INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI
STRUCTURE AND EXPRESSION OF THE TRANS-SPLIT GENE
FOR NADH DEHYDROGENASE SUBUNIT I IN WHEAT MITOCHONDRIA.

Yvan Chapdelaine

Thesis submitted to the
School of Graduate Studies and Research
University of Ottawa
in partial fulfilment of the requirements for the
Ph. D. degree in the

Ottawa-Carleton Institute of Biology

© Yvan Chapdelaine, Ottawa, Canada, 1992
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
ACKNOWLEDGMENTS.

I am grateful to Dr. Linda Bonen for her technical and theoretical guidance, and for her great interest in the project. It has been a pleasure to work with her and to learn from her the basis of scientific research. I have also appreciated the time and the interest of the members of my advisory committee, Dr. Carmody, Dr. Hickey and Dr. Johnson.

I thank Pascale Garber, Karen Williams, Caroline Wood, Degen Zhuo and other undergraduate students that have worked in the laboratory for their help. A special thanks to Sharon Bird for her discipline (and tips and tricks!) that is so indispensable for successful research in molecular biology.

Je tiens à remercier également le personnel de soutiens du Département de Biologie pour le support logistique et leur dévouement dans le bon déroulement du programme de Doctorat, spécialement Paul Brunon et Jacques Hélie. De même, pour le partage des joies et des peines communes, je souligne la solidarité de mes collègues, particulièrement Michèle Rouleau, Madeleine Lévesque, Dave Knox et Michel Gilbert.
ABSTRACT.

Plant mitochondrial genomes are known to undergo frequent DNA rearrangements during evolution. Such DNA rearrangements have been observed within the extreme 5' or 3' termini of plant mitochondrial genes. The present studies of the gene for NADH dehydrogenase subunit I (nad1) in wheat demonstrate that DNA rearrangements can even occur at internal sites.

This work shows that the nad1 gene is comprised of five single-copy exons in wheat mitochondria. The predicted NAD1 amino acid sequence is closely related to that from non-plant and chloroplast counterparts. Somewhat surprisingly, these nad1 sequences are scattered at four distantly-separated sites in the wheat mitochondrial genome. The analysis of regions flanking nad1 coding segments revealed the presence of sequence motifs and helical structures that are hallmarks of group II introns. A model is proposed for nad1 gene expression in which one cis- and three trans-splicing events are necessary for the production of nad1 mRNAs.

To investigate nad1 gene expression at the RNA level, transcripts arising from the four nad1 coding regions were analyzed. Northern blot hybridizations and cDNA sequence analysis show that stable transcripts contain all five correctly-linked nad1 exons. S1 nuclease analysis in the regions flanking the nad1 coding segments also revealed the presence of stable transcripts which would be large enough to contain group II intron structures of normal sizes (<3 kb). As has been observed for virtually all plant mitochondrial mRNAs, the maturation of nad1 transcripts also involves RNA editing events. Interestingly, one of these RNA editing sites converts an ACG codon to AUG to create an initiation codon, and this
suggests that RNA editing at this site is obligatory for translation of nad1 mRNAs to proceed. RNA editing is also observed within the discontinuous nad1a/b intron in wheat (which is of particular interest because it lacks several key features of group II introns) but any contribution to intron structure or splicing is as yet uncertain.

The wheat nad1 gene organization seems to have resulted from DNA rearrangements that occurred within previously continuous introns. This organization of the nad1 gene in wheat, a monocot, differs from that of dicot nad1 genes and this suggests that some DNA rearrangements have occurred relatively recently during plant evolution. The unusual nad1 gene structure shows that DNA rearrangements can alter not only gene order but also gene structure, provided that scattered gene pieces are properly transcribed and spliced.
RÉSUMÉ.

Les génomes mitochondriaux des plantes sont reconnus pour subir de fréquents réarrangements d'ADN durant l'évolution. De tels réarrangements ont déjà été observés aux extrémités 5' et 3' de certains gènes mitochondriaux de plantes. La présente étude du gène nad1, qui code pour la sous-unité I du complexe de la NADH déshydrogénase du blé, démontre que des réarrangements d'ADN peuvent même se produire à des sites internes.

Ce travail montre que le gène nad1 comprend cinq exons ayant chacun une seule copie dans la mitochondrie du blé. La séquence anticipée de la protéine NAD1 est très rapprochée des séquences d'autres types d'organismes et de celles des chloroplastes. Il est intéressant de noter que, contrairement à ceux de la plupart des gènes, les exons du gène nad1 sont dispersés en quatre sites éloignés dans le génôme mitochondrial du blé. Des structures hélicoïdales, qui sont caractéristiques des introns du groupe II, sont néanmoins présentes dans les régions adjacentes à ces exons. L'intron nad1a/b comporte un intérêt particulier parce qu'il ne possède pas plusieurs éléments-clés des introns du groupe II. Un modèle est proposé dans lequel trois réactions de trans-épissage et une réaction de cis-épissage sont nécessaires pour la liaison des parties codantes du gène nad1.

Afin d'examiner l'expression du gène nad1 au niveau de l'ARN, les produits de transcription provenant des quatre régions codantes ont été analysés. Par des hybridations ADN-ARN et par le séquençage d'ADN-c, des transcrits stables, qui contiennent les cinq exons du gène nad1, ont été observés. Une analyse des les régions adjacentes aux exons du gène nad1 à l'aide de la nucléase S1 a aussi révélé que des produits de
transcription qui seraient assez longs pour contenir des structures d'introns du groupe II de taille normale (<3 kb). Comme il a été observé pour virtuellement tous les ARN messagers mitochondriaux de plantes, la maturation des transcrits du gène nad1 implique aussi plusieurs sites d'édition d'ARN. Il est intéressant de constater que l'un de ces sites correspond à la conversion d'un codon ACG en AUG pour créer un codon d'initiation, ce qui suggère que l'édition d'ARN à ce site est indispensable pour la traduction des ARN messagers du gène nad1. Un site d'édition d'ARN est aussi observé dans l'intron discontinu nad1a/b du blé, mais la contribution de ce changement à la structure secondaire de l'intron ou à l'épissage demeure incertaine.

L'organisation du gène nad1 du blé semble être le résultat de réarrangements d'ADN qui se sont produits dans des introns préalablement continus. Cette organisation du gène nad1 du blé, une monocotylédone, diffère de celle du gène nad1 de dicotylédones, ce qui indique que certains réarrangements d'ADN se sont produits dans les introns du gène nad1 durant l'évolution des angiospermes. La structure inhabituelle du gène nad1 montre que des réarrangements d'ADN peuvent modifier non seulement l'ordre des gènes, mais aussi leur structure, à la condition que les morceaux dispersés d'un gène soient correctement transcrits et épissés.
TABLE OF CONTENTS.

ACKNOWLEDGMENTS .. ii

ABSTRACT .. iii

RÉSUMÉ ... v

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... xi

LIST OF TABLES .. xiii

ABBREVIATIONS .. xiv

CHAPTER 1. LITERATURE REVIEW .. 1

1.1. ORGANIZATION OF THE GENETIC INFORMATION IN THE
 PLANT CELL ... 1

1.2. MITOCHONDRIAL GENES ... 1

1.2.1. Gene transfer from mitochondria to nuclei 6

1.3. RATES OF NUCLEOTIDE SUBSTITUTION IN MITOCHONDRIA 7

1.4. PLANT MITOCHONDRIAL GENOMES 8

1.4.1. Plant mitochondrial genome sizes 9

1.4.2. Plant mitochondrial genome structure 10

1.4.3. Plant mitochondrial DNA rearrangements 12

1.4.4. Cytoplasmic male sterility ... 14

1.5. PLANT MITOCHONDRIAL TRANSCRIPT ANALYSIS 15

1.5.1. Plant mitochondrial transcription units 15

1.5.2. Potential transcription initiation sites in plant
 mitochondria .. 16

1.5.3. RNA processing at 5' and 3' termini 17
1.6. RNA EDITING ... 18
1.6.1. RNA editing in plant mitochondria 20
1.6.2. Mechanism underlying RNA editing 21
1.7. RNA SPLICING ... 22
1.7.1. Structural characteristics of group II introns 23
1.7.2. Trans-splicing in vivo .. 26
1.8. OBJECTIVES ... 27

CHAPTER 2. MATERIALS AND METHODS 30

2.1. NUCLEIC ACID ISOLATION .. 30
2.2. OLIGONUCLEOTIDE SYNTHESIS 31
2.3. CLONING OF PLANT MITOCHONDRIAL DNA 32
2.4. RADIOACTIVE LABELLING OF NUCLEIC ACIDS 33
2.5. NORTHERN AND SOUTHERN BLOT HYBRIDIZATIONS 34
2.6. NUCLEIC ACID SEQUENCE ANALYSIS 35
2.7. PCR AMPLIFICATION .. 38
2.8. S1 NUCLEASE MAPPING .. 39

CHAPTER 3. RESULTS ... 40

3.1. CHARACTERIZATION OF THE nad1 CODING SEQUENCES IN WHEAT MITOCHONDRIA ... 40
3.1.1. Identification of nad1 gene segments 40
3.1.2. Southern blot hybridizations 46
3.2. ANALYSIS OF SPLICED nad1 TRANSCRIPTS 48
3.2.1. Direct cDNA sequencing analysis of nad1 transcripts 48
3.2.2. Analysis of PCR-amplified reverse transcripts 48
3.3. RNA EDITING IN nad1 TRANSCRIPTS 51
3.3.1. Identification of the initiation codon of the nad1 gene ... 51
3.3.2. Distribution of RNA editing sites in the wheat mitochondrial nad1 coding regions 52
3.3.3. Comparison of nad1 RNA editing sites between wheat, Oenothera and petunia 55
3.3.4. Analysis of partially edited nad1 cDNAs ... 56
3.3.5. Other rare changes in nad1 cDNA sequences ... 57
3.4. ANALYSIS OF AMINO ACID SEQUENCES DEDUCED FROM THE nad1 AND mat-r GENES 61
3.4.1. The nad1 gene 61
3.4.2. The mat-r gene 64
3.5. Nad1 TRANSCRIPT ANALYSIS 65
3.5.1. Northern blot hybridizations 65
3.5.1.1. Transcripts common to the five nad1 exons .. 66
3.5.1.2. Thenad1a region 66
3.5.1.3. The nad1b-nad1c region 66
3.5.1.4. The nad1d and nad1e regions 68
3.5.2. S1 nuclease analysis 70
3.5.2.1. The nad1a region 71
3.5.2.2. The nad1b-nad1c region 73
3.5.2.4. The nad1d and nad1e regions 76
3.5.3. Potential processing signals of nad1 precursor transcripts 79
3.6. STRUCTURAL ANALYSIS OF nad1 INTRONS 81
3.6.1. Group II intron structures flanking nad1 coding sequences 82
3.6.2. Analysis of the nad1a/b discontinuous intron .. 84
3.6.2.1. Domain VI of the nad1a/b discontinuous intron 84
3.6.2.2. Domain V of the nad1a/b discontinuous intron 88
3.6.2.3. The 5' splice site of the nad1a/b discontinuous intron .. 89
3.6.2.4. High rate of nucleotide substitution in the nad1a/b intron 89
3.6.3. Positions of discontinuities in the core structure of nad1 group II introns 92
3.7. COMPARISON OF nad1 GENE ORGANIZATIONS IN DIFFERENT PLANTS

CHAPTER 4. GENERAL DISCUSSION

4.1. EXPRESSION OF THE nad1 GENE IN WHEAT MITOCHONDRIA
4.2. PATTERNS OF RNA EDITING IN PLANT MITOCHONDRIA
4.3. A TRANS-SPLICING MODEL FOR nad1 GENE EXPRESSION
4.4. THE nad1a/b INTRON STRUCTURE
4.5. EXPRESSION AND PROCESSING OF nad1 TRANSCRIPTS
4.6. FLUIDITY OF THE nad1 GENE STRUCTURE
4.7. TRANS-INTERACTIONS IN GROUP II INTRONS
4.8. INCIDENCE OF TRANS-SPLIT GENE STRUCTURES
4.9. FUTURE DIRECTIONS
4.10. CONCLUDING REMARKS

REFERENCES

APPENDIX I
APPENDIX II
APPENDIX III
APPENDIX IV
APPENDIX V
APPENDIX VI
APPENDIX VII

x
LIST OF FIGURES.

Figure 1. Schematic representation of the group II intron secondary structure 24

Figure 2. Restriction map and Southern hybridization analysis of the wheat mitochondrial nad1 gene. 41

Figure 3. Nucleotide sequence of the wheat nad1 gene segments and flanking regions 43

Figure 4. Autoradiographs of direct cDNA-sequencing gels across nad1 exon junctions and around the initiation codon. 44

Figure 5. Characterization of PCR-amplified nad1 cDNAs . 49

Figure 6. Schematic representation of RNA editing sites in plant mitochondrial nad1 coding regions 53

Figure 7. Sequence analysis of a T-stretch region in nad1d. 59

Figure 8. Alignment of the predicted NAD1 amino acid sequences 62

Figure 9. Northern blot hybridization analysis of nad1 transcripts 67

Figure 10. S1 nuclease analysis of transcripts arising from the nad1a region 72
Figure 11. S1 nuclease analysis of transcripts arising from the \textit{nad1b-nad1c} region

Figure 12. S1 nuclease analysis of transcripts arising from the \textit{nad1d} and \textit{nad1e} regions

Figure 13. Potential double stem-loop structures located immediately upstream of 3' termini of \textit{nad1} transcripts

Figure 14. Secondary structural models of \textit{nad1} group II intron structures

Figure 15. Analysis of RNA editing in domains V and VI of the \textit{nad1a/b} discontinuous intron in wheat and pea

Figure 16. Alignment of \textit{nad1a/b} intron sequences from various plants

Figure 17. Comparison of the \textit{nad1d} and \textit{nad1e} exon organization in wheat and broad bean mitochondria

Figure 18. Alignment of domain V sequences of discontinuous introns
LIST OF TABLES.

Table 1. Compilation of mitochondrial protein-coding genes in different organisms. 2

Table 2. Compilation of nad1 RNA editing sites in wheat, Oenothera and petunia ... 54

Table 3. Sequence similarity levels between wheat and Oenothera nad1 introns .. 90

Table 4. Distribution of introns in mitochondrial protein-coding genes of Podospora, liverwort and angiosperms, as well as in chloroplast homologues. 109

xiii
ABBREVIATIONS.

A adenosine
AMV avian myeloblastosis virus
atp genes for ATP synthase subunits
bp base pairs
C cytidine
cDNA complementary DNA
CMS cytoplasmic male sterility
cob gene for cytochrome_b-c1 subunit
cox genes for cytochrome oxidase subunits
ddNTP dideoxynucleotide triphosphate
dNTP deoxynucleotide triphosphate
EDTA ethylenediaminetetraacetic acid
G guanosine
I inosine
kb kilobases
mRNA messenger RNA
mtDNA mitochondrial DNA
mtRNA mitochondrial RNA
Myr million years
nad genes for NADH dehydrogenase subunits (ND is used for non-plant organisms, and ndh for chloroplast homologues)
nucleotides
ORF open reading frame
PCR polymerase chain reaction
rpl genes for protein of the large ribosomal subunits
rps genes for protein of the small ribosomal subunits
rrn genes for ribosomal RNAs
rRNA ribosomal RNA
RT reverse transcriptase
SDS sodium dodecyl sulphate
SSC 150 mM NaCl, 32 mM sodium acetate, pH 7.0
T thymidine
TE 10 mM Tris-HCl pH 7.5, 1 mM EDTA
Tris Tris(hydroxymethyl)aminomethane
tRNA transfer RNA
U uridine
CHAPTER 1. LITERATURE REVIEW.

1.1. ORGANIZATION OF THE GENETIC INFORMATION IN THE PLANT CELL.

The genetic information in the plant cell is divided among three compartments (nucleus, mitochondria and chloroplast) that can replicate their own DNA and synthesize proteins. Organellar genomes encode only a modest, but crucial, portion of the proteins involved in their biogenesis and function. Many of these proteins are components of the respiratory chain in the mitochondria, and of the photosynthetic apparatus in the chloroplast. Based on genetic studies, it has been estimated that approximately 90% of the mitochondrial proteins are nuclear-encoded and imported from the cytoplasm (Neupert and Schatz, 1981). The nucleus plays a central role in the regulation of organellar activities.

It is generally accepted that the high degree of dependence of mitochondria and chloroplasts on nuclear gene products has increased during evolution due to massive gene transfer from organelles to the nuclear genome. This idea is based on the endosymbiont hypothesis, which proposes that the contemporary organellar DNA is the remainder of the genome of prokaryotic-like symbionts that invaded primitive eukaryotic cells. Phylogenetic studies suggest that the most closely-related free living relatives of mitochondria and chloroplasts are the purple bacteria (alpha subgroup) and blue-green algae (cyanobacteria) (Gray et al. 1989; Van de Peer et al. 1990).

1.2. MITOCHONDRIAL GENES.

Studies on mitochondrial genomes from different organisms have shown that they contain a similar, yet not identical, set
of genes. However, independent gene transfer events that have occurred during evolution have led to certain differences in mitochondrial gene contents in different lineages (reviewed by Gray, 1989a). This variation is evident by examining the complete sequence of mitochondrial genomes from man (Anderson et al. 1981), several other species of the animal kingdom (Attardi and Schatz, 1988), Podospora anserina (Cummings et al. 1990), Paramecium (Pritchard et al. 1990), Marchantia polymorpha (Oda et al. 1992) and virtually the complete mitochondrial genomes from Saccharomyces cerevisiae (Wolf and Del Giudice, 1988) and Chlamydomonas reinhardtii (Michaelis et al. 1990). In Table 1, the mitochondrial protein-coding genes that have been identified are indicated for man, S. cerevisiae and Podospora. Protein-coding genes that have been identified so far in certain angiosperm mitochondrial genomes are also shown.

Mitochondrial genes can be classified according to the respiratory or structural function of their products. The genes involved in respiration encode a number of components of the electron transport chain complexes; these include the NADH dehydrogenase, cytochrome b-c1, cytochrome oxidase and ATP synthase complexes. Genes for structural components comprise ribosomal RNA (rRNA) and transfer RNA (tRNA) genes, and genes for ribosomal proteins. The rRNA and tRNA genes are almost universally present in mitochondrial genomes although some tRNAs are known to be imported from the cytoplasm in several organisms, such as plant and protozoans (Nagley, 1989, Small et al. 1992).

The genes encoding subunits of the cytochrome oxidase complex (coxI, coxII, coxIII) and the cytochrome b-c1 complex (cob) are present in each mitochondrial genome shown in Table
Table 1. Compilation of the mitochondrial protein-coding genes in different organisms.

<table>
<thead>
<tr>
<th></th>
<th>Homo sapiens a</th>
<th>Saccharomyces cerevisiae b</th>
<th>Podospora anserina c</th>
<th>Marchantia polymorpha d</th>
<th>Angiosperms e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome oxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coxI</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>coxII</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ g</td>
</tr>
<tr>
<td>coxIII</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cytochrome b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cob</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ATP synthase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atp6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>atp8</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>atp9</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>atpA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NADH dehydrogenase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nad1, nad2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>nad3, nad4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nad4L</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>nad5, nad6</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>nad7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+ f</td>
<td>+</td>
</tr>
<tr>
<td>Ribosomal proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rps3, rps7, rps12,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>g +</td>
</tr>
<tr>
<td>rps14, rps19, rpl16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rps13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+ g</td>
</tr>
<tr>
<td>rps1, rps10, rpl5, rpl6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>rps2, rps4, rps8,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>rps11, rpl12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>RNA maturases and/or</td>
<td>-</td>
<td>+</td>
<td>37</td>
<td>11</td>
<td>+</td>
</tr>
<tr>
<td>or endonucleases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Reading Frames</td>
<td>-</td>
<td>2-3</td>
<td>32</td>
<td>31</td>
<td>+</td>
</tr>
</tbody>
</table>

Genome Size

| | 16 kb | 75 kb | 94 kb | 187 kb | 200-2400 kb |

a Anderson et al. (1981); b Wolf and Del Giudice (1988); c Cummings et al. (1990); d Oda et al. (1992); e Bonen (1991); f Pseudogene; g Genes not present in all plants examined.
1; however the coxII and coxIII genes are absent from C. reinhardtii mitochondrial DNA (mtDNA) (Michaelis et al. 1990), as well as coxII in Paramecium (Pritchard et al. 1990). Similarly, four subunits of the ATP synthase complex are encoded in certain mitochondrial genomes but their presence varies greatly in different organisms. The atp6 gene, which is the only one that is mitochondrially-encoded in all organisms shown in Table 1, is absent from C. reinhardtii mtDNA (Michaelis et al. 1990). Nine genes for subunits of the NADH dehydrogenase complex have been found so far in the mitochondrial genomes of different organisms. Eight of these genes are listed in Table 1, and the gene for another subunit (ND8) has been identified in the protist Paramecium (Pritchard et al. 1990). Some of these NADH dehydrogenase genes are absent from the mitochondrial genome of human and Podospora (ND7, ND8), C. reinhardtii (ND3, ND4L, ND7, ND8) and all of them in yeast. In trypanosomes, only ND1, ND2, ND4, ND5 and ND7 have been identified to date (reviewed in Bonen, 1991).

Ribosomal protein genes form a group that is absent from animal mitochondrial genomes, rare in fungi and more abundant in plants (see Table 1 and Bonen, 1991). The liverwort mitochondrial genome contains at least sixteen ribosomal protein genes based on their homology to bacterial ones (Oda et al. 1992). Seven of the ribosomal protein genes found in liverwort are known to be present in certain angiosperm mitochondrial genomes (rps3, rps7, rps12, rps13, rps14, rps19, rpl16). The genes for ribosomal proteins S12, S14, L2 and L14 have also been found in Paramecium mtDNA (Pritchard et al. 1990).

Based on the complete sequence of the chloroplast genomes in liverwort (Ohyama et al. 1986) and tobacco (Shinozaki et
al. 1986), chloroplasts also contain genes that are evolutionarily related to mitochondrial ones. This group includes the genes for the four ATP synthase subunits and the NADH dehydrogenase subunits shown in Table 1, as well as subunit 8 which was shown to be encoded by the chloroplast psbG gene (Nixon et al. 1989). There are also seven ribosomal proteins (S3, S7, S12, S14, S19, L2, L16) that are encoded by both chloroplast and mitochondrial genomes.

When this work began in 1987, only a few genes had been found in plant mtDNA: essentially genes for cytochrome oxidase, cytochrome_b-c1 and ATP synthase subunits. Estimations based on in organello protein synthesis in isolated mitochondria in maize (Forde and Leaver, 1980) or transcriptional studies in Brassica (Makaroff and Palmer, 1987), predicted that 20-30 proteins would be encoded in plant mitochondrial genomes. As listed in Table 1, twenty-one protein-coding genes have been identified in angiosperm mitochondria to date. The complete sequence of the Marchantia polymorpha mitochondrial genome indicates the presence of approximately 30 protein-coding genes of known functions, three ORFs with homology to previously identified mitochondrial ORFs in other organisms and 28 additional ORFs longer than 60 codons (Oda et al. 1992). Thus, the liverwort mitochondrial genome could potentially encode as many as 60 proteins, which is somewhat more than initially expected for angiosperms. It is likely that several liverwort mitochondrial ORFs will also be present in angiosperm mitochondrial genomes.
1.2.1. **Gene transfer from mitochondria to nucleus.**

There are only two protein-coding genes, namely \textit{coxI} and \textit{cob} genes, that are present in all mitochondrial genomes that have been examined. This suggests that most genes that were originally present in the endosymbiont have been either lost or transferred to the nucleus. For successful gene transfer, nuclear copies must be properly transcribed and specific signals must be acquired for their expression. The nuclear gene product must also be targeted to mitochondria and this involves an intricate protein import machinery (reviewed by Pfanner and Neupert, 1990).

One may wonder why all the mitochondrial genetic information has not been completely transferred to the nucleus. It appears costly to maintain protein synthesis and DNA replication machineries in organelles to express only a small number of genes. Interestingly, in \textit{Epigagus virginiana}, a nonphotosynthetic root parasite, the plastid genome has been reduced considerably over a short period of time (5-50 Myr) and has retained only rRNA genes, ribosomal protein genes and some ORFs of unknown function (dePamphilis and Palmer, 1990). These ORFs might be involved in essential nonphotosynthetic functions that would justify the maintenance of this plastid genome. This raises the possibility that constraints may exist for maintaining certain genes within organelles, but it remains puzzling as to which genes those are (if any) and what their functions are.

Well-documented examples of gene transfer events suggest a model to describe how such events occur. One example is the \textit{atp9} gene, which is mitochondrially-encoded in yeast but not in \textit{Podospora} (Cummings et al. 1990) or animals (Attardi and Schatz, 1988). In \textit{Neurospora}, both nuclear and mitochondrial
genomes contain one copy of the atp9 gene, but only the nuclear copy has been demonstrated to be expressed (Mishra, 1991). Similarly, the coxII gene is found in almost all plant mitochondrial genomes, but is nuclear-encoded in mung bean and cowpea and is present in both genomes of certain legumes (Nugent and Palmer, 1991). These two examples (atp9 and coxII genes) suggest that the nuclear gene copy becomes functional before the loss of the mitochondrial copy. Interestingly, based on Southern blot hybridizations, each ribosomal protein-coding gene that has been identified in the mitochondrial genome of a specific angiosperm appears to be absent from some other ones (Table 1), raising the possibility that many of these genes have been transferred to the nuclear genome during plant evolution.

1.3. RATES OF NUCLEOTIDE SUBSTITUTION IN MITOCHONDRIAL GENOMES.

Another source of diversity among mitochondrial genomes lies in the extremely variable rates of nucleotide substitution as inferred from DNA sequence data. Based on restriction site mutations, plant mtDNA appears to have a very slow rate of nucleotide substitution in both coding and non-coding regions (Palmer and Herbon, 1988). Similar differences in the rates of nucleotide substitution are observed in rRNA gene sequences (Gray et al. 1989). Moreover, in protein-coding genes, synonymous and nonsynonymous positions are estimated to change approximately three times slower in mtDNA than in plastid DNA, which itself is believed to evolve two times more slowly than nuclear sequences (Wolfe et al. 1987).

There are also major differences in the rates of nucleotide substitution among mitochondrial genomes from
different organisms. In contrast to the slow rate observed in plant mtDNA, the converse situation is seen in mammals where mtDNA evolves faster than nuclear DNA. Consequently, plant and mammalian mtDNAs differ in their respective rates of silent substitutions by 10 to 100 times (Wolfe et al. 1987). The reasons behind the slow evolution of plant mtDNA sequences are not known, but they may be due in part to differences in the DNA repair systems and in the fidelity of replication. However, Gray and colleagues (1989) suggested that a high level of conservation of DNA sequences in plant mitochondria alone cannot explain these differences, and that mitochondrial genomes may have a polyphyletic origin. Whether mitochondria and chloroplasts have monophyletic or polyphyletic origins has been debated in the literature. Arguments for one view or the other view are based on the diversity of membrane ultrastructure and pigment composition, and the question is whether these features have emerged before or after endosymbiosis (reviewed by Gray, 1989b; 1991).

1.4. PLANT MITOCHONDRIAL GENOMES.

It is clear from the above sections that mitochondrial genome features display considerable variation in different organisms. In this section, an overview of the plant mitochondrial genome organization is presented in terms of size, structure and recombinogenic nature. This section also illustrates that mitochondrial genomes are in many respects more complex in plants than in other organisms.
1.4.1. **Plant mitochondrial genome sizes.**

One distinctive feature of plant mitochondrial genomes is their large size. The smallest plant mitochondrial genome is found in *Marchantia polymorpha* (187 kb, Oda et al. 1992), and the smallest one among angiosperms has been reported in *Brassica hirta* (208 kb, Palmer and Herbon, 1987). Thus all plant mitochondrial genomes are more than 12 times larger than human mtDNA which is organized in a compact circular molecule of approximately 16 kb (reviewed in Attardi and Schatz, 1988). There are also certain animal mitochondrial genomes that are as small as 14.3 kb or as large as 32 kb (reviewed in Gray, 1989a). Plant mitochondrial genomes are also larger than most fungal ones which vary from 17.6 kb in *Schizosaccharomyces pombe* EF1 (Wolf and Del Giudice, 1988) to 176.3 kb in *Agaricus bitorquis* (Hintz et al. 1985).

Another hallmark of plant mtDNA is that sizes vary greatly between closely-related species. The most striking variation in size has been observed in the family *Cucurbitaceae*. The watermelon mitochondrial genome is approximately 330 kb which is about seven times smaller than the 2400-kb mitochondrial genome of muskmelon (Ward et al. 1981). Such differences were initially unexpected since these plants presumably have a very similar gene content.

The large size of plant mtDNA compared to other organisms is mostly due to non-coding DNA, to the presence of introns and to the presence of plant-specific genes. Non-coding DNA is abundant in plant and fungal mtDNAs (Gray, 1989a). In contrast, non-coding regions represent only a very small portion of animal mitochondrial genomes. Introns are also important contributors to fungal and plant genome sizes compared to animals in which introns have not yet been
reported. Although the number of plant mitochondrial genes might be substantially larger than that of non-plant organisms (section 1.2), coding regions are expected to cover only a small part of most plant mitochondrial genomes.

One may also wonder what are the reasons for these differences in size among plant mitochondrial genomes. Based on solution hybridization data, only 5-10% of extra DNA consists of repetitive sequences (Ward et al. 1981). The integration of DNA from nuclear and chloroplast sources also appears to contribute to the large size of plant mitochondrial genomes. Chloroplast DNA sequences are frequent and widespread in mitochondrial genomes (Stern and Palmer, 1984). The presence of sequences closely-related to various plastid ones at different sites of plant mitochondrial genomes suggests that multiple DNA transfer events from the chloroplast to the mitochondria have occurred recently during evolution (review by Newton, 1988). Except for some chloroplast tRNA genes that are functional in plant mitochondria (Joyce and Gray, 1989), most chloroplast DNA sequences that have been inserted in mitochondrial genomes appear to be non-functional.

1.4.2. Plant mitochondrial genome structure.

When plant mtDNA is digested with restriction enzymes, DNA fragments of various abundances are observed. Certain low level molecules can be detected only by hybridization and have been termed "sublimons" (Small et al. 1989). These different stoichiometries and the large sizes of plant mitochondrial genomes have hindered a rapid characterization of their structure.

Restriction mapping analysis of plant mtDNA predicts the presence of large circles in wheat (430 kb; Lejeune and
Quétier, 1988), maize (570 kb; Lonsdale et al. 1984), B. campestris (218 kb; Palmer and Shields, 1984), B. hirta (208 kb; Palmer and Herbon, 1987), sugar beet (386 kb; Brears and Lonsdale, 1988), Petunia hybridra (443 kb; Folkerts and Hanson, 1989) and liverwort (187 kb; Oda et al. 1992). Plant mitochondrial genomes also contain a certain number of repeated elements which vary from none in Brassica hirta (Palmer and Herbon, 1988) to as many as ten in wheat (Lejeune and Quétier, 1988). In B. campestris for example, the 218-kb mitochondrial genome contains two copies of a directly repeated sequence of approximately 2 kb. A model has been proposed in which these repeated elements recombine to generate two subgenomic circles of 135 kb and 83 kb (Palmer and Shields, 1984). Restriction mapping analysis is also consistent with the presence of such subgenomic circles.

However, except in liverwort, none of the master circles that are inferred from restriction mapping in different plants have been observed by electron microscopy, and only in rare cases have subgenomic circles been physically characterized (reviewed by André et al. 1992). Using pulsed-field gel electrophoresis and Eckhardt gels, Levy and colleagues (1990) have shown that a large circular chromosome of 120 kb in maize (Black Mexican Sweet) is abundant. They suggested that this chromosome has been isolated from the rest of the genome because it lacks recombinational repeats (see also André et al. 1992). In watermelon, electron microscopy and gel electrophoresis data indicate that linear molecules are more abundant than circular ones, and that some linear molecules are four times longer than the 330-kb mitochondrial genome (Bendich and Smith, 1990). It is therefore unclear whether the circular master chromosome exists in certain plants, and it is
certainly not abundant in most plants. While animal and fungal mtDNAs are usually circular, linear mtDNAs have been reported in some, but not all, protists such as Tetrahymena (55 kb), Paramecium (41 kb) and C. reinhardtii (15.8 kb; reviewed by Gray, 1989a).

The organization of plant mitochondrial genomes in multiple circular and/or linear molecules raises the problem as to how it is ensured that all genetic information is replicated and transmitted to progeny. Palmer and Shields (1984) have suggested that the mtDNA replication system may operate on multiple circles or by suppression of recombination and only the master chromosome would be replicated (see also Lonsdale, 1984). However, little is known about how and when recombinational events occur, and how the level of each molecular form is regulated. In yeast, mitochondrial growth and division is independent of mtDNA replication since strains without mtDNA can still undergo mitochondrial division. This indicates that mitochondrial division is controlled by the nucleus (Attardi and Schatz, 1988). In plants, it has been shown that isolated mitochondria are capable of both replicative and repair DNA synthesis (reviewed in Levings and Brown, 1989), but many questions remain to be addressed regarding the replication origin(s) and the factors involved in the replication process.

1.4.3. Plant mitochondrial DNA rearrangements.

Although the primary sequence of mtDNA is remarkably well conserved among plants, the gene order varies considerably in different species because of frequent DNA rearrangements that have occurred during evolution. This is in contrast with animal mitochondrial genomes in which the gene order is nearly
identical between widely divergent species (Attardi and Schatz, 1988), but is similar to fungal ones among which the gene order differs considerably (Scazzocchio, 1987; Lonsdale, 1989). In plants, the frequency of DNA rearrangements is such that, even between closely related species, gene flanking sequences are often completely different, and breakpoints in homology are found very close to or even within coding regions. Interestingly, the liverwort mitochondrial genome contains certain ribosomal protein operons with a similar gene order to those of the chloroplast and Escherichia coli (Oda et al. 1992). This observation suggests that plant mitochondrial genome organization may have been stable prior to the divergence of bryophytes and angiosperms.

The reasons behind the recombinogenic nature of mtDNAs in angiosperms have been extensively discussed in the literature (Lonsdale, 1989; André et al. 1992). Short repeated sequences are often found at sites of DNA rearrangements, and sometimes correspond to gene pieces that have been duplicated in plant mitochondrial genomes. These short repeats are ubiquitous in plant mtDNA and are clearly active in recombination (André et al. 1992). Interestingly, fungal mitochondrial genomes also contain short repeats that can recombine occasionally (Wolf and Del Giudice, 1988). In both yeast and maize, a three-stage recombination model, which involves subsequent recombination between long and short repeated elements, has been proposed to explain duplication and deletion of mtDNA sequences during evolution (Small et al. 1989).

André and colleagues (1992) have proposed another model which may explain the origin of some of the short repeated sequences. This model suggests that reverse transcription of "nonfunctional" RNA molecules may occur and these sequences
could be subsequently integrated in plant mitochondrial genomes. Although reverse transcriptase activity has not yet been detected in plant mitochondria, several reverse transcriptase-homologous sequences are present (Brennicke and Schuster, 1987; Newton, 1988; Wahleithner et al. 1990). Thus, frequent DNA rearrangements and short repeats are possibly linked, and this raises questions whether homologous recombination is general or site-specific (discussed in Joyce et al. 1988). As yet, there is no evidence suggesting that sequence motifs are necessary for recombination to occur.

1.4.4. Cytoplasmic male sterility.

Mitochondrial DNA rearrangements are intimately associated with deficiencies leading to certain types of cytoplasmic male sterility (CMS) in plants. The net result of CMS is that pollen is defective or simply absent in an otherwise normal plant. Analysis of specimens shows that novel chimeric genes are often generated by mtDNA rearrangements. The urf13-T and pcf genes are well-documented examples of chimeric genes involved in CMS (reviewed by Newton, 1988; Hanson, 1991). Although the mechanism underlying CMS is not well understood, it appears that chimeric gene products affect the respiratory capacity of mitochondria. The use of male-sterile lines has contributed greatly to plant breeding and to the production of hybrid seeds. Our understanding of how CMS is occurring will benefit from a better knowledge of the fundamental aspects of plant mtDNA structure and gene expression.
1.5. PLANT MITOCHONDRIAL TRANSCRIPT ANALYSIS.

Rearrangements in plant mtDNA often occur in the neighbourhood of translated sequences or within transcribed regions. Consequently, regulatory elements that are usually found upstream and downstream of coding sequences are often located within unrelated regions in different plants. Despite the large genome size and the abundance of spacer DNA, most mtDNA regions appear to be transcribed although at different levels among plants (reviewed in Gray et al. 1992). In B. campestris, Northern blot hybridizations indicate that approximately 30% of the 218-kb mitochondrial genome is transcribed into 24 abundant stable RNAs and most of the rest of the genome is transcribed at a lower level (Makaroff and Palmer, 1987). Similarly, in organello transcription studies suggest that the maize mitochondrial genome is virtually entirely transcribed, but some regions have no stable transcripts in vivo (Finnegan and Brown, 1990).

1.5.1. Plant mitochondrial transcription units.

Transcript analysis of mitochondrial genes from different plants reveals that some genes are cotranscribed: e.g. \textit{nad3-rps12} in wheat (Gualberto et al. 1988), \textit{ORF25-coxIII} in rice (Liu et al. 1992), \textit{rps14-cob} in broad bean (Wahleithner and Wolstenholme, 1988), \textit{rrn18-rrn5-nad5} in \textit{Oenothera} (Wissinger et al. 1988). However, genes that are transcriptionally linked in one plant are often unlinked in others because of DNA rearrangements. For example, the \textit{rps13} gene is cotranscribed with the \textit{coxI} gene in \textit{Oenothera} (Wissinger et al. 1990), and the \textit{atp9} gene in tobacco (Bland et al. 1986). In wheat, the \textit{rps13} gene is preceded by the \textit{atp6} gene but appears to have no stable transcript (Bonen, 1987).
Transcription in plant mitochondria involves multiple promoters (Gray et al. 1992). This is in contrast with animal mitochondria which have only one promoter for each DNA strand (reviewed in Clayton, 1991), but is similar to yeast where at least 19 promoters are seen (reviewed in Wolf and Del Giudice, 1988). Plant mitochondrial transcription units, so far, do not exceed two or three genes, but the liverwort mtDNA organization suggests that longer operons are present (Oda et al. 1992).

1.5.2. Potential transcription initiation sites in plant mitochondria.

The identification of transcription initiation sites constitutes an important step in our understanding of plant mitochondrial gene expression. A number of 5' termini have been mapped by primer extension but the lack of consensus in the corresponding regions has raised the possibility that some of these transcript ends could result from RNA processing (Gray et al. 1992). To get around this problem, the guanylyltransferase enzyme has been used to label specifically primary transcripts which have di- or triphosphate at their 5' termini. The results led to the identification of a consensus sequence in wheat (Covello and Gray, 1991), maize (Mulligan et al. 1991) and soybean (Brown et al. 1991).

Wheat: rAaannGCrTATArtragt Covello and Gray, 1991
Maize: tCnCaAaAa Mulligan et al. 1991
Soybean: yrAAATnnCrTAAAGAAGAAGAAAG Brown et al. 1991
These consensus promoters are similar but share only the short CRTA motif (in bold). In addition, the position of the transcription initiation site (underlined) varies relative to the CRTA motifs, and this variation is also seen for different maize promoters (Mulligan et al. 1991). In similar experiments in soybean, the identification of an unrelated transcription initiation site for the primary "RNA e" (which does not fit the soybean consensus) has led Brown and colleagues (1991) to propose that different types of promoters could be used in plant mitochondria.

In maize, site directed mutagenesis indicates that the G(AT)\textsubscript{3-4} motif proposed earlier (Mulligan et al. 1988) is dispensable in vitro, and a stretch of 11 nucleotides (ACGTATTAAAA) constitutes an essential promoter element for the atpA gene (Rapp and Stern, 1992). It appears, however, that this 11-bp sequence alone is insufficient for promoter activity. These observations contrast with the \textit{S. cerevisiae} mitochondrial consensus promoter (ATATAAGTA) which is also well conserved in other yeast species (Wolf and Del Giudice, 1988; Gray et al. 1992). Thus, initiation of transcription appears to occur at specific sequences in plant mitochondria, but these may vary between species, and one species may have multiple types.

1.5.3. RNA processing at 5' and 3' termini.

RNA processing also contributes to the complexity of transcript profiles in plant mitochondria (reviewed by Levings and Brown, 1989; Gray et al. 1992). This is similar to observations made for the chloroplast in which polycistronic transcripts are extensively processed at 5' and 3' termini as well as between genes (reviewed by Gruissem et al. 1988). In
animal mitochondria, protein-coding genes are interspersed with tRNA genes which appear to serve as RNA processing signals (reviewed by Clayton, 1991), and a site-specific endoribonuclease plays a major role in RNA processing. In Neurospora, long stem-loop structures flank tRNA genes at RNA processing sites (Burger et al. 1985), and tRNA structures have been shown to act as processing signals in S. pombe (Wolf and Del Giudice, 1988). In plant mitochondria, both stem-loop and tRNA structures appear to be used in processing (Gray et al. 1992). Single and double stem-loop structures have been observed downstream of certain genes. Some of these structures are located immediately upstream of the position of transcript termini established by S1 nuclease mapping. Although these structures may resemble bacterial transcription termination sites (Schuster et al. 1986), it is more likely that they are involved in RNA processing which appears to be predominant over transcription termination in plant mitochondria (reviewed in Levings and Brown, 1989; Gray et al. 1992).

1.6. RNA EDITING.

RNA editing involves posttranscriptional modifications that can specifically alter the coding information that is present in the genomic DNA. Different types of RNA editing have been found in a wide variety of genetic systems, including the mammalian nucleus, in the mitochondria of trypanosomes, Physarum and plants, and in plant chloroplasts (reviewed in Cattano, 1991; Gray et al. 1992).

In trypanosomal mitochondria, RNA editing is a developmentally-regulated process that results in extensive insertions and deletions of uridines (U). These changes are necessary at the RNA level to generate the correct reading
frame. Some mRNAs contain as many as 40% of their bases either inserted or deleted (Feagin et al. 1988). In slime mold mitochondria (*Physarum polycephalum*), cytidines (C) are inserted in both mRNAs and rRNAs, and RNA editing sites are rather evenly spaced (Mahendran et al. 1991).

Another type of RNA editing involves tissue-specific cytidine to uridine (C-to-U) changes that create a stop codon in mammalian apolipoprotein B transcripts. *In vitro* studies indicate that the process occurs by deamination (Hodges and Scott, 1992). Similarly, RNA editing is crucial in the conversion of a CAG codon (glutamine) to CGG codon (arginine) in a glutamate gated channel (Sommer et al. 1991). The authors have suggested that deamination may in fact convert an adenosine (A) to inosine (I). In these two cases of editing in mammalian nuclear genes, like in trypanosomes, the process is also developmentally regulated.

Mammalian editing in apolipoprotein B transcripts is conceptually similar to the C-to-U RNA editing process that was recently discovered in plant mitochondria (Gualberto et al. 1989; Covello and Gray, 1989; Hiesel et al. 1989), although plant mitochondrial RNA editing is much more extensive (see below). Interestingly, several C-to-U changes have also been observed in chloroplast RNAs but appear to be less frequent than in plant mitochondrial transcripts (Hoch et al. 1991; Maier et al. 1992).

Although these modifications are all grouped under the label "RNA editing" and although many of them are found in the mitochondria of different organisms, they are different with respect to the type of changes involved, their frequency and presumably the mechanisms underlying the process. These observations and the sporadic distribution of RNA editing in
different lineages led Gray et al. (1992) to conclude that the
different types of mtRNA editing are likely to have evolved
relatively recently.

1.6.1. RNA editing in plant mitochondria.

Plant mitochondrial C-to-U RNA editing sites are seen in
the coding regions of most mRNAs, and some editing sites have
also been observed in non-translated regions. Approximately 2-
15% of the codons are affected, and usually the predicted
amino acid sequence similarity with homologues from other
organisms is increased (reviewed in Walbot, 1991; Gray et al.
1992; Bonnard et al. 1992). A large portion of the RNA editing
sites are plant-specific, so that it is possible to predict
the position of certain sites by a comparison of plant genomic
DNA sequences (Covello and Gray, 1990). Uncommon U-to-C
changes called reverse editing have been described (reviewed
by Schuster et al. 1991a; Bonnard et al. 1992). These U-to-C
changes are only present in rare cDNA clones, except one
silent U-to-C editing site that has been observed in all wheat
coxIII transcripts examined (Gualberto et al. 1990).

The analysis of RNA editing in transcripts at different
stages during RNA maturation revealed that higher levels of
editing are observed after splicing (Yang and Mulligan, 1991;
Sutton et al. 1991), and in polysomal RNA (Gualberto et al.
1991). These observations indicate that a temporal
relationship exists between RNA editing and transcript
maturation, and supports the view that mRNAs are for the most
part edited during early stages of the RNA maturation process.
1.6.2. **Mechanisms underlying RNA editing.**

Although the phenomenon of RNA editing in plant mitochondria has been extensively described since its discovery three years ago, the mechanisms by which RNA editing occurs and how editing sites are specifically recognized remain obscure. There are no consensus and/or secondary structures that have been identified in the sequences flanking the edited sites, except that deviations from expected nucleotides frequencies have been observed at surrounding positions (Covello and Gray, 1990), and that a guanosine (G) rarely precedes an edited C in *Oenothera* (Schuster et al. 1991a). These data suggest that constraints exist on sites to be edited, but they are not sufficient alone to distinguish those nucleotide positions to be edited.

The C-to-U changes seen in plant mitochondria could occur by base modifications, base substitutions or nucleotide substitutions. Editing in mammalian apolipoprotein B mRNAs occurs by deamination, which would correspond to a base modification mechanism. In trypanosomal mitochondria, guide RNAs are responsible for the recognition of the sites to be edited and for providing Us to be inserted, and this appears to be consistent with a model involving a double transesterification reaction (Blum et al. 1990; 1991; Harris and Hajuk, 1992). *In vitro* experiments have shown that RNA editing activity is detected in wheat mitochondrial extracts, and that the machinery involved is nuclease and protease sensitive (Araya et al. 1992), but more work will be necessary to elucidate the components involved in plant mtRNA editing.
1.7. RNA SPlicing.

Organellar introns are usually divided into different categories according to their structural characteristics. Group I and group II introns can be folded into distinct secondary structures (Michel et al. 1982; see Burke, 1988 and Michel et al. 1989 for reviews). Other short AT-rich introns found in Euglena chloroplast clearly share some structural similarities with group II introns (Michel et al. 1989). These three types of introns are different from the most studied pre-mRNA introns found in nuclear genes (Ruby and Abelson, 1991). It should be noted, however, that group II and nuclear pre-mRNA introns have biochemical characteristics in common between their splicing mechanisms (Jacquier, 1990). A fourth category consists of short introns in tRNA genes that are excised by a different RNA processing mechanism (reviewed by Rogers, 1990).

Some group I and group II introns have been demonstrated to undergo self-splicing (Cech, 1986) and reverse-splicing in vitro (Woodson and Cech, 1989; Augustin et al. 1990). However, efficient splicing in vivo is dependent on specific protein factors that are encoded by intronic ORFs (maturases) or by nuclear genes (reviewed in Lambowitz and Perlman, 1990). Maturase ORFs are present in some, but not all, group I and group II introns and may be necessary for the splicing of more than one intron. In group I introns, another class of ORFs encodes endonucleases that are directly involved in intron mobility (Delahodde et al. 1989, see below). In group II introns, maturase ORFs have blocks of homology with retroviral reverse transcriptases (Michel and Lang, 1985).

The majority of the nuclear-encoded proteins involved in splicing of group I and group II introns appear to be
multifunctional (Lambowitz and Perlman, 1990). The most well-studied ones are the leucyl-tRNA synthetase in yeast and the tyrosyl-tRNA synthetase in Neurospora. The identification of a number of additional genetic loci in yeast and Neurospora that are important in intron splicing (reviewed by Lambowitz and Perlman, 1990) illustrates the complexity of the machinery involved in this process.

The number of group I introns in organelles is exceptionally high compared to the rare examples found in nuclear and eubacterial genomes (Cavalier-Smith, 1991; Reinhold-Hurek and Shub, 1992). Group II introns have as yet been found only in organellar genomes. The idea that most group I and group II introns were inserted in organellar genomes recently has gained much support during the last few years (reviewed in Palmer and Logsdon, 1991). This idea is based on their biased phylogenetic distribution and on the fact that introns can behave as mobile genetic elements. There are many group I and some group II introns that have been shown to be mobile (reviewed by Dujon, 1989; Perlman and Butow, 1989; Schmidt et al. 1990).

1.7.1. Structural characteristics of group II introns.

Group II introns can be folded into a secondary structure which includes a central core surrounded by six helical domains that are represented schematically in Figure 1 (Michel et al. 1982). Mutagenesis studies have confirmed predictions that were initially based on phylogenetic conservation. Consensus sequences are found at the 5' splice site (GTGCG or GCGCG) and at the 3' splice site (YAY in subgroup IIA or YAR in subgroup IIB). The members of these two subgroups are classified according to structural and/or sequence motifs
Figure 1. Schematic representation of the group II intron secondary structure. The intron core structure is surrounded by six helical domains (I-VI) and is flanked by the 5' and 3' exons (solid blocks). The position of the bulging A in domain VI is not shown.
found in domains I, III and VI (Michel et al. 1989). The domain V usually forms a hairpin structure of 14 bp containing two bulging nucleotides on the 3' side of the helix, and has a purine-rich tetraloop. These are among the most conservative and easily identifiable elements of group II introns.

In addition, several long-range interactions are crucial to establish appropriate intron structures. Among these, exon-binding sequences (EBS1, EBS2), that are located in domain I, are complementary to intron-binding sequences (IBS1, IBS2) located at the 3' end of the upstream exon. IBS1-EBS1 interaction is believed to be important for the precision of splicing at the 5' splice site and for maintaining the splicing intermediates in close proximity (Michel and Jacquier, 1987).

Based on in vitro self-splicing studies, another long-range interaction has been found between domain VI and the 5' splice site (van der Veen et al. 1986). Group II introns, like spliceosomal introns (Jacquier, 1990), form a lariat structure as a by-product of splicing. Lariat formation results from a 2'-5' phosphodiester bond between an internal 2' hydroxyl group and the 5' splice site. This hydroxyl group is provided by a bulging A located 7 or 8 nucleotides upstream of the 3' splice site in domain VI. The bulging A is among the most conservative positions of group II introns.

In vitro self-splicing properties of group II introns and site-directed mutagenesis have also been used to test which structures are essential for catalytic functions. In these experiments, structural elements have been removed individually (domain II, III, IV or VI) or in blocks (domains II, IV and VI) without abolishing self-splicing in vitro (Bachl and Schmelzer, 1990; Koch et al. 1992). In spite of all
the long-range interactions that are known, the specific role of domain V remains obscure. It is clear, however, that domain V forms a key element which is probably central to the tertiary folding of group II introns. Recent studies of the intron 5-gamma of the yeast coxI gene (Koch et al. 1992) indicate that domain V interacts directly with domain I, and that these two domains together with the upstream exon constitute the only essential structures that are necessary for catalytic activity of group II introns.

1.7.2. Trans-splicing in vivo.

The term "trans-splicing" is used to designate the covalent linkage of RNAs arising from different transcription units. In the more commonly observed cis-splicing process, the spliced RNAs arise from a single transcript. Trans-splicing is involved in vivo in the linkage of a 39 nt leader sequence to all pre-mRNAs in trypanosomes and related organisms. The process involves pre-mRNA-like intron structures and components of the spliceosome (Agabian, 1990). Trans-splicing is also involved in the maturation of a minority of mRNAs in nematodes (reviewed by Sharp, 1987; Laird, 1989), as well as in Euglena (Tessier et al. 1991).

Another trans-splicing model has been proposed for two chloroplast genes. In these cases, secondary structural features characteristic of group II introns appear to interact specifically for the junction of coding sequences. The rps12 gene in liverwort and tobacco chloroplasts contains exons that are located at two widely separated sites and on different strands (Fukuzawa et al. 1986, Zaita et al. 1987; Hildebrand et al. 1988). This unusual gene organization results from a discontinuity within domain III of the first intron, and base
pairing in this domain may constitute an important trans-
interaction for the proper recognition of introns halves
(Kohchi et al. 1988). Similarly, the *C. reinhardtii* psaA gene
has three exons and requires two trans-splicing events. Exons
1 and 2 are located on opposite strands and are also far apart
from exon 3; each exon appears to be transcribed independently
(Kück et al. 1987).

The isolation of *C. reinhardtii* mutants suggests that at
least fourteen nuclear loci are required for the maturation of
psaA mRNAs (Goldschmidt-Clermont, 1988). Mutations in these
loci affect the splicing of either intron 1 or intron 2, or
both, showing that specific and common factors are necessary.
A chloroplast genetic locus (designated *tscA*) also appears to
be essential for trans-splicing. It has been proposed that the
tscA gene product is a short RNA molecule that would be
directly involved in the formation of intron 1 core structure
(Goldschmidt-Clermont et al. 1991). These findings illustrate
the complexity of the components (RNA and/or protein) involved
in the splicing of distant coding sequences in the chloroplast
genome.

1.8. OBJECTIVES.

This overview has illustrated that plant mitochondrial
genomes have both unique and common features compared to those
of non-plant organisms. One of the most prominent features of
plant mitochondrial genomes is their highly recombinogenic
nature. It is therefore particularly interesting to study the
influence of DNA rearrangements on genome organization, gene
structure and gene expression during evolution.

This work aims to elucidate aspects of the structure and
expression of the wheat mitochondrial gene for subunit I of
the NADH dehydrogenase complex (*nad1*). The NADH dehydrogenase complex is comprised of about 25 subunits in *Neurospora* mitochondria (Weiss et al. 1987), and probably at least as many in plants (Douce and Neuberger, 1989); and it constitutes the largest component of the electron transport chain. Respiration in plant mitochondria is more complex than in animals because of alternative pathways such as the rotenone-resistant NADH dehydrogenase and the cyanide-insensitive oxidase (Douce and Neuberger, 1989).

Somewhat unexpectedly, genes homologous to the mitochondrial NADH dehydrogenase genes are present in the chloroplast genomes (Matsubayashi et al. 1987). The presence of genes for NADH dehydrogenase components in chloroplast genomes has raised the hypothesis that chloroplasts may contain an NADH dehydrogenase activity and perhaps a respiratory chain similar to the mitochondrial one, which could be involved in chlororespiration. Chloroplast respiratory activity has been reported in *Chlamydomonas* (Bennoun, 1982) and is expected to be present in land plants (Meng et al. 1987; Wu et al. 1989; dePamphilis and Palmer, 1991).

Prior to the study presented here, sequences homologous to short segments of the *nad1* gene had been found in the mitochondrial genomes of several plants (Bland et al. 1986; Stern et al. 1986; Bonen 1987). However, because these sequences corresponded only to small internal portions, it was not clear whether they were parts of pseudogenes. The functionality of these *nad1* sequences was also doubtful because, interestingly, mitochondrial genes for NADH dehydrogenase subunits are absent in the yeast mitochondrial genome (Table 1), and have not been found in the nuclear
genome (Marres et al. 1991). Assuming the hypothesis that these plant nad1 sequences are not functional, the gene could have been transferred to the nucleus during evolution and the protein imported into the mitochondrial. Another theoretical possibility is that the mitochondrial NAD1 protein is perhaps imported from the chloroplast where it could be encoded by the evolutionarily-related ndhA gene (Makaroff and Palmer, 1987).

Alternatively, these nad1 sequences could be functional but unusual cis- or trans-splicing would be required for their expression. In the present study, the hypothesis that the rest of the nad1 gene sequences are present and functional in wheat mitochondria was tested at the DNA and RNA levels. The objectives of this research have been (1) to determine whether the whole nad1 gene is present and, if so, (2) to examine whether it is functional in wheat mitochondria, (3) to study its expression at the RNA level both with respect to RNA splicing and RNA editing, and (4) to analyze nad1 transcripts to gain information about potential intronic structures.
CHAPTER 2. MATERIALS AND METHODS.

2.1. NUCLEIC ACID ISOLATION.

The methods used for the isolation of DNA and RNA from wheat mitochondria (Triticum aestivum var. Frederick) were derived from Bonen and Gray, (1980) and Wilson and Chourey (1984). Prior to germination, seeds were sterilized for 5 min. in 1% NaOCl and 10 min. in 0.01 N HCl, and rinsed with sterile water 3-5 times after each treatment. For DNA isolation, dissected embryos were germinated for 24 hours in the dark on two layers of Whatman 3MM paper soaked in sterile 1% glucose in Petri dishes. For RNA isolation, 50 g of seeds/tray (25 cm x 25 cm) were germinated in approximately 1 inch of autoclaved vermiculite soaked with water over 3 days in the dark. Pea (Pisum sativum var. Homesteader) seeds were treated as for wheat, and germinated for 6 days in the dark prior to isolating mtDNA and mtRNA.

Tissues (dissected embryos for wheat mtDNA, and shoot tissue for wheat and pea mtRNA and pea mtDNA) were harvested and ground in buffer I (0.44 M sucrose, 50 mM Tris-HCl pH 8.0, 3 mM EDTA, 1 mM β-mercaptoethanol, 0.1% bovine serum albumin) with a mortar and a pestle on ice, and filtered through four layers of cheesecloth and one layer of Miracloth (Calbiochem). To isolate mitochondria, centrifugation was performed at 500 x g for 5 min., and the supernatant was centrifuged at 12 000 x g for 30 min. The crude mitochondrial pellet was resuspended in buffer I and the centrifugation cycles were repeated once.

For DNA isolation, mitochondria were resuspended in 0.6 ml buffer II (50 mM Tris-HCl pH 8.0, 20 mM EDTA), followed by lysis in 1.2 ml buffer III (0.2 M Tris-HCl pH 8.0, 0.1 mM EDTA, 0.2 M NaCl, 2% SDS, 0.2 M β-mercaptoethanol) and
incubated at 65°C for 20 min. Then, 0.6 ml 5 M potassium acetate were added and samples were left on ice for 30 min. Samples were spun for 3 min. and the DNA (in the supernatant) was precipitated with 120 ul 5 M ammonium acetate and 1.2 ml cold isopropanol at -20°C for 30 min. The samples were then centrifuged for 5 min. The DNA pellet was washed with 70% ethanol, dried and resuspended in 1.4 ml buffer II. DNA was reprecipitated with 150 ul 3 M sodium acetate and 1.0 ml isopropanol (room temperature), spun for 30 seconds, washed with 70% ethanol, dried and stored in 50 ul TE buffer (10 mM Tris-HCl pH 7.5, 1.0 mM EDTA).

For RNA isolation, mitochondria were resuspended in 0.2 ml buffer IV (10 mM Tris-HCl pH 8.5, 50 mM KCl, 10 mM MgCl₂). Then 0.2 ml buffer IV containing 8% Triton-X 100 were added. Mitochondria were lysed by adding 0.6 ml detergent mix (2% tri-isopropyl-naphthalene sulfonate, 12% sodium p-aminosalicylate, 0.1 M NaCl, 20 mM Tris-HCl pH 7.4), followed by phenol extraction (0.7 ml phenol containing 0.1% 8-hydroxyquinoline and saturated with TE buffer; Maniatis et al. 1982). 120 ul 5 M NaCl and 0.7 ml phenol were added to the aqueous phase for a second phenol extraction step. RNA was precipitated by the addition of two volumes of 95% ethanol and stored at -20°C.

2.2. OLIGONUCLEOTIDE SYNTHESIS.

The following oligonucleotides were synthesized on an Applied Biosystems DNA synthesizer and have been designated according to the nad1 exon (or region) that they specify. The SalI, XmnI, XhoI and BglII restriction sites are underlined within oligomers A3, A4, B3 and E, respectively, and were used for cloning the PCR amplification products into M13 vectors.
A1: CCTGCTATAATTATTTCCATAAAACGC (Figure 3A, positions 507-483)
A2: AAGGCTACTCCTAGTAGAG (Figure 3A, 198-179)
A3: TCCGGTGCACAGGTCAGGC (Figure 3A, 86-105)
A4: ATTTTAGAACCCTTTTC (Figure 3A, 899-882)
B1: ACTTCATAAGGGACCATTG (Figure 3B, 676-657)
B2: CGTAATGCTCTAGAAAGGC (Figure 3B, 646-627)
B3: TTTGGGTTGGGTCTCGAGCGG (Figure 3B, 508-528)
B4: GAAGCTGCTCGCTTGACGCC (Bonen, 1987; 615-596)
C1: ATCTGCCTTGTGCGCCATGAC (Figure 3B, 2182-2163)
D1: TAAGACGACATATTGGCAACT (Figure 3C, 255-236)
D2: GCCGAACATCTAATCTAG (Figure 3C, 909-926)
E1: AATGGCAAGATCTAGGATAG (Figure 3D, 2829-2810)
E2: GAGCTAATGATAGGCAAGAACAC (Figure 3D, 2980-2956)
E3: CCTCAGAAGAAACTCTCTG (Figure 3D, 3059-3040)

The oligomer E2 sequence was derived from a conserved region within the watermelon mitochondrial ORF36 (Stern et al. 1986) and oligomer D1 from the broad bean nad1 sub-terminal exon (Wahleithner et al. 1990). The position of oligomer D2 is based on the sequence of only one strand. An oligomer that specifies nad5c was derived from the Oenothera counterpart sequence (see Figure 3B positions 151-131 in Knoop et al. 1991). Two primers flanking the multiple cloning site are based on the sequence of primers #1212 (universal sequencing primer) and #1201 (reverse sequencing primer, New England Biolab).

2.3. CLONING OF PLANT MITOCHONDRIAL DNA.

Wheat mtDNA (approximately 5 ug) was digested with various restriction enzymes (from different suppliers), separated by electrophoresis on agarose gels (1%) in Tris-acetate buffer (50 mM Tris-HCl pH 8.0, 2 mM EDTA, 20 mM sodium acetate), recovered using GeneClean (BIO/CAN Scientific) and ligated with T4 DNA ligase (Boehringer Mannheim) into dephosphorylated pUC plasmid vectors (15 ng) for
transformation of E. coli strain TB1. Clones were retrieved from banks using colony hybridization methods (Maniatis et al. 1982). Plasmid DNA was prepared by the boiling method (Maniatis et al. 1982).

For DNA subcloning, plasmid restriction fragments of interest (approximately 100 ng) were isolated from low melting point agarose gels (1%, BRL), ligated into 2.5 ng M13 DNA previously digested with the appropriate restriction enzymes for transformation of E. coli strain JM101 (Maniatis et al. 1982). M13 single stranded DNA was prepared using the polyethylene glycol method (Maniatis et al. 1982).

2.4. RADIOACTIVE LABELLING OF NUCLEIC ACIDS.

Synthetic oligomers (100 ng) were labelled at their 5' termini with T4 polynucleotide kinase (Pharmacia, 7 units), gamma-^{32}P-ATP (3000 Ci/m mole, NEN/Dupont, 50 uCi), in kinase buffer (50 mM Tris-HCl pH 9.5, 10 mM MgCl_2, 5 mM dithiothreitol), and spun through 1 ml Sephadex G-50 columns (Pharmacia) previously equilibrated in TE buffer (Maniatis et al. 1982). The second 50-μl eluate was used as probe or as primer.

Probes specific to certain M13 DNA inserts were obtained by the synthesis of the complementary strand using the universal sequencing primer, dNTPs (G, C, T), α-^{32}P-dATP (3000 Ci/m mole, NEN/Dupont) and Klenow fragment polymerase (Pharmacia). Probes from denatured double-stranded DNA fragments (approximately 50 ng) were synthesized by the random priming method using hexamers (Pharmacia), dNTPs (G, C, T), α-^{32}P-dATP and Klenow fragment polymerase (Sambrook et al. 1989).
For S1 nuclease mapping, DNA size markers were obtained by filling recessed 3' ends, generated by cleavage of pBR322 DNA with the restriction enzyme HinfI, using the Klenow fragment polymerase (Pharmacia) and α^{-32}P-dATP (Maniatis et al. 1982). Plasmid digests as well as isolated DNA fragments were also radioactively labelled by this method for S1 mapping. To obtain uniformly labelled probes that were specific to short regions, M13 DNA inserts were radioactively labelled by the polymerase chain reaction (PCR). Each PCR-amplification mix contained 125 ng of each primer, 5 uM dATP, 15 uM dGTP, 15 uM dCTP, 15 uM dTTP, 1.5 ul α^{-32}P-dATP, 5 ul 10 x amplification buffer (see section 2.7), 5 ul M13 DNA (approximately 0.1 ng), and 2 units of Taq DNA polymerase (BIO/CAN). Typically, 25 cycles (30 sec. at 94°C, 1 min. at 47°C, and 1 min. at 72°C each) were performed on a Perkin Elmer Cetus thermal cycler.

2.5. NORTHERN AND SOUTHERN BLOT HYBRIDIZATIONS.

For Northern blots, wheat mtRNA (approximately 5 ug RNA/sample, stored in ethanol) was spun 15 min. (Eppendorf 5415, 14000 revolutions per minute, washed with 70% ethanol, dried and dissolved in 4.5 ul TE buffer, 2 ul 0.1 M NaPO$_4$ pH 7.0, 3.5 ul 37% formaldehyde (BDH) and 10 ul deionized formamide. The samples were incubated at 60°C for 5 min. Then 2 ul of sterile RNA loading buffer (50% glycerol, 1 mM EDTA, bromophenol blue) were added. The gels contained 0.01 M NaPO$_4$ pH 7.0, 1.25% agarose (BRL) and 7% formaldehyde (BDH). Electrophoresis was performed at 200 volts for 4-5 hours. One lane was stained by three washes for 30 min. in 0.1 M ammonium acetate (only the second wash includes 10 ug/ml ethidium bromide) and photographed using Polaroid film 57. The transfer
of RNA to nylon membrane (ICN) was carried out by capillary action in 20 x SSC (3 M NaCl, 0.65 mM sodium acetate, pH 7.0) overnight (Maniatis et al. 1982). Nucleic acids were crosslinked to the nylon membrane by ultraviolet illumination (254 nm) for 5 min.

For Southern blots, DNA was digested with restriction enzymes prior to electrophoresis on 1% agarose gel in Tris-acetate buffer. Nucleic acids were stained with 10 μg/ml ethidium bromide (Maniatis et al. 1982) for photography, prior to denaturation (1.5 M NaCl, 0.5 M NaOH for 25 min.) and neutralization (3 M sodium acetate pH 5.5 for 25 min.). For genomic DNA, the denaturation step was preceded by an acid hydrolysis step (0.25 N HCl, 15 min.). DNA was transferred to nylon membranes and crosslinked as described for Northern blots.

Oligonucleotide hybridizations were carried out in 5 x SSC, and 5% deionized formamide (BDH), 0.1% SDS and 50 μg/ml tRNA at 39°C overnight (derived from Choquet et al. 1988). Membranes were washed twice in 2 x SSC, 0.1% SDS for 15 min. at room temperature. Hybridizations using other types of probes were carried out overnight at 42°C in 50% deionized formamide (BDH), 5 x SSC, 0.5% SDS, 50 mM NaPO₄ pH 7.0, 250 μg/ml sheared denatured calf thymus DNA and 5 x Denhardt's (Maniatis et al. 1982). Membranes were rinsed in 2 x SSC, 0.1% SDS, washed in 0.2 x SSC, 0.1% SDS for 30 min. at room temperature and for 30 min. at 50°C. Washing solutions were changed every 15 min. For autoradiography, membranes were exposed to XAR films (Kodak) at -80°C with an intensifying screen for the appropriate length of time.
2.6. NUCLEIC ACID SEQUENCE ANALYSIS.

DNA sequence analysis was carried out by the dideoxynucleotide chain termination method (Sanger et al. 1977) using $\alpha^{-35}\text{S}$-dATP or $\alpha^{-32}\text{P}$-dATP (Amersham and NEN/Dupont) with either Sequenase (USB) or Klenow polymerase (Amersham). The sequencing gel (0.4 mm thickness) contained 7% acrylamide (Maniatis et al. 1982), 7 M urea and Tris-borate buffer (45 mM Tris-HCl pH 8.3, 45 mM boric acid, 1.3 mM EDTA). After pre-electrophoresis (1000 volts for one hour) on a sequencing apparatus (BRL, model S2), electrophoretic separation of nucleic acids was carried out at 1800 volts for 2 hours and at 2000 volts for 2 hours. Then a second aliquot of the sample was loaded and electrophoresis was continued for approximately 1.5 hours at 2200 volts. For all sequences presented, both strands were sequenced, restriction sites were crossed and dITP was used to resolve ambiguities. The sequence data were analyzed using Microgenie (Beckman) programs and GenBank/NBRF data banks.

The method used for sequencing PCR products was derived from Hsiao (1991). The PCR products were precipitated with one volume of 5 M ammonium acetate and 3 volumes of 95% ethanol for 15 min at room temperature, and spun for 10 min. The pellet was dried and resuspended in 5.0 ul TE buffer. Samples were separated by electrophoresis on a low melting point agarose gel (BRL), and DNA was isolated following standard protocols (Maniatis et al. 1982). Fifty percent of the purified PCR product (approximately 1 ug) was incubated with the appropriate oligomer (10 ng in 1 ul) and 1.5 ul 1.0 N NaOH at 37°C for 30 min. The denaturation was stopped by adding 1.5 ul 1.0 N HCl and sequencing was carried out with Sequenase
following the recommended protocol of the supplier, except that the annealing step was omitted.

The method used for DNA sequencing with the avian myeloblastosis virus (AMV) reverse transcriptase (Life Sciences) was derived from Graham et al. (1986). Approximately 200 ng of M13 single stranded DNA (1.5 ul), 0.8 ul RT buffer (340 mM Tris-HCl pH 8.3, 500 mM NaCl, 60 mM MgCl₂, 50 mM dithiothreitol), 0.5 ul 17 uM dATP, 1.0 ul primer (10 ng/ul), 2.5 ul H₂O and 2.5 ul α-³²P-dATP were incubated at 65°C and cooled to 40°C. Then 0.8 ul RT buffer and 5.0 ul of the deoxynucleotide mix (0.5 mM dGTP, 0.5 mM dTTP and 0.5 mM dCTP) were added, and divided in four tubes (3.3 ul each) containing 1 ul of one deoxynucleotide solution (0.01 mM ddATP, 0.125 mM ddGTP, 0.25 mM ddCTP or 0.5 mM ddTTP). 1 ul of the enzyme mix (0.4 ul RT buffer, 2.8 ul H₂O and 0.8 ul 17 units/ul reverse transcriptase) was added to each tube for incubation at 42°C for 15 min., and then 3.0 ul chase mix (1.25 mM of each dNTP in 0.1 x RT buffer) for an additional 15 min. The reaction was stopped with 7 ul formamide-loading buffer (80% v/v deionized formamide, 50 mM Tris-HCl pH 8.3, 1 mM EDTA, 0.1% xylene cyanol, 0.1% bromophenol blue).

RNA sequences were obtained by the reverse transcriptase dideoxy chain termination method described by Geliebter and colleagues (1986, procedure 2), except that actinomycin D was omitted. End-labelled oligonucleotides (approximately 10 ng in 10 ul, section 2.4) were incubated with approximately 25 ug of wheat mtRNA (washed with 70% ethanol and dried) and 2.4 ul 5 x annealing buffer (1.25 M KCl, 50 mM Tris-HCl pH 8.3). The annealing temperature was calculated according to the formula 4(G+C)+2(A+T)-5 (Geliebter et al. 1986). After incubation for 45 min., the annealing mixes were divided into four tubes
containing the AMV reverse transcriptase enzyme (3 units each, Life Sciences), 3.3 ul of the RT-nucleotide buffer (24 mM Tris-HCl pH 8.3, 16 mM MgCl₂, 8 mM dithiothreitol, 0.4 mM dATP, 0.4 mM dCTP, 0.8 mM dGTP, 0.4 mM dTTP), and 1 ul of one of the four dideoxyribonucleotide mixes (1 mM dATP, 1 mM dCTP, 1 mM dGTP and 2 mM dTTP). The samples were incubated at 50°C for 45 min. Products were resolved on 7% acrylamide sequencing gels. The gels were dried and exposed for autoradiography on TM-trilite film (3M) at room temperature for the appropriate length of time.

2.7. PCR AMPLIFICATION.

For PCR amplification, cDNAs were prepared using the method described above for reverse transcriptase dideoxy sequencing, except that the dideoxynucleotide mixes were omitted. The products were also incubated for one additional hour with 2 ul 2 mM dNTPs. The cDNAs were purified by phenol extraction and sodium-acetate-ethanol precipitation (Maniatis et al. 1982), and dissolved in 100 ul TE buffer. Each amplification tube contained 600 ng of each primer (approximately 100 pmole), 10 ul of amplification buffer (100 mM Tris-HCl pH 9.0, 500 mM KCl, 15 mM MgCl₂, 0.1% gelatin and 1% Triton; BIO/CAN), 10 ul dNTPs (2 mM each), 2 units Taq DNA polymerase (BIO/CAN) and 10 ul DNA template (mtDNA or cDNA) in a final volume of 100 ul. Thirty cycles were performed on a Perkin Elmer Cetus DNA thermal cycler: 1 min. at 94°C, 2 min. at the melting temperature, which was calculated according to the formula 4(G+C)+2(A+T), and 3 min. at 72°C. A final extension was then performed at 72°C for 5 min.
2.8. S1 NUCLEASE MAPPING.

The method used for S1 nuclease mapping was derived from Maniatis et al. (1982). Approximately 25 μg of wheat mtRNA were dissolved in 5 μl H₂O and 3 μl 5 x PIPES buffer (0.2 M piperazine-N,N'-bis(2-ethanesulfonic acid) disodium salt pH 6.5, 5 mM EDTA, 2 M NaCl) and dried. The pellet was resuspended in 3 μl denatured radio-labelled DNA fragment (approximately 10 ng, section 2.4) and 12 μl deionized formamide (BDH), incubated at 85°C for 15 min., and then at 49°C overnight. Then the mixture was allowed to cool slowly to 43°C, and put on ice. 300 μl of S1 buffer (0.25 M NaCl, 30 mM sodium acetate pH 5.5, 1 mM ZnSO₄, 20 μg/ml carrier DNA) were added and the mix was divided in four tubes (80 μl each) containing 0, 50, 200 and 500 units of S1 nuclease (Pharmacia or Boehringer Mannheim). After incubation at 30°C for 30 min. The reactions were stopped by adding 22 μl stop solution (4 M ammonium acetate, 50 mM EDTA and 50 μg/ml carrier tRNA) and 215 μl 95% ethanol. Protected nucleic acids were precipitated at -20°C for 30 min. The samples were spun for 15 min., washed with 95% ethanol, dried and the pellet was resuspended in 6 μl TE buffer of which 2 μl were typically resolved on 7% polyacrylamide sequencing gels (section 2.6).
CHAPTER 3. RESULTS.

3.1. CHARACTERIZATION OF THE nad1 CODING SEQUENCES IN WHEAT MITOCHONDRIA.

Prior to the present studies, short mitochondrial ORFs with homology at the protein level to the NADH dehydrogenase subunit I had been identified in several plants. These nad1 sequences were located approximately 1 kb downstream of the rps13 gene in wheat (Bonen, 1987), maize and tobacco (Bland et al. 1986). These sequences, however, could potentially encode only an internal segment of the anticipated NAD1 polypeptide. In the absence of ORFs with homology to the N-terminal portion of the NAD1 polypeptide in the upstream region, it had been suggested that these nad1 sequences might be pseudogenes and that the functional NAD1 protein could be encoded in the nucleus or the chloroplast (Lonsdale, 1989; Makaroff and Palmer, 1987). In this section, another possibility is examined, that is, that the remainder of the gene is encoded at other site(s) in the wheat mitochondrial genome.

3.1.1. Identification of nad1 gene segments.

DNA sequence analysis of the region extending approximately 5 kb downstream of the rps13 gene has led to the identification of two nad1 exons (retrospectively named nad1b and nad1c; Figure 2). Nad1b is located 946 bp downstream of the rps13 gene (Bonen, 1987). These two exons encode 28 and 64 amino acids, respectively, which correspond to the central one-third of the NAD1 polypeptide. They are 96% identical at the DNA level to watermelon counterparts which have been found on an EcoRI DNA fragment of 4.5 kb (Stern et al. 1986) and share 51% derived amino acid sequence identity with the human
Figure 2. Restriction map and Southern hybridization analysis of the wheat mitochondrial nad1 gene. A. The restriction map shows the four wheat mitochondrial genomic regions containing nad1 coding segments (solid boxes). The *rrn18*, *rrn5*, *atp6*, *rps13* and *mat-r* genes are indicated by open bars. All BamHI (B) and SalI (S) restriction sites are shown. Only EcoRI (E), HaeIII (Ha), HindIII (H), XbaI (Xb) and XhoII (Xh) restriction sites that delimit the probes used in panel C are shown. Probes were labelled by second strand synthesis of M13 cloned DNA (arrows), or random priming on isolated restriction fragments (double arrows). Vertical arrows denote the 3' ends of recombinational repeat elements located upstream of nad1a and nad1b, respectively. B. Hybridization experiments using exon-specific oligonucleotides as probes were performed on EcoRI, BamHI and HindIII restriction digests of wheat mtDNA. C. Hybridization experiments using probes from nad1 coding and flanking sequences were performed on SalI restriction digests of wheat mtDNA. The lane numbers correspond to the probes shown in panel A. The size of markers is indicated in kilobases.
ND1 counterpart (Anderson et al. 1981). The wheat nad1b and
nad1c exons are separated by a group II intron of 1422 bp
(Figure 2 and 3B, see also section 3.6) that is approximately
80% identical to the corresponding watermelon sequences. The
sequence homology with watermelon, however, abruptly ends 1.2
kb downstream of nad1c, and no sequence homology is observed
for at least 1 kb further downstream (Appendix IB). This
suggests that the 3' end of the nad1 gene is unlikely to be
encoded in this region (section 3.1.3.).

Because the atp6 and rps13 genes are located less than 3
kb upstream of nad1b sequences in wheat, and because
translation in three frames of this region did not reveal any
ORF with significant homology to the N-terminal portion of the
ND1 polypeptide from other organisms, the following approaches
were undertaken to examine whether the 5' nad1 coding
sequences might be located at another site in the wheat
mitochondrial genome. Heterologous hybridizations using a
probe from the C. reinhardtii ND1 gene (Boer and Gray, 1988a)
were unsuccessful. In a second approach, a synthetic oligomer
that is complementary to nad1b (oligomer B2; note that,
through this work, oligomers are designated according to the
exon or region of the nad1 gene that they specify), was used
as primer on wheat mtRNA template in reverse transcriptase
dideoxy sequencing experiments. Approximately equimolar
amounts of two sequences were observed (Figure 4A), one
corresponding to an unspliced RNA and the second, to a
processed RNA species.

This information was used for the synthesis of another
oligomer (oligo A1) which served as a hybridization probe on
Southern blots of restricted wheat mtDNA (Figure 2B). The
putative 5' nad1 coding region was obtained from a partial
Figure 3. Nucleotide sequence of the wheat nad1 gene segments and flanking regions: (A) nad1a, (B) nad1b-nad1c, (C) nad1d and (D) nad1e (boxes). Amino acid sequences were derived using the universal genetic code, but altered amino acids (circled) are shown at positions of C-to-U RNA editing sites (dots; see section 3.3). Group II intronic domain V sequences are indicated by dashed boxes. Solid arrowheads show the breakpoints in homology with broad bean (Wahleithner et al. 1990) and Oenothera (Wissinger et al. 1991) sequences. Restriction sites: HindIII, BamHI, SstI, SalI, EcoRI, PvuII, XhoI, SmaI, XbaI and XmnI are underlined in the sequence. The HindIII site at the 5' end of the sequence shown in panel B corresponds to the 3' HindIII site (position 680) in Figure 2 of Bonen (1987). The EMBL data bank accession numbers for these sequences are X57965-X57968.
Figure 4. Autoradiographs of direct cDNA-sequencing gels across nad1 exon junctions and around the initiation codon. Primer extension experiments using reverse transcriptase dideoxynucleotide sequencing were performed directly on nad1 transcripts (A) upstream of nad1b for the identification of nad1a (oligomer B2, not B1 as shown), (B) upstream of nad1b for the identification of the nad1a/nad1b junction (oligomer B1, not B2 as shown), (C) upstream of nad1c for the identification of the nad1b/nad1c junction (oligomer C1) and (D) upstream of nad1a for the identification of the initiation codon (oligomer A2). In panels A, B and C, arrows indicate exon junctions. Sequences using the same primers on cloned genomic DNA templates are shown within each panel.
plasmid clone bank of wheat mitochondrial EcoRI and BamHI restriction fragments of approximately 15 kb and 2.2 kb, respectively. DNA sequence analysis of the hybridizing region confirmed the presence of a reading frame for the amino-terminal portion of an NAD1 polypeptide (Figure 3A). This segment (named nad1a) contains 128 codons and shows 50% amino acid identity with its human mitochondrial ND1 counterpart (Anderson et al. 1981). This level of conservation is in the range expected for comparisons of mitochondrial proteins between plants and animals (Dawson et al. 1984), which supports the view that these sequences are functional.

The 3' nad1 coding segments (designated nad1d and nad1e) were identified by heterologous hybridization experiments using synthetic oligomers D1 and E2 which were designed from published plant nad1-homologous segments, namely, the broad bean nad1 sub-terminal exon (Wahleithner et al. 1990) and the watermelon ORF36 (Stern et al. 1986), respectively. These experiments led to the identification and cloning of BamHI and HindIII fragments of approximately 5.8 and 8.0 kb containing nad1d and nad1e, respectively. They encode 20 and 85 codons and share 98 and 92% nucleotide sequence identity with their broad bean counterparts, respectively. Together, they correspond approximately to the 3' one-third of the nad1 gene.

In summary, the wheat mitochondrial genome contains five nad1 coding segments, designated nad1a-nad1e, that are 385, 83, 192, 59 and 256 bp in length, respectively. Together, they are capable of encoding a polypeptide of 325 amino acids. A comparison of the predicted wheat NAD1 polypeptide sequence with other organisms, taking into account RNA editing, will be presented in section 3.4.
3.1.2. **Southern blot hybridizations.**

Southern blot analysis has been carried out for the four regions encoding *nad1* gene segments to determine whether they are present as single copies in the wheat mitochondrial genome. In these experiments, end-labelled oligonucleotides specifying the five *nad1* exons were used as probes on EcoRI, BamHI, HindIII restriction digests of wheat mtDNA (Figure 2B), as well as labelled DNA fragments on SalI and XhoI restriction digests (Figure 2C and data not shown). For each oligomer, only one hybridizing fragment was seen for at least two different restriction enzymes. Within the limitations of this approach, this indicates that each exon is present as a single genomic copy in wheat mitochondria, and precludes the possibility of additional copies that could be located on short DNA restriction fragments or the presence of smaller exons. Certain lanes contain two hybridizing fragments that are due to the closeness of *nad1* segments to recombinational repeats containing the *rrn18-rrn5* genes, the *atp6* gene and the repeat "9" (see Appendix II, Lejeune and Quétié, 1988) in the vicinity of the *nad1a*, *nad1b-nad1c* and *nad1e* regions, respectively (Figure 2B, oligos A1 and B1; Figure 2C, lanes 2 and 7).

These data were used to establish the minimum distances that separate the *nad1* coding sequences in wheat mtDNA. Except for *nad1b* and *nad1c*, the restriction maps surrounding the different regions could not be linked. *Nad1a* is located a minimum of 20 kb away from *nad1b* and, moreover, at least two genes, namely *atp6* and *rps13*, are located between them (Figure 2A; Bonen, 1987; Bonen and Bird, 1988). These experiments also show that *nad1c* and *nad1d* are separated by at least 7 kb. Similarly, *nad1d* and *nad1e* are at least 12 kb apart (Figure
2). Consequently, the five wheat \textit{nad1} coding segments are scattered over four distant sites and the distance between \textit{nad1a} and \textit{nad1e} is a minimum of 40 kb. If one also adds the size of the SalI fragments that contain \textit{nad1} coding segments and the flanking ones that have been found by hybridization, the minimum distance between \textit{nad1a} and \textit{nad1e} is about 60 kb.

To examine further the \textit{nad1} gene organization in the wheat mitochondrial genome, Southern blot hybridizations were performed on SalI restriction digest of wheat mtDNA (Figure 2C). These results were correlated with the 430 kb SalI restriction map (Lejeune and Quétier, 1988). Based on the sizes of hybridizing SalI fragments, the \textit{nad1a}, \textit{nad1b-nad1c} and \textit{nad1e} exons are located on fragments H1, I and F1, which are approximately 16.8, 15.5 and 19.1 kb in size, respectively (lanes 1, 2 and 7). The \textit{nad1e} upstream region contains a SalI fragment of 4.0 kb that can be assigned to fragment V (lane 6). The probes from the \textit{nad1d} region hybridize to three adjacent SalI fragments of approximately 3.6, 3.2, and 6.0 kb that are tentatively assigned to \textit{W}, \textit{X} or \textit{Y} and \textit{S}, respectively (lanes 3, 4 and 5). These fragments, however, are distant on the physical map as proposed by Lejeune and Quétier (1988); thus, it remains somewhat uncertain where exactly \textit{nad1d} is located (Appendix II). According to this map, \textit{nad1a}, \textit{nad1b-nad1c} and \textit{nad1e} regions are transcribed from the same strand. Distances of more than 200 kb are predicted between \textit{nad1a} and \textit{nad1e} and, furthermore, numerous mitochondrial genes are anticipated between \textit{nad1} segments. The large distances between the \textit{nad1} gene pieces that are predicted by the physical map of the wheat mitochondrial genome could be reduced by recombination events, but, as indicated by hybridization data, such distances could not be less than 60 kb.
3.2. ANALYSIS OF SPliced nad1 TRANSCRIPTS.

3.2.1. Direct cDNA sequencing analysis of nad1 transcripts.

After the identification of nad1 gene pieces that are distantly separated, it was important to address the issue of whether these segments are linked at the RNA level. Two experimental approaches have been used to identify the precise nad1 exon junctions and to determine if they are correctly spliced. Direct cDNA sequence analysis of wheat nad1 transcripts, as used in the identification of nad1a (Figure 4A), indicates that nad1b precursor transcripts and nad1a-nad1b spliced transcripts are approximately equally abundant (Figure 4A and B). Similarly, direct cDNA sequence analysis upstream of nad1c revealed a mixture of precursor and spliced transcripts (panel C). These experiments indicate that nad1a, nad1b and nad1c are correctly linked at the RNA level to generate the nad1 reading frame (Figure 3). Direct cDNA sequencing across the nad1c/d junction was unclear (see section 3.3.5) and across nad1d/e junction it was unsuccessful (not shown); therefore, those proposed junctions are based on sequencing of cloned PCR-amplified cDNAs.

3.2.2. Analysis of PCR-amplified reverse transcripts.

The results obtained by direct RNA sequencing with reverse transcriptase (Figure 4A, B and C) were corroborated by the analysis of PCR-amplified reverse transcripts. Oligomers A1, B1, C1, D1 and E1, which are specific to the respective nad1 exons, were used as primers on wheat mtRNA and the resulting cDNAs were PCR-amplified using oligomer A3 as the second primer (Figure 5, schematic). The products, shown in Figure 5A (lanes 1 to 5), correspond approximately to the
Figure 5. Characterization of PCR-amplified nad1 cDNAs. A. PCR-amplified products of five nad1 cDNAs (lanes 1–5) synthesized using nested, exon-specific primers (oligos A1, B1, C1, D1 and E1) with oligomer A3 shown in the schematic. Wheat mtDNA was used as template with oligomer sets A1/A3 (lane 6) and B1/A3 (lane 7). B. Sequence analysis of cloned PCR products at the four nad1 exon junctions (arrows). The arrowhead indicates an edited U at position 215 within nad1 (Figure 3C). Lane order: G,A,T,C.
predicted sizes of 422, 494, 578, 762 and 825 bp, respectively. There is no evidence for the presence of transcripts containing incorrectly spliced nad1 segments since, in each case, single PCR-generated products were seen (Figure 5A).

It could be argued that nad1a and nad1b may be close together in low level subgenomic circles (sublimons) which would not have been detected by hybridization analysis. When wheat mtDNA, rather than RNA (or cDNA), was used with oligomers A1 and A3 in PCR experiments, the predicted product (cf. 422 bp) was seen (Figure 5A, lane 6). In contrast, when oligomers B1 and A3 were used as primers, no product was seen (Figure 5A, lane 7). Under similar conditions, with oligomers C1 and B3, PCR products of approximately 1.7 kb were easily obtained. Therefore, with oligomers B1 and A3, considering that nad1a is approximately 0.4 kb long, any genomic arrangement in which nad1a and nad1b are separated by less than 1.3 kb should have been detected. These data, in conjunction with Southern hybridization data (Figure 2), are consistent with the view that nad1a and nad1b are not closely linked in the wheat mitochondrial genome.

The sequence analysis of cloned cDNAs, which were derived from PCR products seen in lane 5 (Figure 5A), allowed the assignment of precise exon boundaries (Figure 5B) and confirmed the results obtained by direct cDNA sequencing described for the nad1a/b and nad1b/c junctions. It should be noted that two-nucleotide redundancies occur at the nad1a/b and nad1b/c borders (Figure 3). The sites proposed here are based on group II intron consensus sequences (see section 3.6.). Taken together, these observations clearly indicate
that the correct reading frame for NAD1 protein is generated at the RNA level.

3.3. RNA EDITING IN nad1 TRANSCRIPTS.

RNA editing which was recently discovered in plant mitochondria (Gualberto et al. 1989; Covello and Gray, 1989; Hiesel et al. 1989) alters the coding information that could be deduced from genomic DNA sequences, and amino acid sequences can only be accurately derived from RNA or cDNA sequence information. Using the same type of experiments described in section 3.2, nad1 RNA sequences were inferred by direct cDNA sequencing and by the analysis of cloned PCR-amplified cDNAs. These sequences were then compared to mtDNA genomic sequences to identify the positions of RNA editing sites in the wheat nad1 coding sequences.

3.3.1. Identification of the initiation codon of the nad1 gene.

The deduced amino acid sequence from the wheat nad1a region shows 50% similarity to its human ND1 counterpart (section 3.1); however, it lacks an ATG triplet in the vicinity of the predicted start codon. Initiation of translation theoretically could involve (1) a non-conventional initiator, (2) additional splicing events to generate the extreme 5' coding sequences possessing an AUG codon, or (3) RNA editing to create an AUG codon. To distinguish among these possibilities, the synthetic oligomer A2 was used in direct cDNA sequencing experiments. The result, shown in Figure 4D, demonstrates the presence of RNA editing that changes the ACG codon at position 134-136 (Figure 3) to AUG in approximately 50% of the RNA molecules. This C-to-U conversion is typical of
RNA editing in plant mitochondria and, in this case, the RNA editing event is in fact obligatory for protein synthesis to proceed.

3.3.2. Distribution of RNA editing sites in the wheat mitochondrial nad1 coding regions.

A comprehensive analysis of RNA editing sites within the wheat mitochondrial nad1 coding region of 975 bp was carried out. PCR amplification products of cDNAs derived from fully-spliced transcripts were cloned, sequenced and compared to their genomic counterparts. A total of 23 C-to-U RNA editing sites were observed, with each of the five nad1 exons containing at least one editing site, namely 4, 1, 9, 1 and 8 in nad1a-e, respectively (Figure 3, Figure 6, Table 2). Two codons (103 and 164) are modified at two positions, and in all but one of the 21 different codons involved, RNA editing is predicted to result in amino acid changes (Table 2).

The RNA editing sites are asymmetrically distributed with approximately 40% being located within a 120 nt stretch in nad1c (Figure 6). In contrast, nad1a, which is 385 nt in length, contains only four sites, including the initiation codon. Consequently, only 2% of the codons are affected in nad1a compared to 13% in nad1c.

1 The cDNAs derived from fully spliced transcripts were obtained by primer extension on total mtRNA with the oligomer E3 (located downstream of nad1), and amplified with oligomers E3 and A3 (located upstream of 5' exon nad1a). The PCR products were restricted and cloned into appropriate M13 vectors. Nine clones covered the region from EcoRV to SalI site, 8 from BglII to SstI and 3 from BglII to EcoRII. The relative positions of these sites are shown in Figure 6 and Appendix VI.
Figure 6. Schematic representation of RNA editing sites in plant mitochondrial nad1 coding regions. The schematic shows the five nad1 exons (boxes) in wheat, Oenothera (Wissinger et al. 1991) and petunia (Conklin et al. 1991), with the vertical bars indicating the positions of RNA editing sites. Dashed lines represent sites in common. The solid triangle indicates the position of a stretch of 10 Ts in nad1d (see section 3.3.5.). Restriction sites: BglII (Bg), EcoRII (Ec), EcoRV (Ev), SalI (S), and SstI (Ss).
Table 2. Compilation of nad1 RNA editing sites in wheat, Oenotheraa and petuniab.

<table>
<thead>
<tr>
<th>Codon position</th>
<th>Nucleotide</th>
<th>Wheat</th>
<th>Oenothera</th>
<th>Petunia</th>
<th>Amino acid changes</th>
<th>Shared sitesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>ACG-AUG</td>
<td>ACG-AUG</td>
<td>ATG</td>
<td>T-M</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>CTA</td>
<td>CTA-UUA</td>
<td>CTA</td>
<td>L</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>215</td>
<td>TCC-UUC</td>
<td>TCC</td>
<td>TCC-UUC</td>
<td>S-F</td>
<td>-</td>
</tr>
<tr>
<td>89</td>
<td>265</td>
<td>TGG</td>
<td>CGG-UGG</td>
<td>CGG-UGG</td>
<td>R-W</td>
<td>-</td>
</tr>
<tr>
<td>103</td>
<td>307-8</td>
<td>CGG-UGG</td>
<td>CGG-UGG</td>
<td>CGG-UGG</td>
<td>P-L</td>
<td>+, +</td>
</tr>
<tr>
<td>112</td>
<td>336</td>
<td>GCC</td>
<td>GCC-GCU</td>
<td>GCC</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>123</td>
<td>368</td>
<td>ATA</td>
<td>ACA-AUA</td>
<td>ATA</td>
<td>T-I</td>
<td>-</td>
</tr>
<tr>
<td>126</td>
<td>376</td>
<td>TGG</td>
<td>CGG-UGG</td>
<td>TGG</td>
<td>R-W</td>
<td>-</td>
</tr>
<tr>
<td>146</td>
<td>436</td>
<td>CCT-UCU</td>
<td>TCT</td>
<td>CCT-UCU</td>
<td>P-S</td>
<td>-</td>
</tr>
<tr>
<td>164</td>
<td>490-2</td>
<td>CCC-U CU</td>
<td>CCC-U CU</td>
<td>TCC-U CU</td>
<td>P-S</td>
<td>-, +</td>
</tr>
<tr>
<td>165</td>
<td>493</td>
<td>TGT</td>
<td>CGT-UGU</td>
<td>CGT-UGU</td>
<td>R-C</td>
<td>-</td>
</tr>
<tr>
<td>167</td>
<td>500d</td>
<td>TCG-UUG</td>
<td>TCG-UUG</td>
<td>TCG-UUG</td>
<td>S-L</td>
<td>+</td>
</tr>
<tr>
<td>179</td>
<td>536-7</td>
<td>TCC-UUC</td>
<td>TCC-UU</td>
<td>TCC-UU</td>
<td>S-F</td>
<td>+, -</td>
</tr>
<tr>
<td>185</td>
<td>555</td>
<td>CCC-CCU</td>
<td>CCT</td>
<td>CCC</td>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>190</td>
<td>570</td>
<td>TTC</td>
<td>TTC</td>
<td>TTC-UU</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>191</td>
<td>571-3</td>
<td>CTT-UUU</td>
<td>TTT-UU</td>
<td>TTT</td>
<td>L-F</td>
<td>-</td>
</tr>
<tr>
<td>193</td>
<td>577</td>
<td>CCT-U CU</td>
<td>TCT</td>
<td>TCT</td>
<td>P-S</td>
<td>-</td>
</tr>
<tr>
<td>194</td>
<td>580</td>
<td>CGT-UGU</td>
<td>CGT-UGU</td>
<td>CGT-UGU</td>
<td>R-C</td>
<td>+</td>
</tr>
<tr>
<td>203</td>
<td>608</td>
<td>TCT-UUU</td>
<td>TTT</td>
<td>TTT</td>
<td>S-F</td>
<td>-</td>
</tr>
<tr>
<td>212</td>
<td>635</td>
<td>TTA</td>
<td>TCA-UUA</td>
<td>TCA-UUA</td>
<td>S-L</td>
<td>-</td>
</tr>
<tr>
<td>225</td>
<td>674</td>
<td>TCT-UU</td>
<td>TCT-UU</td>
<td>TCT-UU</td>
<td>S-F</td>
<td>+</td>
</tr>
<tr>
<td>228</td>
<td>683</td>
<td>TTT</td>
<td>TTT</td>
<td>TCT-UU</td>
<td>S-F</td>
<td>-</td>
</tr>
<tr>
<td>245</td>
<td>734</td>
<td>TCG-UUG</td>
<td>TCG-UUG</td>
<td>TCG</td>
<td>S-L</td>
<td>-</td>
</tr>
<tr>
<td>247</td>
<td>740</td>
<td>TTT</td>
<td>TCT-UU</td>
<td>TCT-UU</td>
<td>S-F</td>
<td>-</td>
</tr>
<tr>
<td>248</td>
<td>743</td>
<td>CCA-CUA</td>
<td>CCA-CUA</td>
<td>CCA-CUA</td>
<td>P-L</td>
<td>+</td>
</tr>
<tr>
<td>252</td>
<td>754</td>
<td>CTG</td>
<td>CGG-CUG</td>
<td>CGG-CUG</td>
<td>P-L</td>
<td>-</td>
</tr>
<tr>
<td>260</td>
<td>779</td>
<td>TCC-UUC</td>
<td>TCC</td>
<td>TCC-UU</td>
<td>S-F</td>
<td>-</td>
</tr>
<tr>
<td>263</td>
<td>789</td>
<td>ATC</td>
<td>ATC-AUU</td>
<td>ATC</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>275</td>
<td>823</td>
<td>CTT-UUU</td>
<td>CTC-UUC</td>
<td>CTT-UU</td>
<td>L-F</td>
<td>+</td>
</tr>
<tr>
<td>278</td>
<td>834</td>
<td>TTT</td>
<td>TTC</td>
<td>TTC-UU</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>279</td>
<td>835</td>
<td>CTA</td>
<td>CTA-UUA</td>
<td>CTA</td>
<td>L</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>898</td>
<td>CGG-UGG</td>
<td>CGG-UGG</td>
<td>CGG-UGG</td>
<td>R-W</td>
<td>+</td>
</tr>
<tr>
<td>303</td>
<td>903</td>
<td>TTC</td>
<td>TTC</td>
<td>TTC-UU</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>306</td>
<td>916</td>
<td>CTA</td>
<td>CTA-UUA</td>
<td>CTA</td>
<td>L</td>
<td>-</td>
</tr>
<tr>
<td>310</td>
<td>928</td>
<td>CGG-UGG</td>
<td>CGG-UGG</td>
<td>CGG-UGG</td>
<td>R-W</td>
<td>+</td>
</tr>
<tr>
<td>313</td>
<td>937</td>
<td>CCC-UCC</td>
<td>CCC-UCC</td>
<td>CCC-UCC</td>
<td>P-S</td>
<td>+</td>
</tr>
<tr>
<td>318</td>
<td>953</td>
<td>TCA-UUA</td>
<td>TTA</td>
<td>TTA</td>
<td>S-L</td>
<td>-</td>
</tr>
</tbody>
</table>

a Wissinger et al. (1991). b Conklin et al. (1991). c "+" denotes sites that are common to the three plants. d Also shared with maize chloroplast ndhA gene (Maier et al. 1992).
3.3.3. Comparison of nad1 RNA editing sites among wheat, Oenothera and petunia.

It is helpful at this stage to state the chronological identification of nad1 homologous sequences in plant mitochondria. Short nad1 gene sequences (mentioned in section 3.1) had been found in tobacco and maize (nad1b, Bland et al. 1986), in wheat (nad1b, Bonen, 1987), in watermelon (nad1b-nad1c, Stern et al. 1986) and more recently in broad bean (nad1d-nad1e, Wahlleithner et al. 1990). Independent work by Brennicke's group in Germany, conducted in parallel with the present study in wheat (published in part, Chapdelaine and Bonen, 1991, Appendix VII), has led to the identification of the nad1 gene in Oenothera (Wissinger et al. 1991). The nad1 gene has also been characterized subsequently in petunia (Conklin et al. 1991) and in liverwort (Oda et al. 1992). In this section, the positions of the wheat nad1 RNA editing sites are compared with those of two dicots, Oenothera and petunia (Figure 6 and Table 2).

Oenothera and petunia nad1 coding sequences each have a total of 27 RNA editing sites and the number of predicted amino acid changes, 20 and 19 respectively, is similar to that of wheat because they have more silent sites. The two dicots share only a slightly higher number of sites (18) than either has in common with the monocot, wheat (15). There are 12 sites that are shared by all three plants, and only one is silent. Three of those sites occur within the two doubly-modified codons, and several of the shared sites are found within clusters, particularly at the 5' ends of nad1c and nad1e (Figure 6). Interestingly, one of the shared sites (Table 2, codon 167) has recently been shown to undergo C-to-U editing in the chloroplast ndhA counterpart in maize (Maier et al. 55
1992). It is worth noting that both the asymmetric distribution of RNA editing sites and their clustering are features common to all three plants (Figure 6), even though only half of the sites are in common.

There are additional regions in which editing occurs at close but not identical sites in different plants. For example, of the five editing sites within codons 190-194 of nad1c, only one is held in common by all three plants. There are two codons (72 and 245) in which editing is seen in two of the three plants. Their absence in the third plant is unexpected since it results in radical amino acid substitutions (Table 2).

3.3.4. Analysis of partially edited nad1 cDNAs.

Although most RNA editing events are predicted to be crucial for generating transcripts capable of encoding functional proteins, partially edited transcripts have been observed for several plant mitochondrial genes (Schuster et al. 1991a; Bonnard et al. 1992). Among the cDNA clones derived from fully-spliced wheat nad1 transcripts (see footnote page 52), only two clones lacked complete editing, namely at position 734 (codon 245) in both clones and at position 823 (codon 275) in one clone. Both sites are predicted to result in non-silent amino acid changes, but they are located in a poorly-conserved region of the gene. In addition, four cDNA
clones have been derived from precursor transcripts\(^2\), and each clone was fully edited.

The high level of editing in \textit{nad1} spliced transcripts contrasts with the results obtained by direct cDNA sequencing of the total population of \textit{nad1a} transcripts in which only approximately half the molecules are edited at the initiation codon (Figure 4D). These observations suggest that most, if not all, editing events occur prior to the completion of splicing events. The level of RNA editing in wheat \textit{nad1} transcripts also contrasts with that described in \textit{Oenothera} and petunia \textit{nad1} transcripts in which sites were often partially edited (cf. Wissinger et al. 1991; Conklin et al. 1991). The source of plant or tissue culture material, or the gene examined may influence the degree of editing observed. Incidentally, \textit{nad5} coding sequences in wheat showed no partial editing (De Souza et al. 1992).

3.3.5. \textbf{Other rare changes in \textit{nad1} cDNA sequences.}

Differences between the DNA and cDNA sequences that do not fall in the category of the C-to-U form of RNA editing were occasionally observed in \textit{nad1} coding regions. A total of 20 positions were found out of more than 10 000 bp of \textit{nad1} cDNA sequence examined and each was represented in only one cDNA clone. These changes involve 11 T-to-C, 2 C-to-U, 3 A-to-G, 1 A-to-U, 2 A insertions, and one U deletion (Appendix VI).

\(^2\) Oligomer D1 was used in primer extension experiments on wheat mrRNA and cDNAs were amplified with oligomers D1 and B3. Therefore, initial transcripts contained at least \textit{nad1b-d} and possibly \textit{nad1e}, but not \textit{nad1a}. The cDNAs were amplified and the PCR products were digested with the restriction enzymes SstI and XhoI which cut within \textit{nad1c} and oligomer B3, respectively. Oligomer B3 is located immediately upstream of domain V of the \textit{nad1a/b} intron. The position of the SstI site is shown in Figures 3 and 6.
Reverse transcriptase and Taq DNA polymerase have combined error frequencies estimated to be less than 4×10^{-4} (Kunkel and Eckert, 1989) which is considerably lower than the rate of changes observed here (approximately 2×10^{-3}). Such low-frequency differences have been reported for other plant mitochondrial mRNAs (reviewed by Schuster et al. 1991a; Bonnard et al. 1992), except for a T-to-C modification which was found in all twelve coxIII cDNAs examined in wheat (Gualberto et al. 1990). The biological meaning of these changes is uncertain since they generally do not seem to increase the predicted polypeptide sequence similarity with other organisms.

Another unexpected difference between the nad1 RNA and DNA sequences occurred within a stretch of 10 Ts in nad1d (positions 680–689 in Table 2, triangle in Figure 6). Of the 17 cDNA clones examined in this region, 7 clones are identical to the genomic DNA (Figure 7A), 8 clones contain only 9 Ts (Figure 7B), one clone contains 11 Ts instead of 10 (not shown) and one clone contains a T-to-C conversion (Figure 7C). The latter T-to-C conversion results in a non-conservative change in codon 227 from leucine to proline.

These differences could be due to errors made by reverse transcriptase or Taq DNA polymerase in vitro, or alternatively, aberrant RNA editing intermediates which occasionally lead to C rather than U at the second position of codon 227. When wheat mtRNA was used as template for direct cDNA sequencing with reverse transcriptase, a double sequence was seen in the nad1d region after the T-stretch (Figure 7E) suggesting that a mixture of cDNA molecules differing in length by one nucleotide within the T-stretch is present. These observations are consistent with the results of the
Figure 7. Sequence analysis of a T-stretch region in \textit{nad1d}.

A-C. Three different cloned cDNAs were sequenced using Sequenase enzyme (USB): A no deletion (10 Ts), B one nucleotide deletion (9 Ts) and C a T is changed to a C (9 Ts + 1 C). D. Wheat mtRNA template was sequenced using AMV reverse transcriptase (Life Sciences) and oligo D1. E. Cloned DNA containing 10 Ts was sequenced using AMV reverse transcriptase.
cloned cDNA sequence analysis. However, when reverse transcriptase was used on cloned DNA template containing the stretch of 10 Ts, again a double sequence was seen after but not before the T-stretch (Figure 7E). This result suggests that the reverse transcriptase has difficulties in faithfully copying this region in vitro. It is worth noting, however, that a stretch of 8 Ts located in nad1e (position 821-828 in Table 2) was never found to have deletions in 12 cDNA clones examined.

Thus, ten of the 17 cDNA clones examined differed from the genomic sequence in the stretch of 10 Ts in nad1d. Nucleotide deletions within strings of Ts in the wheat nad3 and rps12 genes have been observed five times in a string of 9 Ts as well as in other strings of Ts (Gualberto et al. 1991). These deletions coincide with the position of RNA editing sites and were suggested to represent RNA editing intermediates, which would support the view that the RNA editing mechanism involves nucleotide replacement rather than modification (see also Chasan, 1991; Bonnard et al. 1992). In the Oenothera cob gene (Schuster et al. 1991b), one clone out of 48 showed a deletion in a stretch of 7 Ts. Although the results using DNA template controls in reverse transcriptase experiments rather point to in vitro errors being made in homopolymeric regions, they do not rule out nucleotide replacement as a plausible mechanism for RNA editing in plant mitochondria.
3.4. **ANALYSIS OF AMINO ACID SEQUENCES DEDUCED FROM THE nad1 AND mat-r GENES.**

3.4.1. **The nad1 gene.**

The five nad1 exons in wheat are predicted to encode 128, 28, 64, 20 and 85 amino acids, respectively (Figure 3, Figure 8), taking into account exon junctions (section 3.2) and RNA editing to generate the initiation codon (sections 3.3.1). The wheat NAD1 amino acid sequence, as deduced from the edited cDNA sequence, shares 47, 45 and 38% identity with its counterparts in *Podospora* (Cummings et al. 1988), human (Anderson et al. 1981) and maize chloroplast (Maier et al. 1992), respectively (Figure 8). Even without considering RNA editing, the plant mitochondrial nad1 genes are remarkably highly conserved at the DNA level. For example, the wheat and *Oenothera* coding sequences share 96% nt identity and have no deletion/insertions, compared to 93% identity for the coxI gene (Kemmerer et al. 1989) which has traditionally been regarded as the most conservative mitochondrial protein-coding gene (cf. Bibb et al. 1981). Identity increases to 97% or 98%, when the nad1 sequences are compared at the RNA or amino acid levels, respectively. The wheat nad1 cDNA sequence is 79% identical to the liverwort nad1 gene (which does not appear to require RNA editing, Oda et al. 1992), and identity is 84% at the amino acid level between wheat and liverwort predicted NAD1 sequences.

The NAD1 protein is rich in hydrophobic residues which presumably reflects the interactions of the NAD1 polypeptide with the mitochondrial inner membrane. Three calculated transmembrane helices (positions 69-86, 106-125, 146-162) and one surface helix (176-194, Weiss et al. 1991) are flanked by
Figure 8. Alignment of the predicted NAD1 amino acid sequences. The sequences were derived from mitochondrial genes in wheat (cDNA, this work), *Podospora anserina* (Cummings et al. 1988) and human (Anderson et al. 1981); and from maize chloroplast (cDNA, Maier et al. 1992). The position of introns in wheat (solid triangle), *P. anserina* (open triangle) and maize chloroplast (open arrow) are shown. Amino acid positions that require RNA editing in plant mitochondria and chloroplast are underlined in wheat and maize. Asterisks denote residues that are conserved in all four sequences. Calculated transmembrane and surface helices are indicated by brackets (as shown by Weiss et al. 1991).
well-conserved hydrophilic domains (Figure 8). In addition, a block of conserved residues close to the C-terminus is preceded by a region that is known to be variable in length (Burger and Werner, 1985).

The positions of the intervening sequences in the wheat nad1 gene do not correspond to the locations of introns identified in evolutionarily-related counterparts (Figure 8). Some of these introns also belong to different classes; the plant mitochondrial and chloroplast ones belong to group II (section 3.6, Matsubayashi et al. 1987), and those from *Podospora* to group I (Cummings et al. 1988). Interestingly, the third of the four group I introns in the *Podospora* mitochondrial ND1 gene is close to the position of the wheat nad1a/b intron, and the single chloroplast ndhA intron is near the site of the wheat nad1b/c intron (Figure 8). It is worth mentioning that these introns are located near the end of the second and the third transmembrane domains discussed above (Weiss et al. 1991). The close proximity of these presumably unrelated introns may reflect preferential sites of insertion. While mobility of group I introns is well documented, less is known about how group II introns are inserted during evolution (Dujon, 1989).

Most of the 20 amino acid changes due to RNA editing within the wheat nad1 coding region are predicted to increase the similarity with counterparts from other organisms and from the chloroplast (Figure 8). Five RNA editing sites convert the predicted amino acids to identity in these four organisms, including a serine residue that corresponds to an RNA editing site in maize chloroplast *ndhA* transcripts (section 3.3, Maier et al. 1992). Five other sites generate identity with at least one of the three other sequences. These observations highlight
the crucial role of RNA editing in the production of functional polypeptides.

3.4.2. The mat-r gene.

The region preceding the wheat nad1e exon contains an ORF of 678 codons (Figure 3D) that is very closely related to the 687-codon maturase-related (mat-r) ORF that was previously identified in broad bean (Wahleithner et al. 1990). The wheat and broad bean mat-r genes are located at the same genomic site (i.e. upstream of nad1e), and are 86% identical at the amino acid level compared to 90% between wheat and broad bean nad1d and nad1e exons. The pattern of nucleotide substitutions observed between these two mat-r genes (approximately 45% occurring in the third position) supports the view that these sequences are under functional constraint. Interestingly, the third position is occupied by T in only 18% of the codons. In contrast, 40% of codons in the nad1 reading frame end by T, which is typical among plant mitochondrial genes (Dawson et al. 1984). The analysis of the broad bean nad1d-nad1e region led to similar conclusions (Wahleithner et al. 1990). Such differences in the codon usage of group II intronic ORFs has also been observed in fungal mitochondria (Michel and Lang, 1985; Cummings et al. 1990) but the underlying reasons as to the cause of these differences remain obscure. It has been suggested that the low frequency of codons ending with T might reflect a recent invasion of fungal mitochondrial genomes by these introns (Lambowitz, 1989).

Both wheat and broad bean mat-r genes are related to fungal mitochondrial group II intronic ORFs (cf. Lang et al. 1985) and possess six of the nine "invariant" amino acid residues characteristic of reverse transcriptases (Michel and
Lang, 1985; Wahleithner et al. 1990). Interestingly, the plant mat-r gene which lacks an initiation codon and homology to the N-terminal portion of the putative reverse transcriptase in wheat (Figure 3D), broad bean (Wahleithner et al. 1990) and Oenothera (Wissinger et al. 1991), does not contain any codon near its 5' terminus which could be converted to AUG by RNA editing. As yet, it is not known how translation of the mat-r reading frame is initiated.

3.5. *Nad1* transcript analysis.

The unusual organization of the wheat *nad1* gene raises fundamental questions about how gene pieces that are physically very far apart in the mitochondrial genome can give rise to functional mRNAs. This section will focus on an analysis of the size and the relative abundance of stable *nad1* transcripts, including precursor RNAs, mature RNAs and splicing by-products. Because *nad1* coding segments are present as single copies, they can be analyzed directly by Northern blot hybridization and S1 nuclease mapping. These two approaches have been taken in a partial characterization of stable *nad1* transcripts.

3.5.1. Northern blot hybridizations.

Several types of radio-labelled probes have been used for Northern blot hybridizations with wheat mtRNA (oligomers, cloned M13 DNAs and isolated DNA fragments, section 2.4). Among these experiments, end-labelled oligonucleotides gave the best resolution of hybridizing signals. It should be noted, however, that efficiency of labelling and/or hybridization seems to vary between different oligomers (see.
Figure 9, lanes 5 and 6 for example). Consequently, lanes were exposed for autoradiography for different lengths of time.

3.5.1.1. *Transcripts common to the five nad1 exons.*

Northern blot hybridizations were performed with a series of eight 32P-end-labelled oligonucleotides specifying *nad1* exons, as well as *nad1*-flanking regions downstream of *nad1a*, *nad1d* and *nad1e*, and upstream of *nad1b* (Figure 9). All exon-specific oligomers and oligomer E3 hybridize to three major transcripts of approximately 1.5, 1.7 and 1.9 kb (lanes 2, 5, 6, 7 and 9), although they are not as clearly visible in lane 9. These RNA molecules appear to contain the five *nad1* exons and can potentially encode the 325 amino acid NAD1 protein. These three putative *nad1* mRNAs in wheat are larger than the single 1.2 kb mRNA found in *Oenothera* (Wissinger et al. 1991).

3.5.1.2. *The nad1a region.*

In addition to the three putative mRNAs, other transcripts of various abundances and sizes are observed for particular regions of the *nad1* gene and presumably correspond to precursors or splicing by-products. A transcript of approximately 3.2 kb is detected with both oligomers A1 and A4 (Figure 9, lanes 2 and 3), and likely corresponds to a precursor of the *nad1a* region. The 1.9 kb transcript seen in lane 3 may correspond to a splicing product of the *nad1a/b* intron, although it comigrates with one of the putative mRNAs.

3.5.1.3. *The nad1b-nad1c region.*

To examine transcripts arising from the *nad1b*-nad1c region, oligomers B4, B1 and C1 were used in Northern blot hybridizations. Oligomer B4, which is located 0.7 kb upstream
Figure 9. Northern blot hybridization analysis of nad1 transcripts. Total wheat mtRNA was separated by electrophoresis on a 1.25% agarose-formaldehyde gel (lane 1), transferred to a nylon membrane and probed with 32P-end-labelled oligomers specifying nad1 coding (lanes 2, 5, 6 and 7) or flanking regions (lanes 3, 4, 8 and 9). The 18S (1.9 kb) and 26S (3.5 kb) rRNAs are shown, and dots indicate the three transcripts common to exon-specific probes. A restriction map of nad1 coding regions (solid boxes) shows the position of oligomers (circled letters) that were used as probes. The rps13 and mat-r genes are also shown (open boxes). Some restriction sites are shown as landmarks: BamHI (B), EcoRI (E), HindIII (H), RsaI (R), XbaI (Xb) and XhoI (X). The relative exposure times are in approximate ratios of 1 (lanes 2, 3, 5, 6 and 7): 5 (lane 4): 15 (lanes 8 and 9).
of nad1b, hybridizes to two high molecular weight transcripts of approximately 2.1 and 3.7 kb (Figure 9, lane 4). It is possible that these signals are due to non-specific hybridization to rRNAs, which may explain their diffuse appearance. Alternatively, they could be precursor transcripts of the nad1b-nad1c region and the removal of the 1422 bp nad1b/c intron may explain their difference in size. However, this appears doubtful because the 3.7 kb transcript is detected neither with oligomer B1 nor oligomer C1 (lanes 5 and 6). It is more likely that the large transcripts of approximately 2.9 kb and >4 kb in the lanes 5 (longer exposure not shown) and 6 are precursors of this region. Transcripts of similar sizes had been previously detected with a probe covering the region upstream of the HindIII site which is located 0.6 kb upstream of nad1b (Bonen, 1987). There are other hybridizing transcripts of approximately 2.5 kb in lanes 5 and 6, and of 0.9 kb in lane 6. It remains to be determined whether they could represent splicing intermediates or by-products.

3.5.1.4. The nad1d and nad1e regions.

In contrast to the nad1b-nad1c region which has a complex transcript profile (Figure 9; lanes 4, 5 and 6), only the three mRNAs common to the five nad1 exons are prominent when the nad1d-specific oligomer D1 is used (lane 7). In the nad1d downstream region, a putative precursor transcript of approximately 0.9 kb is detected (oligomer D2, lane 8), which is also seen in lane 7 (longer exposure not shown). These transcripts would be large enough to cover the nad1d-flanking regions that are homologous in wheat, broad bean and Oenothera (Wahleithner et al. 1990; Wissinger et al. 1991). These
hybridizing transcripts (lanes 7 and 8) could also represent comigrating RNAs. Other minor transcripts larger than 2 kb (lane 8) perhaps arise from longer precursors or may correspond to splicing intermediates. This possibility has to be kept in mind since group II intron splicing by-products, because of their branched structures, may have reduced mobility on agarose gels (van der Veen et al. 1986).

The three putative nad1 mRNAs are not resolved as clearly in the nad1e region (lane 9), but the data are consistent with their presence. In addition, a short transcript of 200-400 nt is more abundant than other nad1 transcripts and has been detected with other probes (oligomer E1 located at the 5' end of nad1e, and probe 7 from Figure 2, data not shown). Another short transcript was observed when a probe for nad1c was used (Figure 9, lane 6). In watermelon, a probe containing ORF36 sequences, which are homologous to nad1e, also hybridizes to short and abundant transcripts (Stern et al. 1986). It is also worth noting that several short transcripts (but not nearly as abundant) have been seen with several nad5 exon- and intron-specific probes in wheat and maize (De Souza et al. 1991). De Souza and colleagues suggested that these RNA molecules could arise from free nad5 exons or introns. Similarly, the short transcripts that are observed in the wheat nad1e region may correspond to the "free nad1e exon" (256 bp coding + 3' tail), or to the nad1e exon plus short upstream and/or downstream sequences. Further experiments will be required to distinguish among these possibilities.

In summary, Northern blot hybridizations have led to the identification of three putative nad1 mRNAs of approximately 1.5, 1.7 and 1.9 kb. These experiments and reverse transcriptase sequencing across exon junctions (section 3.2,
Figure 4A, B and C) demonstrate that the five nad1 gene segments are actively transcribed in wheat mitochondria, and suggest that correctly joined nad1 transcripts are relatively abundant. The ratios of nad1 mRNAs to precursor transcripts may vary from approximately 1:1 in the nad1a region to 10:1 in the nad1d region. The complex and distinct transcript profiles that were observed for the different nad1 coding regions are consistent with the idea that these regions are encoded by different precursor RNA molecules. There is no evidence for long precursor transcripts that would contain all five nad1 exons. In Oenothera, complex nad1 transcript profiles are also seen (Wissinger et al. 1991), as well as for the watermelon nad1b-nad1c region (Stern et al. 1986). The complexity of nad1 transcript profiles in plants at least in part reflects the unusual structure of the nad1 gene.

3.5.2. S1 nuclease analysis of nad1 transcripts.

To examine further the transcripts arising from the nad1 coding regions, S1 nuclease mapping experiments were carried out. These experiments were limited mainly to regions downstream of nad1a, nad1c and nad1e, as well as upstream of nad1b. These regions were the most interesting ones for future correlation with intron structures (section 3.6).

The radio-labelled probes used for these S1 mapping experiments can be divided in two types: uniformly-labelled and end-labelled. The uniformly-labelled probes were obtained from PCR-amplified M13 clones using sequencing and reverse sequencing primers (flanking the multiple cloning site) and α-32P-dATP was included in the reaction. PCR products are therefore some 100 bp larger than the cloned insert, and these vector sequences can be used as an internal control to
distinguish between fully protected inserts and DNA-DNA hybrids. The end-labelled probes were obtained by extension of recessed 3' ends generated by restriction enzymes and labelling with α-32P-dATP and the Klenow fragment polymerase; this type of probe is indicated by asterisks on schematics (Figure 10, 11 and 12). It should be noted that in contrast to end-labelled probes, the radioactive signals of S1 products derived from uniformly-labelled ones are proportional to the length of the protected fragments.

3.5.2.1. The nad1a region.

To analyze the transcripts arising from the nad1a region, a BamHI restriction fragment of 2.2 kb was used in S1 nuclease mapping experiments (Figure 10A). Three major S1 products of approximately 515, 800 and 2000 nt were observed and analyzed more precisely in two other experiments shown in panels B and C. Of the three main protected fragments seen in panel B, the largest is approximately 520 bp in size and corresponds to the fully protected DNA. The 120 and 380 nt products appear to correspond to the 515 and 800 nt products, respectively, seen in panel A. The former marks the 3' end of nad1a, which presumably arises from hybrids with transcripts in which nad1a and nad1b are spliced. The latter represents a S1 nuclease sensitive site located approximately 270 nt downstream of nad1a. In panel C, a major S1 product of 360 nt is observed and appears to correspond to the 2000 nt product seen in panel A. This suggests that most stable transcripts end approximately 1575 bp downstream of nad1a, although a minority of RNA molecules extend further downstream as suggested by the fully protected fragment of 480 nt. This result was also confirmed using a probe from the XbaI site to the BamHI site
Figure 10. S1 nuclease analysis of transcripts arising from the nad1a region. The schematic summarizes the S1 nuclease mapping experiments shown in panels A, B and C. DNA fragments that were used as probes (open bars), end-labelled (asterisk) or uniformly labelled, are shown with the letters corresponding to the different panels. Thick and thin lines refer to major and minor S1 nuclease products (indicated by large and small arrows in panels, respectively). Open triangles denote transcript termini with the distances to the upstream nad1 exon in parentheses (bp). Restriction sites: BamHI (B), HaeIII (Ha), RsaI (R) and XbaI (Xb). A. A BamHI fragment of approximately 2.2 kb was end-labelled. Cloned DNA fragments RsaI-RsaI (B) and HaeIII-BamHI (C) were uniformly labelled by PCR amplification. In each lane (1-4), 0, 50, 200 and 500 units of S1 nuclease were used, respectively. The sizes of markers, which were obtained from HinfI restriction digests of pBR322 plasmids, are indicated (nt).
(data not shown).

In addition to these major protected DNA fragments, other less abundant S1 products were seen (Figure 10A and B, small arrows). In panel A, two products of 340 and 430 nt may correspond to mis-matches due to RNA editing sites in codons 72 and 103 (Table 2), respectively. This suggests that RNA editing sites can be detected under the conditions that were used. However, only one other editing site is present in nad1a (in the initiation codon) but it was not detected. Consistently, more abundant products are observed where two adjacent mis-matches are present (codon 103) than only one (codon 72). It is worth mentioning that, since mature transcripts are more frequently edited than precursors (Bonnard et al. 1992), the ratio of spliced transcripts to precursors could be underestimated by S1 mapping.

Minor protected fragments of approximately 270 and 400 nt seen in panel B (small arrows) are most easily explained by the formation of DNA-RNA hybrids with excised introns (as suggested by the schematic in Figure 10, thin lines). Northern hybridizations revealed an intron-specific transcript of 1.9 kb, and this supports the idea that such stable splicing by-products of the nad1a/b intron may be present (section 3.5.1.2). The use of additional probes in Northern blots and S1 nuclease analysis would be necessary to verify this interpretation of the results.

3.5.2.2. The nad1b-nad1c region.

Previous Northern blot hybridizations upstream of nad1b had shown that nad1 transcripts begin upstream of the HindIII site (Bonen, 1987). These results were confirmed by S1 nuclease mapping using a HindIII-HaeIII DNA fragment which was
Figure 11. S1 nuclease analysis of transcripts arising from the nad1b-nad1c region. Symbols are as defined in Figure 10. The restriction sites are BamHI (B), Clai (C), EcoRI (E), HaeIII (Ha), HindIII (H), PvuII (V) and ScaI (Sc). The solid triangle in the schematic marks the breakpoint in homology with watermelon (Stern et al. 1986) and Oenothera sequences (Wissinger et al. 1991). Cloned DNA fragments Clai-HindIII (A), EcoRI-HindIII (B) and PvuII-HindIII (D) were uniformly 32P-labelled by PCR amplification. C. An isolated BamHI fragment was end-labelled. In each lane (1-4), 0, 50, 200 and 500 units of S1 nuclease were used, respectively. The sizes of markers are indicated (nt).
found to be fully protected (data not shown). In Figure 11A and B, ClaI-HindIII and EcoRI-HindIII DNA fragments of approximately 580 and 420 nt, respectively, also appear to be fully protected. This suggests that the 5' terminus of transcripts would be located upstream of the ClaI restriction site.

Downstream of nad1c, the S1 nuclease analysis, using either 32P-end-labelled (Figure 11C) or uniformly-labelled probes (panel D), shows products of approximately 700 and 570 bp, respectively. These data indicate that most transcript termini are located approximately 1170 bp downstream of nad1c (Figure 11C and D). These results were also confirmed using a ScaI-HindIII DNA fragment as a probe (data not shown), which was used to determine the location of transcript termini more precisely. A minor S1 product of approximately 750 nt in panel D corresponds to fully protected DNA fragments, which suggests that some transcripts extend farther downstream. The presence of putative transcript termini between nad1c and the BamHI site appears unlikely since (1) most of important core sequences of the nad1c/d group II intron are expected to be located downstream of nad1c rather than upstream of nad1d (see section 3.6), and (2) there are sequences farther downstream of the BamHI site that are well-conserved among wheat (Appendix IIB), Oenothera (Wissinger et al. 1991) and watermelon (Stern et al. 1986). In fact, the breakpoint in sequence homology between wheat and the two dicots occurs approximately 1190 bp downstream of nad1c (solid triangle, Figures 3 and 11), which is only 20 bp downstream from the estimated position of the transcript termini.
3.5.2.4. The nad1d and nad1e regions.

Only one S1 nuclease experiment is presented for the nad1d region, and a fully-protected product of 470 nt is seen (Figure 12A). These results suggest that transcripts extend at least 650 bp downstream of nad1d coding sequences; this is at least 120 bp beyond the breakpoint in homology between the wheat, broad bean (Wahleithner et al. 1990) and Oenothera sequences (Wissinger et al. 1991; solid triangle, Figure 12).

DNA sequence analysis downstream of nad1e revealed the presence of a short exon of 22 bp encoding a central portion of the nad5 gene (nad5c) in wheat (De Souza et al. 1991). The nad1e-nad5c region was analyzed by S1 nuclease mapping using end-labelled and uniformly-labelled DNA fragments (Figure 12B and C). In panel B, an S1 product of approximately 1050 nt covers the entire restriction fragment used, indicating that nad1e is cotranscribed with nad5c. This confirms that stable transcripts are present in the region of 0.4 kb downstream of nad5c in wheat (De Souza et al. 1991). This result is also consistent with a fully protected fragment of 495 nt seen in panel C. Another S1 product of approximately 290 nt is observed in panel B, which suggests that nad1 transcript termini are located approximately 65 bp downstream of nad1e stop codon. This result is also supported by a product of 175 nt seen in panel C. Because the nad5c probe also hybridizes to the three putative nad1 mRNAs (L. Bonen, unpublished), these transcript termini may correspond to the 3' ends of the 200-400-bp transcripts spanning nad1e (cf. Figure 9, lane 9). However, more experiments are necessary to clarify this hypothesis because the signal from the 290 nt product is weaker than expected from such abundant transcripts, and because the background is high in the panel C. Therefore, the
Figure 12. S1 nuclease analysis of transcripts arising from the *nad1d* and *nad1e* regions. Symbols are as defined in Figure 10. Restriction sites are BamHI (B), BglII (Bg), EcoRV (Ev), XbaI (Xb), XhoI (X) and XhoII (Xh). The solid triangles in the schematic mark the breakpoints in homology with broad bean (Wahleithner et al. 1990) and *Oenothera* sequences (Wissinger et al. 1991). A. A cloned DNA fragment XhoII-HindIII DNA fragment was uniformly labelled (using the sequencing primer and oligomer D2) from the XhoII restriction site to the position specified by oligomer D2, approximately 440 bp farther downstream. B. A pUC plasmid containing a 3.5 kb BamHI insert was linearized by cleavage with BglII restriction enzyme, and end-labelled. C. A cloned EcoRV-BamHI DNA fragment was uniformly labelled (using the sequencing primer and an oligomer specifying *nad5c*) from the EcoRV restriction site to *nad5c*. In each lane (1-4), 0, 50, 200 and 500 units of S1 nuclease were used, respectively. The sizes of markers are indicated (nt).
quality of these results does not exclude the presence of additional transcript termini.

Panel B also revealed two minor S1 products of approximately 570 and 600 nt, which could correspond to transcript termini that are located in the vicinity of nad5c borders. A minor product of approximately 480 nt, as seen in panel C, is consistent with the one of 570 nt seen in panel B. These results suggest that nad5b/c and nad5c/d introns can undergo splicing prior to processing of nad1e-nad5c precursor transcripts. Transcripts containing nad5c but not nad1e could not be detected in panel C. However, as mentioned above, the quality of the results does not permit the absolute exclusion of their presence. These observations may reflect that the processing of the nad5 transcripts is faster than that of nad1. This hypothesis is also consistent with the suggestion that splicing of nad5c is an early event in the nad5 transcript maturation (De Souza et al. 1991).

In summary, a 3' transcript terminus is located approximately 65 nt downstream of nad1e, and it coincides with the breakpoint in homology between wheat, broad bean (solid triangle, Figure 3 and 12; Wahleithner et al. 1990) and Oenothera (Wissinger et al. 1991). The breakpoint in homology between wheat and petunia sequences (Conklin et al. 1991) is located 15 bp farther downstream. In Oenothera, the 3' mRNA terminus is located within 100 bp downstream of nad1e (Wissinger et al. 1991). The variability in length of the three putative nad1 mRNAs in wheat (described in section 3.5.1) may occur at either end of the gene. The region of 1 kb upstream of nad1a was sequenced, but no consensus transcription initiation site, as proposed for wheat mitochondrial genes (Covello and Gray, 1991), could be found.
(Appendix IA). One possibility is that the \textit{nadla} stable transcripts are processed forms of longer precursors and that transcription is initiated in the region of the trNA\textsubscript{Pro} gene, which is located 1.2 kb upstream of \textit{nadla} (Runeberg-Ross et al. 1987). Run-on transcription experiments and guanylyltransferase capping experiments support the presence of transcription initiation sites in this region (P. Garber and L. Bonen, unpublished). Alternatively, the \textit{nadla} region could be cotranscribed with the \textit{rrn18} gene which is located 3.3 kb upstream of \textit{nadla} (Figure 2).

3.5.3. \textbf{Potential processing signals of \textit{nadl} precursor transcripts.}

The discrete transcript termini which were found 270 and 1575 bp downstream of \textit{nadla}, 1170 bp downstream of \textit{nadlc} and 65 bp downstream of \textit{nadle} appear to be RNA processing sites since, in each case, transcription extends further downstream, although it cannot be excluded that they result from multiple transcription termination signals. Double stem-loop structures have been found a few nucleotides upstream of transcript termini for a number of plant mitochondrial genes (reviewed by Gray et al. 1992).

The regions immediately upstream of each of the four \textit{nadl} transcript termini that were found (section 3.5.2) were analyzed to examine whether such double stem-loop structures could be present. In Figure 13, the structures shown are designated according to the distances that separate them from the upstream exons. Among these, only \textit{nadle}(65) is well conserved with \textit{Oenothera} (Wissinger et al. 1991) and petunia (Conklin et al. 1991) sequences. The \textit{nadla}(270) and \textit{nadlc}(1170) double stem-loop structures are poorly conserved
Figure 13. Potential double stem-loop structures located immediately upstream of 3' termini of nad1 transcripts. The numbers represent distances to the upstream exons and the brackets indicate the flanking 5-nt upstream and downstream of the transcript termini determined by S1 nuclease mapping. The GAGG and GAA motifs are in bold (A) and the stop codon in nad1 is doubly underlined (D). In the regions shown in panels B and C, only one strand was sequenced. Although shown as DNA, Us would be substituted by Ts in the RNA structures.
in *Oenothera* (Wissinger et al. 1991), and a loop of 30 nt in
nadlc (i170) seems unlikely to play a role in vivo (Figure
13C). It is worth noting that GAGG and GAA motifs flank the
nadla (270) single stem-loop (nucleotides in bold), and
resemble the ones proposed downstream of the *atp9* gene in
maize and tobacco (Bland et al. 1986). The *nadla* (1575)
structure contains two mis-matches, and counterpart sequences
are not available for other plants.

In summary, S1 nuclease mapping experiments have led to
the identification of discrete transcript termini downstream
of *nadla*, *nadlc* and *nadle* in wheat. Taken together with
Northern hybridizations, these data strengthen the hypothesis
that the different *nadl* coding segments are located on
different precursor RNAs since transcripts arising from
regions flanking the *nadl* exons cover only regions of 1-1.5
kb. The transcript termini downstream of *nadlc* coincide
closely with the breakpoints in homology between plants which
suggests that important intronic sequences are likely to be
present between this site and the upstream coding sequences.

3.6. STRUCTURAL ANALYSIS OF *nadl* INTRONS.

In the previous sections, it was shown that (1) all *nadl*
coding sequences are present and transcribed in wheat
mitochondria, (2) they are correctly linked at the RNA level
and (3) *nadl* transcripts cover regions of 1-1.5 kb downstream
of *nadla*, *nadlc*, *nadld* as well as upstream of *nadlb*. The next
questions that will be addressed are how these *nadl* coding
transcripts are joined together and what structural elements
could be involved. This problem is intimately related to the
nature of the *nadl* intervening sequences. The flanking regions
of *nadl* coding segments were analyzed in order to determine if
sequences or structural motifs that are hallmarks of organellar introns could be identified.

3.6.1. **Group II intron structures flanking nad1 coding sequences.**

The *nad1* gene contains four introns that are designated *nad1a/b, nad1b/c, nad1c/d* and *nad1d/e*. When sequences flanking the wheat *nad1* coding segments were examined, features were found that are clearly diagnostic of group II introns (Figure 3, dashed blocks, Figure 14). Group II introns contain a core structure that is surrounded by six helical domains (Figure 1). In the 100-bp regions upstream of *nad1b, nad1c, nad1d* and *nad1e*, stem structures with two bulging nucleotides which resemble closely the typical domain V structure of group II introns were found (Michel et al. 1989). The blocked nucleotides (Figure 14B) depict 16 positions common to the domain V of these four *nad1* introns. These positions emphasize the strong conservation of this structure. The domain V loop structure typically contains four nucleotides, as is the case for three of the four *nad1* introns (Figure 14B, C and D); however the *nad1a/b* intron, instead, has a 17-nt loop structure (Figure 14A) and lacks several other features which will be dealt with separately (section 3.6.2).

Typical sequences at the 5' splice site (GTGCG or GCGCG; Michel et al. 1989) and the domain VI helical structure near the 3' splice site are present in the *nad1b/c, nad1c/d* and *nad1d/e* introns. However, in the case of *nad1c/d*, three editing events must be invoked at positions -4, -6 and -8. A bulging adenosine located 7 nt from the 3' splice site is also present in domain VI of the *nad1c/d* and *nad1d/e* introns (Figure 3); this would place these introns in subgroup IIA.
Figure 14. Secondary structural models of nad1 group II intron structures, illustrating putative trans-splicing (A, C and D) and cis-splicing (B) of wheat nad1 exons (broken blocks). The only features of the group II core structure (Michel et al. 1989) shown are the well-defined domain V (hairpin) and the upstream domain IV, with a potential discontinuity within the looped region (A, C, D) or within domains I, II or III (inset in D). The structure in (B) is shown as proposed for watermelon (Michel et al. 1989) and positions conserved among the four wheat nad1 domain V sequences are boxed. The numbers indicate distances to the exons.
(Michel et al. 1989). Although the nad1b/c intron lacks the bulging A, it is also a member of subgroup IIA based on other criteria. Exon binding sequences proposed in the domain I of the watermelon nad1b/c intron (Michel et al. 1989) are present in wheat (Figure 3B positions 839-845 and 914-919), as is the exon binding sequence proposed for the broad bean nad1d/e intron (Wahleithner et al. 1990; Figure 3C positions 518-522). In addition, the structure proposed for the watermelon nad1b/c intron (Michel et al. 1989) is conserved in wheat (Appendix III). These data indicate that nad1 intervening sequences are related to group II ones, as defined by Michel and colleagues (1989).

3.6.2. Analysis of the nad1a/b discontinuous intron.

3.6.2.1. Domain VI of the nad1a/b discontinuous intron.

The discontinuous intron between nad1a and nad1b is atypical of group II members in several respects. One of these concerns the domain VI which normally forms a helical structure, with a bulging A, that is immediately flanked by the domain V on one side and the 3' exon on the other. In the nad1a/b intron in wheat, domain VI cannot be folded in the typical helical structure. In the Oenothera counterpart, it has been suggested that RNA editing can establish the correct helical structure of the nad1a/b intron domain VI (Wissinger et al. 1991).

To address the issue of whether editing occurs within domain VI of the wheat nad1a/b intron and whether it might in fact be required for the correct RNA folding for splicing, reverse transcriptase-PCR experiments were carried out on precursor transcripts using oligomer D1 for primer extension
Figure 15. Analysis of RNA editing in domains V and VI of the nadla/b discontinuous intron in wheat and pea. Sequencing gel autoradiographs of wheat (A) and pea (B) genomic DNAs (left) and cDNAs (right) are shown with intronic nucleotide positions in lower case. The horizontal arrow and a U in bold indicate the position of the single RNA editing site in domain VI. Pea sequences were determined directly from the PCR-amplification products of mtDNA and cDNA, whereas wheat sequences are derived from cloned DNA and cDNA.
A

DNA: GATC
RNA: GAUC

guggacgucucudauAUUC

B

DNA: GATC
RNA: GAUC

cuuacucucucudauAUUC
on wheat mtRNA and oligomer B3 as reverse primer for PCR amplification. The cDNAs were therefore derived from transcripts containing domains V and VI of the *nad1a/b* intron plus *nad1b-nad1c-nad1d* and possibly *nad1e*. Four PCR-amplified cDNA products were cloned and sequenced (see footnote on page 57). These experiments led to the identification, in each cDNA clone, of a single C-to-U editing site located 6 nt from the 3' splice site within domain VI (Figure 15A). Unexpectedly, this editing site does not appear to contribute in stabilizing any potential helix.

To further investigate this issue, the comparable region in the dicot pea was examined. Primer extension on RNA with reverse transcriptase was carried out using oligomer C1, and both cDNA and DNA were amplified using oligomers B3 and C1. These products were directly sequenced with Sequenase using oligomer B1 which is internal to these DNA fragments. The result indicates that the same position as in wheat, and only that position, was edited (Figure 15B). As in wheat, editing at this position in pea does not seem to contribute in establishing a domain VI helical structure.

There are several nucleotide substitutions and deletions/insertions among the *nad1a/b* intron sequences of different plants and some of these are illustrated by the alignments shown in Figure 16. It is perhaps not surprising that wheat and pea transcripts have the same C-to-U editing site at position -6, but it is unexpected that this position differs from the two sites (-7 and -11) reported in *Oenothera* (Figure 16B, underlined positions). It is worth noting that the RNA editing site at position -7 in *Oenothera* was observed in only one of ten cDNA clones (Wissinger et al. 1991). These observations contrast with typical RNA editing in coding
Figure 16. Alignment of nad1a/b intron sequences from various plants. The domains V (A) and VI (B) of the nad1a/b intron in wheat are aligned with those of maize (Bland et al. 1986), pea (this work), Oenothera (Wissinger et al. 1991), petunia (Conklin et al. 1991) and tobacco (Bland et al. 1986). The positions that have been found to be edited in wheat, pea and Oenothera are underlined, and the asterisk denotes the bulging A proposed for lariat formation in Oenothera. Exon sequences are shown in lower case letters. Pea sequence data end in the domain V, where oligomer B3 (which was used for PCR amplification) is located. C Alignment of the 5' splice site of the nad1a/b intron in wheat, Oenothera and petunia.
A nadia/b domain V

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEAT</td>
<td>GAGCCCTAAGCGCCGTTGAGCGCTGCTCGTACGGTTTCC</td>
<td>GAGCAAGAGATGCTGGTACGGTTTCC</td>
</tr>
<tr>
<td>MAIZE</td>
<td>GAGCCCTAAGCGCCGTTGAGCGCTGCTCGTACGGTTTCC</td>
<td>GAGCAAGAGATGCTGGTACGGTTTCC</td>
</tr>
<tr>
<td>PEA</td>
<td>GAGCCCTAAGCGCCGTTGAGCGCTGCTCGTACGGTTTCC</td>
<td>GAGCAAGAGATGCTGGTACGGTTTCC</td>
</tr>
<tr>
<td>OENOTHERA</td>
<td>GAGCCCTAAGCGCCGTTGAGCGCTGCTCGTACGGTTTCC</td>
<td>GAGCAAGAGATGCTGGTACGGTTTCC</td>
</tr>
<tr>
<td>PETUNIA</td>
<td>GAGCCCTAAGCGCCGTTGAGCGCTGCTCGTACGGTTTCC</td>
<td>GAGCAAGAGATGCTGGTACGGTTTCC</td>
</tr>
<tr>
<td>TOBACCO</td>
<td>GAGCCCTAAGCGCCGTTGAGCGCTGCTCGTACGGTTTCC</td>
<td>GAGCAAGAGATGCTGGTACGGTTTCC</td>
</tr>
</tbody>
</table>

B nadia/b domain VI

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEAT</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
</tr>
<tr>
<td>MAIZE</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
</tr>
<tr>
<td>PEA</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
</tr>
<tr>
<td>OENOTHERA</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
</tr>
<tr>
<td>PETUNIA</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
</tr>
<tr>
<td>TOBACCO</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
<td>ATAGCTGGTTATGATATTCTGCTGGATTTGGGAAAGC---TCCCTCTATATTAGCG</td>
</tr>
</tbody>
</table>

C nadia/b 5' splice site

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEAT</td>
<td>tagtaAGACGGGGCGCCGTTGGGCCCTATAG</td>
<td>tagtaAGACGGGGCGCCGTTGGGCCCTATAG</td>
</tr>
<tr>
<td>OENOTHERA</td>
<td>tagtaAGATATGGGGCGCCGTTGGGCCCTATAG</td>
<td>tagtaAGATATGGGGCGCCGTTGGGCCCTATAG</td>
</tr>
<tr>
<td>PETUNIA</td>
<td>tagtaAGATATGGGGCGCCGTTGGGCCCTATAG</td>
<td>tagtaAGATATGGGGCGCCGTTGGGCCCTATAG</td>
</tr>
</tbody>
</table>
regions where RNA sequences are more similar than DNA sequences.

Moreover, in the monocots wheat and maize, a 5-bp deletion is seen at the position of the bulging A proposed in Oenothera (Figure 16B; Wissinger et al. 1991). The pea sequence also shows a number of other differences including a nucleotide substitution at position -11 that is edited in Oenothera, and a deletion 4 nt farther upstream. These observations indicate that nucleotide substitutions and deletion/insertions have occurred among plants at positions that are usually conserved within the domain VI of the group II introns. Finally, the secondary structure equivalent to the one proposed in Oenothera for domain VI of the nad1a/b intron cannot be formed in wheat and pea.

3.6.2.2. Domain V of the nad1a/b discontinuous intron.

The wheat (this work) and maize (Bland et al. 1986) nad1a/b introns have a large loop of 17 nt in domain V (Figure 14A); this is unusual compared to the purine-rich tetraloop normally found in group II introns (Figure 14B, C and D). The loop of the nad1a/b domain V contains 19 nt in pea (this work) and 18 nt in Oenothera (Wissinger et al. 1991), petunia (Conklin et al. 1991) and tobacco (Bland et al. 1986), which suggests that its size may not be crucial although its sequence appears to be conserved (Figure 16). The size of domain V (34 nt) is almost universal among group II introns; the domain V is shorter by one or two nt in only four of the 68 group II introns, and two group II-like introns in Euglena chloroplast have up to 5 additional nt in the loop of domain V (Michel et al. 1989).
3.6.2.3. The 5' splice site of the nad1a/b discontinuous intron.

Another nearly universal motif of group II introns is the GTGCG or GCGCG consensus sequence located at the 5' splice site (Michel et al. 1989). In the wheat nad1a/b intron, the sequence at the 5' splice site is GACGG or AGACG because of a 2-nt redundancy; the latter is more likely since it corresponds to the 3' splice site consensus sequence TAT. Surprisingly, three nucleotide substitutions and one deletion/insertion are seen at the 5' splice site of the nad1a/b intron in comparisons between wheat and the dicots Oenothera (Wissinger et al. 1991) and petunia (Conklin et al. 1991; Figure 16C). These positions are normally involved in long-range interactions within group II introns (Jacquier and Jacquesson-Breuleux, 1991). It is therefore unexpected to observe the lack of the consensus sequence and, even more surprisingly, several nucleotide substitutions and a deletion/insertion between sequences from different plants. However, immediately downstream, a perfectly conserved block of 25 nt is present and may well play an important role in the nad1a/b intron structure (Figure 16C).

3.6.2.4. High rate of nucleotide substitution in the nad1a/b intron.

In order to examine the degree of sequence conservation within the four nad1 introns among different plants, wheat and Oenothera exon-flanking sequences were compared (Table 3). Because the secondary structures are as yet incompletely known in wheat, except for the nad1b/c intron, only a block of 300 bp at the 5' end and the well-conserved domains V and VI at the 3' end of each intron were arbitrarily included. The first
Table 3. Sequence similarity levels between wheat and Oenothera nad1 introns.

<table>
<thead>
<tr>
<th></th>
<th>5' 300 bp<sup>a</sup> domains V and VI<sup>b</sup></th>
<th>transversions</th>
<th>transitions</th>
<th>ratio (± identity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nad1a/b</td>
<td>82</td>
<td>88</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>nad1b/c</td>
<td>96</td>
<td>98</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>nad1c/d</td>
<td>93</td>
<td>97</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>nad1d/e</td>
<td>93</td>
<td>98</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

^a The regions of 300 bp at the 5' end of the wheat nad1 introns were compared (% identity) with Oenothera counterpart sequences: Figure 3A (519-818), Figure 3B (699-998), Figure 3B (2313-2612) and Figure 3C (261-560).
^b Sequences beginning immediately upstream of each domain V to the 3' end of the wheat nad1 introns were compared (% identity) with Oenothera counterpart: Figure 3B (523-613), Figure 3B (2068-2120), Figure 3C (123-201) and Figure 3D (2665-2771).
300 bp sequence of group II introns usually contains at least domain I which includes multiple well-characterized and conserved helical structures and exon binding sites (Michel et al. 1989).

The nadi/a/b intron sequences are only 82 and 88% identical at their 5' and 3' regions, respectively, between wheat and Oenothera, whereas the other nadi introns are 93-98% similar in those regions (Table 3). It appears that the low level of conservation in the nadi/a/b intron is mostly due to a larger number of transversions (50) compared to other nadi introns (4-10). Consequently, the ratio of transversions to transitions for the nadi/a/b intron (5.0) is much higher than that of other introns (0.4-1.4), although these numbers are based on a limited amount of data. Interestingly, these transversions could not be corrected at the RNA level by C-to-U RNA editing events. The reasons behind these peculiar rates of nucleotide substitutions are obscure, but are possibly attributable to various constraints on certain genomic or RNA sequences.

The wheat nadi/a/b intron sequence was tentatively folded into a structure similar to that proposed for the Oenothera counterpart (Wissinger et al. 1991). Numerous nucleotide substitutions and insertion/deletions are located within helical regions and exon binding sites, and these changes appear to destabilize the equivalent domain I structure in wheat (Appendix IVA). Moreover, an insertion of approximately 300 bp has occurred 0.4 kb downstream of nadi/a in wheat, which would be located within domain I of the structure proposed in Oenothera. Nevertheless, farther downstream, a block of more than 200 bp is at least 92% identical between wheat and
Oenothera (Appendix IVB). This region could potentially contain important sequences for the *nad1*/*b* intron structure.

3.6.3. **Positions of discontinuities in the core structure of *nad1* group II introns.**

The presence of group II-like intron structures in the flanking regions of distantly-encoded wheat *nad1* gene pieces is analogous to the chloroplast *rps12* and *psaA* genes. In each case, a trans-splicing model has been proposed in which group II intron moieties interact specifically in splicing (Kohchi et al. 1988; Goldschmidt-Clermont et al. 1991). One prediction of the chloroplast trans-splicing models is that discontinuities within group II introns are located in non-helical regions which would not affect the stability of intron core structures. The simplest model for *nad1* gene expression would involve one cis- and three trans-splicing events. In this section, the *nad1* transcript analysis and the comparison of sequences from different plants are used to analyze the *nad1* intron structures.

Because RNA folding is believed to be crucial in the splicing of *nad1* segments, the *nad1*-flanking sequences were analyzed for potential complementary stretches between intron halves at the RNA level. This analysis has led to the identification of several regions of complementarity depending on the constraints that are imposed in the search (such as conserved positions, distances to the exons, number of mismatches; data not shown). The most thermodynamically-stable structures that could be found between the sequences immediately upstream of domain V and those within the 5' intron pieces are presented (Figure 14A, C, D; Figure 14B as in Michel et al. 1989 for the watermelon group IIA intron -
from Chapdelaine and Bonen, 1991). These hypothetical RNA interactions between intron pieces have been selected for illustrative purposes because (1) domain V, unlike domains I-III, is well-defined and enables the accurate positioning of one half of the domain IV helix and (2) it has been shown that trans-splicing can still proceed in vitro with a discontinuity within loop IV (Jarrell et al. 1988). Therefore, some of these interactions may not represent those that take place in vivo, but rather show the type of structure that is thought to be involved in trans-splicing. In fact, subsequent comparisons between wheat and Oenothera nad1 sequences indicate that the 5' half of domain IV shown for the nad1a/b intron (Figure 14A) is absent in Oenothera. Another conserved complementary sequence is found 122 bp downstream of nad1a (not shown), but it is unlikely to represent the functional one because this region of 122 bp is too short to contain domains I-IV. The domains IV shown for the nad1c/d and nad1d/e introns (Figure 14C and D) are conserved among plants but flanking sequences are not.

Based on transcript analysis of nad1-flanking regions (section 3.5) and on sequence conservation between plants, one can predict within which domain of group II intron core structure the positions of discontinuities are most likely to have occurred. In the 3' half of the nad1a/b intron, the region of 946 bp between the rps13 gene and nad1b includes several conserved blocks between plants, among which a stretch of approximately 50 nt immediately preceding domain V is likely to be involved in domain IV structure. In the 5' half of the nad1a/b intron, long stable transcripts of 1575 nt downstream of nad1a could easily include the domains I-IV. In contrast, the S1 nuclease sensitive site located 270 bp
downstream of \textit{nad1a} would delimit a region that is rather short to accommodate domains I-IV. Therefore, the position of the discontinuity in the \textit{nad1a/b} intron could theoretically be located in any of the domains I-IV.

A similar analysis can be made for the \textit{nad1c/d} intron. Upstream of \textit{nad1d}, the breakpoint in homology between wheat and broad bean sequences (Wahleithner et al. 1990) is located only 57 nt upstream of domain V (Figure 3C, arrowhead), which strongly suggests that a DNA rearrangement has occurred within loop IV of the \textit{nad1c/d} intron. Downstream of \textit{nad1c}, transcripts covering the region of approximately 1170 bp could potentially include domains I-IV.

In the case of the \textit{nad1d/e} intron, the sequence downstream of \textit{nad1d} is conserved between wheat and broad bean for 539 bp (Figure 3C), but for only 260 bp downstream of the EBS1 site proposed by Wahleithner et al. (1990; see Figure 3C, position 518-521). This region is rather short to accommodate the rest of domain I and domains II-IV. Therefore, it might be argued that a DNA rearrangement has occurred within the loop of domain I, II or III (Figure 14D, inset) rather than the loop of domain IV.

In summary, it appears that discontinuities in \textit{nad1} group II introns can be located in different domains. While the \textit{nad1c/d} intron appears to be discontinuous in domain IV, the discontinuities in the \textit{nad1a/b} and \textit{nad1d/e} introns could well be located in upstream domains. In the chloroplast trans-splicing models, the discontinuity in the \textit{rps12} intron has been proposed to be located in domain III (Kohchi et al. 1988), those of the \textit{psaA-1} intron (including the \textit{tscA} RNA) in domains I and IV, and that of the \textit{psaA-2} intron in domain IV (Goldschmidt-Clermont et al. 1991). However, discontinuous
nad1 intron structures are as yet only partially characterized in wheat, and more structural elements must be identified in order to establish precisely where discontinuities are located.

3.7. COMPARISON OF nad1 GENE ORGANIZATIONS IN DIFFERENT PLANTS.

The organization of the wheat nad1d-nad1e region differs from that reported for the three dicots broad bean (Wahleithner et al. 1990), Oenothera (Wissinger et al. 1991) and petunia (Conklin et al. 1991). In broad bean and Oenothera, nad1d and nad1e are separated by a classical (continuous) group II intron of approximately 3.1 kb containing a maturase-like (mat-r) ORF initially identified by Wahleithner and colleagues (1990). Between wheat and these two dicots, sequences are conserved for 539 bp downstream of nad1d (Figure 3C, position 799) and 68 bp upstream of the mat-r gene that precedes nad1e (Figure 3D, position 147). Beyond these points, homology abruptly ends presumably because of a DNA rearrangement (Figure 17) which separates the wheat nad1d and nad1e segments by more than 12 kb (see section 3.1), but does not result in the loss of any intron sequences.

Interestingly, the breakpoint occurs at the position of a purine-rich stretch of 11 nucleotides in broad bean and Oenothera which is duplicated in wheat; one copy is located downstream of nad1d and a second copy upstream of the mat-r-nad1e region (Figure 17). Short direct repeats are often present at sites of mtDNA rearrangements in plants (André et al. 1992). In maize for example, the nonchromosomal stripe 3 mutant (NCS3) contains a purine-rich direct repeat of 12 nt which is also located within a group II intron (Hunt and
Figure 17. Comparison of the *nad1d* and *nad1e* exon organization in wheat and broad bean mitochondria. The schematic shows the *mat-r* gene (open bar) and *nad1* segments (solid bars) in wheat and broad bean (Wahleithner et al. 1990). The expanded region depicts in detail the purine-rich sequence (blocked) that is repeated at the breakpoint in wheat. Lower case letters represent non-conserved positions.
Newton, 1991), approximately 600 bp upstream of the 3' splice site (likely to be in the domain IV). The presence of similar purine-rich stretches at sites of breakpoints in homology suggests that they are involved DNA rearrangement events, either as sites mediating homologous recombination or as repeats generated as a consequence of double-stranded DNA repair.

Thus, it appears that a mtDNA rearrangement within the nad1d/e group II intron has occurred after the divergence of monocots and dicots from a common ancestor some 200 Myr ago (Wolfe et al. 1989). Surprisingly, the nad1d/e intron is also discontinuous in petunia (a dicot), but the mat-r gene, instead of being located upstream of nad1e like in wheat, is located downstream of nad1d region (Conklin et al. 1991). The position of the discontinuities in wheat and petunia may occur in the same domain (most likely domain IV) but at different ends of the mat-r gene. They could alternatively be located within different domains of the nad1d/e intron. Moreover, the three different nad1 gene organizations in wheat, Oenothera and petunia must be due to two independent DNA rearrangements; one having occurred after the divergence of monocots and another one after the divergence of petunia and Oenothera (two dicots) lineages.
CHAPTER 4. GENERAL DISCUSSION.

4.1. EXPRESSION OF THE \textit{nad1} GENE IN WHEAT MITOCHONDRIA.

The unusual organization of the \textit{nad1} gene in the wheat mitochondrial genome has raised questions as to whether it is functional, and if so how it is expressed and how such an unusual structure arose. There are several convincing lines of evidence that support the idea that this gene is functional. (1) The wheat \textit{nad1} sequences together are capable of encoding a polypeptide that is 45 and 84\% identical, at the amino acid level, to its human and liverwort counterparts, respectively. (2) The five \textit{nad1} exons are actively transcribed. (3) They are correctly linked and extensively edited at the RNA level, and RNA editing increases the predicted amino acid sequence similarity with non-plant organisms. (4) Structures reminiscent of group II introns flank \textit{nad1} coding sequences. (5) Similar organizations of the \textit{nad1} gene are seen in other plants. All these observations favour the hypothesis that the NAD1 protein is produced from this gene in wheat mitochondria. The similarity of the anticipated polypeptide with mitochondrial counterparts of non-plant organisms is higher than with the chloroplast one, which favours the hypothesis that the \textit{nad1} gene is endogenous to the ancestral mitochondrion rather than having been transferred recently from the chloroplast.

4.2. PATTERNS OF RNA EDITING IN PLANT MITOCHONDRIA.

One interesting aspect of RNA editing in the \textit{nad1} gene is the asymmetric distribution of the editing sites along the \textit{nad1} coding sequences and how it might have arisen. The study of certain other mitochondrial genes in wheat, namely \textit{nad4} and
nad5 (Lamattina and Grienengerber, 1991; De Souza et al. 1991), as well as nad2 and nad5 in Oenothera (Binder et al. 1992; Knoop et al. 1991), has also revealed asymmetric distributions of RNA editing sites. Interestingly, it has been observed that nad5b has no editing sites in wheat compared to at least 15 in Oenothera. This raises the possibility that the asymmetric distributions of RNA editing sites in mitochondrial genes could be due to the integration of edited reverse transcripts in genomic DNA. In the nad1 gene, such events could have occurred in nad1a prior to the monocot/dicot divergence. This might explain how the low frequency of RNA editing sites in wheat, Oenothera (Wissinger et al. 1991) and petunia (Conklin et al. 1991) has occurred.

Plant mitochondrial RNA editing is known to occur at different sites in different species. In this respect, it is not surprising that the nad1 gene would contain only approximately half of the sites that are shared by wheat, Oenothera (Wissinger et al. 1991) and petunia (Conklin et al. 1991). One wonders, however, how the asymmetric distribution has been maintained in all three plants through evolution. These observations may suggest that sites are acquired or lost non-randomly, and that certain regions may be particularly susceptible for editing. This is also consistent with the view that the recognition of RNA editing sites in plant mitochondria requires signals provided by sequences in the vicinity of those sites. Such a model could involve a mechanism similar to either the mammalian or trypanosomal ones, which are in fact very different. In mammalian apolipoprotein B transcripts, a stretch of 11 nt beginning 5 bp downstream of the C-to-U editing site is crucial for editing (Hodges and Scott, 1992). In trypanosome mitochondria,
guide RNAs are complementary to sequences located downstream of sites to be edited (Blum et al. 1990).

One of the editing sites found in the wheat nad1 gene, which is also present in *Oenothera* and petunia counterparts, is located at the same position in the chloroplast *ndhA* counterpart in maize (Maier et al. 1992). These RNA editing sites might have occurred at the same position only by coincidence, but it is tempting to suggest that they reflect similarities in mechanisms between plant chloroplasts and mitochondria and that common nuclear factors could be used by both editing machineries. It may also reflect certain constraints for maintaining RNA editing and that evolutionary pressure may exist at the nucleotide sequence level (as well as at the protein level), perhaps due to RNA structure or recognition motifs required for editing.

The presence of partially edited transcripts in plant mitochondria could potentially lead to the production of heterogenous and non-functional polypeptides. Because the initiation codon is generated by RNA editing in wheat *nad1* mRNAs, as for several chloroplast mRNAs (Hoch et al. 1991), RNA editing seems obligatory for initiation of *nad1* translation. It has also been observed that the degree of editing in *nad3-rps12* transcripts of the polysomal fraction (Gualberto et al. 1991) and in spliced transcripts (Yang and Mulligan, 1991) is higher than in precursors. It is therefore likely that, in spite of the fact that transcription and translation are not physically separated in the mitochondria, incompletely edited transcripts are unavailable for translation.
4.3. A TRANS-SPLICING MODEL FOR \textit{nad1} GENE EXPRESSION.

The five \textit{nad1} exons are scattered at four distant genomic sites in the wheat mitochondrial genome. The assembly of the \textit{nad1} gene pieces at the RNA level must require an unusual splicing process to generate functional mRNA molecules. A number of observations support the view that the wheat \textit{nad1} coding segments are expressed through trans-splicing.

Firstly, the longest introns yet identified in any organellar gene are less than 4 kb in length, whereas the wheat \textit{nad1} coding segments are separated by distances of at least 20, 7 and 12 kb. Moreover, the juxtaposition of other genes upstream of internal \textit{nad1} pieces (e.g. \textit{atp6/rps13} genes preceding \textit{nad1b}) would place those genes within introns, an unorthodox organization in organellar genomes. The physical map of the wheat mitochondrial genome (Appendix II, Lejeune and Quétier, 1988) predicts that additional genes are located between \textit{nad1} gene segments.

Secondly, the wheat \textit{nad1} coding segments are flanked by group II-like intronic features. Only \textit{nad1b} and \textit{nad1c} are separated by a typical continuous 1.4 kb group II intron. \textit{Nad1c/d} and \textit{nad1d/e} intron structures, although not well defined, are also clearly related to group II introns. The \textit{nad1a/b} intron falls in a special category since only the stem of domain V allows the classification of this intron as a member of group II (discussed in more detail in section 4.4). This unusual gene organization is reminiscent of that of two trans-split chloroplast genes, namely, the \textit{rps12} gene in plants (Fukuzawa et al. 1986; Zaita et al. 1987; Hildebrand et al. 1988) and the \textit{psaA} gene in \textit{C. reinhardtii} (Kück et al. 1987). The \textit{nad1} gene organization is also similar to those of the \textit{nad5} and \textit{nad2} genes in \textit{Oenothera} (Knoop et al. 1991;
Binder et al. 1992) and the nad5 gene in wheat (De Souza et al. 1991). The nad2 and nad5 genes require one and two trans-splicing events, respectively, for their expression.

Thirdly, the abundant wheat nad1 precursor transcripts extend only 1–2 kb beyond the individual nad1 coding regions, downstream of nad1a, nad1c and nad1d, and upstream of nad1b. In addition, there is no evidence for long precursor transcripts which could contain all nad1 exons. Consequently, Northern blot hybridizations and S1 nuclease analysis of nad1 steady state transcripts suggest that the nad1 coding regions are located on different precursor transcripts. In Oenothera, the analysis of nad2 transcripts led to similar conclusions (Binder et al. 1992). The wheat nad1 transcripts are long enough to encompass group II intron "halves" of normal sizes (1–3 kb) that would flank the nad1 coding segments.

Fourthly, the nad1 gene structure differs radically among wheat, Oenothera (Wissinger et al. 1991) and petunia (Conklin et al. 1991) with respect to the nad1d/e intron. This situation is most easily explained by the occurrence of DNA rearrangements upstream of the mat-r gene in wheat and downstream of the mat-r gene in petunia. In wheat, the mat-r gene would be located in the 3' half of the nad1d/e intron, whereas in petunia it would be located in the 5' half.

Although those arguments strongly support a trans-splicing model, four unusual cis-splicing models have been considered theoretically by Choquet et al. (1988), and are discussed here in the context of the plant mitochondrial nad1 gene. One which invokes long primary transcripts is excluded because, in petunia, the nad1d and nad1b-nad1c regions are located on opposite strands and 95 kb apart (Conklin et al. 1991). In a second model, the possibility is raised that low
level DNA molecules may exist. However, such molecules have not been detected in wheat either by Southern blot hybridizations or by PCR experiments. The two other cis-splicing models suggest that intron pieces may be covalently linked at the RNA level by priming (precursors from the upstream region being used to initiate transcription of the downstream region) or by end-to-end ligation of precursor RNAs from the different regions. Again, such RNA molecules are not detected by PCR; however, because of their size and their relatively low abundance, such splicing intermediates may be difficult to detect. Perhaps the strongest argument against these two latter cis-splicing models is that the splicing of nad5b to nad5c occurs prior to processing of nadle-nad5c precursor transcripts. Therefore, trans-splicing is the only model that is consistent with the experimental results that have been obtained in different plants.

4.4. THE nadla/b INTRON STRUCTURE.

Of the four nad1 intervening sequences, the nadla/b intron is the most unusual with respect to its degree of divergence among plants and to the apparent absence of group II intron features. The domain V stem is in fact the only structure that can be recognized as a feature of group II introns. This raises the question as to whether (1) this intron is a degenerate group II intron (i.e. with some functions now being provided in trans), (2) this intron became specialized or more interestingly (3) this intron could be a member of a yet un defined class of introns. The identification of phylogenetically conserved regions of this intron will help to distinguish among these possibilities.
The absence of a bulging A at the position -7 or -8 from the 3' splice site in the nad1a/b intron in all plants is somewhat puzzling. Starting from the 3' splice site, the first possible nucleotide that could serve as bulging A is at position -11 in monocots, and -10 in dicots. The 5-bp deletion/insertion in this region between monocots and dicots is also unexpected and reflects the poor conservation that has been described at the 3' splice site of the nad1a/b intron. Interestingly, in pea, a 4-nt repeat (AAGT, Figure 16C) could have been involved in this deletion/insertion event.

The bulging A, which is directly involved in the long-range interaction leading to lariat formation, is among the best conserved positions of group II introns, including Euglena chloroplast group II-like introns (Michel et al. 1989). In fact, in the list of 68 group II introns presented by Michel et al. (1989), there are only three exceptions to this rule: the tRNAVal chloroplast intron (in which a G is seen instead of A), the chloroplast ORF203 (intron 2) and the nad1b/c intron in watermelon mitochondria. Domain VI of the nad1b/c intron in wheat is identical to that of watermelon and both plants have Cs at positions -7 and -8. In the nad1a/b intron, there is neither A nor G at these positions of any plants. It should be remembered, however, that lariat formation is dispensable in vitro. It normally serves to stabilize the tertiary structure of the intron-downstream exon splicing intermediate, and results in the acceleration of the second transesterification step (Jacquier and Jacquesson-Breuleux, 1991).

Another unexpected result from the study of the nad1a/b intron concerns the identification of an S1 nuclease sensitive site located 270 bp downstream of nad1a. The stable
transcripts observed in this region and those of >0.6 kb upstream of nad1b are rather short (although not too short) to accommodate a group II intron of normal size. It should also be kept in mind that nad1a and nad1b flanking sequences may include only part of the nad1a/b intron, and that other short RNAs (such as the tscA gene product, see below) might be necessary to complete the intron structure.

However, it seems doubtful that transcripts containing the 5' half of the nad1a/b intron end only 270 bp downstream of nad1a because (1) the first 300 bp downstream of nad1a are not well conserved (Appendix IV), and (2) other highly conserved sequences are located farther downstream which are likely to contain important sequences for the nad1a/b intron (Appendix IA and IVB). This S1 nuclease sensitive site could be due to relaxation of a stretch of approximately 20 Ts that is located at this position, or to RNA editing in this region. An alternative hypothesis is that a structure different from other group II introns exists; one in which non-linear (e.g. lariat) structures would prevent hybrid formation in this region of the nad1a/b intron. These hypotheses could be tested directly by using uniformly labelled probes that overlap this region: S1 products that cover only the region downstream of the S1 sensitive site should be observed.

4.5. EXPRESSION AND PROCESSING OF nad1 TRANSCRIPTS.

Since multiple trans-split gene structures have been conserved over long evolutionary periods in both chloroplasts and mitochondria, they do not seem to interfere with normal gene functions. However, certain conditions must be fulfilled for DNA rearrangements within introns not to be lethal. One is that translocated segments must be placed under appropriate
transcriptional control. In this regard, the *nad1-nad5c* arrangement in wheat differs from ORFX-*nad5c* in *Oenothera*, and *nad1d-nad1e-nad5a-nad5b* in *Arabidopsis* (Knoop et al. 1991). The different organizations of the *nad1* and *nad5* gene segments among angiosperms illustrate that gene pieces are often translocated upstream or downstream of actively transcribed regions. The fact that breakpoints in homology are located within approximately 25 bp of transcript termini downstream of *nad1c* and *nad1e* also suggests that there are functional constraints for the conservation of the sequences between those sites and the coding regions.

It has been debated in the literature whether single and double stem-loop structures are involved in transcription termination or in RNA processing in plant mitochondria (reviewed by Gray et al. 1992). Based on the thermodynamic stability and the conservation between plants, the most convincing double stem-loop structure was found in the vicinity of the transcript termini downstream of *nad1e*. Transcripts extend further downstream of each of the four major 3' termini that were detected in this work. This favours the view that *nad1* transcript termini are generated by RNA processing. It will be interesting to determine the factors that are involved in the stability of transcript termini that are located within introns. To clarify these questions, more transcript analysis will be necessary both *in vitro* and *in vivo*.

The presence of multiple genes that each require transsplicing for their expression adds to the complexity of RNA processing in plant mitochondria. The cotranscription of *nad1e* and *nad5c* highlights this point in two different ways. (1) The *nad1e-nad5c* precursor transcripts contain parts of two
different mRNAs. (2) Splicing of the *nad5b/c* and *nad5c/d* introns may occur before cleavage between *nad1e* and *nad5c*, which suggests that *nad1e* does not interfere with the folding of *nad5b/c* and *nad5c/d* introns. It would be interesting to examine if these processing and splicing events occur in a predetermined order as suggested by De Souza and colleagues (1992) for the *nad5* gene, and if a particular precursor transcript can be involved in the production of both *nad1* and *nad5* mRNAs. In the *nad1* gene, transcripts in which the *nad1b/c* and *nad1c/d* introns had been removed but not the *nad1a/b* intron, have been detected. The relatively low level of transcripts arising from the *nad1d* and *nad1e* regions compared to the *nad1a* and *nad1b-nad1c* regions may reflect that splicing rates of the first two *nad1* introns are slow, or that splicing of the *nad1c/d* and *nad1d/e* introns must occur before that of the *nad1a/b* and *nad1b/c* introns.

4.6. FLUIDITY OF THE *nad1* GENE STRUCTURE.

The presence of three different structures of the *nad1d-nad1e* region(s) among plants strongly supports the idea that trans-splicing in the intron between *nad1d* and *nad1e* is the result of recent DNA rearrangements within a previously continuous group II intron, rather than being an ancient form of intron structure. It is worth mentioning that trans-split gene structures could, alternatively, arise from the duplication of certain portions of the gene and from the subsequent inactivation (or loss) of the original cis-copy by DNA rearrangement. Such a model could explain the presence of the ORF36 downstream of *nad1c* in watermelon (Stern et al. 1986) which is likely to correspond to a duplicated portion of *nad1e* in that plant. One would expect that the cis-copy would
offer a selective advantage unless trans-splicing is not too deleterious.

In fact, little is known about the positive or negative impact that trans-splicing could have on efficiency of gene expression. One argument that favours the view that trans-splicing is not too unfavourable is that most trans-split gene structures have occurred early in plant evolution. Except for the ones observed in the nad1d/e introns of wheat and petunia, other plant mitochondrial discontinuous introns in nad1 (this work, Wissinger et al. 1991; Conklin et al. 1991), nad2 (Binder et al. 1992) and nad5 (Knoop et al. 1991, De Souza et al. 1991) genes seem to have occurred before the monocot/dicot divergence, approximately 200 Myr ago. The trans-split chloroplast rps12 gene organization is also a very stable one, being present in both liverwort and tobacco, two land plants that have had separate lineages for some 350-400 Myr (Wolfe et al. 1989). Similarly, the fragmented psaA gene structure observed in C. reinhardtii is also present in widely divergent Chlamydomonas species (Palmer, 1991).

The intronless structure of the nad1 gene in liverwort (Oda et al. 1992) could either result from intron losses in liverwort or from intron acquisitions in angiosperm mitochondria. An overview of the distribution of mitochondrial introns in different organisms (Table 4) supports the hypothesis that such acquisitions or losses of introns have been frequent during mtDNA evolution, and that angiosperm mitochondrial introns, which are all members of group II, are generally located at different sites from those of other organisms, including liverwort. For example, the coxI gene contains six group I and three group II introns in liverwort (Oda et al. 1992), sixteen introns in Podospora (Cummings et
Table 4. Distribution of introns in mitochondrial protein-coding genes of *Podospora*, liverwort and angiosperms, as well as in chloroplast homologues.

<table>
<thead>
<tr>
<th>Cytochrome oxidase</th>
<th>Podospora anserina<sup>a</sup></th>
<th>Marchantia polymorpha<sup>b</sup></th>
<th>Angiosperms<sup>c</sup></th>
<th>Chloroplast homologues<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>coxI</td>
<td>16</td>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>coxII</td>
<td>2</td>
<td>2</td>
<td>0-2<sup>e</sup>,<sup>i</sup></td>
<td>-</td>
</tr>
<tr>
<td>coxIII</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Cytochrome b</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4<sup>j</sup></td>
</tr>
<tr>
<td>cob</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ATP synthase</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>atp6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>atp8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>atp9</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>atpA</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NADH dehydrogenase</td>
<td>4</td>
<td>1</td>
<td>4<sup>i</sup></td>
<td>1</td>
</tr>
<tr>
<td>nad1</td>
<td>0</td>
<td>1</td>
<td>4<sup>i</sup></td>
<td>1</td>
</tr>
<tr>
<td>nad2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nad3</td>
<td>1</td>
<td>1</td>
<td>1-3<sup>e</sup></td>
<td>0</td>
</tr>
<tr>
<td>nad4L</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>nad5</td>
<td>3</td>
<td>1</td>
<td>4<sup>i</sup></td>
<td>0</td>
</tr>
<tr>
<td>nad6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nad7</td>
<td>-</td>
<td>2<sup>f</sup></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Ribosomal proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rps3</td>
<td>-</td>
<td>0</td>
<td>1<sup>g</sup>,<sup>h</sup></td>
<td>0</td>
</tr>
<tr>
<td>rps7, rps19</td>
<td>-</td>
<td>0</td>
<td>0<sup>g</sup></td>
<td>0</td>
</tr>
<tr>
<td>rps12</td>
<td>-</td>
<td>0</td>
<td>0<sup>g</sup></td>
<td>2<sup>i</sup></td>
</tr>
<tr>
<td>rps13</td>
<td>-</td>
<td>0</td>
<td>0<sup>g</sup></td>
<td>-</td>
</tr>
<tr>
<td>rps14</td>
<td>-</td>
<td>1</td>
<td>0<sup>g</sup></td>
<td>0</td>
</tr>
<tr>
<td>rpl16</td>
<td>-</td>
<td>0</td>
<td>0<sup>g</sup></td>
<td>0-1<sup>e</sup></td>
</tr>
<tr>
<td>rpl1</td>
<td>-</td>
<td>0</td>
<td>0<sup>g</sup></td>
<td>-</td>
</tr>
<tr>
<td>rpl2, rps4, rps8,</td>
<td>-</td>
<td>0</td>
<td>0<sup>g</sup></td>
<td>0</td>
</tr>
<tr>
<td>rpl11</td>
<td>-</td>
<td>0</td>
<td>0<sup>g</sup></td>
<td>0</td>
</tr>
<tr>
<td>rpl12</td>
<td>-</td>
<td>1</td>
<td>0<sup>g</sup></td>
<td>0-1<sup>e</sup></td>
</tr>
</tbody>
</table>

-^a Cummings et al. (1990); -^b Oda et al. (1992) -^c review by Bonen (1991); see also Lippok et al. (1992); Binder et al. (1992); Lamattina and Grienenberger (1991); Gass et al. (1992); Knoop et al. (1991); Linda Bonen, unpublished data. -^d Marchantia polymorpha (Ohyama et al. 1986) and tobacco (Shinozaki et al. 1986), reviewed by Palmer, (1991). -^e Presence of optional introns. -^f Pseudogene. -^g Genes not present in all plant examined. -^h The rps3 intron is located in a fused upstream ORF (Hunt and Newton, 1991). -ⁱ Genes for which trans-splicing models have been proposed. -^j Homology to apocytochrome b6 and subunit 4 of the cytochrome b/f complex (Heinemeyer et al. 1984).
al. 1989), and has no introns in angiosperms. Conversely, while genes for NADH dehydrogenase subunits are intron-rich in angiosperms, they generally contain a small number of introns in liverwort. This variation in the distribution of mitochondrial introns among land plants contrasts with the distribution of chloroplast introns which is almost identical between liverwort and angiosperms (Palmer, 1991), and supports the view that these introns became widespread recently in mitochondrial genomes (Palmer and Logsdon, 1991).

The organization of the nad1 gene in the wheat mitochondrial genome shows that DNA rearrangements alter not only gene order, but also gene structure. In C. reinhardtii mitochondria, genes for rRNAs also show radical intragenic rearrangements that have considerably altered gene structure (Boer and Gray, 1988b). It may be significant that both C. reinhardtii and plants have mitochondrial genes with homology to reverse transcriptases (Boer and Gray, 1988a; Brennicke and Schuster, 1987; Wahleithner et al. 1990). Although reverse transcriptase activity has not been demonstrated directly in plant mitochondria, it has been implicated in the transfer of an edited copy of the coxII gene to the nucleus in mung bean (Nugent and Palmer, 1991). Such activity may also have a role in the frequent acquisition or loss of RNA editing sites in plant mitochondria. It has been suggested that DNA rearrangements could occur by the integration of reverse transcribed sequences and subsequent recombination between duplicated sequences in plant mitochondrial genomes (André et al. 1992). Reverse transcriptase activity may be a key to part of the puzzle of plant mtDNA evolution and thus indirectly have implications for gene expression.
4.7. TRANS-INTERACTIONS IN GROUP II INTRONS.

One fundamental problem for the processing of trans-split genes is that the RNA pieces have to find their correct partners. The specific recognition of intron pieces is further complicated by the presence of two additional discontinuous introns in the wheat nad5 (De Souza et al. 1991) and (probably) nad2 (Binder et al. 1992) genes. There is no evidence for the presence of stable transcripts containing mis-matched nad1 segments, which suggests that intron pieces can interact precisely and specifically for splicing or that the mis-matched transcripts are rapidly degraded.

There are several types of interactions that can be envisioned for the proper recognition of intron moieties. In the models proposed for the chloroplast psaA (Goldschmidt-Clermont et al. 1991) and rps12 genes (Kohchi et al. 1988), base-pairing between intron halves within the discontinuous domains III or IV is viewed as a strong trans-interaction since, in each case, long complementary sequences are seen. Such structures could be present in nad1 introns but have not been identified because core intron structures are as yet unknown, but no long stretches of perfect complementarity could be found.

It is worth pointing out that other interactions are likely to occur between intron halves, and that base pairing within the discontinuous domain could play a relatively minor role. For example, in the cis-split nad1b/c intron the domain IV helix appears to be only 3 bp long (Michel et al. 1989). In in vitro trans-splicing studies, the domain IV can be removed completely without abolishing splicing, but domain V is crucial (Jarrell et al. 1988). Although the role of domain V in the tertiary folding of group II introns is yet unclear, it
is likely that it plays a key role in bringing 5' and 3' splice sites in close proximity (Michel et al. 1989; Jacquier and Jacquesson-Breuleux, 1991). It has been shown recently that a binding site for domain V is located within domain I (Koch et al. 1992). Such interaction could potentially act as a primary factor of recognition between the two intron halves.

Trans-splicing might be expected to differ from cis-splicing in requiring either additional specialized secondary structural interactions or extra machinery (such as small RNAs and/or proteins) for the correct recognition and alignment of intron pieces (particularly in a milieu where multiple trans-splicing events occur). Indeed, in the case of the C. reinhardtii trans-split psaA gene, at least fourteen nuclear loci are required for the processing of psaA introns (Choquet et al. 1988; Herrin and Schmidt, 1988). Moreover, the chloroplast tscA gene product appears to be a short RNA that would be directly involved in the formation of a typical group II intron structure (Goldschmidt-Clermont et al. 1991). These studies on the chloroplast psaA gene suggest that all intron structures are not necessarily transcribed from the vicinity of coding regions. This possibility has to be kept in mind in the analysis of the wheat mitochondrial nad1 introns.

4.8. INCIDENCE OF TRANS-SPLIT GENE STRUCTURES.

One may also question why the phenomenon of trans-splicing has not been observed more frequently in nature. Of more than 68 group II introns characterized in a wide variety of organisms (Michel et al. 1989), only two chloroplast genes had been identified to be trans-split prior to the present study. In plant mitochondria, in addition to the three discontinuous introns in the nad1 gene (this work, Wissinger
et al. 1991, Conklin et al. 1991), there are two other examples in the nad5 gene (Knoop et al. 1991, De Souza et al. 1991) and one in the nad2 gene (Binder et al. 1992). This large number of discontinuous introns (six out of 22 introns) may simply reflect the recombinogenic nature of plant mtDNA. However, trans-splited genes appear to be absent from fungal mtDNA in which rearrangements are also frequent. Therefore, the numerous DNA rearrangements in plant mitochondria cannot alone be held responsible for the high ratio of discontinuous introns.

Trans-splicing may have a selective advantage by providing a more refined or efficient control of gene expression. In trypanosomes, this view has been considered for nuclear trans-spliced leaders but this seems to be a somewhat complicated process to provide mRNAs that arise from multicistronic transcripts with a 5' cap (Laird, 1989). This model appears even more unlikely in plant mitochondria or chloroplasts since trans-splicing is involved only in isolated cases. Moreover, for the wheat mitochondrial nad1 gene, the excess of certain precursor transcripts makes the issue of efficiency less plausible.

Another hypothesis is that particular subclasses of introns (as yet undefined) could be more amenable for trans-splicing because they require different trans-acting factors for example. Interestingly, the four nad1 introns share as many as 16 nt positions in common out of 34 nt in domain V. Oda and colleagues (1992) noticed that the liverwort mitochondrial group II introns can be grouped into four families, two of which are closely related. This is consistent with the view that most plant mitochondrial introns have a
recent origin (discussed above), and have possibly evolved from a small number of ancestors.

To test further the idea that group II introns involved in trans-splicing may share some specific features, an alignment of domain V sequences of the nine discontinuous group II introns found so far in mitochondria and chloroplasts is presented (Figure 18). In spite of the fact that these introns belong to different subgroups and that the nad1a/b intron is atypical in several respects, there are 11 invariant positions among the nine introns and 7 other positions are found in eight of these introns. It may be significant that one position of the group II consensus (Michel et al. 1989) is absent in four mitochondrial discontinuous introns (position 16), and that as many as 5 invariant nucleotides in discontinuous introns are not part of the general consensus. Moreover, the chloroplast rps12-1 domain V is nearly identical to the wheat nad1d/e intron (only 4 mis-matches), and is also closely related to the wheat nad5b/c and Oenothera nad2b/c introns (7 mis-matches each). In fact, the domain V of tobacco rps12-1 intron in the chloroplast is as similar to that of mitochondrial discontinuous intron as it is to its liverwort chloroplast counterpart (6 mis-matches, Kohchi et al. 1988). However, these observations must be interpreted cautiously since domain V is highly conserved, which may lead to convergence of sequences.

4.9. FUTURE DIRECTIONS.

With the identification of at least 22 group II introns in plant mitochondrial genes (Table 4), introns appear to contribute substantially to genome sizes. However, the analysis of sequences flanking known genes supports the idea
Figure 18. Alignment of domain V sequences of discontinuous introns. The sequences shown above are the consensus ones from the mitochondrial nad1 (this work), nad5 (De Souza et al. 1991) and nad2 (Binder et al. 1992) introns. The sequences shown below are from the chloroplast rps12 (Zaita et al. 1987) and psaA (Goldschmidt-Clermont et al. 1991) introns. Dashes represent the loop of 17 nt in nad1a/b domain V. Lower case letters depict the consensus positions in 8 out of 9 introns. The numbers indicate the position in the domain V structure.
<table>
<thead>
<tr>
<th>Organism</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat nad1a/b</td>
<td>GAGCGUAACGGCGG--AUGUGUCGUACGGUUC</td>
</tr>
<tr>
<td>Wheat nad1c/d</td>
<td>GGAGCUGUAGAGCGGUAAACGUACGGUACGGUCC</td>
</tr>
<tr>
<td>Wheat nad1d/e</td>
<td>GGAGCGUAAGGCAGGAGGAGGUCACGUACGGUACGGUCC</td>
</tr>
<tr>
<td>Wheat nad5b/c</td>
<td>GGAGCGUAAGGCGGAGGCAGGUCACGUACGGUACGGUUC</td>
</tr>
<tr>
<td>Wheat nad5c/d</td>
<td>GAGCGUGUAAUAGCGGACCACUUUGCGCGGCUUC</td>
</tr>
<tr>
<td>Oenothera nad2b/c</td>
<td>GAGCGUAAGCGGUGAGGCACGUACGGUACGGUAA</td>
</tr>
<tr>
<td>mitochondrial consensus</td>
<td>GAGCcGUaug g G A c CGuaCGGuu</td>
</tr>
<tr>
<td>trans-splicing consensus</td>
<td>GAGCcGU ug g A c G aCGG u</td>
</tr>
<tr>
<td>chloroplast consensus</td>
<td>GAGCGCUaUGcgugAAaUcgCAUGuACGGuUC</td>
</tr>
<tr>
<td>Tobacco rps12-1</td>
<td>GAGCGUAUGGUGAAGAAUCUAUGUACGGUUC</td>
</tr>
<tr>
<td>Chlamydomonas psaA-1</td>
<td>GAGCGUAUGCGAAAAACUGCAUGUACGGUUC</td>
</tr>
<tr>
<td>Chlamydomonas psaA-2</td>
<td>GAGCGUGUGCAGUGAAAAAUUGCAUGCAGGCUC</td>
</tr>
</tbody>
</table>
that the presence of non-coding spacer DNA is the main cause of the large genome sizes and of the size variation (Gray, 1989a). It is possible that the identification of additional genes is hindered by the presence of short trans-split exons (such as nad5c of 22 bp). Nevertheless, probes from liverwort mtDNA (Oda et al. 1992) will be helpful in the isolation of additional genes in angiosperm mitochondria.

Because wheat nad1 introns are as yet only partially characterized at the RNA level and because they have several unusual structures, it will be interesting to find continuous counterparts of nad1a/b and nad1c/d introns to determine when the different nad1 gene organizations occurred during evolution, and to establish the complete secondary structures of these introns. A continuous form of the nad1a/b intron might help to clarify why this intron is so poorly conserved. Since the nad1 gene has no intron in C. reinhardtii (Boer and Gray, 1988a) and liverwort (Oda et al. 1992), gymnosperms or early-diverging land plants might be potential candidates.

It is notable that 19 of the 22 (86%) introns are located in genes for NADH dehydrogenase subunits, which represent only 35% of the plant mitochondrial genes identified so far (see Table 4). It is possible that introns could play a role in plant mitochondrial gene regulation. This is an attractive model considering that plant mitochondria contain rotenone-resistant NADH dehydrogenase and cyanide-resistant terminal oxidase activities which are not present in animal mitochondria. Major variations in these activities have been observed during early stages of germination in several plants (Douce and Neuburger, 1989). In this regard, it is also interesting that the nad1 and nad5 genes have different transcript profiles after 24 hours and 6 days of germination.
(Bonen, 1987; Bird and Bonen, unpublished). The use of probes from the four regions of the nad1 gene at different stages of development may represent an interesting approach. The study of the mat-r gene expression during wheat development is also of interest. Using S1 nuclease mapping and anchored PCR methods, it may be possible to determine how mat-r transcripts are processed and how its translation is initiated.

A more detailed S1 nuclease analysis of the nad1 gene may also help us to understand better certain regulatory aspects of plant mitochondrial gene expression. First, upstream of the nad1a, nad1d and nad1e coding regions, it will be important to examine whether nad1 stable transcripts arise from primary transcripts or processing events. Second, in the nad1b upstream region, complex processing events are expected. The preliminary S1 nuclease mapping results for the rps13-nad1b interval should be pursued considering that Northern blot hybridizations suggest that the rps13 gene is silent after 24 hours and 6 days of germination (Bonen, 1987). Third, the short abundant transcript observed in the nad1e region should be investigated further to identify its 5' and 3' termini, and to examine its relative abundance at different stages of development. Fourth, the ratio of precursor to mature transcripts appears to be much higher for the nad1a and nad1b-nad1c regions than for nad1d and nad1e regions. It would be of interest to determine whether this is due to different promoter strengths, or to different splicing rates.

The identification of RNA editing sites within cis- and trans-splicing intron structures raises fundamental questions about the temporal relationship between editing and splicing processes. It has also been suggested that RNA editing could play a role in the regulation of the splicing process.
(Wissinger et al. 1991; Binder et al. 1992). However, the contribution of RNA editing to plant mitochondrial intron structure remains difficult to define. Of the six sites that occur in the domain VI region (this work; Wissinger et al. 1991; Conklin et al. 1991; Knoop et al. 1991), two appear to weaken the helical structure, three have no clear contribution to the stability of the helix one way or the other, and only one stabilizes the structure but is present in only one of ten clones (appendix V). It is worth noting that they are all located between positions -6 and -11 from the 3' splice site.

The population of precursor transcripts may not be representative of the molecules that take part in splicing, although these stable precursor transcripts are extensively edited within the coding regions. To address these issues, the analysis of excised introns would allow us to identify the editing sites (if any) that are absolutely required for splicing. Because the analysis of such splicing by-products is difficult in vivo, one interesting avenue would be to study the self-splicing properties of plant mitochondrial introns in vitro. Although in vitro self-splicing properties of several group II introns of other systems have been extensively studied (Cech, 1986), preliminary work would be necessary to determine in vitro self-splicing conditions of certain plant mitochondrial introns. Eventually, the disruption of continuous introns as well as the reconstruction of discontinuous introns could be analyzed. It would also be possible to determine how the presence or absence of editing sites affects splicing rates.
4.10. CONCLUDING REMARKS.

This work clearly demonstrates that short gene segments can be dispersed around the wheat mitochondrial genome and yet still comprise functional coding entities that are expressed through complex RNA processing. The presence of group II introns is intimately associated with this phenomenon and could play an important evolutionary role in the creation of novel genes from pre-existing coding domains or the conversion of long genes into shorter autonomous ones. This is an attractive model if one considers that group II intron ancestors may have spread rapidly at certain times during evolution. The ability of such introns to undergo trans-splicing could provide a selective advantage in the acquisition of novel gene functions.

During the course of this work, evidence has emerged that the trans-split nad1 gene structure is not unique in plant mitochondria; the nad5 and nad2 genes also require trans-splicing involving group II intron structures for their expression (Knoop et al. 1991; De Souza et al. 1991; Binder et al. 1991). The identification of group II introns that can be divided into halves or pieces supports the idea that the group II introns represent a mosaic of modules that can assemble into functional entities. Complex trans-interactions between RNA molecules are also required for the assembly of rRNAs in C. reinhardtii mitochondria (Boer and Gray, 1988b). This illustrates that mosaic RNA structures are functional in contemporary organelles (Butow and Perlman, 1991). The growing evidence that group II introns can be viewed as an assembly of independent modules, that normally act in cis, adds to their similarities with nuclear pre-mRNA introns (Jacquier, 1990).
Our notion of gene expression has started from the simple model in which DNA is transcribed into RNA, and RNA is translated into proteins. The picture has become more complex with the discovery of intervening sequences and alternative splicing; the primary transcription product is no longer the RNA that is translated. Trans-splicing extends by a further step the complexity of gene expression by requiring multiple promoters and independently-produced transcripts. The phenomenon of RNA editing has also increased the importance of RNA maturation in the process of gene expression. RNA (or cDNA) sequences are now necessary to deduce amino acid sequences and this has strong practical implications. The wheat mitochondrial nad1 gene with three introns involved in trans-splicing, one in cis-splicing, 23 RNA editing sites (including one in the initiation codon), as well as RNA editing within at least one intron depicts strikingly the complexity of gene expression.
REFERENCES

Blum B, Sturm NR, Simpson AM, Simpson L (1991) Chimeric gRNA-mRNA molecules with oligo(U) tails covalently linked at sites of RNA editing suggest that U addition occurs by transesterification. Cell 65:543-550

Boer PH, Gray MW (1988a) Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase-like protein (RTL) are
linked to ribosomal RNA gene pieces in *Chlamydomonas reinhardtii* mitochondrial DNA. EMBO J 7:3501-3508

Boer PH, Gray MW (1988b) Scrambled ribosomal RNA gene pieces in *Chlamydomonas reinhardtii* mitochondrial DNA. Cell 55, 399-411

122

Conklin PL, Wilson RK, Hanson MR (1991) Multiple trans-splicing events are required to produce a mature nad1 transcript in a plant mitochondrion. Genes Develop 5:1407-1415

Cummings DJ, Domenico JM, Michel F (1988) DNA sequence and organization of the mitochondrial ND1 gene from Podospora anserina: analysis of alternate splice sites. Curr Genet 14:253-264

Dawson AJ, Jones VP and Leaver CJ (1984) The apocytochrome b gene in maize mitochondria does not contain introns and is preceded by a potential ribosome binding site. EMBO J 3:2107-2113

homologous intron-encoded proteins from yeast mitochondria. Cell 56:431-441

Geliebter J, Zeff RA, Melvold RW, Nathenson SG (1986) Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis: K^bmo and K^bmo. Proc Natl Acad Sci USA 83:3371-3375

Joyce PBM, Spencer DF, Gray MW (1988) Multiple sequence rearrangements accompanying the duplication of a tRNAPro gene in wheat mitochondrial DNA. Plant Mol Biol 11:833-843

liverwort, Marchantia polymorpha, chloroplasts. Nucleic Acids Res 16:10025-10036

Laird PW (1989) Trans splicing in trypanosomes - archaism or adaptation? Trends Genet 5:204-208

127

129

APPENDIX I. Sequence analysis of the four nad1 coding regions. Most sequences presented here have been obtained from only one strand.

A. Sequence analysis of the nad1a region. The restriction sites for HindIII and BamHI are underlined. The blocked sequence is also shown in Figure 3. Runeberg-Ross and colleagues (1987) have sequenced a 0.7-kb HindIII fragment that is located immediately upstream of this HindIII restriction site.

HindIII

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAGCTTATT</td>
<td>GGCCCCAGA</td>
</tr>
<tr>
<td>CTATTTTCAC</td>
<td>GGTCCGC</td>
</tr>
<tr>
<td>ATATGCTTCT</td>
<td>GAGATCTCG</td>
</tr>
<tr>
<td>ATGAAACAA</td>
<td>TACATTTTCTA</td>
</tr>
<tr>
<td>TTTTCTGCC</td>
<td>TAGAATGCA</td>
</tr>
<tr>
<td>CCTCAGGAG</td>
<td>TGGCCGAAAACCG</td>
</tr>
<tr>
<td>CTCCAGGAG</td>
<td>GCAGAATTTG</td>
</tr>
<tr>
<td>ATACCAAT</td>
<td>CCTATTTTCTA</td>
</tr>
<tr>
<td>CATATTATGA</td>
<td>TAACTGAGG</td>
</tr>
<tr>
<td>ATGAAACAA</td>
<td>TACATTTTCTA</td>
</tr>
<tr>
<td>AAGAATATAT</td>
<td>CCTACACTCG</td>
</tr>
<tr>
<td>TTTTCTGCC</td>
<td>AGACAGGAG</td>
</tr>
<tr>
<td>ACCGAAACCG</td>
<td>ATGCAAGATTG</td>
</tr>
<tr>
<td>AGAGCATTG</td>
<td>GACATCTCG</td>
</tr>
<tr>
<td>AAAAGGAG</td>
<td>GCTCTATCTC</td>
</tr>
</tbody>
</table>

BamHI

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAAAGTTTCC</td>
<td>CTCCTTCACTA</td>
</tr>
<tr>
<td>AGTGTGAGGC</td>
<td>GGCAGCTGCC</td>
</tr>
<tr>
<td>CAGCTTTGTA</td>
<td>TCTTCTTGTTT</td>
</tr>
<tr>
<td>TTATGTGACTC</td>
<td>GGCGAGCTTT</td>
</tr>
<tr>
<td>AGTGTGAGGC</td>
<td>TGGGATTGCT</td>
</tr>
<tr>
<td>ACCCATTTAC</td>
<td>CCAATTTGAG</td>
</tr>
<tr>
<td>TATGTTGAGCT</td>
<td>GGTGAGGATG</td>
</tr>
<tr>
<td>TGGCAAATCC</td>
<td>GGTGAGGATG</td>
</tr>
<tr>
<td>TTAGTCATAG</td>
<td>TGGGATTGCT</td>
</tr>
<tr>
<td>CAATTGTTCA</td>
<td>AAAATGGGTTT</td>
</tr>
<tr>
<td>GCCTGACAGA</td>
<td>GGTGTGAGGAC</td>
</tr>
<tr>
<td>TGGGAGGAG</td>
<td>GTCAGTCTT</td>
</tr>
<tr>
<td>ATCAAACTGC</td>
<td>GGGGTTGAGG</td>
</tr>
<tr>
<td>TTTTCTTTTCT</td>
<td>GGGGTTGAGG</td>
</tr>
<tr>
<td>CTAGTACAG</td>
<td>GGGGTTGAGG</td>
</tr>
</tbody>
</table>

133
B. Sequence analysis of the nadIC downstream region. The sequence begins immediately downstream of the sequence data shown in Figure 3B and is numbered accordingly. The restriction sites PvuII and XbaI are underlined.

PvuII
CAGCTGCGTGTCAATCTCGT TATGTTCTACG GGGCGGCAA GAGGAGGACG AGACCAACGC-2984
TCCGACCCT ACGAGCCAGC TATGTTCTACG ACCAGAGGAG CCCCCCTACCC TACTATCCCC-3044
TCTTACACAG CAAACCAAGC CTAACCCACCC CAAAGCTGCTA CAGACATTGT CTTGATATTGCC-3014
ATGAGGATTCG AAGAGAGATCA GAGACTACCA CGGAAATCTT CCAATGTCAC CCGTGGAACC-3164
TTGTCACCTA AAGCGTCAGC AGACTTTCTC AGAAGCCGCTCA TATAATCTCC AAGGGGATAC-3224
AGGCAGCGA GGTTGAGATG CGGACCCACTA CTAAGGCAAC GTCTGGCTGA GGGAGCCACG-3284
AAGCCCGGGG AGAGATATTTA GAAGTACAGC AAGGTGTCGG TGAGGGCGCTA GTACTTTAAGC-3344
TAGGGTGCC TCATTTCCCG TATCTGTGGC TTTTTCAGCA GTTATGTTGA GGGCGCCCTC-3404
CCTCTTCTC GAATTTTCGAG CTAGATATCTG TATGATGACC TGGTCGAGAG-3464
AGTACGAAAC ATCGGTGAAT AAGATGATGTT GGGAGGTGTA TAGTAAGGG CGGAACCAAGT-3524
GCTCCGGCTA AGAAGCGAAT CATTACAAGT GGAGGAGAAC AAGAGGATCG AGGCGCGGCG-3584
CGGTACCGAT GCCCTCTACG CGGATGGAGT TTAACATTTCT TTATCCACGT AAGCGTTACG-3644
AATGGGACC GCATTCCTCT TTTGCTTTCT TTTGCAACTT AGCTTAGGTCT ATACATTTCC-3704
AAGCTAAATTT GAGTACAACC ATGAGGGCTG GGTGCGAATC GCCATCACAA CTATTATTC-3764
CTGGTAAGTA GGATTGGAA TGGTGTCTCT TTTTAGGGAG TCCGGCCGCTA GTGAAGGTG-3824
AATCCAAATG AGGTGTGGAT CTAGTGAGG GAGTGCAAAT ATCAAAGTTTT AATGATGTTT-3884
ATAAATAGTG CATATATACTG TGGGCAACACT ACAAGGCAATC ACACACTTCG ATCTACTTTA-3944
TTGGAATAACT TACGCTAGA GACGCCACTG AAGCTTTTTA ATGAGAAGAG CAAATAAGGG-4004
ATAATAAGCTCT CTTGAGACCT TCGGACGACT ACAGCAATCTC CAGCCATGTCT CATCAGACAT-4064
ACAACACAGCC CCAAAGAGGAG TGGCCGGCA GTCGATGATA AAGAGGACTG AGAACCTTAC-4124
GGGAGACGCT TCNGCGGAGG TCCCTATGCT GTGGTGCACTA TACACAGCGA GTTGCGATTA-4184
ATGGTGAGGA AGGAGGAGGTA TGGTGTTTGA AGGAGGTGTT GGGAGACATA TTTNNNTCAG-4244
TGGATATATAA GGGAGGACTG GGGAGCTCTG AGTAGTCTCTC ATGAGACACG CTGTTGGCGT-4304
TTCCGAAACG ATCCTTATCA GGACCCCTCT TTTATATAAAC CACTCGTAGA TATATACCTC-4364
CGGTGGGCTT CAGTGATCA GTCGATGATA AGAAAGGGGAA TGGTGTATCT AGA

XbaI
C. Sequence analysis of the nad1D region. The nad1D exon is in bold and the sequence shown in Figure 3C is blocked. The restriction sites EcoRI and HindIII are underlined.

EcoRI
GAATTCCATT CCGTCACCTT GGGGTTCTCT TTTTCTTCTCT GGTATGACGAC GTCAACGGCG-60
TCTCTATTTT GTATGGAGAT TCAGATGACGAC GAAACGGCG CCGGGAGAT CATCGGAT-120
ACCTCTAGCC CCGAGCAGGA GGGGTCGTCG TGGCAACAGCG CAAACCTGGT GGGGTCGAC-180
TCCGAGGCTC TGGGAAACCCT CTTGAGAAGTT CCCCCTTTAT CCGGAAAGCC ACCGGCGATGC-240
CTCTCCCATT TCCAGAAGGA AGGGAAGCTCC CTCCCCCTCCG TGGGTACA CACCCGCT-300
CGCAGAATTC CCAGGGGCTG GACACAGAGCC GGGGCAACCG TCCCTAAACCG GAAGTCCTCA-360
TGGTCTTTAG GAAAGATGTTG AAGAATGGCA GCTCTAGGTT AAGGATGTTG TACAGGCTT-420
AGGGCTGCTC TTTGAGAGAA TAAAGAGAAA AAAGAAGTA CAGACCTGCG GGGGTTCCAG-480
TCTGATGACTT GTGATGACTT TGGATGACTT ATGATGACTT AATGATGACTG GGGGTTCCAG-540
GGGACTGCAT TCGCTCTGGC ATGGCAATAG CCCCCCTGAG CCGGAAAGCC GGGGTCGAC-600
AGGACATGATG TAGGCCCCAG AAAAAATGGC GACCGCTGCTC GTCCCATATT TAGGAGGCTG-720

AGGGCCAGATT TTCTAGAATG AAAACGCTCT TGGAGCTTAC TGGCAGCTTAC TACATTTATG-780
AGGGGAAAGC TAACTCGGTGG TACGCGGGCG TGGTATGAGCG GAGGCTGCTC CACCTGCG-840
TCCGATGACTT GTGATGACTT TGGATGACTT ATGATGACTT AATGATGACTG GGGGTTCCAG-900
TCTGATGACTT TCGCTCTGCTG GACACAGAGCC TGGTACGGTG GGGGTTCCAG-960
TCTGATGACTT TGGGAAACCCT CTTGAGAAGTT CCCCCTTTAT CCGGAAAGCC ACCGGCGATGC-1020
ACCCCTCCGG CCGAGAAGCTCC CTCCCCCTCCG TGGGTACA CACCCGCT-1080
TAGTGTGTAA GCACAGGAAT CGCGCGAAGG CAGCCGCGAT CAGCTCCTAG TAAAGTAAAG-1140
GGGGGAGCTC TCAGATGACTG TAACTCGGTGG TACGCGGGCG TGGTATGAGCG GAGGCTGCTC CACCTGCG-1200
TGGTACAGG AAGGAGGAGG CACGCGGGAT CACGCGGGAT CACGCGGGAT CACGCGGGAT-1260
ATCGATGACTT TGGGAAACCCT CTTGAGAAGTT CCCCCTTTAT CCGGAAAGCC ACCGGCGATGC-1320
GGACAGAGCC TGGGAAACCCT CTTGAGAAGTT CCCCCTTTAT CCGGAAAGCC ACCGGCGATGC-1380
GGGATTAGAA ATGAGGAGGA AGGCAAGGCA ATCAGCGGGAG CACGCGGAGC ATCAGCGGGAG CACGCGGAGC-1440
GGGACTGCAT TCGCTCTGGC ATGGCAATAG CCCCCCTGAG CCGGAAAGCC GGGGTCGAC-1500
GGGACTGCAT TCGCTCTGGC ATGGCAATAG CCCCCCTGAG CCGGAAAGCC GGGGTCGAC-1560

CTCGAGGCTC ATTTGCGGA ATACCGGCTTC ATTAATCTCC AAATTCAAC AAGGGGCGCTG-1620
GGCTGCCGCG CCCCATGAGA AGGGCGCGGC GCTAGATTTA ATGATTGGCT CTTTTATAGA-1680
ATAGAAAGAG AGGATTAAGG GCCCCCTTT GGGAGTTTTG TCAAGAATGC ATGCGCTTCT-1740
CCTATTCGCC TCCAACAGGA CCGTAAAGG CCGTTGGCTA TGCCAGAGA GGTATCCAT-1800
TTCATAGGCG AGGNNNAAA GAGGCGGAGA TCTGATCGA ATCCGACAGC CTAACAAATTC-1860
TCCGCGCGCG GAGAAAACAG AGATCGAGTA AGTAAATCAG TGAAGTGCTTT CTTTTATAAG-1920
AGGAGGGCTC GTGGGAGAAA ATACGAACTA CCGGCGCTGG TGGATTTGAT-1980
CGACTTGAAT GGGTCTTCTC GCCGCGAGCA TCAAGTCCCTA TTTCAAAGGA GACGACGGGT-2040
CAGTATATCG TGCTGATGTT TGGAGACTCT TGGTTGAGAT GGGTATGCTG-2100
CTATGTTATTT GTATGATCCT GACTCCTGCC CTAGTATCTC CCCAGATATT CATATAGAGGAG-2220
CTAGGCGCTT TCTACATCTGG TTCTGAGTCGA TATCTATATT TATTCTACAGA GGGCCAGATTC-2280
ACGAAGAAGT ATGGGCCCTAT TTACCAGTGA GTGGTTATTAT TGGACTGATC TTTGCTGGG-2340
AAATGGTCTT CATTTTATAT AATGAAACCA TTCCATTACT ACCAACCAC AGAAATACGA-2400
CCTCTCTGAG ATATACGTTT TATGGCGGAA AGGTAGCGAG TTGGACTAAT TTTGAAACAT-2460
TGGGAATTTA CTTTATACCT ACTATTCTCG CTGGTTTTTG GTTCTCTAGTC TGATTTTATT-2520
AGTTGCTATG ATTTGGGCTA TAGTATTTAC TATGCGATAG ACTACAAGAG TGAAAAGACA-2580
GGATGTATTC AGCAAGAATG CTTGGATTC TAGGAGCCAT ATAAAAGACA GGACTATTTG-2640
TCTTTGTCG CATAGCCTATA GAAGAAGCTT HindIII

D. Sequence analysis of the nadle-nad5c region. The sequence begins immediately downstream of the sequence data shown in Figure 3D and is numbered accordingly. The exon nad5c is in bold. The restriction sites XbaI and BamHI are underlined.

XbaI
TCTGGCGGTAA TATGTAACGT AGCCAGCCTA ATTTCTAGAA TAGGGCTGCG GGCAGGAGGG-3180
CTTGTTTGGC GCAATCTTGC TGCGAACACC CTCTCTCCGG GCCGAACCTGC GATCTCCGCC-3240
TCTAAGCTGA TGGCTCTGTA AGGCGGTGTA CAAAACCTTT AACCGCAACA GCCCGGGCTG-3300
GGGTATTCCCT ATCCCTAGAG GAGCGGTATG AGCGGAACCT GCCGCTACGG TTTTGAGGCC-3360
GAGCTATTCC AGCAATGCGG CTTAGGGGAC CAAATAGTAGA TTTGTTTGGG TAGGCGCCGC-3420
GGCTACTATG GCCACTCTAG GGGTACGTGC GTGAGACGGG ATCCACAAAT GCCGATGAGC-3480
TCACCCCTGA GGTAGGATGA GAGAAAGCTA AAGACAAATAG CATGCACAAA GAGCGAGGCA-3540
GAGAGGGCCTC CGCCCTTCGA GGAGAAGAGA GCCCTCGGGG AGCGGGCCTT TGGAGATGAC-3600
GCCCTTGGCG AGGCCAAGTC ATTTGCCGGG CACCAACCC TGGCAACTGAG GAAAGGCCGC-3660
TATGGAGTAA AGGGAGGCGT GTACGGTGTC ACATCTCCGC CCGCTCAAGG TGCGCTTAGG-3720
GACGCGGCCG AGCGCGCGAG CAGAGGCGAT CCCGCCGCGC GACGCGCGAT CCCGCCGCGC-3780
GGAGACGGCC ATCTCGAGGC ACATCAGGAC CTACCGGCAA CACCGGGCGG ACCCAGGAA-3840
GTAACCCCGAT TTGGAGTTCAG AGGATCC BamHI
APPENDIX II. Physical map of the wheat mitochondrial genome derived from Lejeune and Quétier (1987). Letters represent the SalI restriction fragments that constitute the "master circle". The positions of nad1 sequences and their orientations and shown (arrows).

Wheat Mitochondrial Genome (430 Kb)
APPENDIX III. Secondary structure model of the wheat mitochondrial nad1b/c intron. The group II intron structure is based on the one proposed for the watermelon counterpart (Michel et al. 1989). Intron/exon borders are indicated by solid triangles. Intron binding sequences (IBS1 and IBS2) and exon binding sequences (EBS1 and EBS2) are shown by arrows.
APPENDIX IV. A. Secondary structure model of the Oenothera nad1a/b intron proposed by Wissinger and colleagues (1991). Nucleotide substitutions and deletions that are observed in wheat are indicated; those that destabilize helices are circled.
B. Schematic representation of the alignment of sequences from nad1a region between wheat and Oenothera. The arrows depict an inversion of 43 bp.
APPENDIX V. Compilation of RNA editing sites found within plant mitochondrial introns.

<table>
<thead>
<tr>
<th>Intron</th>
<th>Plant</th>
<th>Domain</th>
<th>contribution to stability</th>
<th>frequency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>nad1a/b</td>
<td>wheat</td>
<td>VI(-6)</td>
<td>?</td>
<td>4/4</td>
<td>this work</td>
</tr>
<tr>
<td>"</td>
<td>pea</td>
<td>VI(-6)</td>
<td>?</td>
<td>high</td>
<td>this work</td>
</tr>
<tr>
<td>"</td>
<td>Oenothera</td>
<td>VI(-7)</td>
<td>+</td>
<td>1/10</td>
<td>Wissinger et al. 1991</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>VI(-11)</td>
<td>-</td>
<td>10/10</td>
<td></td>
</tr>
<tr>
<td>nad1d/e</td>
<td>petunia</td>
<td>VI(-10)</td>
<td>-</td>
<td>?</td>
<td>Conklin et al. 1991</td>
</tr>
<tr>
<td>nad5a/b</td>
<td>Oenothera</td>
<td>VI(-10)</td>
<td>-</td>
<td>?</td>
<td>Knoop et al. 1991</td>
</tr>
<tr>
<td>nad5d/e</td>
<td>"</td>
<td>unmodelled</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>unmodelled</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>nad2b/c</td>
<td>"</td>
<td>I(+7)</td>
<td>+</td>
<td>high</td>
<td>Binder et al. 1992</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>IV</td>
<td>+</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>unmodelled</td>
<td>?</td>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX VI. Rare nucleotide changes observed in wheat mitochondrial nad1 coding sequences. The five exons (nad1a-e) in wheat (Chapdelaine and Bonen 1991) are shown and U-stretches of at least 5 nucleotides are indicated. The different cDNA clones analyzed are shown below with the type of changes (numbered as in the nad1 ORF, see Table 2) being: T-to-C (136, 285, 452, 582, 658, 663, 678, 824, 827, 941, 963); C-to-T (702, 835); A-to-G (186, 474, 522); +A (361, 364); A-to-T (765); -T (64). Open circles represent sites that are not edited in certain clones. Changes in the U₁₀-stretch are in bold.
APPENDIX VII
The Wheat Mitochondrial Gene for Subunit I of the NADH Dehydrogenase Complex: A Trans-Splicing Model for This Gene-in-Pieces

Yvan Chapdelaine and Linda Bonen
Department of Biology
University of Ottawa
Ottawa
Canada K1N 6N5

Summary

The nad1 gene encoding subunit I of the respiratory chain NADH dehydrogenase is fragmented into five unique-copy coding segments that are scattered over at least 40 kb and interspersed with other genes in the wheat mitochondrial genome. The nad1 segments are flanked by sequences with group II intron features, and transcript analysis demonstrates the presence of correctly spliced mRNAs. RNA editing occurs at sites asymmetrically distributed along the wheat nad1 coding region, and the initiation codon is created by RNA editing. The unusual organization of the wheat nad1 gene is attributed to mitochondrial DNA rearrangements within introns, and a trans-splicing model involving secondary structural interactions between group II-like intron pieces is proposed for its expression.

Introduction

Plant mitochondrial DNA (mtDNA) rearrangements are known to occur frequently during evolution (reviewed by Gray, 1989; Palmer, 1990), but are expected to be confined to regions that do not affect individual gene structure or expression. Such intergenic spacer regions are plentiful in plant mtDNA because, although these genomes are very large compared with those of other organisms (i.e., 15- to 200-fold larger than animal mtDNA), they contain relatively few extra genes (reviewed by Levings and Brown, 1989; Lonsdale, 1989). Somewhat surprisingly, comparative analysis of mtDNA sequences from closely related plants indicates that DNA rearrangements can occur very close to or even within coding regions. Consequently, genes that are otherwise almost identical can differ in predicted protein sequence at their termini and have unrelated regulatory sequences. Although the mechanisms underlying DNA reorganization in plant mitochondria are not well understood, most genomes contain long recombinationally active repeated elements (Lonsdale, 1989; Small et al., 1989) as well as short stretches within intergenic regions that are homologous to bits and pieces of genes.

One such short gene segment of approximately 30 codons has been identified at a single genomic site downstream of the rps13 gene in the mitochondria of tobacco, maize (Small et al., 1986), and wheat (Bonen, 1987). It shows homology to an internal region of the gene for subunit I of the respiratory chain NADH dehydrogenase (NADH-ubiquinone oxidoreductase), designated nad1 in plant mitochondria. Unexpectedly, sequences corresponding to the 125–130 amino-terminal nad1 codons could not be identified within the stretch of approximately 1 kb up to the rps13 gene. Several nad1 homologous segments, including the one mentioned above, have also been identified in watermelon mitochondria (Stien et al., 1986), and two segments homologous to 3′-terminal nad1 coding sequences have recently been characterized in broad bean (Wahleithner et al., 1990). In no case, however, do the reported fragments comprise a full-length nad1 gene capable of encoding a polypeptide of the expected 320–330 amino acids. It has been suggested that these plant nad1 homologous segments might be pseudogenes (see Makaroff and Palmer, 1987; Lonsdale, 1989), with the functional nad1 polypeptide being either nuclear encoded or a product of the evolutionarily related chloroplast nadA gene (Matsubayashi et al., 1987).

We have considered an alternative possibility, that is, that the entire nad1 gene is indeed present in wheat mtDNA, but that coding segments are dispersed so that transcripts must undergo unusual cis or trans splicing to yield functional mRNA molecules. It should be noted that although plants have exceptionally large mitochondrial genomes, only a few genes have been reported to be split (reviewed in Lonsdale, 1989), and their introns have been classified as group II because of distinctive secondary structural features (Michel et al., 1982, 1989). Organelar group I or II introns typically range in length from 0.6 kb to as much as 4 kb. Some are known to be self splicing in vitro (Cech, 1986), and some behave as mobile genetic elements (Perlman and Butow, 1989; Lambowitz, 1989). Of particular interest here is the unusual organization of two chloroplast genes whose exons are widely separated in the genome and independently transcribed: the rps12 gene in plants (Fukuzawa et al., 1986; Zaita et al., 1987; Hildebrand et al., 1988) and the psaA gene in Chlamydomonas (Kück et al., 1987). It is believed that secondary structural interactions between group II intron halves flanking their coding segments are crucial for mRNA maturation (Choquet et al., 1988; Kohchi et al., 1988).

Results

Identification of the Five Wheat nad1 Gene Segments

We have identified and characterized five nad1 coding segments, designated nad1a–nad1e, that together are capable of encoding a polypeptide of 325 amino acids in wheat mitochondria (Figure 1; Figure 2). These nad1 sequences are however scattered over four distant genomic sites. Only the second and third exons (namely, nad1b and nad1c) are close together; they are separated by a group II intron of 1422 bp. These two exons were initially identified by DNA sequence analysis of the region beginning 947 bp downstream of the rps13 gene (Bonen, 1987).

To search for 5′ nad1 coding sequences, we used a synthetic oligomer (oligo B2) that is complementary to nad1b as primer on wheat mtRNA template in reverse
greater distances (and additional mitochondrial genes) are anticipated between nad1 segments.

The five nad1 exons are predicted to encode 129, 27, 64, 20, and 85 amino acids, respectively (Figure 2), taking into account exon/intron borders and RNA editing events (discussed below). The positions of the discontinuities in the wheat nad1 coding sequence do not precisely correspond to the locations of introns identified in homologous genes from other organisms; however, the third (group I) intron in the Podospora mitochondrial ND1 gene (Cummins et al., 1988) is close to the wheat nad1 intron junction, and the single chloroplast ndhA (group II) intron (Matsumbeyashi et al., 1987) is near the site of the wheat nad1-bc1 intron.

The region preceding the wheat nad1e exon contains an open reading frame of 678 codons (Figure 2D) that is very closely related to the one (maturase-related gene [mat-r]) previously identified in broad bean (Wahleithner et al., 1990) at the same genomic site (compare 86% amino acid identity versus 90% for the wheat/broad bean nad1d and nad1e exons). The pattern of nucleotide substitutions observed between these two mat-r genes supports the view that this sequence is under functional constraint. Both genes are related to fungal mitochondrial group II intron ORFs (see Lang et al., 1985) and possess six of the nine "invariant" amino acid residues characteristic of reverse transcriptases (Michel and Lang, 1986; Wahleithner et al., 1990).

The nad1 Initiation Codon Is Created by RNA Editing, and Other Sites Are Asymmetrically Distributed

The wheat Nad1 sequence is homologous along its full length to its counterparts from other organisms; however, the gene lacks an ATG triplet in the vicinity of the predicted start codon. Initiation of translation may involve a nonconventional initiator, additional splicing events to generate the extreme 5' coding sequences possessing an AUG codon, or RNA editing to create an AUG codon. To distinguish among these possibilities, we used a synthetic oligomer (oligo A2) in direct cDNA sequencing experiments. The results, shown in Figure 3A, demonstrate the presence of RNA editing that transforms the ACG codon at position 134-136 (Figure 2A) to AUG in approximately 50% of the RNA molecules. The conversion of C to U is typical of RNA editing in plant mitochondria (Guaitiero et al., 1989; Covello and Gray, 1989; Hiesel et al., 1989); however, this is the first report of an RNA editing event that would be obligatory for protein synthesis to proceed. Interestingly, the mat-r gene, which also lacks an initiation codon in both wheat (Figure 2D) and broad bean (Wahleithner et al., 1990), does not contain any codon near its 5' terminus that could in this manner be converted to AUG. As yet, it is not known how translation of this reading frame is initiated.

To further examine the nature and extent of RNA editing within the wheat nad1 coding region, we determined the sequences of cloned PCR-amplified CDNAs derived from transcripts in which all five exons had been spliced (see Figure 3B, lane 5; oligomers A3 and E as primers). Positions at which the wheat nad1 genomic and cDNA se-
Figure 2. Nucleotide Sequence of the Wheat *nad1* Gene Segments and Flanking Regions

(A) *nad1a*, (B) *nad1b→nad1c*, (C) *nad1d*, and (D) *nad1e* (boxes). Amino acid sequences were derived using the universal genetic code, but altered amino acids (circled) are shown at positions of C to U RNA editing (dots). RNA editing data cover *nad1* coding regions upstream of the open triangle in *nad1e*. Group I intronic domain V sequences are indicated by dashed boxes. Solid arrowheads show the breakpoints in homology with broad bean (Wahlileinher et al., 1990). The following restriction sites are underlined in the sequence: HindIII, BamHI, SalI, EcoRI, PvuII, Xhol, Smal, XbaI, and XmnI. The HindIII site at the 5' end of the sequence shown in (B) corresponds to the 3' HindIII site (position 680) in Figure 2 of Bonen (1987).
parison, five such sites are seen in wheat, and interestingly, four of them are located within nad1c, again highlighting the clustering of sites within this exon.

Transcripts of nad1 Coding Segments Are Correctly Spliced

Direct cDNA sequence analysis of wheat nad1 transcripts, as used in the identification of nad1a, indicates that both precursor and processed RNAs are present. This has been confirmed by Northern blot analysis in which complex RNA species, from 2 kb to >3.5 kb in apparent size, are seen (Bonen, 1987; data not shown). Some of the abundant precursors contain individual coding segments and only immediate flanking regions. For example, transcripts containing sequences upstream of nad1d do not extend into the rps13 gene region (Bonen, 1987).

To determine the precise splice junctions, PCR-amplified reverse transcripts were analyzed. Oligomers A, B, C, D, and E, which are specific to the respective nad1 exons, were used as primers on wheat mtRNA, and the resulting cDNAs were PCR amplified using oligomer A3 as the second primer. The products, shown in Figure 3B (lanes 1–5), correspond approximately to the predicted sizes of 422, 494, 578, 762, and 825 bp, respectively. Sequence analysis of cloned cDNAs confirmed that the correct reading frame for NAD1 protein synthesis is generated. It should be noted that a 2 nucleotide redundancy occurs at the nad1a/b border (see below). The PCR-generated results were corroborated by direct cDNA sequencing across splice junctions (data not shown).

When wheat mtDNA, rather than RNA, was used with oligomers A and A3 in PCR experiments, the predicted product (approximately 422 bp) was seen (Figure 3B, lane 6). In contrast, when oligomers B and A3 were used as primers, no product was seen (Figure 3B, lane 7). These data, in conjunction with our Southern hybridization data, are consistent with the view that nad1a and nad1b are not closely linked in the wheat mitochondrial genome.

nad1 Coding Sequences Are Flanked by Group II–Like Intronic Structures

Previous studies of watermelon and broad bean nad1 homologous segments (Sterne et al., 1986; Wahleithner et al., 1990) had established the presence of group II introns between the segments corresponding to nad1bc and nad1de, respectively. Closely related sequences are seen in wheat except that an mtDNA rearrangement has disrupted the intron between nad1d and nad1e (see below). When sequences flanking the wheat nad1 coding segments were examined in detail, in three of the four cases (Figures 4B–4D), features were found that are clearly diagnostic of group II introns (Michel et al., 1989): namely, a conserved block at the 5′ splice site (GTGCG or GCCGCG) and the helical domain V structure near the 3′ splice site (Figure 2, dashed blocks; Figure 4).

The discontinuous intron between nad1a and nad1b, however, is atypical for many reasons: First, domain V has 17 nucleotides in the loop rather than the usual 4 (GAAA) purines (Figure 4A). Second, the 5′ splice site lacks the
Wheat Mitochondrial nad13 Gene-in-Pieces

(A, C, and D) Trans splicing. (B) Cis splicing. The only features of the group II core structure (Michel et al., 1989) shown are the well-defined domain V (hairpin) and the upstream domain IV, with a potential discontinuity within the looped region (A, C, and D) or within domains I, II, or III (inset in D). The structure in (B) is shown as proposed for watermelon (Michel et al., 1989), and positions conserved among the four wheat nad13 domain V sequences are boxed. The numbers indicate distances to the exons.

Figure 4. Secondary Structural Models Illustrating Putative Splicing of Wheat nad13 Exons

The group II intron. These hypothetical RNA interactions between intron pieces have been selected for illustrative purposes because domain V, unlike domains I–III, is well defined and enables the accurate positioning of one-half of the domain IV helix, and it has been shown that trans splicing can still proceed in vitro with a discontinuity within loop IV (Jarrell et al., 1988). Because the breakpoint in homology between the wheat and broad bean sequence upstream of nad13 is located only 57 nucleotides from domain V (Figure 2C, arrowhead), a DNA rearrangement within loop IV seems likely. In the case of the nad13e discontinuity, on the other hand, because the sequence downstream of nad13 is conserved between wheat and broad bean for only 539 bp (Figure 2C; Figure 5), which is rather short to accommodate domains I–IV, it might be argued that the DNA rearrangement involves loop II or III (Figure 4D, inset) rather than loop IV. It should be noted that in vitro, the presence of domain V is crucial for trans splicing, whereas domain IV can be removed without abolishing splicing (Jarrell et al., 1988).

A Short Direct Repeat Is Located at the Site of the Wheat nad13e Intron Discontinuity

The structure of the 5’ end of the wheat nad13 gene differs radically from that recently reported for broad bean, in which exons nad13 and nad13e are separated by a classical group II intron of 3143 bp containing a mat-r-like open reading frame (Wahlleitner et al., 1990). The wheat and broad bean sequences are conserved for 539 bp downstream of nad13 (Figure 2C, position 799) and 68 bp upstream of the mat-r gene that precedes nad13e (Figure 2D, position 147). Beyond these points, homology abruptly ends because of a genomic rearrangement (Figure 5) that separates the wheat nad13 and nad13e segments by at least 12 kb (see above), but does not result in the loss of any intron sequences. Interestingly, the breakpoint occurs at the position of a purine-rich stretch of 11 nucleotides in broad bean, so that there are two copies of this sequence present in wheat, one downstream of nad13 and the second upstream of mat-rnad13e (Figure 5).
Discussion

The unusual organization of the wheat nad1 gene raises fundamental questions about how gene pieces that are physically very far apart in the mitochondrial genome can give rise to functional messenger RNA molecules. A number of observations suggest that the wheat nad1 coding segments, which are scattered over four distant genomic sites, are expressed through trans splicing. First, the longest introns yet identified in any organellar gene are less than 4 kb in length, whereas the wheat nad1 coding segments are a minimum of 20, 7, and 12 kb apart (Figure 1). Moreover, the juxtaposition of other genes upstream of internal nad1 pieces (e.g., atp6/rtsp13 genes preceding nad1b) would place those genes within introns, an unorthodox organization in organellar genomes. Their proximity to upstream genes could, on the other hand, provide transcriptional signals for expression. Second, the abundant wheat nad1 precursor transcripts do not extend far beyond the individual coding regions (see Bonen, 1987). Third, in broad bean mitochondria, there is a group II intron separating nad1d and nad1e, whereas in wheat the intron is broken into two pieces that are at least 12 kb apart. Finally, the wheat nad1 coding segments are flanked by group II-like intron features, reminiscent of the unusual organization of two trans-splice chloroplast genes, namely, the rps12 gene in plants (Fukuzawa et al., 1986; Zaita et al., 1987; Hildebrand et al., 1988) and the psaA gene in Chlamydomonas (Kück et al., 1987). Trans splicing of these two chloroplast genes, which is believed to involve interactions between group II intron pieces, is considered distinct from another well-studied form of trans splicing, that is, the addition of S' leader to protist and nematode nuclear-encoded mRNAs (Agabian, 1980). However, similarities among organellar group II introns, nuclear pre-mRNA introns, and nuclear trans-splice introns are emerging (Jacquier, 1990), and the phenomenon of trans splicing may be more widespread than previously thought (Dandekar and Sibbald, 1990).

We propose that expression of the wheat nad1 gene involves three trans-splicing and one cis-splicing events mediated through RNA folding of group II-like sequences. To illustrate the concept simply, we have shown intron halves base pairing to form domain IV (Figure 4). Trans splicing might be expected to differ from cis splicing in requiring either additional specialized secondary structural interactions or extra machinery (such as small RNAs and/or proteins) for the correct recognition and alignment of intron pieces (particularly in a milieu where multiple trans-splicing events occur), and this might explain the absence of certain group II features and unexpected sequence differences (that cannot be compensated for by C to U RNA editing) seen between wheat and Oenothera (compare 5' splice site and domain VI of nad1a/b). Indeed, in the case of the Chlamydomonas trans-split psaA gene, a product of the chloroplast tscA genetic locus has been determined to be essential for the splicing of exon 1 to 2 but not exon 2 to 3 (Roiglgrund and Mets, 1990; Goldschmidt-Clermont et al., 1990), and a number of nuclear gene products are also required for processing (Choquet et al., 1988; Herrin and Schmidt, 1988). Transcript analysis to precisely define the ends of plant mitochondrial nad1 intron pieces and additional RNA editing information as well as functional in vitro studies similar to those performed on fungal mitochondrial group II introns (see Jarrell et al., 1989) will be important in elucidating key RNA interactions.

One fundamental problem in the processing of trans-split genes is that the RNA pieces have to find their correct partners. We find no evidence for the presence of transcripts containing mismatched nad1 segments (compare single PCR-generated products, Figure 3B); however, we do see much higher levels of nad1 precursor RNAs than those of cis-split genes such as coxII (Bonen et al., 1984). This presumably reflects different efficiencies of RNA processing. Interestingly, our preliminary data suggest that the wheat nad1 and nad5 genes follow developmentally specific RNA processing pathways (Bonen, 1987; S. Bird and L. B., unpublished data).

In addition to investigating the mechanisms by which wheat nad1 mRNAs are generated, it will also be of interest to learn how and when such events have taken place. From a comparison of the nad1/a regions in broad bean and wheat, it is apparent that an mtDNA rearrangement within that group II intron has occurred since the divergence of monocots and dicots from a common ancestor some 200 million years ago (Wolfe et al., 1989). The presence of almost identical purine-rich stretches at the breakpoints (Figure 5) suggests their involvement in the DNA rearrangement processes, either as sites mediating homologous recombination or as repeats generated as a consequence of double-stranded DNA repair. Upstream of nad1d, the wheat and broad bean sequences share homology for only 136 bp, and downstream of nad1e the breakpoint in homology occurs 66 bp after the termination codon (Figure 5). This suggests that additional rearrangement events have occurred within these regions of plant nad1 genes. In contrast, sequences preceding the nad1b segment are conserved for at least 0.9 kb in all plants examined (Stern et al., 1988; Bland et al., 1988; Bonen, 1987; Wissinger et al., 1991), indicating a long evolutionary history for this genomic organization. The trans-split chloroplast rps12 gene organization is similarly a very stable one, being present in both liverwort and tobacco, two land plants that have had separate lineages for some 350-400 million years (Wolfe et al., 1989).

One may also question why this phenomenon has not been observed more frequently in nature. Of more than 70 group II introns characterized in a wide variety of genetic systems (Michel et al., 1989), only two chloroplast genes had been identified to be trans split prior to the present studies. Interestingly, the ribosomal RNA genes in Chlamydomonas mitochondria (Boer and Gray, 1988a) also show radical intragenic rearrangements that necessitate long-range, noncovalent RNA interactions (although not splicing) for their expression. It may be significant that both of these organisms have mitochondrial genes with homology to reverse transcriptases (Boer and Gray, 1988b; Wahleithner et al., 1990; this paper). It must be
emphasized that even though plant mitochondria are exceptional among organelles in the extent of recombinational activity and in the proportion of noncoding DNA, intragenic rearrangements would be expected to be deleterious unless the translocated segment is placed under appropriate transcriptional control and the RNA molecules can associate correctly to undergo proper processing.

This work clearly demonstrates that short gene segments can be dispersed around the wheat mitochondrial genome and yet still comprise functional coding entities that are expressed through complex RNA processing. The presence of group II introns is intimately associated with this phenomenon and could play an important evolutionary role in the creation of novel genes from pre-existing coding domains or the conversion of long genes into shorter autonomous ones. Plant mitochondria, long known for the fluidity of their genome organization, must now be recognized for a remarkable plasticity in individual gene structure.

Experimental Procedures

Nucleic Acid Isolation and Cloning

MDNA and RNA were isolated from wheat embryos (Triticum aestivum var. Thatcher and Frederick) that had been germinated in the dark for 24 hr (DNA) or 3 days (RNA) as described previously (Bonen and Gray, 1986; Wilson and Chourey, 1984). Wheat mtDNA restriction fragments were recovered from agarose gels using GenClean (BIO/CAN Scientific) and ligated into pUC plasmid vectors for transformation of E. coli strain TB1. Clones were retrieved from banks using colony hybridization methods (Maniatis et al., 1982). DNA restriction fragments of interest were subcloned into appropriate M13 vectors (Maniatis et al., 1982) and sequenced by the diodeoxyxylodeotide chain termination method (Sanger et al., 1977) using [α-35S]ATP or [α-32P]dATP (Amersham and NEN/Du Pont) with either Sequenase (USB) or Klenow polymerase (Amersham). Both strands were sequenced, and dITP was used in some cases. The sequence data were analyzed using Microgenie (Beckman) programs and GenBank/National Biomedical Research Foundation data banks.

Reverse Transcriptase Sequencing

Synthetic oligonucleotides were labeled at their 5’ termini with T4 polynucleotide kinase (Pharmacia) and [γ-32P]ATP (NEN/Du Pont). After purification on Sephadex G-50 spin columns, the oligonucleotides were annealed with approximately 25 µg of wheat mRNA and extended by the diodeoxyxylodeotide termination method using avian myeloblastosis virus reverse transcriptase (Life Sciences), following the procedure two as described by Gelebier et al. (1986). Products were resolved on 7% acrylamide sequencing gels.

Oligonucleotide Synthesis

The following oligonucleotides were synthesized on an Applied Biosystems DNA synthesizer and have been designated according to the exon that they specify.

A: CCTGCTATATAATTCTCATAAACGC

(Sequence 2A, positions 507–483)

A2: AAGGCTATCTGATGAGAG

(Sequence 2A, 196–179)

A3: TCGGGTGACACGTGACG

(Sequence 2A, 86–105)

B: ACTTCTAAGGGCATTG

(Sequence 2B, 676–657)

E2: CGTTAATGCTCTAGAAAAGGC

(Sequence 2B, 646–627)

C: ACGTTTCTGGGTCACTGAC

(Sequence 2B, 2186–2183)

D: TAAAGATCTGATGGCAT

(Sequence 2C, 255–236)

E: AAGGGCAAGCAGTGGTATAG

(Sequence 2D, 2829–2810)

E2: GAGCTAATGATAGGCGAAGACAC

(Sequence 2D, 2980–2958)

The oligomer E2 sequence was derived from a conserved region within the watermelon mitochondrial ORF36 (Stern et al., 1986) and oligomer D from the broad bean nad1 subterminal exon (Wahleithner et al., 1990).

PCR Amplification of cDNAs

cDNAs were prepared using the method described above for reverse transcriptase deoxy sequencing, except that the diodeoxyxylodeotide mixes were omitted. The products were then incubated an additional hour with 2 µl of 2 mM dNTPs. Purified cDNA pellets were dissolved in 100 µl of TE (10 mM Tris–HCl [pH 7.5], 1 mM EDTA). Each amplification tube contains 500 ng of each primer (approximately 100 pmol), 10 µl of amplification buffer (10 mM Tris–HCl [pH 9.0], 500 mM KCl, 15 mM MgCl2, 0.1% gelatin, 1% Triton), 10 µl of dNTPs (2 mM), 2 µl of Taq DNA polymerase (BIO/CAN), and 10 µl of DNA template in a final volume of 100 µl. Thirty cycles were performed on a Perkin Elmer Cetus DNA thermal cycler, following the recommended protocols of the manufacturer: 1 min at 94°C, 2 min at the appropriate annealing temperature (Gelebier et al., 1986), and 3 min at 72°C. The Sall and BglII restriction sites within oligomers A3 and E, respectively, were used for cloning the amplification products into M13 vectors.

Acknowledgments

We thank P. H. Boer for helpful discussions and D. Wolstenholme for providing a preprint of the broad bean nad1Leod paper. The financial support of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. L. B. is a recipient of an NSERC University Research Fellowship, and Y. C. holds a graduate scholarship from le Fonds pour la Formation de Chercheurs et l’Aide à la Recherche.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC Section 1794 solely to indicate this fact.

Received December 20, 1990; revised February 27, 1991.

References

EMBL Accession Numbers

The accession numbers for the sequences reported in Figure 2 of this paper are X57865–X57868.