in this work. Investigations have been carried out for two cases with three different aspect ratios as well as three different radii to base length ratio. These are identified as:

(i)- detached base length from one side ($\frac{L}{a}$).

(ii)- detached base length from both sides ($\frac{2L}{a}$).

The results show that as the ratio $\frac{L}{a}$ increases or the shell becomes shallower the frequency ω decreases. The change in the frequency parameters ($\frac{\omega}{\omega_0}$) for case (i) is more pronounced than for case (ii). The two cases for the constant radius of curvature ($\frac{L}{a} = constan$) and for the higher aspect ratio ($\frac{L}{a} = 3$), the frequency parameter $\frac{\omega}{\omega_0}$ stay relatively unaffected for longer detached base length (80%). Thus, we conclude that as the aspect ratio increases, shells and plates behave more like
beams where the frequency is not sensitive to the length of base support. In general, the response of shells with partially detached base length is similar to that of plates. The main difference in the response of short shells is that the fundamental mode is usually the twisting mode except for the large aspect ratios \(h/a \geq 2 \) and large radii of curvature \(\frac{r}{a} \geq 3 \). For these types of shells the first fundamental twisting modes are replaced by beam modes.

-(b) Orthotropic shells

On comparison of results obtained for orthotropic shells with those for isotropic shells, we find the trends to be similar in general. This observation is the same as the one noted earlier for isotropic and orthotropic plates. The important point to note is that the natural frequency is more sensitive to the detached length in case of orthotropic materials than for isotropic materials. This sensitivity is very obvious even for long and shallow shells as can be seen from graphs 5.23 to 5.31 and tables 5.25 to 5.33.

-(c) Sandwich shells.

In computation of natural frequency for sandwich shells the shell is assumed to consist of an orthotropic core and two face sheets of equal thickness which are made up of isotropic material. Here also the variation of natural frequency with detached length is similar to the variation in the case of isotropic materials. It is observed that, for sandwich shells with the same face material and for the same thickness of face sheets as for isotropic shells, the frequencies are much higher. However the variation of the frequencies with the detached length for the two shell types is the same. The increase in frequency for sandwich shells can be explained by the fact
that the overall thickness t_e of the shell is larger giving a larger value of stiffness.
5.6 General Conclusions for Plates and Shells

Several examples have been presented and the results have been compared with the available results in the literature. These have been found to be in good agreement. The crack along the base of plates, shells and curved fan blades is idealized as a partial detachment of base. The effects of variation of the detached base length on natural frequencies, modal shapes, displacement patterns for these models have been presented in this study.

A comparative study of the dynamic behavior of plates and shells, in general, has been presented in this thesis. Furthermore, this thesis also presents an in depth study of the dynamic behavior of various types of materials; for example isotropic, orthotropic and sandwich materials.

Based on the investigation carried out and the results presented here, the following conclusions can be drawn:

1 - Variation of natural frequency with detached base length is very large for both plates and shells having small aspect ratios ($\frac{h}{a} \leq 1.5$).

2 - For larger aspect ratios of plates and shallow shells ($\frac{h}{a} \geq 2$), the variation of natural frequency is very small even for 80 percent detached base length.

3 - In composite or orthotropic materials the variation of the natural frequency with detached base length is more than that for the case of isotropic plates and shells with similar geometry. This would mean that for the design and analysis
of orthotropic plates and shells we should accurately model the presence of any detachment of support.

4 - For the degenerate case \((\frac{c}{a} = 0)\) the fundamental mode for plates starts with the beam mode. But in shells with small aspect ratio and small radius to base length ratio the beam mode is the second mode. This trend is reversed only for larger \((\frac{c}{a} \geq 2, \frac{r}{a} \geq 3)\) ratios where the beam mode shifts to the fundamental mode.

5 - The computations for triangular plates have been carried out for three different cases, namely:

- detached length from right angle end, case \((r)\),
- detached length from acute angle end, case \((l)\),
- detached length from both ends, case \((r - l)\).

In the case \((r)\), the variation of frequency with \(\frac{c}{a}\) is higher than for the other two cases.

6 - For cylindrical shells two cases have been studied:

(i) detached base length from one side \((c/a)\)

(ii) detached base length from both sides \((2c'/a)\).

It's shown in all the corresponding figures, the variation of frequency in case (i) is much more than the case (ii).

7 - For shallow shells as \(r/a\) becomes larger, \((\frac{r}{a} \geq 3)\) the dynamic behavior is similar to that of a plate. This is quite justified and expected.

8 - The examples illustrate that the effect of detached length is most significant
for higher mode frequencies.
5.7 Recommendation for Further Study

There are several practical problems in this area which need further work. It is seen that this investigation on partially supported plates and shells can be extended for the following problems:

1. Trapezoidal plates generated by cutting the tip of the triangular plates are of considerable practical importance in the aircraft industry. These problems are a logical extension of the problem studied in this thesis.

2. Further generalization of the problem noted above is the skew plate with variable skew angle and different aspect ratios. These plates are also commonly employed in the structures of aerospace vehicles such as missiles, rockets and aircrafts. The study of the effects of support detachment and crack at root, on the vibrational behavior of these types of plates is important for the design purposes in the aerospace industry.

3. The pre-twisted fan blades have many applications in the turbo-machinery industry. The effect of cracks along the support on the vibration characteristics of twisted cantilever plates is very important in the design of blades. The present technique could be logically extended to this problem.

4. Further work could also be required to the study of the effects of support detachment on fibre orientation in composite plates and shells. The results in this thesis have been generated only for one angle of fibre orientation.
5. Study may be applied to the vibrational behavior of spherical shells and circular plates with support along a part of the boundary.

6. The results obtained for modal shapes in this study can be used as a data for analysing the response of forced vibration of similar geometries by the mode summation method.

7. Work may also be extended to nonlinear analysis for the problems discussed in this thesis.
References

195

200

Appendix A

AA

A.1 ISOTROPIC PLATES

1 MODAL SHAPE FOR TRIANGULAR ISOTROPIC PLATES
Figure A.1: Modal shapes for triangular isotropic plate with

\(\frac{b}{a} = 1.0, \frac{c}{a} = 0.0, c - r. \)
Figure A.2: Modal shapes for triangular isotropic plate with
\[b/a = 1.0, \ c/a = 0.2, \ c - r. \]
Figure A.3: Modal shapes for triangular isotropic plate with

\[\frac{b}{a} = 1.0, \frac{c}{a} = 0.4, c = r. \]
Mode = 1
$\Omega = 3.221$

Mode = 3
$\Omega = 20.756$

Mode = 2
$\Omega = 10.087$

Mode = 4
$\Omega = 36.902$

Figure A.4: Modal shapes for triangular isotropic plate with

$b/a = 1.0, c/a = 0.6, c - r.$
Figure A.5: Modal shapes for triangular isotropic plate with

\[\frac{b}{a} = 1.0, \frac{c}{a} = 0.8, c \rightarrow r. \]
Figure A.6: Modal shapes for triangular isotropic plate with

\[b/a = 1.0, \ c/a = 1.0, \ c - r. \]
Figure A.7: Modal shapes for triangular isotropic plate with
\[b/a = 1.0, c/a = 0.0, c - l. \]
Figure A.8: Modal shapes for triangular isotropic plate with
\[b/a = 1.0, c/a = 0.2, c - l. \]
Figure A.9: Modal shapes for triangular isotropic plate with
\[b/a = 1.0, \ c/a = 0.4, \ c - l. \]
Figure A.10: Modal shapes for triangular isotropic plate with
\(b/a = 1.0, c/a = 0.6, c - l. \)
Figure A.11: Modal shapes for triangular isotropic plate with
$b/a = 1.0, c/a = 0.8, c - l$.

213
Figure A.12: Modal shapes for triangular isotropic plate with
\[b/a = 1.0, \ c/a = 1.0, \ c - l. \]
Figure A.13: Modal shapes for triangular isotropic plate with
\[\frac{b}{a} = 1.0, \frac{c}{a} = 0.0, c - r - l. \]
Figure A.14: Modal shapes for triangular isotropic plate with
\[b/a = 1.0, c/a = 0.2, c - r - l. \]
Figure A.15: Modal shapes for triangular isotropic plate with
\(b/a = 1.0, \ c/a = 0.4, \ c - r - l. \)
Figure A.16: Modal shapes for triangular isotropic plate with

\[\frac{b}{a} = 1.0, \frac{c}{a} = 0.6, c = r = l. \]
Figure A.17: Modal shapes for triangular isotropic plate with

\[\frac{b}{a} = 1.0, \frac{c}{a} = 0.8, c - r - l. \]
Figure A.18: Modal shapes for triangular isotropic plate with
\[\frac{b}{a} = 1.0, \frac{c}{a} = 1.0, c - r - l. \]
Appendix B

BB

B.1 ISOTROPIC SHELLS

1
MODAL SHAPES FOR CYLINDRICAL
ISOTROPIC SHELLS
Figure B.1: Modal shapes for cylindrical isotropic shell.

$r/a = 2.0, b/a = 1.0, a/t = 100.00, c/a = 0.0.$
Figure B.2: Displacement pattern with nodal lines for isotropic shell.

\[\frac{r}{a} = 2.0, \frac{b}{a} = 1.0, a/t = 100.00, c/a = 0.0. \]
Figure B.3: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \quad b/a = 1.0, \quad a/t = 100.00, \quad c/a = 0.2. \]
Figure B.4: Displacement pattern with nodal lines for isotropic shell.

$r/a = 2.0\ , \ b/a = 1.0\ , a/t = 100.00\ , \ c/a = 0.2.$
Figure B.5: Modal shapes for cylindrical isotropic shell.

$r/a = 2.0, b/a = 1.0, a/t = 100.00, c/a = 0.4.$
Figure B.6: Displacement pattern with nodal lines for isotropic shell.

\[\frac{r}{a} = 2.0, \ b/a = 1.0, a/t = 100.00, c/a = 0.4. \]
Figure B.7: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, a/t = 100.00, \ c/a = 0.6. \]
Figure B.8: Displacement pattern with nodal lines for isotropic shell.

$r/a = 2.0$, $b/a = 1.0$, $a/t = 100.00$, $c/a = 0.6$.
Figure B.9: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, a/t = 100.00, \ c/a = 0.8. \]
Figure B.10: Displacement pattern with nodal lines for isotropic shell.

\[r/a = 2.0, b/a = 1.0, a/t = 100.00, c/a = 0.8. \]
Figure B.11: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \, b/a = 1.0, a/t = 100.00, \, c/a = 0.9. \]
Figure B.12: Displacement pattern with nodal lines for isotropic shell.

\[r/a = 2.0, \; b/a = 1.0, \; a/t = 100.00, \; c/a = 0.9. \]
Figure B.13: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0 , \ b/a = 1.0 , \ a/t = 100.00 , \ 2c'/a = 0.0. \]
Figure B.14: Displacement pattern with nodal lines for isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.0. \]
Figure B.15: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0 , \ b/a = 1.0 , \ a/t = 100.00 , \ 2c'/a = 0.2. \]
Figure B.16: Displacement pattern with nodal lines for isotropic shell.

\[\frac{r}{a} = 2.0, \quad \frac{b}{a} = 1.0, \quad \frac{a}{t} = 100.00, \quad 2c'/a = 0.2. \]
Figure B.17: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \; b/a = 1.0, \; a/t = 100.00, \; 2c'/a = 0.4. \]
Figure B.18: Displacement pattern with nodal lines for isotropic shell.

\[\frac{r}{a} = 2.0 \ , \ \frac{b}{a} = 1.0 \ , \ \frac{a}{t} = 100.00 \ , \ \frac{2c'}{a} = 0.4. \]
Figure B.19: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.6. \]
Figure B.20: Displacement pattern with nodal lines for isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.6. \]
Figure B.21: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.8. \]
Figure B.22: Displacement pattern with nodal lines for isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 0.8. \]
Mode = 1
Ω = 0.000

Mode = 4
Ω = 17.338

Mode = 2
Ω = 2.638

Mode = 5
Ω = 17.539

Mode = 3
Ω = 4.242

Mode = 6
Ω = 29.071

Figure B.23: Modal shapes for cylindrical isotropic shell.

\[r/a = 2.0, \ b/a = 1.0, \ a/t = 100.00, \ 2c'/a = 1.0. \]
Figure B.24: Displacement pattern with nodal lines for isotropic shell.

\[\frac{r}{a} = 2.0, \; \frac{b}{a} = 1.0, \; a/t = 100.00, \; 2c'/a = 1.0. \]